WO2007103786A2 - Methods of seed breeding using high throughput nondestructive seed sampling - Google Patents
Methods of seed breeding using high throughput nondestructive seed sampling Download PDFInfo
- Publication number
- WO2007103786A2 WO2007103786A2 PCT/US2007/063176 US2007063176W WO2007103786A2 WO 2007103786 A2 WO2007103786 A2 WO 2007103786A2 US 2007063176 W US2007063176 W US 2007063176W WO 2007103786 A2 WO2007103786 A2 WO 2007103786A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seed
- seeds
- population
- sample
- crop
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/04—Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
- A01H1/045—Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection using molecular markers
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
- A01H5/10—Seeds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/54—Leguminosae or Fabaceae, e.g. soybean, alfalfa or peanut
- A01H6/542—Glycine max [soybean]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Definitions
- the present invention relates to the field of plant breeding. More specifically, this invention provides methods for augmenting and economizing germplasm improvement activities using high throughput and nondestructive seed sampling techniques.
- the present disclosure relates to systems and methods for facilitating germplasm improvement activities through the use of high throughput, nondestructive sampling of seeds.
- nondestructive sampling it is possible to test individual seeds in a population, and select only the seeds that possess one or more desired characteristics. This allows for new and more efficient methods for germplasm improvement and management, which lead to improved breeding populations.
- the present disclosure provides for a high- throughput, non-destructive method for analyzing individual seeds in a population of seeds.
- the method comprises removing a sample from a plurality of seeds in the population while preserving the germination viability of the seed and analyzing the sample for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait.
- the present disclosure provides for a high- throughput method for analyzing a population of haploid seed.
- the method comprises removing a sample from a plurality of seeds in a population of haploid seed while preserving the germination viability of the seed and analyzing the samples for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait.
- the present disclosure provides for a high-throughput method for bulking a population of doubled haploid seed.
- the method comprises providing a population of seeds comprising haploid seeds and selecting one or more individual seeds exhibiting at least one preferred characteristic from the population of seeds. Doubled haploid seeds are then produced from the selected seeds and a sample is removed from each doubled haploid seed while preserving the germination viability of the seeds. The samples are analyzed for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait. Based on the results of the analysis, one or more individual doubled haploid seeds are selected and plants or plant tissue is cultivated from the selected doubled haploid seed.
- the samples may be analyzed for one or more characteristics indicative of at least one chemical trait.
- characteristics may include proteins, oils, carbohydrates, fatty acids, amino acids, biopolymers, pharmaceuticals, starch, fermentable starch, secondary compounds, and metabolites.
- the samples may be analyzed for one or more characteristics indicative of at least one genetic trait.
- characteristics may include a genetic marker, a single nucleotide polymorphism, a simple sequence repeat, a restriction fragment length polymorphism, a haplotype, a tag SNP, an alleles of a genetic marker, a gene, a DNA-derived sequence, an RNA-derived sequence, a promoter, a 5' untranslated region of a gene, a 3' untranslated region of a gene, microRNA, siRNA, a QTL, a satellite marker, a transgene, mRNA, ds mRNA, a transcriptional profile, and a methylation pattern.
- FIG. 1 is an allelogram depicting maize endosperm tissue samples that have undergone PCR for detection of a particular SNP as described in Example 3.
- FIG. 2 is a graphical illustration of the efficacy of pre-selection on driving the frequency of favorable haplotypes as described in Example 6.
- the present invention provides for novel methods to facilitate germplasm improvement activities through the use of high throughput, nondestructive sampling of seeds.
- the methods are useful in analyzing seeds in order to identify and select seeds comprising one or more desired traits, markers, and genotypes.
- the analytical methods allow individual seeds that are present in a batch or a bulk population of seeds to be analyzed such that the chemical and/or genetic characteristics of the individual seeds can be determined.
- Samples prepared by the present invention can be used for determining a wide variety of physical, morphological, chemical and/or genetic traits. Generally, such traits are determined by analyzing the samples for one or more characteristics indicative of at least one genetic or chemical trait.
- characteristics indicative of chemical traits include proteins, oils, carbohydrates, fatty acids, amino acids, biopolymers, pharmaceuticals, starch, fermentable starch, secondary compounds, and metabolites.
- chemical traits include amino acid content, protein content, starch content, fermentation yield, fermentation efficiency, energy yield, oil content, determination of protein profiles determination of fatty acid profiles, determination of metabolite profiles, etc.
- Non-limiting examples of characteristics indicative of genetic traits may include, for example, genetic markers, single nucleotide polymorphisms, simple sequence repeats, restriction fragment length polymorphisms, haplotypes, tag SNPs, alleles of genetic markers, genes, DNA-derived sequences, RNA-derived sequences, promoters, 5' untranslated regions of genes, 3' untranslated regions of genes, microRNA, siRNA, quantitative trait loci (QTL), satellite markers, transgenes, mRNA, ds mRNA, transcriptional profiles, and methylation patterns.
- genetic markers single nucleotide polymorphisms, simple sequence repeats, restriction fragment length polymorphisms, haplotypes, tag SNPs, alleles of genetic markers, genes, DNA-derived sequences, RNA-derived sequences, promoters, 5' untranslated regions of genes, 3' untranslated regions of genes, microRNA, siRNA, quantitative trait loci (QTL), satellite markers, transgenes, mRNA, d
- the sampling of endosperm tissue enables the determination of allele frequencies, whereby it is possible to infer parental linkage phase for a particular marker. Further, comparison of allele frequency data between two or more germplasm pools provides insight into the targets of selection, whereby alleles increasing in frequency in conjunction with a shift in distribution of one or more traits are presumed to be linked to said trait or traits of interest. Also, evaluation of relative allele frequency data between lines can contribute to the construction of genetic linkage maps.
- the methods of the present invention use high throughput, nondestructive seed sampling with doubled haploid technologies to contribute to germplasm improvement activities including economization of doubled haploid programs by selecting only preferred seed for doubling, high throughput analysis of haploid and doubled haploid material for both genotypic and chemical characteristics, trait integration and evaluation, and marker-assisted breeding.
- the methods and devices of the present invention can be used in a breeding program to select plants or seeds having a desired genetic or chemical trait, wherein a desired genetic trait comprises a genotype, a haplotype, an allele, a sequence, a transcript profile, and a methylation pattern.
- the methods of the present invention can be used in combination with any breeding methodology and can be used to select a single generation or to select multiple generations.
- the choice of breeding method depends on the mode of plant reproduction, the heritability of the trait(s) being improved, and the type of cultivar used commercially (e.g., F 1 hybrid cultivar, pureline cultivar, etc). Selected, non-limiting approaches for breeding the plants of the present invention are set forth below. It is further understood that any commercial and non-commercial cultivars can be utilized in a breeding program. Factors including, for example, without limitation, emergence vigor, vegetative vigor, stress tolerance, disease resistance, branching, flowering, seed set, seed size, seed density, standability, and threshability will generally dictate the choice.
- the methods of the present invention are used to determine the genetic characteristics of seeds in a marker-assisted breeding program.
- Such methods allow for improved marker-assisted breeding programs wherein nondestructive direct seed sampling can be conducted while maintaining the identity of individual seeds from the seed sampler to the field.
- the marker-assisted breeding program results in a "high-throughput" and more efficient platform wherein a population of seeds having a desired trait, marker or genotype can be more effectively bulked in a shorter period of time, with less field and labor resources required.
- the present invention provides a method for analyzing individual seeds within a population of seeds having genetic differences.
- the method comprises removing a sample comprising cells with nucleic acids from seeds in the population without affecting the germination viability of the seeds; analyzing the nucleic acids extracted from the sample for the presence or absence of at least one genetic marker; selecting seeds from the population based upon the results of the nucleic acid analysis; and cultivating plants from the selected seed.
- Germination viability means that a predominant number of sampled seeds, (i.e., greater than 50% of all sampled seeds) remain viable after sampling. In a particular embodiment, at least about 75% of sampled seeds, and in some embodiments at least about 85% of sampled seeds remain viable. It should be noted that lower rates of germination viability may be tolerable under certain circumstances or for certain applications, for example, as genotyping costs decrease with time because a greater number of seeds could be sampled for the same genotype cost. It should also be noted that sampling does not need to have any effect on viability at all.
- germination viability is maintained for at least about six months after sampling to ensure that the sampled seed will be viable until it reaches the field for planting.
- the methods of the present invention further comprise treating the sampled seeds to maintain germination viability.
- Such treatment may generally include any means known in the art for protecting a seed from environmental conditions while in storage or transport.
- the sampled seeds may be treated with a polymer and/or a fungicide to protect the sampled seed while in storage or in transport to the field before planting.
- the samples of the present invention are used in a high-throughput, non-destructive method for analyzing individual seeds in a population of seeds.
- the method comprises removing a sample from the seed while preserving the germination viability of the seed; and analyzing the sample for the presence or absence of one or more characteristics indicative of a genetic or chemical trait.
- the method may further comprise selecting seeds from the population based on the results of the analysis; and cultivating plants or plant tissue from the selected seed.
- DNA may be extracted from the sample using any DNA extraction methods known to those of skill in the art which will provide sufficient DNA yield, DNA quality, PCR response, and sequencing methods response.
- a non-limiting example of suitable DNA-extraction methods is SDS-based extraction with centrifugation.
- the extracted DNA may be amplified after extraction using any amplification method known to those skilled in the art.
- one suitable amplification method is the GenomiPhi® DNA amplification prep from Amersham Biosciences.
- RNA may be extracted from the sample using any RNA extraction methods known to those of skill in the art which will provide sufficient RNA yield, RNA quality, PCR response, and sequencing methods response.
- a non- limiting example of suitable RNA-extraction methods is SDS-based extraction with centrifugation with consideration for RNase-free reagents and supplies.
- the extracted RNA may be amplified after extraction using any amplification method known to those skilled in the art.
- one suitable amplification method is the Full SpectrumTM RNA Amplification from System Biosciences.
- the extracted nucleic acids are analyzed for the presence or absence of a suitable genetic polymorphism.
- a wide variety of genetic markers for the analysis of genetic polymorphisms are available and known to those of skill in the art.
- genetic markers include, but are not limited to, simple sequence repeats (SSRs), single nucleotide polymorphisms (SNPs), insertions or deletions (Indels), single feature polymorphisms (SFPs, for example, as described in Borevitz et al. 2003 Gen. Res. 13:513-523) or transcriptional profiles, and nucleic acid sequences.
- SSRs simple sequence repeats
- SNPs single nucleotide polymorphisms
- Indels insertions or deletions
- SFPs single feature polymorphisms
- a nucleic acid analysis for the presence or absence of the genetic marker can be used for the selection of seeds in a breeding population.
- the analysis may be used to select for genes, QTL, alleles, or genomic regions (haplotypes) that comprise or are linked to a genetic marker.
- analysis methods are known in the art and include, but are not limited to, PCR-based detection methods (for example, TaqMan assays), microarray methods, and nucleic acid sequencing methods.
- the genes, alleles, QTL, or haplotypes to be selected for can be identified using newer techniques of molecular biology with modifications of classical breeding strategies.
- the seed is selected from the group consisting of alfalfa seed, apple seed, banana seed, barley seed, bean seed, broccoli seed, castorbean seed, citrus seed, clover seed, coconut seed, coffee seed, maize seed, cotton seed, cucumber seed, Douglas fir seed, Eucalyptus seed, Loblolly pine seed, linseed seed, melon seed, oat seed, olive seed, palm seed, pea seed, peanut seed, pepper seed, poplar seed, Radiata pine seed, rapeseed seed, rice seed, rye seed, sorghum seed, Southern pine seed, soybean seed, strawberry seed, sugarbeet seed, sugarcane seed, sunflower seed, sweetgum seed, tea seed, tobacco seed, tomato seed, turf seed, wheat seed, and Arabidopsis thaliana. seed.
- the seed is selected from the group consisting of cotton seed, cucumber seed, maize seed,
- the seed is a maize seed or a soybean seed.
- crops analyzed by the methods described herein include forage crops, oilseed crops, grain crops, fruit crops, ornamental plants, vegetable crops, fiber crops, spice crops, nut crops, turf crops, sugar crops, beverage crops, tuber crops, root crops, and forest crops.
- the seed is selected based on the presence or absence of one or more characteristics that are genetically linked with a QTL.
- QTLs which are often of interest include but are not limited to herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, increased nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, other agronomic traits, traits for industrial uses, or traits for improved consumer appeal, or a combination of traits as a multiple trait index.
- the seed can be selected based on the presence or absence of one or more characteristics that are genetically linked with a haplotype associated with a QTL.
- QTL may again include without limitation herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, increased nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, other agronomic traits, traits for industrial uses, or traits for improved consumer appeal, or a combination of traits as a multiple trait index.
- Selection of a breeding population could be initiated as early as the F 2 breeding level, if homozygous inbred parents are used hi the initial breeding cross.
- An Fi generation could also be sampled and advanced if one or more of the parents of the cross are heterozygous for the alleles or markers of interest.
- the breeder may analyze an F 2 population to retrieve the marker genotype of every individual in the population.
- Initial population sizes limited only by the number of available seeds for analysis, can be adjusted to meet the desired probability of successfully identifying the desired number of individuals. See Sedcole, J.R. "Number of plants necessary to recover a trait.” Crop Sci. 17:667-68 (1977). Accordingly, the probability of finding the desired genotype, the initial population size, and the targeted resulting population size can be modified for various breeding methodologies and inbreeding level of the sampled population.
- the selected seeds may be bulked or kept separate depending on the breeding methodology and target. For example, when a breeder is analyzing an F 2 population for disease resistance, all individuals with the desired genotype may be bulked and planted in the breeding nursery. Conversely, if multiple QTL with varying effects for a trait such as grain yield are being selected from a given population, the breeder may keep individual identity preserved, going to the field to differentiate individuals with various combinations of the target QTL. [0036] Several methods of preserving single seed identity can be used while transferring seed from the sampling location to the field. Methods include, but are not limited to, transferring selected individuals to seed tape, a cassette tray, or indexing tray, transplanting with peat pots, and hand-planting from individual seed packets.
- Advantages of using the methods of this invention include, without limitation, reduction of labor and field resources required per population or breeding line, increased capacity to evaluate a larger number of breeding populations per field unit, and increased capacity to analyze breeding populations for desired traits prior to planting.
- Field resources per population are reduced by limiting the field space required to advance the desired genotypes. For example, a population of 1,000 individuals may be planted at 25 seeds per row consuming a total of 40 rows in the field. Using conventional tissue sampling, all 1,000 plants would be tagged and manually sampled by scoring leaf tissue. Molecular marker results would be needed prior to pollination and only those plants containing the desired genetic composition would be pollinated.
- the methods of this invention allow the breeder to analyze the 1,000 seeds in the lab and select the 50 desired seeds prior to planting. The 50 individuals can then be planted in the field, consuming only two 25 seed rows. Additionally, the methods of this invention do not require tagging or sampling in the field, thereby significantly reducing the required manual labor resources.
- the methods of this invention may further increase the number of populations the breeder can evaluate in a given breeding nursery.
- a breeder applying the methods of this invention could evaluate 20 populations of 50 seeds each using the same field area consumed by a single population using conventional field tissue sampling techniques. Even if the populations are selected for a single allele, using a 1:2:1 expected segregation ratio for an F 2 population, the breeder could evaluate 4 populations in the same field area as a single field tissue sampled population.
- a potential further advantage to the methods of the present invention is the mitigation of risks associated with growing plants in certain geographies where plants may grow poorly or experience poor environmental conditions, or may even be destroyed during storms.
- seeds with the "best" genotype or marker composition could be planted in geography 1 and seeds with the "next best” genotype could be planted in geography 2.
- geography 2 would be a backup in case any problem befell the plants grown in geography 1. This is very difficult to do with the traditional method of taking tissue samples from germinated plants for genotyping, because these plants would then need to be uprooted and transplanted to the second geography.
- Using the methods of this invention avoids the problem of transplantation and also simplifies the logistics of the breeding program.
- the methods of the invention may further be used in a breeding program for introgressing a trait into a plant.
- Such methods comprise removing a sample comprising cells with nucleic acids from seeds in a population, analyzing the nucleic acids extracted from each seed for the presence or absence of at least one genetic marker, selecting seeds from the population based upon the results of the nucleic acids analysis; cultivating a fertile plant from the seed; and utilizing the fertile plant as either a female parent or male parent in a cross with another plant.
- Examples of genetic analyses to select seeds for trait integration include, without limitation, identification of high recurrent parent allele frequencies, tracking of transgenes of interest or screening for the absence of unwanted transgenes, selection of hybrid testing seed, selection of seed expressing a gene of interest, selection of seed expressing a heritable phenotype, identification of seed with selected genetic loci, and zygosity testing.
- the identification of high recurrent pair allele frequencies via the methods of the present invention again allows for a reduced number of rows per population and an increased number of populations, or inbred lines, to be planted in a given field unit.
- the methods of the present invention may also effectively reduce the resources required to complete the conversion of inbred lines.
- the methods of the present invention further provide quality assurance (QA) and quality control (QC) by assuring that regulated or unwanted transgenes, undesirable genetic traits, or undesirable inherited phenotypes are identified and discarded prior to planting.
- QA quality assurance
- QC quality control
- This application in a QA capacity could effectively eliminate unintentional release infractions.
- a further extension of the method is to screen for the presence of infectious agents and remove contaminated seed prior to shipping.
- the methods of the present invention may be further applied to identify hybrid seed for transgene testing.
- a breeder could effectively create a hybrid seed lot (barring gamete selection) that was 50% hemizygous for the trait of interest and 50% homozygous for the lack of the trait in order to generate hybrid seed for testing.
- the breeder could then analyze all Fi seeds produced in the test cross and identify and select those seeds that were hemizygous.
- Such method is advantageous in that inferences from the hybrid trials would represent commercial hybrid genetics with regard to trait zygosity.
- the methods of this invention may be used for seeds from plants with two or more transgenes, wherein accumulating or stacking of transgenic regions into plants or lines is achieved by addition of transgenes by transformation, or by crossing parent plants or lines containing different transgenic regions, or any combination of these. Analyses can be conducted to select individual seeds on the basis of the presence of one or more characteristics associated with at least one transgene. Such characteristics include, but are not limited to, a transgene per se, a genetic marker linked to a transgene, mRNA expressed from a transgene, and a protein product of a transgene.
- the methods of this invention may be used to improve the efficiency of the doubled haploid program through selection of desired genotypes at the haploid stage and identification of ploidy level to eliminate non-haploid seeds from being processed and advancing to the field. Both applications again result in the reduction of field resources per population and the capability to evaluate a larger number of populations within a given field unit.
- Doubled haploid (DH) plants provide an invaluable tool to plant breeders, particularly for generating inbred lines. A great deal of time is spared as homozygous lines are essentially instantly generated, negating the need for multigenerational conventional inbreeding.
- DH plants are entirely homozygous, they are very amenable to quantitative genetics studies. Both additive variance and additive x additive genetic variances can be estimated from DH populations. Other applications include identification of epistasis and linkage effects. For breeders, DH populations have been particularly useful in QTL mapping, cytoplasmic conversions, and trait introgression. Moreover, there is value in testing and evaluating homozygous lines for plant breeding programs. All of the genetic variance is among progeny in a breeding cross, which improves selection gain.
- DH production process is inefficient and can be quite labor-intensive. While doubled haploid plants can occur spontaneously in nature, this is extremely rare. Most research and breeding applications rely on artificial methods of DH production.
- the initial step involves the haploidization of the plant which results in the production of a population comprising haploid seed. Non-homozygous lines are crossed with an inducer parent, resulting in the production of haploid seed. Seed that has a haploid embryo, but normal triploid endosperm, advances to the second stage. That is, haploid seed and plants are any plant with a haploid embryo, independent of the ploidy level of the endosperm.
- telomere doubling After selecting haploid seeds from the population, the selected seeds undergo chromosome doubling to produce doubled haploid seeds.
- a spontaneous chromosome doubling in a cell lineage will lead to normal gamete production or the production of unreduced gametes from haploid cell lineages.
- Application of a chemical compound, such as colchicine can be used to increase the rate of diploidization.
- Colchicine binds to tubulin and prevents its polymerization into microtubules, thus arresting mitosis at metaphase, can be used to increase the rate of diploidization, i.e. doubling of the chromosome number
- These chimeric plants are self-pollinated to produce diploid (doubled haploid) seed. This DH seed is cultivated and subsequently evaluated and used in hybrid testcross production.
- the methods of the present invention represent an advance in breeding applications by facilitating the potential for selection at the haploid as well as the diploid seed stage.
- the invention provides for the high-throughput analysis of a population of haploid seed.
- the method generally comprises non-destructively removing a sample from a plurality of seeds in the population and analyzing the sample for the presence of one or more characteristics indicative of at least one genetic or chemical trait as described herein.
- the invention provides for the high- throughput bulking of a population of doubled haploid seeds.
- the method comprises selecting one or more individual seeds exhibiting at least one preferred characteristic from a population of haploid seeds and producing a population of doubled haploid seeds from the selected seeds.
- Each doubled haploid seed is then non-destructively sampled and the samples are analyzed for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait. Based on the results of the analysis, one or more individual doubled haploid seeds are selected and plants or plant tissue is cultivated from the selected doubled haploid seeds.
- the methods of the invention include analyzing seed for one or more characteristics, such as genetic markers, to determine whether the seed is in a haploid or diploid state.
- the present invention also provides a methods for analyzing haploid and doubled haploid seed for one or more characteristics, such as transgenes or markers linked to or diagnostic of transgenes, for characteristics related to event performance, event evaluation, and trait integration. Further, the present invention provides a method to assay haploid seed in order to select preferred genotypic and phenotypic classes to undergo doubling.
- the present invention provides a basis for determination of linkage phase.
- the parental marker haplotypes can be determined using a genotyping system that enables detection of different allele frequencies in DNA samples. Since endosperm tissue is triploid, with two copies derived from the female gamete, the linkage phase of the parental line can be derived by dissecting heterozygous progeny genotypes (see FIG. 1).
- the DNA sample from endosperm tissue allows for a determination of the ploidy level of the genetic marker.
- a diploid ploidy level in the genetic marker indicates maternal inheritance and a haploid ploidy level in the genetic marker indicates paternal inheritance.
- differential allele frequency data can be used to infer the genetic linkage map but, unlike methods requiring haploid material (Gasbarra et al. 2006 Genetics 172:1325-1335), using the above-described allele frequency calling. Determination of the genetic linkage map has tremendous utility in the context of haplotype characterization, mapping of marker (or haplotype) - trait associations. This method is particularly robust on a single, vs. bulked, seed basis and is thus well- suited to the present invention. [0059] In a particular embodiment, the invention further provides an assay for predicting embryo zygosity for a particular gene of interest (GOI).
- GOI embryo zygosity for a particular gene of interest
- the assay predicts embryo zygosity based on the ratio of the relative copy numbers of a GOI and of an internal control (IC) gene per cell or per genome.
- this assay uses an IC gene that is of known zygosity, e.g., homozygous at the locus (two IC copies per diploid cell), for normalizing measurement of the GOI.
- the ratio of the relative copy numbers of the IC to the GOI predicts the GOI copy number in the cell.
- the gene copy number is equal to the cell's ploidy level since the sequence is present at the same locus in all homologous chromosomes.
- the gene copy number When a cell is heterozygous for a particular gene (or hemizygous in the case of a transgene), the gene copy number will be lower than the cell's ploidy level. If the GOI is not detected, the cell is null for the locus, as can happen for a negative segregant of a transgenic event or in a mutagenized population. The zygosity of a cell at any locus can thus be determined by the gene copy number in the cell.
- the invention provides an assay for predicting corn embryo zygosity.
- the endosperm tissue is triploid, whereas the embryo tissue is diploid.
- Endosperm copy number is reflective of the zygosity of the embryo: a homozygous (positive or negative) endosperm accompanies a homozygous embryo, heterozygous endosperm (whether a GOI copy number of 1 or 2) reflects a heterozygous (GOI copy number of 1) embryo.
- Endosperm that is homozygous for the IC will contain three IC copies.
- Endosperm GOI copy number can range from 0 (homozygous negative embryo) to 3 (homozygous positive embryo); and endosperm GOI copy number of 1 or 2 is found in seed where the embryo is heterozygous for the GOI (or hemizygous for the GOI if the GOI is a transgene).
- the endosperm GOI copy number (which can range from 0 to 3 copies) can be determined from the ratio of endosperm IC copy number to endosperm GOI copy number (which can range from 0/3 to 3/3, that is, from 0 to 1), which can then be used to predict zygosity of the embryo.
- Copy numbers of the GOI or of the IC can be determined by any convenient assay technique for quantification of copy numbers, as is known in the art.
- suitable assays include, but are not limited to, Real Time (TaqMan®) PCR (Applied Biosystems, Foster City, CA) and Invader® (Third Wave Technologies, Madison, WI) assays.
- such assays are developed in such a way that the amplification efficiency of both the IC and GOI sequences are equal or very similar.
- the signal from a single-copy GOI (the source cell is determined to be heterozygous for the GOI) will be detected one amplification cycle later than the signal from a two-copy IC, because the amount of the GOI is half that of the IC.
- an Invader® assay would measure a GOI/IC ratio of about 1:2 or 0.5.
- the GOI signal would be detected at the same time as the IC signal (TaqMan®), and the Invader assay would measure a GOI/IC ratio of about 2:2 or 1.
- zygosity at one or more loci for the purpose of evaluating the level of inbreeding (that is, the degree of gene fixation), segregation distortion (i.e., in transgenic germplasm, maternal inheritance testing or for loci that affect the fitness of gametes), and the level of outbreeding (i.e., the relative proportion of homozygosity and heterozygosity).
- the extent of zygosity at one or more loci can be used to estimate hybridity and whether a particular seed lot meets a commercial or regulatory standard for sale as certified hybrid seed.
- transgenic germplasm it is useful to know the ploidy, or copy number, in order to distinguish between quality events and to aid in trait integration strategies.
- the present invention provides a basis for improving the ability to monitor one or more germplasm pools for shifts in the frequencies of one or more genetic characteristics, wherein said genetic characteristics include markers, alleles, and haplotypes.
- Methodology is known in the art to compare genetic marker frequency between recently derived populations and their ancestral lines in order to identify those genetic loci that are increasing in frequency over time (US Patent Nos. 5,437,697 and 5,746,023). Those loci with frequencies that exceed the expected allele frequency are inferred to have been subject to selection. Further, given that the predominant selection criterion in breeding programs is yield, it is expected that those increasingly frequent alleles may be linked to yield.
- the present invention provides a method to enable haplotype-assisted breeding.
- identification of haplotypes that are deviating from the expected haplotype frequency is possible.
- evaluation of haplotype effect estimates for said haplotypes it is also possible to link said haplotypes of increasing frequency with phenotypic outcomes for a suite of agronomic traits.
- the haplotype composition of individual seeds sampled from a plurality of seeds can be determined using genetic markers and the seeds with preferred haplotypes are selected and advanced.
- This example describes an assay for predicting the zygosity of corn embryos using an internal control (IC) gene homozygous at the locus (i.e., two IC copies in the diploid embryo and three IC copies in the triploid endosperm).
- IC internal control
- the endogenous internal control is typically homozygous; transgenic events in such organisms at the first generation (termed "RO" in corn) are typically hemizygous (that is, the transgene is typically present in only one of the two or more homologous chromosomes).
- a "two copy" RO event has two copies of the GOI per cell, but 1 copy per haploid genome, and so forth.
- tubulin was used as the IC gene
- the GOI was a transgene encoding neomycin phosphotransferase II (NPT II), which is used for kanamycin resistance selection.
- NPT II neomycin phosphotransferase II
- Endosperm (triploid) tissue was taken from seed
- the zygosity assay of the present invention can predict zygosity of one tissue based on the zygosity of another, that is, the assay can predict the embryo zygosity based on the endosperm zygosity.
- This example demonstrates the use of the methods of the present invention in a program for marker-assisted selection of soybeans for Low Linolenic Acid.
- Soybean is the most valuable legume crop, with many nutritional and industrial uses due to its unique chemical composition. Soybean seeds are an important source of vegetable oil, which is used in food products throughout the world. The relatively high level (usually about 8%) of linolenic acid (18:3) in soybean oil reduces its stability and flavor. Hydrogenation of soybean oil is used to lower the level of linolenic acid (18:3) and improve both stability and flavor of soybean oils. However, hydrogenation results in the production of trans fatty acids, which increases the risk for coronary heart disease when consumed. The development of low linolenic acid soybean has been complicated by the quantitative nature of the trait. The low linolenic acid soybean varieties that have been developed have been found to yield poorly, limiting their usefulness in most commercial settings. Developing a product with commercially significance seed yield is a high priority in most soybean cultivar development programs.
- An example of the application of the methods of the present invention is selection of soybean plants with both high yield and decreased linolenic acid content. Soybean progeny performance as it relates to low linolenic acid relies mainly on two major quantitative trait locus (QTL) at Fad3-lb and Fad3-lc. Analysis of segregating plants demonstrated that FadS-lb and Fad3-lc additively control linolenic content in soybean. Therefore, by using a combination of markers for Fad3-lb and Fad3-lc, a breeder using the invention can accurately predict linolenic acid content in soybean plants. The markers can be used to infer the genotypic state of a seed at any stage in the breeding process, for example, at the finished inbred line stage, or the F 1 , F 2 , F 3 , etc.
- QTL quantitative trait locus
- a seminal F 1 hybrid can be produced by crossing two inbred soybean lines (for example, crossing a plant containing the Fad3-lb and/or Fad3-lc alleles associated with decreased linolenic acid content to a plant lacking these alleles) followed by natural self-pollination. Since the markers can be used to infer the genotypic state of a single seed obtained from an inte ⁇ nating of such inbred lines, early generation (i.e., F 2 ) marker-assisted breeding can be conducted.
- Soybean seed at ambient temperature and humidity typically equilibrate to 8% moisture on a dry weight basis. Soybean seed at this level of moisture tends to split when sampled. To reduce splitting, seed should be humidified to moisture level of 12%. When pretreated in this manner, splitting is significantly reduced to ⁇ 5%.
- the selected F 2 seed that have the desired genotype may be bulked or kept separate depending on the breeding objectives. If multiple QTL with varying effects were being selected from a given population, the breeder could preserve single seed identity to differentiate individuals with various combinations of the target resistance QTL. These seeds could be planted in the field with appropriate field identification. Several methods of preserving single seed identity can be used while transferring seed from the sampling lab to the field. Methods include transferring selected individuals to horticultural seed tape that could also include radio frequency identification to aid in the identification of the individual genotyped seed. Other methods would be to use an indexing tray, plant seeds in peat pots and then transplant them, or hand plant from individual seed packets. Example 3
- the methods of the present invention can be used for selection of transgenes as well as identification of recurrent parent alleles.
- the identification of genotypes with desired recurrent parent allele frequencies before planting allows the number of rows per population to be reduced throughout the entire breeding program along with an increase in the number of populations included in the conversion program within a given field unit. This results in improved land usage, reduced land and labor costs, etc.
- FIG. 1 An example of analyzing endosperm tissue from corn for recurrent parent alleles in a backcross breeding program is shown in FIG. 1.
- Example 4 demonstrates the use of the methods of the present invention for use in DNA line fingerprinting and linkage phase determination.
- line fingerprinting could be accomplished without the need to sample the line in the field.
- the parental marker haplotypes can be determined using a genotyping system that enables detection of different allele frequencies in DNA samples. Since endosperm tissue is triploid, with two copies derived from the female gamete, the linkage phase of the parental line can be derived by dissecting heterozygous progeny genotypes.
- the DNA sample from endosperm tissue allows for a determination of the ploidy level of the genetic marker. A diploid ploidy level in the genetic marker indicates maternal inheritance and a haploid ploidy level in the genetic marker indicates paternal inheritance.
- This example demonstrates the methods of the present invention for evaluating transgenic seed for segregation distortion. Seeds of an Fl cross between Line A (Homozygous Event 1 and Event 2) and Line B (Homozygous Event 1) were induced in a maternal haploid induction isolation. The resulting kernels were selected using plumule color to obtain a population of putative haploid seed.
- Results of this study indicate that individual gene traits can be selected on a haploid basis using high throughput, nondestructive seed sampling as a screening mechanism.
- This example demonstrates the utility of automated, high- throughput sampling in the preselection of haploid seed from a population of seeds.
- the experiment comprised sampling 20 F2 populations using a nondestructive, high throughput seed sampling system and analyzing the samples to verify the pre-selection of haploid seed.
- Each population of F2 seed was nondestructively sampled or the F2 plants were tissue sampled for DNA analysis.
- the nondestructive seed samples were collected from individual seeds in the population of seeds using an automated seed sampler system as generally described in U.S. Patent Application Serial No. 11/213,435 (Publication No. US 2006/004624), which is hereby incorporated by reference in its entirety. Selection of desirable genotypes was based on selecting materials with the greatest allelic frequencies of the desired haplotypes based on modeling parameters. The selected F2 plants were pollinated with haploid inducing male pollinators and the resulting seed is harvested. Following harvest, haploid kernels were sorted out from the non-haploid seed and the haploids were sampled on a kernel basis using nondestructive, high throughput sampling and subsequent genotyping.
- the preferred haploid seed was selected and subjected to a chromosome doubling procedure to produce doubled haploids. This approach allows non-preferred genotypes to be culled before doubling and increases the frequency of preferred material that is processed through the resource intensive doubling process.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Botany (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Environmental Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Physiology (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Pretreatment Of Seeds And Plants (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2644700A CA2644700C (en) | 2006-03-02 | 2007-03-02 | Methods of seed breeding using high throughput nondestructive seed sampling |
BRPI0708486-2A BRPI0708486B1 (en) | 2006-03-02 | 2007-03-02 | HIGH-YEARTH METHODS FOR THE ANALYSIS OF A HAPLOID SEED POPULATION AND TO GROW A DOUBLE-HAPLOID SEED POPULATION |
MX2008011282A MX2008011282A (en) | 2006-03-02 | 2007-03-02 | Methods of seed breeding using high throughput nondestructive seed sampling. |
UAA200811730A UA100968C2 (en) | 2006-03-02 | 2007-03-02 | Method for seed production through the use of high throughput, nondestructive sampling of seeds |
EP07757794A EP1993348A2 (en) | 2006-03-02 | 2007-03-02 | Methods of seed breeding using high throughput nondestructive seed sampling |
ZA2008/08304A ZA200808304B (en) | 2006-03-02 | 2008-09-29 | Methods of seed breeding using high throughput nondestructive seed sampling |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77882806P | 2006-03-02 | 2006-03-02 | |
US60/778,828 | 2006-03-02 | ||
US11/680,611 | 2007-02-28 | ||
US11/680,611 US7703238B2 (en) | 2004-08-26 | 2007-02-28 | Methods of seed breeding using high throughput nondestructive seed sampling |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007103786A2 true WO2007103786A2 (en) | 2007-09-13 |
WO2007103786A3 WO2007103786A3 (en) | 2007-11-08 |
Family
ID=38372356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/063176 WO2007103786A2 (en) | 2006-03-02 | 2007-03-02 | Methods of seed breeding using high throughput nondestructive seed sampling |
Country Status (9)
Country | Link |
---|---|
US (7) | US7703238B2 (en) |
EP (1) | EP1993348A2 (en) |
AR (1) | AR059718A1 (en) |
BR (1) | BRPI0708486B1 (en) |
CA (1) | CA2644700C (en) |
MX (1) | MX2008011282A (en) |
RU (1) | RU2008139096A (en) |
WO (1) | WO2007103786A2 (en) |
ZA (1) | ZA200808304B (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008154472A2 (en) * | 2007-06-08 | 2008-12-18 | Monsanto Technology Llc | Methods for sequence-directed molecular breeding |
WO2009032724A3 (en) * | 2007-08-29 | 2009-05-28 | Monsanto Technology Llc | Methods for incorporating multiple genes in a crop plant |
US7915006B2 (en) | 2006-11-13 | 2011-03-29 | Pioneer Hi-Bred International, Inc. | Methodologies, processes and automated devices for the orientation, sampling and collection of seed tissues from individual seed |
US8221968B2 (en) | 2007-12-17 | 2012-07-17 | Pioneer Hi-Bred International, Inc. | Apparatus, method and system for creating, handling, collecting and indexing seed and seed portions from plant seed |
US8240084B2 (en) | 2007-09-26 | 2012-08-14 | Pioneer Hi-Bred International, Inc. | Apparatus and method to package articles for storage and identification |
US8273944B2 (en) | 2007-08-29 | 2012-09-25 | Monsanto Technology Llc | Methods and compositions for gray leaf spot resistance in corn |
WO2012143696A1 (en) * | 2011-04-19 | 2012-10-26 | Bioproperties Pte. Ltd | Obtaining plants of atypical ploidy or zygosity |
US8329426B2 (en) | 2008-10-01 | 2012-12-11 | Pioneer Hi-Bred International, Inc. | High throughput method for measuring total fermentables in small amount of plant part |
US8519297B2 (en) | 2008-08-22 | 2013-08-27 | Pioneer Hi-Bred International, Inc. | Apparatus for removal of specific seed tissue or structure for seed analysis |
US8523092B2 (en) | 2009-09-14 | 2013-09-03 | Pioneer Hi-Bred International, Inc. | System and method for creating a test sample from individual seeds or tissue structures |
CN103340145A (en) * | 2013-07-15 | 2013-10-09 | 中国农业大学 | Method for performing one-step system formation by corn haploid breeding |
US8568821B2 (en) | 2008-04-08 | 2013-10-29 | Pioneer Hi Bred International Inc | Apparatus and method for coating ears of corn |
US8579118B2 (en) | 2009-02-18 | 2013-11-12 | Pioneer Hi-Bred International, Inc. | Method for preparing ears of corn for automated handling, positioning and orienting |
US8609179B2 (en) | 2008-08-22 | 2013-12-17 | Pioneer Hi-Bred International, Inc. | High throughput automated apparatus, method and system for coating ears of corn |
US8662425B2 (en) | 2009-03-20 | 2014-03-04 | Pioneer Hi Bred International Inc | High-throughput, seed sampling and collection system and method |
WO2014071271A1 (en) * | 2012-11-05 | 2014-05-08 | Pioneer Hi-Bred International, Inc. | Embryo sampling for molecular analysis |
US8833565B2 (en) | 2010-06-08 | 2014-09-16 | Pioneer Hi-Bred International, Inc. | Apparatus and method for seed selection |
US8863436B2 (en) | 2009-12-31 | 2014-10-21 | Pioneer Hi Bred International Inc | Automated seed sampling apparatus, method and system |
WO2014195199A1 (en) * | 2013-06-03 | 2014-12-11 | Syngenta Participations Ag | Non-disruptive dna isolation from corn seeds |
WO2016032589A1 (en) * | 2014-08-29 | 2016-03-03 | Pioneer Hi Bred International Inc | Systems and methods for genotyping plant material |
EP3089580A4 (en) * | 2013-12-31 | 2017-09-20 | Dow AgroSciences LLC | Selection based on optimal haploid value to create elite lines |
CN107710949A (en) * | 2017-09-08 | 2018-02-23 | 无为县西华毛峰生态茶业有限公司 | Maofeng tea tree seedling culture method |
CN108004344A (en) * | 2017-12-20 | 2018-05-08 | 中国农业科学院作物科学研究所 | A kind of corn whole genome SNP chip and its application |
US10280472B2 (en) | 2014-08-29 | 2019-05-07 | Pioneer Hi-Bred International, Inc. | Systems and methods for genotyping seed components |
US10278345B2 (en) | 2014-08-29 | 2019-05-07 | Pioneer Hi-Bred International, Inc. | Methods and devices for creating doubled haploid embryos using oil matrices |
US10477859B2 (en) | 2014-08-29 | 2019-11-19 | Pioneer Hi-Bred International, Inc. | Plant embryo storage and manipulation |
CN110959901A (en) * | 2018-09-26 | 2020-04-07 | 浙江中烟工业有限责任公司 | Cigarette adopting tobacco-flavored cut tobacco functional incense raw material composition and being non-combustible by heating |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6706989B2 (en) | 2001-02-02 | 2004-03-16 | Pioneer Hi-Bred International, Inc. | Automated high-throughput seed sample processing system and method |
WO2005031367A2 (en) * | 2003-09-23 | 2005-04-07 | Monsanto Technology Llc | High throughput automated seed analysis system |
US7685768B2 (en) * | 2004-08-26 | 2010-03-30 | Monsanto Technology Llc | Automated testing of seeds |
US7832143B2 (en) | 2004-08-26 | 2010-11-16 | Monsanto Technology Llc | High throughput methods for sampling seeds |
US7703238B2 (en) * | 2004-08-26 | 2010-04-27 | Monsanto Technology Llc | Methods of seed breeding using high throughput nondestructive seed sampling |
US7591101B2 (en) * | 2004-08-26 | 2009-09-22 | Monsanto Technology Llc | Automated seed sampler and methods of sampling, testing and bulking seeds |
CA2620075C (en) | 2005-08-26 | 2015-03-17 | Monsanto Technology Llc | High throughput screening of fatty acid composition |
US7998669B2 (en) * | 2006-03-02 | 2011-08-16 | Monsanto Technology Llc | Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds |
US8028469B2 (en) | 2006-03-02 | 2011-10-04 | Monsanto Technology Llc | Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds |
CN102156059A (en) * | 2006-11-13 | 2011-08-17 | 先锋高级育种国际公司 | Clip based sampling of seed for the removal of specific seed tissue or structures for seed analysis |
AU2008228065A1 (en) * | 2007-03-19 | 2008-09-25 | Sumatra Bioscience Pte. Ltd. | Methods of producing haploid and doubled haploid oil palms |
US8452445B2 (en) | 2007-04-24 | 2013-05-28 | Pioneer Hi-Bred International, Inc. | Method and computer program product for distinguishing and sorting seeds containing a genetic element of interest |
US8459463B2 (en) | 2007-04-24 | 2013-06-11 | Pioneer Hi-Bred International, Inc. | Method for sorting resistant seed from a mixture with susceptible seed |
BRPI0810540A2 (en) * | 2007-04-24 | 2017-01-31 | Pioneer Hi Bred Int | method and software for distinguishing seed containing a genetic element of interest from a bulk sample |
US20110079544A1 (en) * | 2009-10-01 | 2011-04-07 | Pioneer Hi-Bred International, Inc. | Method for sorting resistant seed from a mixture with susceptible seed |
US8189901B2 (en) | 2007-05-31 | 2012-05-29 | Monsanto Technology Llc | Seed sorter |
WO2010042096A2 (en) * | 2007-09-19 | 2010-04-15 | Monsanto Technology Llc | Systems and methods for analyzing agricultural products |
US20110214196A1 (en) * | 2008-06-20 | 2011-09-01 | University Of Georgia Research Foundation | Development of herbicide-resistant grass species |
US8033426B2 (en) * | 2008-06-26 | 2011-10-11 | Pioneer Hi-Bred International, Inc. | Apparatus, method and system for reconfiguring items |
CA2732684A1 (en) * | 2008-08-22 | 2010-02-25 | Pioneer Hi-Bred International, Inc. | Method and system for data driven management of individual seeds |
US7997415B2 (en) * | 2008-08-22 | 2011-08-16 | Pioneer Hi-Bred International, Inc. | Apparatus, method and system for creating, collecting and indexing seed portions from individual seed |
IT1391460B1 (en) * | 2008-10-27 | 2011-12-23 | Univ Degli Studi Trieste | METHOD FOR DISCRIMINATION BETWEEN COFFEA ARABICA AND COFFEA CANEPHORA SPECIES BASED ON POLYMORPHISMS OF NUCLEAR AND CHLOROPLASTIC DNA |
US9842252B2 (en) * | 2009-05-29 | 2017-12-12 | Monsanto Technology Llc | Systems and methods for use in characterizing agricultural products |
JP2011080384A (en) * | 2009-10-05 | 2011-04-21 | Otics Corp | Vehicle engine |
MX2013000790A (en) | 2010-07-20 | 2013-03-20 | Monsanto Technology Llc | Automated systems for removing tissue samples from seeds, and related methods. |
US20120080590A1 (en) * | 2010-10-04 | 2012-04-05 | Syngenta Participations Ag | Methods of determining plant zygosity using mass spectrometry |
US10351917B2 (en) | 2011-08-31 | 2019-07-16 | Monsanto Technology Llc | Molecular markers associated with soybean tolerance to low iron growth conditions |
US9481889B2 (en) | 2012-03-19 | 2016-11-01 | The Malasian Palm Oil Board | Gene controlling shell phenotype in palm |
CN102653790A (en) * | 2012-03-31 | 2012-09-05 | 中国农业科学院果树研究所 | Improved TP-M13-SSR molecular arking method of apple germplasm resource |
EP2671948A1 (en) * | 2012-06-07 | 2013-12-11 | Rijk Zwaan Zaadteelt en Zaadhandel B.V. | Method for analysing maternal dna in large plant populations |
US10059999B2 (en) | 2013-06-10 | 2018-08-28 | Monsanto Technology Llc | Molecular markers associated with soybean tolerance to low iron growth conditions |
US9681615B2 (en) | 2013-06-20 | 2017-06-20 | Elwha Llc | Rapid breeding of plants |
US20160319300A1 (en) * | 2013-12-20 | 2016-11-03 | ISI Sementi s.p.a. | Isolated nucleotide sequence from solanum lycopersicum for improved resistance to tomato spotted wilt virus, tswv. |
SG11201609025TA (en) | 2014-05-02 | 2016-11-29 | Malaysian Palm Oil Board | Mantle phenotype detection in palm |
WO2016044050A1 (en) * | 2014-09-16 | 2016-03-24 | Monsanto Technology Llc | Improved methods of plant breeding using high-throughput seed sorting |
US10472684B2 (en) | 2015-04-28 | 2019-11-12 | Monsanto Technology Llc | Methods and compositions for producing brachytic corn plants |
WO2016200825A1 (en) | 2015-06-08 | 2016-12-15 | Monsanto Technology Llc | High throughput cassette filler |
CN106706820B (en) * | 2015-11-13 | 2018-05-25 | 中国科学院大连化学物理研究所 | A kind of bearing calibration of general extensive metabolism group data |
MX2018011964A (en) | 2016-03-31 | 2019-02-13 | Basf Se | Non-destructive seed genotyping. |
CN106605593B (en) * | 2016-12-21 | 2019-01-15 | 陕西省杂交油菜研究中心 | A kind of selection of the disease-resistant rape germplasm of floorboard with high oil content |
US11698345B2 (en) | 2017-06-21 | 2023-07-11 | Monsanto Technology Llc | Automated systems for removing tissue samples from seeds, and related methods |
CN107267661B (en) * | 2017-08-21 | 2020-10-09 | 黑龙江大学 | SSR molecular marker for detecting fertility of beet stamens and application thereof |
CN108157044A (en) * | 2017-12-29 | 2018-06-15 | 永仁太谷农业发展有限公司 | A kind of olive green wood cutting method for culturing seedlings |
US11377662B2 (en) | 2018-01-10 | 2022-07-05 | Wisconsin Alumni Research Foundation | Agrobacterium-mediated and particle bombardment transformation method for cowpea and dry bean meristem explants |
CA3094992A1 (en) * | 2018-03-30 | 2019-10-03 | Pioneer Hi-Bred International, Inc. | Methods to evaluate traits |
CN108668890B (en) * | 2018-04-08 | 2021-06-08 | 河南农业大学 | Method for improving correct recognition rate of corn haploid |
MX2020011296A (en) | 2018-04-27 | 2020-11-18 | Monsanto Technology Llc | Methods for genotyping haploid embryos. |
CN109122297A (en) * | 2018-09-28 | 2019-01-04 | 安徽省农业科学院烟草研究所 | A kind of high-quality suitable production resistance to bacterial wilt new product of tobacco selection |
CN109105170B (en) * | 2018-10-08 | 2021-08-17 | 四川农业大学 | Method for improving planting success rate of perennial forage maize |
CN109105169B (en) * | 2018-10-08 | 2021-08-13 | 四川农业大学 | Method for expanding propagation of perennial forage maize by using stem nodes for autumn sowing and spring planting |
CN110972594A (en) * | 2019-12-09 | 2020-04-10 | 神华宝日希勒能源有限公司 | Method for improving associated clay in strip mine mining |
CN111699782B (en) * | 2020-06-10 | 2022-02-18 | 广东省农业科学院农业生物基因研究中心 | Method for rapidly judging whether rice seeds are qualified or not by using regression equation of galactose content and germination rate |
CN111485032B (en) * | 2020-06-12 | 2021-06-22 | 北京市农林科学院 | Method for identifying cucumber female line and SNP primer combination used by same |
EP4426842A1 (en) | 2021-11-01 | 2024-09-11 | Flagship Pioneering Innovations VII, LLC | Polynucleotides for modifying organisms |
MX2024009021A (en) | 2022-01-20 | 2024-08-06 | Flagship Pioneering Innovations Vii Llc | Polynucleotides for modifying organisms. |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1151988A (en) * | 1967-03-03 | 1969-05-14 | Laukien Guenther | Plant Seed Testing and Sorting |
GB1471076A (en) * | 1974-08-27 | 1977-04-21 | Sensors Inc | Method for determining the viability of seeds prior to their germination |
WO1998014046A1 (en) * | 1996-10-04 | 1998-04-09 | D.J. Van Der Have B.V. | Method and apparatus for the quality assessment of seed |
WO2001089288A1 (en) * | 2000-05-25 | 2001-11-29 | Lestander Torbjoern | Single seed sortation |
US20020144458A1 (en) * | 2001-02-02 | 2002-10-10 | Hunter James L. | Automated high-throughput seed sample processing system and method |
WO2006026466A2 (en) * | 2004-08-26 | 2006-03-09 | Monsanto Technology Llc | Automated seed sampler and methods of sampling, testing and bulking seeds |
WO2006026467A2 (en) * | 2004-08-26 | 2006-03-09 | Monsanto Technology Llc | Automated testing of seeds |
Family Cites Families (129)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2756903A (en) | 1952-06-03 | 1956-07-31 | Kreidler Alfred | Device for extracting articles from a container |
US3350372A (en) | 1960-08-22 | 1967-10-31 | Gulf Oil Corp | Ethylene/acrylate ester copolymers |
GB1268679A (en) | 1969-07-25 | 1972-03-29 | Golden Wonder Ltd | Weighing apparatus |
GB1355612A (en) | 1972-02-26 | 1974-06-05 | Adria Ltd | Weight grading apparatus for knitted articles |
US4040747A (en) | 1972-08-24 | 1977-08-09 | Neotec Corporation | Optical analyzer for agricultural products |
US4037970A (en) | 1972-08-24 | 1977-07-26 | Neotec Corporation | Optical analyzer for agricultural products |
US3861788A (en) | 1972-08-24 | 1975-01-21 | Neotec Corp | Optical analyzer for agricultural products |
US3852914A (en) | 1972-09-01 | 1974-12-10 | Sensors Inc | Method for determining the viability of seeds prior to germination |
GB1408458A (en) | 1972-12-07 | 1975-10-01 | Pauls Sandars Ltd | Method and apparatus for treating grain |
SU536785A1 (en) | 1975-07-17 | 1976-11-30 | Всесоюзный Научно-Исследовательский Институт Зернового Хозяйства | Device for sampling plant matter from the roll |
US4278183A (en) | 1978-05-04 | 1981-07-14 | National Research Development Corporation | Dispensing apparatus and method |
US4260262A (en) | 1978-11-28 | 1981-04-07 | Neotec Corporation | Grain quality analyzer |
US4305130A (en) | 1979-05-29 | 1981-12-08 | University Of Rhode Island | Apparatus and method to enable a robot with vision to acquire, orient and transport workpieces |
US4375854A (en) | 1981-03-31 | 1983-03-08 | Rca Corporation | Stone sorting apparatus and method |
US4818380A (en) | 1982-03-13 | 1989-04-04 | Ishida Scales Mfg. Co., Ltd. | Method and apparatus for sorting articles |
US4931061A (en) | 1982-11-26 | 1990-06-05 | Union Oil Company Of California | Plant seed compositions |
US4480765A (en) | 1982-12-13 | 1984-11-06 | Tonus Egidio L | Needle seeder |
CA1236700A (en) | 1983-04-26 | 1988-05-17 | Samuel E. Sherba | Haploid and doubled haploid angiosperms |
FR2549963B1 (en) | 1983-07-29 | 1986-01-24 | Claeys Luck | RADIOLOGICAL METHOD AND APPARATUS FOR EXPLORING SEEDS WITH RADIOOPAQUE SUBSTANCE |
US5221518A (en) | 1984-12-14 | 1993-06-22 | Mills Randell L | DNA sequencing apparatus |
US4654592A (en) | 1985-01-14 | 1987-03-31 | Varian Associates, Inc. | Concurrent NMR analysis of multiple samples |
JPS6311841A (en) | 1986-03-20 | 1988-01-19 | Satake Eng Co Ltd | Device for evaluation of rice quality |
US4696308A (en) | 1986-04-09 | 1987-09-29 | The Cleveland Clinic Foundation | Core sampling apparatus |
US4827776A (en) | 1986-08-08 | 1989-05-09 | Gale Jody A | Hay sampling device |
US4734584A (en) | 1986-09-16 | 1988-03-29 | Trebor Industries, Inc. | Quantitative near-infrared measurement instrument for multiple measurements in both reflectance and transmission modes |
IL82037A0 (en) | 1987-03-29 | 1987-10-20 | Kalman Peleg | Method and apparatus for automatically inspecting and classifying different objects |
US4946046A (en) | 1988-05-09 | 1990-08-07 | Sheldon Affleck | Apparatus for sorting seeds according to color |
US5416011A (en) | 1988-07-22 | 1995-05-16 | Monsanto Company | Method for soybean transformation and regeneration |
CA1341467C (en) | 1988-07-29 | 2004-12-07 | John C. Rogers | Producing commercially valuable polypeptides with genetically transformed endosperm tissue |
US5245188A (en) | 1988-08-11 | 1993-09-14 | Satake Engineering Co., Ltd. | Apparatus for evaluating the grade of rice grains |
US5051699A (en) | 1988-08-31 | 1991-09-24 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging system |
US5253302A (en) | 1989-02-28 | 1993-10-12 | Robert Massen | Method and arrangement for automatic optical classification of plants |
SU1658858A1 (en) | 1989-07-03 | 1991-06-30 | Харьковский Институт Механизации И Электрификации Сельского Хозяйства | Device for estimating seed viability |
US5494655A (en) | 1990-03-09 | 1996-02-27 | The Regents Of The University Of California | Methods for detecting blood perfusion variations by magnetic resonance imaging |
RU1805835C (en) | 1991-04-09 | 1993-03-30 | Павел Петрович Демкин | Method of evaluating seed material for homogeneity and heterogeneity |
SE468334B (en) | 1991-04-23 | 1992-12-14 | Peter Perten | SETTING AND DEVICE FOR INFRASTRUCTURE ANALYSIS, SPECIFICALLY REGARDING FOOD |
US5132538A (en) | 1991-05-24 | 1992-07-21 | Nirsystems Incorporated | Measuring percentage of protein in whole grain samples |
US5764819A (en) | 1991-10-18 | 1998-06-09 | Dekalb Genetics Corporation | Methods for classifying plants for evaluation and breeding programs by use of remote sensing and image analysis technology |
US5437697A (en) | 1992-07-07 | 1995-08-01 | E. I. Du Pont De Nemours And Company | Method to identify genetic markers that are linked to agronomically important genes |
US5746023A (en) | 1992-07-07 | 1998-05-05 | E. I. Du Pont De Nemours And Company | Method to identify genetic markers that are linked to agronomically important genes |
GB2273154B (en) | 1992-12-02 | 1996-12-11 | Buehler Ag | Method for cleaning and sorting bulk material |
EP0604875B1 (en) | 1992-12-31 | 1999-04-21 | Zellweger Uster, Inc. | Continious two dimensional monitoring of thin webs of textile materials |
US5412220A (en) | 1993-03-05 | 1995-05-02 | United Industrial Products, Ltd. | Optical scanning device for lumber |
JP3334003B2 (en) | 1993-04-01 | 2002-10-15 | タキイ種苗株式会社 | Seed sorting equipment |
GB9313975D0 (en) | 1993-07-06 | 1993-08-18 | Sandoz Ltd | Improvements in or relating to organic compounds |
JPH0833871A (en) | 1994-02-01 | 1996-02-06 | Binder & Co Ag | Method and device of waste sorting |
US5837458A (en) | 1994-02-17 | 1998-11-17 | Maxygen, Inc. | Methods and compositions for cellular and metabolic engineering |
US5475221A (en) | 1994-05-11 | 1995-12-12 | Brimrose Corporation Of America | Optical spectrometer using light emitting diode array |
JP3275280B2 (en) | 1994-10-07 | 2002-04-15 | 株式会社サタケ | Raw material supply device for granular material color sorter |
DK171153B1 (en) | 1995-02-10 | 1996-07-01 | Slagteriernes Forskningsinst | Process and plant by mixing a non-uniform, flowable food, feed or pharmaceutical material and sampling device |
DK171927B1 (en) | 1995-02-10 | 1997-08-11 | Slagteriernes Forskningsinst | Method and apparatus for determining the particle size of a food or feed material |
JPH08240651A (en) | 1995-03-02 | 1996-09-17 | Norin Suisansyo Nogyo Kenkyu Center Shocho | Apparatus and method for nuclear magnetic resonance imaging |
KR0159656B1 (en) | 1995-05-18 | 1999-01-15 | 배순훈 | Reverser for use in an automatic tray changer |
US5864984A (en) | 1995-06-19 | 1999-02-02 | Paradigm Research Corporation | System and method for measuring seedlot vigor |
ES2174075T3 (en) | 1995-06-21 | 2002-11-01 | Martek Biosciences Corp | COMBINATORY LIBRARIES OF BIOCHEMICAL COMPOUNDS MARKED AND METHODS TO PRODUCE THE SAME. |
JP3505566B2 (en) | 1995-06-23 | 2004-03-08 | 独立行政法人農業・生物系特定産業技術研究機構 | Physiological condition analyzer and method |
USH1919H (en) | 1995-12-01 | 2000-11-07 | E. I. Du Pont De Nemours And Company | Agricultural product microscreen method and apparatus |
US5668374A (en) | 1996-05-07 | 1997-09-16 | Core Laboratories N.V. | Method for stabilizing near-infrared models and determining their applicability |
AUPO223196A0 (en) | 1996-09-11 | 1996-10-03 | Williames Hi-Tech International Pty Ltd | Improved nursery trays and handling mechanisms therefor |
US6100526A (en) | 1996-12-30 | 2000-08-08 | Dsquared Development, Inc. | Grain quality monitor |
US5991025A (en) | 1997-02-27 | 1999-11-23 | Pioneer Hi-Bred International, Inc. | Near infrared spectrometer used in combination with an agricultural implement for real time grain and forage analysis |
US5751421A (en) | 1997-02-27 | 1998-05-12 | Pioneer Hi-Bred International, Inc. | Near infrared spectrometer used in combination with a combine for real time grain analysis |
AU6882298A (en) | 1997-04-03 | 1998-10-22 | Dekalb Genetics Corporation | Glyphosate resistant maize lines |
JP3086868B2 (en) | 1997-05-16 | 2000-09-11 | 農林水産省農業研究センター所長 | Growth condition analysis apparatus and method |
DE19845883B4 (en) | 1997-10-15 | 2007-06-06 | LemnaTec GmbH Labor für elektronische und maschinelle Naturanalytik | Method for determining the phytotoxicity of a test substance |
JP3339390B2 (en) | 1997-11-12 | 2002-10-28 | 株式会社村田製作所 | Electronic component transfer device |
RU2126618C1 (en) | 1997-12-23 | 1999-02-27 | Всероссийский научно-исследовательский институт электрификации сельского хозяйства | Presowing seed selection method |
EP1054973A1 (en) | 1998-02-11 | 2000-11-29 | Maxygen, Inc. | Antigen library immunization |
US5914451A (en) | 1998-04-06 | 1999-06-22 | Monsanto Company | Efficiency soybean transformation protocol |
US6307123B1 (en) | 1998-05-18 | 2001-10-23 | Dekalb Genetics Corporation | Methods and compositions for transgene identification |
JP2000055910A (en) | 1998-08-07 | 2000-02-25 | Horiba Ltd | Soil constituent automatic analysis device |
EP1141346A2 (en) | 1999-01-14 | 2001-10-10 | Monsanto Co. | Soybean transformation method |
US6313328B1 (en) | 1999-02-11 | 2001-11-06 | Cargill, Incorporated | Extraction of corn oil from flaked corn grain |
NL1011537C2 (en) | 1999-03-11 | 2000-09-12 | Tno | Method for determining properties of plant seeds. |
AU5043000A (en) | 1999-05-24 | 2000-12-12 | Iowa State University Research Foundation Inc. | Near infrared spectroscopy system and method for the identification of genetically modified grain |
US6266864B1 (en) | 1999-08-26 | 2001-07-31 | Ethicon, Inc. | Method for fabricating a needle assembly |
JP2005055175A (en) | 1999-09-07 | 2005-03-03 | National Agriculture & Bio-Oriented Research Organization | Specimen preparation method and device |
ATE285067T1 (en) | 1999-09-10 | 2005-01-15 | Scanvaegt Int As | SORTING DEVICE |
DE10048643A1 (en) | 1999-09-22 | 2001-05-31 | Biopsytec Gmbh | Automatic sampling unit for filling microtitration plates with plant matter, comprises a stripper designed for virtually friction-free motion along a cutting stamp axis |
US6809819B1 (en) | 1999-09-27 | 2004-10-26 | Monsanto Technology Llc | Methods for determining oil in seeds |
US20010024796A1 (en) | 1999-12-17 | 2001-09-27 | Selifonov Sergey A. | Methods for parallel detection of compositions having desired characteristics |
KR100414641B1 (en) | 2000-04-07 | 2004-01-13 | 동부한농화학 주식회사 | In vivo monitoring method of transgenic plants and system using the same |
US6705827B2 (en) | 2000-08-25 | 2004-03-16 | Aagrinomics, Llc | Robotic seed-handling apparatus and methods |
DE20022666U1 (en) | 2000-09-22 | 2002-01-03 | Biopsytec GmbH, 10435 Berlin | Device for automated sampling and filling of microtiter plates with plant material |
US6646264B1 (en) | 2000-10-30 | 2003-11-11 | Monsanto Technology Llc | Methods and devices for analyzing agricultural products |
US7367155B2 (en) | 2000-12-20 | 2008-05-06 | Monsanto Technology Llc | Apparatus and methods for analyzing and improving agricultural products |
US8321135B2 (en) | 2001-02-16 | 2012-11-27 | The Curators Of The University Of Missouri | Method and apparatus for predicting soybean seed resistance based on near-infrared spectroscopy |
US6397678B1 (en) | 2001-05-04 | 2002-06-04 | Shay Popper | Method and apparatus for measuring objects, particularly useful for measuring diamonds |
JP2002346483A (en) | 2001-05-29 | 2002-12-03 | Shizuoka Seiki Co Ltd | Grain component analyzer |
SE0102395D0 (en) | 2001-07-04 | 2001-07-04 | Bomill Ab | A new method |
CN2510248Y (en) | 2001-11-18 | 2002-09-11 | 华中科技大学 | Micro-assembling robot suitable for operating submillimeter-level micro-object |
US7123750B2 (en) | 2002-01-29 | 2006-10-17 | Pioneer Hi-Bred International, Inc. | Automated plant analysis method, apparatus, and system using imaging technologies |
SE527394C2 (en) | 2002-03-15 | 2006-02-28 | Renholmens Mek Verkst Ab | Board users and method of using boards |
US20040091888A1 (en) | 2002-03-20 | 2004-05-13 | Takeshi Nishio | Method for identification of S genotype in brassicaceae |
CA2480937C (en) | 2002-04-04 | 2012-10-02 | Monsanto Technology Llc | Automated picking, weighing and sorting system for particulate matter |
CN102936536B (en) | 2002-04-29 | 2014-01-29 | 陶氏环球技术有限责任公司 | Intergrated chemical processe for industrial utilization of seed oils |
BRPI0311283B1 (en) | 2002-05-24 | 2017-03-21 | Monsanto Technology Llc | seed ginning system and process for arranging seed cores for analysis |
US6879389B2 (en) | 2002-06-03 | 2005-04-12 | Innoventor Engineering, Inc. | Methods and systems for small parts inspection |
JP4079216B2 (en) | 2002-08-05 | 2008-04-23 | 独立行政法人農業・食品産業技術総合研究機構 | Material retention, analysis, sorting equipment, methods and sorts |
MXPA05001829A (en) | 2002-08-12 | 2005-05-27 | Monsanto Technology Llc | Methods for increasing total oil levels in plants. |
US7403855B2 (en) | 2002-12-19 | 2008-07-22 | Pioneer Hi-Bred International, Inc. | Method and apparatus for tracking individual plants while growing and/or after harvest |
US20040133944A1 (en) | 2003-01-08 | 2004-07-08 | Delta And Pine Land Company | Seed oil suppression to enhance yield of commercially important macromolecules |
US20040141641A1 (en) | 2003-01-21 | 2004-07-22 | Mcdonald Miller Baird | Seed image analyzer |
JP4381122B2 (en) | 2003-02-14 | 2009-12-09 | 晶宇生物科技實業股▲分▼有限公司 | Micro-array biochip reflective image access and analysis device with sidewall and method thereof |
RU2229210C1 (en) | 2003-03-25 | 2004-05-27 | Орловский государственный аграрный университет | Grain heap sampler |
JP2004357608A (en) | 2003-06-05 | 2004-12-24 | Satoru Imura | Modified unpolished rice and method for producing the same |
WO2005000471A1 (en) | 2003-06-16 | 2005-01-06 | Monsanto Technology Llc | Method and apparatus for preparation of genetically transformable plant tissue |
WO2005031367A2 (en) | 2003-09-23 | 2005-04-07 | Monsanto Technology Llc | High throughput automated seed analysis system |
US20050097021A1 (en) | 2003-11-03 | 2005-05-05 | Martin Behr | Object analysis apparatus |
US20060004624A1 (en) | 2004-06-30 | 2006-01-05 | Melara German O | Forecast and replenishment analytics |
US7832143B2 (en) | 2004-08-26 | 2010-11-16 | Monsanto Technology Llc | High throughput methods for sampling seeds |
US7703238B2 (en) | 2004-08-26 | 2010-04-27 | Monsanto Technology Llc | Methods of seed breeding using high throughput nondestructive seed sampling |
RU2267766C1 (en) | 2004-09-23 | 2006-01-10 | Дмитрий Васильевич Громыко | Device for sampling loose materials |
DE102004063769A1 (en) | 2004-12-30 | 2006-07-13 | Perner, Petra, Dr.-Ing. | Method for automatically and quantitatively determining the amount of seed or grain of required quality comprises recording the seed and grain using an imaging device and further processing |
CA2620075C (en) | 2005-08-26 | 2015-03-17 | Monsanto Technology Llc | High throughput screening of fatty acid composition |
US8028469B2 (en) | 2006-03-02 | 2011-10-04 | Monsanto Technology Llc | Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds |
US7998669B2 (en) | 2006-03-02 | 2011-08-16 | Monsanto Technology Llc | Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds |
EP2005193A1 (en) | 2006-04-06 | 2008-12-24 | Monsanto Technology, LLC | Method of predicting a trait of interest |
US20070240242A1 (en) | 2006-04-06 | 2007-10-11 | Monsanto Technology Llc | Method for multivariate analysis in predicting a trait of interest |
CN101505883B (en) | 2006-06-28 | 2014-03-12 | 孟山都技术有限公司 | Small object sorting system and method |
US7735626B2 (en) | 2006-11-13 | 2010-06-15 | Pioneer Hi-Bred International, Inc. | Apparatus, method and system for handling, positioning, and/or automatically orienting objects |
CN102156059A (en) | 2006-11-13 | 2011-08-17 | 先锋高级育种国际公司 | Clip based sampling of seed for the removal of specific seed tissue or structures for seed analysis |
US7915006B2 (en) | 2006-11-13 | 2011-03-29 | Pioneer Hi-Bred International, Inc. | Methodologies, processes and automated devices for the orientation, sampling and collection of seed tissues from individual seed |
WO2008103609A1 (en) | 2007-02-23 | 2008-08-28 | Monsanto Technology Llc | Agricultural sample grinder |
BRPI0810540A2 (en) | 2007-04-24 | 2017-01-31 | Pioneer Hi Bred Int | method and software for distinguishing seed containing a genetic element of interest from a bulk sample |
US8189901B2 (en) | 2007-05-31 | 2012-05-29 | Monsanto Technology Llc | Seed sorter |
MX341500B (en) | 2007-08-29 | 2016-08-22 | Monsanto Technology Llc | Systems and methods for processing hybrid seed. |
CA2735045A1 (en) | 2008-08-22 | 2010-02-25 | Pioneer Hi-Bred International, Inc. | Apparatus for removal of specific seed tissue or structure for seed analysis |
MX2013000790A (en) * | 2010-07-20 | 2013-03-20 | Monsanto Technology Llc | Automated systems for removing tissue samples from seeds, and related methods. |
-
2007
- 2007-02-28 US US11/680,611 patent/US7703238B2/en active Active
- 2007-03-02 CA CA2644700A patent/CA2644700C/en active Active
- 2007-03-02 MX MX2008011282A patent/MX2008011282A/en active IP Right Grant
- 2007-03-02 BR BRPI0708486-2A patent/BRPI0708486B1/en active IP Right Grant
- 2007-03-02 RU RU2008139096/13A patent/RU2008139096A/en not_active Application Discontinuation
- 2007-03-02 WO PCT/US2007/063176 patent/WO2007103786A2/en active Application Filing
- 2007-03-02 EP EP07757794A patent/EP1993348A2/en not_active Withdrawn
- 2007-03-02 AR ARP070100876A patent/AR059718A1/en active IP Right Grant
-
2008
- 2008-09-29 ZA ZA2008/08304A patent/ZA200808304B/en unknown
-
2010
- 2010-04-26 US US12/767,640 patent/US7941969B2/en active Active
-
2011
- 2011-05-16 US US13/108,762 patent/US8312672B2/en active Active
-
2012
- 2012-11-19 US US13/680,603 patent/US8959833B2/en active Active
-
2015
- 2015-02-23 US US14/629,235 patent/US9986699B2/en active Active
-
2018
- 2018-06-01 US US15/996,080 patent/US11006593B2/en active Active
-
2021
- 2021-05-13 US US17/319,657 patent/US20210259176A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1151988A (en) * | 1967-03-03 | 1969-05-14 | Laukien Guenther | Plant Seed Testing and Sorting |
GB1471076A (en) * | 1974-08-27 | 1977-04-21 | Sensors Inc | Method for determining the viability of seeds prior to their germination |
WO1998014046A1 (en) * | 1996-10-04 | 1998-04-09 | D.J. Van Der Have B.V. | Method and apparatus for the quality assessment of seed |
WO2001089288A1 (en) * | 2000-05-25 | 2001-11-29 | Lestander Torbjoern | Single seed sortation |
US20020144458A1 (en) * | 2001-02-02 | 2002-10-10 | Hunter James L. | Automated high-throughput seed sample processing system and method |
WO2006026466A2 (en) * | 2004-08-26 | 2006-03-09 | Monsanto Technology Llc | Automated seed sampler and methods of sampling, testing and bulking seeds |
WO2006026467A2 (en) * | 2004-08-26 | 2006-03-09 | Monsanto Technology Llc | Automated testing of seeds |
Non-Patent Citations (7)
Title |
---|
GILLASPIE A G JR ET AL: "Sensitive method for testing peanut seed lots for Peanut stripe and Peanut mottle viruses by immunocapture-reverse transcription-polymerase chain reaction" PLANT DISEASE, vol. 84, no. 5, May 2000 (2000-05), pages 559-561, XP002448174 ISSN: 0191-2917 * |
KOTYK JOHN J ET AL: "High-throughput determination of oil content in corn kernels using nuclear magnetic resonance imaging" JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 82, no. 12, December 2005 (2005-12), pages 855-862, XP008082811 ISSN: 0003-021X * |
KRAMER K J ET AL: "Transgenic avidin maize is resistant to storage insect pests" NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US, vol. 18, no. 6, June 2000 (2000-06), pages 670-674, XP002193699 ISSN: 1087-0156 * |
KRYSAN PATRICK: "Ice-cap. A high-throughput method for capturing plant tissue samples for genotype analysis" PLANT PHYSIOLOGY (ROCKVILLE), vol. 135, no. 3, July 2004 (2004-07), pages 1162-1169, XP002448176 ISSN: 0032-0889 * |
MORRISON R H: "Sampling in seed health testing" PHYTOPATHOLOGY, vol. 89, no. 11, November 1999 (1999-11), pages 1084-1087, XP002448175 ISSN: 0031-949X * |
SMITH J S C ET AL: "Genetic purity and testing technologies for seed quality: A company perspective" SEED SCIENCE RESEARCH, vol. 8, no. 2, June 1998 (1998-06), pages 285-293, XP008082810 ISSN: 0960-2585 * |
VON POST REBECKA ET AL: "A high-throughput DNA extraction method for barley seed." EUPHYTICA, vol. 130, no. 2, 2003, pages 255-260, XP002448173 ISSN: 0014-2336 * |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7915006B2 (en) | 2006-11-13 | 2011-03-29 | Pioneer Hi-Bred International, Inc. | Methodologies, processes and automated devices for the orientation, sampling and collection of seed tissues from individual seed |
EP2511381A1 (en) * | 2007-06-08 | 2012-10-17 | Monsanto Technology LLC | Methods for sequence-directed molecular breeding |
US10550424B2 (en) | 2007-06-08 | 2020-02-04 | Monsanto Technology Llc | Methods for sequence-directed molecular breeding |
WO2008154472A3 (en) * | 2007-06-08 | 2009-08-27 | Monsanto Technology Llc | Methods for sequence-directed molecular breeding |
US10544448B2 (en) | 2007-06-08 | 2020-01-28 | Monsanto Technology Llc | Methods for sequence-directed molecular breeding |
US10544471B2 (en) | 2007-06-08 | 2020-01-28 | Monsanto Technology Llc | Methods for sequence-directed molecular breeding |
WO2008154472A2 (en) * | 2007-06-08 | 2008-12-18 | Monsanto Technology Llc | Methods for sequence-directed molecular breeding |
EP2511381B1 (en) | 2007-06-08 | 2017-01-25 | Monsanto Technology LLC | Methods for sequence-directed molecular breeding |
US10323255B2 (en) | 2007-08-29 | 2019-06-18 | Monsanto Technology Llc | Methods and compositions for gray leaf spot resistance in corn |
US8766035B2 (en) | 2007-08-29 | 2014-07-01 | Monsanto Technology Llc | Methods and compositions for Goss' wilt resistance in corn |
US10844399B2 (en) | 2007-08-29 | 2020-11-24 | Monsanto Technology Llc | Methods and compositions for Goss' Wilt resistance in corn |
US10760095B2 (en) | 2007-08-29 | 2020-09-01 | Monsanto Technology Llc | Methods and compositions for gray leaf spot resistance in corn |
WO2009032724A3 (en) * | 2007-08-29 | 2009-05-28 | Monsanto Technology Llc | Methods for incorporating multiple genes in a crop plant |
US8273944B2 (en) | 2007-08-29 | 2012-09-25 | Monsanto Technology Llc | Methods and compositions for gray leaf spot resistance in corn |
US10301644B2 (en) | 2007-08-29 | 2019-05-28 | Monsanto Technology Llc | Methods and compositions for Goss' Wilt resistance in corn |
US9862966B2 (en) | 2007-08-29 | 2018-01-09 | Monsanto Technology Llc | Methods and compositions for gray leaf spot resistance in corn |
US9828610B2 (en) | 2007-08-29 | 2017-11-28 | Monsanto Technology Llc | Methods and compositions for Goss' Wilt resistance in corn |
US9119365B2 (en) | 2007-08-29 | 2015-09-01 | Monsanto Technology Llc | Methods and compositions for Goss' Wilt resistance in corn |
US9095113B2 (en) | 2007-08-29 | 2015-08-04 | Monsanto Technology Llc | Methods and compositions for gray leaf spot resistance in corn |
US8779232B2 (en) | 2007-08-29 | 2014-07-15 | Monsanto Technology Llc | Methods and compositions for gray leaf spot resistance in corn |
US8240084B2 (en) | 2007-09-26 | 2012-08-14 | Pioneer Hi-Bred International, Inc. | Apparatus and method to package articles for storage and identification |
US8221968B2 (en) | 2007-12-17 | 2012-07-17 | Pioneer Hi-Bred International, Inc. | Apparatus, method and system for creating, handling, collecting and indexing seed and seed portions from plant seed |
US8286387B2 (en) | 2007-12-17 | 2012-10-16 | Pioneer Hi-Bred International, Inc. | Apparatus, method and system for creating, handling, collecting and indexing seed and seed portions from plant seed |
US8568821B2 (en) | 2008-04-08 | 2013-10-29 | Pioneer Hi Bred International Inc | Apparatus and method for coating ears of corn |
US8519297B2 (en) | 2008-08-22 | 2013-08-27 | Pioneer Hi-Bred International, Inc. | Apparatus for removal of specific seed tissue or structure for seed analysis |
US8609179B2 (en) | 2008-08-22 | 2013-12-17 | Pioneer Hi-Bred International, Inc. | High throughput automated apparatus, method and system for coating ears of corn |
US8535877B2 (en) | 2008-08-22 | 2013-09-17 | Pioneer Hi-Bred International, Inc. | Methods for removal of specific seed tissue or structure for seed analysis |
US8907245B2 (en) | 2008-08-22 | 2014-12-09 | Pioneer Hi Bred International Inc | Apparatus for removal of specific seed tissue or structure for seed analysis |
US8329426B2 (en) | 2008-10-01 | 2012-12-11 | Pioneer Hi-Bred International, Inc. | High throughput method for measuring total fermentables in small amount of plant part |
US8579118B2 (en) | 2009-02-18 | 2013-11-12 | Pioneer Hi-Bred International, Inc. | Method for preparing ears of corn for automated handling, positioning and orienting |
US8662425B2 (en) | 2009-03-20 | 2014-03-04 | Pioneer Hi Bred International Inc | High-throughput, seed sampling and collection system and method |
US8523092B2 (en) | 2009-09-14 | 2013-09-03 | Pioneer Hi-Bred International, Inc. | System and method for creating a test sample from individual seeds or tissue structures |
US8863436B2 (en) | 2009-12-31 | 2014-10-21 | Pioneer Hi Bred International Inc | Automated seed sampling apparatus, method and system |
US8833565B2 (en) | 2010-06-08 | 2014-09-16 | Pioneer Hi-Bred International, Inc. | Apparatus and method for seed selection |
WO2012143696A1 (en) * | 2011-04-19 | 2012-10-26 | Bioproperties Pte. Ltd | Obtaining plants of atypical ploidy or zygosity |
WO2014071271A1 (en) * | 2012-11-05 | 2014-05-08 | Pioneer Hi-Bred International, Inc. | Embryo sampling for molecular analysis |
EP2914093B1 (en) | 2012-11-05 | 2020-05-13 | Pioneer Hi-Bred International, Inc. | Embryo sampling for molecular analysis |
US10011828B2 (en) | 2013-06-03 | 2018-07-03 | Syngenta Participations Ag | Non-disruptive DNA isolation from corn seeds |
WO2014195199A1 (en) * | 2013-06-03 | 2014-12-11 | Syngenta Participations Ag | Non-disruptive dna isolation from corn seeds |
CN103340145A (en) * | 2013-07-15 | 2013-10-09 | 中国农业大学 | Method for performing one-step system formation by corn haploid breeding |
CN103340145B (en) * | 2013-07-15 | 2015-12-09 | 中国农业大学 | A kind of method utilizing Haploid Breeding of Maize to carry out a step one-tenth system |
US11744199B2 (en) | 2013-12-31 | 2023-09-05 | Corteva Agriscience Llc | Selection based on optimal haploid value to create elite lines |
EP3089580A4 (en) * | 2013-12-31 | 2017-09-20 | Dow AgroSciences LLC | Selection based on optimal haploid value to create elite lines |
AU2017279665B2 (en) * | 2013-12-31 | 2020-02-27 | Corteva Agriscience Llc | Selection based on optimal haploid value to create elite lines |
WO2016032589A1 (en) * | 2014-08-29 | 2016-03-03 | Pioneer Hi Bred International Inc | Systems and methods for genotyping plant material |
US10477859B2 (en) | 2014-08-29 | 2019-11-19 | Pioneer Hi-Bred International, Inc. | Plant embryo storage and manipulation |
US10278345B2 (en) | 2014-08-29 | 2019-05-07 | Pioneer Hi-Bred International, Inc. | Methods and devices for creating doubled haploid embryos using oil matrices |
US10280472B2 (en) | 2014-08-29 | 2019-05-07 | Pioneer Hi-Bred International, Inc. | Systems and methods for genotyping seed components |
US11111548B2 (en) | 2014-08-29 | 2021-09-07 | Pioneer Hi-Bred International, Inc. | Systems and methods for genotyping seed components |
CN107710949A (en) * | 2017-09-08 | 2018-02-23 | 无为县西华毛峰生态茶业有限公司 | Maofeng tea tree seedling culture method |
CN108004344B (en) * | 2017-12-20 | 2020-11-03 | 中国农业科学院作物科学研究所 | Corn whole genome SNP chip and application thereof |
CN108004344A (en) * | 2017-12-20 | 2018-05-08 | 中国农业科学院作物科学研究所 | A kind of corn whole genome SNP chip and its application |
CN110959901A (en) * | 2018-09-26 | 2020-04-07 | 浙江中烟工业有限责任公司 | Cigarette adopting tobacco-flavored cut tobacco functional incense raw material composition and being non-combustible by heating |
Also Published As
Publication number | Publication date |
---|---|
CA2644700C (en) | 2018-06-19 |
CA2644700A1 (en) | 2007-09-13 |
ZA200808304B (en) | 2012-03-28 |
EP1993348A2 (en) | 2008-11-26 |
US20180271042A1 (en) | 2018-09-27 |
BRPI0708486A2 (en) | 2011-05-31 |
US20100263087A1 (en) | 2010-10-14 |
US20150164011A1 (en) | 2015-06-18 |
US7941969B2 (en) | 2011-05-17 |
US7703238B2 (en) | 2010-04-27 |
US11006593B2 (en) | 2021-05-18 |
US20210259176A1 (en) | 2021-08-26 |
US8959833B2 (en) | 2015-02-24 |
US20110217700A1 (en) | 2011-09-08 |
MX2008011282A (en) | 2008-11-14 |
WO2007103786A3 (en) | 2007-11-08 |
US20130167257A1 (en) | 2013-06-27 |
BRPI0708486B1 (en) | 2023-05-16 |
AR059718A1 (en) | 2008-04-23 |
US8312672B2 (en) | 2012-11-20 |
RU2008139096A (en) | 2010-04-10 |
US20070204366A1 (en) | 2007-08-30 |
US9986699B2 (en) | 2018-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210259176A1 (en) | Methods of Seed Breeding Using High Throughput Nondestructive Seed Sampling | |
US7832143B2 (en) | High throughput methods for sampling seeds | |
US20200333365A1 (en) | Automated Systems For Removing Tissue Samples From Seeds, And Related Methods | |
CA3024820C (en) | Methods and compositions for breeding for preferred traits associated with goss' wilt resistance in plants | |
US20100037342A1 (en) | Methods and compositions for breeding plants with enhanced yield | |
US11219174B2 (en) | Methods for producing corn plants with northern leaf blight resistance and compositions thereof | |
BR112018000541B1 (en) | METHODS FOR SELECTING A POPULATION OF STAYGREEN COTTON (STG) PLANTS OR SEEDS, FOR SELECTING A COTTON PLANT OR SEED, AND FOR EVALUATING A COTTON GERMPLASM COLLECTION | |
CN101448391A (en) | Methods of seed breeding using high throughput nondestructive seed sampling | |
BR122017014316B1 (en) | HIGH-YEARTH METHODS FOR THE ANALYSIS OF A HAPLOID SEED POPULATION AND TO GROW A DOUBLE-HAPLOID SEED POPULATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780015254.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2644700 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2008/011282 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7604/DELNP/2008 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007757794 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2008139096 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: A200811730 Country of ref document: UA |
|
ENP | Entry into the national phase |
Ref document number: PI0708486 Country of ref document: BR Kind code of ref document: A2 Effective date: 20080902 |