WO2007103786A2 - Methods of seed breeding using high throughput nondestructive seed sampling - Google Patents

Methods of seed breeding using high throughput nondestructive seed sampling Download PDF

Info

Publication number
WO2007103786A2
WO2007103786A2 PCT/US2007/063176 US2007063176W WO2007103786A2 WO 2007103786 A2 WO2007103786 A2 WO 2007103786A2 US 2007063176 W US2007063176 W US 2007063176W WO 2007103786 A2 WO2007103786 A2 WO 2007103786A2
Authority
WO
WIPO (PCT)
Prior art keywords
seed
seeds
population
sample
crop
Prior art date
Application number
PCT/US2007/063176
Other languages
French (fr)
Other versions
WO2007103786A3 (en
Inventor
Heather Forbes
Kevin L. Deppermann
Stanton Dotson
Bruce Schnicker
David Butruille
Sam Eathington
John Talumonis
Original Assignee
Monsanto Technology Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38372356&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007103786(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Monsanto Technology Llc filed Critical Monsanto Technology Llc
Priority to CA2644700A priority Critical patent/CA2644700C/en
Priority to BRPI0708486-2A priority patent/BRPI0708486B1/en
Priority to MX2008011282A priority patent/MX2008011282A/en
Priority to UAA200811730A priority patent/UA100968C2/en
Priority to EP07757794A priority patent/EP1993348A2/en
Publication of WO2007103786A2 publication Critical patent/WO2007103786A2/en
Publication of WO2007103786A3 publication Critical patent/WO2007103786A3/en
Priority to ZA2008/08304A priority patent/ZA200808304B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/04Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
    • A01H1/045Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection using molecular markers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/54Leguminosae or Fabaceae, e.g. soybean, alfalfa or peanut
    • A01H6/542Glycine max [soybean]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to the field of plant breeding. More specifically, this invention provides methods for augmenting and economizing germplasm improvement activities using high throughput and nondestructive seed sampling techniques.
  • the present disclosure relates to systems and methods for facilitating germplasm improvement activities through the use of high throughput, nondestructive sampling of seeds.
  • nondestructive sampling it is possible to test individual seeds in a population, and select only the seeds that possess one or more desired characteristics. This allows for new and more efficient methods for germplasm improvement and management, which lead to improved breeding populations.
  • the present disclosure provides for a high- throughput, non-destructive method for analyzing individual seeds in a population of seeds.
  • the method comprises removing a sample from a plurality of seeds in the population while preserving the germination viability of the seed and analyzing the sample for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait.
  • the present disclosure provides for a high- throughput method for analyzing a population of haploid seed.
  • the method comprises removing a sample from a plurality of seeds in a population of haploid seed while preserving the germination viability of the seed and analyzing the samples for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait.
  • the present disclosure provides for a high-throughput method for bulking a population of doubled haploid seed.
  • the method comprises providing a population of seeds comprising haploid seeds and selecting one or more individual seeds exhibiting at least one preferred characteristic from the population of seeds. Doubled haploid seeds are then produced from the selected seeds and a sample is removed from each doubled haploid seed while preserving the germination viability of the seeds. The samples are analyzed for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait. Based on the results of the analysis, one or more individual doubled haploid seeds are selected and plants or plant tissue is cultivated from the selected doubled haploid seed.
  • the samples may be analyzed for one or more characteristics indicative of at least one chemical trait.
  • characteristics may include proteins, oils, carbohydrates, fatty acids, amino acids, biopolymers, pharmaceuticals, starch, fermentable starch, secondary compounds, and metabolites.
  • the samples may be analyzed for one or more characteristics indicative of at least one genetic trait.
  • characteristics may include a genetic marker, a single nucleotide polymorphism, a simple sequence repeat, a restriction fragment length polymorphism, a haplotype, a tag SNP, an alleles of a genetic marker, a gene, a DNA-derived sequence, an RNA-derived sequence, a promoter, a 5' untranslated region of a gene, a 3' untranslated region of a gene, microRNA, siRNA, a QTL, a satellite marker, a transgene, mRNA, ds mRNA, a transcriptional profile, and a methylation pattern.
  • FIG. 1 is an allelogram depicting maize endosperm tissue samples that have undergone PCR for detection of a particular SNP as described in Example 3.
  • FIG. 2 is a graphical illustration of the efficacy of pre-selection on driving the frequency of favorable haplotypes as described in Example 6.
  • the present invention provides for novel methods to facilitate germplasm improvement activities through the use of high throughput, nondestructive sampling of seeds.
  • the methods are useful in analyzing seeds in order to identify and select seeds comprising one or more desired traits, markers, and genotypes.
  • the analytical methods allow individual seeds that are present in a batch or a bulk population of seeds to be analyzed such that the chemical and/or genetic characteristics of the individual seeds can be determined.
  • Samples prepared by the present invention can be used for determining a wide variety of physical, morphological, chemical and/or genetic traits. Generally, such traits are determined by analyzing the samples for one or more characteristics indicative of at least one genetic or chemical trait.
  • characteristics indicative of chemical traits include proteins, oils, carbohydrates, fatty acids, amino acids, biopolymers, pharmaceuticals, starch, fermentable starch, secondary compounds, and metabolites.
  • chemical traits include amino acid content, protein content, starch content, fermentation yield, fermentation efficiency, energy yield, oil content, determination of protein profiles determination of fatty acid profiles, determination of metabolite profiles, etc.
  • Non-limiting examples of characteristics indicative of genetic traits may include, for example, genetic markers, single nucleotide polymorphisms, simple sequence repeats, restriction fragment length polymorphisms, haplotypes, tag SNPs, alleles of genetic markers, genes, DNA-derived sequences, RNA-derived sequences, promoters, 5' untranslated regions of genes, 3' untranslated regions of genes, microRNA, siRNA, quantitative trait loci (QTL), satellite markers, transgenes, mRNA, ds mRNA, transcriptional profiles, and methylation patterns.
  • genetic markers single nucleotide polymorphisms, simple sequence repeats, restriction fragment length polymorphisms, haplotypes, tag SNPs, alleles of genetic markers, genes, DNA-derived sequences, RNA-derived sequences, promoters, 5' untranslated regions of genes, 3' untranslated regions of genes, microRNA, siRNA, quantitative trait loci (QTL), satellite markers, transgenes, mRNA, d
  • the sampling of endosperm tissue enables the determination of allele frequencies, whereby it is possible to infer parental linkage phase for a particular marker. Further, comparison of allele frequency data between two or more germplasm pools provides insight into the targets of selection, whereby alleles increasing in frequency in conjunction with a shift in distribution of one or more traits are presumed to be linked to said trait or traits of interest. Also, evaluation of relative allele frequency data between lines can contribute to the construction of genetic linkage maps.
  • the methods of the present invention use high throughput, nondestructive seed sampling with doubled haploid technologies to contribute to germplasm improvement activities including economization of doubled haploid programs by selecting only preferred seed for doubling, high throughput analysis of haploid and doubled haploid material for both genotypic and chemical characteristics, trait integration and evaluation, and marker-assisted breeding.
  • the methods and devices of the present invention can be used in a breeding program to select plants or seeds having a desired genetic or chemical trait, wherein a desired genetic trait comprises a genotype, a haplotype, an allele, a sequence, a transcript profile, and a methylation pattern.
  • the methods of the present invention can be used in combination with any breeding methodology and can be used to select a single generation or to select multiple generations.
  • the choice of breeding method depends on the mode of plant reproduction, the heritability of the trait(s) being improved, and the type of cultivar used commercially (e.g., F 1 hybrid cultivar, pureline cultivar, etc). Selected, non-limiting approaches for breeding the plants of the present invention are set forth below. It is further understood that any commercial and non-commercial cultivars can be utilized in a breeding program. Factors including, for example, without limitation, emergence vigor, vegetative vigor, stress tolerance, disease resistance, branching, flowering, seed set, seed size, seed density, standability, and threshability will generally dictate the choice.
  • the methods of the present invention are used to determine the genetic characteristics of seeds in a marker-assisted breeding program.
  • Such methods allow for improved marker-assisted breeding programs wherein nondestructive direct seed sampling can be conducted while maintaining the identity of individual seeds from the seed sampler to the field.
  • the marker-assisted breeding program results in a "high-throughput" and more efficient platform wherein a population of seeds having a desired trait, marker or genotype can be more effectively bulked in a shorter period of time, with less field and labor resources required.
  • the present invention provides a method for analyzing individual seeds within a population of seeds having genetic differences.
  • the method comprises removing a sample comprising cells with nucleic acids from seeds in the population without affecting the germination viability of the seeds; analyzing the nucleic acids extracted from the sample for the presence or absence of at least one genetic marker; selecting seeds from the population based upon the results of the nucleic acid analysis; and cultivating plants from the selected seed.
  • Germination viability means that a predominant number of sampled seeds, (i.e., greater than 50% of all sampled seeds) remain viable after sampling. In a particular embodiment, at least about 75% of sampled seeds, and in some embodiments at least about 85% of sampled seeds remain viable. It should be noted that lower rates of germination viability may be tolerable under certain circumstances or for certain applications, for example, as genotyping costs decrease with time because a greater number of seeds could be sampled for the same genotype cost. It should also be noted that sampling does not need to have any effect on viability at all.
  • germination viability is maintained for at least about six months after sampling to ensure that the sampled seed will be viable until it reaches the field for planting.
  • the methods of the present invention further comprise treating the sampled seeds to maintain germination viability.
  • Such treatment may generally include any means known in the art for protecting a seed from environmental conditions while in storage or transport.
  • the sampled seeds may be treated with a polymer and/or a fungicide to protect the sampled seed while in storage or in transport to the field before planting.
  • the samples of the present invention are used in a high-throughput, non-destructive method for analyzing individual seeds in a population of seeds.
  • the method comprises removing a sample from the seed while preserving the germination viability of the seed; and analyzing the sample for the presence or absence of one or more characteristics indicative of a genetic or chemical trait.
  • the method may further comprise selecting seeds from the population based on the results of the analysis; and cultivating plants or plant tissue from the selected seed.
  • DNA may be extracted from the sample using any DNA extraction methods known to those of skill in the art which will provide sufficient DNA yield, DNA quality, PCR response, and sequencing methods response.
  • a non-limiting example of suitable DNA-extraction methods is SDS-based extraction with centrifugation.
  • the extracted DNA may be amplified after extraction using any amplification method known to those skilled in the art.
  • one suitable amplification method is the GenomiPhi® DNA amplification prep from Amersham Biosciences.
  • RNA may be extracted from the sample using any RNA extraction methods known to those of skill in the art which will provide sufficient RNA yield, RNA quality, PCR response, and sequencing methods response.
  • a non- limiting example of suitable RNA-extraction methods is SDS-based extraction with centrifugation with consideration for RNase-free reagents and supplies.
  • the extracted RNA may be amplified after extraction using any amplification method known to those skilled in the art.
  • one suitable amplification method is the Full SpectrumTM RNA Amplification from System Biosciences.
  • the extracted nucleic acids are analyzed for the presence or absence of a suitable genetic polymorphism.
  • a wide variety of genetic markers for the analysis of genetic polymorphisms are available and known to those of skill in the art.
  • genetic markers include, but are not limited to, simple sequence repeats (SSRs), single nucleotide polymorphisms (SNPs), insertions or deletions (Indels), single feature polymorphisms (SFPs, for example, as described in Borevitz et al. 2003 Gen. Res. 13:513-523) or transcriptional profiles, and nucleic acid sequences.
  • SSRs simple sequence repeats
  • SNPs single nucleotide polymorphisms
  • Indels insertions or deletions
  • SFPs single feature polymorphisms
  • a nucleic acid analysis for the presence or absence of the genetic marker can be used for the selection of seeds in a breeding population.
  • the analysis may be used to select for genes, QTL, alleles, or genomic regions (haplotypes) that comprise or are linked to a genetic marker.
  • analysis methods are known in the art and include, but are not limited to, PCR-based detection methods (for example, TaqMan assays), microarray methods, and nucleic acid sequencing methods.
  • the genes, alleles, QTL, or haplotypes to be selected for can be identified using newer techniques of molecular biology with modifications of classical breeding strategies.
  • the seed is selected from the group consisting of alfalfa seed, apple seed, banana seed, barley seed, bean seed, broccoli seed, castorbean seed, citrus seed, clover seed, coconut seed, coffee seed, maize seed, cotton seed, cucumber seed, Douglas fir seed, Eucalyptus seed, Loblolly pine seed, linseed seed, melon seed, oat seed, olive seed, palm seed, pea seed, peanut seed, pepper seed, poplar seed, Radiata pine seed, rapeseed seed, rice seed, rye seed, sorghum seed, Southern pine seed, soybean seed, strawberry seed, sugarbeet seed, sugarcane seed, sunflower seed, sweetgum seed, tea seed, tobacco seed, tomato seed, turf seed, wheat seed, and Arabidopsis thaliana. seed.
  • the seed is selected from the group consisting of cotton seed, cucumber seed, maize seed,
  • the seed is a maize seed or a soybean seed.
  • crops analyzed by the methods described herein include forage crops, oilseed crops, grain crops, fruit crops, ornamental plants, vegetable crops, fiber crops, spice crops, nut crops, turf crops, sugar crops, beverage crops, tuber crops, root crops, and forest crops.
  • the seed is selected based on the presence or absence of one or more characteristics that are genetically linked with a QTL.
  • QTLs which are often of interest include but are not limited to herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, increased nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, other agronomic traits, traits for industrial uses, or traits for improved consumer appeal, or a combination of traits as a multiple trait index.
  • the seed can be selected based on the presence or absence of one or more characteristics that are genetically linked with a haplotype associated with a QTL.
  • QTL may again include without limitation herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, increased nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, other agronomic traits, traits for industrial uses, or traits for improved consumer appeal, or a combination of traits as a multiple trait index.
  • Selection of a breeding population could be initiated as early as the F 2 breeding level, if homozygous inbred parents are used hi the initial breeding cross.
  • An Fi generation could also be sampled and advanced if one or more of the parents of the cross are heterozygous for the alleles or markers of interest.
  • the breeder may analyze an F 2 population to retrieve the marker genotype of every individual in the population.
  • Initial population sizes limited only by the number of available seeds for analysis, can be adjusted to meet the desired probability of successfully identifying the desired number of individuals. See Sedcole, J.R. "Number of plants necessary to recover a trait.” Crop Sci. 17:667-68 (1977). Accordingly, the probability of finding the desired genotype, the initial population size, and the targeted resulting population size can be modified for various breeding methodologies and inbreeding level of the sampled population.
  • the selected seeds may be bulked or kept separate depending on the breeding methodology and target. For example, when a breeder is analyzing an F 2 population for disease resistance, all individuals with the desired genotype may be bulked and planted in the breeding nursery. Conversely, if multiple QTL with varying effects for a trait such as grain yield are being selected from a given population, the breeder may keep individual identity preserved, going to the field to differentiate individuals with various combinations of the target QTL. [0036] Several methods of preserving single seed identity can be used while transferring seed from the sampling location to the field. Methods include, but are not limited to, transferring selected individuals to seed tape, a cassette tray, or indexing tray, transplanting with peat pots, and hand-planting from individual seed packets.
  • Advantages of using the methods of this invention include, without limitation, reduction of labor and field resources required per population or breeding line, increased capacity to evaluate a larger number of breeding populations per field unit, and increased capacity to analyze breeding populations for desired traits prior to planting.
  • Field resources per population are reduced by limiting the field space required to advance the desired genotypes. For example, a population of 1,000 individuals may be planted at 25 seeds per row consuming a total of 40 rows in the field. Using conventional tissue sampling, all 1,000 plants would be tagged and manually sampled by scoring leaf tissue. Molecular marker results would be needed prior to pollination and only those plants containing the desired genetic composition would be pollinated.
  • the methods of this invention allow the breeder to analyze the 1,000 seeds in the lab and select the 50 desired seeds prior to planting. The 50 individuals can then be planted in the field, consuming only two 25 seed rows. Additionally, the methods of this invention do not require tagging or sampling in the field, thereby significantly reducing the required manual labor resources.
  • the methods of this invention may further increase the number of populations the breeder can evaluate in a given breeding nursery.
  • a breeder applying the methods of this invention could evaluate 20 populations of 50 seeds each using the same field area consumed by a single population using conventional field tissue sampling techniques. Even if the populations are selected for a single allele, using a 1:2:1 expected segregation ratio for an F 2 population, the breeder could evaluate 4 populations in the same field area as a single field tissue sampled population.
  • a potential further advantage to the methods of the present invention is the mitigation of risks associated with growing plants in certain geographies where plants may grow poorly or experience poor environmental conditions, or may even be destroyed during storms.
  • seeds with the "best" genotype or marker composition could be planted in geography 1 and seeds with the "next best” genotype could be planted in geography 2.
  • geography 2 would be a backup in case any problem befell the plants grown in geography 1. This is very difficult to do with the traditional method of taking tissue samples from germinated plants for genotyping, because these plants would then need to be uprooted and transplanted to the second geography.
  • Using the methods of this invention avoids the problem of transplantation and also simplifies the logistics of the breeding program.
  • the methods of the invention may further be used in a breeding program for introgressing a trait into a plant.
  • Such methods comprise removing a sample comprising cells with nucleic acids from seeds in a population, analyzing the nucleic acids extracted from each seed for the presence or absence of at least one genetic marker, selecting seeds from the population based upon the results of the nucleic acids analysis; cultivating a fertile plant from the seed; and utilizing the fertile plant as either a female parent or male parent in a cross with another plant.
  • Examples of genetic analyses to select seeds for trait integration include, without limitation, identification of high recurrent parent allele frequencies, tracking of transgenes of interest or screening for the absence of unwanted transgenes, selection of hybrid testing seed, selection of seed expressing a gene of interest, selection of seed expressing a heritable phenotype, identification of seed with selected genetic loci, and zygosity testing.
  • the identification of high recurrent pair allele frequencies via the methods of the present invention again allows for a reduced number of rows per population and an increased number of populations, or inbred lines, to be planted in a given field unit.
  • the methods of the present invention may also effectively reduce the resources required to complete the conversion of inbred lines.
  • the methods of the present invention further provide quality assurance (QA) and quality control (QC) by assuring that regulated or unwanted transgenes, undesirable genetic traits, or undesirable inherited phenotypes are identified and discarded prior to planting.
  • QA quality assurance
  • QC quality control
  • This application in a QA capacity could effectively eliminate unintentional release infractions.
  • a further extension of the method is to screen for the presence of infectious agents and remove contaminated seed prior to shipping.
  • the methods of the present invention may be further applied to identify hybrid seed for transgene testing.
  • a breeder could effectively create a hybrid seed lot (barring gamete selection) that was 50% hemizygous for the trait of interest and 50% homozygous for the lack of the trait in order to generate hybrid seed for testing.
  • the breeder could then analyze all Fi seeds produced in the test cross and identify and select those seeds that were hemizygous.
  • Such method is advantageous in that inferences from the hybrid trials would represent commercial hybrid genetics with regard to trait zygosity.
  • the methods of this invention may be used for seeds from plants with two or more transgenes, wherein accumulating or stacking of transgenic regions into plants or lines is achieved by addition of transgenes by transformation, or by crossing parent plants or lines containing different transgenic regions, or any combination of these. Analyses can be conducted to select individual seeds on the basis of the presence of one or more characteristics associated with at least one transgene. Such characteristics include, but are not limited to, a transgene per se, a genetic marker linked to a transgene, mRNA expressed from a transgene, and a protein product of a transgene.
  • the methods of this invention may be used to improve the efficiency of the doubled haploid program through selection of desired genotypes at the haploid stage and identification of ploidy level to eliminate non-haploid seeds from being processed and advancing to the field. Both applications again result in the reduction of field resources per population and the capability to evaluate a larger number of populations within a given field unit.
  • Doubled haploid (DH) plants provide an invaluable tool to plant breeders, particularly for generating inbred lines. A great deal of time is spared as homozygous lines are essentially instantly generated, negating the need for multigenerational conventional inbreeding.
  • DH plants are entirely homozygous, they are very amenable to quantitative genetics studies. Both additive variance and additive x additive genetic variances can be estimated from DH populations. Other applications include identification of epistasis and linkage effects. For breeders, DH populations have been particularly useful in QTL mapping, cytoplasmic conversions, and trait introgression. Moreover, there is value in testing and evaluating homozygous lines for plant breeding programs. All of the genetic variance is among progeny in a breeding cross, which improves selection gain.
  • DH production process is inefficient and can be quite labor-intensive. While doubled haploid plants can occur spontaneously in nature, this is extremely rare. Most research and breeding applications rely on artificial methods of DH production.
  • the initial step involves the haploidization of the plant which results in the production of a population comprising haploid seed. Non-homozygous lines are crossed with an inducer parent, resulting in the production of haploid seed. Seed that has a haploid embryo, but normal triploid endosperm, advances to the second stage. That is, haploid seed and plants are any plant with a haploid embryo, independent of the ploidy level of the endosperm.
  • telomere doubling After selecting haploid seeds from the population, the selected seeds undergo chromosome doubling to produce doubled haploid seeds.
  • a spontaneous chromosome doubling in a cell lineage will lead to normal gamete production or the production of unreduced gametes from haploid cell lineages.
  • Application of a chemical compound, such as colchicine can be used to increase the rate of diploidization.
  • Colchicine binds to tubulin and prevents its polymerization into microtubules, thus arresting mitosis at metaphase, can be used to increase the rate of diploidization, i.e. doubling of the chromosome number
  • These chimeric plants are self-pollinated to produce diploid (doubled haploid) seed. This DH seed is cultivated and subsequently evaluated and used in hybrid testcross production.
  • the methods of the present invention represent an advance in breeding applications by facilitating the potential for selection at the haploid as well as the diploid seed stage.
  • the invention provides for the high-throughput analysis of a population of haploid seed.
  • the method generally comprises non-destructively removing a sample from a plurality of seeds in the population and analyzing the sample for the presence of one or more characteristics indicative of at least one genetic or chemical trait as described herein.
  • the invention provides for the high- throughput bulking of a population of doubled haploid seeds.
  • the method comprises selecting one or more individual seeds exhibiting at least one preferred characteristic from a population of haploid seeds and producing a population of doubled haploid seeds from the selected seeds.
  • Each doubled haploid seed is then non-destructively sampled and the samples are analyzed for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait. Based on the results of the analysis, one or more individual doubled haploid seeds are selected and plants or plant tissue is cultivated from the selected doubled haploid seeds.
  • the methods of the invention include analyzing seed for one or more characteristics, such as genetic markers, to determine whether the seed is in a haploid or diploid state.
  • the present invention also provides a methods for analyzing haploid and doubled haploid seed for one or more characteristics, such as transgenes or markers linked to or diagnostic of transgenes, for characteristics related to event performance, event evaluation, and trait integration. Further, the present invention provides a method to assay haploid seed in order to select preferred genotypic and phenotypic classes to undergo doubling.
  • the present invention provides a basis for determination of linkage phase.
  • the parental marker haplotypes can be determined using a genotyping system that enables detection of different allele frequencies in DNA samples. Since endosperm tissue is triploid, with two copies derived from the female gamete, the linkage phase of the parental line can be derived by dissecting heterozygous progeny genotypes (see FIG. 1).
  • the DNA sample from endosperm tissue allows for a determination of the ploidy level of the genetic marker.
  • a diploid ploidy level in the genetic marker indicates maternal inheritance and a haploid ploidy level in the genetic marker indicates paternal inheritance.
  • differential allele frequency data can be used to infer the genetic linkage map but, unlike methods requiring haploid material (Gasbarra et al. 2006 Genetics 172:1325-1335), using the above-described allele frequency calling. Determination of the genetic linkage map has tremendous utility in the context of haplotype characterization, mapping of marker (or haplotype) - trait associations. This method is particularly robust on a single, vs. bulked, seed basis and is thus well- suited to the present invention. [0059] In a particular embodiment, the invention further provides an assay for predicting embryo zygosity for a particular gene of interest (GOI).
  • GOI embryo zygosity for a particular gene of interest
  • the assay predicts embryo zygosity based on the ratio of the relative copy numbers of a GOI and of an internal control (IC) gene per cell or per genome.
  • this assay uses an IC gene that is of known zygosity, e.g., homozygous at the locus (two IC copies per diploid cell), for normalizing measurement of the GOI.
  • the ratio of the relative copy numbers of the IC to the GOI predicts the GOI copy number in the cell.
  • the gene copy number is equal to the cell's ploidy level since the sequence is present at the same locus in all homologous chromosomes.
  • the gene copy number When a cell is heterozygous for a particular gene (or hemizygous in the case of a transgene), the gene copy number will be lower than the cell's ploidy level. If the GOI is not detected, the cell is null for the locus, as can happen for a negative segregant of a transgenic event or in a mutagenized population. The zygosity of a cell at any locus can thus be determined by the gene copy number in the cell.
  • the invention provides an assay for predicting corn embryo zygosity.
  • the endosperm tissue is triploid, whereas the embryo tissue is diploid.
  • Endosperm copy number is reflective of the zygosity of the embryo: a homozygous (positive or negative) endosperm accompanies a homozygous embryo, heterozygous endosperm (whether a GOI copy number of 1 or 2) reflects a heterozygous (GOI copy number of 1) embryo.
  • Endosperm that is homozygous for the IC will contain three IC copies.
  • Endosperm GOI copy number can range from 0 (homozygous negative embryo) to 3 (homozygous positive embryo); and endosperm GOI copy number of 1 or 2 is found in seed where the embryo is heterozygous for the GOI (or hemizygous for the GOI if the GOI is a transgene).
  • the endosperm GOI copy number (which can range from 0 to 3 copies) can be determined from the ratio of endosperm IC copy number to endosperm GOI copy number (which can range from 0/3 to 3/3, that is, from 0 to 1), which can then be used to predict zygosity of the embryo.
  • Copy numbers of the GOI or of the IC can be determined by any convenient assay technique for quantification of copy numbers, as is known in the art.
  • suitable assays include, but are not limited to, Real Time (TaqMan®) PCR (Applied Biosystems, Foster City, CA) and Invader® (Third Wave Technologies, Madison, WI) assays.
  • such assays are developed in such a way that the amplification efficiency of both the IC and GOI sequences are equal or very similar.
  • the signal from a single-copy GOI (the source cell is determined to be heterozygous for the GOI) will be detected one amplification cycle later than the signal from a two-copy IC, because the amount of the GOI is half that of the IC.
  • an Invader® assay would measure a GOI/IC ratio of about 1:2 or 0.5.
  • the GOI signal would be detected at the same time as the IC signal (TaqMan®), and the Invader assay would measure a GOI/IC ratio of about 2:2 or 1.
  • zygosity at one or more loci for the purpose of evaluating the level of inbreeding (that is, the degree of gene fixation), segregation distortion (i.e., in transgenic germplasm, maternal inheritance testing or for loci that affect the fitness of gametes), and the level of outbreeding (i.e., the relative proportion of homozygosity and heterozygosity).
  • the extent of zygosity at one or more loci can be used to estimate hybridity and whether a particular seed lot meets a commercial or regulatory standard for sale as certified hybrid seed.
  • transgenic germplasm it is useful to know the ploidy, or copy number, in order to distinguish between quality events and to aid in trait integration strategies.
  • the present invention provides a basis for improving the ability to monitor one or more germplasm pools for shifts in the frequencies of one or more genetic characteristics, wherein said genetic characteristics include markers, alleles, and haplotypes.
  • Methodology is known in the art to compare genetic marker frequency between recently derived populations and their ancestral lines in order to identify those genetic loci that are increasing in frequency over time (US Patent Nos. 5,437,697 and 5,746,023). Those loci with frequencies that exceed the expected allele frequency are inferred to have been subject to selection. Further, given that the predominant selection criterion in breeding programs is yield, it is expected that those increasingly frequent alleles may be linked to yield.
  • the present invention provides a method to enable haplotype-assisted breeding.
  • identification of haplotypes that are deviating from the expected haplotype frequency is possible.
  • evaluation of haplotype effect estimates for said haplotypes it is also possible to link said haplotypes of increasing frequency with phenotypic outcomes for a suite of agronomic traits.
  • the haplotype composition of individual seeds sampled from a plurality of seeds can be determined using genetic markers and the seeds with preferred haplotypes are selected and advanced.
  • This example describes an assay for predicting the zygosity of corn embryos using an internal control (IC) gene homozygous at the locus (i.e., two IC copies in the diploid embryo and three IC copies in the triploid endosperm).
  • IC internal control
  • the endogenous internal control is typically homozygous; transgenic events in such organisms at the first generation (termed "RO" in corn) are typically hemizygous (that is, the transgene is typically present in only one of the two or more homologous chromosomes).
  • a "two copy" RO event has two copies of the GOI per cell, but 1 copy per haploid genome, and so forth.
  • tubulin was used as the IC gene
  • the GOI was a transgene encoding neomycin phosphotransferase II (NPT II), which is used for kanamycin resistance selection.
  • NPT II neomycin phosphotransferase II
  • Endosperm (triploid) tissue was taken from seed
  • the zygosity assay of the present invention can predict zygosity of one tissue based on the zygosity of another, that is, the assay can predict the embryo zygosity based on the endosperm zygosity.
  • This example demonstrates the use of the methods of the present invention in a program for marker-assisted selection of soybeans for Low Linolenic Acid.
  • Soybean is the most valuable legume crop, with many nutritional and industrial uses due to its unique chemical composition. Soybean seeds are an important source of vegetable oil, which is used in food products throughout the world. The relatively high level (usually about 8%) of linolenic acid (18:3) in soybean oil reduces its stability and flavor. Hydrogenation of soybean oil is used to lower the level of linolenic acid (18:3) and improve both stability and flavor of soybean oils. However, hydrogenation results in the production of trans fatty acids, which increases the risk for coronary heart disease when consumed. The development of low linolenic acid soybean has been complicated by the quantitative nature of the trait. The low linolenic acid soybean varieties that have been developed have been found to yield poorly, limiting their usefulness in most commercial settings. Developing a product with commercially significance seed yield is a high priority in most soybean cultivar development programs.
  • An example of the application of the methods of the present invention is selection of soybean plants with both high yield and decreased linolenic acid content. Soybean progeny performance as it relates to low linolenic acid relies mainly on two major quantitative trait locus (QTL) at Fad3-lb and Fad3-lc. Analysis of segregating plants demonstrated that FadS-lb and Fad3-lc additively control linolenic content in soybean. Therefore, by using a combination of markers for Fad3-lb and Fad3-lc, a breeder using the invention can accurately predict linolenic acid content in soybean plants. The markers can be used to infer the genotypic state of a seed at any stage in the breeding process, for example, at the finished inbred line stage, or the F 1 , F 2 , F 3 , etc.
  • QTL quantitative trait locus
  • a seminal F 1 hybrid can be produced by crossing two inbred soybean lines (for example, crossing a plant containing the Fad3-lb and/or Fad3-lc alleles associated with decreased linolenic acid content to a plant lacking these alleles) followed by natural self-pollination. Since the markers can be used to infer the genotypic state of a single seed obtained from an inte ⁇ nating of such inbred lines, early generation (i.e., F 2 ) marker-assisted breeding can be conducted.
  • Soybean seed at ambient temperature and humidity typically equilibrate to 8% moisture on a dry weight basis. Soybean seed at this level of moisture tends to split when sampled. To reduce splitting, seed should be humidified to moisture level of 12%. When pretreated in this manner, splitting is significantly reduced to ⁇ 5%.
  • the selected F 2 seed that have the desired genotype may be bulked or kept separate depending on the breeding objectives. If multiple QTL with varying effects were being selected from a given population, the breeder could preserve single seed identity to differentiate individuals with various combinations of the target resistance QTL. These seeds could be planted in the field with appropriate field identification. Several methods of preserving single seed identity can be used while transferring seed from the sampling lab to the field. Methods include transferring selected individuals to horticultural seed tape that could also include radio frequency identification to aid in the identification of the individual genotyped seed. Other methods would be to use an indexing tray, plant seeds in peat pots and then transplant them, or hand plant from individual seed packets. Example 3
  • the methods of the present invention can be used for selection of transgenes as well as identification of recurrent parent alleles.
  • the identification of genotypes with desired recurrent parent allele frequencies before planting allows the number of rows per population to be reduced throughout the entire breeding program along with an increase in the number of populations included in the conversion program within a given field unit. This results in improved land usage, reduced land and labor costs, etc.
  • FIG. 1 An example of analyzing endosperm tissue from corn for recurrent parent alleles in a backcross breeding program is shown in FIG. 1.
  • Example 4 demonstrates the use of the methods of the present invention for use in DNA line fingerprinting and linkage phase determination.
  • line fingerprinting could be accomplished without the need to sample the line in the field.
  • the parental marker haplotypes can be determined using a genotyping system that enables detection of different allele frequencies in DNA samples. Since endosperm tissue is triploid, with two copies derived from the female gamete, the linkage phase of the parental line can be derived by dissecting heterozygous progeny genotypes.
  • the DNA sample from endosperm tissue allows for a determination of the ploidy level of the genetic marker. A diploid ploidy level in the genetic marker indicates maternal inheritance and a haploid ploidy level in the genetic marker indicates paternal inheritance.
  • This example demonstrates the methods of the present invention for evaluating transgenic seed for segregation distortion. Seeds of an Fl cross between Line A (Homozygous Event 1 and Event 2) and Line B (Homozygous Event 1) were induced in a maternal haploid induction isolation. The resulting kernels were selected using plumule color to obtain a population of putative haploid seed.
  • Results of this study indicate that individual gene traits can be selected on a haploid basis using high throughput, nondestructive seed sampling as a screening mechanism.
  • This example demonstrates the utility of automated, high- throughput sampling in the preselection of haploid seed from a population of seeds.
  • the experiment comprised sampling 20 F2 populations using a nondestructive, high throughput seed sampling system and analyzing the samples to verify the pre-selection of haploid seed.
  • Each population of F2 seed was nondestructively sampled or the F2 plants were tissue sampled for DNA analysis.
  • the nondestructive seed samples were collected from individual seeds in the population of seeds using an automated seed sampler system as generally described in U.S. Patent Application Serial No. 11/213,435 (Publication No. US 2006/004624), which is hereby incorporated by reference in its entirety. Selection of desirable genotypes was based on selecting materials with the greatest allelic frequencies of the desired haplotypes based on modeling parameters. The selected F2 plants were pollinated with haploid inducing male pollinators and the resulting seed is harvested. Following harvest, haploid kernels were sorted out from the non-haploid seed and the haploids were sampled on a kernel basis using nondestructive, high throughput sampling and subsequent genotyping.
  • the preferred haploid seed was selected and subjected to a chromosome doubling procedure to produce doubled haploids. This approach allows non-preferred genotypes to be culled before doubling and increases the frequency of preferred material that is processed through the resource intensive doubling process.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

The present invention provides for novel methods to facilitate germplasm improvement activities through the use of high throughput, nondestructive sampling of seeds. In one embodiment, a high-throughput, non-destructive method for analyzing individual seeds in a population of seeds comprises removing a sample from a plurality of seeds in the population while preserving the germination viability of the seed and analyzing the sample for the presence or absence of one or more characteristics of at least one genetic or chemical trait.

Description

METHODS OF SEED BREEDING USING HIGH THROUGHPUT NONDESTRUCTIVE SEED SAMPLING
FIELD OF THE INVENTION
[0001] The present invention relates to the field of plant breeding. More specifically, this invention provides methods for augmenting and economizing germplasm improvement activities using high throughput and nondestructive seed sampling techniques.
BACKGROUND OF THE INVENTION
[0002] The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
[0003] In plant development and improvement, genetic improvements are made in the plant, either through selective breeding or genetic manipulation, and when a desirable improvement is achieved, a commercial quantity is developed by planting and harvesting seeds over several generations. To speed up the process of plant improvement, statistical samples are taken and tested to advance seeds from the population that have inherited or exhibit the desired trait. However this statistical sampling necessarily allows some seeds without the desirable trait to remain in the population, and also can inadvertently exclude some seeds with the desirable trait from the desired population. Not all seeds inherit or exhibit the desired traits, and thus these seeds still need to be culled from the population.
[0004] Apparatus and methods for the high-throughput, non-destructive sampling of seeds have been described which would overcome the obstacles of statistical samples by allowing for individual seed analysis. For example, U.S. Patent Application Serial No. 11/213,430 (filed August 26, 2005); U.S. Patent Application Serial No. 11/213,431 (filed August 26, 2005); U.S. Patent Application Serial No. 11/213,432 (filed August 26, 2005); U.S. Patent Application Serial No. 11/213,434 (filed August 26, 2005); and U.S. Patent Application Serial No. 11/213,435 (filed August 26, 2005), which are incorporated herein by reference in their entirety, disclose apparatus and systems for the automated sampling of seeds as well as methods of sampling, testing and bulking seeds. [0005] The present invention addresses needs in the art for improved breeding methods using high-throughput, non-destructive seed sampling systems.
SUMMARY OF THE INVENTION [0006] The present disclosure relates to systems and methods for facilitating germplasm improvement activities through the use of high throughput, nondestructive sampling of seeds. With automated, non-destructive sampling, it is possible to test individual seeds in a population, and select only the seeds that possess one or more desired characteristics. This allows for new and more efficient methods for germplasm improvement and management, which lead to improved breeding populations.
[0007] In one embodiment, the present disclosure provides for a high- throughput, non-destructive method for analyzing individual seeds in a population of seeds. The method comprises removing a sample from a plurality of seeds in the population while preserving the germination viability of the seed and analyzing the sample for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait.
[0008] In a further embodiment, the present disclosure provides for a high- throughput method for analyzing a population of haploid seed. The method comprises removing a sample from a plurality of seeds in a population of haploid seed while preserving the germination viability of the seed and analyzing the samples for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait.
[0009] In a still further embodiment, the present disclosure provides for a high-throughput method for bulking a population of doubled haploid seed. The method comprises providing a population of seeds comprising haploid seeds and selecting one or more individual seeds exhibiting at least one preferred characteristic from the population of seeds. Doubled haploid seeds are then produced from the selected seeds and a sample is removed from each doubled haploid seed while preserving the germination viability of the seeds. The samples are analyzed for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait. Based on the results of the analysis, one or more individual doubled haploid seeds are selected and plants or plant tissue is cultivated from the selected doubled haploid seed.
[0010] In the various embodiments of the present invention, the samples may be analyzed for one or more characteristics indicative of at least one chemical trait. Examples of such characteristics may include proteins, oils, carbohydrates, fatty acids, amino acids, biopolymers, pharmaceuticals, starch, fermentable starch, secondary compounds, and metabolites.
[0011] In other various embodiments of the present invention, the samples may be analyzed for one or more characteristics indicative of at least one genetic trait. Examples of such characteristics may include a genetic marker, a single nucleotide polymorphism, a simple sequence repeat, a restriction fragment length polymorphism, a haplotype, a tag SNP, an alleles of a genetic marker, a gene, a DNA-derived sequence, an RNA-derived sequence, a promoter, a 5' untranslated region of a gene, a 3' untranslated region of a gene, microRNA, siRNA, a QTL, a satellite marker, a transgene, mRNA, ds mRNA, a transcriptional profile, and a methylation pattern.
[0012] Further areas of applicability of the present teachings will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present teachings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
[0014] FIG. 1 is an allelogram depicting maize endosperm tissue samples that have undergone PCR for detection of a particular SNP as described in Example 3.
[0015] FIG. 2 is a graphical illustration of the efficacy of pre-selection on driving the frequency of favorable haplotypes as described in Example 6.
DETAILED DESCRIPTION [0016] The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses.
[0017] The present invention provides for novel methods to facilitate germplasm improvement activities through the use of high throughput, nondestructive sampling of seeds. The methods are useful in analyzing seeds in order to identify and select seeds comprising one or more desired traits, markers, and genotypes. In one aspect of the invention, the analytical methods allow individual seeds that are present in a batch or a bulk population of seeds to be analyzed such that the chemical and/or genetic characteristics of the individual seeds can be determined.
[0018] Samples prepared by the present invention can be used for determining a wide variety of physical, morphological, chemical and/or genetic traits. Generally, such traits are determined by analyzing the samples for one or more characteristics indicative of at least one genetic or chemical trait. Non-limiting examples of characteristics indicative of chemical traits include proteins, oils, carbohydrates, fatty acids, amino acids, biopolymers, pharmaceuticals, starch, fermentable starch, secondary compounds, and metabolites. Accordingly, non- limiting examples of chemical traits include amino acid content, protein content, starch content, fermentation yield, fermentation efficiency, energy yield, oil content, determination of protein profiles determination of fatty acid profiles, determination of metabolite profiles, etc. [0019] Non-limiting examples of characteristics indicative of genetic traits may include, for example, genetic markers, single nucleotide polymorphisms, simple sequence repeats, restriction fragment length polymorphisms, haplotypes, tag SNPs, alleles of genetic markers, genes, DNA-derived sequences, RNA-derived sequences, promoters, 5' untranslated regions of genes, 3' untranslated regions of genes, microRNA, siRNA, quantitative trait loci (QTL), satellite markers, transgenes, mRNA, ds mRNA, transcriptional profiles, and methylation patterns.
[0020] In one embodiment, the sampling of endosperm tissue enables the determination of allele frequencies, whereby it is possible to infer parental linkage phase for a particular marker. Further, comparison of allele frequency data between two or more germplasm pools provides insight into the targets of selection, whereby alleles increasing in frequency in conjunction with a shift in distribution of one or more traits are presumed to be linked to said trait or traits of interest. Also, evaluation of relative allele frequency data between lines can contribute to the construction of genetic linkage maps.
[0021] In another embodiment, the methods of the present invention use high throughput, nondestructive seed sampling with doubled haploid technologies to contribute to germplasm improvement activities including economization of doubled haploid programs by selecting only preferred seed for doubling, high throughput analysis of haploid and doubled haploid material for both genotypic and chemical characteristics, trait integration and evaluation, and marker-assisted breeding. [0022] The methods and devices of the present invention can be used in a breeding program to select plants or seeds having a desired genetic or chemical trait, wherein a desired genetic trait comprises a genotype, a haplotype, an allele, a sequence, a transcript profile, and a methylation pattern. The methods of the present invention can be used in combination with any breeding methodology and can be used to select a single generation or to select multiple generations. The choice of breeding method depends on the mode of plant reproduction, the heritability of the trait(s) being improved, and the type of cultivar used commercially (e.g., F1 hybrid cultivar, pureline cultivar, etc). Selected, non-limiting approaches for breeding the plants of the present invention are set forth below. It is further understood that any commercial and non-commercial cultivars can be utilized in a breeding program. Factors including, for example, without limitation, emergence vigor, vegetative vigor, stress tolerance, disease resistance, branching, flowering, seed set, seed size, seed density, standability, and threshability will generally dictate the choice. [0023] In a particular embodiment, the methods of the present invention are used to determine the genetic characteristics of seeds in a marker-assisted breeding program. Such methods allow for improved marker-assisted breeding programs wherein nondestructive direct seed sampling can be conducted while maintaining the identity of individual seeds from the seed sampler to the field. As a result, the marker-assisted breeding program results in a "high-throughput" and more efficient platform wherein a population of seeds having a desired trait, marker or genotype can be more effectively bulked in a shorter period of time, with less field and labor resources required. Such advantages will be more fully described below. [0024] In one embodiment, the present invention provides a method for analyzing individual seeds within a population of seeds having genetic differences. The method comprises removing a sample comprising cells with nucleic acids from seeds in the population without affecting the germination viability of the seeds; analyzing the nucleic acids extracted from the sample for the presence or absence of at least one genetic marker; selecting seeds from the population based upon the results of the nucleic acid analysis; and cultivating plants from the selected seed.
[0025] As described above, the sampling systems and methods of this invention protect germination viability of the seeds so as to be non-destructive. Germination viability means that a predominant number of sampled seeds, (i.e., greater than 50% of all sampled seeds) remain viable after sampling. In a particular embodiment, at least about 75% of sampled seeds, and in some embodiments at least about 85% of sampled seeds remain viable. It should be noted that lower rates of germination viability may be tolerable under certain circumstances or for certain applications, for example, as genotyping costs decrease with time because a greater number of seeds could be sampled for the same genotype cost. It should also be noted that sampling does not need to have any effect on viability at all.
[0026] In another embodiment, germination viability is maintained for at least about six months after sampling to ensure that the sampled seed will be viable until it reaches the field for planting. In a particular embodiment, the methods of the present invention further comprise treating the sampled seeds to maintain germination viability. Such treatment may generally include any means known in the art for protecting a seed from environmental conditions while in storage or transport. For example, in one embodiment, the sampled seeds may be treated with a polymer and/or a fungicide to protect the sampled seed while in storage or in transport to the field before planting.
[0027] In one embodiment, the samples of the present invention are used in a high-throughput, non-destructive method for analyzing individual seeds in a population of seeds. The method comprises removing a sample from the seed while preserving the germination viability of the seed; and analyzing the sample for the presence or absence of one or more characteristics indicative of a genetic or chemical trait. The method may further comprise selecting seeds from the population based on the results of the analysis; and cultivating plants or plant tissue from the selected seed. [0028] DNA may be extracted from the sample using any DNA extraction methods known to those of skill in the art which will provide sufficient DNA yield, DNA quality, PCR response, and sequencing methods response. A non-limiting example of suitable DNA-extraction methods is SDS-based extraction with centrifugation. In addition, the extracted DNA may be amplified after extraction using any amplification method known to those skilled in the art. For example, one suitable amplification method is the GenomiPhi® DNA amplification prep from Amersham Biosciences.
[0029] Further, RNA may be extracted from the sample using any RNA extraction methods known to those of skill in the art which will provide sufficient RNA yield, RNA quality, PCR response, and sequencing methods response. A non- limiting example of suitable RNA-extraction methods is SDS-based extraction with centrifugation with consideration for RNase-free reagents and supplies. In addition, the extracted RNA may be amplified after extraction using any amplification method known to those skilled in the art. For example, one suitable amplification method is the Full Spectrum™ RNA Amplification from System Biosciences.
[0030] The extracted nucleic acids are analyzed for the presence or absence of a suitable genetic polymorphism. A wide variety of genetic markers for the analysis of genetic polymorphisms are available and known to those of skill in the art. As used herein, genetic markers include, but are not limited to, simple sequence repeats (SSRs), single nucleotide polymorphisms (SNPs), insertions or deletions (Indels), single feature polymorphisms (SFPs, for example, as described in Borevitz et al. 2003 Gen. Res. 13:513-523) or transcriptional profiles, and nucleic acid sequences. A nucleic acid analysis for the presence or absence of the genetic marker can be used for the selection of seeds in a breeding population. The analysis may be used to select for genes, QTL, alleles, or genomic regions (haplotypes) that comprise or are linked to a genetic marker. Herein, analysis methods are known in the art and include, but are not limited to, PCR-based detection methods (for example, TaqMan assays), microarray methods, and nucleic acid sequencing methods. The genes, alleles, QTL, or haplotypes to be selected for can be identified using newer techniques of molecular biology with modifications of classical breeding strategies.
[0031] Any seed can be utilized in a method or device of the present invention. In a particular embodiment, the seed is selected from the group consisting of alfalfa seed, apple seed, banana seed, barley seed, bean seed, broccoli seed, castorbean seed, citrus seed, clover seed, coconut seed, coffee seed, maize seed, cotton seed, cucumber seed, Douglas fir seed, Eucalyptus seed, Loblolly pine seed, linseed seed, melon seed, oat seed, olive seed, palm seed, pea seed, peanut seed, pepper seed, poplar seed, Radiata pine seed, rapeseed seed, rice seed, rye seed, sorghum seed, Southern pine seed, soybean seed, strawberry seed, sugarbeet seed, sugarcane seed, sunflower seed, sweetgum seed, tea seed, tobacco seed, tomato seed, turf seed, wheat seed, and Arabidopsis thaliana. seed. In a more particular embodiment, the seed is selected from the group consisting of cotton seed, cucumber seed, maize seed, melon seed, soybean seed, rapeseed seed, rice seed and wheat seed.
In an even more particular embodiment, the seed is a maize seed or a soybean seed.
[0032] In another embodiment, crops analyzed by the methods described herein include forage crops, oilseed crops, grain crops, fruit crops, ornamental plants, vegetable crops, fiber crops, spice crops, nut crops, turf crops, sugar crops, beverage crops, tuber crops, root crops, and forest crops.
[0033] In one embodiment, the seed is selected based on the presence or absence of one or more characteristics that are genetically linked with a QTL. Examples of QTLs which are often of interest include but are not limited to herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, increased nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, other agronomic traits, traits for industrial uses, or traits for improved consumer appeal, or a combination of traits as a multiple trait index. Alternatively, the seed can be selected based on the presence or absence of one or more characteristics that are genetically linked with a haplotype associated with a QTL. Examples of such QTL may again include without limitation herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, increased nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, other agronomic traits, traits for industrial uses, or traits for improved consumer appeal, or a combination of traits as a multiple trait index.
[0034] Selection of a breeding population could be initiated as early as the F2 breeding level, if homozygous inbred parents are used hi the initial breeding cross. An Fi generation could also be sampled and advanced if one or more of the parents of the cross are heterozygous for the alleles or markers of interest. The breeder may analyze an F2 population to retrieve the marker genotype of every individual in the population. Initial population sizes, limited only by the number of available seeds for analysis, can be adjusted to meet the desired probability of successfully identifying the desired number of individuals. See Sedcole, J.R. "Number of plants necessary to recover a trait." Crop Sci. 17:667-68 (1977). Accordingly, the probability of finding the desired genotype, the initial population size, and the targeted resulting population size can be modified for various breeding methodologies and inbreeding level of the sampled population.
[0035] The selected seeds may be bulked or kept separate depending on the breeding methodology and target. For example, when a breeder is analyzing an F2 population for disease resistance, all individuals with the desired genotype may be bulked and planted in the breeding nursery. Conversely, if multiple QTL with varying effects for a trait such as grain yield are being selected from a given population, the breeder may keep individual identity preserved, going to the field to differentiate individuals with various combinations of the target QTL. [0036] Several methods of preserving single seed identity can be used while transferring seed from the sampling location to the field. Methods include, but are not limited to, transferring selected individuals to seed tape, a cassette tray, or indexing tray, transplanting with peat pots, and hand-planting from individual seed packets.
[0037] Multiple cycles of selection can be utilized depending on breeding targets and genetic complexity. [0038] Advantages of using the methods of this invention include, without limitation, reduction of labor and field resources required per population or breeding line, increased capacity to evaluate a larger number of breeding populations per field unit, and increased capacity to analyze breeding populations for desired traits prior to planting. Field resources per population are reduced by limiting the field space required to advance the desired genotypes. For example, a population of 1,000 individuals may be planted at 25 seeds per row consuming a total of 40 rows in the field. Using conventional tissue sampling, all 1,000 plants would be tagged and manually sampled by scoring leaf tissue. Molecular marker results would be needed prior to pollination and only those plants containing the desired genetic composition would be pollinated. Thus, if it was determined that 50 seeds contained the desired genetic composition, conventional breeding methodology would have required the planting of 1000 plants to retain the desired 50 seeds. By contrast, the methods of this invention allow the breeder to analyze the 1,000 seeds in the lab and select the 50 desired seeds prior to planting. The 50 individuals can then be planted in the field, consuming only two 25 seed rows. Additionally, the methods of this invention do not require tagging or sampling in the field, thereby significantly reducing the required manual labor resources.
[0039] In addition to reducing the number of field rows per population, the methods of this invention may further increase the number of populations the breeder can evaluate in a given breeding nursery. Using the above example wherein 50 seeds out of each population of 1000 seeds contained the desired genetic composition, a breeder applying the methods of this invention could evaluate 20 populations of 50 seeds each using the same field area consumed by a single population using conventional field tissue sampling techniques. Even if the populations are selected for a single allele, using a 1:2:1 expected segregation ratio for an F2 population, the breeder could evaluate 4 populations in the same field area as a single field tissue sampled population. [0040] A potential further advantage to the methods of the present invention is the mitigation of risks associated with growing plants in certain geographies where plants may grow poorly or experience poor environmental conditions, or may even be destroyed during storms. For example, seeds with the "best" genotype or marker composition could be planted in geography 1 and seeds with the "next best" genotype could be planted in geography 2. In this case geography 2 would be a backup in case any problem befell the plants grown in geography 1. This is very difficult to do with the traditional method of taking tissue samples from germinated plants for genotyping, because these plants would then need to be uprooted and transplanted to the second geography. Using the methods of this invention avoids the problem of transplantation and also simplifies the logistics of the breeding program.
[0041] The methods of the invention may further be used in a breeding program for introgressing a trait into a plant. Such methods comprise removing a sample comprising cells with nucleic acids from seeds in a population, analyzing the nucleic acids extracted from each seed for the presence or absence of at least one genetic marker, selecting seeds from the population based upon the results of the nucleic acids analysis; cultivating a fertile plant from the seed; and utilizing the fertile plant as either a female parent or male parent in a cross with another plant. [0042] Examples of genetic analyses to select seeds for trait integration include, without limitation, identification of high recurrent parent allele frequencies, tracking of transgenes of interest or screening for the absence of unwanted transgenes, selection of hybrid testing seed, selection of seed expressing a gene of interest, selection of seed expressing a heritable phenotype, identification of seed with selected genetic loci, and zygosity testing.
[0043] The identification of high recurrent pair allele frequencies via the methods of the present invention again allows for a reduced number of rows per population and an increased number of populations, or inbred lines, to be planted in a given field unit. Thus, the methods of the present invention may also effectively reduce the resources required to complete the conversion of inbred lines.
[0044] The methods of the present invention further provide quality assurance (QA) and quality control (QC) by assuring that regulated or unwanted transgenes, undesirable genetic traits, or undesirable inherited phenotypes are identified and discarded prior to planting. This application in a QA capacity could effectively eliminate unintentional release infractions. A further extension of the method is to screen for the presence of infectious agents and remove contaminated seed prior to shipping.
[0045] The methods of the present invention may be further applied to identify hybrid seed for transgene testing. For example, in a conversion of an inbred line at the BCnF1 stage, a breeder could effectively create a hybrid seed lot (barring gamete selection) that was 50% hemizygous for the trait of interest and 50% homozygous for the lack of the trait in order to generate hybrid seed for testing. The breeder could then analyze all Fi seeds produced in the test cross and identify and select those seeds that were hemizygous. Such method is advantageous in that inferences from the hybrid trials would represent commercial hybrid genetics with regard to trait zygosity. [0046] Other applications of the methods of this invention for identifying, tracking, and stacking traits of interest carry the same advantages identified above with respect to required field and labor resources. Generally, transgenic conversion programs are executed in multi-season locations which carry a much higher land and management cost structure. As such, the impact of either reducing the row needs per population or increasing the number of populations within a given field unit are significantly more dramatic on a cost basis versus temperate applications.
[0047] The methods of this invention may be used for seeds from plants with two or more transgenes, wherein accumulating or stacking of transgenic regions into plants or lines is achieved by addition of transgenes by transformation, or by crossing parent plants or lines containing different transgenic regions, or any combination of these. Analyses can be conducted to select individual seeds on the basis of the presence of one or more characteristics associated with at least one transgene. Such characteristics include, but are not limited to, a transgene per se, a genetic marker linked to a transgene, mRNA expressed from a transgene, and a protein product of a transgene.
[0048] Still further, the methods of this invention may be used to improve the efficiency of the doubled haploid program through selection of desired genotypes at the haploid stage and identification of ploidy level to eliminate non-haploid seeds from being processed and advancing to the field. Both applications again result in the reduction of field resources per population and the capability to evaluate a larger number of populations within a given field unit. [0049] Doubled haploid (DH) plants provide an invaluable tool to plant breeders, particularly for generating inbred lines. A great deal of time is spared as homozygous lines are essentially instantly generated, negating the need for multigenerational conventional inbreeding.
[0050] In particular, because DH plants are entirely homozygous, they are very amenable to quantitative genetics studies. Both additive variance and additive x additive genetic variances can be estimated from DH populations. Other applications include identification of epistasis and linkage effects. For breeders, DH populations have been particularly useful in QTL mapping, cytoplasmic conversions, and trait introgression. Moreover, there is value in testing and evaluating homozygous lines for plant breeding programs. All of the genetic variance is among progeny in a breeding cross, which improves selection gain.
[0051] However, it is well known in the art that DH production process is inefficient and can be quite labor-intensive. While doubled haploid plants can occur spontaneously in nature, this is extremely rare. Most research and breeding applications rely on artificial methods of DH production. The initial step involves the haploidization of the plant which results in the production of a population comprising haploid seed. Non-homozygous lines are crossed with an inducer parent, resulting in the production of haploid seed. Seed that has a haploid embryo, but normal triploid endosperm, advances to the second stage. That is, haploid seed and plants are any plant with a haploid embryo, independent of the ploidy level of the endosperm.
[0052] After selecting haploid seeds from the population, the selected seeds undergo chromosome doubling to produce doubled haploid seeds. A spontaneous chromosome doubling in a cell lineage will lead to normal gamete production or the production of unreduced gametes from haploid cell lineages. Application of a chemical compound, such as colchicine, can be used to increase the rate of diploidization. Colchicine binds to tubulin and prevents its polymerization into microtubules, thus arresting mitosis at metaphase, can be used to increase the rate of diploidization, i.e. doubling of the chromosome number These chimeric plants are self-pollinated to produce diploid (doubled haploid) seed. This DH seed is cultivated and subsequently evaluated and used in hybrid testcross production.
[0053] However, processes for producing DH seed generally suffer from low efficacy even though methods have been developed in an attempt to increase DH production frequency, including treatment with colchicines. Outstanding issues include low production of haploid seed, reduced gamete viability resulting in diminished self-pollination for DH plant generation, and inadequate DH seed yield for breeding applications. [0054] The methods of the present invention represent an advance in breeding applications by facilitating the potential for selection at the haploid as well as the diploid seed stage. For example, in one embodiment, the invention provides for the high-throughput analysis of a population of haploid seed. The method generally comprises non-destructively removing a sample from a plurality of seeds in the population and analyzing the sample for the presence of one or more characteristics indicative of at least one genetic or chemical trait as described herein.
[0055] In another embodiment, the invention provides for the high- throughput bulking of a population of doubled haploid seeds. The method comprises selecting one or more individual seeds exhibiting at least one preferred characteristic from a population of haploid seeds and producing a population of doubled haploid seeds from the selected seeds. Each doubled haploid seed is then non-destructively sampled and the samples are analyzed for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait. Based on the results of the analysis, one or more individual doubled haploid seeds are selected and plants or plant tissue is cultivated from the selected doubled haploid seeds.
[0056] In various embodiments, the methods of the invention include analyzing seed for one or more characteristics, such as genetic markers, to determine whether the seed is in a haploid or diploid state. The present invention also provides a methods for analyzing haploid and doubled haploid seed for one or more characteristics, such as transgenes or markers linked to or diagnostic of transgenes, for characteristics related to event performance, event evaluation, and trait integration. Further, the present invention provides a method to assay haploid seed in order to select preferred genotypic and phenotypic classes to undergo doubling.
[0057] In another embodiment, the present invention provides a basis for determination of linkage phase. By using seed endosperm tissue derived from a diploid plant, the parental marker haplotypes can be determined using a genotyping system that enables detection of different allele frequencies in DNA samples. Since endosperm tissue is triploid, with two copies derived from the female gamete, the linkage phase of the parental line can be derived by dissecting heterozygous progeny genotypes (see FIG. 1). The DNA sample from endosperm tissue allows for a determination of the ploidy level of the genetic marker. A diploid ploidy level in the genetic marker indicates maternal inheritance and a haploid ploidy level in the genetic marker indicates paternal inheritance.
[0058] Further, differential allele frequency data can be used to infer the genetic linkage map but, unlike methods requiring haploid material (Gasbarra et al. 2006 Genetics 172:1325-1335), using the above-described allele frequency calling. Determination of the genetic linkage map has tremendous utility in the context of haplotype characterization, mapping of marker (or haplotype) - trait associations. This method is particularly robust on a single, vs. bulked, seed basis and is thus well- suited to the present invention. [0059] In a particular embodiment, the invention further provides an assay for predicting embryo zygosity for a particular gene of interest (GOI). The assay predicts embryo zygosity based on the ratio of the relative copy numbers of a GOI and of an internal control (IC) gene per cell or per genome. Generally, this assay uses an IC gene that is of known zygosity, e.g., homozygous at the locus (two IC copies per diploid cell), for normalizing measurement of the GOI. The ratio of the relative copy numbers of the IC to the GOI predicts the GOI copy number in the cell. In a homozygous cell, for any given gene (or unique genetic sequence), the gene copy number is equal to the cell's ploidy level since the sequence is present at the same locus in all homologous chromosomes. When a cell is heterozygous for a particular gene (or hemizygous in the case of a transgene), the gene copy number will be lower than the cell's ploidy level. If the GOI is not detected, the cell is null for the locus, as can happen for a negative segregant of a transgenic event or in a mutagenized population. The zygosity of a cell at any locus can thus be determined by the gene copy number in the cell.
[0060] In another particular embodiment, the invention provides an assay for predicting corn embryo zygosity. In corn seed, the endosperm tissue is triploid, whereas the embryo tissue is diploid. Endosperm copy number is reflective of the zygosity of the embryo: a homozygous (positive or negative) endosperm accompanies a homozygous embryo, heterozygous endosperm (whether a GOI copy number of 1 or 2) reflects a heterozygous (GOI copy number of 1) embryo. Endosperm that is homozygous for the IC will contain three IC copies. Endosperm GOI copy number can range from 0 (homozygous negative embryo) to 3 (homozygous positive embryo); and endosperm GOI copy number of 1 or 2 is found in seed where the embryo is heterozygous for the GOI (or hemizygous for the GOI if the GOI is a transgene). The endosperm GOI copy number (which can range from 0 to 3 copies) can be determined from the ratio of endosperm IC copy number to endosperm GOI copy number (which can range from 0/3 to 3/3, that is, from 0 to 1), which can then be used to predict zygosity of the embryo.
[0061] Copy numbers of the GOI or of the IC can be determined by any convenient assay technique for quantification of copy numbers, as is known in the art. Examples of suitable assays include, but are not limited to, Real Time (TaqMan®) PCR (Applied Biosystems, Foster City, CA) and Invader® (Third Wave Technologies, Madison, WI) assays. Preferably, such assays are developed in such a way that the amplification efficiency of both the IC and GOI sequences are equal or very similar. For example, in a Real Time TaqMan® PCR assay, the signal from a single-copy GOI (the source cell is determined to be heterozygous for the GOI) will be detected one amplification cycle later than the signal from a two-copy IC, because the amount of the GOI is half that of the IC. For the same heterozygous sample, an Invader® assay would measure a GOI/IC ratio of about 1:2 or 0.5. For a sample that is homozygous for both the GOI and the IC, the GOI signal would be detected at the same time as the IC signal (TaqMan®), and the Invader assay would measure a GOI/IC ratio of about 2:2 or 1.
[0062] These guidelines apply to any polyploid cell, or to haploid cells (such as pollen cells), since the copy number of the GOI or of the IC remain proportional to the genome copy number (or ploidy level) of the cell. Thus, these zygosity assays can be performed on triploid tissues such as corn endosperm. Furthermore, the copy number for a GOI can be measured beyond 2 copies or at numerically different values than the ploidy of the cell. The method is still appropriate for detecting GOI in polyploids, in some transgenic events with > 2 copies of the inserted transgene, after replication of the GOI by transposition, when the GOI exists on autonomously replicating chromosomes or plasmids and other situations.
[0063] In plant breeding, it is useful to determine zygosity at one or more loci for the purpose of evaluating the level of inbreeding (that is, the degree of gene fixation), segregation distortion (i.e., in transgenic germplasm, maternal inheritance testing or for loci that affect the fitness of gametes), and the level of outbreeding (i.e., the relative proportion of homozygosity and heterozygosity). Similarly, the extent of zygosity at one or more loci can be used to estimate hybridity and whether a particular seed lot meets a commercial or regulatory standard for sale as certified hybrid seed. In addition, in transgenic germplasm, it is useful to know the ploidy, or copy number, in order to distinguish between quality events and to aid in trait integration strategies.
[0064] In another embodiment, the present invention provides a basis for improving the ability to monitor one or more germplasm pools for shifts in the frequencies of one or more genetic characteristics, wherein said genetic characteristics include markers, alleles, and haplotypes. Methodology is known in the art to compare genetic marker frequency between recently derived populations and their ancestral lines in order to identify those genetic loci that are increasing in frequency over time (US Patent Nos. 5,437,697 and 5,746,023). Those loci with frequencies that exceed the expected allele frequency are inferred to have been subject to selection. Further, given that the predominant selection criterion in breeding programs is yield, it is expected that those increasingly frequent alleles may be linked to yield.
[0065] In a particular embodiment, the present invention provides a method to enable haplotype-assisted breeding. By comparing the frequency of haplotypes in emerging elite lines with the haplotype frequency in the ancestral elite lines (as determined via pedigree analysis), identification of haplotypes that are deviating from the expected haplotype frequency is possible. Further, by evaluation of haplotype effect estimates for said haplotypes, it is also possible to link said haplotypes of increasing frequency with phenotypic outcomes for a suite of agronomic traits. The haplotype composition of individual seeds sampled from a plurality of seeds can be determined using genetic markers and the seeds with preferred haplotypes are selected and advanced. Thus, more informed breeding decisions and establishment of superior line development programs is enabled by this technology. EXAMPLES
[0047] The following examples are merely illustrative, and not limiting to this disclosure in any way.
Example 1
[0048] This example describes an assay for predicting the zygosity of corn embryos using an internal control (IC) gene homozygous at the locus (i.e., two IC copies in the diploid embryo and three IC copies in the triploid endosperm). In an inbred line of a diploid (or higher ploidy) organism such as corn, the endogenous internal control is typically homozygous; transgenic events in such organisms at the first generation (termed "RO" in corn) are typically hemizygous (that is, the transgene is typically present in only one of the two or more homologous chromosomes). Corn
(Zea mays) is a diploid organism, thus a "single copy" RO event has one copy of the
GOI per cell, but 0.5 copies per haploid genome, a "two copy" RO event has two copies of the GOI per cell, but 1 copy per haploid genome, and so forth.
[0049] In this example, tubulin was used as the IC gene, and the GOI was a transgene encoding neomycin phosphotransferase II (NPT II), which is used for kanamycin resistance selection. Endosperm (triploid) tissue was taken from seed
(either by hand sampling or by scraping a seed with an automated sampler of the present invention). The endosperm-sampled seed was germinated, and leaf tissue
(diploid) from successfully germinated plants was also sampled for genetic analysis. The leaf tissue correlates directly with embryo zygosity and was thus used to demonstrate that endosperm zygosity generally predicted zygosity of the embryo and to confirm homozygosity calls from the endosperm. Total genomic DNA was extracted from endosperm tissue and from leaf tissue, and quantitatively analyzed using an Invader® assay with oligonucleotide probes specific for the gene of interest, NPT II, or for the internal control gene, tubulin. The ratio of the GOI to IC was measured using conventional molecular biology techniques. See Table 1. A summary of results of multiple experiments are shown in Table 2. [0050] Results indicated that endosperm zygosity generally predicted zygosity of the embryo (as indicated by the leaf zygosity) and was reliable in predicting homozygosity for all seeds that germinated. Furthermore, endosperm zygosity analysis gave few false-negative homozygous predictions (especially when the endosperm tissue was obtained with the automated sampler). These results demonstrate that for a cell of a known ploidy level, the ratio of copy number of a GOI to that of an IC indicates the zygosity of that cell. Furthermore, the zygosity assay of the present invention can predict zygosity of one tissue based on the zygosity of another, that is, the assay can predict the embryo zygosity based on the endosperm zygosity.
TABLEl
Figure imgf000022_0001
TABLE 2
Figure imgf000023_0001
Example 2
[0051] This example demonstrates the use of the methods of the present invention in a program for marker-assisted selection of soybeans for Low Linolenic Acid.
[0052] Soybean is the most valuable legume crop, with many nutritional and industrial uses due to its unique chemical composition. Soybean seeds are an important source of vegetable oil, which is used in food products throughout the world. The relatively high level (usually about 8%) of linolenic acid (18:3) in soybean oil reduces its stability and flavor. Hydrogenation of soybean oil is used to lower the level of linolenic acid (18:3) and improve both stability and flavor of soybean oils. However, hydrogenation results in the production of trans fatty acids, which increases the risk for coronary heart disease when consumed. The development of low linolenic acid soybean has been complicated by the quantitative nature of the trait. The low linolenic acid soybean varieties that have been developed have been found to yield poorly, limiting their usefulness in most commercial settings. Developing a product with commercially significance seed yield is a high priority in most soybean cultivar development programs.
[0053] An example of the application of the methods of the present invention is selection of soybean plants with both high yield and decreased linolenic acid content. Soybean progeny performance as it relates to low linolenic acid relies mainly on two major quantitative trait locus (QTL) at Fad3-lb and Fad3-lc. Analysis of segregating plants demonstrated that FadS-lb and Fad3-lc additively control linolenic content in soybean. Therefore, by using a combination of markers for Fad3-lb and Fad3-lc, a breeder using the invention can accurately predict linolenic acid content in soybean plants. The markers can be used to infer the genotypic state of a seed at any stage in the breeding process, for example, at the finished inbred line stage, or the F1, F2, F3, etc.
[0054] A seminal F1 hybrid can be produced by crossing two inbred soybean lines (for example, crossing a plant containing the Fad3-lb and/or Fad3-lc alleles associated with decreased linolenic acid content to a plant lacking these alleles) followed by natural self-pollination. Since the markers can be used to infer the genotypic state of a single seed obtained from an inteπnating of such inbred lines, early generation (i.e., F2) marker-assisted breeding can be conducted.
[0055] Soybean seed at ambient temperature and humidity typically equilibrate to 8% moisture on a dry weight basis. Soybean seed at this level of moisture tends to split when sampled. To reduce splitting, seed should be humidified to moisture level of 12%. When pretreated in this manner, splitting is significantly reduced to <5%.
[0056] The selected F2 seed that have the desired genotype may be bulked or kept separate depending on the breeding objectives. If multiple QTL with varying effects were being selected from a given population, the breeder could preserve single seed identity to differentiate individuals with various combinations of the target resistance QTL. These seeds could be planted in the field with appropriate field identification. Several methods of preserving single seed identity can be used while transferring seed from the sampling lab to the field. Methods include transferring selected individuals to horticultural seed tape that could also include radio frequency identification to aid in the identification of the individual genotyped seed. Other methods would be to use an indexing tray, plant seeds in peat pots and then transplant them, or hand plant from individual seed packets. Example 3
[0057] This example demonstrates the use of the methods of the present invention in a program for recurrent parent alleles in a backcross breeding program.
[0058] The methods of the present invention can be used for selection of transgenes as well as identification of recurrent parent alleles. The identification of genotypes with desired recurrent parent allele frequencies before planting allows the number of rows per population to be reduced throughout the entire breeding program along with an increase in the number of populations included in the conversion program within a given field unit. This results in improved land usage, reduced land and labor costs, etc.
[0059] An example of analyzing endosperm tissue from corn for recurrent parent alleles in a backcross breeding program is shown in FIG. 1.
Example 4 [0060] This example demonstrates the use of the methods of the present invention for use in DNA line fingerprinting and linkage phase determination.
[0061] Combined with bulking of a single seed's DNA, line fingerprinting could be accomplished without the need to sample the line in the field.
[0062] By using seed endosperm tissue (seed coat in soybean) derived from a diploid plant, the parental marker haplotypes can be determined using a genotyping system that enables detection of different allele frequencies in DNA samples. Since endosperm tissue is triploid, with two copies derived from the female gamete, the linkage phase of the parental line can be derived by dissecting heterozygous progeny genotypes. The DNA sample from endosperm tissue allows for a determination of the ploidy level of the genetic marker. A diploid ploidy level in the genetic marker indicates maternal inheritance and a haploid ploidy level in the genetic marker indicates paternal inheritance. Example 5
[0063] This example demonstrates the methods of the present invention for evaluating transgenic seed for segregation distortion. Seeds of an Fl cross between Line A (Homozygous Event 1 and Event 2) and Line B (Homozygous Event 1) were induced in a maternal haploid induction isolation. The resulting kernels were selected using plumule color to obtain a population of putative haploid seed.
[0064] Individual putative haploid kernels from the population of putative haploid seed were selected and non-destructively sampled using an automated seed sampler system as generally described in U.S. Patent Application Serial No. 11/213,435 (Publication No. US 2006/004624), which is hereby incorporated by reference in its entirety. Markers were applied to the samples to determine the presence of the Event 2 gene and the Event 1 gene. The sampling process clips off some pericarp and endosperm tissue and uses this as the base for analysis. It is important to note that endosperm tissue is triploid and contains genetic contribution from both parents. If the gene of interest is detected using this method, it accurately predicts the presence of the desired gene in the haploid embryo. For the purposes of this study, samples from 180 kernels were analyzed and data were obtained on 175 due to sampling issues.
[0065] As shown in Table 3 below, each of the seed samples tested positive for the Event 1 gene as expected and approximately 50% of the seed samples tested positive for the Event 2 gene, confirming no segregation distortion.
TABLE 3
Figure imgf000027_0001
[0066] Results of this study indicate that individual gene traits can be selected on a haploid basis using high throughput, nondestructive seed sampling as a screening mechanism.
Example 6
[0067] This example demonstrates the utility of automated, high- throughput sampling in the preselection of haploid seed from a population of seeds.
[0068] The experiment comprised sampling 20 F2 populations using a nondestructive, high throughput seed sampling system and analyzing the samples to verify the pre-selection of haploid seed. Each population of F2 seed was nondestructively sampled or the F2 plants were tissue sampled for DNA analysis.
The nondestructive seed samples were collected from individual seeds in the population of seeds using an automated seed sampler system as generally described in U.S. Patent Application Serial No. 11/213,435 (Publication No. US 2006/004624), which is hereby incorporated by reference in its entirety. Selection of desirable genotypes was based on selecting materials with the greatest allelic frequencies of the desired haplotypes based on modeling parameters. The selected F2 plants were pollinated with haploid inducing male pollinators and the resulting seed is harvested. Following harvest, haploid kernels were sorted out from the non-haploid seed and the haploids were sampled on a kernel basis using nondestructive, high throughput sampling and subsequent genotyping. The preferred haploid seed was selected and subjected to a chromosome doubling procedure to produce doubled haploids. This approach allows non-preferred genotypes to be culled before doubling and increases the frequency of preferred material that is processed through the resource intensive doubling process.
[0069] Results comparing the selected haploid seed and illustrating the efficacy of this approach are shown in FIG. 2.
[0070] When introducing elements or features of embodiments herein, the articles "a", "an", "the" and "said" are intended to mean that there are one or more of such elements or features. The terms "comprising", "including" and "having" are intended to be inclusive and mean that there may be additional elements or features other than those specifically noted. It is further to be understood that the method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
[0071] The description of the disclosure is merely exemplary in nature and, thus, variations that do not depart from the gist of the disclosure are intended to be within the scope of the disclosure. Such variations are not to be regarded as a departure from the spirit and scope of the disclosure.

Claims

What is claimed is:
1. A high-throughput, non-destructive method for analyzing individual seeds in a population of seeds, the method comprising: removing a sample from a plurality of seeds in the population while preserving the germination viability of the seed; and analyzing the sample for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait.
2. The method according to claim 1, wherein the sample is analyzed for one or more characteristics indicative of at least one chemical trait.
3. The method according to claim 2, wherein the sample is analyzed for one or more characteristics selected from the group consisting of proteins, oils, carbohydrates, fatty acids, amino acids, biopolymers, pharmaceuticals, starch, fermentable starch, secondary compounds, and metabolites.
4. The method according to claim 1 wherein the sample is analyzed for one or more characteristics indicative of at least one genetic trait.
5. The method according to claim 4 wherein the sample is analyzed for one or more characteristics selected from the group consisting of a genetic marker, a single nucleotide polymorphism, a simple sequence repeat, a restriction fragment length polymorphism, a haplotype, a tag SNP, an alleles of a genetic marker, a gene, a DNA- derived sequence, an RNA-derived sequence, a promoter, a 5' untranslated region of a gene, a 3' untranslated region of a gene, microRNA, siRNA, a QTL, a satellite marker, a transgene, mRNA, ds mRNA, a transcriptional profile, and a methylation pattern.
6. The method according to claim 1, wherein the method further comprises selecting one or more individual seeds from the population of seeds based on the presence of one or more characteristics that are genetically linked with a QTL selected from the group consisting of herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, increased nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, other agronomic traits, traits for industrial uses, traits for improved consumer appeal, and a combination of traits as a multiple trait index.
7. The method according to claim 1, wherein the method further comprises selecting one or more individual seeds from the population of seeds based on the presence of one or more characteristics that are genetically linked with a haplotype associated with a QTL selected from the group consisting of herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, increased nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, other agronomic traits, traits for industrial uses, traits for improved consumer appeal, and a combination of traits as a multiple trait index.
8. The method according to claim 1, wherein the method further comprises selecting one or more individual seeds from the population of seeds based on the presence of one or more characteristics that indicate association with a recurrent parent to facilitate selection for marker-assisted backcrossing.
9. The method according to claim 1, wherein the method further comprises selecting one or more individual seeds from the population of seeds based on the presence of one or more characteristics that are associated with one or more transgenes.
10. The method according to claim 1, wherein the method further comprises: quantifying one or more characteristics from a plurality of samples; and comparing the quantified characteristics to the characteristics of two or more known germplasm pools to identify frequency shifts.
11. The method of claim 10, wherein the two or more germplasm pools represent a crop selected from the group consisting of a forage crop, oilseed crop, grain crop, fruit crop, ornamental plants, vegetable crop, fiber crop, spice crop, nut crop, turf crop, sugar crop, beverage crop, tuber crop, root crop, and forest crop.
12. The method according to claim 1, wherein the method comprises removing a sample from the endosperm tissue of the seed while preserving the germination viability of the seed.
13. The method according to claim 12, wherein the method further comprises: analyzing the sample for one or more alleles; and determining the ploidy level of at least one locus.
14. The method according to claim 13, wherein the ploidy level is determined by analyzing the sample for an allele derived from the maternal parent of the seed.
15. The method according to claim 13, wherein the ploidy level is determined by analyzing the sample for an allele derived from the paternal parent of the seed.
16. The method according to claim 1, wherein the method further comprises selecting one or more individual seeds from the population of seeds based on the results of the analysis; and cultivating plants or plant tissue from the selected seeds.
17. The method according to claim 16, wherein the method further comprises coating the selected seeds with a polymer and/or a fungicide after sampling to further preserve germination viability.
18. The method according to claim 16, wherein the method further comprises determining the genotypic character of the seed's offspring prior to selecting seeds from the population.
19. The method according to claim 16, wherein the method further comprises using fertile plants cultivated from the selected seed as either a female or male parent in a cross with another plant.
20. The method according to claim 1, wherein the method further comprises pre-sorting the population of seeds based on the presence or absence of a physical or morphological trait.
21. The method according to claim 1, wherein the population of seeds comprises seeds selected from the group consisting of alfalfa seed, apple seed, banana seed, barley seed, bean seed, broccoli seed, castorbean seed, citrus seed, clover seed, coconut seed, coffee seed, maize seed, cotton seed, cucumber seed, Douglas fir seed, Eucalyptus seed, Loblolly pine seed, linseed seed, melon seed, oat seed, olive seed, palm seed, pea seed, peanut seed, pepper seed, poplar seed, Radiata pine seed, rapeseed seed, rice seed, rye seed, sorghum seed, Southern pine seed, soybean seed, strawberry seed, sugarbeet seed, sugarcane seed, sunflower seed, sweetgum seed, tea seed, tobacco seed, tomato seed, turf seed, wheat seed, and Arabidopsis thaliana seed.
22. A high-throughput method for analyzing a population of haploid seed, the method comprising: providing a population of seeds comprising haploid seeds; removing a sample from a plurality of the seeds in the population while preserving the germination viability of the seed; and analyzing the sample for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait.
23. The method according to claim 22, wherein the method further comprises determining the genotypic character of the selected seed.
24. The method according to claim 22, wherein the method further comprises: selecting one or more individual seeds exhibiting at least one preferred characteristic from the population of seeds; and producing doubled haploid seed from the selected seeds.
25. The method according to claim 24, wherein the at least one preferred characteristic is a phenotypic characteristic.
26. The method according to claim 22, wherein the sample is analyzed for one or more characteristics selected from the group consisting of a genetic marker, a single nucleotide polymorphism, a simple sequence repeat, a restriction fragment length polymorphism, a haplotype, a tag SNP, an alleles of a genetic marker, a gene, a DNA-derived sequence, an RNA-derived sequence, a promoter, a 5' untranslated region of a gene, a 3' untranslated region of a gene, microRNA, siRNA, a QTL, a satellite marker, a transgene, mRNA, ds mRNA, a transcriptional profile, and a methylation pattern.
27. The method according to claim 22, wherein the method further comprises selecting one or more individual seeds from the population of seeds based on the presence of one or more characteristics associated with one or more transgenes.
28. The method according to claim 22, wherein the method further comprises selecting one or more individual seeds exhibiting one or more undesirable genetic characteristic from the population of seeds and discarding the selected seeds.
29. A high-throughput method for bulking a population of doubled haploid seeds, the method comprising: providing a population of seeds comprising haploid seeds; selecting one or more individual seeds exhibiting at least one preferred characteristic from the population of seeds; producing doubled haploid seeds from the selected seeds; removing a sample from each doubled haploid seed while preserving the germination viability of the seeds; analyzing the samples for the presence or absence of one or more characteristics indicative of at least one genetic or chemical trait; selecting one or more individual doubled haploid seeds based on the results of the analysis; and cultivating plants or plant tissue from the selected doubled haploid seeds.
30. The method according to claim 29, wherein the samples are analyzed for one or more characteristics selected from the group consisting of a genetic marker, a single nucleotide polymorphism, a simple sequence repeat, a restriction fragment length polymorphism, a haplotype, a tag SNP, an alleles of a genetic marker, a gene, a DNA-derived sequence, an RNA-derived sequence, a promoter, a 5' untranslated region of a gene, a 3' untranslated region of a gene, microRNA, siRNA, a QTL, a satellite marker, a transgene, mRNA, ds mRNA, a transcriptional profile, and a methylation pattern.
31. The method according to claim 29, wherein the method further comprises selecting one or more individual doubled haploid seeds based on the presence of one or more characteristics associated with one or more transgenes.
32. The method according to claim 29, wherein the method further comprises analyzing the samples for the presence of inducer DNA and discarding doubled haploid seeds exhibiting the presence of inducer DNA prior to selecting doubled haploid seeds for cultivating plants or plant tissue.
PCT/US2007/063176 2006-03-02 2007-03-02 Methods of seed breeding using high throughput nondestructive seed sampling WO2007103786A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2644700A CA2644700C (en) 2006-03-02 2007-03-02 Methods of seed breeding using high throughput nondestructive seed sampling
BRPI0708486-2A BRPI0708486B1 (en) 2006-03-02 2007-03-02 HIGH-YEARTH METHODS FOR THE ANALYSIS OF A HAPLOID SEED POPULATION AND TO GROW A DOUBLE-HAPLOID SEED POPULATION
MX2008011282A MX2008011282A (en) 2006-03-02 2007-03-02 Methods of seed breeding using high throughput nondestructive seed sampling.
UAA200811730A UA100968C2 (en) 2006-03-02 2007-03-02 Method for seed production through the use of high throughput, nondestructive sampling of seeds
EP07757794A EP1993348A2 (en) 2006-03-02 2007-03-02 Methods of seed breeding using high throughput nondestructive seed sampling
ZA2008/08304A ZA200808304B (en) 2006-03-02 2008-09-29 Methods of seed breeding using high throughput nondestructive seed sampling

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US77882806P 2006-03-02 2006-03-02
US60/778,828 2006-03-02
US11/680,611 2007-02-28
US11/680,611 US7703238B2 (en) 2004-08-26 2007-02-28 Methods of seed breeding using high throughput nondestructive seed sampling

Publications (2)

Publication Number Publication Date
WO2007103786A2 true WO2007103786A2 (en) 2007-09-13
WO2007103786A3 WO2007103786A3 (en) 2007-11-08

Family

ID=38372356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/063176 WO2007103786A2 (en) 2006-03-02 2007-03-02 Methods of seed breeding using high throughput nondestructive seed sampling

Country Status (9)

Country Link
US (7) US7703238B2 (en)
EP (1) EP1993348A2 (en)
AR (1) AR059718A1 (en)
BR (1) BRPI0708486B1 (en)
CA (1) CA2644700C (en)
MX (1) MX2008011282A (en)
RU (1) RU2008139096A (en)
WO (1) WO2007103786A2 (en)
ZA (1) ZA200808304B (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008154472A2 (en) * 2007-06-08 2008-12-18 Monsanto Technology Llc Methods for sequence-directed molecular breeding
WO2009032724A3 (en) * 2007-08-29 2009-05-28 Monsanto Technology Llc Methods for incorporating multiple genes in a crop plant
US7915006B2 (en) 2006-11-13 2011-03-29 Pioneer Hi-Bred International, Inc. Methodologies, processes and automated devices for the orientation, sampling and collection of seed tissues from individual seed
US8221968B2 (en) 2007-12-17 2012-07-17 Pioneer Hi-Bred International, Inc. Apparatus, method and system for creating, handling, collecting and indexing seed and seed portions from plant seed
US8240084B2 (en) 2007-09-26 2012-08-14 Pioneer Hi-Bred International, Inc. Apparatus and method to package articles for storage and identification
US8273944B2 (en) 2007-08-29 2012-09-25 Monsanto Technology Llc Methods and compositions for gray leaf spot resistance in corn
WO2012143696A1 (en) * 2011-04-19 2012-10-26 Bioproperties Pte. Ltd Obtaining plants of atypical ploidy or zygosity
US8329426B2 (en) 2008-10-01 2012-12-11 Pioneer Hi-Bred International, Inc. High throughput method for measuring total fermentables in small amount of plant part
US8519297B2 (en) 2008-08-22 2013-08-27 Pioneer Hi-Bred International, Inc. Apparatus for removal of specific seed tissue or structure for seed analysis
US8523092B2 (en) 2009-09-14 2013-09-03 Pioneer Hi-Bred International, Inc. System and method for creating a test sample from individual seeds or tissue structures
CN103340145A (en) * 2013-07-15 2013-10-09 中国农业大学 Method for performing one-step system formation by corn haploid breeding
US8568821B2 (en) 2008-04-08 2013-10-29 Pioneer Hi Bred International Inc Apparatus and method for coating ears of corn
US8579118B2 (en) 2009-02-18 2013-11-12 Pioneer Hi-Bred International, Inc. Method for preparing ears of corn for automated handling, positioning and orienting
US8609179B2 (en) 2008-08-22 2013-12-17 Pioneer Hi-Bred International, Inc. High throughput automated apparatus, method and system for coating ears of corn
US8662425B2 (en) 2009-03-20 2014-03-04 Pioneer Hi Bred International Inc High-throughput, seed sampling and collection system and method
WO2014071271A1 (en) * 2012-11-05 2014-05-08 Pioneer Hi-Bred International, Inc. Embryo sampling for molecular analysis
US8833565B2 (en) 2010-06-08 2014-09-16 Pioneer Hi-Bred International, Inc. Apparatus and method for seed selection
US8863436B2 (en) 2009-12-31 2014-10-21 Pioneer Hi Bred International Inc Automated seed sampling apparatus, method and system
WO2014195199A1 (en) * 2013-06-03 2014-12-11 Syngenta Participations Ag Non-disruptive dna isolation from corn seeds
WO2016032589A1 (en) * 2014-08-29 2016-03-03 Pioneer Hi Bred International Inc Systems and methods for genotyping plant material
EP3089580A4 (en) * 2013-12-31 2017-09-20 Dow AgroSciences LLC Selection based on optimal haploid value to create elite lines
CN107710949A (en) * 2017-09-08 2018-02-23 无为县西华毛峰生态茶业有限公司 Maofeng tea tree seedling culture method
CN108004344A (en) * 2017-12-20 2018-05-08 中国农业科学院作物科学研究所 A kind of corn whole genome SNP chip and its application
US10280472B2 (en) 2014-08-29 2019-05-07 Pioneer Hi-Bred International, Inc. Systems and methods for genotyping seed components
US10278345B2 (en) 2014-08-29 2019-05-07 Pioneer Hi-Bred International, Inc. Methods and devices for creating doubled haploid embryos using oil matrices
US10477859B2 (en) 2014-08-29 2019-11-19 Pioneer Hi-Bred International, Inc. Plant embryo storage and manipulation
CN110959901A (en) * 2018-09-26 2020-04-07 浙江中烟工业有限责任公司 Cigarette adopting tobacco-flavored cut tobacco functional incense raw material composition and being non-combustible by heating

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706989B2 (en) 2001-02-02 2004-03-16 Pioneer Hi-Bred International, Inc. Automated high-throughput seed sample processing system and method
WO2005031367A2 (en) * 2003-09-23 2005-04-07 Monsanto Technology Llc High throughput automated seed analysis system
US7685768B2 (en) * 2004-08-26 2010-03-30 Monsanto Technology Llc Automated testing of seeds
US7832143B2 (en) 2004-08-26 2010-11-16 Monsanto Technology Llc High throughput methods for sampling seeds
US7703238B2 (en) * 2004-08-26 2010-04-27 Monsanto Technology Llc Methods of seed breeding using high throughput nondestructive seed sampling
US7591101B2 (en) * 2004-08-26 2009-09-22 Monsanto Technology Llc Automated seed sampler and methods of sampling, testing and bulking seeds
CA2620075C (en) 2005-08-26 2015-03-17 Monsanto Technology Llc High throughput screening of fatty acid composition
US7998669B2 (en) * 2006-03-02 2011-08-16 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
US8028469B2 (en) 2006-03-02 2011-10-04 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
CN102156059A (en) * 2006-11-13 2011-08-17 先锋高级育种国际公司 Clip based sampling of seed for the removal of specific seed tissue or structures for seed analysis
AU2008228065A1 (en) * 2007-03-19 2008-09-25 Sumatra Bioscience Pte. Ltd. Methods of producing haploid and doubled haploid oil palms
US8452445B2 (en) 2007-04-24 2013-05-28 Pioneer Hi-Bred International, Inc. Method and computer program product for distinguishing and sorting seeds containing a genetic element of interest
US8459463B2 (en) 2007-04-24 2013-06-11 Pioneer Hi-Bred International, Inc. Method for sorting resistant seed from a mixture with susceptible seed
BRPI0810540A2 (en) * 2007-04-24 2017-01-31 Pioneer Hi Bred Int method and software for distinguishing seed containing a genetic element of interest from a bulk sample
US20110079544A1 (en) * 2009-10-01 2011-04-07 Pioneer Hi-Bred International, Inc. Method for sorting resistant seed from a mixture with susceptible seed
US8189901B2 (en) 2007-05-31 2012-05-29 Monsanto Technology Llc Seed sorter
WO2010042096A2 (en) * 2007-09-19 2010-04-15 Monsanto Technology Llc Systems and methods for analyzing agricultural products
US20110214196A1 (en) * 2008-06-20 2011-09-01 University Of Georgia Research Foundation Development of herbicide-resistant grass species
US8033426B2 (en) * 2008-06-26 2011-10-11 Pioneer Hi-Bred International, Inc. Apparatus, method and system for reconfiguring items
CA2732684A1 (en) * 2008-08-22 2010-02-25 Pioneer Hi-Bred International, Inc. Method and system for data driven management of individual seeds
US7997415B2 (en) * 2008-08-22 2011-08-16 Pioneer Hi-Bred International, Inc. Apparatus, method and system for creating, collecting and indexing seed portions from individual seed
IT1391460B1 (en) * 2008-10-27 2011-12-23 Univ Degli Studi Trieste METHOD FOR DISCRIMINATION BETWEEN COFFEA ARABICA AND COFFEA CANEPHORA SPECIES BASED ON POLYMORPHISMS OF NUCLEAR AND CHLOROPLASTIC DNA
US9842252B2 (en) * 2009-05-29 2017-12-12 Monsanto Technology Llc Systems and methods for use in characterizing agricultural products
JP2011080384A (en) * 2009-10-05 2011-04-21 Otics Corp Vehicle engine
MX2013000790A (en) 2010-07-20 2013-03-20 Monsanto Technology Llc Automated systems for removing tissue samples from seeds, and related methods.
US20120080590A1 (en) * 2010-10-04 2012-04-05 Syngenta Participations Ag Methods of determining plant zygosity using mass spectrometry
US10351917B2 (en) 2011-08-31 2019-07-16 Monsanto Technology Llc Molecular markers associated with soybean tolerance to low iron growth conditions
US9481889B2 (en) 2012-03-19 2016-11-01 The Malasian Palm Oil Board Gene controlling shell phenotype in palm
CN102653790A (en) * 2012-03-31 2012-09-05 中国农业科学院果树研究所 Improved TP-M13-SSR molecular arking method of apple germplasm resource
EP2671948A1 (en) * 2012-06-07 2013-12-11 Rijk Zwaan Zaadteelt en Zaadhandel B.V. Method for analysing maternal dna in large plant populations
US10059999B2 (en) 2013-06-10 2018-08-28 Monsanto Technology Llc Molecular markers associated with soybean tolerance to low iron growth conditions
US9681615B2 (en) 2013-06-20 2017-06-20 Elwha Llc Rapid breeding of plants
US20160319300A1 (en) * 2013-12-20 2016-11-03 ISI Sementi s.p.a. Isolated nucleotide sequence from solanum lycopersicum for improved resistance to tomato spotted wilt virus, tswv.
SG11201609025TA (en) 2014-05-02 2016-11-29 Malaysian Palm Oil Board Mantle phenotype detection in palm
WO2016044050A1 (en) * 2014-09-16 2016-03-24 Monsanto Technology Llc Improved methods of plant breeding using high-throughput seed sorting
US10472684B2 (en) 2015-04-28 2019-11-12 Monsanto Technology Llc Methods and compositions for producing brachytic corn plants
WO2016200825A1 (en) 2015-06-08 2016-12-15 Monsanto Technology Llc High throughput cassette filler
CN106706820B (en) * 2015-11-13 2018-05-25 中国科学院大连化学物理研究所 A kind of bearing calibration of general extensive metabolism group data
MX2018011964A (en) 2016-03-31 2019-02-13 Basf Se Non-destructive seed genotyping.
CN106605593B (en) * 2016-12-21 2019-01-15 陕西省杂交油菜研究中心 A kind of selection of the disease-resistant rape germplasm of floorboard with high oil content
US11698345B2 (en) 2017-06-21 2023-07-11 Monsanto Technology Llc Automated systems for removing tissue samples from seeds, and related methods
CN107267661B (en) * 2017-08-21 2020-10-09 黑龙江大学 SSR molecular marker for detecting fertility of beet stamens and application thereof
CN108157044A (en) * 2017-12-29 2018-06-15 永仁太谷农业发展有限公司 A kind of olive green wood cutting method for culturing seedlings
US11377662B2 (en) 2018-01-10 2022-07-05 Wisconsin Alumni Research Foundation Agrobacterium-mediated and particle bombardment transformation method for cowpea and dry bean meristem explants
CA3094992A1 (en) * 2018-03-30 2019-10-03 Pioneer Hi-Bred International, Inc. Methods to evaluate traits
CN108668890B (en) * 2018-04-08 2021-06-08 河南农业大学 Method for improving correct recognition rate of corn haploid
MX2020011296A (en) 2018-04-27 2020-11-18 Monsanto Technology Llc Methods for genotyping haploid embryos.
CN109122297A (en) * 2018-09-28 2019-01-04 安徽省农业科学院烟草研究所 A kind of high-quality suitable production resistance to bacterial wilt new product of tobacco selection
CN109105170B (en) * 2018-10-08 2021-08-17 四川农业大学 Method for improving planting success rate of perennial forage maize
CN109105169B (en) * 2018-10-08 2021-08-13 四川农业大学 Method for expanding propagation of perennial forage maize by using stem nodes for autumn sowing and spring planting
CN110972594A (en) * 2019-12-09 2020-04-10 神华宝日希勒能源有限公司 Method for improving associated clay in strip mine mining
CN111699782B (en) * 2020-06-10 2022-02-18 广东省农业科学院农业生物基因研究中心 Method for rapidly judging whether rice seeds are qualified or not by using regression equation of galactose content and germination rate
CN111485032B (en) * 2020-06-12 2021-06-22 北京市农林科学院 Method for identifying cucumber female line and SNP primer combination used by same
EP4426842A1 (en) 2021-11-01 2024-09-11 Flagship Pioneering Innovations VII, LLC Polynucleotides for modifying organisms
MX2024009021A (en) 2022-01-20 2024-08-06 Flagship Pioneering Innovations Vii Llc Polynucleotides for modifying organisms.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1151988A (en) * 1967-03-03 1969-05-14 Laukien Guenther Plant Seed Testing and Sorting
GB1471076A (en) * 1974-08-27 1977-04-21 Sensors Inc Method for determining the viability of seeds prior to their germination
WO1998014046A1 (en) * 1996-10-04 1998-04-09 D.J. Van Der Have B.V. Method and apparatus for the quality assessment of seed
WO2001089288A1 (en) * 2000-05-25 2001-11-29 Lestander Torbjoern Single seed sortation
US20020144458A1 (en) * 2001-02-02 2002-10-10 Hunter James L. Automated high-throughput seed sample processing system and method
WO2006026466A2 (en) * 2004-08-26 2006-03-09 Monsanto Technology Llc Automated seed sampler and methods of sampling, testing and bulking seeds
WO2006026467A2 (en) * 2004-08-26 2006-03-09 Monsanto Technology Llc Automated testing of seeds

Family Cites Families (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2756903A (en) 1952-06-03 1956-07-31 Kreidler Alfred Device for extracting articles from a container
US3350372A (en) 1960-08-22 1967-10-31 Gulf Oil Corp Ethylene/acrylate ester copolymers
GB1268679A (en) 1969-07-25 1972-03-29 Golden Wonder Ltd Weighing apparatus
GB1355612A (en) 1972-02-26 1974-06-05 Adria Ltd Weight grading apparatus for knitted articles
US4040747A (en) 1972-08-24 1977-08-09 Neotec Corporation Optical analyzer for agricultural products
US4037970A (en) 1972-08-24 1977-07-26 Neotec Corporation Optical analyzer for agricultural products
US3861788A (en) 1972-08-24 1975-01-21 Neotec Corp Optical analyzer for agricultural products
US3852914A (en) 1972-09-01 1974-12-10 Sensors Inc Method for determining the viability of seeds prior to germination
GB1408458A (en) 1972-12-07 1975-10-01 Pauls Sandars Ltd Method and apparatus for treating grain
SU536785A1 (en) 1975-07-17 1976-11-30 Всесоюзный Научно-Исследовательский Институт Зернового Хозяйства Device for sampling plant matter from the roll
US4278183A (en) 1978-05-04 1981-07-14 National Research Development Corporation Dispensing apparatus and method
US4260262A (en) 1978-11-28 1981-04-07 Neotec Corporation Grain quality analyzer
US4305130A (en) 1979-05-29 1981-12-08 University Of Rhode Island Apparatus and method to enable a robot with vision to acquire, orient and transport workpieces
US4375854A (en) 1981-03-31 1983-03-08 Rca Corporation Stone sorting apparatus and method
US4818380A (en) 1982-03-13 1989-04-04 Ishida Scales Mfg. Co., Ltd. Method and apparatus for sorting articles
US4931061A (en) 1982-11-26 1990-06-05 Union Oil Company Of California Plant seed compositions
US4480765A (en) 1982-12-13 1984-11-06 Tonus Egidio L Needle seeder
CA1236700A (en) 1983-04-26 1988-05-17 Samuel E. Sherba Haploid and doubled haploid angiosperms
FR2549963B1 (en) 1983-07-29 1986-01-24 Claeys Luck RADIOLOGICAL METHOD AND APPARATUS FOR EXPLORING SEEDS WITH RADIOOPAQUE SUBSTANCE
US5221518A (en) 1984-12-14 1993-06-22 Mills Randell L DNA sequencing apparatus
US4654592A (en) 1985-01-14 1987-03-31 Varian Associates, Inc. Concurrent NMR analysis of multiple samples
JPS6311841A (en) 1986-03-20 1988-01-19 Satake Eng Co Ltd Device for evaluation of rice quality
US4696308A (en) 1986-04-09 1987-09-29 The Cleveland Clinic Foundation Core sampling apparatus
US4827776A (en) 1986-08-08 1989-05-09 Gale Jody A Hay sampling device
US4734584A (en) 1986-09-16 1988-03-29 Trebor Industries, Inc. Quantitative near-infrared measurement instrument for multiple measurements in both reflectance and transmission modes
IL82037A0 (en) 1987-03-29 1987-10-20 Kalman Peleg Method and apparatus for automatically inspecting and classifying different objects
US4946046A (en) 1988-05-09 1990-08-07 Sheldon Affleck Apparatus for sorting seeds according to color
US5416011A (en) 1988-07-22 1995-05-16 Monsanto Company Method for soybean transformation and regeneration
CA1341467C (en) 1988-07-29 2004-12-07 John C. Rogers Producing commercially valuable polypeptides with genetically transformed endosperm tissue
US5245188A (en) 1988-08-11 1993-09-14 Satake Engineering Co., Ltd. Apparatus for evaluating the grade of rice grains
US5051699A (en) 1988-08-31 1991-09-24 Kabushiki Kaisha Toshiba Magnetic resonance imaging system
US5253302A (en) 1989-02-28 1993-10-12 Robert Massen Method and arrangement for automatic optical classification of plants
SU1658858A1 (en) 1989-07-03 1991-06-30 Харьковский Институт Механизации И Электрификации Сельского Хозяйства Device for estimating seed viability
US5494655A (en) 1990-03-09 1996-02-27 The Regents Of The University Of California Methods for detecting blood perfusion variations by magnetic resonance imaging
RU1805835C (en) 1991-04-09 1993-03-30 Павел Петрович Демкин Method of evaluating seed material for homogeneity and heterogeneity
SE468334B (en) 1991-04-23 1992-12-14 Peter Perten SETTING AND DEVICE FOR INFRASTRUCTURE ANALYSIS, SPECIFICALLY REGARDING FOOD
US5132538A (en) 1991-05-24 1992-07-21 Nirsystems Incorporated Measuring percentage of protein in whole grain samples
US5764819A (en) 1991-10-18 1998-06-09 Dekalb Genetics Corporation Methods for classifying plants for evaluation and breeding programs by use of remote sensing and image analysis technology
US5437697A (en) 1992-07-07 1995-08-01 E. I. Du Pont De Nemours And Company Method to identify genetic markers that are linked to agronomically important genes
US5746023A (en) 1992-07-07 1998-05-05 E. I. Du Pont De Nemours And Company Method to identify genetic markers that are linked to agronomically important genes
GB2273154B (en) 1992-12-02 1996-12-11 Buehler Ag Method for cleaning and sorting bulk material
EP0604875B1 (en) 1992-12-31 1999-04-21 Zellweger Uster, Inc. Continious two dimensional monitoring of thin webs of textile materials
US5412220A (en) 1993-03-05 1995-05-02 United Industrial Products, Ltd. Optical scanning device for lumber
JP3334003B2 (en) 1993-04-01 2002-10-15 タキイ種苗株式会社 Seed sorting equipment
GB9313975D0 (en) 1993-07-06 1993-08-18 Sandoz Ltd Improvements in or relating to organic compounds
JPH0833871A (en) 1994-02-01 1996-02-06 Binder & Co Ag Method and device of waste sorting
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US5475221A (en) 1994-05-11 1995-12-12 Brimrose Corporation Of America Optical spectrometer using light emitting diode array
JP3275280B2 (en) 1994-10-07 2002-04-15 株式会社サタケ Raw material supply device for granular material color sorter
DK171153B1 (en) 1995-02-10 1996-07-01 Slagteriernes Forskningsinst Process and plant by mixing a non-uniform, flowable food, feed or pharmaceutical material and sampling device
DK171927B1 (en) 1995-02-10 1997-08-11 Slagteriernes Forskningsinst Method and apparatus for determining the particle size of a food or feed material
JPH08240651A (en) 1995-03-02 1996-09-17 Norin Suisansyo Nogyo Kenkyu Center Shocho Apparatus and method for nuclear magnetic resonance imaging
KR0159656B1 (en) 1995-05-18 1999-01-15 배순훈 Reverser for use in an automatic tray changer
US5864984A (en) 1995-06-19 1999-02-02 Paradigm Research Corporation System and method for measuring seedlot vigor
ES2174075T3 (en) 1995-06-21 2002-11-01 Martek Biosciences Corp COMBINATORY LIBRARIES OF BIOCHEMICAL COMPOUNDS MARKED AND METHODS TO PRODUCE THE SAME.
JP3505566B2 (en) 1995-06-23 2004-03-08 独立行政法人農業・生物系特定産業技術研究機構 Physiological condition analyzer and method
USH1919H (en) 1995-12-01 2000-11-07 E. I. Du Pont De Nemours And Company Agricultural product microscreen method and apparatus
US5668374A (en) 1996-05-07 1997-09-16 Core Laboratories N.V. Method for stabilizing near-infrared models and determining their applicability
AUPO223196A0 (en) 1996-09-11 1996-10-03 Williames Hi-Tech International Pty Ltd Improved nursery trays and handling mechanisms therefor
US6100526A (en) 1996-12-30 2000-08-08 Dsquared Development, Inc. Grain quality monitor
US5991025A (en) 1997-02-27 1999-11-23 Pioneer Hi-Bred International, Inc. Near infrared spectrometer used in combination with an agricultural implement for real time grain and forage analysis
US5751421A (en) 1997-02-27 1998-05-12 Pioneer Hi-Bred International, Inc. Near infrared spectrometer used in combination with a combine for real time grain analysis
AU6882298A (en) 1997-04-03 1998-10-22 Dekalb Genetics Corporation Glyphosate resistant maize lines
JP3086868B2 (en) 1997-05-16 2000-09-11 農林水産省農業研究センター所長 Growth condition analysis apparatus and method
DE19845883B4 (en) 1997-10-15 2007-06-06 LemnaTec GmbH Labor für elektronische und maschinelle Naturanalytik Method for determining the phytotoxicity of a test substance
JP3339390B2 (en) 1997-11-12 2002-10-28 株式会社村田製作所 Electronic component transfer device
RU2126618C1 (en) 1997-12-23 1999-02-27 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Presowing seed selection method
EP1054973A1 (en) 1998-02-11 2000-11-29 Maxygen, Inc. Antigen library immunization
US5914451A (en) 1998-04-06 1999-06-22 Monsanto Company Efficiency soybean transformation protocol
US6307123B1 (en) 1998-05-18 2001-10-23 Dekalb Genetics Corporation Methods and compositions for transgene identification
JP2000055910A (en) 1998-08-07 2000-02-25 Horiba Ltd Soil constituent automatic analysis device
EP1141346A2 (en) 1999-01-14 2001-10-10 Monsanto Co. Soybean transformation method
US6313328B1 (en) 1999-02-11 2001-11-06 Cargill, Incorporated Extraction of corn oil from flaked corn grain
NL1011537C2 (en) 1999-03-11 2000-09-12 Tno Method for determining properties of plant seeds.
AU5043000A (en) 1999-05-24 2000-12-12 Iowa State University Research Foundation Inc. Near infrared spectroscopy system and method for the identification of genetically modified grain
US6266864B1 (en) 1999-08-26 2001-07-31 Ethicon, Inc. Method for fabricating a needle assembly
JP2005055175A (en) 1999-09-07 2005-03-03 National Agriculture & Bio-Oriented Research Organization Specimen preparation method and device
ATE285067T1 (en) 1999-09-10 2005-01-15 Scanvaegt Int As SORTING DEVICE
DE10048643A1 (en) 1999-09-22 2001-05-31 Biopsytec Gmbh Automatic sampling unit for filling microtitration plates with plant matter, comprises a stripper designed for virtually friction-free motion along a cutting stamp axis
US6809819B1 (en) 1999-09-27 2004-10-26 Monsanto Technology Llc Methods for determining oil in seeds
US20010024796A1 (en) 1999-12-17 2001-09-27 Selifonov Sergey A. Methods for parallel detection of compositions having desired characteristics
KR100414641B1 (en) 2000-04-07 2004-01-13 동부한농화학 주식회사 In vivo monitoring method of transgenic plants and system using the same
US6705827B2 (en) 2000-08-25 2004-03-16 Aagrinomics, Llc Robotic seed-handling apparatus and methods
DE20022666U1 (en) 2000-09-22 2002-01-03 Biopsytec GmbH, 10435 Berlin Device for automated sampling and filling of microtiter plates with plant material
US6646264B1 (en) 2000-10-30 2003-11-11 Monsanto Technology Llc Methods and devices for analyzing agricultural products
US7367155B2 (en) 2000-12-20 2008-05-06 Monsanto Technology Llc Apparatus and methods for analyzing and improving agricultural products
US8321135B2 (en) 2001-02-16 2012-11-27 The Curators Of The University Of Missouri Method and apparatus for predicting soybean seed resistance based on near-infrared spectroscopy
US6397678B1 (en) 2001-05-04 2002-06-04 Shay Popper Method and apparatus for measuring objects, particularly useful for measuring diamonds
JP2002346483A (en) 2001-05-29 2002-12-03 Shizuoka Seiki Co Ltd Grain component analyzer
SE0102395D0 (en) 2001-07-04 2001-07-04 Bomill Ab A new method
CN2510248Y (en) 2001-11-18 2002-09-11 华中科技大学 Micro-assembling robot suitable for operating submillimeter-level micro-object
US7123750B2 (en) 2002-01-29 2006-10-17 Pioneer Hi-Bred International, Inc. Automated plant analysis method, apparatus, and system using imaging technologies
SE527394C2 (en) 2002-03-15 2006-02-28 Renholmens Mek Verkst Ab Board users and method of using boards
US20040091888A1 (en) 2002-03-20 2004-05-13 Takeshi Nishio Method for identification of S genotype in brassicaceae
CA2480937C (en) 2002-04-04 2012-10-02 Monsanto Technology Llc Automated picking, weighing and sorting system for particulate matter
CN102936536B (en) 2002-04-29 2014-01-29 陶氏环球技术有限责任公司 Intergrated chemical processe for industrial utilization of seed oils
BRPI0311283B1 (en) 2002-05-24 2017-03-21 Monsanto Technology Llc seed ginning system and process for arranging seed cores for analysis
US6879389B2 (en) 2002-06-03 2005-04-12 Innoventor Engineering, Inc. Methods and systems for small parts inspection
JP4079216B2 (en) 2002-08-05 2008-04-23 独立行政法人農業・食品産業技術総合研究機構 Material retention, analysis, sorting equipment, methods and sorts
MXPA05001829A (en) 2002-08-12 2005-05-27 Monsanto Technology Llc Methods for increasing total oil levels in plants.
US7403855B2 (en) 2002-12-19 2008-07-22 Pioneer Hi-Bred International, Inc. Method and apparatus for tracking individual plants while growing and/or after harvest
US20040133944A1 (en) 2003-01-08 2004-07-08 Delta And Pine Land Company Seed oil suppression to enhance yield of commercially important macromolecules
US20040141641A1 (en) 2003-01-21 2004-07-22 Mcdonald Miller Baird Seed image analyzer
JP4381122B2 (en) 2003-02-14 2009-12-09 晶宇生物科技實業股▲分▼有限公司 Micro-array biochip reflective image access and analysis device with sidewall and method thereof
RU2229210C1 (en) 2003-03-25 2004-05-27 Орловский государственный аграрный университет Grain heap sampler
JP2004357608A (en) 2003-06-05 2004-12-24 Satoru Imura Modified unpolished rice and method for producing the same
WO2005000471A1 (en) 2003-06-16 2005-01-06 Monsanto Technology Llc Method and apparatus for preparation of genetically transformable plant tissue
WO2005031367A2 (en) 2003-09-23 2005-04-07 Monsanto Technology Llc High throughput automated seed analysis system
US20050097021A1 (en) 2003-11-03 2005-05-05 Martin Behr Object analysis apparatus
US20060004624A1 (en) 2004-06-30 2006-01-05 Melara German O Forecast and replenishment analytics
US7832143B2 (en) 2004-08-26 2010-11-16 Monsanto Technology Llc High throughput methods for sampling seeds
US7703238B2 (en) 2004-08-26 2010-04-27 Monsanto Technology Llc Methods of seed breeding using high throughput nondestructive seed sampling
RU2267766C1 (en) 2004-09-23 2006-01-10 Дмитрий Васильевич Громыко Device for sampling loose materials
DE102004063769A1 (en) 2004-12-30 2006-07-13 Perner, Petra, Dr.-Ing. Method for automatically and quantitatively determining the amount of seed or grain of required quality comprises recording the seed and grain using an imaging device and further processing
CA2620075C (en) 2005-08-26 2015-03-17 Monsanto Technology Llc High throughput screening of fatty acid composition
US8028469B2 (en) 2006-03-02 2011-10-04 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
US7998669B2 (en) 2006-03-02 2011-08-16 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
EP2005193A1 (en) 2006-04-06 2008-12-24 Monsanto Technology, LLC Method of predicting a trait of interest
US20070240242A1 (en) 2006-04-06 2007-10-11 Monsanto Technology Llc Method for multivariate analysis in predicting a trait of interest
CN101505883B (en) 2006-06-28 2014-03-12 孟山都技术有限公司 Small object sorting system and method
US7735626B2 (en) 2006-11-13 2010-06-15 Pioneer Hi-Bred International, Inc. Apparatus, method and system for handling, positioning, and/or automatically orienting objects
CN102156059A (en) 2006-11-13 2011-08-17 先锋高级育种国际公司 Clip based sampling of seed for the removal of specific seed tissue or structures for seed analysis
US7915006B2 (en) 2006-11-13 2011-03-29 Pioneer Hi-Bred International, Inc. Methodologies, processes and automated devices for the orientation, sampling and collection of seed tissues from individual seed
WO2008103609A1 (en) 2007-02-23 2008-08-28 Monsanto Technology Llc Agricultural sample grinder
BRPI0810540A2 (en) 2007-04-24 2017-01-31 Pioneer Hi Bred Int method and software for distinguishing seed containing a genetic element of interest from a bulk sample
US8189901B2 (en) 2007-05-31 2012-05-29 Monsanto Technology Llc Seed sorter
MX341500B (en) 2007-08-29 2016-08-22 Monsanto Technology Llc Systems and methods for processing hybrid seed.
CA2735045A1 (en) 2008-08-22 2010-02-25 Pioneer Hi-Bred International, Inc. Apparatus for removal of specific seed tissue or structure for seed analysis
MX2013000790A (en) * 2010-07-20 2013-03-20 Monsanto Technology Llc Automated systems for removing tissue samples from seeds, and related methods.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1151988A (en) * 1967-03-03 1969-05-14 Laukien Guenther Plant Seed Testing and Sorting
GB1471076A (en) * 1974-08-27 1977-04-21 Sensors Inc Method for determining the viability of seeds prior to their germination
WO1998014046A1 (en) * 1996-10-04 1998-04-09 D.J. Van Der Have B.V. Method and apparatus for the quality assessment of seed
WO2001089288A1 (en) * 2000-05-25 2001-11-29 Lestander Torbjoern Single seed sortation
US20020144458A1 (en) * 2001-02-02 2002-10-10 Hunter James L. Automated high-throughput seed sample processing system and method
WO2006026466A2 (en) * 2004-08-26 2006-03-09 Monsanto Technology Llc Automated seed sampler and methods of sampling, testing and bulking seeds
WO2006026467A2 (en) * 2004-08-26 2006-03-09 Monsanto Technology Llc Automated testing of seeds

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
GILLASPIE A G JR ET AL: "Sensitive method for testing peanut seed lots for Peanut stripe and Peanut mottle viruses by immunocapture-reverse transcription-polymerase chain reaction" PLANT DISEASE, vol. 84, no. 5, May 2000 (2000-05), pages 559-561, XP002448174 ISSN: 0191-2917 *
KOTYK JOHN J ET AL: "High-throughput determination of oil content in corn kernels using nuclear magnetic resonance imaging" JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 82, no. 12, December 2005 (2005-12), pages 855-862, XP008082811 ISSN: 0003-021X *
KRAMER K J ET AL: "Transgenic avidin maize is resistant to storage insect pests" NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US, vol. 18, no. 6, June 2000 (2000-06), pages 670-674, XP002193699 ISSN: 1087-0156 *
KRYSAN PATRICK: "Ice-cap. A high-throughput method for capturing plant tissue samples for genotype analysis" PLANT PHYSIOLOGY (ROCKVILLE), vol. 135, no. 3, July 2004 (2004-07), pages 1162-1169, XP002448176 ISSN: 0032-0889 *
MORRISON R H: "Sampling in seed health testing" PHYTOPATHOLOGY, vol. 89, no. 11, November 1999 (1999-11), pages 1084-1087, XP002448175 ISSN: 0031-949X *
SMITH J S C ET AL: "Genetic purity and testing technologies for seed quality: A company perspective" SEED SCIENCE RESEARCH, vol. 8, no. 2, June 1998 (1998-06), pages 285-293, XP008082810 ISSN: 0960-2585 *
VON POST REBECKA ET AL: "A high-throughput DNA extraction method for barley seed." EUPHYTICA, vol. 130, no. 2, 2003, pages 255-260, XP002448173 ISSN: 0014-2336 *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915006B2 (en) 2006-11-13 2011-03-29 Pioneer Hi-Bred International, Inc. Methodologies, processes and automated devices for the orientation, sampling and collection of seed tissues from individual seed
EP2511381A1 (en) * 2007-06-08 2012-10-17 Monsanto Technology LLC Methods for sequence-directed molecular breeding
US10550424B2 (en) 2007-06-08 2020-02-04 Monsanto Technology Llc Methods for sequence-directed molecular breeding
WO2008154472A3 (en) * 2007-06-08 2009-08-27 Monsanto Technology Llc Methods for sequence-directed molecular breeding
US10544448B2 (en) 2007-06-08 2020-01-28 Monsanto Technology Llc Methods for sequence-directed molecular breeding
US10544471B2 (en) 2007-06-08 2020-01-28 Monsanto Technology Llc Methods for sequence-directed molecular breeding
WO2008154472A2 (en) * 2007-06-08 2008-12-18 Monsanto Technology Llc Methods for sequence-directed molecular breeding
EP2511381B1 (en) 2007-06-08 2017-01-25 Monsanto Technology LLC Methods for sequence-directed molecular breeding
US10323255B2 (en) 2007-08-29 2019-06-18 Monsanto Technology Llc Methods and compositions for gray leaf spot resistance in corn
US8766035B2 (en) 2007-08-29 2014-07-01 Monsanto Technology Llc Methods and compositions for Goss' wilt resistance in corn
US10844399B2 (en) 2007-08-29 2020-11-24 Monsanto Technology Llc Methods and compositions for Goss' Wilt resistance in corn
US10760095B2 (en) 2007-08-29 2020-09-01 Monsanto Technology Llc Methods and compositions for gray leaf spot resistance in corn
WO2009032724A3 (en) * 2007-08-29 2009-05-28 Monsanto Technology Llc Methods for incorporating multiple genes in a crop plant
US8273944B2 (en) 2007-08-29 2012-09-25 Monsanto Technology Llc Methods and compositions for gray leaf spot resistance in corn
US10301644B2 (en) 2007-08-29 2019-05-28 Monsanto Technology Llc Methods and compositions for Goss' Wilt resistance in corn
US9862966B2 (en) 2007-08-29 2018-01-09 Monsanto Technology Llc Methods and compositions for gray leaf spot resistance in corn
US9828610B2 (en) 2007-08-29 2017-11-28 Monsanto Technology Llc Methods and compositions for Goss' Wilt resistance in corn
US9119365B2 (en) 2007-08-29 2015-09-01 Monsanto Technology Llc Methods and compositions for Goss' Wilt resistance in corn
US9095113B2 (en) 2007-08-29 2015-08-04 Monsanto Technology Llc Methods and compositions for gray leaf spot resistance in corn
US8779232B2 (en) 2007-08-29 2014-07-15 Monsanto Technology Llc Methods and compositions for gray leaf spot resistance in corn
US8240084B2 (en) 2007-09-26 2012-08-14 Pioneer Hi-Bred International, Inc. Apparatus and method to package articles for storage and identification
US8221968B2 (en) 2007-12-17 2012-07-17 Pioneer Hi-Bred International, Inc. Apparatus, method and system for creating, handling, collecting and indexing seed and seed portions from plant seed
US8286387B2 (en) 2007-12-17 2012-10-16 Pioneer Hi-Bred International, Inc. Apparatus, method and system for creating, handling, collecting and indexing seed and seed portions from plant seed
US8568821B2 (en) 2008-04-08 2013-10-29 Pioneer Hi Bred International Inc Apparatus and method for coating ears of corn
US8519297B2 (en) 2008-08-22 2013-08-27 Pioneer Hi-Bred International, Inc. Apparatus for removal of specific seed tissue or structure for seed analysis
US8609179B2 (en) 2008-08-22 2013-12-17 Pioneer Hi-Bred International, Inc. High throughput automated apparatus, method and system for coating ears of corn
US8535877B2 (en) 2008-08-22 2013-09-17 Pioneer Hi-Bred International, Inc. Methods for removal of specific seed tissue or structure for seed analysis
US8907245B2 (en) 2008-08-22 2014-12-09 Pioneer Hi Bred International Inc Apparatus for removal of specific seed tissue or structure for seed analysis
US8329426B2 (en) 2008-10-01 2012-12-11 Pioneer Hi-Bred International, Inc. High throughput method for measuring total fermentables in small amount of plant part
US8579118B2 (en) 2009-02-18 2013-11-12 Pioneer Hi-Bred International, Inc. Method for preparing ears of corn for automated handling, positioning and orienting
US8662425B2 (en) 2009-03-20 2014-03-04 Pioneer Hi Bred International Inc High-throughput, seed sampling and collection system and method
US8523092B2 (en) 2009-09-14 2013-09-03 Pioneer Hi-Bred International, Inc. System and method for creating a test sample from individual seeds or tissue structures
US8863436B2 (en) 2009-12-31 2014-10-21 Pioneer Hi Bred International Inc Automated seed sampling apparatus, method and system
US8833565B2 (en) 2010-06-08 2014-09-16 Pioneer Hi-Bred International, Inc. Apparatus and method for seed selection
WO2012143696A1 (en) * 2011-04-19 2012-10-26 Bioproperties Pte. Ltd Obtaining plants of atypical ploidy or zygosity
WO2014071271A1 (en) * 2012-11-05 2014-05-08 Pioneer Hi-Bred International, Inc. Embryo sampling for molecular analysis
EP2914093B1 (en) 2012-11-05 2020-05-13 Pioneer Hi-Bred International, Inc. Embryo sampling for molecular analysis
US10011828B2 (en) 2013-06-03 2018-07-03 Syngenta Participations Ag Non-disruptive DNA isolation from corn seeds
WO2014195199A1 (en) * 2013-06-03 2014-12-11 Syngenta Participations Ag Non-disruptive dna isolation from corn seeds
CN103340145A (en) * 2013-07-15 2013-10-09 中国农业大学 Method for performing one-step system formation by corn haploid breeding
CN103340145B (en) * 2013-07-15 2015-12-09 中国农业大学 A kind of method utilizing Haploid Breeding of Maize to carry out a step one-tenth system
US11744199B2 (en) 2013-12-31 2023-09-05 Corteva Agriscience Llc Selection based on optimal haploid value to create elite lines
EP3089580A4 (en) * 2013-12-31 2017-09-20 Dow AgroSciences LLC Selection based on optimal haploid value to create elite lines
AU2017279665B2 (en) * 2013-12-31 2020-02-27 Corteva Agriscience Llc Selection based on optimal haploid value to create elite lines
WO2016032589A1 (en) * 2014-08-29 2016-03-03 Pioneer Hi Bred International Inc Systems and methods for genotyping plant material
US10477859B2 (en) 2014-08-29 2019-11-19 Pioneer Hi-Bred International, Inc. Plant embryo storage and manipulation
US10278345B2 (en) 2014-08-29 2019-05-07 Pioneer Hi-Bred International, Inc. Methods and devices for creating doubled haploid embryos using oil matrices
US10280472B2 (en) 2014-08-29 2019-05-07 Pioneer Hi-Bred International, Inc. Systems and methods for genotyping seed components
US11111548B2 (en) 2014-08-29 2021-09-07 Pioneer Hi-Bred International, Inc. Systems and methods for genotyping seed components
CN107710949A (en) * 2017-09-08 2018-02-23 无为县西华毛峰生态茶业有限公司 Maofeng tea tree seedling culture method
CN108004344B (en) * 2017-12-20 2020-11-03 中国农业科学院作物科学研究所 Corn whole genome SNP chip and application thereof
CN108004344A (en) * 2017-12-20 2018-05-08 中国农业科学院作物科学研究所 A kind of corn whole genome SNP chip and its application
CN110959901A (en) * 2018-09-26 2020-04-07 浙江中烟工业有限责任公司 Cigarette adopting tobacco-flavored cut tobacco functional incense raw material composition and being non-combustible by heating

Also Published As

Publication number Publication date
CA2644700C (en) 2018-06-19
CA2644700A1 (en) 2007-09-13
ZA200808304B (en) 2012-03-28
EP1993348A2 (en) 2008-11-26
US20180271042A1 (en) 2018-09-27
BRPI0708486A2 (en) 2011-05-31
US20100263087A1 (en) 2010-10-14
US20150164011A1 (en) 2015-06-18
US7941969B2 (en) 2011-05-17
US7703238B2 (en) 2010-04-27
US11006593B2 (en) 2021-05-18
US20210259176A1 (en) 2021-08-26
US8959833B2 (en) 2015-02-24
US20110217700A1 (en) 2011-09-08
MX2008011282A (en) 2008-11-14
WO2007103786A3 (en) 2007-11-08
US20130167257A1 (en) 2013-06-27
BRPI0708486B1 (en) 2023-05-16
AR059718A1 (en) 2008-04-23
US8312672B2 (en) 2012-11-20
RU2008139096A (en) 2010-04-10
US20070204366A1 (en) 2007-08-30
US9986699B2 (en) 2018-06-05

Similar Documents

Publication Publication Date Title
US20210259176A1 (en) Methods of Seed Breeding Using High Throughput Nondestructive Seed Sampling
US7832143B2 (en) High throughput methods for sampling seeds
US20200333365A1 (en) Automated Systems For Removing Tissue Samples From Seeds, And Related Methods
CA3024820C (en) Methods and compositions for breeding for preferred traits associated with goss&#39; wilt resistance in plants
US20100037342A1 (en) Methods and compositions for breeding plants with enhanced yield
US11219174B2 (en) Methods for producing corn plants with northern leaf blight resistance and compositions thereof
BR112018000541B1 (en) METHODS FOR SELECTING A POPULATION OF STAYGREEN COTTON (STG) PLANTS OR SEEDS, FOR SELECTING A COTTON PLANT OR SEED, AND FOR EVALUATING A COTTON GERMPLASM COLLECTION
CN101448391A (en) Methods of seed breeding using high throughput nondestructive seed sampling
BR122017014316B1 (en) HIGH-YEARTH METHODS FOR THE ANALYSIS OF A HAPLOID SEED POPULATION AND TO GROW A DOUBLE-HAPLOID SEED POPULATION

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780015254.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2644700

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/011282

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7604/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007757794

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008139096

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A200811730

Country of ref document: UA

ENP Entry into the national phase

Ref document number: PI0708486

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080902