WO2007102223A1 - フレキシブル基板の製造方法、穿孔装置、穿孔用金型及び電子デバイス実装回路 - Google Patents

フレキシブル基板の製造方法、穿孔装置、穿孔用金型及び電子デバイス実装回路 Download PDF

Info

Publication number
WO2007102223A1
WO2007102223A1 PCT/JP2006/304594 JP2006304594W WO2007102223A1 WO 2007102223 A1 WO2007102223 A1 WO 2007102223A1 JP 2006304594 W JP2006304594 W JP 2006304594W WO 2007102223 A1 WO2007102223 A1 WO 2007102223A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
hole
drilling
flexible substrate
manufacturing
Prior art date
Application number
PCT/JP2006/304594
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Kato
Original Assignee
Beac Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beac Co., Ltd. filed Critical Beac Co., Ltd.
Priority to PCT/JP2006/304594 priority Critical patent/WO2007102223A1/ja
Priority to JP2008503718A priority patent/JP4969565B2/ja
Publication of WO2007102223A1 publication Critical patent/WO2007102223A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/02Perforating by punching, e.g. with relatively-reciprocating punch and bed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0008Apparatus or processes for manufacturing printed circuits for aligning or positioning of tools relative to the circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0097Processing two or more printed circuits simultaneously, e.g. made from a common substrate, or temporarily stacked circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F2210/00Perforating, punching, cutting-out, stamping-out, severing by means other than cutting of specific products
    • B26F2210/08Perforating, punching, cutting-out, stamping-out, severing by means other than cutting of specific products of ceramic green sheets, printed circuit boards and the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1453Applying the circuit pattern before another process, e.g. before filling of vias with conductive paste, before making printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1545Continuous processing, i.e. involving rolls moving a band-like or solid carrier along a continuous production path
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes

Definitions

  • the present invention relates to a flexible substrate manufacturing method, a punching device, a punching die, and an electronic device mounting circuit.
  • An electronic device mounting circuit in which an electronic device is mounted on a flexible substrate is manufactured using a method called an RTR (roll-to-roll) production method.
  • the RTR production method is a production method that continuously rolls out long sheets wound in a roll shape, applies force, and rewinds them in a roll shape. This is a low-cost, high-efficiency production method. .
  • the long sheet used in the RTR production system is formed with a sprocket hole for feeding the long sheet. Since this sprocket hole is also used as a reference for arranging the circuit pattern of the flexible substrate at an appropriate position in an apparatus for mounting an electronic device on the flexible substrate, the sprocket hole and the circuit pattern are arranged at a predetermined relative position. It is necessary to form with accuracy.
  • FIG. 17 is a flowchart for explaining a conventional method of manufacturing a flexible substrate.
  • FIG. 17A is a flowchart of a conventional method for manufacturing a flexible substrate
  • FIG. 17B is a flowchart of a method for manufacturing a conventional electronic device mounting circuit.
  • the conventional flexible substrate manufacturing method includes a sprocket hole forming step S910 for forming a sprocket hole in a long sheet and a circuit pattern forming step for forming a circuit pattern in the long sheet. Includes S920 in this order.
  • the conventional method for manufacturing an electronic device mounting circuit includes an electronic device mounting step S930 in which an electronic device is mounted on a flexible board using the RTR production method, and the mounting on the flexible board.
  • a separation step S940 for separating a plurality of electronic devices is included in this order.
  • a flexible substrate manufactured by a conventional method of manufacturing a flexible substrate is an electronic device. It becomes an electronic device mounting circuit sheet by the chair mounting step S930, and then becomes a plurality of independent electronic device mounting circuits through the separation step S940.
  • the sprocket hole and the circuit pattern can be formed with a predetermined relative positional accuracy by forming the circuit pattern based on the sprocket hole.
  • an electronic device mounting circuit in which the electronic device is mounted with a predetermined relative positional accuracy with respect to the circuit pattern can be manufactured.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-38682
  • the relative positional accuracy of sprocket holes and circuit patterns has been required to be higher than the conventional relative positioning accuracy.
  • the substrate manufacturing method has a problem that the sprocket hole and the circuit pattern cannot be formed with sufficiently high relative positional accuracy.
  • the present invention has been made to solve such a problem, and is a flexible substrate capable of forming a sprocket hole and a circuit pattern with sufficiently high relative positional accuracy.
  • An object is to provide a manufacturing method. It is another object of the present invention to provide a punching device and a punching die that can be used in such a method for manufacturing a flexible substrate. Still another object of the present invention is to provide an electronic device mounting circuit in which an electronic device is mounted on such a flexible substrate.
  • the inventor of the present invention has investigated the cause that the sprocket hole and the circuit pattern cannot be formed with sufficiently high relative positional accuracy by the conventional method of manufacturing a flexible substrate.
  • this cause is that the long sheet itself is stretched or distorted due to various stresses applied to the long sheet during the circuit pattern forming step S920.
  • Obtained knowledge In other words, even if the sprocket hole is formed with sufficiently high accuracy in the sprocket hole forming process S910, the circuit pattern type Since the relative position between the sprocket hole and the circuit pattern changes in the formation process S920, the sprocket hole and the circuit pattern cannot be formed with sufficiently high relative positional accuracy.
  • the present inventor first forms a circuit pattern on a long sheet in which a sprocket hole is not formed rather than forming a circuit pattern based on the sprocket hole. Then, the inventors have conceived that the above problems can be solved by forming the sprocket holes based on the formed circuit pattern, and the present invention has been completed.
  • the method for manufacturing a flexible substrate of the present invention is a method for manufacturing a flexible substrate used for manufacturing an electronic device mounting circuit, and is a method for preparing a long sheet on which a circuit pattern is formed.
  • the sprocket hole is formed on the basis of a predetermined portion of the circuit pattern or a predetermined portion in another pattern other than the circuit pattern. Even if the long sheet is stretched or distorted in the process, the sprocket hole and the circuit pattern can be formed with sufficiently high relative positional accuracy.
  • the “circuit pattern” is a circuit pattern formed on a long sheet, and the “circuit pattern” includes a wiring pattern, a through hole, a via hole, and the like. included.
  • the “other pattern other than the circuit pattern” includes a device hole, a guide hole, a tooling hole, and various alignment marks formed in the process of forming the circuit pattern. included. Various alignment marks can be classified into circuit patterns.
  • all of the circuit patterns may be formed on the long sheet prepared in the long sheet preparation step. Only a part of the wiring pattern (for example, a wiring pattern, a through hole, etc.) may be formed. Yes.
  • a tooling hole is also formed in the long sheet with reference to a predetermined position of the circuit pattern or a predetermined portion of the other pattern. It is preferable to do.
  • the tooling hole and the circuit pattern can be formed with sufficiently high relative positional accuracy even if the long sheet is stretched or distorted in the process of forming the circuit pattern. Is possible. For this reason, when an electronic device is mounted on a flexible substrate, it is possible to more accurately align the circuit pattern and the electronic device with reference to the tooling hole.
  • the “tooling hole” is a hole used as a reference for positioning the circuit pattern and the electronic device when the electronic device is mounted on the flexible substrate.
  • a through hole is also formed in the long sheet on the basis of a predetermined portion of the circuit pattern or a predetermined portion of the other pattern. It is preferable to do.
  • the punching step includes a long sheet moving step of moving a punching target region in the long sheet to a punchable position in the punching device;
  • the predetermined portion of the circuit pattern is photographed by photographing a predetermined portion of the circuit pattern in the perforation target region or a predetermined portion of the other pattern.
  • a position measuring step for measuring a position of a predetermined portion in the portion or the other pattern, and at least the perforation target on the basis of the predetermined portion of the circuit pattern or the predetermined portion in the other pattern measured in the position measuring step. It is preferable to include a drilling position setting step for setting a drilling position of a sprocket hole to be formed in the region, and a drilling step for drilling at the drilling position set in the drilling position setting step.
  • the punching device of the present invention is a punching device for use in the method for manufacturing a flexible substrate of the present invention, and moves a punching target region in the long sheet to a punchable position in the punching device.
  • the long sheet moving mechanism and a predetermined part of the circuit pattern in the perforation target area or a predetermined part of the other pattern are photographed to measure the position of the predetermined part of the circuit pattern or the predetermined part of the other pattern.
  • the position of the sprocket hole to be formed at least in the drilling target region is set on the basis of the position measurement mechanism that performs measurement and the predetermined portion of the circuit pattern measured by the position measurement mechanism or the predetermined portion of the other pattern.
  • a piercing position setting mechanism that is movable within the piercable position and is set by the piercing position setting mechanism; And a drilling mechanism for drilling at a predetermined drilling position of the sprocket hole.
  • the drilling device of the present invention it is possible to form a sprocket hole on the basis of the position measurement result at a predetermined portion of the circuit pattern or a predetermined portion of another pattern. Therefore, the sprocket hole and the circuit pattern can be formed with sufficiently high relative positional accuracy.
  • a punching die of the present invention is a punching die for use in the method for producing a flexible substrate of the present invention, and includes a punching die having a sprocket hole forming punch, And a die mold provided with a sprocket hole forming die hole, wherein the punching die or the die mold is provided with a photographing hole.
  • the punching die or the die die is provided with a photographing hole, so that a predetermined part of the circuit pattern or a predetermined part of another pattern is provided. By shooting using the shooting hole, it is possible to obtain a highly accurate position measurement result.
  • the punching die of the present invention preferably has a row structure in which a plurality of sprocket hole forming punches are arranged at predetermined intervals.
  • the punching die of the present invention it is preferable that the punching die has at least two rows of the row structure.
  • the punch die further includes a tooling hole forming punch, and the die die further includes a tooling hole forming die hole. It is preferable to be established.
  • the punching die further includes a through-hole forming punch, and the die die is further provided with a through-hole forming die hole. It is preferable that
  • the through hole can be formed in the drilling step of forming the sprocket hole, and thus the through hole can be formed at an appropriate position in the circuit pattern. .
  • the electronic device mounting circuit of the present invention is an electronic device mounting circuit in which an electronic device is mounted on a flexible substrate manufactured by the flexible substrate manufacturing method of the present invention.
  • the electronic device mounting circuit of the present invention is an electronic device mounting circuit in which the electronic device is mounted on a flexible substrate in which the sprocket holes and the circuit pattern are formed with sufficiently high relative positional accuracy. This results in a high-quality electronic device mounting circuit in which the electronic device is mounted with sufficiently high relative positional accuracy with respect to the circuit pattern.
  • FIG. 1 is a flow chart shown for explaining a method for manufacturing a flexible substrate according to Embodiment 1.
  • FIG. 2 is a view for explaining a method for manufacturing a flexible substrate according to Embodiment 1.
  • FIG. 3 is a view for explaining a long sheet W.
  • FIG. 4 is a flowchart shown for explaining a drilling step SI 20.
  • FIG. 5 is a view for explaining the drilling step S120.
  • FIG. 6 is a front view for explaining the punching device 1000 according to the first embodiment.
  • FIG. 7 is a side view illustrating the punching apparatus 1000 according to the first embodiment.
  • FIG. 8 is a view for explaining a punching mechanism 1600.
  • FIG. 9 is a view for explaining the punching die 1610 according to the first embodiment.
  • FIG. 10 is a diagram for explaining the electronic device mounting circuit 100 according to the first embodiment.
  • FIG. 11 is a view for explaining the method for manufacturing the flexible substrate according to the second embodiment.
  • FIG. 12 is a view for explaining the method for manufacturing the flexible substrate according to the third embodiment.
  • FIG. 13 is a view for explaining a punching die 1610a according to a fourth embodiment.
  • FIG. 14 is a view for explaining the method for manufacturing the flexible substrate according to the fourth embodiment.
  • FIG. 15 is a view for explaining the method for manufacturing the flexible substrate according to the fifth embodiment.
  • FIG. 16 is a view for explaining the method for manufacturing the flexible substrate according to the sixth embodiment.
  • FIG. 17 is a flowchart for explaining a conventional method of manufacturing a flexible substrate.
  • FIG. 1 is a flowchart for explaining the method of manufacturing a flexible substrate according to the first embodiment.
  • FIG. 1 (a) is a flowchart of a method for manufacturing a flexible substrate according to Embodiment 1
  • FIG. 1 (b) is a method for manufacturing an electronic device mounting circuit according to Embodiment 1.
  • FIG. 2 is a view for explaining the method of manufacturing the flexible substrate according to the first embodiment.
  • FIGS. 2 (a) and 2 (b) are diagrams showing a long sheet preparation step S110 and a perforation step S120 in the method for manufacturing a flexible substrate according to Embodiment 1
  • FIG. 5 is a diagram showing an electronic device mounting step S 130 and a separation step S 140 performed after the flexible substrate manufacturing method according to the first embodiment.
  • FIG. 3 is a view for explaining the long sheet W.
  • 3 (a) is a plan view of the long sheet W
  • FIG. 3 (b) is a cross-sectional view taken along the line AA in FIG. 3 (a).
  • FIG. 4 is a flowchart shown for explaining the drilling step S120.
  • FIG. 5 is a view for explaining the drilling step S120.
  • Fig. 5 (a) is a diagram showing the state of the long sheet when the perforating step S124 is completed
  • Fig. 5 (b) is the state of the long sheet when the long sheet moving step S121 is completed.
  • Fig. 5 (c) shows the state of the long sheet when the position measurement step S122 is completed
  • FIG. 5 (d) shows the state of the long sheet when the punching position setting step S123 is completed.
  • FIG. 5 (e) is a diagram showing a state of the long sheet when the punching step S124 is completed. 2 and 5 (a) and 5 (b), the electrode 114 that performs position measurement in the position measurement step S122 described later is exaggerated among the plurality of electrodes 114. .
  • FIG. 6 is a front view for explaining the punching device 1000 according to the first embodiment.
  • FIG. 7 is a side view illustrating the punching device 1000 according to the first embodiment.
  • FIG. 8 is a view for explaining the punching mechanism 1600. 8 shows a cross-sectional view taken along the line BB in FIG.
  • FIG. 9 is a view for explaining the punching die 1610 according to the first embodiment.
  • FIG. 9 (a) is a cross-sectional view of the punching die 1610
  • FIG. 9 (b) is a plan view of the punching die 1620.
  • FIG. 10 is a view for explaining the electronic device mounting circuit sheet 100 according to the first embodiment.
  • FIG. 10 (a) is a plan view of the electronic device mounting circuit sheet 100
  • FIG. 10 (b) is a sectional view taken along the line DD in FIG. 10 (a).
  • the method for manufacturing a flexible substrate according to the first embodiment includes a flexible substrate 130 used for manufacturing the electronic device mounting circuit 102 (see FIG. 2D).
  • a circuit pattern 110 is formed.
  • the drilling step S120 (see FIG. 2 (b)) in which the sprocket hole 120 is formed in the long sheet W by using the above) is included in this order.
  • the electronic device mounting circuit sheet 100 (Fig. 2 (c) is obtained by mounting the electronic device 140 on the flexible substrate 130 (see Fig. 2 (b)) manufactured by the flexible substrate manufacturing method according to the first embodiment.
  • a plurality of independent electronic device mounting circuits 102 (see Fig. 2 (d).) Can be manufactured.
  • the long sheet preparation step S110 is a step of preparing the long sheet W on which the circuit pattern 110 is formed.
  • the long sheet W is made of, for example, polyimide resin, and as shown in FIG. 3, the circuit pattern 110 (wiring pattern 112, electrode 114 and through hole 116) and other patterns (device hole 118 and Alignment mark 115) is formed. As shown in FIG. 3 (b), the tip of the wiring pattern 112 (the portion where the through hole 116 exists) becomes the electrode 114! /.
  • the punching step S120 is a step of forming the sprocket hole 120 in the long sheet W by using the punching device 1000 with a predetermined portion of the circuit pattern 110 as a reference. Then, as shown in FIG. 4, it includes a long sheet moving step S121, a position measuring step S122, a punching position setting step S123, and a punching step S124, and these steps are sequentially repeated. To implement.
  • the long sheet moving step S121 is a step of moving the perforation target area 150 in the long sheet W to the perforable position 160 in the perforating apparatus 1000 (see FIGS. 5 (a) and 5 (b)). is there.
  • the position measurement step S 122 is a step of photographing a predetermined portion of the circuit pattern 110 in the perforation target region 150 and measuring the position of the predetermined portion of the circuit pattern 110 (see FIG. 5 (c)).
  • the drilling step S124 is a step (see FIG. 5 (e)) that forms a sprocket hole 120 by performing a drilling calorie at the drilling position set in the drilling position setting step S123.
  • the perforating step S120 including the long sheet moving step S121, the position measuring step S122, the perforating position setting step S123, and the perforating step S124 is performed in the perforating process shown in FIGS. This is carried out using an apparatus 1000, a drilling mechanism 1600 and a drilling die 1610.
  • the punching apparatus 1000 is a long sheet moving mechanism that moves the punching target region 150 in the long sheet W to the punchable position 160 in the punching apparatus, and the punching A position measurement mechanism that measures a position of the predetermined portion of the circuit pattern by photographing a predetermined portion of the circuit pattern in the target region 150, and at least the perforation target region 150 based on the predetermined portion of the circuit pattern measured by the position measurement mechanism.
  • a drilling position setting mechanism that sets the position of the sprocket hole to be formed in the drilling hole, and a drilling mechanism that is movable within the drillable position and performs drilling at the drilling position set by the drilling position setting mechanism It is a punching device.
  • the punching device 1000 has a main body 1100 for mounting and fixing various mechanisms to be described later, a feeding mechanism 1200 for feeding the long sheet W, and a feeding mechanism.
  • a winding mechanism 1300 for winding the long sheet W fed from 1200, and a tension mechanism 1400 for tensioning / releasing the long sheet W between the feeding mechanism 1200 and the winding mechanism 1300 A punching mechanism 1600 that can move along the X-axis and the z-axis, and a moving mechanism 1500 that moves the punching mechanism 1600 along the X-axis and the z-axis, and a long sheet W.
  • a pair of clamper mechanisms 1710, 1720 are examples of clamper mechanisms 1710, 1720.
  • the apparatus main body 1100 is composed of a machine base 1110 and a plate 1120 for mounting each mechanism.
  • a controller box (both not shown) with a controller for driving and controlling each mechanism and the like by a setting program is arranged.
  • the feeding mechanism 1200 is disposed on the upper part of the apparatus main body 1100 together with the tension mechanism 1400, and is configured to be capable of feeding a long sheet W wound in a roll shape before processing. Yes.
  • the tension mechanism 1400 is configured such that the tension of the long sheet W fed from the feeding mechanism 1200 can be adjusted by moving the tension mechanism 1400 up and down.
  • the winding mechanism 1300 is disposed on the machine base 1110 and is configured to be able to wind the processed long sheet W in a roll shape.
  • the pair of clampers 1710 and 1720 are configured such that the long sheet W can be fixed in a state where the tension of the long sheet W is adjusted by the tension mechanism 1400.
  • the moving mechanism 1500 has a function of moving the drilling mechanism 1600 along the X axis and the z axis by two orthogonal screw shafts (not shown).
  • the drilling mechanism 1600 is disposed in the moving mechanism 1500, and is configured to be movable along the X axis and the z axis by the moving mechanism 1500.
  • the punching mechanism 1600 has a structure in which a punching die 1610 for punching a long sheet W is attached to a frame-shaped frame 1640.
  • a punching die 1610 according to the first embodiment includes a punch die 1620 and a die die 1630.
  • the punch die 1620 has a row structure in which 14 sprocket hole forming dies 1622 form a row at a predetermined interval, 7 on each side.
  • the die die 1630 has a sprocket hole forming die hole 1632 at a position corresponding to the sprocket hole forming punch 1622.
  • the punch die 1620 and the die die 1630 are attached to the frame 1640 facing each other and are sprocket holes driven by the punch drive mechanism 1650 (see Fig. 8).
  • the long sheet W is perforated by the reciprocating motion of the forming punch 1622.
  • the distance between the punching die 1620 and the die die 1630 is 0.02mn longer than the thickness of the long sheet W! ⁇ 3. It is configured to punch the long sheet W by raising and lowering only the punch while increasing the value within the range of Omm, and drilling can be performed at high speed. .
  • an illumination hole 1624 through which illumination light for photographing the long sheet W is formed is formed at the center of the punch die 1620.
  • a light source 1662 for illumination is attached to the 1624.
  • the center of the die mold 1630 is shown in Fig. 9 (a).
  • a photographing hole 1634 is formed, and the long sheet W can be photographed by the imaging element 1660 through the photographing hole 1634.
  • the long sheet W can be illuminated by the illumination light source 1664 using the photographing hole 1634.
  • the feeding mechanism 1200, the winding mechanism 1300, the punching mechanism 1600 (particularly, the clamper 1670) and the pair of clampers 1710 and 1720 correspond to the long sheet moving mechanism in the punching apparatus 1000.
  • the long sheet W is fed from the feeding mechanism 1200 and the punching mechanism 1600 (clamper 1670) and the pair of clampers 1710 and 720 are operated in synchronization, so that the perforation target region 150 in the long sheet W is punched. It is possible to move to the drillable position 160 at 1000 (FIGS. 5 (a) to 5 (b)).
  • the sprocket hole 120 shown in the drilling target region 160 in FIG. 5 (a) is a sprocket hole formed in the immediately preceding drilling process.
  • the punching mechanism 1600 is provided with an imaging device 1660 and illumination light sources 1662 and 1664, and these imaging device 1660 and illumination light sources 1662 and 1664 are provided with a punching device.
  • the imaging device 1660 measures a position of the predetermined portion of the circuit pattern by photographing a predetermined portion of the circuit pattern in the hole target area 150.
  • the controller uses a predetermined part of the circuit pattern measured by the position measuring mechanism or a predetermined part in another pattern as a reference, and positions 122 of the sprocket holes to be formed at least in the drilling target region (FIG. 5 (see (d))), and this controller corresponds to the punching position setting mechanism in the punching apparatus 1000.
  • the punching mechanism 1600 is movable in the punchable position 160 by the moving mechanism 1500, and has a function of drilling at a punching position set by the punching position setting mechanism. Corresponds to the function.
  • the manufactured electronic device mounting circuit sheet 100 includes a circuit pattern 110 (wiring pattern 112, electrode 114 and through hole 116) and other patterns (device hole 118 and An LSI 140 as an electronic device is mounted on the long sheet W on which the alignment mark 115) is formed. To the wiring pattern 112 of the long sheet W, the electrodes of the LSI 140 are connected. Electronic device mounting circuit system The bump 100 is formed on the gate 100 to make electrical contact with an external circuit. A connection 142 between the LSI 140 and the circuit pattern 110 is provided with a protective resin 142.
  • the sprocket hole 120 is formed on the basis of a predetermined portion of the circuit pattern 110, and thus the circuit pattern 110 is formed. Even if the long sheet W is stretched or distorted in the process, the sprocket hole 120 and the circuit pattern 110 can be formed with sufficiently high relative positional accuracy.
  • the electronic device mounting circuits 100 and 102 manufactured using the flexible substrate manufactured by the flexible substrate manufacturing method according to Embodiment 1 have sufficiently high sprocket holes 120 and circuit patterns 110. Since this is an electronic device mounting circuit in which the electronic device (LSI 140) is mounted on the flexible substrate 130 formed with relative positional accuracy, the electronic device (LSI 140) has a sufficiently high relative position to the circuit pattern 110. It becomes a high-quality electronic device mounting circuit mounted with precision.
  • the punching step S120 includes the long sheet moving step S121, the position measuring step S122, and the punching position setting step S123 as described above.
  • drilling step S124 it is possible to form a sprocket hole based on the position measurement result for a predetermined part of the circuit pattern or a predetermined part of another pattern. Even if the long sheet is stretched or distorted, the sprocket hole and the circuit pattern can be formed with sufficiently high relative positional accuracy.
  • the punching apparatus 1000 since the long sheet moving mechanism, the position measuring mechanism, the punching position setting mechanism, and the punching mechanism as described above are provided, a circuit pattern is provided. Therefore, it is possible to form a sprocket hole on the basis of the result of position measurement, and it is possible to form the sprocket hole and the circuit pattern with sufficiently high relative positional accuracy.
  • the punching die 1620 having the sprocket hole forming punch 1622 and the sprocket hole forming die hole 1632 are provided. Since the punching die 1620 or the die die 1630 is provided with a photographing hole, the punching process can be performed with high productivity. In other words, it is possible to obtain a highly accurate position measurement result.
  • the punching die 1620 has a row structure in which a plurality of (seven) sprocket hole forming punches are arranged at predetermined intervals. Since a plurality of sprocket holes can be formed at a time by a single drilling operation, the drilling process can be carried out with higher productivity.
  • the punching die 1620 has at least two row structures, so that each of the two or more row structures shares a sprocket hole. Therefore, it is possible to reduce the frequency of replacing the sprocket hole forming punch by reducing the consumption of the sprocket hole forming punch.
  • FIG. 11 is a view for explaining the method for manufacturing the flexible substrate according to the second embodiment.
  • FIG. 12 is a view for explaining the method for manufacturing the flexible substrate according to the third embodiment.
  • the method for manufacturing a flexible substrate according to the second embodiment is basically the same as the method for manufacturing the flexible substrate according to the first embodiment, but the standard for forming the sprocket holes is that of the first embodiment. This is different from the case of the method for manufacturing a flexible substrate. That is, in the method for manufacturing a flexible substrate according to the second embodiment, as shown in FIG. 11, the alignment mark 215 is imaged in the position measurement step S122 in the drilling step S120, and the position is measured. In the drilling position setting step S123, the position 222 of the sprocket hole to be formed in the drilling target area is set based on the alignment mark 215. The alignment mark 215 is formed in the process of forming the circuit pattern 210 on the long sheet W.
  • the manufacturing method of the flexible substrate according to the third embodiment is basically the same method as the manufacturing method of the flexible substrate according to the first embodiment, but the standard for forming the sprocket holes is that of the first embodiment. This is different from the case of the method for manufacturing a flexible substrate.
  • the alignment mark 315 formed at the position of the sprocket hole is photographed in the position measurement step S122 in the drilling step S120. The position is measured, and the position 322 of the sprocket hole to be formed in the drilling target area is set based on the alignment mark 315 in the drilling position setting step S123.
  • the alignment mark 315 is formed in the process of forming the circuit pattern 310 on the long sheet W.
  • the method for manufacturing the flexible substrate according to the second or third embodiment is different from the method for manufacturing the flexible substrate according to the first embodiment in terms of the criteria for forming the sprocket hole, but the circuit Since the sprocket holes 220 and 320 are formed with reference to predetermined portions (alignment marks 215 and 315) of the circuit patterns 210 and 310 formed in the process of forming the patterns 210 and 310, the circuit patterns 210 and 310 are Even if the long sheet W is stretched or distorted during the forming process, the sprocket holes 220 and 320 and the circuit patterns 210 and 310 can be formed with sufficiently high relative positional accuracy.
  • FIG. 13 is a view for explaining the punching die 1610a.
  • FIG. 13A is a sectional view of the punching die 1610a
  • FIG. 13B is a plan view of the punching die 1620a in the punching die 1610a.
  • FIG. 14 is a view for explaining the method of manufacturing the flexible substrate according to the fourth embodiment.
  • the manufacturing method of the flexible substrate according to the fourth embodiment is basically the same method as the manufacturing method of the flexible substrate according to the first embodiment, but the content of the drilling step S 120 is the same as that of the first embodiment. This is different from the substrate manufacturing method. That is, in the method for manufacturing a flexible substrate according to the fourth embodiment, in addition to forming sprocket holes in the long sheet W in the punching step S120, the tooling holes 422 are also formed.
  • a punching device (not shown) provided with a punching die 1610a as shown in FIG. 13 is used.
  • the punch die 1620a of the punching die 1610a has a row structure in which seven sprocket hole forming punches 1622 form a row.
  • the punching die 1620a is shown in FIG.
  • a tooling hole forming punch 1626 is further provided.
  • the die mold 1630a has sprocket hole forming die holes 1632 formed at positions corresponding to the seven sprocket hole forming punches 1622, and tooling holes formed at positions corresponding to the tooling hole forming punches 16 26.
  • a die hole 1636 is formed.
  • the flexible substrate manufacturing method according to the fourth embodiment differs from the flexible substrate manufacturing method according to the first embodiment, although the contents of the drilling step S 120 are different from those in the flexible substrate manufacturing method according to the first embodiment.
  • the sprocket hole is formed on the basis of a predetermined part of the circuit pattern (electrode 414), so even if the long sheet is stretched or distorted in the process of forming the circuit pattern, The sprocket hole and the circuit pattern can be formed with sufficiently high relative positional accuracy.
  • the tooling hole and the circuit pattern are sufficiently high even if the long sheet is stretched or distorted in the process of forming the circuit pattern. It can be formed with relative positional accuracy. For this reason, when an electronic device is mounted on a flexible substrate, it is possible to accurately align the circuit pattern and the electronic device with reference to the tooling hole.
  • the tooling hole 442 can also be formed in the drilling process of forming the sprocket hole 420. Therefore, the process for forming the tooling hole This eliminates the need to carry out the process separately, making it possible to manufacture flexible substrates with high productivity.
  • FIG. 15 is a view for explaining the method of manufacturing the flexible substrate according to the fifth embodiment.
  • FIG. 15 (a) to FIG. 15 (f) are diagrams for explaining each step in the method of manufacturing the flexible substrate according to the fifth embodiment.
  • the method for manufacturing a flexible substrate according to the fifth embodiment is basically the same as the method for manufacturing the flexible substrate according to the first embodiment, but the method for manufacturing the flexible substrate according to the first embodiment.
  • the contents of the drilling process are different. That is, in the method for manufacturing a flexible substrate according to the fifth embodiment, after performing the long sheet moving step S 121 (see FIG. 15A), before performing the next long sheet moving step, perforation is performed. Divide target area 550 into two For the drilling target areas 550a and 550b, the position measurement step S122, the drilling position setting step S123, and the drilling step S124 are performed once each!
  • the circuit pattern 510a (electrode 514a) in the perforation target region 550a is photographed and its position is measured (first position measurement step (see FIG. 15 (a))).
  • the position 522a of the sprocket hole in the drilling target region 550a is set based on the measured electrode 514a (first drilling position setting step (see FIG. 15B)).
  • a sprocket hole 520a is formed based on the set sprocket hole position 522a (first drilling step (see FIG. 15 (c))).
  • the circuit pattern 510b (electrode 514b) in the perforation target region 550b is photographed and its position is measured (second position measurement step (see FIG. 15 (d))).
  • the position 522b of the sprocket hole in the drilling target region 550b is set on the basis of the measured electrode 514b (second drilling position setting step (see FIG. 15 (e)).
  • a sprocket hole 520b is formed based on the set sprocket hole position 522b (second drilling step (see Fig. 15 (f))).
  • the flexible substrate manufacturing method according to the fifth embodiment differs from the flexible substrate manufacturing method according to the first embodiment in the content of the punching step, but the circuit pattern other than the predetermined portion or the circuit pattern. Since the sprocket holes 520a and 520b are formed on the basis of predetermined portions (electrodes 514a and 514b) in other patterns, a circuit pattern is formed in the same manner as in the flexible substrate manufacturing method according to the first embodiment. Even if the long sheet is stretched or distorted in the process, the sprocket hole and the circuit pattern can be formed with sufficiently high relative positional accuracy.
  • FIG. 16 is a view for explaining the method of manufacturing the flexible substrate according to the sixth embodiment.
  • the manufacturing method of the flexible substrate according to the sixth embodiment is basically the same method as the manufacturing method of the flexible substrate according to the first embodiment, but the manufacturing method of the flexible substrate according to the first embodiment is a drilling process. The contents are different. That is, the frame according to the sixth embodiment.
  • the method of manufacturing a kibble substrate is a method of manufacturing a flexible substrate using a wide long sheet W. As shown in FIG. 16, six rows of sprocket holes 6 20a, 620a, 620b, Forming 620b, 620c, 620c!
  • the flexible substrate manufacturing method according to the sixth embodiment is different from the flexible substrate manufacturing method according to the first embodiment in the content of the perforation process, but the circuit pattern other than the predetermined portion or the circuit pattern. Since the sprocket holes 620a, 620a, 620b, 620b, 620c, 620c are formed on the basis of predetermined portions (electrodes 614a, 614 4b, 614c) in other patterns, the flexible substrate manufacturing method according to the first embodiment Similarly to the case, even if the long sheet is stretched or distorted in the process of forming the circuit pattern, the sprocket hole and the circuit pattern can be formed with sufficiently high relative positional accuracy.
  • the method for manufacturing a flexible substrate, the punching device, the punching die, and the electronic device mounting circuit according to the present invention have been described based on the above embodiments, but the present invention is not limited to the above embodiments.
  • the present invention can be carried out in various modes without departing from the gist of the present invention without being limited thereto. For example, the following modifications are possible.
  • the circuit board ⁇ turns 110, 410, 510, 610 (electrodes 114, 414, 514a, 514b, 614) is used as the position reference, and in the method for manufacturing a flexible substrate according to the second or third embodiment, other patterns (alignment marks 215, 315) other than the circuit pattern are used as the position reference.
  • the measurement is to be performed, the present invention is not limited to this.
  • a predetermined portion in a circuit pattern other than electrodes (wiring pattern, through hole, via hole, etc.) or other patterns (device hole, guide hole, tooling hole, etc.) other than alignment marks 215, 315 is used as a position reference. You can also measure Yes.
  • the force for forming the tooling hole 442 in addition to the formation of the sprocket hole 420 is limited to this.
  • the punching die 1610a includes a punching die 1620a further including a tooling hole forming punch 1626 and a tooling hole forming die hole 1636 force S.
  • the force which is a punching die having a working die 1630a The present invention is not limited to this.
  • a punch die having a through hole forming punch instead of a tooling hole forming punch and a die die having a through hole forming die hole instead of a tooling hole forming die hole
  • a die for punching having a punch for forming a tooling hole and a punch for forming a through hole and a die hole for forming a tooling hole and a die hole for forming a through hole may be used. It may be a drilling die having a mold.

Abstract

 本発明のフレキシブル基板の製造方法は、回路パターン110が形成された長尺シートWを準備する長尺シート準備工程S110と、回路パターン110の所定部分(電極114)を基準として穿孔装置を用いて長尺シートWにスプロケットホール120を形成する穿孔工程S120とをこの順序で含むことを特徴とする。  本発明のフレキシブル基板の製造方法によれば、回路パターンを形成する過程で長尺シートが伸びたり歪んだりしても、スプロケットホールと回路パターンとを十分な相対的位置精度で形成することが可能になる。

Description

明 細 書
フレキシブル基板の製造方法、穿孔装置、穿孔用金型及び電子デバイス 実装回路
技術分野
[0001] 本発明は、フレキシブル基板の製造方法、穿孔装置、穿孔用金型及び電子デバィ ス実装回路に関する。
背景技術
[0002] フレキシブル基板に電子デバイスを実装した電子デバイス実装回路は、 RTR (ロー ル ·ツー ·ロール)生産方式と呼ばれる方式を用いて製造されて 、る。 RTR生産方式 とは、ロール状に巻かれた長尺シートを連続的に繰り出して力卩ェを施し、再びロール 状に巻き取る生産方式のことであり、低コスト、高効率な生産方式である。
[0003] RTR生産方式に用いる長尺シートには、長尺シートを送るためのスプロケットホー ルが形成されている。このスプロケットホールは、フレキシブル基板に電子デバイスを 実装する装置内において、フレキシブル基板の回路パターンを適切な位置に配置す るための基準としても用いるため、スプロケットホールと回路パターンとを所定の相対 的位置精度で形成する必要がある。
[0004] 図 17は、従来のフレキシブル基板の製造方法を説明するために示すフローチヤ一 トである。図 17 (a)は従来のフレキシブル基板の製造方法のフローチャートであり、図 17 (b)は従来の電子デバイス実装回路の製造方法のフローチャートである。
従来のフレキシブル基板の製造方法は、図 17 (a)に示すように、長尺シートにスプ ロケットホールを形成するスプロケットホール形成工程 S910と、長尺シートに回路パ ターンを形成する回路パターン形成工程 S920とをこの順序で含む。
従来の電子デバイス実装回路の製造方法は、図 17 (b)に示すように、 RTR生産方 式を用いてフレキシブル基板に電子デバイスを実装する電子デバイス実装工程 S93 0と、フレキシブル基板に実装された複数の電子デバイスを切り離す切り離し工程 S9 40とをこの順序で含む。
[0005] 従来のフレキシブル基板の製造方法で製造されたフレキシブル基板は、電子デバ イス実装工程 S930により電子デバイス実装回路シートとなり、その後、切り離し工程 S940を経てそれぞれ独立した複数の電子デバイス実装回路となる。
[0006] このため、従来のフレキシブル基板の製造方法によれば、スプロケットホールを基 準として回路パターンを形成することにより、スプロケットホールと回路パターンとを所 定の相対的位置精度で形成することが可能となり、回路パターンに対して所定の相 対的位置精度で電子デバイスが実装された電子デバイス実装回路を製造することが 可能となる。
[0007] 特許文献 1 :特開 2001— 38682号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、近年、回路パターンの精細化にともなって、スプロケットホールと回路 パターンとの相対的位置精度として従来よりも高い相対的位置精度が求められてき ているため、従来のフレキシブル基板の製造方法においては、スプロケットホールと 回路パターンとを十分に高 、相対的位置精度で形成することができな 、と 、う問題 が生じている。
[0009] そこで、本発明は、このような問題を解決するためになされたもので、スプロケットホ ールと回路パターンとを十分に高い相対的位置精度で形成することが可能なフレキ シブル基板の製造方法を提供することを目的とする。また、そのようなフレキシブル基 板の製造方法に用いることが可能な穿孔装置及び穿孔用金型を提供することを目的 とする。さらにまた、そのようなフレキシブル基板に電子デバイスが実装された電子デ バイス実装回路を提供することを目的とする。
課題を解決するための手段
[0010] 本発明の発明者は、上記目的を達成するため、従来のフレキシブル基板の製造方 法で、スプロケットホールと回路パターンとを十分高!、相対的位置精度で形成できな い原因を究明すべく鋭意努力を重ねた結果、この原因は、回路パターン形成工程 S 920中に、様々な応力が長尺シートにかかることに起因して長尺シートそのものが伸 びたり歪んだりすることにあるという知見を得た。すなわち、スプロケットホール形成ェ 程 S910で十分に高精度にスプロケットホールを形成したとしても、回路パターン形 成工程 S920で、スプロケットホールと回路パターンとの相対的な位置が変化してしま うため、スプロケットホールと回路パターンとを十分に高い相対的位置精度で形成す ることができないのである。
[0011] そこで、本発明者は、上記知見に基づいて、スプロケットホールを基準として回路パ ターンを形成するのではなぐスプロケットホールが形成されていない長尺シートに回 路パターンをまず形成しておき、その後、形成した回路パターンを基準としてスプロケ ットホールを形成するようにすれば、上記のような問題を解決することができることに 想到し、本発明を完成させるに至った。
[0012] (1)すなわち、本発明のフレキシブル基板の製造方法は、電子デバイス実装回路を 製造するために用いるフレキシブル基板の製造方法であって、回路パターンが形成 された長尺シートを準備する長尺シート準備工程と、前記回路パターンの所定部分 又は前記回路パターン以外の他のパターンにおける所定部分を基準として穿孔装 置を用いて前記長尺シートにスプロケットホールを形成する穿孔工程とをこの順序で 含むことを特徴とする。
[0013] このため、本発明のフレキシブル基板の製造方法によれば、回路パターンの所定 部分又は回路パターン以外の他のパターンにおける所定部分を基準としてスプロケ ットホールを形成することとしたため、回路パターンを形成する過程で長尺シートが伸 びたり歪んだりしたとしても、スプロケットホールと回路パターンとを十分に高い相対 的位置精度で形成することが可能となる。
[0014] 本発明のフレキシブル基板の製造方法において、「回路パターン」とは、長尺シート に形成される回路パターンのことであり、「回路パターン」には、配線パターン、スルー ホール、ビアホール等が含まれる。また、本発明のフレキシブル基板の製造方法に おいて、「回路パターン以外の他のパターン」には、回路パターンを形成する過程で 形成されるデバイスホール、ガイドホール、ツーリングホール、各種ァライメントマーク が含まれる。なお、各種ァライメントマークは、回路パターンに分類することもできる。
[0015] なお、本発明のフレキシブル基板の製造方法にぉ 、て、長尺シート準備工程で準 備する長尺シートには、回路パターンのすべてが形成されていてもよいが、回路バタ ーンの一部(例えば、配線パターン、スルーホールなど。)のみが形成されていてもよ い。
[0016] (2)本発明のフレキシブル基板の製造方法において、前記穿孔工程においては、前 記回路パターンの所定位置又は前記他のパターンにおける所定部分を基準として 前記長尺シートにツーリングホールをも形成することが好ましい。
[0017] このような方法とすることにより、回路パターンを形成する過程で長尺シートが伸び たり歪んだりしたとしても、ツーリングホールと回路パターンとを十分に高い相対的位 置精度で形成することが可能となる。このため、フレキシブル基板に電子デバイスを 実装する際に、ツーリングホールを基準として回路パターンと電子デバイスとの位置 合わせをさらに正確に行うことが可能となる。
[0018] また、このような方法とすることにより、ツーリングホールを形成するための工程を別 途実施する必要がなくなり、高 、生産性でフレキシブル基板を製造することが可能と なる。
[0019] なお、「ツーリングホール」とは、フレキシブル基板に電子デバイスを実装する際に、 回路パターンと電子デバイスとの位置合わせをするための基準として用いられる孔の ことである。
[0020] (3)本発明のフレキシブル基板の製造方法において、前記穿孔工程においては、前 記回路パターンの所定部分又は前記他のパターンにおける所定部分を基準として 前記長尺シートにスルーホールをも形成することが好ましい。
[0021] このような方法とすることにより、回路パターンを形成する過程で長尺シートが伸び たり歪んだりしたとしても、回路パターンにおける適切な位置にスルーホールを形成 することが可能となる。
[0022] また、このような方法とすることにより、スルーホールを形成するための工程を別途 実施する必要がなくなり、高 、生産性でフレキシブル基板を製造することが可能とな る。
[0023] (4)本発明のフレキシブル基板の製造方法においては、前記穿孔工程は、前記長 尺シートにおける穿孔対象領域を前記穿孔装置における穿孔可能位置に移動させ る長尺シート移動ステップと、前記穿孔対象領域における前記回路パターンの所定 部分又は前記他のパターンにおける所定部分を撮影して前記回路パターンの所定 部分又は前記他のパターンにおける所定部分の位置を計測する位置計測ステップと 、前記位置計測ステップで計測された前記回路パターンの所定部分又は前記他の ノ ターンにおける所定部分を基準として、少なくとも前記穿孔対象領域に形成する予 定のスプロケットホールの穿孔位置を設定する穿孔位置設定ステップと、前記穿孔位 置設定ステップで設定した穿孔位置に穿孔加工を行う穿孔ステップとを含むことが好 ましい。
[0024] このような方法とすることにより、回路パターンの所定部分又は他のパターンにおけ る所定部分にっ 、ての位置計測結果に基づ 、てスプロケットホールを形成すること が可能となるため、回路パターンを形成する過程で長尺シートが伸びたり歪んだりし たとしても、スプロケットホールと回路パターンとを十分に高い相対的位置精度で形 成することが可能となる。
[0025] (5)本発明の穿孔装置は、本発明のフレキシブル基板の製造方法に用いるための 穿孔装置であって、前記長尺シートにおける穿孔対象領域を前記穿孔装置における 穿孔可能位置に移動させる長尺シート移動機構と、前記穿孔対象領域における前 記回路パターンの所定部分又は前記他のパターンにおける所定部分を撮影して前 記回路パターンの所定部分又は前記他のパターンにおける所定部分の位置を計測 する位置計測機構と、前記位置計測機構により計測された前記回路パターンの所定 部分又は前記他のパターンにおける所定部分を基準として、少なくとも前記穿孔対 象領域に形成する予定のスプロケットホールの位置を設定する穿孔位置設定機構と 、前記穿孔可能位置内において移動可能で、かつ、前記穿孔位置設定機構により 設定されたスプロケットホールの穿孔位置に穿孔加工を行う穿孔機構とを備えること を特徴とする。
[0026] このため、本発明の穿孔装置によれば、回路パターンの所定部分又は他のパター ンにおける所定部分にっ 、ての位置計測結果に基づ 、てスプロケットホールを形成 することが可能となるため、スプロケットホールと回路パターンとを十分に高い相対的 位置精度で形成することが可能となる。
[0027] (6)本発明の穿孔用金型は、本発明のフレキシブル基板の製造方法に用いるため の穿孔用金型であって、スプロケットホール形成用パンチを有するパンチ用金型と、 スプロケットホール形成用ダイ孔が設けられたダイ用金型とを有し、前記パンチ用金 型又は前記ダイ用金型には、撮影用孔が設けられていることを特徴とする。
[0028] 上記した本発明のフレキシブル基板の製造方法においては、例えばレーザやドリ ルを用いて長尺シートにスプロケットホールを形成することももちろん可能ではある。 しかしながら、本発明の穿孔用金型を用いてスプロケットホールを形成することにより 、高い生産性で穿孔工程を実施することが可能となる。
[0029] また、本発明の穿孔用金型においては、パンチ用金型又はダイ用金型には撮影用 孔が設けられて 、るため、回路パターンの所定部分又は他のパターンにおける所定 部分を撮影用孔を用いて撮影することにより、精度の高い位置計測結果を得ることが 可能となる。
[0030] (7)本発明の穿孔用金型においては、前記パンチ用金型は、複数のスプロケットホ ール形成用パンチが所定間隔で列をなす列構造を有することが好ましい。
[0031] このように構成することにより、 1回の穿孔動作により複数のスプロケットホールを一 括して形成することが可能となるため、さらに高い生産性で穿孔工程を実施すること が可能となる。
[0032] (8)本発明の穿孔用金型においては、前記パンチ用金型は、前記列構造を少なくと も 2列有することが好ましい。
[0033] このように構成することにより、 2列以上の列構造のそれぞれが分担してスプロケット ホールを形成することが可能となるため、スプロケットホール形成用パンチの消耗を 減らすことで、スプロケットホール形成用パンチの取替え頻度を低くすることが可能と なる。
[0034] (9)本発明の穿孔用金型においては、前記パンチ用金型は、ツーリングホール形成 用パンチをさらに有し、前記ダイ用金型には、ツーリングホール形成用ダイ孔がさら に設けられて 、ることが好まし 、。
[0035] このように構成することにより、スプロケットホールを形成する穿孔工程でツーリング ホールをも形成することが可能となるため、ツーリングホールと回路パターンとを十分 に高い相対的位置精度で形成することが可能となる。このため、フレキシブル基板に 電子デバイスを実装する際に、回路パターンと電子デバイスとの位置合わせを正確 に行うことが可能となる。
[0036] また、このように構成することにより、スプロケットホールを形成する穿孔工程でツー リングホールをも形成することが可能となるため、ツーリングホールを形成するための 工程を別途実施する必要がなくなり、高い生産性でフレキシブル基板を製造すること が可能となる。
[0037] (10)本発明の穿孔用金型において、前記パンチ用金型は、スルーホール形成用パ ンチをさらに有し、前記ダイ用金型には、スルーホール形成用ダイ孔がさらに設けら れていることが好ましい。
[0038] このように構成することにより、スプロケットホールを形成する穿孔工程でスルーホー ルをも形成することが可能となるため、回路パターンにおける適切な位置にスルーホ ールを形成することが可能となる。
[0039] また、このように構成することにより、スプロケットホールを形成する穿孔工程でスル 一ホールをも形成することが可能となるため、スルーホールを形成するための工程を 別途実施する必要がなくなり、高い生産性でフレキシブル基板を製造することが可能 となる。
[0040] (11)本発明の電子デバイス実装回路は、本発明のフレキシブル基板の製造方法に よって製造されたフレキシブル基板に電子デバイスが実装された電子デバイス実装 回路である。
[0041] このため、本発明の電子デバイス実装回路は、スプロケットホールと回路パターンと が十分に高い相対的位置精度で形成されたフレキシブル基板に電子デバイスが実 装された電子デバイス実装回路であるため、電子デバイスが回路パターンに対して 十分に高い相対的位置精度で実装された高品質の電子デバイス実装回路となる。 図面の簡単な説明
[0042] [図 1]実施形態 1に係るフレキシブル基板の製造方法を説明するために示すフローチ ヤートである。
[図 2]実施形態 1に係るフレキシブル基板の製造方法を説明するために示す図である [図 3]長尺シート Wを説明するために示す図である。 [図 4]穿孔工程 SI 20を説明するために示すフローチャートである。
[図 5]穿孔工程 S120を説明するためにに示す図である。
[図 6]実施形態 1に係る穿孔装置 1000を説明するために示す正面図である。
[図 7]実施形態 1に係る穿孔装置 1000を説明するために示す側面図である。
[図 8]穿孔機構 1600を説明するために示す図である。
[図 9]実施形態 1に係る穿孔用金型 1610を説明するために示す図である。
[図 10]実施形態 1に係る電子デバイス実装回路 100を説明するために示す図である
[図 11]実施形態 2に係るフレキシブル基板の製造方法を説明するために示す図であ る。
[図 12]実施形態 3に係るフレキシブル基板の製造方法を説明するために示す図であ る。
[図 13]実施形態 4に係る穿孔用金型 1610aを説明するために示す図である。
[図 14]実施形態 4に係るフレキシブル基板の製造方法を説明するために示す図であ る。
[図 15]実施形態 5に係るフレキシブル基板の製造方法を説明するために示す図であ る。
[図 16]実施形態 6に係るフレキシブル基板の製造方法を説明するために示す図であ る。
[図 17]従来のフレキシブル基板の製造方法を説明するために示すフローチャートで ある。
発明を実施するための最良の形態
[0043] 以下、本発明のフレキシブル基板の製造方法、穿孔装置、穿孔用金型及び電子デ バイス実装回路について、図に示す実施の形態に基づいて説明する。
[0044] 〔実施形態 1〕
図 1は、実施形態 1に係るフレキシブル基板の製造方法を説明するために示すフロ 一チャートである。図 1 (a)は実施形態 1に係るフレキシブル基板の製造方法のフロ 一チャートであり、図 1 (b)は実施形態 1における電子デバイス実装回路の製造方法 のフローチャートである。図 2は、実施形態 1に係るフレキシブル基板の製造方法を 説明するために示す図である。図 2 (a)及び図 2 (b)は実施形態 1に係るフレキシブル 基板の製造方法における長尺シート準備工程 S110及び穿孔工程 S120を示す図 であり、図 2 (c)及び図 2 (d)は実施形態 1に係るフレキシブル基板の製造方法の後 に実施される電子デバイス実装工程 S 130及び切り離し工程 S 140を示す図である。
[0045] 図 3は、長尺シート Wを説明するために示す図である。図 3 (a)は長尺シート Wの平 面図であり、図 3 (b)は図 3 (a)の A— A断面図である。図 4は、穿孔工程 S120を説明 するために示すフローチャートである。図 5は、穿孔工程 S120を説明するために示 す図である。図 5 (a)は穿孔ステップ S124が終了したときの長尺シートの状態を示す 図であり、図 5 (b)は長尺シート移動ステップ S121が終了したときの長尺シートの状 態を示す図であり、図 5 (c)は位置計測ステップ S122が終了したときの長尺シートの 状態を示す図であり、図 5 (d)は穿孔位置設定ステップ S123が終了したときの長尺 シートの状態を示す図であり、図 5 (e)は穿孔ステップ S124が終了したときの長尺シ ートの状態を示す図である。なお、図 2並びに図 5 (a)及び図 5 (b)においては、複数 の電極 114のうち、後述する位置計測ステップ S 122で位置計測を行う電極 114を誇 張して図示することとする。
[0046] 図 6は、実施形態 1に係る穿孔装置 1000を説明するために示す正面図である。図 7は、実施形態 1に係る穿孔装置 1000を説明するために示す側面図である。図 8は 、穿孔機構 1600を説明するために示す図である。なお、図 8においては、図 6の B— B断面図を示している。図 9は、実施形態 1に係る穿孔用金型 1610を説明するため に示す図である。図 9 (a)は穿孔用金型 1610の断面図を示す図であり、図 9 (b)はパ ンチ用金型 1620の平面図を示す。
[0047] 図 10は、実施形態 1に係る電子デバイス実装回路シート 100を説明するために示 す図である。図 10 (a)は電子デバイス実装回路シート 100の平面図であり、図 10 (b) は図 10 (a)の D— D断面図である。
[0048] 実施形態 1に係るフレキシブル基板の製造方法は、図 1及び図 2に示すように、電 子デバイス実装回路 102 (図 2 (d)参照。)を製造するために用いるフレキシブル基板 130の製造方法であって、図 1及び図 2に示すように、回路パターン 110が形成され た長尺シート Wを準備する長尺シート準備工程 S110 (図 2 (a)参照。)と、回路バタ ーン 110の所定部分 (この場合、電極 114。)を基準として穿孔装置 1000 (後述する 図 6及び図 7参照。 )を用いて長尺シート Wにスプロケットホール 120を形成する穿孔 工程 S120 (図 2 (b)参照。)とをこの順序で含む。
[0049] 実施形態 1に係るフレキシブル基板の製造方法によって製造されたフレキシブル基 板 130 (図 2 (b)参照。)に電子デバイス 140を実装することで電子デバイス実装回路 シート 100 (図 2 (c)参照。)を製造することができ、さらに電子デバイス実装回路シー ト 100から複数の電子デバイス実装回路 102を切り離すことで、独立した複数の電子 デバイス実装回路 102 (図 2 (d)参照。)を製造することができる。
[0050] 長尺シート準備工程 S 110は、回路パターン 110が形成された長尺シート Wを準備 する工程である。長尺シート Wは、例えばポリイミド榭脂からなり、図 3に示すように、 回路パターン 110 (配線パターン 112、電極 114及びスルーホール 116)並びに回 路パターン 110以外の他のパターン(デバイスホール 118及びァライメントマーク 115 )が形成されている。なお、図 3 (b)からわ力るように、配線パターン 112における先端 部(スルーホール 116が存在する部分)が電極 114となって!/、る。
[0051] 穿孔工程 S120は、回路パターン 110の所定部分を基準として穿孔装置 1000を用 いて長尺シート Wにスプロケットホール 120を形成する工程である。そして、図 4に示 すように、長尺シート移動ステップ S121と、位置計測ステップ S 122と、穿孔位置設 定ステップ S 123と、穿孔ステップ S 124とを含み、これらの各ステップを順次繰り返す ことにより実施する。
[0052] 長尺シート移動ステップ S121は、長尺シート Wにおける穿孔対象領域 150を穿孔 装置 1000における穿孔可能位置 160に移動させるステップ(図 5 (a)及び図 5 (b)参 照。)である。
[0053] 位置計測ステップ S 122は、穿孔対象領域 150における回路パターン 110の所定 部分を撮影して回路パターン 110の所定部分の位置を計測するステップである(図 5 (c)参照。)。
[0054] 穿孔位置設定ステップ S 123は、位置計測ステップ S 122で計測された回路パター ンの所定部分を基準として、少なくとも穿孔対象領域 150に形成する予定のスプロケ ットホールの穿孔位置 122を設定するステップ(図 5 (d)参照。)である。
[0055] 穿孔ステップ S124は、穿孔位置設定ステップ S123で設定した穿孔位置に穿孔カロ ェを行ってスプロケットホール 120を形成するステップ(図 5 (e)参照。)である。
[0056] これらの長尺シート移動ステップ S121と、位置計測ステップ S 122と、穿孔位置設 定ステップ S123と、穿孔ステップ S 124とを含む穿孔工程 S 120は、図 6〜図 9に示 す穿孔装置 1000、穿孔機構 1600及び穿孔用金型 1610を用いて実施する。
[0057] 実施形態 1に係る穿孔装置 1000は、ここでは図示を省略するが、長尺シート Wに おける穿孔対象領域 150を穿孔装置における穿孔可能位置 160に移動させる長尺 シート移動機構と、穿孔対象領域 150における回路パターンの所定部分を撮影して 回路パターンの所定部分の位置を計測する位置計測機構と、位置計測機構により計 測された回路パターンの所定部分を基準として、少なくとも穿孔対象領域 150に形成 する予定のスプロケットホールの位置を設定する穿孔位置設定機構と、穿孔可能位 置内において移動可能で、かつ、穿孔位置設定機構により設定された穿孔位置に 穿孔加工を行う穿孔機構とを備える穿孔装置である。
[0058] 穿孔装置 1000は、図 6及び図 7に示すように、後述する各種の機構を搭載'固定 するための装置本体 1100と、長尺シート Wを繰り出すための繰り出し機構 1200と、 繰り出し機構 1200から繰り出された長尺シート Wを巻き取るための巻き取り機構 130 0と、繰り出し機構 1200と巻き取り機構 1300との間の長尺シート Wを緊張'緩和する ためのテンション機構 1400と、長尺シート Wに穿孔を実施するために X軸及び z軸に 沿って移動可能な穿孔機構 1600と、穿孔機構 1600を X軸及び z軸に沿って移動さ せる移動機構 1500と、長尺シート Wを把持する一対のクランパ機構 1710, 1720と を備える。
[0059] 装置本体 1100は、図 7に示すように、機台 1110と、各機構取付用のプレート 112 0とによって構成されている。装置本体 1100の背面側には、各機構等を設定プログ ラムによって駆動制御するコントローラを内蔵するコントローラボックス(ともに図示せ ず。)が配設されている。
[0060] 繰り出し機構 1200は、テンション機構 1400とともに装置本体 1100の上部に配設 されており、加工前のロール状に巻かれた長尺シート Wを繰り出し可能に構成されて いる。テンション機構 1400は、繰り出し機構 1200から繰り出された長尺シート Wのテ ンシヨンを、テンション機構 1400の昇降移動により調節可能に構成されている。巻き 取り機構 1300は、機台 1110に配設されており、加工された長尺シート Wをロール状 に巻き取り可能に構成されて 、る。
[0061] 一対のクランパ 1710, 1720は、図 7に示すように、テンション機構 1400によって長 尺シート Wのテンションが調節された状態で、長尺シート Wを固定可能に構成されて いる。移動機構 1500は、図 7及び図 8に示すように、直交する 2本のスクリューシャフ ト(図示せず。 )によって穿孔機構 1600を X軸及び z軸に沿って移動させる機能を有 する。
[0062] 穿孔機構 1600は、図 7及び図 8に示すように、移動機構 1500に配設されており、 移動機構 1500によって X軸及び z軸に沿って移動可能に構成されている。穿孔機構 1600は、口の字形状のフレーム 1640に長尺シート Wへの穿孔を実施する穿孔用金 型 1610が取り付けられた構造を有する。実施形態 1に係る穿孔用金型 1610は、パ ンチ用金型 1620及びダイ用金型 1630からなる。
[0063] パンチ用金型 1620は、図 9 (b)に示すように、 14本のスプロケットホール形成用パ ンチ 1622が片側 7本ずつ所定間隔で列をなす列構造を有する。ダイ用金型 1630 には、スプロケットホール形成用パンチ 1622に対応する位置にスプロケットホール形 成用ダイ孔 1632が形成されている。パンチ用金型 1620とダイ用金型 1630とは、図 9 (a)に示すように、向かい合った状態でフレーム 1640に取り付けられ、パンチ駆動 機構 1650 (図 8参照。)によって駆動されるスプロケットホール形成用パンチ 1622の 往復運動により、長尺シート Wに穿孔を実施する。
[0064] 穿孔用金型 1610においては、パンチ用金型 1620とダイ用金型 1630との間隔を 長尺シート Wの厚さよりも 0. 02mn!〜 3. Ommの範囲内の値だけ大きくした状態で パンチのみを昇降させて長尺シート Wに穿孔を実施するように構成されており、穿孔 加工を高速で行うことが可能となって 、る。
[0065] パンチ用金型 1620の中央部には、図 9 (a)に示すように、長尺シート Wを撮影する ための照明光を通す照明用孔 1624が形成されており、照明用孔 1624には照明用 光源 1662が取り付けられている。ダイ用金型 1630の中央部には、図 9 (a)に示すよ うに、撮影用孔 1634が形成されており、撮影用孔 1634を通して撮像素子 1660によ り長尺シート Wを撮影可能になっている。また、撮影用孔 1634を利用して、照明用 光源 1664により長尺シート Wを照明可能に構成されている。
[0066] 繰り出し機構 1200、巻き取り機構 1300、穿孔機構 1600 (特に、クランパ 1670)及 び一対のクランパ 1710, 1720が、穿孔装置 1000における長尺シート移動機構に 対応する。すなわち、繰り出し機構 1200から長尺シート Wを繰り出すとともに、穿孔 機構 1600 (クランパ 1670)及び一対のクランパ 1710, 720を同期して動作させるこ とにより、長尺シート Wにおける穿孔対象領域 150を穿孔装置 1000における穿孔可 能位置 160に移動させることが可能となる(図 5 (a)〜図 5 (b) )。なお、図 5 (a)で穿孔 対象領域 160に示されているスプロケットホール 120は、直前の穿孔工程で形成され たスプロケットホールである。
[0067] 穿孔機構 1600には、図 9に示すように、撮像素子 1660及び照明用光源 1662, 1 664が設けられており、これらの撮像素子 1660及び照明用光源 1662, 1664が、穿 孔装置 1000における位置計測機構に対応する。すなわち、撮像素子 1660は、穿 孔対象領域 150における回路パターンの所定部分を撮影して回路パターンの所定 部分の位置を計測する。
[0068] 図示しないコントローラは、位置計測機構により計測された回路パターンの所定部 分又は他のパターンにおける所定部分を基準として、少なくとも穿孔対象領域に形 成する予定のスプロケットホールの位置 122 (図 5 (d)参照。)を設定する機能を有し 、このコントローラが穿孔装置 1000における穿孔位置設定機構に対応する。
[0069] 穿孔機構 1600は、移動機構 1500によって穿孔可能位置 160内において移動可 能で、かつ、穿孔位置設定機構により設定された穿孔位置に穿孔加工を行う機能を 有し、穿孔装置 1000における穿孔機能に対応する。
[0070] 製造された電子デバイス実装回路シート 100は、図 10に示すように、回路パターン 110 (配線パターン 112、電極 114及びスルーホール 116)並びに回路パターン以 外の他のパターン(デバイスホール 118及びァライメントマーク 115)が形成された長 尺シート Wに、電子デバイスとしての LSI140が実装されている。長尺シート Wの配 線パターン 112には、 LSI140の電極が接続されている。電子デバイス実装回路シ ート 100には、外部回路との電気的コンタクトを取るためのバンプ 117が形成されて いる。 LSI140と回路パターン 110との接続部には保護のための榭脂 142が設けら れている。
[0071] 以上のような方法の実施形態 1に係るフレキシブル基板の製造方法によれば、回路 パターン 110の所定部分を基準としてスプロケットホール 120を形成することとしたた め、回路パターン 110を形成する過程で長尺シート Wが伸びたり歪んだりしたとして も、スプロケットホール 120と回路パターン 110とを十分に高い相対的位置精度で形 成することが可能となる。
[0072] また、実施形態 1に係るフレキシブル基板の製造方法によって製造されたフレキシ ブル基板を用いて製造された電子デバイス実装回路 100, 102は、スプロケットホー ル 120と回路パターン 110とが十分に高い相対的位置精度で形成されたフレキシブ ル基板 130に電子デバイス (LSI140)が実装された電子デバイス実装回路であるた め、電子デバイス (LSI 140)が回路パターン 110に対して十分に高い相対的位置精 度で実装された高品質の電子デバイス実装回路となる。
[0073] また、実施形態 1に係るフレキシブル基板の製造方法によれば、穿孔工程 S120が 、上記したような長尺シート移動ステップ S121と、位置計測ステップ S 122と、穿孔位 置設定ステップ S 123と、穿孔ステップ S 124とを含むため、回路パターンの所定部分 又は他のパターンにおける所定部分についての位置計測結果に基づいてスプロケッ トホールを形成することが可能となるため、回路パターンを形成する過程で長尺シー トが伸びたり歪んだりしたとしても、スプロケットホールと回路パターンとを十分に高い 相対的位置精度で形成することが可能となる。
[0074] また、実施形態 1に係る穿孔装置 1000によれば、上記したような長尺シート移動機 構と、位置計測機構と、穿孔位置設定機構と、穿孔機構とを備えるため、回路パター ンの所定部分にっ 、ての位置計測結果に基づ 、てスプロケットホールを形成するこ とが可能となり、スプロケットホールと回路パターンとを十分に高い相対的位置精度で 形成することが可能となる。
[0075] また、実施形態 1に係る穿孔用金型 1610によれば、スプロケットホール形成用パン チ 1622を有するパンチ用金型 1620と、スプロケットホール形成用ダイ孔 1632が設 けられたダイ用金型 1630とを有し、パンチ用金型 1620又はダイ用金型 1630には、 撮影用孔が設けられているため、高い生産性で穿孔工程を実施することが可能とな り、精度の高い位置計測結果を得ることが可能となる。
[0076] また、実施形態 1に係る穿孔用金型 1610においては、パンチ用金型 1620は、複 数(7本)のスプロケットホール形成用パンチが所定間隔で列をなす列構造を有する ため、 1回の穿孔動作により複数のスプロケットホールを一括して形成することが可能 となるため、さらに高い生産性で穿孔工程を実施することが可能となる。
[0077] また、実施形態 1に係る穿孔用金型 1610においては、パンチ用金型 1620は、列 構造を少なくとも 2列有するため、 2列以上の列構造のそれぞれが分担してスプロケッ トホールを形成することが可能となるため、スプロケットホール形成用パンチの消耗を 減らすことで、スプロケットホール形成用パンチの取替え頻度を低くすることが可能と なる。
[0078] 〔実施形態 2及び 3〕
図 11は、実施形態 2に係るフレキシブル基板の製造方法を説明するために示す図 である。図 12は、実施形態 3に係るフレキシブル基板の製造方法を説明するために 示す図である。
[0079] 実施形態 2に係るフレキシブル基板の製造方法は、実施形態 1に係るフレキシブル 基板の製造方法と基本的には同様の方法であるが、スプロケットホールを形成する 際の基準が、実施形態 1に係るフレキシブル基板の製造方法の場合とは異なる。す なわち、実施形態 2に係るフレキシブル基板の製造方法においては、図 11に示すよ うに、穿孔工程 S 120における位置計測ステップ S 122でァライメントマーク 215を撮 影してその位置を計測し、穿孔位置設定ステップ S 123でァライメントマーク 215を基 準として穿孔対象領域に形成する予定のスプロケットホールの位置 222を設定するこ ととしている。ァライメントマーク 215は、長尺シート Wに回路パターン 210を形成する 過程で形成する。
[0080] 実施形態 3に係るフレキシブル基板の製造方法は、実施形態 1に係るフレキシブル 基板の製造方法と基本的には同様の方法であるが、スプロケットホールを形成する 際の基準が、実施形態 1に係るフレキシブル基板の製造方法の場合とは異なる。す なわち、実施形態 3に係るフレキシブル基板の製造方法においては、図 12に示すよ うに、穿孔工程 S 120における位置計測ステップ S 122でスプロケットホールの位置に 形成してあるァライメントマーク 315を撮影してその位置を計測し、穿孔位置設定ステ ップ S 123でァライメントマーク 315を基準として穿孔対象領域に形成する予定のスプ ロケットホールの位置 322を設定することとしている。ァライメントマーク 315は、長尺 シート Wに回路パターン 310を形成する過程で形成する。
[0081] このように、実施形態 2又は 3に係るフレキシブル基板の製造方法は、スプロケットホ ールを形成する際の基準が実施形態 1に係るフレキシブル基板の製造方法の場合と は異なるが、回路パターン 210, 310を形成する過程で形成される回路パターン 210 , 310の所定部分(ァライメントマーク 215, 315)を基準としてスプロケットホール 220 , 320を形成することとしているため、回路パターン 210, 310を形成する過程で長尺 シート Wが伸びたり歪んだりしたとしても、スプロケットホール 220, 320と回路パター ン 210, 310とを十分に高い相対的位置精度で形成することが可能となる。
[0082] 〔実施形態 4〕
図 13は、穿孔用金型 1610aを説明するために示す図である。図 13 (a)は穿孔用 金型 1610aの断面図であり、図 13 (b)は穿孔用金型 1610aにおけるパンチ用金型 1620aの平面図である。図 14は、実施形態 4に係るフレキシブル基板の製造方法を 説明するために示す図である。
[0083] 実施形態 4に係るフレキシブル基板の製造方法は、実施形態 1に係るフレキシブル 基板の製造方法と基本的には同様の方法であるが、穿孔工程 S 120の内容が実施 形態 1に係るフレキシブル基板の製造方法の場合とは異なる。すなわち、実施形態 4 に係るフレキシブル基板の製造方法においては、穿孔工程 S 120で長尺シート Wに スプロケットホールを形成するのに加えてツーリングホール 422をも形成することとし ている。
[0084] 実施形態 4に係るフレキシブル基板の製造方法においては、図 13に示すような穿 孔用金型 1610aを備えた穿孔装置(図示せず。)を用いる。穿孔用金型 1610aのパ ンチ用金型 1620aは、図 13 (b)に示すように、 7本のスプロケットホール形成用パン チ 1622が列をなす列構造を有する。また、パンチ用金型 1620aは、図 13 (a)及び 図 13 (b)に示すように、ツーリングホール形成用パンチ 1626をさらに有する。ダイ用 金型 1630aには、 7本のスプロケットホール形成用パンチ 1622に対応する位置にス プロケットホール形成用ダイ孔 1632が形成され、ツーリングホール形成用パンチ 16 26に対応する位置にツーリングホール形成用ダイ孔 1636が形成されている。
[0085] このように、実施形態 4に係るフレキシブル基板の製造方法は、穿孔工程 S 120の 内容が実施形態 1に係るフレキシブル基板の製造方法の場合とは異なるが、実施形 態 1に係るフレキシブル基板の製造方法の場合と同様に、回路パターンの所定部分 (電極 414)を基準としてスプロケットホールを形成することとしたため、回路パターン を形成する過程で長尺シートが伸びたり歪んだりしたとしても、スプロケットホールと回 路パターンとを十分に高い相対的位置精度で形成することが可能となる。
[0086] また、実施形態 4に係るフレキシブル基板の製造方法によれば、回路パターンを形 成する過程で長尺シートが伸びたり歪んだりしたとしても、ツーリングホールと回路パ ターンとを十分に高い相対的位置精度で形成することが可能となる。このため、フレ キシブル基板に電子デバイスを実装する際に、ツーリングホールを基準として回路パ ターンと電子デバイスとの位置合わせを正確に行うことが可能となる。
[0087] また、実施形態 4に係るフレキシブル基板の製造方法によれば、スプロケットホール 420を形成する穿孔工程でツーリングホール 442をも形成することが可能となるため 、ツーリングホールを形成するための工程を別途実施する必要がなくなり、高い生産 性でフレキシブル基板を製造することが可能となる。
[0088] 〔実施形態 5〕
図 15は、実施形態 5に係るフレキシブル基板の製造方法を説明するために示す図 である。図 15 (a)〜図 15 (f)は実施形態 5に係るフレキシブル基板の製造方法にお ける各ステップを説明するために示す図である。
[0089] 実施形態 5に係るフレキシブル基板の製造方法は、基本的には実施形態 1に係る フレキシブル基板の製造方法と同様の方法であるが、実施形態 1に係るフレキシブ ル基板の製造方法とは穿孔工程の内容が異なる。すなわち、実施形態 5に係るフレ キシブル基板の製造方法においては、長尺シート移動工程 S 121 (図 15 (a)参照。) を行った後、次の長尺シート移動工程を行う前に、穿孔対象領域 550を 2つに分割し て得られる穿孔対象領域 550a, 550bについて、位置計測ステップ S122、穿孔位 置設定ステップ S 123及び穿孔ステップ S 124をそれぞれ 1回ずつ行うこととして!/、る
[0090] まず、穿孔対象領域 550aにおける回路パターン 510a (電極 514a)を撮影して、そ の位置を計測する(1回目の位置計測ステップ (図 15 (a)参照。))。次に、計測した 電極 514aを基準として穿孔対象領域 550aにおけるスプロケットホールの位置 522a を設定する(1回目の穿孔位置設定ステップ (図 15 (b)参照。))。最後に、設定したス プロケットホールの位置 522aに基づいてスプロケットホール 520aを形成する(1回目 の穿孔ステップ (図 15 (c)参照。))。
[0091] 続いて、穿孔対象領域 550bにおける回路パターン 510b (電極 514b)を撮影して 、その位置を計測する(2回目の位置計測ステップ (図 15 (d)参照。))。次に、計測し た電極 514bを基準として穿孔対象領域 550bにおけるスプロケットホールの位置 52 2bを設定する(2回目の穿孔位置設定ステップ (図 15 (e)参照。))。最後に、設定し たスプロケットホールの位置 522bに基づ!/、てスプロケットホール 520bを形成する(2 回目の穿孔ステップ (図 15 (f)参照。))。
[0092] このように、実施形態 5に係るフレキシブル基板の製造方法は、穿孔工程の内容が 実施形態 1に係るフレキシブル基板の製造方法の場合とは異なるが、回路パターン の所定部分又は回路パターン以外の他のパターンにおける所定部分 (電極 514a, 5 14b)を基準としてスプロケットホール 520a, 520bを形成することとしたため、実施形 態 1に係るフレキシブル基板の製造方法の場合と同様に、回路パターンを形成する 過程で長尺シートが伸びたり歪んだりしたとしても、スプロケットホールと回路パターン とを十分に高い相対的位置精度で形成することが可能となる。
[0093] 〔実施形態 6〕
図 16は、実施形態 6に係るフレキシブル基板の製造方法を説明するために示す図 である。
実施形態 6に係るフレキシブル基板の製造方法は、基本的には実施形態 1に係る フレキシブル基板の製造方法と同様の方法であるが、実施形態 1に係るフレキシブ ル基板の製造方法とは穿孔工程の内容が異なる。すなわち、実施形態 6に係るフレ キシブル基板の製造方法は、幅広の長尺シート Wを用いてフレキシブル基板を製造 する方法であって、図 16に示すように、穿孔工程 S 124で 6列のスプロケットホール 6 20a, 620a, 620b, 620b, 620c, 620cを形成することとして!/ヽる。
[0094] このように、実施形態 6に係るフレキシブル基板の製造方法は、穿孔工程の内容が 実施形態 1に係るフレキシブル基板の製造方法の場合と異なるが、回路パターンの 所定部分又は回路パターン以外の他のパターンにおける所定部分 (電極 614a, 61 4b, 614c)を基準としてスプロケットホール 620a, 620a, 620b, 620b, 620c, 620 cを形成することとしたため、実施形態 1に係るフレキシブル基板の製造方法の場合と 同様に、回路パターンを形成する過程で長尺シートが伸びたり歪んだりしたとしても、 スプロケットホールと回路パターンとを十分に高い相対的位置精度で形成することが 可能となる。
[0095] 以上、本発明のフレキシブル基板の製造方法、穿孔装置、穿孔用金型及び電子デ バイス実装回路を上記の各実施形態に基づいて説明したが、本発明は、上記の各 実施形態に限定するものではなぐその要旨を逸脱しない範囲において種々の態様 において実施することが可能であり、例えば次のような変形も可能である。
[0096] (1)上記の実施形態 1に係るフレキシブル基板の製造方法にお!、ては、長尺シートと して、回路パターンのすべて(配線パターン 112、電極 114及びスルーホール 116) が形成された長尺シートを準備することとしているが、本発明はこれに限定されるもの ではない。例えば、回路パターンの一部(例えば、配線パターン、スルーホールなど 。)のみが形成された長尺シートを準備することとしてもょ 、。
[0097] (2)上記の実施形態 1及び 4〜6に係るフレキシブル基板の製造方法にぉ 、ては、回 路ノ《ターン 110, 410, 510, 610 (電極 114, 414, 514a, 514b, 614)を位置の基 準として計測することとし、実施形態 2又は 3に係るフレキシブル基板の製造方法に おいては、回路パターン以外の他のパターン(ァライメントマーク 215, 315)を位置 の基準として計測することとしているが、本発明はこれに限定されるものではない。例 えば、電極以外の回路パターン(配線パターン、スルーホール、ビアホールなど)又 はァライメントマーク 215, 315以外の他のパターン(デバイスホール、ガイドホール、 ツーリングホールなど)における所定部分を位置の基準として計測することとしてもよ い。
[0098] (3)上記の実施形態 4に係るフレキシブル基板の製造方法にぉ 、ては、スプロケット ホール 420の形成に加えてツーリングホール 442を形成することとしている力 本発 明は、これに限定されるものではなぐスプロケットホールの形成に加えてスルーホー ルを形成することとしてもよ 、。
[0099] (4)上記の実施形態 5に係る穿孔用金型 1610aは、ツーリングホール形成用パンチ 1626をさらに有するパンチ用金型 1620a及びツーリングホール形成用ダイ孔 1636 力 Sさらに設けられているダイ用金型 1630aを有する穿孔用金型である力 本発明は これに限定されるものではない。例えば、ツーリングホール形成用パンチに代えてス ルーホール形成用パンチを有するパンチ用金型及びツーリングホール形成用ダイ孔 に代えてスルーホール形成用ダイ孔が設けられているダイ用金型を有する穿孔用金 型であってもよ 、し、ツーリングホール形成用パンチ及びスルーホール形成用パンチ を有するパンチ用金型及びツーリングホール形成用ダイ孔及びスルーホール形成用 ダイ孔が設けられて ヽるダイ用金型を有する穿孔用金型であってもよ ヽ。
符号の説明
[0100] 100…電子デバイス実装回路シート、 102…電子デバイス実装回路、 110, 210, 3 10, 410, 510a, 510b…回路ノ《ターン、 112···配線パターン、 114, 214, 314, 4 14, 514a, 514b, 614a, 614b, 614c…電極、 115, 215, 315···ァライメントマー ク、 116···スルーホール、 117···ノ ンプ、 118···デバイスホール、 120、 220, 320, 420, 520a, 520b, 620a, 620b, 620c, 620d…スプロケッ卜ホール、 122, 222, 322, 422, 522a, 522b…スプロケットホール形成位置、 130···フレキシブル基板、 140---LSI, 142···榭脂、 150, 550, 550a, 550b…穿孔対象領域、 160···穿孔可 能位置、 1000···穿孔装置、 1100···装置本体、 1110···機台、 1120···プレー K 12 00···繰り出し機構、 1300…巻き取り機構、 1400…テンション機構、 1500…移動機 構、 1600···穿孔機構、 1610, 1610a…穿孔用金型、 1620, 1620a…ノ ンチ用金 型、 1622…スプロケットホール形成用パンチ、 1624···照明用孔、 1626···ツーリン グホール形成用パンチ、 1630···ダイ用金型、 1632…スプロケットホール形成用ダイ 孔、 1634…撮影用孔、 1636···ツーリングホール形成用ダイ孔、 1640…フレーム、 1650…パンチ駆動機構、 1660…撮像素子、 1662, 1664···照明用光源、 1670, 1710, 1720···クランパ、 W…長尺シート

Claims

請求の範囲
[1] 電子デバイス実装回路を製造するために用いるフレキシブル基板の製造方法であ つて、
回路パターンが形成された長尺シートを準備する長尺シート準備工程と、 前記回路パターンの所定部分又は前記回路パターン以外の他のパターンにおけ る所定部分を基準として穿孔装置を用いて前記長尺シートにスプロケットホールを形 成する穿孔工程とをこの順序で含むことを特徴とするフレキシブル基板の製造方法。
[2] 請求項 1に記載のフレキシブル基板の製造方法にぉ 、て、
前記穿孔工程にぉ 、ては、前記回路パターンの所定部分又は前記他のパターン における所定部分を基準として前記長尺シートにツーリングホールをも形成すること を特徴とするフレキシブル基板の製造方法。
[3] 請求項 1又は 2に記載のフレキシブル基板の製造方法にぉ 、て、
前記穿孔工程にぉ 、ては、前記回路パターンの所定部分又は前記他のパターン における所定部分を基準として前記長尺シートにスルーホールをも形成することを特 徴とするフレキシブル基板の製造方法。
[4] 請求項 1〜3の 、ずれかに記載のフレキシブル基板の製造方法にぉ 、て、
前記穿孔工程は、
前記長尺シートにおける穿孔対象領域を前記穿孔装置における穿孔可能位置に 移動させる長尺シート移動ステップと、
前記穿孔対象領域における前記回路パターンの所定部分又は前記他のパターン における所定部分を撮影して前記回路パターンの所定部分又は前記他のパターン における所定部分の位置を計測する位置計測ステップと、
前記位置計測ステップで計測された前記回路パターンの所定部分又は前記他の ノ ターンにおける所定部分を基準として、少なくとも前記穿孔対象領域に形成する予 定のスプロケットホールの穿孔位置を設定する穿孔位置設定ステップと、
前記穿孔位置設定ステップで設定した穿孔位置に穿孔加工を行う穿孔ステップと を含むことを特徴とするフレキシブル基板の製造方法。
[5] 請求項 1〜4のいずれかに記載のフレキシブル基板の製造方法に用いるための穿 孔装置であって、
前記長尺シートにおける穿孔対象領域を前記穿孔装置における穿孔可能位置に 移動させる長尺シート移動機構と、
前記穿孔対象領域における前記回路パターンの所定部分又は前記他のパターン における所定部分を撮影して前記回路パターンの所定部分又は前記他のパターン における所定部分の位置を計測する位置計測機構と、
前記位置計測機構により計測された前記回路パターンの所定部分又は前記他の ノ ターンにおける所定部分を基準として、少なくとも前記穿孔対象領域に形成する予 定のスプロケットホールの位置を設定する穿孔位置設定機構と、
前記穿孔可能位置内において移動可能で、かつ、前記穿孔位置設定機構により 設定されたスプロケットホールの穿孔位置に穿孔加工を行う穿孔機構とを備えること を特徴とする穿孔装置。
[6] 請求項 1〜4のいずれかに記載のフレキシブル基板の製造方法に用いるための穿 孔用金型であって、
スプロケットホール形成用パンチを有するパンチ用金型と、スプロケットホール形成 用ダイ孔が設けられたダイ用金型とを有し、
前記パンチ用金型又は前記ダイ用金型には、撮影用孔が設けられていることを特 徴とする穿孔用金型。
[7] 請求項 6に記載の穿孔用金型において、
前記パンチ用金型は、複数のスプロケットホール形成用パンチが所定間隔で列を なす列構造を有することを特徴とする穿孔用金型。
[8] 請求項 7に記載の穿孔用金型において、
前記パンチ用金型は、前記列構造を少なくとも 2列有することを特徴とする穿孔用 金型。
[9] 請求項 6〜8の 、ずれかに記載の穿孔用金型にぉ 、て、
前記パンチ用金型は、ツーリングホール形成用パンチをさらに有し、
前記ダイ用金型には、ツーリングホール形成用ダイ孔がさらに設けられていることを 特徴とする穿孔用金型。
[10] 請求項 6〜9の 、ずれかに記載の穿孔用金型にお!ヽて、
前記パンチ用金型は、スルーホール形成用パンチをさらに有し、
前記ダイ用金型には、スルーホール形成用ダイ孔がさらに設けられていることを特 徴とする穿孔用金型。
[11] 請求項 1〜4のいずれかに記載のフレキシブル基板の製造方法によって製造され たフレキシブル基板に電子デバイスが実装された電子デバイス実装回路。
PCT/JP2006/304594 2006-03-09 2006-03-09 フレキシブル基板の製造方法、穿孔装置、穿孔用金型及び電子デバイス実装回路 WO2007102223A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/304594 WO2007102223A1 (ja) 2006-03-09 2006-03-09 フレキシブル基板の製造方法、穿孔装置、穿孔用金型及び電子デバイス実装回路
JP2008503718A JP4969565B2 (ja) 2006-03-09 2006-03-09 フレキシブル基板の製造方法及び穿孔装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304594 WO2007102223A1 (ja) 2006-03-09 2006-03-09 フレキシブル基板の製造方法、穿孔装置、穿孔用金型及び電子デバイス実装回路

Publications (1)

Publication Number Publication Date
WO2007102223A1 true WO2007102223A1 (ja) 2007-09-13

Family

ID=38474670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304594 WO2007102223A1 (ja) 2006-03-09 2006-03-09 フレキシブル基板の製造方法、穿孔装置、穿孔用金型及び電子デバイス実装回路

Country Status (2)

Country Link
JP (1) JP4969565B2 (ja)
WO (1) WO2007102223A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517558A (zh) * 2012-06-20 2014-01-15 富葵精密组件(深圳)有限公司 封装基板、其制作方法及封装结构
WO2015052783A1 (ja) * 2013-10-08 2015-04-16 株式会社 ベアック 穿孔装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038687A (ja) * 1999-07-30 2001-02-13 Uht Corp テープ状物の穿孔ユニット
JP2002018795A (ja) * 2000-07-05 2002-01-22 Ngk Spark Plug Co Ltd 配線基板の製造方法
JP2002307386A (ja) * 2001-04-09 2002-10-23 Canon Inc プリント基板の穴あけ加工装置及び方法
JP2003258405A (ja) * 2002-02-27 2003-09-12 Seiko Epson Corp 配線基板の製造方法及び製造装置
JP2004291159A (ja) * 2003-03-27 2004-10-21 Denshi Seiki:Kk パンチング装置およびパンチング方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038687A (ja) * 1999-07-30 2001-02-13 Uht Corp テープ状物の穿孔ユニット
JP2002018795A (ja) * 2000-07-05 2002-01-22 Ngk Spark Plug Co Ltd 配線基板の製造方法
JP2002307386A (ja) * 2001-04-09 2002-10-23 Canon Inc プリント基板の穴あけ加工装置及び方法
JP2003258405A (ja) * 2002-02-27 2003-09-12 Seiko Epson Corp 配線基板の製造方法及び製造装置
JP2004291159A (ja) * 2003-03-27 2004-10-21 Denshi Seiki:Kk パンチング装置およびパンチング方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517558A (zh) * 2012-06-20 2014-01-15 富葵精密组件(深圳)有限公司 封装基板、其制作方法及封装结构
WO2015052783A1 (ja) * 2013-10-08 2015-04-16 株式会社 ベアック 穿孔装置

Also Published As

Publication number Publication date
JP4969565B2 (ja) 2012-07-04
JPWO2007102223A1 (ja) 2009-07-23

Similar Documents

Publication Publication Date Title
JP2007260993A (ja) スクリーン印刷装置
WO2006088113A3 (en) Electronic component mounting system and electronic component mounting method
CN104078404B (zh) 电子部件的制造装置及其制造方法
US5975178A (en) Manufacturing method of film carrier tape, manufacturing apparatus of film carrier tape, and film carrier tape
WO2007102223A1 (ja) フレキシブル基板の製造方法、穿孔装置、穿孔用金型及び電子デバイス実装回路
JP2001113667A (ja) スクリーン印刷用メタルマスクとその製造方法
JP2005138341A (ja) ペースト材料の印刷方法及びその印刷装置
JP2003053696A (ja) 可撓性を有するワークの穿孔装置
JP5067667B2 (ja) 印刷方法
JP4993397B2 (ja) カバーレイフィルムの穿孔方法
US6954272B2 (en) Apparatus and method for die placement using transparent plate with fiducials
JP2004261926A (ja) 穴明け装置
JP5010592B2 (ja) スプロケットホール付き長尺シートの製造方法
JP2012098140A (ja) 加工位置の計測方法
JP2004200607A (ja) 集合プリント配線板
US20230014796A1 (en) Screen mask inspection device, solder printing inspection device, and method for inspecting screen mask
JP2006224226A (ja) ハンドパンチおよびその位置決め調整装置
JP5726841B2 (ja) 基板印刷装置
JPH11347656A (ja) プレス装置
JP2004274081A (ja) フレキシブルプリント配線板の位置合せ方法及びその装置
JP2000246692A (ja) テープ状物の穿孔装置
JP2980584B1 (ja) テープ状物の穿孔装置
JP2006210387A (ja) 配線板、読取装置、及び配線板情報読取システム
JP2007048975A (ja) セラミック基板の分割装置及び分割方法
JP3889527B2 (ja) 位置決め機構を備えたテープガイド装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008503718

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06715465

Country of ref document: EP

Kind code of ref document: A1