WO2007099842A1 - 光ヘッド装置、光情報装置、コンピュータ、光ディスクプレーヤー、光ディスクサーバー、カーナビゲーションシステム及び光ディスクレコーダー - Google Patents

光ヘッド装置、光情報装置、コンピュータ、光ディスクプレーヤー、光ディスクサーバー、カーナビゲーションシステム及び光ディスクレコーダー Download PDF

Info

Publication number
WO2007099842A1
WO2007099842A1 PCT/JP2007/053253 JP2007053253W WO2007099842A1 WO 2007099842 A1 WO2007099842 A1 WO 2007099842A1 JP 2007053253 W JP2007053253 W JP 2007053253W WO 2007099842 A1 WO2007099842 A1 WO 2007099842A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
optical
information
light
head device
Prior art date
Application number
PCT/JP2007/053253
Other languages
English (en)
French (fr)
Inventor
Kousei Sano
Yoshiaki Komma
Kanji Wakabayashi
Hidenori Wada
Keiichi Matsuzaki
Toshiyasu Tanaka
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007099842A1 publication Critical patent/WO2007099842A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation

Definitions

  • Optical head device optical information device, computer, optical disk player, optical disk server, car navigation system, and optical disk recorder
  • the present invention reproduces information from an information storage medium represented by an optical disc, or records information on the information storage medium, and reproduces or records information by using the optical information apparatus.
  • the present invention relates to an optical head device.
  • DVDs Digital versatile discs
  • CDs compact discs
  • an optical disc having a larger capacity has been demanded.
  • NA numerical aperture
  • the DVD uses a light source with a wavelength of 660 nm and an objective lens with a numerical aperture (NA) O.6.
  • NA numerical aperture
  • a light emission pattern for recording is controlled by a laser driver IC as a light source driver. By performing the wave superposition, the amount of light can be stabilized.
  • Patent Document 1 As an optical head device having two light sources, a laser driver is known that is disposed between two light sources. This will be described with reference to FIG.
  • two semiconductor lasers 20 and semiconductor lasers 21 having different emission wavelengths are arranged on the optical base 10.
  • the light emitted from the semiconductor laser 20 or 21 passes through an optical system (not shown) and is irradiated from the objective lens 30 onto an optical disk as an information storage medium.
  • the optical disk is rotated by the motor 40.
  • the laser driver 50 is disposed between the semiconductor laser 20 and the semiconductor laser 21 and controls the light emission pattern of each semiconductor laser.
  • Patent Document 1 discloses an example in which a laser driver is arranged downstream of a light source with respect to an air flow. This will be described with reference to FIG.
  • the laser driver 50 disposed on the optical base 60 is disposed next to the semiconductor laser 21 and controls the light emission pattern of each semiconductor laser. Even if the optical disk is rotated clockwise by the motor 42, the laser driver 50 is downstream of the semiconductor laser 21. Therefore, the semiconductor laser 21 is affected by the air heated by the heat generated by the laser driver 50. This can be avoided.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-196923
  • An object of the present invention is to provide an optical head device that solves the above-described problems.
  • Another object of the present invention is to provide an optical head device in which the operation of a light source is stable and high frequency driving is possible. Is to provide.
  • An optical head device is an optical head device configured to be able to irradiate light to a disk-shaped information recording medium rotated by a motor, and emits light of a first wavelength.
  • a lens a second objective lens for condensing the light from the second light source on the information storage medium, a detector for detecting the light returned from the information storage medium, and the light emission of the first light source and A light source driver that controls light emission of the second light source, wherein the light source driver includes a virtual first straight line that connects the rotation center of the motor and the first light source, and the rotation center of the motor.
  • the light source driver includes a virtual first straight line that connects the rotation center of the motor and the first light source, and the rotation center of the motor.
  • On the narrow angle side formed by a virtual second straight line connecting the second light source and the light source Driver is characterized by being located closer to said information recording medium than the first light source and the second light source.
  • FIG. 1A is a schematic top view of a part of an optical information device and an optical head device according to Embodiment 1 of the present invention
  • FIG. 1B is a schematic side view thereof.
  • FIG. 2 is a configuration diagram of an optical system of the optical head device in the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a schematic configuration of the optical information apparatus.
  • FIG. 4A is a schematic top view showing an arrangement of main electrical components of the optical head device
  • FIG. 4B is a schematic side view of the optical head device
  • FIG. 4C is an external view of a laser driver. It is a figure.
  • FIG. 5 is a conceptual diagram showing a signal flow in the optical head device.
  • FIG. 6 is a schematic top view showing a modification of the optical head device.
  • FIG. 7 is a schematic top view showing another modification of the optical head device.
  • FIG. 8A is a schematic side view of the optical head device according to Embodiment 2 of the present invention.
  • FIG. 8B is a schematic side view of the modified example.
  • FIG. 9A is a perspective view of a lens holder provided in the optical head device according to Embodiment 3 of the present invention
  • FIG. 9B is a perspective view of a conventional lens holder.
  • FIG. 10A is a perspective view of a modified example of the lens holder
  • FIG. 10B is a perspective view of the lens holder. It is a perspective view of another modification.
  • FIG. 11 is an external view of a computer according to Embodiment 4 of the present invention.
  • FIG. 12 is an external view of an optical disc recorder according to Embodiment 5 of the present invention.
  • FIG. 13 is an external view of an optical disc player according to Embodiment 6 of the present invention.
  • FIG. 14 is an external view of a server according to Embodiment 7 of the present invention.
  • FIG. 15 is an external view of a car navigation system according to Embodiment 8 of the present invention.
  • FIG. 16 is a schematic top view of a conventional optical head device.
  • FIG. 17 is a schematic top view of a conventional optical head device.
  • FIG. 1A and 1B schematically show an optical head device applied to an embodiment of an optical information device according to the present invention.
  • the optical head device 100 includes an optical base 120.
  • the optical base 120 is supported by a guide shaft 110 and a guide shaft 111 fixed to a disk drive chassis (not shown). Both guide shafts 110 and 111 are arranged so as to extend in a direction parallel to the radial direction of an optical disc (not shown here) as an information storage medium.
  • the motor 112 is fixed to the chassis, and the optical disk is chucked by the turntable of the motor 112 and rotates around the rotation axis of the motor 112.
  • the optical base 120 is supported by the guide shaft 110 so as to be movable in the axial direction via bearings 121 and 122 (first bearings), and is guided through a bearing 123 (second bearing). 111 is supported so as to be movable in the axial direction.
  • the feed screw 124 is installed in parallel with the guide shaft 110, and the feed screw 124 is rotated by the feed motor 125.
  • the screw coupling portion 126 is fixed to the optical base 120.
  • the screw coupling portion 126 meshes with the feed screw 124, thereby rotating the feed screw 124 to the guide shafts 110 and 111. Convert to movement of optical base 120 in parallel direction.
  • the optical base 120 is provided with a notch having a circular cross section. Due to the presence of this notch, the optical head device 100 and the motor 112 do not collide even when the optical head device 100 and the motor 112 approach to access the inner track of the optical disk.
  • An actuator 200 is fixed to the optical base 120 of the optical head device 100, and an objective lens 201 (first objective lens) for a high-density optical disc is mounted on a movable part of the actuator 200, An objective lens 202 (second object lens) for a medium density optical disk and a low density optical disk is mounted so as to be movable in a focus direction and a tracking direction.
  • an objective lens 201 first objective lens
  • an objective lens 202 second object lens for a medium density optical disk and a low density optical disk is mounted so as to be movable in a focus direction and a tracking direction.
  • the light emitted from the blue semiconductor laser 203 as the first light source passes through the optical system, is condensed by the objective lens 201, and is condensed on the information surface of the high-density optical disc.
  • the light reflected and diffracted by the optical disk passes through the objective lens 201 again, enters the photodetector 204 as a detector, and is converted into an electrical signal.
  • the light emitted from the LDPD module 205 for DVD in which the red semiconductor laser as the second light source and the photodetector are integrated, passes through the optical system, and is condensed by the objective lens 202, and is a medium density disk. It is focused on the information surface of the DVD.
  • the light reflected and diffracted by the disc passes through the objective lens 202 again, enters the photodetector of the LDPD module 205 for DVD, and is converted from light to an electrical signal.
  • light emitted from the LDPD module 206 for CD which combines an infrared semiconductor laser and a photodetector, passes through the optical system and is collected by the objective lens 202 and collected on the information surface of the CD, which is a low-density optical disk. Lighted.
  • the light reflected and diffracted by the optical disk passes through the objective lens 202 again, enters the photodetector of the LDPD module 205 for DVD, and is converted from light to an electrical signal.
  • the actuator 200, the blue semiconductor laser 203, the photodetector 204, the DVD LDPD module 205, and the CD LDPD module 206 are fixed to the optical base 120.
  • FIG. 1B is a side view of the optical head device 100 and a part of the optical disk drive.
  • FIG. 2 shows a configuration diagram of an optical system portion of the optical head device 100.
  • the blue semiconductor laser 203 emits light having a first wavelength of about 405 nm (wavelength ⁇ 1). Since this wavelength ⁇ 1 varies depending on the individual laser, it is about 395 nm and about 450 nm.
  • the light emitted from the blue semiconductor laser 203 is incident on a beam scanner 301 as beam shaping means.
  • the beam shaper 301 corrects the deviation of the light intensity distribution depending on the direction.
  • the light transmitted through the beam shaper 301 is incident on an ND filter attached to a filter switching element 302 serving as a dimming means.
  • the ND filter adjusts the amount of transmitted light.
  • the light transmitted through the filter switching element 302 is reflected by a polarization beam splitter 303 as a branching unit.
  • the light reflected by the polarization beam splitter 303 is incident on a collimator lens 305 which is a spherical aberration correction unit, and is made almost parallel light.
  • the collimator lens 305 is attached to the collimator lens driving element 304.
  • the collimator lens driving element 304 changes the degree of convergence of light after passing through the collimator lens by changing the position of the collimator lens 305.
  • the light transmitted through the collimator lens 305 is bent at a right angle by the rising mirror 306, passes through a 1Z4 wavelength plate (not shown), and enters the objective lens 201.
  • the light condensed by the objective lens 201 is applied to an optical disk as a disk-shaped information storage medium.
  • the optical disk here is an optical disk such as Blu-ray Disc (BD) that is supposed to be recorded and reproduced with blue light.
  • BD Blu-ray Disc
  • the polarization direction of light rotates 90 degrees.
  • the light that has passed through the 1Z4 wavelength plate passes through the collimator lens 305 and passes through the polarization beam splitter 303.
  • the light transmitted through the polarization beam splitter 303 is given astigmatism by the detection lens 307, enters the photodetector 204, and is converted into an electric signal.
  • the LDPD module 205 in which the red semiconductor laser and the photodetector are integrated emits light having a second wavelength of about 660 nm (wavelength ⁇ 2). Since this wavelength 2 varies depending on the laser individual and type, it is about 620 ⁇ m to 690 nm.
  • the light emitted from the LDPD module 205 is reflected by the surface of the wedge prism 320 and becomes parallel light by the collimator lens 321.
  • the light transmitted through the collimator lens 321 is bent at a right angle by the rising mirror 306 and enters the objective lens 202.
  • the light condensed by the objective lens is irradiated onto an optical disk as an information storage medium.
  • the optical disc here is DVD It is an optical disc that is supposed to be recorded and played back with red light.
  • the light reflected and diffracted by the disk passes through the objective lens 202 and the collimator lens 321 again, is reflected by the wedge prism 320, and enters the LDPD module 205.
  • the light detector in the LDPD module 205 outputs an electrical signal corresponding to the amount of light received.
  • the LDPD module 206 in which the infrared semiconductor laser and the photodetector are integrated emits light having a third wavelength of about 790 nm (wavelength ⁇ 3). Since this wavelength 3 varies depending on the laser individual and type, it is about 770 ⁇ m to 820 nm.
  • the light emitted from the LDPD module 206 passes through the wedge-shaped prism 320, and becomes substantially parallel light at the collimator lens 321.
  • the light transmitted through the collimator lens 321 is bent at a right angle by the rising mirror 306 and enters the objective lens 202.
  • the light condensed by the objective lens 202 is irradiated onto an optical disk as an information storage medium.
  • the optical disk here is an optical disk that is assumed to be recorded or reproduced with infrared light, such as a compact disk (CD).
  • the light reflected and diffracted by the optical disk disc passes through the objective lens 202 and the collimator lens 321 again, passes through the wedge prism 320, and enters the LDPD module 206.
  • the photodetector in the LDPD module 206 outputs an electrical signal corresponding to the amount of light received.
  • the wedge-shaped prism 320 is provided with a wavelength-selective film that reflects light having a red wavelength and transmits light having an infrared wavelength.
  • the objective lens 202 is designed so that aberrations are reduced when red light is incident on an optical disk having a substrate thickness of 0.6 mm. This makes red light the best light for DVDs.
  • the objective lens 202 is designed so that aberration is reduced when infrared light is incident on a disk having a substrate thickness of 1.2 mm. This makes infrared light optimal for CDs.
  • the optical disk drive 700 includes an optical head device 100, a motor 112, a control circuit 701 as an electric circuit, a signal processing circuit 702, and an input / output circuit 703.
  • the control circuit 701 receives a signal output from the optical head device 100 and controls the rotation of the motor 112 and the laser light source 203 based on the signal.
  • the reproduction signal output from the control circuit 701 is processed by the signal processing circuit 702, and the input / output circuit 703 is processed. Force is also output as data. Further, the data input to the input / output circuit 703 is also input to the external force by the signal processing circuit 702, and is converted into a modulated light amount of the laser light source 203 and the like through the control circuit 701 and recorded on the optical disk 707.
  • FIG. 4A is a top view showing an arrangement of main electrical components such as a flexible substrate 400 as a wiring substrate of the optical head device 100, a laser driver 410 as a light source driver, and a semiconductor laser 203.
  • the flexible substrate 400 has an appropriate softness and bends freely so that the optical head device 100 does not hinder the movement even if the optical head device 100 moves along the guide shaft 111 from the inner periphery to the outer periphery of the optical disc 707.
  • the flexible substrate 400 has a connector 420, and is connected to the control circuit 701 of the optical disc drive 700, a power supply (not shown), and the like through the connector 420.
  • a laser driver 410, a blue semiconductor laser 203, a photodetector 204, an LDPD module 205 for DVD, an LDPD module 206 for CD, and an actuator 200 are electrically connected to the flexible substrate 400.
  • the flexible substrate 400 has a main body 401 that extends along the optical disc 707 and a bent portion 402 that is bent with respect to the main body 401 in a direction away from the optical disc 707.
  • the laser driver 410 and the activator 200 are disposed in the main body 401.
  • the blue semiconductor laser 203, the photodetector 204, the DVD LDPD module 205, and the CD LDPD module 206 are disposed in the bent portion 402.
  • the laser driver 410 is disposed within a range on the narrower side between the virtual first straight line L1 and the virtual second straight line L2.
  • a virtual first straight line L 1 is a straight line connecting the light emitting point of the blue semiconductor laser 203 and the center of the motor 112.
  • a virtual second straight line L2 is a straight line connecting the light emitting point of the LD PD module 205 for DVD and the center of the motor 112.
  • the laser driver 410 is arranged at a position shifted in the radial direction of the optical disc 707 with respect to the blue semiconductor laser 203 and the LDPD module 205 for DVD. Specifically, the distance D2 from the motor 112 to the center of the laser driver 410 is arranged to be longer than the distance D1 from the motor 112 to the light emitting point of the blue semiconductor laser 203. That is, the laser driver 410 is arranged on the outer side in the radial direction than the blue semiconductor laser 203. In FIG. 4A, the laser driver 410 and the blue semiconductor laser 20 are particularly viewed in the circumferential direction. If 3 and 3 are not overlapped, they are misaligned in the radial direction.
  • FIG. 4B shows a side view of the optical head device 100.
  • the flexible substrate 400 is arranged on the optical disk side with respect to the optical base 120, and the laser driver 410 is further arranged on the disk side with respect to the flexible substrate 400.
  • the flexible substrate 400 is disposed so as to pass between the optical disk 707 and the optical base 120, and the laser driver 410 is located between the flexible substrate 400 and the optical disk 707.
  • Each light source blue semiconductor laser 203 and DVD LDPD module 205) is arranged farther from the optical disc 707 than the main body 401 of the flexible substrate 400.
  • the laser driver 410 generates heat, the heated air is quickly diffused by the movement of the air due to the rotation of the optical disk 707.
  • the warmed air passes through the outer peripheral side of each light source (blue semiconductor laser 203 and DVD LDPD module 205) and passes through the side closer to the optical disc 707 than each light source.
  • the effect of increasing the temperature around the light source can be reduced. Since the main body 401 of the flexible substrate 400 exists between each light source and the laser driver 410, it is possible to effectively suppress the temperature around the light source from being raised. This makes it possible to stably operate the semiconductor laser of each light source.
  • the laser driver 410 is arranged on the side where the angle between the first straight line L1 and the second straight line L2 is narrow, so that the distance from the laser driver 410 to the blue semiconductor laser 203 and the laser driver 410 to the DVD
  • the distance to the LDPD module 205 is substantially the same distance, and these distances can be sufficiently short. Therefore, high-speed recording modulation and high-frequency superposition can be performed stably.
  • the signal used must have a steep waveform with rise and fall times of about lnsec during recording.
  • high-frequency superimposition a frequency of about 300 MHz to 500 MHz is superimposed on the laser drive current, and the laser light is oscillated in multi-mode to stabilize the light quantity during reproduction. At this frequency, the signal propagates with sufficient efficiency if it is about 1 to 2 cm, but if it exceeds 5 cm, the signal may be attenuated and a sufficient signal amplitude may not be obtained.
  • the laser driver 410 has a flat, substantially rectangular parallelepiped shape as shown in FIG. 4C, and the input / output terminal 411 is provided so that its four-way force protrudes.
  • Figure 4C The shape is shown, and the number of terminals 411 is not limited to this figure.
  • the laser driver 410 is arranged so that an angle formed by a straight line extending from one side of the rectangle constituting the upper surface and the guide shaft 111 is 45 degrees.
  • FIG. 5 shows the relationship of main signal exchange between the flexible substrate 400 and each electrical component.
  • a signal 451 for controlling each semiconductor laser is input from the connector 420 to the laser driver 10. This signal 451 is transmitted through a signal line extending in a direction parallel to the guide shaft 111.
  • a signal 452 for causing the blue semiconductor laser 203 to emit light is output from the laser driver 410 and input to the semiconductor laser 203. Signal 452 controls the emission of the blue laser.
  • a signal 453 for controlling the light emission of the LDPD module 205 for DVD is output from the laser driver 410.
  • Signal 453 controls the emission of the red laser.
  • a signal 454 for controlling the light emission of the CD LDPD module 206 is output from the laser driver 410.
  • Signal 454 controls the emission of the infrared laser.
  • An electrical signal 460 corresponding to the received light is output from the photodetector 204 to the connector 420.
  • an electrical signal 461 corresponding to the amount of received light is output to the connector 420.
  • it is output toward the electrical signal 462 force connector 420 output from the LDPD module 206 for CD.
  • the drive signal 463 of the actuator 200 is output from the connector 420 and input to the actuator 200.
  • Each arrow indicates the concept of the direction in which the signal flows. Each arrow is not limited to a single signal line, and may be composed of a plurality of signal lines. Also, power supply lines and ground lines for each electrical component are omitted.
  • the laser driver 410 is provided with signals for controlling the three light sources from the connector 420 and wiring for transmitting the control signals to the respective light sources. For this reason, by arranging the sides of the guide shaft 111 so as to be inclined at an angle of about 45 degrees, the signal lines coming out of the terminals 411 are easily arranged so as to be directed to the light sources. If the laser driver 410 is placed so that one side is 90 degrees or 0 degrees, it faces the connector 420! /, And the signal line can be easily connected to the terminal 411 provided on the matching side and the side parallel to it!
  • the signal line if the signal line is to be connected to the terminal 411 on the side parallel to the guide shaft 111, the signal line must be bent in a direction transverse to the signal transmission direction, and a large area is required for the wiring. It will be necessary.
  • the area of the flexible substrate 400 is limited, and if the wiring is narrowed to reduce the area, the impedance of the signal line increases, making it difficult to pass high-frequency signals.
  • the laser driver 410 should be arranged obliquely with respect to the direction of signal transmission (that is, the direction parallel to the guide shaft 111). It is effective.
  • the direction parallel to the guide shaft 111 is the direction in which the signal is transmitted, because the optical head device 100 moves along the guide shaft 111, so that the flexible substrate 400 is long in the direction parallel to the guide shaft 111. This is because the connector 420 is attached to the tip end of the joint.
  • FIG. 6 shows a modification.
  • the laser driver 471 on the flexible substrate 470 is arranged so that the angle formed by one side of the upper surface thereof and the guide shaft is 60 degrees.
  • the interval between the wires connected to the terminal 411 on the lower right side of the laser dryer 71 in FIG. Become.
  • 30 degrees can be secured as the angle formed by the straight line extending this side and the guide shaft 111, so it is possible to secure a half of the interval of the wiring connected to the terminal 411 on the lower left side. it can. As a result, it is possible to prevent the wiring from becoming too thin.
  • the wiring connecting the terminal 411 coming out from the upper left side of the laser driver 471 and the blue semiconductor laser 203 can be shortened, and the wiring can be easily routed. It is also the force that the upper left side of the laser driver 471 faces the blue semiconductor laser 203. Since the emission characteristics of the blue semiconductor laser 203 have a great influence on the characteristics of the optical head device 100, the effect of making this wiring short and easy to wire is great. Further, since the LDP D module 205 for DVD and the LDPD module 206 for CD are in the upper right position, the upper right side force of the laser driver 471 does not interfere with the signal line.
  • the force described in the example provided with the LDPD module for CD 206 that is a light source that emits the third wavelength ⁇ 3 is the LDPD module for CD that is the third light source.
  • the configuration may be such that the control 206 is omitted. That is, a light source that emits the first wavelength, a light source that emits the second wavelength, and the optical system thereof may be provided. Even with this configuration, the same effects as in the present embodiment can be obtained.
  • the laser dry power 470, 471 is configured to be arranged on the outer side in the radial direction of the optical disc 707 with respect to each light source. Alternatively, the optical disk 707 may be arranged on the inner side in the radial direction.
  • the force shown in the example in which the first objective lens 201 and the second objective lens 202 are separated and these are arranged in the tangential direction of the optical disc 707 is not limited thereto. is not.
  • two objective lenses 201 and 202 may be arranged in the radial direction, or the first objective lens and the second objective lens may be shared by one objective lens 210 as shown in FIG. Good. Even in this case, the same effect as in the first embodiment can be obtained.
  • FIG. 8A is a side view schematically showing the optical head device according to the second embodiment.
  • a laser driver 510 is disposed on the flexible substrate 500, and a metal cover 520 is provided so as to cover the laser driver 510.
  • the metal cover is formed by bending a metal plate, covers the upper surface of the laser driver 510, and extends along the upper surface of the main body 401 in the flexible substrate 500.
  • heat dissipating grease 530 is provided to increase the contact area between the metal cover 520 and the laser driver 510 to reduce the thermal resistance.
  • the heat dissipating grease 530 is applied to the upper surface of the laser driver 510, and the metal cover 520 is brought into close contact therewith, thereby increasing the contact area between the metal cover 520 and the laser driver 510.
  • heat generated by the laser driver 510 is efficiently transmitted to the metal cover 520. Since the metal cover 520 is disposed along the optical disc 707, it efficiently receives the movement of air when the optical disc 707 rotates. Therefore, heat is efficiently radiated from the metal cover 520. Thereby, the temperature rise of the laser driver 510 is suppressed. Since the metal cover 520 can have a larger surface area than the laser driver 510, it is advantageous for heat dissipation.
  • FIG. 8B shows a modification of the second embodiment.
  • a metal cover 540 is used instead of the metal cover 520.
  • the metal cover 540 is provided with heat radiating fins 541 in a part thereof. That is, unevenness is provided on one surface of the metal cover 540. Heat dissipation
  • the fins 541 are provided at positions that are susceptible to air movement when the optical disk 707 rotates. By providing the heat radiation fins 541, the surface area of the metal cover 540 is increased, whereby the metal cover 540 is efficiently cooled. Therefore, according to this metal cover 540, it is possible to further suppress the temperature rise more efficiently than the metal cover 520.
  • copper is desirable as the metal because of its high thermal conductivity, but aluminum, iron, magnesium, and stainless steel can similarly provide the effect of suppressing the temperature rise.
  • FIG. 9A shows a lens holder 600 provided in the optical head device according to the third embodiment.
  • This lens holder is, for example, the lens holder of the detection lens 307 shown in FIG.
  • the lens holder 600 includes a substantially cylindrical cylindrical portion 609 in which the detection lens 307 is accommodated, and a collar portion 604 as a protruding portion protruding from the cylindrical portion 609.
  • Two planes 602 and 603 are formed on the side surface of the cylindrical portion 609. These planes 602 and 603 each have a normal normal to the lens optical axis 601.
  • the plane 602 and the plane 603 are in surface contact with the two plane portions 606 and 607 formed on the optical base 120, respectively.
  • the plane 602 and the plane 603 are formed as mutually perpendicular planes.
  • the collar portion 604 extends in the tangential direction of the cylindrical portion 609 along one plane 603 of the cylindrical portion 609. Therefore, the side surface of the collar portion 604 has a flat shape in which the flat surface 603 is extended.
  • the detection lens 307 is positioned after being adjusted in the optical axis direction 601 (the direction of the arrow in the figure). That is, by moving the lens holder 600 in the optical axis direction 601 with respect to the optical base 120, the position of the light collected on the photodetector is adjusted. At the time of this adjustment, the collar portion 604 can be chucked with a jig and moved. After adjustment, the lens hono-redder 600 can be adhered and fixed to the optical base 120 by applying an adhesive 605 to the end of the collar 604. Since the side surface of the collar portion 604 is in surface contact with the flat surface portion 607 of the optical base 120 and the adhesive 605 is applied thereto, the application work of the adhesive 605 performed in a narrow space becomes easy.
  • FIG. 9B shows a conventional example.
  • the conventional detection holder 610 has planes 611 and 612 having normal lines perpendicular to the optical axis, and does not have a force brim that contacts the optical base 120 on two sides. For this reason, in order to adjust the detection lens 307, it is necessary to chuck both ends of the entire lens holder, which requires a large jig. Do not pour the adhesive into the small gap 613! Because of this, it is difficult to work.
  • FIG. 10A shows a modification.
  • the lens holder 620 has a convex portion 622 at the center of the collar portion 621. Since this convex portion 622 can be grasped when chucking with a jig, the size of the chuck portion of the jig can be further reduced.
  • FIG. 10B shows an example of another shape of the lens holder.
  • the collar 631 of the lens holder 630 has a recess 632 in the center.
  • the lens holder 630 can be chucked with a jig that expands the recess 632 from the inside. In this case as well, the chuck part can be made smaller.
  • the lens holder described in the present embodiment is used in this way, a jig suitable for adjusting the detection lens 307 with a narrow gap can be used. Even if the gap for performing the adjustment becomes narrower along with the shift to the adjustment, the adjustment work can be prevented from becoming complicated.
  • FIG. 11 shows a computer including the optical information device described in any one of the first to third embodiments.
  • the personal computer (computer) 1000 includes the optical information device 1001 according to Embodiment 1, the keyboard 1003 for inputting information, the information input from the keyboard 1003, and the information reproduced by the optical information device 1001.
  • a computing device 1004 that performs computation based on the information and a monitor 1002 for displaying information are provided.
  • the computer having any one of the optical information devices according to the first to third embodiments described above as an external storage device can stably record or reproduce information on different types of optical disks, and can be used in a wide range of applications. It will have.
  • Optical disks make use of their large capacity to back up hard disks in the computer 1000, media (optical disks) are inexpensive and easy to carry, and other optical information devices can read information. It is possible to exchange programs and data with people, or to carry them for yourself. It can also support playback and recording of existing media such as BD, DVD, and CD.
  • FIG. 12 shows an optical disk recorder (video recording apparatus) provided with the optical information apparatus described in any one of the first to third embodiments.
  • the optical disk recorder 1010 incorporates the optical information device according to Embodiment 1, and includes an encoder 1012 that converts image information into information recorded by the optical information device.
  • the optical disk recorder 1010 is used by being connected to a monitor -1011 for displaying the recorded video.
  • the optical disk recorder 1010 provided with the optical information device according to any one of the first to third embodiments described above has an effect that video can be stably recorded or reproduced on different types of optical disks, and can be used for a wide range of purposes. It will have.
  • An optical disk recorder can record video on media (optical disk) and play it back whenever you like.
  • On an optical disc after recording or recording a program that needs to be rewound after recording, such as tape, follow-up playback that plays back the beginning of the program, or recorded before recording a program. Simultaneous recording and reproduction for reproducing a program is possible.
  • the recorded video can be exchanged with people or carried for yourself. You can It also supports playback and recording of existing media such as BD, DVD and CD.
  • FIG. 13 shows an optical disc player (video reproduction device) provided with the optical information device described in any one of the first to third embodiments.
  • An optical disk player (video playback device) 1021 includes a liquid crystal monitor 1020 and incorporates the optical information device of Embodiments 1 to 4 to receive an information signal obtained from the optical information device.
  • a decoder 1022 for converting image information is provided.
  • the video recorded on the optical disc can be displayed on the liquid crystal monitor 1020.
  • This optical disc player 1021 can stably reproduce video on different types of optical discs, and has the effect of being widely used for various purposes.
  • the optical disc player can play the video recorded on the medium (optical disc) at any time.
  • An optical disc does not require a rewinding operation after reproduction like a tape, and can access and reproduce an arbitrary place of a video. It also supports playback of existing media such as BD, DVD and CD.
  • FIG. 14 shows a server equipped with the optical information device described in any one of the first to third embodiments.
  • the server 1030 includes the optical information device 1031 according to any one of Embodiments 1 to 3, the monitor 1033 for displaying information, the keyboard 1034 for inputting information, and external information. And an input / output terminal 1036 for exchanging data, and can be connected to the network 1035.
  • the server 1030 provided with the optical information device 1031 of any one of the first to third embodiments described above as an external storage device can stably record or reproduce information on different types of optical disks, and can be used in a wide range of applications. It has the effect that.
  • the optical disk drive uses its large capacity to send information (images, audio, video, HTML documents, text documents, etc.) recorded on the optical disk in response to requests from the network 1035. Also, the information sent by the network is recorded at the requested location. Also, since information recorded on existing media such as BD, DVD disc, CD disc, etc. can be played back, it is also possible to send such information.
  • FIG. 15 shows a car navigation system including the optical information device described in any one of the first to third embodiments.
  • a car navigation system 1040 includes the optical information device according to any one of Embodiments 1 to 3, and a decoder that converts an information signal obtained from the optical information device into image information. Used in connection with LCD monitor 1041 for displaying shape and destination information.
  • the car navigation system 1040 provided with the optical information device according to any one of the first to third embodiments described above is capable of stably recording or reproducing video on different types of optical disks, and can be used in a wide range of applications. It will have.
  • the car navigation system 1040 calculates the current position based on the map information recorded on the media (optical disc) and the ground position determination system (GPS), gyroscope, speedometer, odometer, etc. The position is displayed on the LCD monitor. When the destination is entered, the optimum route to the destination is determined based on the map information and road information and displayed on the LCD monitor.
  • the light source driver Since the light source driver is located on the narrow angle side formed by the first straight line and the second straight line, the wiring for connecting the light source driver and the first light source is shortened, and the light source The wiring connecting the driver and the second light source is shortened. As a result, transmission can be stabilized even when the recording frequency is high or the frequency of high frequency superposition is high. In addition, it is easy to handle the wiring. Since the light source driver is positioned closer to the information recording medium than both light sources, even if wind is generated by the rotation of the information recording medium, the light source is warmed by the air heated by the light source driver. Can be suppressed. Therefore, the output of the light source can be stabilized even when the amount of heat generated by the light source driver increases with high frequency.
  • the light source driver is configured to store the information on the first light source and the second light source. It is located at a position shifted in the radial direction of the recording medium. Therefore, even if wind is generated by the rotation of the information recording medium, it is possible to more effectively suppress the light source from being warmed by the air warmed by the light source driver.
  • the light source driver is located at a position shifted outward in the radial direction of the information recording medium with respect to the first light source and the second light source. Therefore, it is possible to effectively prevent the light source from being warmed while preventing the wiring connecting the light source driver and each light source from becoming long.
  • the optical head device includes wiring for electrically coupling the first light source, the second light source, the detector, and the light source driver, and exchanges electrical signals with the outside.
  • the wiring board has a main body portion extending along the information recording medium, and a bent portion bent from the main body portion in a direction away from the information recording medium.
  • the first light source and the second light source are disposed in the bent portion.
  • the first light source and the second light source are disposed in the bent portion. Therefore, since the main body of the wiring board exists between the light source driver and both light sources, even if wind is generated by the rotation of the information recording medium, the air warmed by the light source driver flows around the light source. Can be suppressed. As a result, it is possible to effectively suppress the light source from being warmed.
  • the optical head device includes an optical base configured to be movable along a guide shaft and supporting the first light source, the second light source, and the detector.
  • the driver is formed in a substantially rectangular parallelepiped shape and has a terminal on each side surface, and the light source driver is arranged so that a straight line extending one side of the rectangle constituting the upper surface is inclined with respect to the guide shaft. . Therefore, since the terminal force of the light source driver is inclined with respect to the signal line extending in the direction along the guide shaft, the area required to connect the signal line to the terminal can be suppressed.
  • the angle formed by the straight line and the guide shaft is 30 degrees or more and 60 degrees or less. Therefore, 30 degrees is secured as an angle between one side of the light source driver and the signal line extending in the direction along the guide shaft, so that the signal line is wired with a line interval that is half the terminal interval. It becomes. As a result, it is possible to prevent the wiring from becoming too thin.
  • a metal plate having a larger area than the upper surface is in contact with the upper surface of the light source driver. Yes. Therefore, the heat of the light source driver is released through the metal plate. However, since the area of the metal plate is larger than the upper surface of the light source driver, the heat dissipation characteristics can be improved.
  • An interposition part for filling a gap between the light source driver and the metal plate is provided. Therefore, since the contact area between the light source driver and the metal plate can be increased, heat transfer from the light source driver to the metal plate can be promoted.
  • the metal plate is provided with irregularities on the surface facing the information recording medium.
  • the surface area of the metal plate where the air flow generated by the rotation of the information recording medium is received is enlarged, and the heat dissipation performance of the metal plate can be improved.
  • a third light source that emits light of a third wavelength that is longer than the second wavelength is provided, and the light from the third light source passes through the second objective lens and has a disk shape. Focus on the information recording medium.
  • the first wavelength is 450 nm or less.
  • An optical base that supports the first light source, the second light source, and the detector, and a lens holder, wherein the lens holder is a cylindrical portion that houses a lens. And a protrusion protruding from the cylindrical portion, and the protrusion is fixed to the surface parallel to the optical axis direction of the optical base with an adhesive. Therefore, it is easy to adjust the position of the lens in the optical axis direction even with a jig that is smaller than the use of the protrusion provided on the lens holder. For this reason, when the number of components around the optical base increases or when the optical base is downsized, it is possible to prevent the lens position adjustment work from becoming complicated. In addition, since the protrusion protruding from the cylindrical portion and the optical base are bonded, it is possible to suppress the bonding operation from being complicated and to suppress the adhesive confirmation operation from being complicated.
  • An electric circuit that receives the signal output from the optical head device, a motor for rotating the information storage medium, and a signal output from the optical head device, and controls the motor and the light source based on the signal
  • an optical information device characterized by comprising:
  • the optical information device an input device or an input terminal for inputting information, information input from the input device or the input terminal, or reproduced by the optical information device
  • An arithmetic device that performs an operation based on information, and an output device for displaying or outputting information input from the input device or input terminal, information reproduced by the optical information device, and an arithmetic result of the arithmetic device
  • a computer characterized by having an output terminal.
  • An optical disc player comprising: the optical information device; and a decoder that converts an information signal obtained from the optical information device into image information.
  • a car navigation system comprising: the optical information device; and a decoder for converting an information signal obtained from the optical information device into image information.
  • An optical disc recorder comprising the optical information device and an encoder that converts image information into information recorded by the optical information device.
  • An optical disc server comprising the optical information device and an input / output terminal for exchanging information with the outside.
  • the optical head device is useful for an apparatus for recording / reproducing information such as video and music. It can also be applied to applications such as storing computer data and programs, and car navigation map data.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

 第1の波長の光を発する青色半導体レーザ203と、第2の波長の光を発するDVD用LDPDモジュール205、青色半導体レーザ203からの光を光ディスク707に集光する第1の対物レンズ201と、LDPDモジュール205からの光を光ディスク707に集光する第2の対物レンズ202と、光ディスク707から戻った光を検出する光検出器204と、青色半導体レーザ203の発光及びLDPDモジュール205の発光を制御するレーザドライバ410と、を備える。レーザドライバ410は、モータ112の回転中心と青色半導体レーザ203とを結ぶ仮想の第1の直線L1と、モータ112の回転中心とLDPDモジュール205とを結ぶ仮想の第2の直線L2とのなす角度の狭い側にあり、かつレーザドライバ410は、青色半導体レーザ203及びLDPDモジュール205よりも光ディスク707に近い側に位置している。

Description

光ヘッド装置、光情報装置、コンピュータ、光ディスクプレーヤー、光ディ スクサーバー、カーナビゲーシヨンシステム及び光ディスクレコーダー 技術分野
[0001] 本発明は、光ディスクに代表される情報記憶媒体から情報を再生し、または情報記 憶媒体に情報を記録する光情報装置、および光情報装置にぉ 、て情報を再生また は記録する光ヘッド装置に関するものである。
背景技術
[0002] デジタルバーサタイルディスク(DVD)は、デジタル情報をコンパクトディスク(CD) の約 6倍の記録密度で記録することができることから、大容量のデータを記録可能な 光ディスクとして知られている。近年、光ディスクに記録される情報量の増大に伴い、 さらに容量の大きい光ディスクが求められている。光ディスクを大容量にするために は、光ディスクに照射される光が形成する光スポットを小さくすることにより、情報の記 録密度を高くする必要がある。光源のレーザ光を短波長にし、かつ、対物レンズの開 口数 (NA)を大きくすることによって、光スポットを小さくすることができる。 DVDでは 、波長 660nmの光源と、開口数 (NA) O. 6の対物レンズとが使用されている。例え ば、波長 405nmの青色レーザと、 NAO. 85の対物レンズとを使用することによって、 現在の DVDの記録密度の 5倍の記録密度が達成される。
[0003] ところで、青色レーザによる短波長のレーザを用いて高密度の記録再生を実現する 光情報装置において、既存の光ディスクとの互 能を備えることは装置としての有 用性を高め、コストパフォーマンスの向上を可能にする。この場合、対物レンズの開 口数を 0. 85と高めつつ、作動距離を DVDや CD用の対物レンズのように長くするこ とは困難であるため、高密度の記録再生が可能な互換型光情報装置では、 CDまた は DVDを記録再生するのに使われる少なくとも一枚の対物レンズと、これより高開口 数を有する高密度記録用の対物レンズとを別個に備えることが望ましい。
[0004] 青色レーザや赤色レーザ等の光源は、光源ドライバとしてのレーザドライバ ICによ つて記録のための発光パターンが制御され、また再生時にはレーザ駆動電流に高周 波重畳が行われることで光量の安定ィ匕が図られる。
[0005] 2つの光源を持つ光ヘッド装置として、特許文献 1に示されて 、るように、レーザドラ ィバは 2つの光源の間に配置されるものが知られている。図 16を用いて説明する。光 学基台 10には、出射する波長の異なる 2つの半導体レーザ 20と半導体レーザ 21が 配置されている。半導体レーザ 20又は 21から出射された光は光学系(図示せず)を 通り、対物レンズ 30から情報記憶媒体である光ディスクに照射される。光ディスクは モータ 40により回転する。レーザドライバ 50は半導体レーザ 20と半導体レーザ 21の 間に配置され、各半導体レーザの発光パターンを制御する。ところがモータ 40により 光ディスクが時計回りに回転すると、ディスクの周りの空気も回転に応じて動くため、 レーザドライバ 50が発した熱により暖められた空気が半導体レーザ 21側に流れる。 これにより半導体レーザ 21の周りの温度が上がり、半導体レーザ 21の寿命が短くな つたり、安定なレーザ発振ができなくなったりするという問題があった。
[0006] また特許文献 1には、レーザドライバを空気の流れに対して光源の下流側に配置す る例が開示されている。図 17を用いて説明する。この例では、光学基台 60に配設さ れたレーザドライバ 50は、半導体レーザ 21の隣に配置されていて、各半導体レーザ の発光パターンを制御する。モータ 42により光ディスクが時計回りに回転しても、レー ザドライバ 50は半導体レーザ 21に対して下流側にあるため、レーザドライバ 50が発 した熱により暖められた空気により半導体レーザ 21が影響を受けることは回避可能と なる。
特許文献 1 :特開 2005— 196923号公報
[0007] し力しながら、レーザドライバ 50がー方の半導体レーザ 21に対して下流側に配置 される構成では、他方の半導体レーザ 20とレーザドライバ 50との距離が大きくなるた め、記録周波数が高い場合や高周波重畳の周波数が高い場合に、半導体レーザ 2 0にうまく信号が伝わらないという問題が生ずる。すなわち、半導体レーザの出力が 不安定になり、高 、周波数で駆動できな 、と 、う課題がある。
発明の開示
[0008] 本発明の目的は、上述の問題を解決した光ヘッド装置を提供することである。
[0009] 本発明の別の目的は、光源の動作が安定し、高周波駆動が可能な光ヘッド装置を 提供することである。
[0010] 本発明の一局面に従う光ヘッド装置は、モータによって回転する円板状の情報記 録媒体に光を照射可能に構成される光ヘッド装置であって、第 1の波長の光を発す る第 1の光源と、前記第 1の波長よりも長い第 2の波長の光を発する第 2の光源と、前 記第 1の光源からの光を情報記憶媒体に集光する第 1の対物レンズと、前記第 2の光 源からの光を情報記憶媒体に集光する第 2の対物レンズと、前記情報記憶媒体から 戻った光を検出する検出器と、前記第 1の光源の発光及び前記第 2の光源の発光を 制御する光源ドライバと、を備え、前記光源ドライバは、前記モータの回転中心と前 記第 1の光源とを結ぶ仮想の第 1の直線と、前記モータの回転中心と前記第 2の光 源とを結ぶ仮想の第 2の直線とのなす角度の狭い側にあり、かつ前記光源ドライバは 、前記第 1の光源及び前記第 2の光源よりも前記情報記録媒体に近い側に位置して いることを特徴とする。
図面の簡単な説明
[0011] [図 1]図 1Aは、本発明の実施の形態 1による光情報装置の一部と光ヘッド装置の概 略上面図であり、図 1Bは、その概略側面図である。
[図 2]本発明の実施の形態 1における光ヘッド装置の光学系の構成図である。
[図 3]前記光情報装置の概略構成を示すブロック図である。
[図 4]図 4Aは、前記光ヘッド装置の主な電気部品の配置を示す概略上面図であり、 図 4Bは、前記光ヘッド装置の概略側面図であり、図 4Cは、レーザドライバの外観図 である。
[図 5]前記光ヘッド装置における信号の流れを示す概念図である。
[図 6]前記光ヘッド装置の変形例を示す概略上面図である。
[図 7]前記光ヘッド装置の他の変形例を示す概略上面図である。
[図 8]図 8Aは、本発明の実施の形態 2における光ヘッド装置の概略側面図であり、図
8Bは、その変形例の概略側面図である。
[図 9]図 9Aは、本発明の実施の形態 3における光ヘッド装置に設けられたレンズホル ダの斜視図であり、図 9Bは、従来例のレンズホルダの斜視図である。
[図 10]図 10Aは、レンズホルダの変形例の斜視図であり、図 10Bは、レンズホルダの 他の変形例の斜視図である。
[図 11]本発明の実施形態 4によるコンピュータの外観図である。
[図 12]本発明の実施形態 5による光ディスクレコーダーの外観図である。
[図 13]本発明の実施形態 6による光ディスクプレーヤーの外観図である。
[図 14]本発明の実施形態 7によるサーバーの外観図である。
[図 15]本発明の実施形態 8によるカーナビゲーシヨンシステムの外観図である。
[図 16]従来の光ヘッド装置の概略上面図である。
[図 17]従来の光ヘッド装置の概略上面図である。
発明を実施するための最良の形態
[0012] 以下、本発明を実施するための最良の形態について図面を参照しながら詳細に説 明する。
[0013] (実施の形態 1)
図 1A及び図 1Bは、本発明による光情報装置の一実施形態に適用された光ヘッド 装置を概略的に示している。
[0014] 図 1Aにおいて、光ヘッド装置 100は、光学基台 120を備えている。この光学基台 1 20は、ディスクドライブのシャーシ(図示しない)に対して固定されたガイドシャフト 11 0とガイドシャフト 111とにより支持されている。両ガイドシャフト 110, 111は、それぞ れ情報記憶媒体としての光ディスク (ここでは図示せず)の半径方向と平行な方向に 延びるように配置されて 、る。
[0015] モータ 112は前記シャーシに固定されており、光ディスクはモータ 112のターンテ 一ブルにチャックされ、モータ 112の回転軸を中心に回転する。
[0016] 光学基台 120は、軸受け 121, 122 (第 1の軸受け)を介してガイドシャフト 110に軸 方向に移動可能に支持されるとともに、軸受け 123 (第 2の軸受け)を介してガイドシ ャフト 111に軸方向に移動可能に支持されて 、る。送りネジ 124はガイドシャフト 110 と平行に設置されており、この送りネジ 124は送り用モータ 125により回転される。ネ ジ結合部 126は、光学基台 120に固定されるものであり、このネジ結合部 126は、送 りネジ 124と嚙み合うことで、送りネジ 124の回転を、ガイドシャフト 110, 111に平行 な方向における光学基台 120の移動に変換する。 [0017] 光学基台 120には断面が円弧状の切り欠き部が設けられている。この切り欠き部の 存在により、光ディスクの内周のトラックにアクセスするために光ヘッド装置 100とモー タ 112が接近した時でも光ヘッド装置 100とモータ 112が衝突しな 、ようになって 、る
[0018] 光ヘッド装置 100の光学基台 120には、ァクチユエータ 200が固定されており、この ァクチユエータ 200の可動部には、高密度光ディスク用の対物レンズ 201 (第 1の対 物レンズ)と、中密度光ディスク及び低密度光ディスク用の対物レンズ 202 (第 2の対 物レンズ)とが、フォーカス方向及びトラッキング方向に移動可能に搭載されている。
[0019] 第 1の光源としての青色半導体レーザ 203から出射された光は光学系を通り、対物 レンズ 201で集光されて高密度光ディスクの情報面に集光される。光ディスクで反射 •回折した光は再び対物レンズ 201を通り、検出器としての光検出器 204に入射し、 電気信号に変換される。一方、第 2の光源としての赤色半導体レーザと光検出器を 一体ィ匕した DVD用 LDPDモジュール 205から出射された光は光学系を通り、対物レ ンズ 202で集光され、中密度ディスクである DVDの情報面に集光される。ディスクで 反射'回折した光は再び対物レンズ 202を通り、 DVD用 LDPDモジュール 205の光 検出器に入射し、光から電気信号に変換される。また赤外半導体レーザと光検出器 を一体ィ匕した CD用 LDPDモジュール 206から出射された光は光学系を通り、対物レ ンズ 202で集光され、低密度光ディスクである CDの情報面に集光される。光ディスク で反射'回折した光は再び対物レンズ 202を通り、 DVD用 LDPDモジュール 205の 光検出器に入射し、光から電気信号に変換される。
[0020] ァクチユエータ 200、青色半導体レーザ 203、光検出器 204、 DVD用 LDPDモジ ユール 205及び CD用 LDPDモジュール 206は、光学基台 120に固定されている。
[0021] 図 1Bは、光ヘッド装置 100及び光ディスクドライブの一部を横から見た図である。
方向としては、図 1Aの下側から見ている。
[0022] ここで光学系の詳細を説明する。図 2は、光ヘッド装置 100の光学系部分の構成図 を示している。まず、青色光学系について説明する。青色半導体レーザ 203からは 第 1の波長である 405nm程度の波長(波長 λ 1)の光が出射される。この波長 λ 1は レーザ個体によってばらつきがあるため、 395nm程度力ら 450nm程度である。 [0023] 青色半導体レーザ 203から出射された光は、ビーム整形手段としてのビームシエ一 ノ 301に入射する。ビームシエーパ 301は、方向による光強度分布の偏りを補正する 。ビームシエーパ 301を透過した光は、調光手段としてのフィルタ切替素子 302に取 り付けられた NDフィルタに入射する。 NDフィルタは、透過する光量を調整する。フィ ルタ切替素子 302を透過した光は、分岐手段としての偏光ビームスプリッタ 303で反 射される。偏光ビームスプリッタ 303で反射された光は、球面収差補正手段であるコリ メータレンズ 305に入射し、ほぼ平行光にされる。コリメータレンズ 305はコリメ一タレ ンズ駆動素子 304に取り付けられている。コリメータレンズ駆動素子 304は、コリメ一 タレンズ 305の位置を変化させることでコリメータレンズ通過後の光の収束度合いを 変化させる。そして、コリメータレンズ 305と対物レンズ 201との組み合わせで発生す る球面収差が調整され、照射される光ディスクの基材厚みの誤差で発生する球面収 差が補正される。コリメータレンズ 305を透過した光は立ち上げミラー 306により直角 に曲げられ、 1Z4波長板(図示せず)を通った後、対物レンズ 201に入射する。対物 レンズ 201で集光された光は円板状の情報記憶媒体としての光ディスクに照射され る。ここでの光ディスクとは Blu— ray Disc (BD)等、青色光で記録'再生することを 想定された光ディスクである。光ディスクで反射'回折した光は再び、対物レンズ 201 と 1Z4波長板を透過する。 1Z4波長板を往復 2回通ることで光の偏光方向は 90度 回転する。 1Z4波長板を透過した光は、コリメータレンズ 305を通り、偏光ビームスプ リツタ 303を透過する。偏光ビームスプリッタ 303を透過した光は、検出レンズ 307で 非点収差が与えられ、光検出器 204に入射し、電気信号に変換される。
[0024] 次に赤色光学系について説明する。赤色半導体レーザと光検出器を一体化した L DPDモジュール 205からは、第 2の波長である 660nm程度の波長(波長 λ 2)の光 が出射される。この波長え 2はレーザ個体や種類によってばらつきがあるため、 620η m程度から 690nm程度である。
[0025] LDPDモジュール 205から出た光は、くさび状プリズム 320の表面で反射され、コリ メータレンズ 321で平行光となる。コリメータレンズ 321を透過した光は立ち上げミラ 一 306により直角に曲げられ、対物レンズ 202に入射する。対物レンズで集光された 光は情報記憶媒体としての光ディスク上に照射される。ここでの光ディスクとは DVD 等の赤色光で記録 ·再生することを想定された光ディスクである。ディスクで反射回折 した光は、再び対物レンズ 202及びコリメータレンズ 321を通り、くさび状プリズム 320 で反射されて、 LDPDモジュール 205に入射する。 LDPDモジュール 205内の光検 出器は、受光した光量に応じた電気信号を出力する。
[0026] 次に、赤外光学系について説明する。赤外半導体レーザと光検出器を一体化した LDPDモジュール 206からは、第 3の波長である 790nm程度の波長(波長 λ 3)の光 が出射される。この波長え 3はレーザ個体や種類によってばらつきがあるため、 770η m程度から 820nm程度である。
[0027] LDPDモジュール 206から出た光はくさび状プリズム 320を透過し、コリメータレン ズ 321で略平行光となる。コリメータレンズ 321を透過した光は立ち上げミラー 306に より直角に曲げられ、対物レンズ 202に入射する。対物レンズ 202で集光された光は 情報記憶媒体としての光ディスク上に照射される。ここでの光ディスクとはコンパクト ディスク (CD)等、赤外光で記録や再生することを想定された光ディスクである。光デ イスクディスクで反射回折した光は、再び対物レンズ 202及びコリメータレンズ 321を 通り、くさび状プリズム 320を透過し、 LDPDモジュール 206に入射する。 LDPDモジ ユール 206内の光検出器は、受光した光量に応じた電気信号を出力する。
[0028] くさび状プリズム 320には、赤色の波長の光は反射し、赤外の波長の光は透過する ような波長選択性の膜がつけられている。また対物レンズ 202は、基材厚が 0. 6mm の光ディスクに赤色光が入射したときに収差が小さくなるように設計されている。これ により赤色光が DVDに最適な光となる。また対物レンズ 202は、基材厚が 1. 2mm のディスクに赤外光が入射したときに収差が小さくなるように設計されている。これに より赤外光が CDに最適な光となる。
[0029] ここで、図 3を参照しつつ、本発明による光情報装置の一実施形態としての光ディ スクドライブ 700について説明する。光ディスクドライブ 700は、光ヘッド装置 100と、 モータ 112と、電気回路としての制御回路 701と、信号処理回路 702と、入出力回路 703とを備えている。制御回路 701は、光ヘッド装置 100から出力される信号を受け 、その信号に基づいてモータ 112の回転、レーザ光源 203等の制御を行う。制御回 路 701から出力された再生信号は、信号処理回路 702で加工され、入出力回路 703 力もデータとして出力される。また、外部力も入出力回路 703に入力されたデータは 信号処理回路 702でカ卩ェされ、制御回路 701を通してレーザ光源 203等の光量の 変調信号となり、光ディスク 707に記録される。
[0030] 次に、光ヘッド装置 100における光源ドライバの配置について説明する。図 4Aは、 光ヘッド装置 100の配線基板としてのフレキシブル基板 400、光源ドライバとしてのレ 一ザドライバ 410、半導体レーザ 203等の主な電気部品の配置を示す上面図である 。フレキシブル基板 400は、適度なやわらかさを有しており、光ヘッド装置 100がガイ ドシャフト 111に沿って光ディスク 707の内周から外周に移動しても、移動の妨げに ならないように自由に屈曲する。またフレキシブル基板 400は、コネクタ 420を有して おり、このコネクタ 420を通して光ディスクドライブ 700の制御回路 701や図略の電源 等と接続されている。フレキシブル基板 400には、レーザドライバ 410、青色半導体レ 一ザ 203、光検出器 204、 DVD用 LDPDモジュール 205、 CD用 LDPDモジュール 206、ァクチユエータ 200が電気的に接続されている。フレキシブル基板 400は、光 ディスク 707に沿って延びる本体部 401と、光ディスク 707から離れる方向に本体部 401に対して屈強される屈曲部 402とを有する。レーザドライバ 410及びァクチユエ ータ 200は、本体部 401に配置されている。青色半導体レーザ 203、光検出器 204 、 DVD用 LDPDモジュール 205及び CD用 LDPDモジュール 206は、屈曲部 402 に配置されている。
[0031] レーザドライバ 410は、仮想の第 1直線 L1と仮想の第 2直線 L2とのなす角度が狭 い側の範囲内に配置されている。仮想の第 1直線 L1は、青色半導体レーザ 203の 発光点とモータ 112の中心とを結ぶ直線である。仮想の第 2直線 L2は、 DVD用 LD PDモジュール 205の発光点とモータ 112の中心とを結ぶ直線である。
[0032] また、レーザドライバ 410は、青色半導体レーザ 203及び DVD用 LDPDモジユー ル 205〖こ対して、光ディスク 707の半径方向にずれたところに配置されている。具体 的には、モータ 112からレーザドライバ 410の中心までの距離 D2力 モータ 112から 青色半導体レーザ 203の発光点までの距離 D1よりも長くなるように配置される。すな わち、レーザドライバ 410は、青色半導体レーザ 203よりも半径方向外側に配置され ている。図 4Aでは、特に、周方向に見てレーザドライバ 410と青色半導体レーザ 20 3とが重なり合わな 、程度に半径方向に位置ずれして 、る。
[0033] 図 4Bは光ヘッド装置 100の側面図を示している。フレキシブル基板 400は光学基 台 120に対して光ディスク側に配置され、レーザドライバ 410はフレキシブル基板 40 0に対して更にディスク側に配置される。換言すると、フレキシブル基板 400は、光デ イスク 707と光学基台 120との間を通るように配設され、かつ、レーザドライバ 410は、 フレキシブル基板 400と光ディスク 707との間に位置している。また、各光源(青色半 導体レーザ 203や DVD用 LDPDモジュール 205)は、フレキシブル基板 400の本体 部 401よりも、光ディスク 707から離れたところに配置されている。
[0034] このような配置を取ることで、レーザドライバ 410が発熱してもそこで熱せられた空気 は、光ディスク 707の回転による空気の移動により速やかに拡散される。その際、暖 められた空気は各光源(青色半導体レーザ 203や DVD用 LDPDモジュール 205) の外周側を通ることになり、且つ、各光源に比べて光ディスク 707に近い側を通るた め、各光源の周囲の温度を上げる作用を小さくすることができる。し力も各光源とレー ザドライバ 410との間にフレキシブル基板 400の本体部 401が存在しているため、光 源の周囲の空気が昇温されるのを効果的に抑制することができる。これにより各光源 の半導体レーザを安定して動作させることが可能となる。また、レーザドライバ 410が 第 1の直線 L1と第 2の直線 L2とのなす角度が狭い側に配置されることにより、レーザ ドライバ 410から青色半導体レーザ 203までの距離と、レーザドライバ 410から DVD 用 LDPDモジュール 205までの距離とがほぼ同じ距離であり、且つこれらの距離を十 分短い距離とすることができる。このため高速な記録変調や高周波重畳を安定して 行うことができる。使用される信号としては、記録時の立ち上がりや立下りが lnsec程 度の急峻な波形が必要となる。また高周波重畳としては周波数 300MHz〜500MH z程度の周波数がレーザの駆動電流に重畳され、レーザをマルチモードで発振させ ることで、再生時の光量が安定化する。この程度の周波数では、 l〜2cm程度なら十 分な効率で信号が伝播するが、 5cmを超えると信号が減衰し十分な信号振幅が得ら れないことがある。
[0035] レーザドライバ 410は図 4Cに示すように扁平な略直方体形状をなしており、その四 方力も入出力用の端子 411が突出するように設けられている。但し、図 4Cはおおよ その形を示すものであり、端子 411の数はこの図に限定されるものではない。
[0036] レーザドライバ 410は、図 4Aに示すように、上面を構成する矩形の一辺を延長した 直線と、ガイドシャフト 111とのなす角度が 45度となるように配置されて 、る。
[0037] 図 5は、フレキシブル基板 400と各電気部品との主な信号のやり取りの関係を示し ている。各半導体レーザを制御するための信号 451は、コネクタ 420からレーザドライ ノ 10へ入力される。この信号 451は、ガイドシャフト 111と平行な方向に延びる信 号線を伝送される。青色半導体レーザ 203を発光させるための信号 452は、レーザド ライバ 410から出力されて半導体レーザ 203に入力される。信号 452は、青色レーザ の発光を制御する。また、 DVD用 LDPDモジュール 205の発光を制御するための信 号 453がレーザドライバ 410から出力される。信号 453は、赤色レーザの発光を制御 する。更に CD用 LDPDモジュール 206の発光を制御するための信号 454がレーザ ドライバ 410から出力される。信号 454は、赤外レーザの発光を制御する。受光した 光に応じた電気信号 460が、光検出器 204からコネクタ 420へと出力される。また、 D VD用 LDPDモジュール 205からも、受光した光量に応じた電気信号 461がコネクタ 420に向けて出力される。更に CD用 LDPDモジュール 206から出力された電気信 号 462力 コネクタ 420に向けて出力される。ァクチユエータ 200の駆動信号 463は 、コネクタ 420から出力され、ァクチユエータ 200に入力される。なお、各矢印は信号 が流れる方向の概念を示しており、各矢印は 1本の信号線とは限らず、複数の信号 線で構成される場合もある。また、各電気部品への電源供給ライン、グランドライン等 は省略している。
[0038] ここで示したように、レーザドライバ 410には 3つの光源を制御するための信号がコ ネクタ 420から入力され、各光源に制御信号を伝えるための配線がなされている。こ のため、ガイドシャフト 111に対して一辺が 45度程度の斜めになるように配置すること により、各端子 411から出た信号線が各光源に向力 ように配置を行い易くなる。もし 、レーザドライバ 410を一辺が 90度もしくは 0度になるように配置すると、コネクタ 420 と向か!/、合う辺とそれに平行な辺に設けられた端子 411には信号線を結線し易!、が 、ガイドシャフト 111に平行な辺の端子 411に信号線を結線しょうとすると、信号の伝 達する方向に対して横断する方向に信号線を曲げねばならず、配線に大きな面積を 要することとなる。フレキシブル基板 400の面積は限られており、面積を小さくすべく 配線を細くすると、信号線のインピーダンスが上がり、高周波数の信号を通すことが 難しくなる。フレキシブル基板 400では、できるだけ効率的に信号線を配置する必要 があるが、そのためには信号を伝達する方向(即ちガイドシャフト 111に平行な方向) に対してレーザドライバ 410を斜めに配置することが効果的である。ここでガイドシャ フト 111に平行な方向が信号を伝達する方向となるのは、ガイドシャフト 111に沿って 光ヘッド装置 100が移動するため、フレキシブル基板 400はガイドシャフト 111に平 行な方向に長ぐかつ、途中で屈曲して先端部にコネクタ 420が付いているためであ る。
[0039] 図 6に変形例を示す。この変形例では、フレキシブル基板 470上のレーザドライバ 4 71は、その上面の一辺とガイドシャフトとのなす角度が 60度となるように配置されて いる。このような配置では、コネクタ 472からレーザドライノ 471に入力される信号を 伝送する配線のうち、レーザドライノ 71における図 6の右下の辺の端子 411に結線 される配線の間隔が少し狭くなる。しカゝしながら、この辺を延長した直線とガイドシャフ ト 111のなす角度として、 30度を確保できるので、左下の辺の端子 411に結線される 配線の間隔の半分の間隔を確保することができる。この結果、配線が細くなり過ぎる ことを抑止できる。また、レーザドライバ 471の左上の辺から出る端子 411と青色半導 体レーザ 203とを結ぶ配線を短くでき、且つこの配線の取り回しを行いやすくなる。レ 一ザドライバ 471の左上の辺と青色半導体レーザ 203とが向かい合つている力もであ る。青色半導体レーザ 203の発光特性が光ヘッド装置 100の特性に大きな影響を与 えるため、この配線を短く且つ配線しやすくできる効果は大きい。また、 DVD用 LDP Dモジュール 205と CD用 LDPDモジュール 206は右上の位置にあるためレーザドラ ィバ 471の右上の辺力も信号線を出すことに支障はない。
[0040] 尚、本実施の形態 1では、第 3の波長 λ 3を発する光源である CD用 LDPDモジュ ール 206を備えた例について説明した力 この第 3の光源である CD用 LDPDモジュ ール 206を省略した構成であってもよい。すなわち、第 1の波長を発する光源と第 2 の波長を発する光源及びその光学系を備えていればよい。この構成でも、本実施形 態と同様の効果を得ることができる。 [0041] また、実施形態 1では、レーザドライノく 470, 471が各光源よりも光ディスク 707の半 径方向外側に配置される構成とした力 これに代え、レーザドライバ 470, 471が各 光源よりも光ディスク 707の半径方向内側に配置される構成としてもよい。
[0042] また、本実施の形態 1では第 1の対物レンズ 201と第 2の対物レンズ 202を別体とし 、これらが光ディスク 707のタンゼンシャル方向に並んだ構成の例を示した力 これに 限るものではない。例えば 2つの対物レンズ 201, 202がラジアル方向に並ぶ構成で もよぐあるいは、図 7に示すように、第 1の対物レンズと第 2の対物レンズを 1つの対 物レンズ 210で共用してもよい。その場合にも、本実施の形態 1と同様の効果を得る ことができる。
[0043] (実施の形態 2)
図 8Aは、第 2実施形態による光ヘッド装置を概略的に示す側面図である。フレキシ ブル基板 500上にレーザドライバ 510が配置されおり、その上を覆うように金属カバ 一 520が設けられている。金属カバーは、金属製の板を折曲加工したものであり、レ 一ザドライバ 510の上面を覆うとともに、フレキシブル基板 500における本体部 401 の上面に沿って延びている。
[0044] 金属カバー 520とレーザドライバ 510との間には、介在部としての放熱グリース 530 が存在している。この放熱グリース 530は、金属カバー 520とレーザドライバ 510との 接触面積を大きくして熱抵抗を小さくするため設けられている。放熱グリース 530はレ 一ザドライバ 510の上面に塗布されて、その上に金属カバー 520を密着させることで 、金属カバー 520とレーザドライバ 510との接触面積が大きくなる。このようにすること で、レーザドライバ 510で発生した熱は効率よく金属カバー 520に伝わる。金属カバ 一 520は光ディスク 707に沿って配置されているため、光ディスク 707が回転した時 の空気の移動を効率よく受ける。このため金属カバー 520から熱が効率よく放熱され る。これにより、レーザドライバ 510の温度上昇が抑えられる。金属カバー 520はレー ザドライバ 510より表面積を大きくすることができるため、放熱に有利となる。
[0045] 図 8Bは第 2実施形態の変形例を示している。この例では、金属カバー 520の代わ りに金属カバー 540を用いる。金属カバー 540には、その一部に放熱フィン 541が設 けられている。すなわち、金属カバー 540の一方の面に凹凸が設けられている。放熱 フィン 541は、光ディスク 707が回転した時の空気の移動を受けやすい位置に設けら れる。放熱フィン 541を設けることにより、金属カバー 540の表面積が拡大され、これ により金属カバー 540を効率よく冷却する。したがって、この金属カバー 540によれ ば、金属カバー 520に比べて更に効率よぐ温度の上昇を抑えることができる。
[0046] 尚、金属としては、熱伝導率が高!、ことから銅が望まし 、が、アルミニウム、鉄、マグ ネシゥム、ステンレスでも同様に温度上昇を抑える効果を得ることができる。
[0047] (実施の形態 3)
図 9Aは、第 3実施形態による光ヘッド装置に設けられるレンズホルダ 600を示して いる。このレンズホルダは、例えば図 2に示す検出レンズ 307のレンズホルダである。
[0048] レンズホルダ 600は、検出レンズ 307が収納される略円筒状の円筒部 609と、この 円筒部 609から突出した突起部としてのつば部 604とを有する。円筒部 609の側面 には、 2つの平面 602, 603が形成されている。これらの平面 602及び 603は、それ ぞれレンズ光軸 601に垂直な法線を持つ。平面 602と平面 603は光学基台 120に 形成された 2つの平面部 606, 607とそれぞれ面接触する。この例では、平面 602と 平面 603は互!ヽに垂直な面として形成されて!、る。
[0049] つば部 604は、円筒部 609の 1つの平面 603に沿って円筒部 609の接線方向に延 長されている。したがって、つば部 604の側面は平面 603が延長された平面状となつ ている。
[0050] 検出レンズ 307は、光軸方向 601 (図中の矢印の方向)に位置調整された上で位 置決めされる。すなわち、レンズホルダ 600を光学基台 120に対して光軸方向 601に 移動することにより、光検出器に集光される光の位置が調整される。この調整時には 、つば部 604を冶具でチヤッキングして動かすことができる。そして調整後に、つば部 604の端に接着剤 605を塗ることにより、レンズホノレダ 600を光学基台 120に対して 接着固定することができる。つば部 604の側面が光学基台 120の平面部 607と面接 合され、そこに接着剤 605を塗布するので、狭いスペースの中で行われる接着剤 60 5の塗布作業が楽になる。し力も、この狭いスペースを通して接着剤 605の目視検査 をする際にも、円筒部ではなく突出したつば部 604に塗布された接着剤 605を観察 することになるので、検査作業も楽になる。 [0051] ここで、従来例を図 9Bに示す。従来の検出ホルダ 610は、光軸に垂直な法線を持 つ平面 611、 612を有し、かつ光学基台 120と 2面で接する力 つば部を有さない。 このため、検出レンズ 307を調整するには、レンズホルダ全体の両端をチヤッキング する必要があり、大きな冶具が必要となる。また接着剤を小さな隙間 613に流し込ま な!ヽと 、けな 、ため、作業が行 ヽづら 、。
[0052] 図 10Aは、変形例を示している。レンズホルダ 620は、つば部 621の中央に凸部 6 22を有する。冶具でチヤッキングする際この凸部 622をつかむことができるため、冶 具のチャック部をより小型化することができる。
[0053] 更にレンズホルダの別の形の例を図 10Bに示す。レンズホルダ 630のつば部 631 は、中央に凹部 632を有する。この凹部 632を内側から押し広げる形の冶具により、 レンズホルダ 630をチヤッキングすることができる。この場合もチャック部を小型するこ とがでさる。
[0054] このように本実施の形態で述べたレンズホルダを用いれば、検出レンズ 307を狭!ヽ 隙間で調整するのに適した冶具を使用することができるため、光ヘッド装置 100の小 型化に伴って調整を行うための隙間が狭くなつたとしても、調整作業が煩雑化するの を抑制できる。
[0055] (実施の形態 4)
図 11は、実施の形態 1から 3の何れかに記した光情報装置を備えたコンピュータを 示している。
[0056] パソコン (コンピュータ) 1000は実施の形態 1の光情報装置 1001と、情報の入力を 行うためのキーボード 1003と、キーボード 1003から入力された情報及び光情報装 置 1001によって再生された情報に基づいて演算を行う演算装置 1004と、情報の表 示を行うためのモニター 1002とを備える。
[0057] 上述の実施の形態 1から 3の何れかの光情報装置を外部記憶装置として具備した コンピュータは、異なる種類の光ディスクに情報を安定して記録あるいは再生でき、 広い用途に使用できるという効果を有するものとなる。光ディスクはその大容量性を 生かして、コンピュータ 1000内のハードディスクのバックアップをとつたり、メディア( 光ディスク)が安価で携帯が容易であること、他の光情報装置でも情報が読み出せる という互換性があることを生力して、プログラムやデータを人と交換したり、自分用に 持ち歩いたりすることができる。また、 BD、 DVDや CD等の既存のメディアの再生'記 録にも対応できる。
[0058] (実施の形態 5)
図 12は、実施の形態 1から 3の何れかに記した光情報装置を備えた光ディスクレコ ーダー(映像記録装置)を示して 、る。
[0059] 光ディスクレコーダー 1010は、実施の形態 1の光情報装置を内蔵しており、画像情 報を光情報装置によって記録する情報に変換するエンコーダー 1012を備えている。 そして、光ディスクレコーダー 1010は、記録している映像の表示を行うためのモニタ -1011と接続されて使用される。
[0060] 上述の実施の形態 1から 3の何れかの光情報装置を具備した光ディスクレコーダー 1010は、異なる種類の光ディスクに映像を安定的に記録あるいは再生でき、広い用 途に使用できるという効果を有するものとなる。光ディスクレコーダ一はメディア (光デ イスク)に映像を記録し、好きな時にそれを再生することができる。光ディスクではテー プのように記録後や再生後に巻き戻しの作業が必要なぐある番組を記録しながらそ の番組の先頭部分を再生する追つかけ再生や、ある番組を記録しながら以前に記録 した番組を再生する同時記録再生が可能となる。メディア (光ディスク)が安価で携帯 が容易であること、他の光ディスクレコーダーでも情報が読み出せるという互換性があ ることを生力して、記録した映像を人と交換したり、自分用に持ち歩いたりすることが できる。また BD、 DVDや CD等の既存のメディアの再生'記録にも対応する。
[0061] 尚、ここでは光情報装置だけを備える場合について述べたが、ハードディスクを内 蔵していても良いし、ビデオテープの録画再生機能を内蔵していても良い。その場合 映像の一時退避や、ノ ックアップが容易にできる。
[0062] (実施の形態 6)
図 13は、実施の形態 1から 3の何れかに記した光情報装置を具備した光ディスクプ レーヤー(映像再生装置)を示して 、る。
[0063] 光ディスクプレーヤー(映像再生装置) 1021は、液晶モニター 1020を備えるととも に、実施の形態 1から 4の光情報装置を内蔵し、光情報装置から得られる情報信号を 画像情報に変換するデコーダー 1022を備えている。この光ディスクプレーヤー 102 1では、光ディスクに記録された映像を液晶モニター 1020に表示することができる。 この光ディスクプレーヤー 1021は、異なる種類の光ディスクに映像を安定に再生で き、広 、用途に使用できると 、う効果を有するものとなる。
[0064] 光ディスクプレーヤ一はメディア(光ディスク)に記録された映像を、好きな時に再生 することができる。光ディスクではテープのように再生後に巻き戻しの作業が必要なく 、ある映像の任意の場所にアクセスして再生することができる。また BD、 DVDや CD 等の既存のメディアの再生にも対応する。
[0065] (実施の形態 7)
図 14は、実施の形態 1から 3の何れかに記した光情報装置を具備したサーバーを 示している。
[0066] サーバー 1030は、実施の形態 1から 3の何れかの光情報装置 1031と、情報の表 示を行うためのモニター 1033と、情報の入力を行うためのキーボード 1034と、外部 との情報のやりとりを行う入出力端子 1036とを備え、ネットワーク 1035と接続可能に 構成されている。
[0067] 上述の実施の形態 1から 3の何れかの光情報装置 1031を外部記憶装置として具 備したサーバー 1030は、異なる種類の光ディスクに情報を安定に記録あるいは再生 でき、広い用途に使用できるという効果を有するものとなる。光ディスクドライブはその 大容量性を生力して、ネットワーク 1035からの要求に応じ、光ディスクに記録されて いる情報 (画像、音声、映像、 HTML文書、テキスト文書等)を送出する。また、ネット ワーク力も送られてくる情報をその要求された場所に記録する。また、 BD、 DVDディ スクゃ CDディスク等の既存のメディアに記録された情報も再生が可能であるので、そ れらの情報を送出することも可能となる。
[0068] (実施の形態 8)
図 15は、実施の形態 1から 3の何れかに記した光情報装置を具備したカーナビゲ ーシヨンシステムを示して 、る。
[0069] カーナビゲーシヨンシステム 1040は、実施の形態 1から 3の何れかの光情報装置と 、光情報装置から得られる情報信号を画像情報に変換するデコーダーとを備え、地 形や行き先情報の表示を行うための液晶モニター 1041と接続されて使用される。
[0070] 上述の実施の形態 1から 3の何れかの光情報装置を具備したカーナビゲーシヨンシ ステム 1040は、異なる種類の光ディスクに映像を安定に記録あるいは再生でき、広 い用途に使用できるという効果を有するものとなる。カーナビゲーシヨンシステム 104 0はメディア(光ディスク)に記録された地図情報と、地上位置確定システム (GPS)や 、ジャイロスコープ、速度計、走行距離計等の情報を元にして現在位置を割り出し、 その位置を液晶モニター上に表示する。また行き先を入力すると、地図情報や道路 情報をもとに行き先までの最適な経路を割り出し、それを液晶モニターに表示する。
[0071] 地図情報を記録するために大容量の光ディスクを用いることで、一枚のディスクで 広い地域をカバーして細かい道路情報を提供することができる。また、その道路近辺 に付随するレストラン、コンビニエンスストア、ガソリンスタンドなどの†青報も同時に光 ディスクに格納して提供することができる。さらに、道路情報は時間が経つと古くなり、 現実と合わなくなる力 光ディスクは互換性がありメディアが安価であるため、新しい 道路情報を収めたディスクと交換することで最新の情報を得ることができる。また BD、 DVDディスクや CDディスク等の既存のメディアの再生 ·記録にも対応するため、自 動車の中で映画を見たり音楽を聴 、たりすることも可能である。
[0072] [実施の形態の概要]
ここで、前述した実施の形態の概要について、以下に説明する。
[0073] (1)光源ドライバが第 1の直線と第 2の直線のなす角度の狭い側に位置しているの で、光源ドライバと第 1の光源とを結合する配線が短くなるとともに、光源ドライバと第 2の光源とを結合する配線が短くなる。この結果、記録周波数が高い場合や高周波 重畳の周波数が高い場合においても、伝送を安定させることができる。また配線の取 り回しもし易くなる。し力も、光源ドライバが両光源よりも情報記録媒体に近い側に位 置しているので、情報記録媒体の回転によって風が生じたとしても、光源ドライバによ つて暖められた空気によって光源が暖められるのを抑制することができる。したがって 、高周波数ィ匕に伴って光源ドライバの発熱量が増大する場合であっても、光源の出 力を安定させることができる。
[0074] (2)前記光源ドライバは、前記第 1の光源及び前記第 2の光源に対して前記情報記 録媒体の半径方向にずれたところに位置している。したがって、情報記録媒体の回 転によって風が生じたとしても、光源ドライバによって暖められた空気によって光源が 暖められるのをより効果的に抑制することができる。
[0075] (3)前記光源ドライバは、前記第 1の光源及び前記第 2の光源に対して前記情報記 録媒体の半径方向外側にずれたところに位置している。したがって、光源ドライバと 各光源とを結合する配線が長くならないようにしつつ、光源が暖められるのを効果的 に抑制することができる。
[0076] (4)前記光ヘッド装置は、前記第 1の光源と前記第 2の光源と前記検出器と前記光 源ドライバとを電気的に結合する配線を有し且つ外部と電気信号をやり取りする配線 基板を備え、前記配線基板は、前記情報記録媒体に沿って延びる本体部と、前記情 報記録媒体から離れる方向に前記本体部から屈曲される屈曲部とを有し、前記光源 ドライバが前記本体部に配置され、前記第 1の光源及び前記第 2の光源が前記屈曲 部に配置されている。したがって、光源ドライバと両光源との間に配線基板の本体部 が存在することになるので、情報記録媒体の回転によって風が生じたとしても、光源 ドライバによって暖められた空気が光源の周囲に流れるのを抑制することができる。こ の結果、光源が暖められるのを効果的に抑制することができる。
[0077] (5)前記光ヘッド装置は、ガイドシャフトに沿って移動可能に構成され、前記第 1の 光源と前記第 2の光源と前記検出器とを支持する光学基台を備え、前記光源ドライ バは、略直方体形状に形成されるとともに各側面にそれぞれ端子を有し、前記光源 ドライバは、上面を構成する矩形の一辺を延長した直線がガイドシャフトに対して傾く ように配置されている。したがって、光源ドライバの端子力 ガイドシャフトに沿う方向 に延びる信号線に対して傾斜した姿勢となるので、この信号線を端子に結線するの に要する面積を抑制することができる。
[0078] (6)前記直線と前記ガイドシャフトのなす角度は 30度以上で 60度以下である。した がって、光源ドライバの一辺と、ガイドシャフトに沿う方向に延びる信号線とのなす角 度として 30度が確保されるので、端子間隔の半分の線間隔で前記信号線が配線さ れることとなる。この結果、配線が細くなり過ぎることを抑止できる。
[0079] (7)前記光源ドライバの上面には、当該上面よりも面積の大きな金属板が接触して いる。したがって、光源ドライバの熱が金属板を通して放出されることとなるが、金属 板の面積が光源ドライバの上面よりも大きくなつているので、放熱特性を向上すること ができる。
[0080] (8)前記光源ドライバと前記金属板との間のすきまを埋めるための介在部が設けら れている。したがって、光源ドライバと金属板との接触面積を増加させることができる ので、光源ドライバから金属板への伝熱を促進することができる。
[0081] (9)前記金属板には、前記情報記録媒体と向かい合う面に凹凸が設けられている。
したがって、情報記録媒体の回転によって生ずる空気の流れを受けるところでの金 属板の表面積が拡大され、金属板の放熱性能を向上することができる。
[0082] (10)前記第 2の波長よりも長 、第 3の波長の光を発する第 3の光源を備え、前記第 3 の光源からの光を、前記第 2の対物レンズを通して円板状の情報記録媒体に集光す る。
[0083] (11)前記第 1の対物レンズと前記第 2の対物レンズは共通化されている。
[0084] (12)前記第 1の波長は 450nm以下である。
[0085] (13)前記第 1の光源と前記第 2の光源と前記検出器とを支持する光学基台と、レン ズホルダと、を備え、前記レンズホルダは、レンズが収納される筒状部と、この筒状部 から突出した突起部とを有し、前記突起部は、前記光学基台における光軸方向に平 行な面と接着剤で固着されている。したがって、レンズホルダに設けられた突起部を 利用することにより小さい冶具でもレンズの光軸方向の位置調整を行い易い。このた め、光学基台周辺の構成部品が増える場合や、光学基台を小型化する場合等にお いて、レンズの位置調整作業が煩雑になることを抑制することができる。しかも筒状部 から突出した突起部と光学基台とを接着するので、接着作業が煩雑になるのを抑制 できるとともに、接着剤の確認作業が煩雑になるのを抑制することができる。
[0086] (14)前記光ヘッド装置と、情報記憶媒体を回転させるためのモータと、前記光ヘッド 装置から出力される信号を受け、前記信号に基づいて前記モータ及び前記光源を 制御する電気回路と、を備えて 、ることを特徴とする光情報装置である。
[0087] (15)前記光情報装置と、情報を入力するための入力装置又は入力端子と、前記入 力装置又は入力端子から入力された情報又は前記光情報装置によって再生された 情報に基づいて演算を行う演算装置と、前記入力装置又は入力端子から入力され た情報又は前記光情報装置によって再生された情報や前記演算装置による演算結 果を、表示あるいは出力するための出力装置又は出力端子と、を備えていることを特 徴とするコンピュータである。
[0088] (16)前記光情報装置と、前記光情報装置から得られる情報信号を画像情報に変換 するデコーダーと、を有することを特徴とする光ディスクプレーヤーである。
[0089] (17)前記光情報装置と、前記光情報装置から得られる情報信号を画像情報に変換 するデコーダーと、を有することを特徴とするカーナビゲーシヨンシステムである。
[0090] (18)前記光情報装置と、画像情報を前記光情報装置によって記録する情報に変換 するエンコーダーと、を有することを特徴とする光ディスクレコーダーである。
[0091] (19)前記光情報装置と、外部との情報のやりとりを行う入出力端子と、を備えることを 特徴とする光ディスクサーバーである。
産業上の利用可能性
[0092] 本発明にかかる光ヘッド装置は、映像や音楽等の情報の記録'再生装置等に有用 である。またコンピュータのデータやプログラムの保存、カーナビゲーシヨンの地図デ ータの保存等の用途にも応用できる。

Claims

請求の範囲
[1] モータによって回転する円板状の情報記録媒体に光を照射可能に構成される光へ ッド装置であって、
第 1の波長の光を発する第 1の光源と、
前記第 1の波長よりも長い第 2の波長の光を発する第 2の光源と、
前記第 1の光源からの光を情報記憶媒体に集光する第 1の対物レンズと、 前記第 2の光源からの光を情報記憶媒体に集光する第 2の対物レンズと、 前記情報記憶媒体力 戻った光を検出する検出器と、
前記第 1の光源の発光及び前記第 2の光源の発光を制御する光源ドライバと、を備 え、
前記光源ドライバは、前記モータの回転中心と前記第 1の光源とを結ぶ仮想の第 1 の直線と、前記モータの回転中心と前記第 2の光源とを結ぶ仮想の第 2の直線とのな す角度の狭い側にあり、かつ前記光源ドライバは、前記第 1の光源及び前記第 2の 光源よりも前記情報記録媒体に近い側に位置していることを特徴とする光ヘッド装置
[2] 前記光源ドライバは、前記第 1の光源及び前記第 2の光源に対して前記情報記録 媒体の半径方向にずれたところに位置して 、ることを特徴とする請求項 1に記載の光 ヘッド装置。
[3] 前記光源ドライバは、前記第 1の光源及び前記第 2の光源に対して前記情報記録 媒体の半径方向外側にずれたところに位置して 、ることを特徴とする請求項 2に記載 の光ヘッド装置。
[4] 前記第 1の光源と前記第 2の光源と前記検出器と前記光源ドライバとを電気的に結 合する配線を有し、外部と電気信号をやり取りする配線基板を備え、
前記配線基板は、前記情報記録媒体に沿って延びる本体部と、前記情報記録媒 体から離れる方向に前記本体部から屈曲される屈曲部とを有し、
前記光源ドライバは前記本体部に配置され、前記第 1の光源及び前記第 2の光源 は前記屈曲部に配置されて 、ることを特徴とする請求項 1に記載の光ヘッド装置。
[5] ガイドシャフトに沿って移動可能に構成され、前記第 1の光源と前記第 2の光源と前 記検出器とを支持する光学基台を備え、
前記光源ドライバは、略直方体形状に形成されるとともに各側面にそれぞれ端子を 有し、
前記光源ドライバは、上面を構成する矩形の一辺を延長した直線がガイドシャフト に対して傾くように配置されて 、ることを特徴とする請求項 1に記載の光ヘッド装置。
[6] 前記直線と前記ガイドシャフトのなす角度は 30度以上で 60度以下であることを特 徴とする請求項 5に記載の光ヘッド装置。
[7] 前記光源ドライバの上面には、当該上面よりも面積の大きな金属板が接触している ことを特徴とする請求項 1に記載の光ヘッド装置。
[8] 前記光源ドライバと前記金属板との間のすきまを埋めるための介在部が設けられて いることを特徴とする請求項 7に記載の光ヘッド装置。
[9] 前記金属板には、前記情報記録媒体と向かい合う面に凹凸が設けられていること を特徴とする請求項 7又は 8に記載の光ヘッド装置。
[10] 前記第 2の波長よりも長 、第 3の波長の光を発する第 3の光源を備え、
前記第 3の光源からの光を、前記第 2の対物レンズを通して円板状の情報記録媒 体に集光することを特徴とする請求項 1に記載の光ヘッド装置。
[11] 前記第 1の対物レンズと前記第 2の対物レンズは共通化されていることを特徴とする 請求項 1に記載の光ヘッド装置。
[12] 前記第 1の波長は 450nm以下であることを特徴とする請求項 1に記載の光ヘッド装 置。
[13] 前記第 1の光源と前記第 2の光源と前記検出器とを支持する光学基台と、
レンズホルダと、を備え、
前記レンズホルダは、レンズが収納される筒状部と、この筒状部から突出した突起 部とを有し、
前記突起部は、前記光学基台における光軸方向に平行な面と接着剤で固着され て 、ることを特徴とする請求項 1に記載の光ヘッド装置。
[14] 請求項 1から 13の何れか 1項に記載の光ヘッド装置と、
情報記憶媒体を回転させるためのモータと、 前記光ヘッド装置から出力される信号を受け、前記信号に基づいて前記モータ及 び前記光源を制御する電気回路と、を備えて 、ることを特徴とする光情報装置。
[15] 請求項 14に記載の光情報装置と、
情報を入力するための入力装置又は入力端子と、
前記入力装置又は入力端子から入力された情報又は前記光情報装置によって再 生された情報に基づいて演算を行う演算装置と、
前記入力装置又は入力端子から入力された情報又は前記光情報装置によって再 生された情報や前記演算装置による演算結果を、表示あるいは出力するための出力 装置又は出力端子と、を備えていることを特徴とするコンピュータ。
[16] 請求項 14に記載の光情報装置と、
前記光情報装置から得られる情報信号を画像情報に変換するデコーダーと、を有 することを特徴とする光ディスクプレーヤー。
[17] 請求項 14に記載の光情報装置と、
前記光情報装置から得られる情報信号を画像情報に変換するデコーダーと、を有 することを特徴とするカーナビゲーシヨンシステム。
[18] 請求項 14に記載の光情報装置と、
画像情報を前記光情報装置によって記録する情報に変換するエンコーダーと、を 有することを特徴とする光ディスクレコーダー。
[19] 請求項 14に記載の光情報装置と、
外部との情報のやりとりを行う入出力端子と、を備えることを特徴とする光ディスクサ
~ノ ^ ~
PCT/JP2007/053253 2006-03-03 2007-02-22 光ヘッド装置、光情報装置、コンピュータ、光ディスクプレーヤー、光ディスクサーバー、カーナビゲーションシステム及び光ディスクレコーダー WO2007099842A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-057151 2006-03-03
JP2006057151 2006-03-03

Publications (1)

Publication Number Publication Date
WO2007099842A1 true WO2007099842A1 (ja) 2007-09-07

Family

ID=38458953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053253 WO2007099842A1 (ja) 2006-03-03 2007-02-22 光ヘッド装置、光情報装置、コンピュータ、光ディスクプレーヤー、光ディスクサーバー、カーナビゲーションシステム及び光ディスクレコーダー

Country Status (1)

Country Link
WO (1) WO2007099842A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266977A (ja) * 1999-03-12 2000-09-29 Yamaha Corp 光学装置
JP2003151159A (ja) * 2001-11-08 2003-05-23 Toshiba Corp 光学式ピックアップ、光学式ディスク装置
JP2005129097A (ja) * 2003-10-21 2005-05-19 Hitachi Ltd 光ピックアップ装置
JP2005203019A (ja) * 2004-01-14 2005-07-28 Mitsumi Electric Co Ltd 光ピックアップ装置
WO2005104110A1 (ja) * 2004-04-22 2005-11-03 Matsushita Electric Industrial Co., Ltd. 光ヘッド装置および光情報装置
JP2007048338A (ja) * 2005-08-05 2007-02-22 Mitsumi Electric Co Ltd 光ピックアップ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266977A (ja) * 1999-03-12 2000-09-29 Yamaha Corp 光学装置
JP2003151159A (ja) * 2001-11-08 2003-05-23 Toshiba Corp 光学式ピックアップ、光学式ディスク装置
JP2005129097A (ja) * 2003-10-21 2005-05-19 Hitachi Ltd 光ピックアップ装置
JP2005203019A (ja) * 2004-01-14 2005-07-28 Mitsumi Electric Co Ltd 光ピックアップ装置
WO2005104110A1 (ja) * 2004-04-22 2005-11-03 Matsushita Electric Industrial Co., Ltd. 光ヘッド装置および光情報装置
JP2007048338A (ja) * 2005-08-05 2007-02-22 Mitsumi Electric Co Ltd 光ピックアップ装置

Similar Documents

Publication Publication Date Title
US8614938B2 (en) Objective lens unit, optical pickup, and optical information apparatus
TWI269288B (en) Optical pickup and disc drive apparatus
WO2008044601A1 (fr) Dispositif de lecture optique, dispositif d'informations optiques, ordinateur, lecteur de disque optique, système de navigation automobile, enregistreur de disque optique et serveur de disque optique
JPWO2006118037A1 (ja) 光ピックアップ装置、該光ピックアップ装置を有する光情報装置、及び該光情報装置を有する光情報記録再生装置
JP4953470B2 (ja) 光ピックアップ、光学素子、光情報装置、コンピュータ、光情報媒体プレーヤ、カーナビゲーションシステム、光情報媒体レコーダ、及び光ディスクサーバ
US20080159111A1 (en) Optical Pickup Device
WO2007099842A1 (ja) 光ヘッド装置、光情報装置、コンピュータ、光ディスクプレーヤー、光ディスクサーバー、カーナビゲーションシステム及び光ディスクレコーダー
JP2005293686A (ja) 光ピックアップ装置
CN100394482C (zh) 光拾取器及光盘驱动装置
JPWO2008041307A1 (ja) 光ピックアップ装置及び情報機器
JP4451755B2 (ja) 光ピックアップ
JP2006309850A (ja) 光ヘッド装置および情報記録再生装置
JP3754019B2 (ja) 光学ヘッド及びディスク記録再生装置
JP2004241032A (ja) 光ピックアップ、及びそれを用いたディスク駆動装置
JP2006309851A (ja) 光ヘッド装置および情報記録再生装置
JP4913124B2 (ja) 光ピックアップ装置及び光ディスク装置
JP4569166B2 (ja) 光ピックアップおよび光ディスク装置
JP4744840B2 (ja) 光ピックアップ
JP3709348B2 (ja) 光ヘッドおよびそれを用いた光ディスク装置
JP2010102810A (ja) 光ピックアップ装置及び光ディスク装置
JP2006260640A (ja) 光ピックアップおよび光ディスク装置
JP2006079781A (ja) 光ピックアップ及びディスクドライブ装置
JP2010108564A (ja) 光ピックアップ装置及びこれを備えた光ディスク装置
JP2004013946A (ja) 光学ピックアップ及びディスクドライブ装置
JP2007184064A (ja) 光ピックアップ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP