JP2000055910A - Soil constituent automatic analysis device - Google Patents

Soil constituent automatic analysis device

Info

Publication number
JP2000055910A
JP2000055910A JP10224895A JP22489598A JP2000055910A JP 2000055910 A JP2000055910 A JP 2000055910A JP 10224895 A JP10224895 A JP 10224895A JP 22489598 A JP22489598 A JP 22489598A JP 2000055910 A JP2000055910 A JP 2000055910A
Authority
JP
Japan
Prior art keywords
measuring
electrode
soil
ion
pretreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10224895A
Other languages
Japanese (ja)
Inventor
Yoshikazu Iwamoto
恵和 岩本
Susumu Yamauchi
進 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP10224895A priority Critical patent/JP2000055910A/en
Publication of JP2000055910A publication Critical patent/JP2000055910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To compose a device compactly and inexpensively by simplifying a mechanism for pretreatment when automatically analyzing the pH, each kind of ion, and conductivity of soil constituents. SOLUTION: An automatic analysis device is provided with a pallet 11 for accommodating a plurality of gathered soil samples, an ionization constituent extraction means I for extracting the ionization constituent of each soil sample, a pretreatment means M for pretreatment for measuring the pH of each soil sample, a measurement means S with a plurality of electrodes for measuring the pH, conductivity, and at least two types of ionization constituents of each soil sample, and a carrying device 6 for moving the pallet 11 at least along the X and Y axes and for carrying it to the positions of the ionization constituent extraction means I, the pretreatment means M, and the measurement means S, the sensor part of a plurality of electrodes for measuring the ionization constituents can be attached or detached, and the arbitrary ion seed of multiple constituents can be selected and analyzed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、土壌成分のpH,
各種イオンおよび導電率を自動で分析する土壌成分自動
分析装置に関する。
[0001] The present invention relates to a method for measuring the pH,
The present invention relates to an automatic soil component analyzer for automatically analyzing various ions and conductivity.

【0002】[0002]

【従来の技術】従来、土壌成分のpH,各種イオンおよ
び導電率を自動分析する場合、FIA(Flow Injection
Analysis)法により行われているのが一般的であり、こ
のFIA法は、採取された土壌サンプルをチューブで取
り出し、分析計で分析するが、このチューブが細管のた
め、前処理として、処理剤を入れフィルタを通して圧力
を一定にする必要がある。
2. Description of the Related Art Conventionally, in the case of automatically analyzing the pH, various ions and conductivity of a soil component, FIA (Flow Injection) has been used.
The FIA method is generally performed by taking out a collected soil sample in a tube and analyzing it with an analyzer. It is necessary to keep the pressure constant through the filter.

【0003】[0003]

【発明が解決しようとする課題】従来の前記FIA法の
場合、土壌成分のpH,各種イオンおよび導電率を自動
分析する際の前処理を行う装置の機構が複雑でかつ大型
であり、コストも高くなるという問題がある。
In the case of the above-mentioned conventional FIA method, the mechanism of an apparatus for performing a pretreatment for automatically analyzing the pH, various ions and conductivity of soil components is complicated and large, and the cost is low. There is a problem of becoming high.

【0004】本発明は、前記の事柄に留意してなされた
もので、その目的は、土壌成分のpH,各種イオンおよ
び導電率を自動分析する際の前処理を行う装置の機構を
簡素化し、小型でかつ安価な土壌成分自動分析装置を提
供することである。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned problems, and an object of the present invention is to simplify a mechanism of a device for performing a pretreatment when automatically analyzing the pH, various ions, and conductivity of soil components, An object of the present invention is to provide a small and inexpensive automatic soil component analyzer.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明の土壌成分自動分析装置は、複数個の土壌サ
ンプルを収納したパレットと、前記各土壌サンプルのイ
オン化成分を抽出するイオン化成分抽出手段と、前記各
土壌サンプルのpHを測定するための前処理を行う前処
理手段と、前記各土壌サンプルのpH,導電率,および
2種類以上のイオン化成分を測定する複数本の電極を有
する測定手段と、前記パレットを少なくともX軸,Y軸
に沿って移動し、前記イオン化成分抽出手段,前記前処
理手段,前記測定手段の位置に搬送する搬送装置とを備
え、イオン化成分を測定する複数本の電極のセンサ部を
着脱可能とし、多成分の任意のイオン種を選択して分析
するようにしたものである。
In order to achieve the above object, an automatic soil component analyzer according to the present invention comprises a pallet containing a plurality of soil samples, and an ionizing component for extracting the ionized components of each of the soil samples. An extraction means, a pretreatment means for performing a pretreatment for measuring the pH of each of the soil samples, and a plurality of electrodes for measuring the pH, conductivity, and two or more types of ionized components of each of the soil samples. A plurality of measuring means, and a transport device for moving the pallet along at least the X-axis and the Y-axis, and transporting the ionized component to the positions of the ionized component extracting means, the pre-processing means, and the measuring means; The sensor section of the electrode is detachable, and an arbitrary multi-component ion species is selected for analysis.

【0006】したがって、例えば圃場領域内の複数個の
採取位置から採取した土壌サンプルをパレットに収納
し、このパレットを搬送装置に固定し、搬送装置により
パレットを移動し、イオン化成分抽出手段によりイオン
化成分を抽出し、前処理手段により各土壌サンプルのp
Hを測定するための前処理を行い、測定手段の電極によ
り各土壌サンプルのpH,導電率を測定するとともに、
イオン化成分を測定する電極のセンサ部を、任意のイオ
ン種に応じて交換し、多成分の任意のイオン種を選択し
て分析するようにしたため、従来に比して、土壌成分の
pH,各種イオンおよび導電率を自動分析する際の前処
理を行う装置の機構が簡素化され、小型かつ安価に構成
することができる。
Therefore, for example, soil samples collected from a plurality of collection positions in a field area are stored in a pallet, the pallet is fixed to a transport device, the pallet is moved by the transport device, and the ionized component extracting means is used. Is extracted, and p of each soil sample is extracted by pretreatment means.
Perform pretreatment for measuring H, measure the pH and conductivity of each soil sample using the electrodes of the measuring means,
The electrode sensor for measuring ionized components was exchanged according to the desired ion species, and any multi-component ion species was selected for analysis. The mechanism of the apparatus for performing pre-processing when automatically analyzing ions and conductivity is simplified, and the apparatus can be made small and inexpensive.

【0007】[0007]

【発明の実施の形態】実施の1形態につき、図1ないし
図5を参照して説明する。それらの図において、1は測
定対象である圃場領域、2は圃場領域1内の定められた
複数個の採取位置であり、採取位置2の土壌サンプルを
採取する採取機3には、GPS(Global Positioning Sy
stem) 用の通信衛星4から送信されてくるGPSデータ
を受信するGPS受信機が備えられており、図1に示す
ように、採取機3の位置を正確に検出して採取位置2の
土壌サンプルを採取する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment will be described with reference to FIGS. In these figures, reference numeral 1 denotes a field region to be measured, 2 denotes a plurality of predetermined collection positions in the field region 1, and a sampling machine 3 for collecting a soil sample at the collection position 2 has a GPS (Global). Positioning Sy
A GPS receiver for receiving GPS data transmitted from a communication satellite 4 is provided. As shown in FIG. 1, the position of the sampling machine 3 is accurately detected and the soil sample at the sampling position 2 is provided. Collect.

【0008】5はテーブル、6はテーブル5に設けられ
た搬送装置であり、X軸方向搬送台7とY軸方向搬送台
8とから構成され、両搬送台7,8にはそれぞれベルト
コンベア9,10が設けられ、X軸方向搬送台7のベル
トコンベア9にY軸方向搬送台8が固定されている。
Reference numeral 5 denotes a table, and reference numeral 6 denotes a transfer device provided on the table 5. The transfer device comprises an X-axis transfer table 7 and a Y-axis transfer table 8. Each of the transfer tables 7, 8 has a belt conveyor 9 respectively. , 10 are provided, and the Y-axis direction transfer table 8 is fixed to the belt conveyor 9 of the X-axis direction transfer table 7.

【0009】11はY軸方向搬送台8のベルトコンベア
10に固定された箱状のパレットであり、上面の一部お
よび下面が開口され、この上面開口部12に、複数個の
透孔13が形成された板体14が装着され、各透孔13
に、採取された複数個の土壌サンプルが収容された、例
えばポリエチレン製のカップ(以下単にポリカップとい
う)15が挿入され、透孔13の周縁にポリカップ15
の周面が当接し、ポリカップ15の上部が透孔13から
突出した状態で、ポリカップ15が支持されている。こ
のポリカップ15の容量は、例えば50ml、内径φ4
0mmである。前記上面開口部12の後方に、超音波洗
浄漕16,複数個の校正液17が左から順に設けられて
いる。そして、図外の駆動機構により両ベルトコンベア
9,10が駆動し、X軸方向搬送台7のベルトコンベア
9によりY軸方向搬送台8が左右方向に移動し、Y軸方
向搬送台8のベルトコンベア10によりパレット11が
前後方向に移動する。18はY軸方向搬送台8に設けら
れた上下動自在の重量計であり、Y軸方向搬送台8によ
り搬送されたパレット11の下方に位置し、重量計18
が上昇することにより、パレット11のポリカップ15
が重量計18の検知部19に載置されて上昇し、ポリカ
ップ15が透孔13から離脱して土壌サンプルが計量さ
れる。
Reference numeral 11 denotes a box-shaped pallet fixed to the belt conveyor 10 of the Y-axis direction transfer table 8. The pallet has a part of an upper surface and a lower surface opened. The formed plate 14 is attached, and each through-hole 13 is formed.
Into which a plurality of collected soil samples are stored, for example, a polyethylene cup (hereinafter simply referred to as a polycup) 15 is inserted.
, The upper surface of the polycup 15 protrudes from the through-hole 13 to support the polycup 15. The capacity of the polycup 15 is, for example, 50 ml and the inner diameter φ4.
0 mm. Behind the upper surface opening 12, an ultrasonic cleaning tank 16 and a plurality of calibration liquids 17 are provided in order from the left. Then, both belt conveyors 9 and 10 are driven by a driving mechanism (not shown), and the Y-axis direction transfer table 8 is moved in the left-right direction by the belt conveyor 9 of the X-axis direction transfer table 7, and the belt of the Y-axis direction transfer table 8 The pallet 11 is moved by the conveyor 10 in the front-back direction. Reference numeral 18 denotes a vertically movable weighing scale provided on the Y-axis direction transfer table 8, which is located below the pallet 11 transferred by the Y-axis direction transfer table 8.
Rises, the polycup 15 of the pallet 11
Is placed on the detection unit 19 of the weigh scale 18 and rises, the polycup 15 is separated from the through hole 13 and the soil sample is measured.

【0010】20はテーブル5の後部に取り付けられた
架台であり、架台20の左側に2個のポリタンク21が
載置され、一方のポリタンク21にイオン交換水が収容
され、他方のポリタンク21に各土壌サンプルのpH測
定のための前処理剤、例えばKClが収容されている。
22は両ポリタンク21の後方に設けられた計量用容器
であり、計量用容器22の上方に定注器23が設けら
れ、定注器23により計量用容器22に注入されたイオ
ン交換水あるいは前処理剤の液面を光センサ(図示せ
ず)が検知して一定の量にする。24は計量用容器22
に注入されたイオン交換水あるいは前処理剤を注入,排
出するための定注器23の切換バルブである。
Reference numeral 20 denotes a gantry attached to the rear of the table 5. Two polytanks 21 are placed on the left side of the gantry 20, one of which holds ion-exchanged water, and the other of which holds each polytank 21. A pretreatment agent for measuring the pH of the soil sample, for example, KCl, is contained.
Reference numeral 22 denotes a measuring container provided behind the two polytanks 21. A dispenser 23 is provided above the measuring container 22. The ion-exchanged water injected into the measuring container 22 by the dispenser 23 or The liquid level of the processing agent is detected by an optical sensor (not shown) to make the level constant. 24 is a measuring container 22
This is a switching valve of the dispenser 23 for injecting and discharging the ion-exchanged water or the pretreatment agent injected into the hopper.

【0011】25はホルダ上下動機構部であり、左右方
向に並設された複数個のホルダ26が上下動自在に設け
られ、各ホルダ26に、左から前処理剤用ノズル27,
イオン交換水用ノズル28,攪拌器29,導電率測定電
極30,例えば、NO3 イオンを測定する電極31,例
えば、K+ イオンを測定する電極32,pH測定用電極
33が把持され、各ホルダ26がY軸方向搬送台8によ
り搬送されたパレット11の上方に位置し、ホルダ26
が下降することにより、パレット11のポリカップ15
に前処理剤用ノズル27,イオン交換水用ノズル28,
攪拌器29,導電率測定電極30,イオン電極31,イ
オン電極32,pH測定用電極33の何れかがポリカッ
プ15に挿入される。なお、前処理剤用ノズル27,イ
オン交換水用ノズル28は定注器23に接続されてい
る。
Reference numeral 25 denotes a holder up / down moving mechanism, which is provided with a plurality of holders 26 arranged in a horizontal direction so as to be movable up and down.
A nozzle 28 for ion-exchanged water, a stirrer 29, a conductivity measurement electrode 30, for example, an electrode 31 for measuring NO 3 ions, for example, an electrode 32 for measuring K + ions, and an electrode 33 for pH measurement are gripped, and each holder is held. 26 is located above the pallet 11 transported by the Y-axis
Is lowered, the polycup 15 of the pallet 11
Pretreatment agent nozzle 27, ion-exchanged water nozzle 28,
One of the stirrer 29, the conductivity measurement electrode 30, the ion electrode 31, the ion electrode 32, and the pH measurement electrode 33 is inserted into the polycup 15. The pretreatment agent nozzle 27 and the ion-exchanged water nozzle 28 are connected to a dispenser 23.

【0012】そして、ポリタンク21,計量用容器2
2,定注器23,切換バルブ24,イオン交換水用ノズ
ル28および攪拌器29よりイオン化成分抽出手段Iが
構成され、ポリタンク21,計量用容器22,定注器2
3,切換バルブ24および前処理剤用ノズル27より前
処理手段Mが構成され、ホルダ上下動機構部25,ホル
ダ26,攪拌器29,導電率測定電極30,イオン電極
31,イオン電極32,pH測定用電極33より測定手
段Sが構成されている。
Then, the poly tank 21, the measuring container 2
2, an injecting device 23, a switching valve 24, an ion-exchanged water nozzle 28 and an agitator 29 constitute an ionized component extracting means I, a polytank 21, a measuring container 22, and an injecting device 2.
3, a pre-processing means M is constituted by the switching valve 24 and the pre-treatment agent nozzle 27, and the holder up-down movement mechanism 25, the holder 26, the stirrer 29, the conductivity measuring electrode 30, the ion electrode 31, the ion electrode 32, the pH Measuring means S is constituted by the measuring electrode 33.

【0013】34はテーブル5の後方に設置された置
台、35はパーソナルコンピュータ(以下パソコンとい
う)であり、置台34にパソコン本体36,キーボード
37が載置され、パソコン本体36の上面にディスプレ
イ38が載置されている。39はテーブル5の後部に載
置された計測盤であり、搬送装置6,重量計18,定注
器23,切換バルブ24およびホルダ上下動機構部25
等をコントロールするコントローラと,導電率計,各種
イオン計,pH計の各本体とが収納され、計測盤39と
パソコン35とを接続ケーブル40により接続してい
る。
Reference numeral 34 denotes a table placed behind the table 5, and 35 denotes a personal computer (hereinafter referred to as a personal computer). A personal computer 36 and a keyboard 37 are mounted on the table 34, and a display 38 is provided on the upper surface of the personal computer 36. It is placed. Reference numeral 39 denotes a measuring panel mounted on the rear part of the table 5, and includes a transport device 6, a weighing scale 18, a dispenser 23, a switching valve 24, and a holder vertical movement mechanism 25.
A controller for controlling the operation and the like and main bodies of a conductivity meter, various ion meters, and a pH meter are housed, and a measurement panel 39 and a personal computer 35 are connected by a connection cable 40.

【0014】つぎにイオン電極31,32の構成につい
て図5を参照して詳細に説明する。同図において、41
は筒状支持体で、2個の筒体42,43を超音波融着し
て一体化したもので、44は融着部分である。この筒状
支持体41の下部にはガラス電極48と比較電極63の
外部液絡部69(何れも後述する)をそれぞれ着脱自在
に装着するための凹部45, 46が形成してあり、これ
らの凹部45,46の上方には環状隔壁47が筒状支持
体41と同心的に、しかも、筒状支持体41との間に内
部液貯留部80(後述する)が形成されるように立設し
てある。
Next, the configuration of the ion electrodes 31 and 32 will be described in detail with reference to FIG. In the figure, 41
Is a cylindrical support, which is obtained by integrating two cylindrical bodies 42 and 43 by ultrasonic welding, and 44 is a fused part. In the lower portion of the cylindrical support 41, recesses 45 and 46 for detachably mounting the glass electrode 48 and the external liquid junction 69 (both of which will be described later) of the comparison electrode 63 are formed. Above the concave portions 45 and 46, an annular partition wall 47 is provided upright so as to be concentric with the cylindrical support 41 and between the cylindrical support 41 and an internal liquid storage portion 80 (described later). I have.

【0015】48はガラス電極(センサ部の一例)で、
例えばガラス応答膜49を下端部に備えると共に、ガラ
ス応答膜49部分を除く外周を樹脂ボディ50に覆われ
たガラス支持管51内に、AgClよりなる内部電極5
2と内部液としてのKCl溶液53とを封入して構成し
てあり、内部電極52を担持する銀線54は白金線55
を介して、樹脂ボディ50の上部に突設されたプラグ5
6に接続されている。そして、このように構成されたガ
ラス電極48が着脱自在とされており、このガラス電極
48を前記凹部45に装着したとき、プラグ56は凹部
45の上部に立設されたコネクタ57の下端側に形成さ
れたレセプタクル58と電気的に結合するようにしてあ
る。なお、59は凹部45の上部に立設される側壁であ
り、60〜62はシール部材である。
Reference numeral 48 denotes a glass electrode (an example of a sensor unit).
For example, a glass responsive film 49 is provided at the lower end, and an internal electrode 5 made of AgCl is placed in a glass support tube 51 whose outer periphery excluding the glass responsive film 49 is covered with a resin body 50.
2 and a KCl solution 53 as an internal solution are sealed, and a silver wire 54 carrying the internal electrode 52 is a platinum wire 55
Through a plug 5 projecting from the upper part of the resin body 50
6 is connected. The glass electrode 48 thus configured is detachable. When the glass electrode 48 is attached to the concave portion 45, the plug 56 is attached to the lower end of the connector 57 erected above the concave portion 45. It is designed to be electrically coupled to the formed receptacle 58. In addition, reference numeral 59 denotes a side wall provided upright on the concave portion 45, and reference numerals 60 to 62 denote sealing members.

【0016】63は比較電極で、この形態では所謂ダブ
ルジャンクションタイプに形成してある。すなわち、6
4は前記凹部46の上方において環状隔壁47よりも内
側に立設される側壁65と環状隔壁47との間に形成さ
れる内部空間で、その下端部には多孔性プラスチックよ
りなる内部液絡部66が設けられると共に、その内部に
はAgClよりなる内部電極67と内部液としてのKC
l溶液68とが収納され、更に、多孔性セラミックより
なる外部液絡部69が、ゴムパッキン70および樹脂7
1を介して凹部46に螺着されると共に、内部液絡部6
6の下方に形成され、環状隔壁47と筒状支持体41と
の間の内部液貯留部80(後述する)と連通した連通空
間72にKCl溶液68が満たされるようにして形成さ
れている。なお、73は内部電極67の上端側を突出さ
せた状態で、内部空間64の上方を閉鎖する密栓として
のゴムパッキンである。
Reference numeral 63 denotes a comparison electrode, which is formed in a so-called double junction type in this embodiment. That is, 6
Reference numeral 4 denotes an internal space formed between the annular partition wall 47 and the side wall 65 erected inside the annular partition 47 above the concave portion 46, and has an internal liquid junction made of porous plastic at the lower end thereof. And an internal electrode 67 made of AgCl and KC as an internal liquid.
1 solution 68 is housed therein, and an external liquid junction 69 made of porous ceramic is provided with a rubber packing 70 and a resin 7.
1 and the internal liquid junction 6
The KCl solution 68 is filled in a communication space 72 formed below the inner wall 6 and communicated with an internal liquid reservoir 80 (described later) between the annular partition 47 and the cylindrical support 41. Reference numeral 73 denotes a rubber packing as a hermetic plug that closes the upper part of the internal space 64 with the upper end of the internal electrode 67 protruding.

【0017】74はアース線75と接続された金属ケー
ス76内に収納された温度センサ、78,79は温度セ
ンサ74に接続された引出し線である。80は筒状支持
体41と環状隔壁47との間に形成される内部液貯留部
で、その下端側は連通空間72を介して内部液絡部66
および外部液絡部69と連通しており、その上端側は筒
状支持体41の上端部に形成された内部液導入部81と
通じている。そして、この内部液貯留部80内へのKC
l溶液68の供給は、KCl溶液タンクに接続されたチ
ューブ(図外)および内部液導入部81を介して行わ
れ、内部液貯留部80内に入ったKCl溶液68は連通
空間72を満たし、更に、内部液貯留部80におけるK
Cl溶液68の液面Eがケーブル接続部85(後述す
る)よりも高くなるように充填される。なお、図示例で
は、環状隔壁47の上端において筒状体82を超音波融
着することにより、内部液貯留部80を筒状支持体41
の上方にまで延設してあり、83は筒状体82と筒体4
2との間に介装されるシール部材である。
Reference numeral 74 denotes a temperature sensor housed in a metal case 76 connected to a ground wire 75, and reference numerals 78 and 79 denote lead wires connected to the temperature sensor 74. Reference numeral 80 denotes an internal liquid reservoir formed between the cylindrical support 41 and the annular partition 47, and the lower end thereof has an internal liquid junction 66 via a communication space 72.
The upper end side is in communication with the internal liquid inlet 81 formed at the upper end of the cylindrical support 41. Then, the KC into the internal liquid storage section 80 is
The supply of the 1 solution 68 is performed through a tube (not shown) connected to the KCl solution tank and the internal liquid introduction unit 81, and the KCl solution 68 entering the internal liquid storage unit 80 fills the communication space 72, Further, K in the internal liquid storage unit 80
The liquid surface E of the Cl solution 68 is filled so as to be higher than the cable connection portion 85 (described later). In the illustrated example, the cylindrical body 82 is ultrasonically fused at the upper end of the annular partition 47 so that the internal liquid storage section 80 is formed into the cylindrical support 41.
83, the cylindrical body 82 and the cylindrical body 4
2 is a seal member interposed therebetween.

【0018】84は前記ガラス電極48などからの信号
を図外の測定装置本体に向けて送出するための引出しケ
ーブルで、5本の芯線84a〜84eを備えており、芯
線84aはガラス電極48のコネクタ57の上端部と、
また、芯線84bは比較電極63の内部電極67の上端
部と、そして、芯線84c, 84dは温度センサ74の
引出し線78,79と、更に、芯線84eはアース線7
5とそれぞれ接続されている。そして、この形態では、
ケーブル接続部85が環状隔壁47内に位置するように
してある。 86は筒状支持体41の外部に凹設される
シール部材装着用溝である。
Reference numeral 84 denotes a lead-out cable for transmitting a signal from the glass electrode 48 or the like to a measuring apparatus main body (not shown), and has five core wires 84a to 84e. An upper end of the connector 57;
The core wire 84b is the upper end of the internal electrode 67 of the comparison electrode 63, the core wires 84c and 84d are the lead wires 78 and 79 of the temperature sensor 74, and the core wire 84e is the ground wire 7.
5 respectively. And in this form,
The cable connecting portion 85 is located in the annular partition wall 47. Reference numeral 86 denotes a groove for mounting a seal member which is recessed outside the cylindrical support 41.

【0019】そして、任意のイオン種、例えばK+ ,C
2+,Pb2+,Zn2+,Ag+ ,Cd2+,Cu2+,Zr
2+,NH4 + ,NO3 - ,Cl- ,Br- ,F-
- ,SO4 2- ,S2-,CN- ,SCN- ,NH3 等に
応じて、前記イオン電極のガラス電極48を交換するこ
とにより分析することができる。
Then, any ion species, for example, K + , C
a 2+ , Pb 2+ , Zn 2+ , Ag + , Cd 2+ , Cu 2+ , Zr
2+, NH 4 +, NO 3 -, Cl -, Br -, F -,
The analysis can be performed by replacing the glass electrode 48 of the ion electrode according to I , SO 4 2− , S 2− , CN , SCN , NH 3, and the like.

【0020】つぎに土壌成分を自動分析する工程につい
て図3および図4を参照して説明する。まず、採取機3
により圃場領域1内の定められた複数個の採取位置2の
土壌サンプルを、例えば20g程度採取し、採取した土
壌サンプルを各ポリカップ15に入れ、各ポリカップ1
5をパレット11の各透孔13に挿入し、Y軸方向搬送
台8にパレット11を固定し(S1 )、両搬送台7,8
のベルトコンベア9,10によりパレット11を左右方
向および前後方向に移動し(S2 )、重量計18の上方
に所望するポリカップ15を位置させるとともに、各ポ
リカップ15の土壌サンプルの情報、例えば場所,時間
をパソコン35に入力する(S3 )。
Next, the step of automatically analyzing the soil component will be described with reference to FIGS. First, sampling machine 3
For example, about 20 g of soil samples at a plurality of predetermined sampling positions 2 in the field area 1 are collected, and the collected soil samples are put into the respective polycups 15.
5 is inserted into each through hole 13 of the pallet 11 and the pallet 11 is fixed to the Y-axis direction transfer table 8 (S 1 ).
The pallet 11 is moved in the left-right direction and the front-back direction by the belt conveyors 9 and 10 (S 2 ), and the desired polycup 15 is positioned above the weighing scale 18. to enter the time to the PC 35 (S 3).

【0021】つぎに、重量計18を上昇させて検知部1
9にポリカップ15を載置し、土壌サンプルを計量する
(S4 )。
Next, the weighing scale 18 is raised and the detecting unit 1
The polycup 15 is placed on 9 and the soil sample is weighed (S 4 ).

【0022】そして、パレット11をホルダ上下動機構
部25の下方に位置させるとともに(S5 )、定注器2
3により一方のポリタンク21から計量用容器22に注
入し、計量用容器22に注入されたイオン交換水あるい
は前処理剤の液面を光センサ(図示せず)が検知し、イ
オン交換水および前処理剤の計量を行う(S6 )。つぎ
に、ホルダ上下動機構部25のイオン交換水用ノズル2
8を下降させて所望するポリカップ15に挿入し、切換
バルブ24を排出に切り換え、定注器23により所望す
るポリカップ15にイオン交換水を注入する(S7 )。
Then, the pallet 11 is positioned below the holder vertical movement mechanism 25 (S 5 ), and the dispenser 2
In step 3, an optical sensor (not shown) detects the level of the ion-exchanged water or the pretreatment agent injected from the one polytank 21 into the measuring container 22 and the ion-exchanged water or the pre-treatment agent. performs metering processing agent (S 6). Next, the nozzle 2 for ion-exchanged water of the holder vertical movement mechanism 25
8 is lowered and inserted into the desired plastic cup 15, switches the switching valve 24 to the exhaust and injects deionized water to the desired plastic cup 15 by syringe pump 23 (S 7).

【0023】そして、ホルダ上下動機構部25の攪拌器
29を下降させてイオン交換水が注入されたポリカップ
15の土壌サンプルを攪拌し、土壌サンプルの成分をイ
オン化する(S8 )。つぎにホルダ上下動機構部25の
導電率測定電極30を下降させてポリカップ15のイオ
ン交換水に浸漬し、計測盤39の導電率計により導電率
を測定し(S9 )、続いてホルダ上下動機構部25の,
例えばNO3 イオン電極31,K+ イオン電極32を下
降させてポリカップ15の溶液に浸漬し、NO 3 イオ
ン,K+ イオンの濃度を測定する(S10, (S11)。
なお、イオン交換水,攪拌,導電率測定,イオン濃度の
測定の際、パレット11は搬送装置6により適宜移動し
ている。
The stirrer of the holder vertical movement mechanism 25
Polycup with ion-exchanged water injected by lowering 29
Stir 15 soil samples and remove the components of the soil sample.
Turn on (S8). Next, the holder vertical movement mechanism 25
The conductivity measuring electrode 30 is lowered and the ion
Immersed in exchange water, and measured by the conductivity meter on the measuring panel 39.
Is measured (S9), And then, of the holder vertical movement mechanism 25,
For example, NOThreeIon electrode 31, K+Ion electrode 32 down
And immersed in the solution of the polycup 15, ThreeIo
N, K+Measure the ion concentration (STen),(S11).
In addition, ion exchange water, stirring, conductivity measurement, ion concentration
During the measurement, the pallet 11 is appropriately moved by the transport device 6.
ing.

【0024】つぎに、ホルダ上下動機構部25の前処理
剤用ノズル27を下降させて所望するポリカップ15に
挿入し、定注器23によりポリカップ15に前処理剤を
添加し(S12)、前記と同様に、攪拌器29により攪拌
し(S13)、pH測定用電極33を下降させてpHを測
定する(S14)。この場合も、前記と同様、前処理剤の
添加,pH測定の際、パレット11は搬送装置6により
適宜移動している。
Next, the pretreatment agent nozzle 27 of the holder vertical movement mechanism portion 25 is lowered and inserted into the desired plastic cup 15, the addition of pretreatment agent on the plastic cup 15 by syringe pump 23 (S 12), In the same manner as described above, the mixture is stirred by the stirrer 29 (S 13 ), and the pH measurement electrode 33 is lowered to measure the pH (S 14 ). Also in this case, similarly to the above, the pallet 11 is appropriately moved by the transport device 6 when the pretreatment agent is added and the pH is measured.

【0025】そして、測定されたイオン濃度,導電率,
pHはパソコン35に入力され、例えば大規模農場にお
ける土壌中の養分の分布マップを作成し、土壌養分の均
一化,部分的な土壌の養分補正に利用することができ
る。なお、ホルダ上下動機構部25の攪拌器29,導電
率測定電極30,イオン電極31,イオン電極32,p
H測定用電極33は、その都度搬送装置6が移動し、パ
レット11の超音波洗浄漕16において洗浄される。ま
た前記形態の場合、イオン電極のセンサ部にガラス電極
を用いたが、液膜電極,固体膜電極等を用いてもよい。
Then, the measured ion concentration, conductivity,
The pH is input to the personal computer 35, and for example, a distribution map of nutrients in the soil on a large-scale farm can be created and used for equalizing soil nutrients and partially correcting nutrients in soil. In addition, the stirrer 29 of the holder vertical movement mechanism 25, the conductivity measuring electrode 30, the ion electrode 31, the ion electrode 32, p
The H measuring electrode 33 is cleaned by the ultrasonic cleaning tank 16 of the pallet 11 by moving the transport device 6 each time. In the above-described embodiment, a glass electrode is used for the sensor section of the ion electrode, but a liquid film electrode, a solid film electrode, or the like may be used.

【0026】[0026]

【発明の効果】以上説明したように、本発明の土壌成分
自動分析装置は、圃場領域内の複数個の採取位置から採
取した土壌サンプルをパレットに収納し、このパレット
を搬送装置に固定し、搬送装置によりパレットを移動
し、重量計により各土壌サンプルを計量し、イオン化成
分抽出手段によりイオン化成分を抽出し、前処理手段に
より各土壌サンプルのpHを測定するための前処理を行
い、測定手段の電極により各土壌サンプルのpH,導電
率を測定するとともに、イオン化成分を測定する電極の
センサ部を、任意のイオン種に応じて交換し、多成分の
任意のイオン種を選択して分析するようにしたため、従
来に比して、土壌成分のpH,各種イオンおよび導電率
を自動分析する際の前処理を行う装置の機構が簡素化さ
れ、小型かつ安価に構成することができる。
As described above, the automatic soil component analyzer of the present invention stores soil samples collected from a plurality of collection positions in a field area on a pallet, and fixes the pallet to a transport device. The pallet is moved by the transport device, each soil sample is weighed by the weighing scale, ionized components are extracted by the ionized component extraction means, and pretreatment for measuring the pH of each soil sample is performed by the pretreatment means. In addition to measuring the pH and conductivity of each soil sample with the electrode, the sensor part of the electrode for measuring the ionized component is exchanged according to an arbitrary ion type, and an arbitrary multi-component ion type is selected and analyzed. As a result, the mechanism of the pretreatment device for automatically analyzing the pH, various ions, and the conductivity of the soil component is simplified, and the size and cost are reduced. It can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】GPS受信機が備えられた採取機により圃場領
域の複数個の採取位置の土壌サンプルを採取する概略図
である。
FIG. 1 is a schematic diagram of collecting a soil sample at a plurality of collecting positions in a field area by a collecting machine provided with a GPS receiver.

【図2】本発明の実施の1形態の斜視図である。FIG. 2 is a perspective view of one embodiment of the present invention.

【図3】図1の土壌成分を自動分析する工程の説明図で
ある。
FIG. 3 is an explanatory diagram of a step of automatically analyzing a soil component in FIG. 1;

【図4】図3のフローチャートである。FIG. 4 is a flowchart of FIG.

【図5】(A),(B)は図1のイオン電極の縦断面
図、(C)は(A),(B)の底面図である。
FIGS. 5A and 5B are longitudinal sectional views of the ion electrode of FIG. 1, and FIGS. 5C and 5C are bottom views of FIGS.

【符号の説明】[Explanation of symbols]

6…搬送装置、11…パレット、30…電極、31…電
極、32…電極、33…電極、49…センサ部、I…イ
オン化成分抽出手段、M…前処理手段、S…測定手段。
6 ... Conveying device, 11 ... Pallet, 30 ... Electrode, 31 ... Electrode, 32 ... Electrode, 33 ... Electrode, 49 ... Sensor part, I ... Ionized component extraction means, M ... Pretreatment means, S ... Measurement means.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G058 AA02 CB09 CB15 CE02 CE03 EA05 EC03 ED07 ED19 FA02 GA11 GB02 GB06 GD07 HA04 2G060 AA06 AE17 AE18 AF08 AF13 AG03 FA06 KA10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G058 AA02 CB09 CB15 CE02 CE03 EA05 EC03 ED07 ED19 FA02 GA11 GB02 GB06 GD07 HA04 2G060 AA06 AE17 AE18 AF08 AF13 AG03 FA06 KA10

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数個の土壌サンプルを収納したパレッ
トと、 前記各土壌サンプルのイオン化成分を抽出するイオン化
成分抽出手段と、 前記各土壌サンプルのpHを測定するための前処理を行
う前処理手段と、 前記各土壌サンプルのpH,導電率および2種類以上の
イオン化成分を測定する複数本の電極を有する測定手段
と、 前記パレットを少なくともX軸,Y軸に沿って移動し、
前記イオン化成分抽出手段,前記前処理手段,前記測定
手段の位置に搬送する搬送装置とを備え、 イオン化成分を測定する複数本の電極のセンサ部を着脱
可能とし、多成分の任意のイオン種を選択して分析する
ことを特徴とする土壌成分自動分析装置。
1. A pallet containing a plurality of soil samples, an ionization component extraction unit for extracting an ionization component of each of the soil samples, and a pretreatment unit for performing a pretreatment for measuring the pH of each of the soil samples. Measuring means having a plurality of electrodes for measuring pH, conductivity, and two or more types of ionized components of each of the soil samples; and moving the pallet along at least the X-axis and the Y-axis;
A transport device for transporting the ionized component extraction means, the pre-processing means, and the measuring means to a position; a plurality of electrode sensors for measuring the ionized components being detachable; An automatic soil component analyzer characterized by selecting and analyzing.
JP10224895A 1998-08-07 1998-08-07 Soil constituent automatic analysis device Pending JP2000055910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10224895A JP2000055910A (en) 1998-08-07 1998-08-07 Soil constituent automatic analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10224895A JP2000055910A (en) 1998-08-07 1998-08-07 Soil constituent automatic analysis device

Publications (1)

Publication Number Publication Date
JP2000055910A true JP2000055910A (en) 2000-02-25

Family

ID=16820849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10224895A Pending JP2000055910A (en) 1998-08-07 1998-08-07 Soil constituent automatic analysis device

Country Status (1)

Country Link
JP (1) JP2000055910A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101080278B1 (en) 2009-11-26 2011-11-08 대한민국 Apparatus for measuring a property of soil
JP2011226889A (en) * 2010-04-19 2011-11-10 Hitachi High-Technologies Corp Automatic analyzing apparatus and automatic analyzing method
US8245439B2 (en) 2006-03-02 2012-08-21 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
CN102980919A (en) * 2012-10-30 2013-03-20 上海交通大学 Determination method for uniformity of soil-cement admixture based on joint test of pH value and conductivity
CN101927905B (en) * 2008-06-26 2013-03-27 先锋高级育种国际公司 Apparatus, method and system for reconfiguring items
JP2013083638A (en) * 2011-09-30 2013-05-09 Jx Nippon Mining & Metals Corp Sample analysis method and sample analysis system
US8539713B2 (en) 2006-03-02 2013-09-24 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
JP2013542442A (en) * 2010-10-29 2013-11-21 ソラム インコーポレイテッド Nutrient measurement by microsampling
US8959833B2 (en) 2004-08-26 2015-02-24 Monsanto Technology Llc Methods of seed breeding using high throughput nondestructive seed sampling
CN106990145A (en) * 2017-04-11 2017-07-28 北京农业智能装备技术研究中心 A kind of portable soil available nutrient detection means
CN109470535A (en) * 2018-11-12 2019-03-15 崔维佳 The Microwave Pretreatment device and microwave method for preprocessing of heavy metal-polluted soil detection
CN109813924A (en) * 2019-02-14 2019-05-28 宁波市环境监测中心 A kind of measurement device and rapid assay methods of the soil organism
CN112930762A (en) * 2021-03-19 2021-06-11 义乌市舞沿商贸有限公司 Soil remediation seeding device capable of improving soil pH value

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8959833B2 (en) 2004-08-26 2015-02-24 Monsanto Technology Llc Methods of seed breeding using high throughput nondestructive seed sampling
US11006593B2 (en) 2004-08-26 2021-05-18 Monsanto Technology Llc Methods of seed breeding using high throughput nondestructive seed sampling
US9986699B2 (en) 2004-08-26 2018-06-05 Monsanto Technology Llc Methods of seed breeding using high throughput nondestructive seed sampling
US9383291B2 (en) 2006-03-02 2016-07-05 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
US11357159B2 (en) 2006-03-02 2022-06-14 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
US10254200B2 (en) 2006-03-02 2019-04-09 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
US8443545B2 (en) 2006-03-02 2013-05-21 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
US8539713B2 (en) 2006-03-02 2013-09-24 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
US11293840B2 (en) 2006-03-02 2022-04-05 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
US8997398B2 (en) 2006-03-02 2015-04-07 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
US9027278B2 (en) 2006-03-02 2015-05-12 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
US10542661B2 (en) 2006-03-02 2020-01-28 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
US8245439B2 (en) 2006-03-02 2012-08-21 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
US9551636B2 (en) 2006-03-02 2017-01-24 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
CN101927905B (en) * 2008-06-26 2013-03-27 先锋高级育种国际公司 Apparatus, method and system for reconfiguring items
KR101080278B1 (en) 2009-11-26 2011-11-08 대한민국 Apparatus for measuring a property of soil
JP2011226889A (en) * 2010-04-19 2011-11-10 Hitachi High-Technologies Corp Automatic analyzing apparatus and automatic analyzing method
JP2017003598A (en) * 2010-10-29 2017-01-05 ソラム インコーポレイテッド Microsampling nutrient measurement
JP2013542442A (en) * 2010-10-29 2013-11-21 ソラム インコーポレイテッド Nutrient measurement by microsampling
JP2013083638A (en) * 2011-09-30 2013-05-09 Jx Nippon Mining & Metals Corp Sample analysis method and sample analysis system
CN102980919A (en) * 2012-10-30 2013-03-20 上海交通大学 Determination method for uniformity of soil-cement admixture based on joint test of pH value and conductivity
CN106990145A (en) * 2017-04-11 2017-07-28 北京农业智能装备技术研究中心 A kind of portable soil available nutrient detection means
CN109470535B (en) * 2018-11-12 2021-06-01 吉林小德川农业科技有限公司 Microwave pretreatment device and microwave pretreatment method for soil heavy metal detection
CN109470535A (en) * 2018-11-12 2019-03-15 崔维佳 The Microwave Pretreatment device and microwave method for preprocessing of heavy metal-polluted soil detection
CN109813924A (en) * 2019-02-14 2019-05-28 宁波市环境监测中心 A kind of measurement device and rapid assay methods of the soil organism
CN112930762A (en) * 2021-03-19 2021-06-11 义乌市舞沿商贸有限公司 Soil remediation seeding device capable of improving soil pH value
CN112930762B (en) * 2021-03-19 2022-03-22 浙江龙游锄禾农业科技有限公司 Soil remediation seeding device capable of improving soil pH value

Similar Documents

Publication Publication Date Title
JP2000055910A (en) Soil constituent automatic analysis device
US4169125A (en) Modular chemical analysis system
EP0905514B1 (en) Blood cell count/immunoassay apparatus using whole blood
US7897409B2 (en) Chemical analyzer, method for dispensing and dilution cup
US7938032B2 (en) Dissolution testing with in-situ gravimetric volume measurement
JPS62119451A (en) Analyzer
US7247278B2 (en) Automated ground water monitoring and analysis system
WO2004036214A2 (en) Automated kinetci solubility assay apparatus and method
AU682522B2 (en) Analysis system and components
AU2015372443A1 (en) Electrochemical testing system
JP2637695B2 (en) Solution suction device and suction type trace substance measuring device in solution
JPS5999248A (en) Blood analyzer
EP0772041B1 (en) Reference electrode assembly
JP2000055909A (en) Soil constituent automatic analysis device
CN217385319U (en) Sample analyzer and electrolyte measuring mechanism
CN217060045U (en) Sample analyzer and electrolyte measuring mechanism
EA019684B1 (en) Cation exchange capacity titration unit
US20070003438A1 (en) Column, sample preparation apparatus using the column, and auto analyzer
WO2002079751A2 (en) Ultrasonic transducing probe with liquid flow-through capability and related automated workstation and methods of using same
EP3718632B1 (en) Probe fluid analyzer system
EP0273296A3 (en) Apparatus for the photometric analysis of liquid samples
CN216051776U (en) Integrated full-automatic inspection and detection equipment
JPH0616852U (en) Cell for spectrophotometer
WO2019115526A1 (en) Device and method for analyzing liquid compositions, particularly samples of liquids of biological origin particularly for determining electrolytes
CN220064066U (en) Biochemical analyzer