WO2007097126A1 - ガスハイドレートの分解量制御方法および分解ガス量制御システム - Google Patents

ガスハイドレートの分解量制御方法および分解ガス量制御システム Download PDF

Info

Publication number
WO2007097126A1
WO2007097126A1 PCT/JP2007/000132 JP2007000132W WO2007097126A1 WO 2007097126 A1 WO2007097126 A1 WO 2007097126A1 JP 2007000132 W JP2007000132 W JP 2007000132W WO 2007097126 A1 WO2007097126 A1 WO 2007097126A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas hydrate
amount
decomposition
pellets
Prior art date
Application number
PCT/JP2007/000132
Other languages
English (en)
French (fr)
Inventor
Toru Iwasaki
Yuichi Kato
Masahiro Takahashi
Original Assignee
Mitsui Engineering & Shipbuilding Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering & Shipbuilding Co., Ltd. filed Critical Mitsui Engineering & Shipbuilding Co., Ltd.
Publication of WO2007097126A1 publication Critical patent/WO2007097126A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • C07B63/02Purification; Separation; Stabilisation; Use of additives by treatment giving rise to a chemical modification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates

Definitions

  • the present invention relates to a method for controlling the amount of decomposition of a gas hydrate, which is a clathrate compound of a gaseous hydrate forming substance that forms a gas hydrate such as natural gas, methane, ethane, and carbon dioxide and water, and a decomposition gas It relates to a quantity control system.
  • a gas hydrate which is a clathrate compound of a gaseous hydrate forming substance that forms a gas hydrate such as natural gas, methane, ethane, and carbon dioxide and water
  • a decomposition gas It relates to a quantity control system.
  • a gas hydrate cage is an ice-like solid crystal composed of water molecules and gas molecules, and the inclusion (formation) formed by the gas molecules being taken into the cage (cage) of the three-dimensional structure created by the water molecules.
  • This is a generic name for clathrate hydrate.
  • the amount of gas that can be stored in a 1 m 3 gas hydrate is about 1 65 Nm 3 . Therefore, a system that generates, stores, and transports natural gas as hydrated straw (NGH system: Natural Gas Hydrate System) is being studied.
  • NSH natural gas hydrate
  • Fig. 12 is an equilibrium diagram (an example of a methane hydrate) of a known hydrate tank.
  • the upper left region of the equilibrium line 31 is the hydride generation region, and the lower right region of the equilibrium line 31 is outside the hydration generation region.
  • H stands for Hydrate
  • G stands for Gas
  • I stands for Ice
  • LW stands for Liquid Water.
  • the storage pressure is set to be slightly higher than the atmospheric pressure from the viewpoint of preventing inadvertent entry of air into the storage tank.
  • the temperature and pressure of this storage tank are located outside the hydride production area, decomposition of the gas hydrate is suppressed below the freezing point and is in a metastable state. This metastable phenomenon is known as self-preservation.
  • the gas hydrate is compressed and molded into a pellet-like shape.
  • the pellet size is about 5 mm to 10 O mm.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-32083). 2—2 2 0 3 5 3).
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0205-2 086 has been studied.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2 0 0 2-2 2 0 3 5 3
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 5 _ 2 0 1 2 8 6
  • An object of the present invention is to control the amount of decomposition of gas hydrate according to the required amount of decomposition gas when storing the gas hydrate, and to control the amount of decomposition of gas hydrate and gas hydrate It is to provide a control system for the amount of cracked cracked gas.
  • the method for estimating the amount of decomposition of a gas hydrate provides a gas hydrate when storing the gas hydrate under conditions where the gas hydrate exhibits a self-preserving effect.
  • the decomposition amount control method for the gas hydrate is characterized in that the decomposition rate of the gas hydrate is determined based on the following formula (1) and the decomposition amount of the gas hydrate is controlled.
  • gas hydrate is separated under conditions that exhibit a self-preserving effect. Therefore, the amount of cracked gas generated from the gas hydrate can be accurately estimated based on the equation (1). Can be controlled.
  • gas hydrate particle size (radius r 0 ) when the storage pressure, storage temperature, gas hydrate density, and gas composition are constant.
  • Decomposition rate constant K is a constant determined by experiment depending on storage pressure, storage temperature, gas hydrate density, and gas composition. For different storage pressure, storage temperature, gas hydrate density, and gas composition If the data of the decomposition rate constant K are prepared in a table and prepared in a table, the amount of decomposition of the gas hydrated cake under multiple conditions can be estimated by using the decomposition rate constant K that matches the conditions. can do.
  • the cracked gas control system for a gas hydrate according to the second aspect of the present invention is based on the following formula (1) for the cracking rate) 8 so as to satisfy the required cracked gas amount.
  • the decomposition amount of the gas hydrate stored under the condition that exhibits the self-preserving effect is controllable.
  • the required amount of cracked gas is the amount of cracked gas that serves as a standard for control.
  • the amount of cracked gas required for profitability and economy when storing gas hydrated straw, and the equipment etc. are physically Is the amount of cracked gas required.
  • the present invention it is possible to accurately estimate the amount of cracked gas in the gas hydrate tank stored under conditions that exhibit a self-preserving effect.
  • the amount of gas hydrate cracking can be controlled according to the amount of cracked gas required for the storage tank and cracked gas equipment.
  • the amount of decomposition of gas hydrate can be controlled.
  • the decomposition rate constant K corresponding to the storage pressure P and the storage temperature T can be obtained. It is also possible to control the amount of decomposition of the gas hydrate by changing the storage pressure P or storage temperature T.
  • the cracked gas control system for gas hydrate according to the third aspect of the present invention controls the amount of cracked gas by mixing two or more kinds of gas hydrates having different diameters. It is characterized by that.
  • the filling rate of the storage tank is improved and the amount of decomposition of the gas hydrate is required in the cracked gas utilization facility. It becomes easy to adjust the amount of cracked gas.
  • the type of hydrated rice cake is not particularly limited.
  • the type of gaseous hydrate-forming substance that forms hydrates may be any substance that forms hydrates at a predetermined temperature and pressure condition.
  • natural gas methane as a main component and e-component as a secondary component.
  • Gas hydrate particles and pellets are stored in a state of self-preserving effect. Gas hydrate perez It is practical to manufacture the cocoons in the range of 5 mm to 10 Omm.
  • Fig. 1 shows the decomposition rate of methane gas hydrate pellets (hereinafter referred to as MG HP) at each storage temperature as the rate of decrease in the gas ⁇ molecular inclusion rate Qf H, ⁇ Of H Z ⁇ t (s_ 1 ).
  • Hydration number is the ratio of the number of water molecules to gas molecules. In this example, the value of 5.75, which is the theoretical hydration number of the gas hydrated I-type structure, was used.
  • the decomposition rate was high at a storage temperature of 268 K, but the decomposition rate decreased at a low storage temperature, and decreased to 3 X 1 0_ 8 s_ 1 at 253 K.
  • the decomposition rate increased again when the storage temperature was lower than 253 K, and the decomposition rate reached its maximum at 210 K, but the decomposition rate decreased at a lower temperature, and the decomposition rate became 0 at 168 K.
  • the self-preserving property of MG HP was expressed in a limited temperature range of 226K to 268K, and it was confirmed that the stability was highest at around 253 ° C within this temperature range.
  • mixed G HP a mixed gas hydrate pellet containing methane as the main component and also containing ethane and propane
  • the decomposition rate is the lowest at 253 K within the measurement range. ing.
  • the temperature dependence of the mixed GHP decomposition rate shows the same tendency as MGHP regardless of the composition and concentration.
  • Fig. 2 is a decomposition reaction model of spherical gas hydrate particles and pellets. The meaning of the symbols is shown below.
  • V Hydrate soot particle, Perez soot volume (m 3 )
  • the subscript 0 indicates the initial state.
  • the decomposition rate is very small. 2 5 3 gas hydrates near 3 ⁇ Peret ⁇ 1 Observed on the surface, the entire surface is covered with a glossy film. Assuming that the ice 2 is in a state of being formed, the diffusion-controlled ⁇ interface-decreasing reaction rate equation (J ander's equation) is applied to the decomposition rate equation for gas hydrate and pellets. This is a feature of the present invention.
  • the volume V when the spherical gas hydrate 1 pellets 1 decomposes and the decomposition layer thickness X is obtained can be expressed by equation (3).
  • the decomposition rate d xZd t can be expressed as follows.
  • Equation (8) is obtained from Equation (5) and Equation (7).
  • Decomposition rate constant ⁇ is the density of the pellets, which is the property of gas hydrate pellets
  • methane gas hydrate pellets (MGHP) with a pellet density of 880 to 914 kgZm 3 at 1 atmosphere and 253 mm are given.
  • the decomposition rate constant K is 1 X 1 0_ 16 m 2 Zs to 1 X 1 0 — 14 m 2 Z s.
  • K 3. 5 X 1 0_ 15 m 2 Zs ⁇ 2. 5 X 1 0_ 15 m 2 Zs as a more preferable range.
  • the decomposition rate ⁇ is obtained by the equation (1), and the estimated result of the guest molecule inclusion rate (%) of MG HP obtained by the equation (9)
  • Figure 3 shows a comparison with the guest molecule inclusion rate (%).
  • the guest molecule inclusion rate in Fig. 3 is expressed as a percentage by multiplying Q? H defined above by 100.
  • Figure 4 shows the calculated results. From FIG. 4, the particle size of the gas hydrate pellets with a decomposition rate of 2 ⁇ 10 8-8 s — 1 or less can be 1 Omm or more, preferably 2 Omm or more.
  • Figure 5 shows the relationship between the decomposition rate and Gasuhaido rate Bok Perez specific surface area of Bok upon (1) the decomposition rate constant K in equation 3. 5 X 1 0_ 15 m 2 Zs.
  • the specific surface area of gas hydrate and pellets can be determined by the following method.
  • the density p of MG HP was measured by the buoyancy method.
  • Figure 11 shows the measurement method. The measurement was performed in a low temperature room of 253 K, and the solvent was isooctane. The density of isooctane at 253 K was 724.3 k gZm 3 .
  • As the mesh container a mesh container made of stainless steel having an aperture of 0.5 mm was used. Table 1 shows the measurement results of the density of MG HP at 253 K.
  • the specific surface area of the gas hydrate pellet is 2.5 m 2 kg or less, preferably 2. Om z / W g or less from Fig. 5. be able to.
  • FIG. 6 is a graph showing the relationship between the density of gas hydrate pellets with a particle size of 13 mm and the decomposition rate.
  • the density By setting the density to 800 k gZm 3 or more, preferably 850 k gZm 3 or more, it is possible to obtain a decomposition rate of 0.002 Zday (2 X 1 0_ 8 S- 1 ) or less.
  • the decomposition rate of the mixed gas hydrate particles and pellets is calculated by the equation (1).
  • Mixed gas hydrate particles It can be obtained by adding up the values obtained by multiplying the weight fraction of the whole Peretz.
  • the degradation rate ⁇ ⁇ ⁇ t can be obtained by (9) seeking Yotsuri alpha? Eta the equation, the following (1 1).
  • Each t 2 subscript indicates the status of the storage time.
  • the overall decomposition rate ⁇ is divided into multiple particle size ranges so that the minimum and maximum values are about twice or less, respectively.
  • the total decomposition ratio) 8 can be obtained by adding together the values obtained by multiplying the weight fractions for the entire divided range.
  • Decomposition rate Aa H ZA t can be obtained from Eq. (9) and from Eq. (1 1).
  • the above calculation is based on the assumption that the gas hydrate particles and pellets are assumed to be a spherical model.
  • the actual gas hydrate particles and pellets are not only spherical but also cylindrical, lens,
  • the pellets of all shapes such as shapes and almonds can also be applied to irregular particles.
  • the radius r of these particles One-half of the outer diameter can be used.
  • the outer diameter has a major axis and a minor axis, it is desirable to use the average of the major axis and the minor axis as the outer diameter.
  • FIG. 7 is a schematic configuration diagram of an embodiment of a cracked gas amount control system for gas hydrate particles and pellets.
  • gas hydrate pellets will be described as an example in the present embodiment and examples described later, but the same applies to gas hydrate particles.
  • the decomposition rate constant K when the gas hydrate and pellets are stored under a certain storage condition (storage pressure P, storage temperature T) in which a self-preserving effect is exhibited is determined by experiment, and Equation (1) Therefore, the particle size of the gas hydrate pellets 1 1 produced in the gas hydrate pellets production plant 1 3 is set so that the determined decomposition rate ⁇ becomes a value satisfying the amount of decomposition gas required for the storage tank 1 2. Set.
  • Gas hydrate / Pelec ⁇ manufacturing plant 1 3 and storage tank 1 2 may be adjacent to each other, but the storage tank is located on land, sea (on board) storage tank, remote storage tank, etc. There is also. The same applies to the embodiments described later.
  • gas hydrate pellets Since the amount of cracked gas in gas hydrate pellets stored under conditions that exhibit a self-preserving effect can be accurately estimated, depending on the amount of cracked gas required for storage tank 1 2, gas hydrate pellets The amount of decomposition can be controlled.
  • the storage pressure P, the storage temperature, the density ⁇ of the gas hydrate pellets 1 1 1, and the gas composition is constant, changing the particle size (radius r 0 ) of the gas hydrate pellets 1 1 1
  • the amount of decomposition of hydrate pellets 1 1 can be controlled.
  • the particle size of the gas hydrate pellets 1 1 produced in the gas hydrate 1 pellets production plant 1 3 can be set according to the amount of cracked gas required for the storage tank 12
  • the particle size 2 of the gas hydrate pellets 11 can be set, and the amount of cracked gas can be controlled by the pellet density P of the gas hydrate pellets 11.
  • the decomposition rate constant K is a constant determined by experiments depending on storage pressure, storage temperature, gas hydrate pellet density, and gas composition, and storage pressure, storage temperature, gas hydrate pellets Actual density and gas composition If each data of the decomposition rate constant K determined in the experiment is tabulated, it is possible to estimate the amount of decomposition of the gas hydrate pellets under multiple conditions.
  • the decomposition rate constant ⁇ corresponds to the storage pressure ⁇ and the storage temperature ⁇ . Therefore, it is possible to control the amount of decomposition of the gas hydrate pellets 11 by changing the storage pressure ⁇ or the storage temperature ⁇ .
  • FIG. 8 is a schematic configuration diagram of another embodiment of the cracked gas amount control system for gas hydrate particles and pellets.
  • Process data of gas hydrate pellet storage tank 12 [Storage temperature ⁇ ( ⁇ ), storage pressure (MP a), required decomposition rate during storage (s _ 1 ), gas composition, pellet density iO (kg Zm 3 ), storage volume (M 3 ) and required gas storage amount (m 3 )] are set.
  • the decomposition rate constant K when the gas hydrate and pellets are stored under a certain storage condition (storage pressure P, storage temperature T) under which a self-preserving effect is exhibited is determined by experiment, and the equation (1) Therefore, the gas hydrate pellets 1 1 produced in the gas hydrate pellets manufacturing plant 1 3 are set so that the decomposition rate ⁇ obtained is a value satisfying the amount of cracked gas required for the cracked gas utilization equipment 14. Set the diameter.
  • the decomposition amount of the gas hydrate pellets can be controlled according to the amount of cracked gas required for the cracked gas utilization facility 14.
  • FIG. 9 is a schematic configuration diagram of an embodiment of a cracked gas amount control system for mixed gas hydrate particles and pellets of different diameters.
  • the gas hydrate pellet will be described as an example, but the same applies to the gas hydrate particles.
  • two types of different-diameter large-diameter gas hydrate pellets 21 and small-diameter gas hydrate pellets 2 2 are mixed, and the different-diameter mixed gas hydrate pellets 23 are stored in the storage tank 24.
  • Process data of the gas hydrate pellets storage tank 2 4 [storage temperature T (K), the storage pressure (MP a), stored in the request degradation rate (s _ 1), gas composition, pellet density iO (kg Zm 3), storage volume (M 3 ) and required gas storage amount (m 3 )] are set.
  • the decomposition rate constant K when the gas hydrate is stored under constant storage conditions (storage pressure P, storage temperature T) in which a self-preserving effect is exhibited is determined by experiment, and is based on the equation (1).
  • the particle size of the large-diameter gas hydrate pellets 21 and the small-diameter gas hydrate pellets 2 2 and 2 so that the decomposition speed of the mixed gas hydrate pellets 2 3 of different diameters satisfies the cracked gas amount required for the storage tank 2 4 Determine the composition ratio of each.
  • large-diameter gas hydrate pellets 21 and small-diameter gas hydrate pellets 2 2 are produced in the gas hydrate production plant 25 at the respective composition ratios.
  • the amount of gas hydrate pellets cracked by the formula (1) is accurately estimated, and the amount of cracked gas hydrate pellets is determined according to the amount of cracked gas required for storage tank 24.
  • the amount of cracked gas required in the storage tank 2 4 by mixing the two large and small diameter gas hydrate pellets 2 1 and 2 2 produced at the gas hydrate pellets plant 2 5 It becomes easy to adjust to.
  • FIG. 10 is a schematic configuration diagram of another embodiment of a cracked gas amount control system for mixed gas hydrate particles and pellets of different diameters.
  • Process data of the gas hydrate pellets storage tank 2 4 [storage temperature T (K), the storage pressure (MP a), stored in the request degradation rate (s _ 1), gas composition, pellet density iO (kg Zm 3), storage volume (M 3 ) and required gas storage amount (m 3 )] are set.
  • the decomposition rate constant K when the gas hydrate is stored under a certain storage condition (storage pressure P, storage temperature T) in which a self-preserving effect is exhibited is determined by experiment, and based on the equation (1)
  • the large-diameter gas hydrate produced in the gas hydrate pellets manufacturing plant 25 so that the cracking speed of the mixed gas hydrate pellets 2 3 satisfy the cracking gas amount required for the cracked gas utilization equipment 26 Determine the particle size of Perez® 21 and the small-diameter gas hydrate Peret® 22 and their composition ratios.
  • the present invention relates to a gas hydrate for storing a gas hydrate that is a clathrate compound of water and a gaseous hydrate forming substance that forms a gas hydrate such as natural gas, methane, ethane, and carbon dioxide. It can be used for cracked gas control system.
  • FIG. 1 is a diagram showing the correlation between storage temperature and decomposition rate of gas hydrate and pellets.
  • FIG. 2 is a diagram showing a decomposition reaction model of spherical gas hydrate particles and pellets.
  • FIG. 3 is a diagram showing measured values and estimated values of gas storage rates of methane gas hydrate and pellets.
  • FIG. 4 is a graph showing the correlation between the particle size of gas hydrate and pellets and the decomposition rate.
  • FIG. 5 is a diagram showing the correlation between the specific surface area of gas hydrate and pellets and the decomposition rate.
  • FIG. 6 is a graph showing the correlation between the density of gas hydrated pellets and the decomposition rate.
  • FIG. 7 is a schematic configuration diagram of an embodiment of a cracked gas amount control system for gas hydrate particles and pellets.
  • FIG. 8 is a schematic configuration diagram of another embodiment of a cracked gas amount control system for gas hydrate particles and pellets.
  • FIG. 9 is a schematic configuration diagram of an embodiment of a cracked gas amount control system for mixed gas hydrate particles and pellets of different diameters.
  • FIG. 10 is a schematic configuration diagram of another embodiment of the cracked gas amount control system for mixed gas hydrate particles and pellets of different diameters.
  • FIG. 1 1 A diagram showing the density measurement method (buoyancy method) of gas hydrate pellets.
  • FIG. 12 Equilibrium diagram (example of methane gas hydrate) of a known hydrate tank.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

 本発明の課題は、ガスハイドレートを貯蔵する際に、要求される分解ガス量に応じて、ガスハイドレートの分解量を制御することができる、ガスハイドレートの分解量制御方法及びガスハイドレートの分解ガス量制御システムを提供することである。そのために、ガスハイドレートが自己保存効果を発現する条件下でガスハイドレートを貯蔵する際のガスハイドレートの分解量制御方法であって、所定の数式に基いてガスハイドレートの分解率βを求め、ガスハイドレートの分解量を制御することを特徴とする。

Description

明 細 書
ガスハイドレー卜の分解量制御方法および分解ガス量制御システム 技術分野
[0001] 本発明は、 天然ガス、 メタン、 ェタン、 二酸化炭素などのガスハイドレー 卜を形成する気体状のハイドレー卜形成物質と水との包接化合物であるガス ハイドレー卜の分解量制御方法および分解ガス量制御システムに関する。 背景技術
[0002] ガスハイドレー卜とは、 水分子とガス分子からなる氷状の固体結晶であり 、 水分子が作る立体構造の籠 (ケージ) の内部に、 ガス分子が取り込まれて 形成される包接 (クラスレート) 水和物 (ハイドレート) の総称である。 1 m 3のガスハイドレー卜中に包蔵できるガス量は 1 65 Nm3程度と大量であ る。 そのため、 天然ガスをハイドレー卜として生成、 貯蔵、 輸送するシステ ム (NGHシステム: Natural Gas Hydrate System) が検討されている。
[0003] 大気圧におけるガスハイドレートの貯蔵において、 ガスの分解量を極小化 するためには、 天然ガスハイドレー卜 (Natural Gas Hydrate: NGH) の自 己保存性を利用することが鍵となる。
[0004] 図 1 2は公知のハイドレー卜の平衡線図 (メタンハイドレー卜の例) であ る。 尚、 図 1 2において平衡線 31の左上領域がハイドレー卜生成領域であ リ、 平衡線 31の右下領域がハイドレー卜生成領域外である。 また、 Hはハ イドレート (Hydrate) 、 Gはガス (Gas) 、 Iはアイス (氷: Ice) 、 LWは リキッドウオーター (水: Liquid Water) を表す。
[0005] 天然ガスと水とをハイドレー卜生成反応におけるハイドレー卜生成領域内 となる低温及び高圧 (例えばハイドレー卜平衡条件の高圧且つ低温側となる 5MPaで 0. 1〜3°C程度 図 1 2の A点) の下で反応させると天然ガスハ ィドレー卜を生成する。
[0006] 生成した天然ガスハイドレートを等圧で氷点以下 (0°C〜一 40°C 図 1 2の B点) に冷却すると凍結する。 そして、 凍結した天然ガスハイドレート は貯蔵圧力 (大気圧 0 . 1 M P a近く 図 1 2の C点) まで減圧して貯槽に貯 咸され 。
[0007] 通常、 貯槽内は、 該貯槽内への大気の不用意な浸入を防止する観点から、 その貯蔵圧力は大気圧より少し高圧に設定される。 この貯槽の前記温度及び 圧力は、 ハイドレー卜生成領域外に位置するが、 上記氷点下ではガスハイド レー卜の分解が抑制されて準安定状態にある。 この準安定状態をとる現象が 自己保存性として知られている。
[0008] ガスハイドレー卜は、 貯槽への充填率の向上や、 輸送及び貯蔵中の安全性 、 荷役時の扱いの容易性などを図るため、 粉体状のガスハイドレー卜粒子を 圧縮成形しペレツ卜状で貯蔵される。 通常、 ペレツ卜サイズは 5 mm〜 1 0 O mm程度である。 更に、 寸法の異なる 2種以上のガスハイドレートペレツ 卜を混合して貯蔵することによって、 貯蔵施設に貯蔵されるガスハイドレー 卜の充填率を向上させことができる (特許文献 1 :特開 2 0 0 2— 2 2 0 3 5 3号公報) 。
[0009] また、 ガスハイドレー卜を貯蔵する技術については、 貯蔵槽の温度を、 ガ スハイドレー卜が自己保存性を発現する温度に制御することによりガスハイ ドレー卜の分解を抑制し、 効率的にガスハイドレー卜を貯蔵する方法が検討 されている (特許文献 2 :特開 2 0 0 5— 2 0 1 2 8 6号公報) 。
[0010] 特許文献 1 :特開 2 0 0 2 - 2 2 0 3 5 3号公報
特許文献 2:特開 2 0 0 5 _ 2 0 1 2 8 6号公報
発明の開示
発明が解決しょうとする課題
[001 1 ] 前記貯蔵槽に貯蔵しているガスハイドレー卜粒子やガスハイドレー卜ペレ ッ卜の一部が分解すると、 ガス化した気体分子が分解ガスとして生成する。
[0012] 天然ガスをハイドレー卜として自己保存性を利用して貯蔵する場合、 その 採算性、 および貯蔵システムの全体計画等から、 ハイドレートの分解量は所 定の値以下であることが要求される。
[0013] これまでの研究により、 自己保存状態のガスハイドレート粒子、 ペレット の安定性は、 貯蔵温度領域により変化することが示されている。 また、 前記 安定性は、 ガスハイドレート粒子、 ペレットの密度や粒径等の性状や、 ガス ハイドレー卜の表面の状態によっても大きく異なることが定性的に示されて いる。
[0014] しかし、 ガスハイドレー卜粒子、 ペレツ卜の性状とガスハイドレー卜の分 解量との相関関係が明確ではなく、 ガスハイドレー卜を貯槽に貯蔵した際に 、 定量的にガスハイドレー卜の分解量を推算する手段がなかった。
したがって、 ガスハイドレートを貯蔵する際、 ガスハイドレートの分解量 を要求される所定の値以下に設定することが困難であった。
[0015] 本発明の課題は、 ガスハイドレー卜を貯蔵する際に、 要求される分解ガス 量に応じて、 ガスハイドレートの分解量を制御することができる、 ガスハイ ドレー卜の分解量制御方法及びガスハイドレー卜の分解ガス量制御システム を提供することにある。
課題を解決するための手段
[0016] 上記課題を解決するため、 本発明の第 1の態様に係るガスハイドレー卜の 分解量推算方法は、 ガスハイドレー卜が自己保存効果を発現する条件下でガ スハイドレー卜を貯蔵する際のガスハイドレー卜の分解量制御方法であって 、 下記の式 (1 ) に基いてガスハイドレートの分解率 )8を求め、 ガスハイド レー卜の分解量を制御することを特徴とする。
[0017] [数 3] β = 1 - ( 1 ― J~KT / r 0 ) 3 - - · ( 1 ) κ :貯蔵圧力、 貯蔵温度、 ガスハイドレー卜の密度、 及びガス組成に応 じて実験によって決まる分解速度定数
r 0:ガスハイドレー卜半径 (m)
:貯蔵時間 (s )
[0018] 本発明によれば、 自己保存効果を発現する条件下でガスハイドレー卜が分 解して発生する分解ガス量を、 (1 ) 式に基いて正確に推算することができ るので、 ガスハイドレー卜を貯蔵する際に要求される分解ガス量を満たすよ うに、 ガスハイドレー卜の分解量を制御することができる。
例えば、 貯蔵圧力、 貯蔵温度、 ガスハイドレー卜の密度、 及びガス組成が 一定である場合に、 ガスハイドレートの粒径 (半径 r 0 ) を変えることにより
、 要求される分解ガス量を満たすように設定することができる。
[0019] 分解速度定数 Kは貯蔵圧力、 貯蔵温度、 ガスハイドレー卜の密度、 及びガ ス組成に応じて実験によって決まる定数であり、 異なる貯蔵圧力、 貯蔵温度 、 ガスハイドレートの密度、 及びガス組成についてそれぞれ実験で定めて、 分解速度定数 Kの各データをテーブル化して用意すれば、 複数の条件下にお けるガスハイドレー卜の分解量を、 その条件に適合した分解速度定数 Kを用 いることによって推算することができる。
[0020] また、 本発明の第 2の態様に係るガスハイドレー卜の分解ガス制御システ ムは、 要求される分解ガス量を満たすように、 分解率 )8についての下記の式 ( 1 ) に基いて、 自己保存効果を発現する条件下で貯蔵されるガスハイドレ 一卜の分解量を制御可能に構成されていることを特徴とする。
[0021 ] [数 4] β = 1 - ( 1 ― J~KT / r 0 ) 3 - - · ( 1 ) κ :貯蔵圧力、 貯蔵温度、 ガスハイドレー卜の密度、 及びガス組成に応 じて実験によって決まる分解速度定数
r 0:ガスハイドレー卜半径 (m)
:貯蔵時間 (s )
[0022] 要求される分解ガス量とは、 制御の基準となる分解ガス量のことであり、 ガスハイドレー卜を貯蔵する際の採算性や経済性から要求される分解ガス量 や、 設備等が物理的に要求する分解ガス量である。
[0023] 本発明によれば、 自己保存効果を発現する条件下で貯蔵されているガスハ ィドレー卜の分解ガス量を正確に推算することができるため、 ガスハイドレ 一ト貯槽や、 分解ガス利用設備に要求される分解ガス量に応じて、 ガスハイ ドレー卜の分解量を制御することができる。
例えば、 貯蔵圧力、 貯蔵温度、 ガスハイドレー卜粒子、 ペレツ卜の密度、 及びガス組成が一定である場合に、 ガスハイドレート粒子、 ペレットの粒径
(半径 r 0) を変えることによって、 ガスハイドレートの分解量を制御するこ とができる。
[0024] 更に、 ガスハイドレー卜粒子、 ペレツ卜の性状が決定した後に、 前記要求 される分解量が変更された場合でも、 貯蔵圧力 Pおよび貯蔵温度 Tに応じた 分解速度定数 Kを持っていれば、 貯蔵圧力 Pまたは貯蔵温度 Tを変えること によってガスハイドレー卜の分解量を制御することも可能である。
[0025] また、 本発明の第 3の態様に係るガスハイドレー卜の分解ガス制御システ ムは、 第 3の態様において、 二種以上の異径のガスハイドレー卜を混合する ことで分解ガス量を制御することを特徴とする。
[0026] 本発明によれば、 異径のガスハイドレー卜粒子、 ペレツ卜を混合すること によって、 貯槽への充填率を向上させるとともに、 ガスハイドレートの分解 量を、 分解ガス利用設備において要求される分解ガス量に調整し易くなる。 発明の効果
[0027] 本発明によれば、 ガスハイドレートを貯蔵する際に要求される分解ガス量 を満たすように、 ガスハイドレー卜の分解量を制御することが可能である。 発明を実施するための最良の形態
[0028] 以下、 本発明に係るガスハイドレー卜の分解量制御方法及び分解ガス量制 御システムについて説明する。 本発明においてハイドレー卜の種類は特に限 定されるものではない。 すなわち、 ハイドレー卜を形成するガス状のハイド レート形成物質の種類は、 所定の温度、 圧力条件でハイドレートを形成する ものであればよく、 例えば天然ガス (メタンを主成分とし、 副成分としてェ タン、 プロパンなどを含む混合ガス) 、 メタンガス、 ェタンガス、 二酸化炭 素ガス (炭酸ガス) などを挙げることができる。 ガスハイドレート粒子、 ぺ レツ卜は自己保存効果を発現した状態で貯蔵する。 ガスハイドレー卜ペレツ 卜は、 通常、 5mm〜1 0 Ommの範囲で製造するのが実用的である。
[0029] [ガスハイドレー卜の分解量制御方法]
( 1 ) ガスハイドレー卜の分解速度の温度依存性
図 1に、 メタンガスハイドレートペレット (以下、 MG HPと称する) の 各貯蔵温度における分解速度をゲス卜分子包蔵率 Qf Hの減少割合 Δ Of HZ厶 t (s_1) で示す。
ゲスト分子包蔵率 Qf Hの定義を下記の式 (2) に示す。
[0030] [数 5] ハイ ドレートの包蔵ガス量 (m o 1 )
H ― 原料水量 (mo 1 ) Z水和数 ' ( ) 水分子が作る全てのケージにゲスト分子が包摂した場合は、 Qf H= 1. 0と なる。 水和数とは、 ガス分子に対する水分子数の割合である。 本実施例にお いては、 I型構造のガスハイドレー卜の理論水和数である 5. 75を値とし て用いた。
[0031] MGH Pの場合、 貯蔵温度 268 Kでは分解速度が大きいが、 貯蔵温度が 低くなると分解速度が小さくなリ、 253 Kでは 3 X 1 0_8s_1まで低下し た。 貯蔵温度が 253 Kより低くなると再び分解速度が増加し、 21 0Kで 分解速度が最大となるが、 それより低い温度では分解速度が減少し、 1 68 Kで分解速度は 0になった。 MG HPの自己保存性は、 226K〜268K の限られた温度範囲で発現し、 この温度範囲内では 253 Κ付近で最も安定 性が高いことが確認された。
[0032] メタンを主成分とし、 ェタン、 プロパンを含む混合ガスハイドレートペレ ット (以下、 混合 G HPと称する) の場合も、 計測範囲内では、 分解速度は 253 Kで最も低い値を示している。 また混合 GH P分解速度の温度依存性 は、 組成、 濃度によらず MGHPと同様の傾向を示す。
[0033] (2) ガスハイドレート粒子、 ペレットの分解率の推算式
次に、 走査型共焦点顕微鏡を用いてハイドレー卜ペレツ卜の表面状態を観 察したところ、 自己保存性を最も強く示す温度である 2 5 3 Kまで昇温した 試料の表面は、 全体が光沢を帯びた膜状に覆われている様子が観察された。
[0034] 図 2は球状のガスハイドレート粒子、 ペレットの分解反応モデルである。 記号の意味を以下に示す。
r :ハイドレー卜粒子、 ペレツ卜半径 (m)
V :ハイドレー卜粒子、 ペレツ卜体積 (m 3)
X :分解したハイドレート層の厚さ (m)
添字の 0は初期の状態を示す。
前記球状のガスハイドレー卜粒子、 ペレツ卜の分解反応モデルを用いて、 M G H Pが温度範囲 2 2 6 K〜2 6 8 K、 特に 2 5 3 Κ付近での自己保存状 態におけるガスハイドレー卜ペレツ卜の分解量を推算する。
[0035] ガスハイドレー卜ペレット 1の分解過程では、 分解によリ生成した氷 2が ガスハイドレー卜ペレツ卜 1の表面から内部に向かって成長するものと仮定 する。 氷が多孔質のものであれば、 分解により生成したガスは氷層を速やか に通過できるが、 緻密な膜状の氷の場合は簡単に通過できずに氷層中を拡散 しなければならない。
[0036] そこで、 分解速度が非常に小さい 2 5 3 Κ付近のガスハイドレー卜ペレツ 卜 1表面で観察された、 該表面全体が光沢を帯びた膜状に覆われている様子 は、 緻密な膜状の氷 2が生成している状態であると仮定し、 ガスハイドレー 卜ペレツ卜の分解速度式に、 拡散律速■界面減少型反応速度式 ( J a n d e rの式) を適用する。 この点が本発明の特徴である。
[0037] ガスハイドレー卜ペレツ卜 1の分解率^と分解層である氷 2の厚さ Xの関 係は次式により得られる。 tは時間 (s ) を表す。
球状のガスハイドレー卜ペレツ卜 1が分解し、 分解層の厚さ Xとなったと きの体積 Vは (3 ) 式によって表せる。
[0038] [数 6] 球状のガスハイドレー卜ペレツ卜 1が分解し、 分解層の厚さ Xとなったと きの分解率^を用いて体積 Vを表すと、 以下の (4) 式になる。
[0039] [数 7]
V = 4 π Γ 0 ΐ - β) /3 ' ' ' (4) 上記 (3) 式と (4) 式から、 分解層の厚さ Xは (5) 式で表せる。
[0040] [数 8]
X = r 0 [ 1 -V ( 1 — /3 ) ] · · · (5) また、 前記拡散律速の仮定より、 分解ガスが分解層中を拡散するのに要す る時間は、 分解層の厚さが増すほど増大するので、 分解層の成長速度はその 厚さに反比例するものとする。 分解速度 d xZd tは以下のように表せる。
[0041] 園 d x/ d t = K/ (2x ) · · ■ ( 6 ) t =0で x = 0という初期条件を使って (6) 式を積分すると、 (7) 式 が得られる。
[0042] [数 10]
X 2-K t · · · (7)
(5) 式と (7) 式から (8) 式が得られる。
[0043] [数 11]
( l - β ) ] 2 = K t/r 02 · ' · (8) (8) 式から分解率^は、 下記の (1 ) 式となる。
[0044] [数 12] β = 1 - ( 1 — t / r 0) 3 · · · ( 1 ) ゲスト分子包蔵率 QfHは (9) 式によって求められる。
[0045] [数 13] αΗ = αηο { 1— β) - - · ( 9 )
[0046] (3) 分解速度定数 Κ
分解速度定数 Κは、 ガスハイドレー卜ペレツ卜の性状であるペレツ卜密度
(Ρ) およびガス組成と、 貯蔵条件である貯蔵圧力 (Ρ) および貯蔵温度 (
Τ) に応じて決まる定数である。 貯槽に貯蔵される一定性状のガスハイドレ 一卜ペレツ卜について、 該ガスハイドレー卜ペレツ卜が自己保存効果を発現 する、 一定貯蔵条件下で貯蔵したときの分解率を測定することによって、 該 ガスハイドレー卜ペレツ卜の分解速度定数 Κが求められる。
[0047] 一例として、 1気圧、 253 Κにおける、 ペレット密度が 880〜91 4 k gZm3であるメタンガスハイドレートペレット (MGHP) を挙げると、 分解速度定数 Kは、 実験結果より、 1 X 1 0_16m2Zs〜1 X 1 0_14m2Z sである。 より好ましい範囲として K=3. 5 X 1 0_15m2Zs ± 2. 5 X 1 0_15m2Zsを用いて分解量を推算する。
[0048] 上記分解速度定数 Kを用いて、 (1 ) 式によって分解率 ^を求め、 (9) 式によって求めた MG HPのゲスト分子包蔵率 (%) の推算結果と、 実験に よる実際のゲスト分子包蔵率 (%) の測定結果との比較を図 3に示す。 尚、 図 3におけるゲスト分子包蔵率は、 前述において定義した Q?Hに 1 00を乗じ て百分率で表したものである。
推算値は 400時間以上経過後まで実験結果と良く一致しており、 推算式 (1 ) によってガスハイドレートの分解率求められ、 該ガスハイドレートの 分解量が推算可能といえる。 [0049] ( 4 ) 分解速度とガスハイドレー卜ペレットの粒径
2週間ガスハイドレー卜ペレツ卜を貯蔵する際に要求される分解速度が、 1気圧、 253 Kにおいて、 2 X 1 0_8 s_1であった。
貯蔵するガスハイドレー卜ペレツ卜の密度が 880 k gZm3であるときの 分解速度定数 K=3. 5 X 1 0_15m2Zsを用いて、 (1 ) 式に基いて 2週 間の分解速度を計算した結果を図 4に示す。 図 4より、 分解速度が 2 X 1 0- 8 s_1以下となるガスハイドレートペレットの粒径は、 1 Omm以上、 望まし くは 2 Omm以上とすることができる。
[0050] (5) 分解速度とガスハイドレー卜ペレツ卜の比表面積
ペレットがポーラスな場合には、 必要な分解速度以下にするために、 ペレ ッ卜の比表面積を制御することが有効である。 図 5に、 (1 ) 式において分 解速度定数 Kを 3. 5 X 1 0_15m2Zsとしたときの分解速度とガスハイド レー卜ペレツ卜の比表面積との関係を示す。
ガスハイドレー卜ペレツ卜の比表面積は以下の方法で求めることができる
[0051] MG HPの密度 pを浮力法により計測した。 図 1 1に計測方法を示す。 測 定は 253 Kの低温室内で行い、 溶媒はイソオクタンを用いた。 イソォクタ ンの 253 Kにおける密度は、 724. 3 k gZm3とした。 メッシュ容器は ステンレス製の目開き 0. 5 mmのメッシュ容器を用いた。 表 1に 253 K における MG H Pの密度の計測結果を示す。
[0052]
[表 1]
Figure imgf000013_0001
比表面積は以下の式で表せる
[0053] [数 14]
4 π Γ。2Ζ [Ρ · (4/3 π ]Γ 。3)] = 3/ r。) · · '( 1 0) 得られた密度より、 (1 0) 式から比表面積が求められる。
要求された分解速度が 1 X 1 0_7 (s-1) である場合、 図 5より、 ガスハ イドレートペレットの比表面積を 2. 5m2 k g以下、 望ましくは 2. Om z/W g以下とすることができる。
[0054] (6) 分解速度と密度
図 6は、 粒径 1 3 mmのガスハイドレートペレツ卜の密度と分解速度の関 係を示す図である。
密度を 800 k gZm3以上、 望ましくは 850 k gZm3以上とすること により、 0. 002Zday (2 X 1 0_8 S- 1) 以下の分解速度とすることがで さる。
[0055] (7) 二種以上の異径のガスハイドレー卜粒子、 ペレットを混合した場合の 分解速度
二種以上の異径のガスハイドレー卜粒子、 ペレツ卜を混合した場合、 その 混合したガスハイドレ一卜粒子、 ペレツ卜全体の分解速度は、 それぞれの粒 径の分解率 )8を (1 ) 式により計算して、 混合したガスハイドレート粒子、 ペレツ卜全体に対する重量分率を乗じた値を合算することによつて求めるこ とができる。 分解速度 ΔαΗΖΔ tは、 (9) 式によつリ α?Ηを求め、 以下の (1 1 ) 式により求めることができる。 添字の t 2はそれぞれ貯蔵時間 の状態を示す。
[0056] [数 15]
Δ Η/ Δ t = [ ( a„ t l— a H t 2) / ( t 2— t , )] - - - ( 1 1 )
[0057] (8) ブロードな粒径分布を持つガスハイドレート粒子、 ペレット混合物の
ブロードな粒径分布を持つガスハイドレー卜粒子、 ペレツ卜混合物の場合 、 全体の分解率 ^は、 粒径の範囲を、 最小値と最大値が 2倍程度以下となる ように複数分割して、 それぞれの平均粒径で分解率 )8を (1 ) 式により計算 する。 これに分割した範囲ごとに全体に対する重量分率を乗じた値を合算す ることによって、 全体の分解率 )8を求めることができる。
分解速度 AaHZA tは、 (9) 式により a Hを求め、 (1 1 ) 式により求 めることができる。
[0058] また、 上記はガスハイドレー卜粒子、 ペレツ卜を球状のモデルで仮定した 場合の計算であるが、 実際のガスハイドレー卜粒子、 ペレツ卜は、 球形以外 にも、 円筒形、 レンズ形、 ピロ一形、 アーモンド形等、 すべての形状のペレ ットゃ不定形の粒子にも適用が可能である。 これらの粒子の半径 r。は、 外径 の 2分の 1を用いることができる。 外径に長径と短径がある場合、 長径と短 径の平均を外径として用いることが望ましい。
[0059] [実施例 1 ]
図 7はガスハイドレー卜粒子、 ペレツ卜の分解ガス量制御システムの一実 施例の概略構成図である。 以下、 本実施例および後述する実施例において、 ガスハイドレー卜ペレツ卜を例に説明するが、 ガスハイドレー卜粒子につい ても同様である。
ガスハイドレートペレット貯槽 1 2のプロセスデータ [貯蔵温度 T (K) 、 貯蔵圧力 (M P a ) 、 貯蔵中要求分解速度 (s _ 1 ) 、 ガス組成、 ペレット 密度 iO ( k g Zm 3 ) 、 貯蔵容積 (m 3) 、 要求ガス貯蔵量 (m 3) ] が設定さ れる。
[0060] 前記ガスハイドレー卜ペレツ卜が自己保存効果を発現する一定の貯蔵条件 下 (貯蔵圧力 P、 貯蔵温度 T ) で貯蔵する場合の分解速度定数 Kを実験によ リ決定し、 式 (1 ) よって求められた分解率^が、 貯槽 1 2に要求される分 解ガス量を満たす値となるように、 ガスハイドレー卜ペレツ卜製造プラント 1 3において製造されるガスハイドレー卜ペレツ卜 1 1の粒径を設定する。
[0061 ] ガスハイドレー卜ペレツ卜製造プラント 1 3と貯槽 1 2は隣接している場 合もあるが、 貯槽には陸上貯槽、 海上 (船上) 貯槽、 遠隔地の貯槽等、 離れ て設置される場合もある。 後述する実施例についても同様である。
[0062] 次に、 本実施例の作用を説明する。
自己保存効果を発現する条件下で貯蔵されているガスハイドレー卜ペレツ 卜の分解ガス量を正確に推算することができるため、 貯槽 1 2に要求される 分解ガス量に応じて、 ガスハイドレー卜ペレツ卜の分解量を制御することが できる。
例えば、 貯蔵圧力 P、 貯蔵温度丁、 ガスハイドレー卜ペレツ 卜 1 1の密度 ρ、 及びガス組成が一定である場合に、 ガスハイドレー卜ペレツ卜 1 1の粒 径 (半径 r 0) を変えることによって、 ガスハイドレートペレット 1 1の分解 量を制御することができる。
[0063] 本実施例では、 貯槽 1 2に要求される分解ガス量に応じて、 ガスハイドレ 一卜ペレツ卜製造プラント 1 3において製造されるガスハイドレー卜ペレツ 卜 1 1の粒径を設定することができるが、 前記プロセスデータとして、 ガス ハイドレー卜ペレツ卜 1 1の粒径 2 「。を設定し、 ガスハイドレー卜ペレツ卜 1 1のペレツ 卜密度 Pによって分解ガス量を制御することもできる。
[0064] また、 前記分解速度定数 Kは貯蔵圧力、 貯蔵温度、 ガスハイドレー卜ペレ ッ卜の密度、 及びガス組成に応じて実験によって決まる定数であり、 貯蔵圧 力、 貯蔵温度、 ガスハイドレー卜ペレツ卜の密度、 及びガス組成について実 験で定めた分解速度定数 Kの各データを、 テーブル化して持っていれば、 複 数の条件下におけるガスハイドレー卜ペレツ卜の分解量を推算することがで さる。
[0065] したがって、 ガスハイドレー卜ペレツ卜 1 1の性状が決定した後に、 前記 要求される分解量が変更された場合でも、 貯蔵圧力 Ρおよび貯蔵温度 τに応 じた分解速度定数 Κを持っているので、 貯蔵圧力 Ρまたは貯蔵温度 Τを変え ることによってガスハイドレー卜ペレツ卜 1 1の分解量を制御することも可 能である。
[0066] [実施例 2 ]
図 8はガスハイドレー卜粒子、 ペレツ卜の分解ガス量制御システムの他の 実施例の概略構成図である。
ガスハイドレートペレット貯槽 1 2のプロセスデータ [貯蔵温度 Τ ( Κ) 、 貯蔵圧力 (M P a ) 、 貯蔵中要求分解速度 (s _ 1 ) 、 ガス組成、 ペレット 密度 iO ( k g Zm 3) 、 貯蔵容積 (m 3) 、 要求ガス貯蔵量 (m 3) ] が設定さ れる。
[0067] 前記ガスハイドレー卜ペレツ卜が自己保存効果を発現する一定の貯蔵条件 下 (貯蔵圧力 P、 貯蔵温度 T ) で貯蔵する場合の分解速度定数 Kを実験によ リ決定し、 式 (1 ) よって求められた分解率^が、 分解ガス利用設備 1 4に 要求される分解ガス量を満たす値となるように、 ガスハイドレー卜ペレツ卜 製造プラント 1 3において製造されるガスハイドレー卜ペレツ卜 1 1の粒径 を設定する。
本実施例によって、 実施例 1と同様に、 分解ガス利用設備 1 4に要求され る分解ガス量に応じて、 ガスハイドレー卜ペレツ卜の分解量を制御すること ができる。
[0068] [実施例 3 ]
図 9は異径混合ガスハイドレー卜粒子、 ペレツ卜の分解ガス量制御システ ムのー実施例の概略構成図である。 以下、 ガスハイドレートペレットを例に 説明するが、 ガスハイドレー卜粒子についても同様である。 本実施例では、 二種の異径の大径ガスハイドレー卜ペレツ卜 2 1および小 径ガスハイドレー卜ペレット 2 2を混合した、 異径混合ガスハイドレートぺ レツ卜 2 3を貯槽 2 4に貯蔵する。
ガスハイドレートペレット貯槽 2 4のプロセスデータ [貯蔵温度 T ( K) 、 貯蔵圧力 (M P a ) 、 貯蔵中要求分解速度 (s _ 1 ) 、 ガス組成、 ペレット 密度 iO ( k g Zm 3 ) 、 貯蔵容積 (m 3) 、 要求ガス貯蔵量 (m 3) ] が設定さ れる。
[0069] 前記ガスハイドレートが自己保存効果を発現する一定の貯蔵条件下 (貯蔵 圧力 P、 貯蔵温度 T ) で貯蔵する場合の分解速度定数 Kを実験により決定し 、 式 (1 ) に基いて、 異径混合ガスハイドレートペレット 2 3の分解速度が 、 貯槽 2 4に要求される分解ガス量を満たすように、 大径ガスハイドレート ペレット 2 1および小径ガスハイドレー卜ペレツ卜 2 2の粒径とそれぞれの 構成比を決定する。
これに従って、 ガスハイドレート製造プラント 2 5で、 大径ガスハイドレ 一卜ペレット 2 1および小径ガスハイドレー卜ペレツ卜 2 2をそれぞれの構 成比で製造する。
[0070] 次に、 本実施例の作用を説明する。
本実施例によれば、 ( 1 ) 式によってガスハイドレー卜ペレツ卜の分解ガ ス量を正確に推算し、 貯槽 2 4に要求される分解ガス量に応じて、 ガスハイ ドレー卜ペレツ卜の分解量を制御する際に、 ガスハイドレー卜ペレツ卜製造 プラント 2 5において製造される二種の大径および小径のガスハイドレー卜 ペレツ卜 2 1、 2 2を混合することによって、 貯槽 2 4において要求される 分解ガス量に調整し易くなる。
前記分解速度定数 Kは、 実験によって得られた値をテーブル化して利用す ることができる。
[0071 ] 二種以上の異径のガスハイドレー卜ペレツ卜を組み合わせることにより、 分解量の細かい調整がし易くなリ、 同時に貯槽 2 4へのガスハイドレートぺ レツ卜の充填率も向上することができる。 [0072] また、 ガスハイドレー卜ペレツ卜の粒径および構成比を速やかに設定でき るため、 効率よく大径ガスハイドレー卜ペレツ卜 2 1および小径ガスハイド レー卜ペレツ卜 2 2をガスハイドレー卜ペレツ卜製造プラント 2 5において 製造することができ、 製造時間を短縮することができる。
[0073] [実施例 4 ]
図 1 0は異径混合ガスハイドレー卜粒子、 ペレツ卜の分解ガス量制御シス テムの他の実施例の概略構成図である。
本実施例では、 二種の異径の大径ガスハイドレー卜ペレツ卜 2 1および小 径ガスハイドレー卜ペレット 2 2を混合した、 異径混合ガスハイドレートぺ レツ卜 2 3を貯槽 2 4に貯蔵する。
ガスハイドレートペレット貯槽 2 4のプロセスデータ [貯蔵温度 T ( K) 、 貯蔵圧力 (M P a ) 、 貯蔵中要求分解速度 (s _ 1 ) 、 ガス組成、 ペレット 密度 iO ( k g Zm 3 ) 、 貯蔵容積 (m 3) 、 要求ガス貯蔵量 (m 3) ] が設定さ れる。
[0074] 前記ガスハイドレートが自己保存効果を発現する一定の貯蔵条件下 (貯蔵 圧力 P、 貯蔵温度 T ) で貯蔵する場合の分解速度定数 Kを実験により決定し 、 式 (1 ) に基いて、 異径混合ガスハイドレートペレット 2 3の分解速度が 、 分解ガス利用設備 2 6に要求される分解ガス量を満たすように、 ガスハイ ドレー卜ペレツ卜製造プラント 2 5において製造される大径ガスハイドレー 卜ペレツ卜 2 1および小径ガスハイドレー卜ペレツ卜 2 2の粒径とそれぞれ の構成比を決定する。
[0075] 本実施例によって、 実施例 3と同様に、 分解ガス利用設備 2 6に要求され る分解ガス量に応じて、 ガスハイドレー卜ペレツ卜の分解量を制御する際に 、 ガスハイドレー卜ペレツ卜製造プラント 2 5において製造される二種の大 径および小径のガスハイドレー卜ペレット 2 1、 2 2を混合することによつ て、 分解ガス利用設備 2 6において要求される分解ガス量に調整し易くなる 産業上の利用可能性 [0076] 本発明は、 天然ガス、 メタン、 ェタン、 二酸化炭素などのガスハイドレー 卜を形成する気体状のハイドレー卜形成物質と水との包接化合物であるガス ハイドレー卜を貯蔵する際のガスハイドレー卜の分解ガス制御システムに利 用可能である。
図面の簡単な説明
[0077] [図 1 ]ガスハイドレー卜ペレツ卜の貯蔵温度と分解速度の相関を示す図である
[図 2]球状のガスハイドレー卜粒子、 ペレツ卜の分解反応モデルを示す図であ る。
[図 3]メタンガスハイドレー卜ペレツ卜のガス包蔵率の実測値および推算値を 示す図である。
[図 4]ガスハイドレー卜ペレツ卜の粒径と分解速度の相関を示す図である。
[図 5]ガスハイドレー卜ペレツ卜の比表面積と分解速度の相関を示す図である
[図 6]ガスハイドレー卜ペレツ卜の密度と分解速度の相関を示す図である。
[図 7]ガスハイドレー卜粒子、 ペレツ卜の分解ガス量制御システムの一実施例 の概略構成図である。
[図 8]ガスハイドレー卜粒子、 ペレツ卜の分解ガス量制御システムの他の実施 例の概略構成図である。
[図 9]異径混合ガスハイドレー卜粒子、 ペレツ卜の分解ガス量制御システムの 一実施例の概略構成図である。
[図 10]異径混合ガスハイドレー卜粒子、 ペレツ卜の分解ガス量制御システム の他の実施例の概略構成図である。
[図 1 1 ]ガスハイドレートペレットの密度計測方法 (浮力法) を示す図である
[図 12]公知のハイドレー卜の平衡線図 (メタンガスハイドレートの例) であ る。

Claims

請求の範囲 ガスハイドレー卜が自己保存効果を発現する条件下でガスハイドレー卜を 貯蔵する際のガスハイドレー卜の分解量制御方法であって、 下記の式 (1 ) に基いてガスハイドレートの分解率 )8を求め、 ガスハイド レートの分解量を制御することを特徴とする、 ガスハイドレー卜の分解量制 御方法。
[数 1 ]
K :貯蔵圧力、 貯蔵温度、 ガスハイドレー卜の密度、 及びガス組成に応 じて実験によって決まる分解速度定数
r 0:ガスハイドレー卜半径 (m)
:貯蔵時間 (s )
要求される分解ガス量を満たすように、 分解率 )8についての下記の式 (1 ) に基いて、 自己保存効果を発現する条件下で貯蔵されるガスハイドレート の分解量を制御可能に構成されていることを特徴とする、 ガスハイドレー卜 の分解ガス量制御システム。
[数 2] β = 1 - ( 1 ― J~KT / r 0 ) 3 - - · ( 1 ) κ :貯蔵圧力、 貯蔵温度、 ガスハイドレー卜の密度、 及びガス組成に応 じて実験によって決まる分解速度定数
r 0:ガスハイドレー卜半径 (m)
:貯蔵時間 (s )
請求項 2において、 二種以上の異径のガスハイドレー卜を混合することで 分解ガス量を制御することを特徴とする、 ガスハイドレー卜の分解ガス量制 御システム。
PCT/JP2007/000132 2006-02-27 2007-02-27 ガスハイドレートの分解量制御方法および分解ガス量制御システム WO2007097126A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006051350A JP4838015B2 (ja) 2006-02-27 2006-02-27 ガスハイドレートの分解量制御方法および分解ガス量制御システム
JP2006-051350 2006-02-27

Publications (1)

Publication Number Publication Date
WO2007097126A1 true WO2007097126A1 (ja) 2007-08-30

Family

ID=38437170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000132 WO2007097126A1 (ja) 2006-02-27 2007-02-27 ガスハイドレートの分解量制御方法および分解ガス量制御システム

Country Status (2)

Country Link
JP (1) JP4838015B2 (ja)
WO (1) WO2007097126A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352840A (zh) * 2015-10-23 2016-02-24 西南石油大学 一种天然气水合物分解速率测定装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827470A (ja) * 1994-07-12 1996-01-30 Kazunari Ogaki 気体水和物ならびに天然ガス水和物の分解・ガス回収法およびその装置
JP2003055677A (ja) * 2001-08-17 2003-02-26 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートの製造方法および製造装置
JP2003287199A (ja) * 2002-03-28 2003-10-10 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートの移送方法、貯蔵方法、および製造方法
JP2004002754A (ja) * 2002-03-28 2004-01-08 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート、およびその製造方法、並びにガスハイドレートの分解抑制剤
JP2005076640A (ja) * 2003-08-29 2005-03-24 Chubu Electric Power Co Inc 天然ガスハイドレートの貯蔵方法及び装置
JP2005089539A (ja) * 2003-09-16 2005-04-07 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートペレットおよびその製造方法
JP2005163931A (ja) * 2003-12-03 2005-06-23 Mitsui Eng & Shipbuild Co Ltd 天然ガスハイドレートペレットの輸送方法
JP2005255075A (ja) * 2004-03-15 2005-09-22 Mitsui Eng & Shipbuild Co Ltd 天然ガスハイドレート輸送船およびその輸送方法
JP2005319862A (ja) * 2004-05-07 2005-11-17 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート輸送船のボイルオフガス処理方法及び装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827470A (ja) * 1994-07-12 1996-01-30 Kazunari Ogaki 気体水和物ならびに天然ガス水和物の分解・ガス回収法およびその装置
JP2003055677A (ja) * 2001-08-17 2003-02-26 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートの製造方法および製造装置
JP2003287199A (ja) * 2002-03-28 2003-10-10 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートの移送方法、貯蔵方法、および製造方法
JP2004002754A (ja) * 2002-03-28 2004-01-08 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート、およびその製造方法、並びにガスハイドレートの分解抑制剤
JP2005076640A (ja) * 2003-08-29 2005-03-24 Chubu Electric Power Co Inc 天然ガスハイドレートの貯蔵方法及び装置
JP2005089539A (ja) * 2003-09-16 2005-04-07 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートペレットおよびその製造方法
JP2005163931A (ja) * 2003-12-03 2005-06-23 Mitsui Eng & Shipbuild Co Ltd 天然ガスハイドレートペレットの輸送方法
JP2005255075A (ja) * 2004-03-15 2005-09-22 Mitsui Eng & Shipbuild Co Ltd 天然ガスハイドレート輸送船およびその輸送方法
JP2005319862A (ja) * 2004-05-07 2005-11-17 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート輸送船のボイルオフガス処理方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352840A (zh) * 2015-10-23 2016-02-24 西南石油大学 一种天然气水合物分解速率测定装置及方法
CN105352840B (zh) * 2015-10-23 2018-05-25 西南石油大学 一种天然气水合物分解速率测定装置及方法

Also Published As

Publication number Publication date
JP2007231054A (ja) 2007-09-13
JP4838015B2 (ja) 2011-12-14

Similar Documents

Publication Publication Date Title
Li et al. Rate equation theory for the carbonation reaction of CaO with CO2
Fairen-Jimenez et al. Understanding excess uptake maxima for hydrogen adsorption isotherms in frameworks with rht topology
Susilo et al. Tuning methane content in gas hydrates via thermodynamic modeling and molecular dynamics simulation
US20150034500A1 (en) Metal organic frameworks for electronic gas storage
Zhang et al. Fast formation kinetics of methane hydrates loaded by silver nanoparticle coated activated carbon (Ag-NP@ AC)
CN101377265B (zh) 稳定气体水合物的方法和组成及制造气体水合物的制程
US20090035627A1 (en) Method for gas storage, transport, and energy generation
Zhao et al. Semi-clathrate hydrate process of methane in porous media-mesoporous materials of SBA-15
Papadimitriou et al. Computational approach to study hydrogen storage in clathrate hydrates
WO2010010372A1 (en) Clathrates for gas storage
WO2013130596A1 (en) Gas hydrates with a high capacity and high formation rate promoted by biosurfactants
US7087804B2 (en) Use of waste nitrogen from air separation units for blanketing cargo and ballast tanks
Mahboub et al. Improving methane storage on wet activated carbons at various amounts of water
Nguyen et al. “Nanoreactors” for boosting gas hydrate formation toward energy storage applications
JP5755999B2 (ja) 脱硫剤の製造方法、脱硫剤、および、炭化水素の脱硫方法
WO2007097126A1 (ja) ガスハイドレートの分解量制御方法および分解ガス量制御システム
Omran et al. Revealing zeolites active sites role as kinetic hydrate promoters: Combined computational and experimental study
JP4837424B2 (ja) ガスハイドレートペレットの製造方法および製造装置
US11644153B2 (en) Systems and methods of use of carbon-based pellets in adsorbed natural gas facility
Li et al. Effect of surface roughness on methane hydrate formation and its implications in nucleation design
JP2004002754A (ja) ガスハイドレート、およびその製造方法、並びにガスハイドレートの分解抑制剤
JP2011026144A (ja) 燃料ガスの熱量変動抑制用活性炭、熱量変動抑制方法及び熱量変動抑制システム
JP4233264B2 (ja) ガスハイドレートの移送方法および貯蔵方法
JP2002255865A (ja) 炭化水素ガスの貯蔵及び輸送方法
WO2007097127A1 (ja) ガスハイドレートの分解量推算方法および分解ガス利用システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07713514

Country of ref document: EP

Kind code of ref document: A1