WO2007096937A1 - 放射線撮像装置および放射線検出信号処理方法 - Google Patents

放射線撮像装置および放射線検出信号処理方法 Download PDF

Info

Publication number
WO2007096937A1
WO2007096937A1 PCT/JP2006/302958 JP2006302958W WO2007096937A1 WO 2007096937 A1 WO2007096937 A1 WO 2007096937A1 JP 2006302958 W JP2006302958 W JP 2006302958W WO 2007096937 A1 WO2007096937 A1 WO 2007096937A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
detection signal
time
radiation
radiation detection
Prior art date
Application number
PCT/JP2006/302958
Other languages
English (en)
French (fr)
Inventor
Shoichi Okamura
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to EP06714098A priority Critical patent/EP1987771A4/en
Priority to JP2008501496A priority patent/JP4893733B2/ja
Priority to CN2006800390947A priority patent/CN101291625B/zh
Priority to PCT/JP2006/302958 priority patent/WO2007096937A1/ja
Priority to US12/280,150 priority patent/US7760856B2/en
Priority to KR1020087004742A priority patent/KR100970540B1/ko
Publication of WO2007096937A1 publication Critical patent/WO2007096937A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/582Calibration
    • A61B6/585Calibration of detector units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S378/00X-ray or gamma ray systems or devices
    • Y10S378/901Computer tomography program or processor

Definitions

  • the present invention relates to a medical or industrial device configured to obtain a radiation image based on a radiation detection signal output at a predetermined sampling time interval from a radiation detection means in accordance with radiation irradiation to a subject.
  • the present invention relates to a technique for removing a time delay caused by a radiation detection means from a radiation detection signal taken out from the radiation detection means.
  • An X-ray detector for detecting an X-ray transmission image of a subject that has recently been generated by X-ray irradiation by an X-ray tube in a medical X-ray diagnostic apparatus which is one of the representative devices of a radiation imaging apparatus
  • a flat panel X-ray detector (hereinafter referred to as “FPD” t, as appropriate) in which an extremely large number of X-ray detection elements using a semiconductor or the like are arranged vertically and horizontally on an X-ray detection surface is used.
  • sampling is performed based on an X-ray detection signal for one X-ray image taken out from the FPD at a sampling time interval when the subject is irradiated with radiation by the X-ray tube.
  • a configuration is adopted in which an X-ray image corresponding to an X-ray transmission image of the subject at each time interval is obtained.
  • the use of FPD is advantageous in terms of device structure and image processing because it is lighter and does not cause complex detection distortion, compared to image intensifiers that use conventional power.
  • the time delay included in each radiation detection signal extracted at the sampling time interval is assumed to be an impulse response composed of an exponential function with several time delays. Delay after removing time delay from radiation detection signal y
  • the calculation process for the removal radiation detection signal X is performed according to the following equation.
  • N Number of exponential functions with different time constants constituting impulse response n: Subscript indicating one of exponential functions constituting impulse response a: Strength of exponential function n
  • N Number of exponential functions with different time constants constituting impulse response n: Subscript indicating one of exponential functions constituting impulse response a: Strength of exponential function n
  • F, ⁇ , ⁇ which are impulse response coefficients of FPD, are obtained in advance, and fixed to the radiation detection signal ⁇
  • Patent Document 2 X with the time delay removed is calculated.
  • Patent Document 3 In addition to the method of Patent Document 2 described above, there is a technique for reducing a long time constant component for a time delay using a backlight (see, for example, Patent Document 3).
  • a 17-inch FPD has 3072 ⁇ 3072 pixels in length and breadth
  • the above-described method of Patent Document 2 requires a large amount of calculation for recursive calculation processing. Therefore, in the case of fluoroscopic shooting of moving images, measures are taken to reduce the amount of calculation by performing a viewing operation that adds pixels. For example, in a viewing operation that combines 2 X 2 pixels both vertically and horizontally, the number of pixels can be reduced to 1Z4 and the amount of calculation can be reduced to 1Z4. In addition, in the viewing operation that combines the vertical force pixels and the horizontal 2 ⁇ 4 pixels into one pixel, the number of pixels can be reduced to 1Z8 and the amount of calculation can be reduced to 1Z8.
  • a high resolution image is acquired when the number of pixels to be viewed is small, and a low resolution image is acquired when the number of pixels to be viewed is large. . Therefore, when focusing on reducing the amount of calculation rather than obtaining a high-resolution image, a low-resolution image is obtained by increasing the number of pixels to be viewed. To reduce the amount of calculation. Conversely, if it is more important to obtain a high-resolution image than to reduce the amount of calculation, increasing the amount of calculation reduces the number of pixels subject to viewing and acquires a high-resolution image. .
  • the image range to be subjected to recursive calculation processing is changed to increase or decrease the amount of calculation.
  • the amount of calculation is larger than when the 12-inch square is increased by the amount of image area subject to recursive computation. Become more.
  • the amount of calculation is less than with a 12-inch square, as the image range subject to recursive computation is narrowed. .
  • a plurality of modes that also have the combined power of the illumination field and the viewing are prepared in advance, and the frame rate of the moving image is maintained by switching the modes as required by the operator. Therefore, when observing a high-resolution image, the illumination field is narrowed in order to suppress an increase in the amount of calculation due to the small number of pixels to be viewed. For example, when observing a high-resolution image, use the 2 X I viewing instead, and use a mode that limits the illumination field to 9 inches square. Conversely, when observing an image with a wide illumination field, the number of pixels that are subject to viewing is reduced in order to suppress an increase in the amount of calculation due to the expansion of the illumination field. For example, when observing an image with a wide illumination field, enlarge to a 17-inch square illumination field, and instead use a mode limited to a low resolution of 4 X 2 views.
  • Patent Document 1 US Pat. No. 5,249,123 (Mathematical expressions and drawings in the specification)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-242741 (Formulas and Drawings in the Specification)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 9-9153 (page 3-8, FIG. 1)
  • FIG. 12 is a diagram schematically showing images before and after field expansion
  • FIG. 12 is a diagram in which irradiation conditions before and after irradiation field expansion are associated with images in time series.
  • the image before the irradiation field expansion is set to P, and the irradiation field expansion is performed.
  • the timing of the irradiation field expansion instruction is T, and when ON in Fig. 12,
  • the irradiation signal indicates the radiation irradiation status
  • the OFF irradiation signal indicates the radiation non-irradiation status.
  • an image P before illumination field expansion a 12-inch square illumination field image is taken as an example.
  • the lag component is accumulated because it is left unirradiated without being subjected to recursive computation.
  • the outer frame part P is not a problem.
  • the outer frame is expanded to a 15-inch square illumination field.
  • the lag component superimposed on the minute p appears as high brightness.
  • the radiation detection signal is high due to the lag component and has a signal value (high pixel value) due to the overlapped state, high luminance remains in the outer frame portion P, causing a problem in the radiation image. Arise. As described above, if a predetermined operation related to radiation imaging represented by expansion of the irradiation field is interrupted at the time of radiation irradiation, the radiation image is hindered.
  • the size of the long time constant component (also called “long-term lag”) for the time delay becomes more pronounced as FPD, so the acceptance criteria for lag characteristics at the time of shipping inspection Measures are taken to ensure that FPDs with high brightness are not shipped.
  • stricter acceptance criteria can hinder FPD yield improvement.
  • the present invention has been made in view of the above circumstances, and reduces the problem of radiation images caused by interruption of a predetermined operation related to radiation imaging at the time of irradiation of radiation, while reducing radiation detection means caps.
  • Another object of the present invention is to provide a radiation imaging apparatus and a radiation detection signal processing method capable of removing the time delay of the radiation detection signal caused by the radiation detection means extracted from the radiation detection signal.
  • the present invention has the following configuration.
  • the radiation imaging apparatus of the present invention is a radiation imaging apparatus that obtains a radiation image based on a radiation detection signal, and detects radiation that has passed through the subject and radiation irradiating means that irradiates the subject with radiation. And a signal sampling means for extracting a radiation detection signal from the radiation detection means at a predetermined sampling time interval, and the radiation detection means force is also output at the sampling time interval as the subject is irradiated with radiation.
  • the apparatus is configured to obtain a radiographic image based on a radiation detection signal, and the apparatus further includes a single or decay time constant for a time delay included in each radiation detection signal extracted at a sampling time interval.
  • a time delay removing means for removing from the line detection signal and an irradiation control means for controlling the timing of starting and stopping the irradiation of the radiation irradiating means.
  • the irradiation controlling means starts the irradiation of the radiation irradiating means.
  • the time delay removing means removes the time delay by recursive calculation processing to obtain a corrected radiation detection signal, and
  • an irradiation control means in accordance with an instruction of a predetermined operation relating to radiation imaging.
  • the time delay removing means temporarily stops the recursive arithmetic processing, and the signal sampling means is caused by a temporary stop of the radiation irradiating means.
  • a radiation detection signal at the time of irradiation is acquired, and (C) with the start of the predetermined operation, the irradiation control means restarts the irradiation of the radiation irradiation means, and the time delay removal means is the non-irradiation It is characterized in that the initiating of the radiation detection signal power based on an initial value obtained by recursive computation again.
  • a single time delay included in the radiation detection signal output at a predetermined sampling time interval in accordance with the radiation applied to the subject by the radiation irradiating means is detected.
  • the time delay removing means removes the impulse response that is constituted by a plurality of exponential functions having different decay time constants.
  • Each radiation detection signal force When removing the time delay, recursive calculation is performed. The process of removing each radiation detection signal by this recursive calculation process is executed according to the following process.
  • the signal sampling means acquires a radiation detection signal at the time of non-irradiation due to a temporary stop of the radiation irradiation means.
  • the irradiation control means restarts the irradiation of the radiation irradiation means, and the time delay removal means is the initial detection obtained from the radiation detection signal at the time of non-irradiation. Start recursive operation again based on the value. Before the prescribed operation, recursive arithmetic processing is used.
  • the time delay removal means removes the time delay, acquires a radiographic image from the obtained corrected radiation detection signal, and performs a recursive calculation process based on the initial value described above after a predetermined operation.
  • the time delay removing means removes the time delay and obtains a radiation image from the obtained post-correction radiation detection signal.
  • the irradiation is temporarily stopped as described above (B), and recursion is performed.
  • the specified operation starts, the irradiation is restarted as shown in (C) above, and the recursive calculation is performed based on the initial value obtained for the radiation detection signal power when no irradiation is performed. Start the process again. Therefore, irradiation and recursive calculation processing can be performed after a predetermined operation by (C) as before the predetermined operation, and irradiation and recursive calculation processing before the predetermined operation can be performed by temporarily stopping in (B). Does not affect the data after the specified operation.
  • the signal sampling means acquires the radiation detection signal at the time of non-irradiation due to a temporary stop, and performs recursive calculation processing based on the initial value obtained for the radiation detection signal power at the time of non-irradiation. Therefore, even if the above-mentioned predetermined operation is interrupted at the time of radiation irradiation, the radiation image is prevented from being disturbed by the predetermined operation regarding radiation imaging being interrupted at the time of radiation irradiation. In addition, the time delay of the radiation detection signal power can be more accurately removed.
  • the radiation detection signal processing method of the present invention extracts radiation detection signals detected by irradiating a subject at predetermined sampling time intervals, and is based on the radiation detection signals output at the sampling time intervals.
  • This is a radiation detection signal processing method that performs signal processing to obtain radiation images, and consists of a single or a plurality of exponential functions with different decay time constants for the time delay included in each radiation detection signal extracted at sampling time intervals.
  • the process of removing from each radiation detection signal by the recursive calculation process is performed according to the following process as a result of the impulse response to be generated. (A) With the radiation process started, the recursive calculation process takes time.
  • the corrected radiation detection signal is obtained by removing the delay, and (B) Irradiation is temporarily stopped according to the instruction for the predetermined operation related to radiation imaging. At the same time, the recursive calculation process is temporarily stopped, and a radiation detection signal at the time of non-irradiation is acquired by the temporary stop, and (C) the irradiation is started again at the start of the predetermined operation. The recursive calculation process is restarted based on the initial value obtained for the radiation detection signal power at the time of non-irradiation.
  • the radiation detection signal processing method of the present invention when a predetermined operation related to radiation imaging is interrupted at the time of radiation irradiation, irradiation is temporarily stopped as described above (B), and recursion is performed.
  • the specified operation starts, the irradiation is restarted as shown in (C) above, and recursively based on the initial value from which the radiation detection signal power at the time of non-irradiation can also be obtained.
  • the computation process is started again. Therefore, irradiation and recursive calculation processing can be performed after a predetermined operation by (C) as before the predetermined operation, and irradiation and recursive calculation processing before the predetermined operation can be performed by temporarily stopping in (B).
  • Examples of the radiation imaging apparatus and the radiation detection signal processing method described above include the following.
  • N Number of exponential functions with different time constants constituting impulse response n: Subscript indicating one of exponential functions constituting impulse response a: Strength of exponential function n
  • the corrected radiation detection signal X after removing the time delay by the simple gradual equation of equations A to C before the predetermined operation described above.
  • the initial value of k nk is determined as shown in Equation D above.
  • there is a residual lag (lag signal value) due to the time delay that occurred during the time tO to tl.
  • the initial value for recursive calculation processing is set according to the lag signal value remaining at the time of non-irradiation), and impulses obtained by equations A to C under the conditions of the initial value determined by equation D Based on the response, the time delay is removed and the corrected radiation detection signal X is obtained.
  • an example of the predetermined operation described above is expansion of the irradiation field of radiation.
  • a field of illumination the above-mentioned (B) is the radiation detection signal at the time of the above-mentioned stop (irradiation and recursive calculation process) and the above-mentioned (non-irradiation) non-irradiation in accordance with the instruction to enlarge the irradiation field
  • the above-mentioned (non-irradiation and recursive calculation processing) is started again with the start of the irradiation field expansion.
  • Radiation detection signal power during irradiation The corrected radiation detection signal is obtained by removing the time delay by recursive calculation based on the initial value obtained.
  • the radiation detection signal at the time of non-irradiation due to a temporary stop is acquired, and recursive calculation processing is performed based on the initial value that can also obtain the radiation detection signal power at the time of non-irradiation (C) Therefore, even if the above-mentioned irradiation field expansion is interrupted at the time of radiation irradiation, radiation detection is performed while reducing the trouble of the radiation image due to the irradiation field expansion being interrupted at the time of radiation irradiation. The time delay can be more accurately removed from the signal.
  • the illumination field is wider so that it is wider than the image subject to the recursive calculation process and narrower than the image subject to the recursive computation process after the illumination field is enlarged.
  • the size of the visual field is manipulated, the following effects are produced.
  • the image that is wider than the image subject to the recursive calculation process and that becomes narrower than the image subject to the recursive calculation process after the irradiation field expansion is This is an image obtained by removing the image corresponding to the irradiation field operation means from the image after the irradiation field expansion (that is, the image subjected to the recursive calculation process after the irradiation field expansion) and before the irradiation field expansion. (That is, the image subject to recursive computation before the illumination field expansion) and the image before the illumination field expansion (the outer frame part between the images corresponding to the illumination field operation means) It also becomes an image.
  • the outer frame portion that is not subject to recursive calculation processing is related to before and after the illumination field expansion.
  • the high brightness appeared after being left in the irradiated state because of the temporary stop of (B) described above, the effects of irradiation before the irradiation field expansion and recursive calculation processing were Does not affect the data of the outer frame part.
  • the radiation detection signal at the time of non-irradiation due to a temporary stop is acquired, and the recursive calculation processing based on the initial value obtained from the radiation detection signal at the time of non-irradiation has been described above ( Therefore, the time delay due to the recursive calculation process can be more accurately removed by the above-described initial value even in the outer frame portion after the irradiation field expansion. Because of this, even if the illumination field expansion is interrupted at the time of radiation irradiation, it is possible to reduce the trouble of the radiation image due to high brightness.
  • the high brightness described above does not appear, so a certain amount of waiting time may be required before the high brightness attenuates. This also reduces the burden on the subject and helps prevent the doctor's diagnosis.
  • the ratio can be considered constant before and after the irradiation field expansion. Therefore, for the pixels that are common before and after the irradiation field expansion, the ratio of the time constant component amount at the time of irradiation before the irradiation field expansion and immediately before the non-irradiation is used as the radiation detection signal at the time of non-irradiation.
  • the pixel value based on this is divided for each attenuation time constant, and each divided value is set as the initial value (obtained from the radiation detection signal power when non-irradiation due to temporary stop), and newly expanded by expanding the irradiation field.
  • the pixel value based on the radiation detection signal when not irradiated is divided for each attenuation time constant using the same time constant component ratio as that for the common pixel described above.
  • the corrected radiation detection signal is obtained by removing the time delay by recursive calculation processing based on each initial value. More specifically, it is performed as follows.
  • N Number of exponential functions with different time constants constituting impulse response n: Subscript indicating one of exponential functions constituting impulse response a: Strength of exponential function n
  • the time delay is removed based on the impulse responses obtained by the equations A to C under the conditions with the initial values determined by the equations D and H, and the corrected radiation detection signal is obtained. Ask.
  • the corrected radiation detection signal X after the time delay is removed by the formulas A to C and the simple recurrence formula.
  • FIG. 1 is a block diagram showing an overall configuration of an X-ray fluoroscopic apparatus according to an embodiment.
  • FIG. 2 is a plan view showing a configuration of an FPD used in the example device.
  • FIG. 3 is a schematic diagram showing a sampling state of an X-ray detection signal at the time of execution of X-ray imaging by the embodiment apparatus.
  • FIG. 4 is a flowchart showing a procedure of an X-ray detection signal processing method in the embodiment.
  • FIG. 5 is a flowchart showing a recursive arithmetic processing process for removing a time delay before irradiation field expansion in the X-ray detection signal processing method in the embodiment.
  • FIG. 6 is a flowchart showing a recursive arithmetic processing process for time delay removal after irradiation field expansion in the X-ray detection signal processing method in the embodiment.
  • FIG. 7 is a flow chart showing the procedure of irradiation and recursive calculation processing before and after illumination field expansion in an example.
  • FIG. 8 is a diagram in which the irradiation state before and after the irradiation field expansion in the example is associated with the image in time series.
  • FIG. 9 is a diagram showing a time delay situation corresponding to the radiation incident situation.
  • FIG. 10 is a diagram showing a time delay situation in which a shooting lag (time delay) overlaps fluoroscopy.
  • FIG. 11 is a diagram schematically showing images before and after an illumination field expansion.
  • FIG.12 A diagram showing the time-series correspondence between irradiation conditions and images before and after conventional irradiation field expansion. is there.
  • FIG. 1 is a block diagram illustrating the overall configuration of the X-ray fluoroscopic apparatus according to the embodiment.
  • the X-ray fluoroscopic apparatus includes an X-ray tube 1 that irradiates X-rays toward the subject M, and an FPD (flat panel type) that detects X-rays transmitted through the subject M.
  • a detection signal processing unit 4 that creates an X-ray image based on the image signal
  • an image monitor 5 that displays the X-ray image acquired by the detection signal processing unit 4.
  • the embodiment apparatus is configured, and the acquired X-ray image is displayed on the screen of the image monitor 5.
  • the X-ray tube 1 corresponds to the radiation irradiating means in the present invention
  • the FPD 2 corresponds to the radiation detecting means in the present invention
  • the AZD transformation 3 corresponds to the signal sampling means in the present invention.
  • the X-ray detection signal corresponds to the radiation detection signal in the present invention
  • the X-ray image corresponds to the radiation image in the present invention.
  • the X-ray tube 1 and the FPD 2 are arranged to face each other with the subject M interposed therebetween. Specifically, the X-ray tube 1 irradiates the subject M with cone-beam-shaped X-rays while being controlled by the X-ray irradiation control unit 6 at the time of X-ray imaging, and at the same time, occurs along with X-ray irradiation.
  • the X-ray tube 1 and the FPD2 are arranged to face each other so that the transmitted X-ray image force FPD2 of the subject M is projected onto the X-ray detection surface.
  • the X-ray tube moving mechanism 7 and the X-ray detector moving mechanism 8 are configured so that the X-ray tube 1 and the FPD 2 can reciprocate along the subject M, respectively.
  • the X-ray tube moving mechanism 7 and the X-ray detector moving mechanism 8 are controlled by the irradiation detection system movement control unit 9 to control the X-ray irradiation central force FPD2.
  • the irradiation detection system movement control unit 9 to control the X-ray irradiation central force FPD2.
  • the FPD 2 has a large number of X-ray detection elements 2a on the X-ray detection surface on which a transmission X-ray image of the subject M force is projected. They are arranged vertically and horizontally along Y. For example, X-ray detection elements 2a are arranged vertically and horizontally in a matrix of 1536 x 1536 on an X-ray detection surface having a width of about 30 cm x 30 cm.
  • Each X-ray detection element 2a of the FPD2 has a corresponding relationship with each pixel of the X-ray image created by the detection signal processing unit 4, and is projected on the X-ray detection surface based on the X-ray detection signal extracted from the FPD2 An X-ray image corresponding to the transmitted X-ray image is created by the detection signal processing unit 4.
  • the AZD converter 3 continuously extracts X-ray detection signals for each X-ray image at a sampling time interval ⁇ t, and the subsequent memory unit 10 generates an X-ray detection signal for X-ray image creation. And X-ray detection signal sampling operation (extraction) is started before X-ray irradiation. That is, as shown in FIG. 3, at the sampling time interval At, all X-ray detection signals for the transmitted X-ray image at that time are collected and stored in the memory unit 10 one after another. Prior to X-ray irradiation, the start of extraction of X-ray detection signals by the AZD converter 3 may be performed manually by the operator or automatically in conjunction with the X-ray irradiation instruction operation. It may be configured.
  • the X-ray fluoroscopic apparatus calculates a corrected X-ray detection signal by removing a time delay from each X-ray detection signal by recursive calculation processing.
  • Delay removal unit 11 irradiation control unit 12 that controls the start and stop timing of irradiation of X-ray tube 1
  • collimator 13 that controls the size of the irradiation field of X-rays emitted from X-ray tube 1
  • an illumination field control unit 14 for controlling the collimator 13.
  • the time delay removal unit 11 corresponds to the time delay removal unit in the present invention
  • the irradiation control unit 12 corresponds to the irradiation control unit in the present invention
  • the collimator 13 corresponds to the irradiation field operation unit in the present invention. To do.
  • the time delay is included in each X-ray detection signal extracted from the FPD 2 at sampling time intervals.
  • the time delay is removed from each X-ray detection signal by performing the recursive calculation process described above by considering the time delay as an impulse response composed of one or more exponential functions having different decay time constants. As shown in Fig. 8, the process of removing each X-ray detection signal by this recursive calculation process is performed according to the following process.
  • the time delay removal unit 11 removes the time delay by recursive calculation processing and obtains a corrected X-ray detection signal. Then, in accordance with an instruction of (B) predetermined operation related to radiation imaging (in this embodiment, irradiation field expansion), the irradiation control unit 12 temporarily stops the irradiation and the time delay removal unit 11 recursively. Computation is temporarily stopped (T and Sample in Figure 8)
  • the AZD converter 3 acquires an X-ray detection signal at the time of non-irradiation due to a temporary stop of the X-ray tube 1. Further, (C) with the start of the above-described predetermined operation (here, irradiation field expansion), the irradiation control unit 12 restarts irradiation, and the time delay removal unit 11 performs the above-described non-irradiation (FIG. 8). (See T to T in the figure) Start recursive calculation processing again based on the above (see T, transition to OFF force ON in Fig. 8).
  • the X-ray detection signal at each time includes a signal corresponding to the past X-ray irradiation as a time delay (see the hatched portion in Fig. 9). It is. This time delay is removed by the time delay removal unit 11 to obtain a corrected X-ray detection signal without time delay. Based on the corrected X-ray detection signal, the detection signal processing unit 4 creates an X-ray image corresponding to the transmitted X-ray image projected on the X-ray detection surface.
  • the time delay removal unit 11 before a predetermined operation (in this case, the illumination field expansion), the time delay removal unit 11 removes the time delay by recursive calculation processing, and an X-ray image is obtained from the obtained corrected X-ray detection signal. After a predetermined operation (in this case, the illumination field is expanded), the time delay removal unit 11 removes the time delay by the recursive calculation process based on the initial value described above. An X-ray image is acquired from the corrected X-ray detection signal.
  • a predetermined operation in this case, the illumination field expansion
  • the time delay removal unit 11 performs a recursive calculation process for removing a time delay from each X-ray detection signal before the predetermined operation described above (here, irradiation field expansion). Use A to C.
  • N Number of exponential functions with different time constants constituting impulse response n: Subscript indicating one of exponential functions constituting impulse response a: Strength of exponential function n : Exponential function n decay time constant
  • the corrected X-ray detection signal X from which the time delay has been removed is quickly obtained by a simple gradual equation of equations A to C.
  • the initial value is determined as in the following formula D.
  • the initial value for the recursive operation processing is set by the residual lag signal value when the beam is not irradiated), and the impedance obtained by the equations A to C under the condition of the initial value determined by the equation D is set.
  • the corrected X-ray detection signal X is obtained by removing the time delay based on the Lus response.
  • the time delay removal unit 11 performs a recursive calculation process for removing the time delay from each X-ray detection signal V after the predetermined operation described above (in this case, the irradiation field expansion).
  • Formulas A to C use the same formula as the recursive calculation process before the illumination field expansion described above.
  • the sampling time point k here is set as follows without using the sampling time point before the irradiation field expansion. In other words, the irradiation and recursive calculation processing associated with the start of the irradiation field expansion from the time of non-irradiation due to a temporary stop (see T to T in Figure 8)
  • the visual field control unit 14 executes the control process according to instructions input from the operation unit 15 (e.g., instructions for expanding the irradiation visual field), data, or various commands sent from the main control unit 16 according to the progress of X-ray imaging. .
  • FIG. 4 is a flowchart showing the procedure of the X-ray detection signal processing method in the embodiment. Note that this shooting includes past shooting as shown in Fig. 10 and the current fluoroscopy! /.
  • the extracted X-ray detection signal is stored in the memory unit 10.
  • Step S2 Subject M is irradiated with X-rays continuously or intermittently according to operator settings. In parallel with this, extraction of the X-ray detection signal ⁇ for one X-ray image by AZD modification 3 and storage in the memory unit 10 are continued at the sampling time interval At.
  • Step S3 When the X-ray irradiation is completed, the process proceeds to the next step S4.
  • Step S4 X-ray detection signal Y for one X-ray image collected from memory unit 10 by one sampling
  • Step S5 The corrected X-ray detection signal X, that is, the pixel value, in which the time-delay removal unit 11 performs recursive calculation processing according to equations A to C to remove the time-delay from each X-ray detection signal Y Ask for kk.
  • the detection signal processing unit 4 creates an X-ray image based on the corrected X-ray detection signal X for one sampling (one X-ray image).
  • Step S7 The created X-ray image is displayed on the image monitor 5.
  • Step S8 If an unprocessed X-ray detection signal Y remains in the memory unit 10, step S4 k
  • X-ray images are created one after another at a speed of about 30 sheets per second, and the created X-ray images can be displayed continuously. Therefore, moving image display of X-ray images becomes possible.
  • FIG. 7 is a flowchart showing a recursive calculation process for removing a time delay after the irradiation field expansion in the method
  • FIG. 7 is a flowchart showing a procedure of irradiation and recursive calculation processing before and after the irradiation field expansion in the embodiment. Is real It is the figure which matched the irradiation condition before and behind the illumination visual field expansion in an example, and an image in time series.
  • step T1 This will be described later in step T1.
  • Step U2 State where irradiation is started (see T and OFF force in Fig. 8 as well as transition to ON)
  • the corrected X-ray detection signal is obtained by removing the time delay by recursive calculation processing. More specific processing will be described later in steps T1 to T6 in FIG.
  • Step U3 If there is an instruction to enlarge the irradiation field from the operation unit 15 (see FIG. 1), Step U3
  • Step U4 In response to an instruction to expand the irradiation field, irradiation is temporarily stopped and recursive computation processing is temporarily stopped (see T, sampling point in FIG. 8).
  • step ⁇ will be described later.
  • the X-ray detection signal after correction is obtained by removing the time delay by recursive calculation processing based on the initial value obtained from (1). More specific processing will be described later in steps ⁇ and ⁇ 2 to ⁇ 6 in Fig. 5.
  • Step Tl Collect the residual lag (lag signal value) due to the time delay generated in the past shooting. Specifically, in the first frame, AZD Transform 3 extracts the X-ray detection signal ⁇ ⁇ for one X-ray image due to residual lag from FPD2. This X-ray detection signal ⁇ is recursive
  • equation D is expressed by the following equation ⁇ .
  • N is the formula G
  • Step T4 After increasing k by 1 (k2 k + 1) in equations A and C, then substituting X for the previous time into equation C to obtain S, S, and S The corrected X-ray detection signal X is calculated by substituting the obtained S, S, S and X-ray detection signal Y k-1 lk 2k 3k lk 2k 3k k into equation A.
  • Step T5 If there is an unprocessed X-ray detection signal Y, the process returns to Step ⁇ 4, and an unprocessed X k
  • Step T6 The post-correction removal X-ray detection signal X of one sampling (one X-ray image) is calculated, and recursive calculation processing for one shot is performed before the irradiation field is expanded.
  • Last k The post-correction removal X-ray detection signal X of one sampling (one X-ray image) is calculated, and recursive calculation processing for one shot is performed before the irradiation field is expanded.
  • Step ⁇ Collects residual lag (lag signal value) in the same manner as in Step T1 before irradiating field expansion at the time of non-irradiation due to a temporary stop accompanied by an instruction to expand the irradiating field.
  • Step T2 Step 2-2 before irradiation expansion is the same as step ⁇ 2, and a description thereof will be omitted.
  • the residual ratio ⁇ ⁇ is calculated using the above formula ⁇ instead of using the formula ⁇ ⁇ ⁇ as before the illumination field expansion.
  • the prime value is divided for each decay time constant. Then, the divided values are used as the initial values (obtained from the X-ray detection signal force at the time of non-irradiation due to temporary stop) described above using Equation D.
  • the pixel value based on 0 is divided for each decay time constant.
  • the divided values are used as the initial values described above (obtained as the X-ray detection signal power during non-irradiation due to temporary stop).
  • Pixel values based on 0 can be divided for each decay time constant.
  • each of the X-ray detection signals ⁇ in non-irradiation is expressed as shown in Expression D above, regardless of the common pixels and the pixels newly added in the irradiation field expansion. The rest of
  • the X-ray detection signal Y is added with the pixels to be added being added.
  • the average value of all the pixels in the image P before the illumination field expansion is used to improve accuracy.
  • Step T3 Since this is the same as Step T3 before the irradiation expansion, its description is omitted.
  • Step ⁇ 4 Since step ⁇ 4 before irradiation expansion is the same as step ⁇ 4, description thereof is omitted.
  • Step ⁇ 5 Since step ⁇ 5 before irradiation expansion is the same as step ⁇ 5, description thereof is omitted.
  • Step ⁇ 6 Since step ⁇ 6 before irradiation expansion is the same as step ⁇ 6, description thereof is omitted. After steps ⁇ and ⁇ 2 to ⁇ 6, the recursive calculation process for one shot is completed after the illumination field is enlarged.
  • the AZD converter 3 obtains the X-ray detection signal at the time of non-irradiation due to a temporary stop and recursively based on the initial value from which the X-ray detection signal power at the time of non-irradiation can also be obtained. Since the calculation process is performed as shown in (C), even if the above-mentioned predetermined operation (irradiation field expansion) is interrupted during X-ray irradiation, the predetermined operation related to X-ray imaging (irradiation field expansion) is not performed. It is possible to more accurately remove the time delay from the X-ray detection signal while reducing the trouble of the X-ray image caused by interruption during X-ray irradiation.
  • an image that is wider than an image subject to recursive calculation processing (for example, 12 inches) before the irradiation field expansion (for example, 12 inches) and that is subject to recursive calculation processing after the irradiation field expansion (example) For example, when operating the size of the illumination field (for example, 13 inches) to be narrower than 15 inches, the following effects can be obtained.
  • the recursive calculation process before the irradiation field expansion, the recursive calculation process is wider than the image subject to the recursive calculation process and after the irradiation field expansion.
  • the image that is narrower than the target image is the image P after the irradiation field is expanded.
  • the image corresponding to the collimator 13 is removed from the image P, and before the irradiation field expansion.
  • Image P (ie, the image subject to recursive computation before the illumination field is expanded)
  • the outer frame portion P which is not subject to recursive calculation processing, is related to before and after illumination field expansion.
  • the force that was the radiation detection means force SFPD
  • This invention uses a radiation detection means that causes a time delay of X-ray detection signals other than FPD! It can also be used for devices with special configurations!
  • the present invention can be applied to devices other than the X-ray fluoroscopic apparatus such as an X-ray CT apparatus.
  • the above-described embodiment apparatus is a medical apparatus
  • the present invention is not limited to medical use but can be applied to industrial apparatuses such as non-destructive inspection equipment.
  • the above-described embodiment apparatus is an apparatus that uses X-rays as radiation.
  • the present invention is not limited to X-rays, and is also applicable to apparatuses that use radiation other than X-rays (for example, ⁇ -rays). Can be applied.
  • a corrected X-ray detection signal is obtained by removing the time delay based on the impulse response obtained by the equations A to C.
  • the time delay may be removed based on the innulus response obtained by the equations a to c.
  • the predetermined operation related to radiation imaging is enlargement of the irradiation field of view.
  • the predetermined operation related to radiation imaging is enlargement of the irradiation field of view.
  • the present invention is suitable for a radiographic apparatus equipped with a flat panel X-ray detector (FPD).
  • FPD flat panel X-ray detector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mathematical Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 この発明の放射線撮像装置は、放射線撮像に関する所定の動作が放射線の照射時に割り込まれる際に、照射を一時的に停止するとともに、再帰的演算処理を一時的に停止し、所定の動作の開始に伴って、照射を再度開始させ、再帰的演算処理を再度開始し、一時的な停止による非照射時の放射線検出信号を取得して、非照射時の放射線検出信号から得られる初期値に基づく再帰的演算処理を行うように構成されているので、放射線撮像に関する所定の動作が放射線の照射時に割り込まれることによる放射線画像の支障を低減させつつ、放射線検出信号から時間遅れ分をより正確に除去することができる。

Description

明 細 書
放射線撮像装置および放射線検出信号処理方法
技術分野
[0001] この発明は、被検体への放射線照射に伴って放射線検出手段から所定のサンプリ ング時間間隔で出力される放射線検出信号に基づいて放射線画像が得られるように 構成されている医用もしくは工業用の放射線撮像装置および放射線検出信号処理 方法に係り、特に、放射線検出手段から取り出された放射線検出信号から放射線検 出手段に起因する時間遅れ分を除去するための技術に関する。
背景技術
[0002] 放射線撮像装置の代表的な装置のひとつである医用 X線診断装置において、最 近、 X線管による X線照射に伴って生じる被検体の X線透過像を検出する X線検出 器として、半導体等を利用した極めて多数個の X線検出素子を X線検出面に縦横に 配列したフラットパネル型 X線検出器 (以下、適宜「FPD」 t 、う)が用いられて 、る。
[0003] すなわち、 X線診断装置では、 X線管による被検体への放射線照射に伴って FPD からサンプリング時間間隔で取り出される X線画像 1枚分の X線検出信号に基づ ヽて 、サンプリング時間間隔毎の被検体の X線透過像に対応する X線画像が得られる構 成がとられている。 FPDを用いた場合、従来力も用いられているイメージインテンシフ アイァなどに比べて、軽量で、かつ、複雑な検出歪みが発生しないので、装置構造面 や画像処理面で有利となる。
[0004] し力しながら、 FPDを用いた場合、 FPDに起因する時間遅れによる悪影響が X線 画像に現れるという問題がある。具体的には、 FPD力も X線検出信号を取り出すサン プリング時間間隔が短 、場合、取り出し切れな 、信号の残りが時間遅れ分として次 の X線検出信号に加わる。そのため、 FPDから 1秒間に 30回のサンプリング時間間 隔で画像 1枚分の X線検出信号を取り出して X線画像を作成して動画表示する場合 、時間遅れ分が前の画面に残像として現れ、画像のダブリを生じる、結果、動画像が ボャける等の不都合が生じる。
[0005] この FPDの時間遅れ問題に対し、米国特許明細書第 5249123号では、コンビュ ータ断層画像 (CT画像)の取得の場合にぉ 、て、 FPDからサンプリング時間間隔 Δ tで取り出される放射線検出信号力 時間遅れ分を演算処理で除去する技術が提案 されている。
[0006] すなわち、前記米国特許明細書では、サンプリング時間間隔で取り出される各放射 線検出信号に含まれる時間遅れ分を時間遅れ分が幾つカゝの指数関数で構成される インパルス応答によるものとして、放射線検出信号 yから時間遅れ分を除去した遅れ
k
除去放射線検出信号 X とする演算処理を次式によって行って 、る。
k
[0007] X =[y-∑ Ν[α -[l-exp(T )]-exp(T )-S ]]/∑ Νβ
k k n=l n n n nk π=1 n
ここで、 T =-Δΐ/τ , S =x +exp(T )-S ,
n n nk k-1 n n(k-l)
β =an -[l-exp(T )]
但し, At:サンプリング時間間隔
k:サンプリングした時系列内の k番目の時点を示す添字
N:インパルス応答を構成する時定数が異なる指数関数の個数 n:インパルス応答を構成する指数関数の中の一つを示す添字 a :指数関数 nの強度
τ :指数関数 ηの減衰時定数
しかしながら、発明者らが上記米国特許明細書が提案する演算処理技術を適用実 施してみたところでは、時間遅れに起因するアーティファクトが回避されず、かつ、ま ともな X線画像も得られな 、と 、う結果し力得られず、 FPDの時間遅れは解消されな V、ことが確認された (特許文献 1)。
[0008] そこで、発明者は、特開 2004— 242741号公報の手法を先に提案している。この 手法によれば、この FPDの時間遅れに対して、次の再帰式 a〜cにより、 FPDのイン パルス応答に起因する時間遅れを除去している。
[0009] X =Υ -∑ Ν [α ·〔1— exp(T ) ] -exp(T )-S ]···&
k k n=l n n n nk
T =— ---b
S =X +exp(T )-S ---c
nk k-1 n n(k- 1)
但し, At:サンプリング時間間隔
k:サンプリングした時系列内の k番目の時点を示す添字 Y : k番目のサンプリング時点で取り出された放射線検出信号 k
X : Yから時間遅れ分を除去した遅れ除去放射線検出信号
k k
X
k-1:—時点前の X
k
S :一時点前の s
n(k-l) nk
exp :指数関数
N :インパルス応答を構成する時定数が異なる指数関数の個数 n:インパルス応答を構成する指数関数の中の一つを示す添字 a :指数関数 nの強度
τ :指数関数 ηの減衰時定数
S =0
ηθ
X =0
0
この再帰式的演算では、 FPDのインパルス応答係数である、 Ν, α , τ を事前に 求めておき、それを固定した状態で放射線検出信号 Υ
kを式 a〜cに適用し、その結 果、時間遅れ分を除去した X を算出することになる (特許文献 2)。なお、上述した時
k
間遅れ分を除去する補正は、「ラグ補正」とも呼ばれて ヽる。
[0010] 上述した特許文献 2の手法以外にも、バックライトを用いて時間遅れ分の長時定数 成分の低減を図る技術がある(例えば、特許文献 3参照)。
[0011] ところで、例えば 17インチサイズの FPDは、縦横が 3072 X 3072画素であり、上述し た特許文献 2の手法では、再帰的演算処理のための計算量が膨大になる。そこで、 動画の透視撮影の場合には、画素を加算するビユング動作を行って計算量を減らす 対策を行っている。例えば、縦横をともに 2 X 2画素を 1つにまとめるビユング動作では 、ビユング動作によって画素数が 1Z4に減って計算量を 1Z4に減らすことができる 。また、縦力 画素で横が 2画素の 4 X 2画素を 1つにまとめるビユング動作では、ビ- ング動作によって画素数が 1Z8に減って計算量を 1Z8に減らすことができる。
[0012] なお、ビユングの対象となる画素数が少ない場合には高分解能の画像を取得する ことになり、ビユングの対象となる画素数が多い場合には低分解能の画像を取得する ことになる。したがって、高分解能の画像を得ることよりも計算量を減らすことの方を重 視する場合には、ビユングの対象となる画素数を多くして低分解能の画像を取得す ることで計算量を減らす。逆に、計算量を減らすことよりも高分解能の画像を得ること の方を重視する場合には、計算量を増やすことでビユングの対象となる画素数を少 なくして高分解能の画像を取得する。
[0013] 一方で、 X線の照視野の大きさをコリメータによって変更することで、再帰的演算処 理の対象となる画像範囲を変更して、計算量の増減を図る。例えば、 12インチ四方 の照視野から 15インチあるいは 17インチ四方の照視野に拡大する場合には、再帰 的演算処理の対象となる画像範囲が拡がった分だけ 12インチ四方のときよりも計算 量が多くなる。逆に、 12インチ四方の照視野から 9インチ四方の照視野に縮小する 場合には、再帰的演算処理の対象となる画像範囲が狭まった分だけ 12インチ四方 のときよりも計算量が少なくなる。
[0014] このように、照視野とビユングとの組み合わせ力もなるモードを複数分予め準備して 、オペレータの必要に応じてモードを切り替えることで、動画のフレームレートを維持 するようにしている。したがって、高分解能の画像で観察する場合には、ビユングの 対象となる画素数が少ないことに起因した計算量の増大を抑えるために照視野を狭 める。例えば、高分解能の画像で観察する場合には、 2 X Iビユングを用いて、その 代わり照視野を 9インチ四方に制限されたモードを用いる。逆に、広い照視野の画像 で観察する場合には、照視野拡大に起因した計算量の増大を抑えるためにビユング の対象となる画素数を少なくする。例えば、広い照視野の画像で観察する場合には 、 17インチ四方の照視野に拡大して、その代わりに 4 X 2ビユングの低分解能に制限 されたモードを用いる。
[0015] 特許文献 1 :米国特許第 5249123号(明細書中の数式および図面)
特許文献 2:特開 2004 - 242741号公報(明細書中の数式および図面) 特許文献 3 :特開平 9— 9153号公報 (第 3— 8頁、図 1)
発明の開示
発明が解決しょうとする課題
[0016] し力しながら、上述した照視野拡大時に、照視野拡大前の照視野の外枠部分に時 間遅れ分の時定数成分(「ラグ成分」とも呼ばれている)による高輝度が残るという問 題点がある。この問題点について、図 11、図 12を参照して説明する。図 11は、照視 野拡大前後の画像を模式的に表した図であって、図 12は、照視野拡大前後の照射 状況と画像とを時系列的に対応づけた図である。
[0017] すなわち、図 11に示すように、照視野拡大前の画像を Pとするとともに、照視野拡
0
大後の画像を P
1とし、コリメータに対応した部分の画像を P
COLとし、照視野拡大前の 画像を Pとコリメータに対応した部分の画像 P との間にある外枠部分を Pとする。ま
0 COL 2 た、図 12に示すように、照視野拡大の指示のタイミングを Tとし、図 12中の ON時の
0
照射信号は放射線の照射状態を示し、 OFF時の照射信号は放射線の非照射状態 を示す。なお、照視野拡大前の画像 Pとして、 12インチ四方の照視野の画像を例に
0
採って説明するとともに、照視野拡大後の画像 Pとして、 15インチ四方の照視野の
1
画像を例に採って説明する。
[0018] 照視野拡大前では、 12インチ四方の照視野よりも若干大きめ(例えば 13インチ)に コリメータを絞った状態で放射線の照射を開始(図 12中の OFF力も ONへの移行を 参照)して、再帰的演算処理により時間遅れ分を除去するラグ補正を行う。このとき、 再帰的演算処理の対象となる画像範囲は、 12インチ四方の照視野である照視野拡 大前の画像 P
0の範囲である。一方、外枠部分 P
2は再帰的演算処理の対象外である 力 12インチ四方の照視野よりも若干大きめに絞ったコリメータよりも内側にあるので 、照射がコリメータに妨げられることもなぐ外枠部分 P
2はずつと照射された状態であ る。
[0019] このように、再帰的演算処理の対象となる照視野拡大前の(12インチ)画像 Pでは
0 再帰的演算処理によりラグ補正を行って 、るので、ラグ成分が残留することはな 、が
、外枠部分 P
2では再帰的演算処理が行われずに照射された状態で放置されている ので、ラグ成分が蓄積された状態である。照視野拡大前では照視野拡大前の(12ィ ンチ)画像 Pしか観察しないので外枠部分 Pは問題とならないが、照視野拡大の指
0 2
示(図 12中の Tを参照)に伴って 15インチ四方の照視野に拡大した途端に、外枠部
0
分 pに重畳したラグ成分が高輝度として現れてしまう。
2
[0020] したがって、照視野拡大時に、照視野拡大前の照視野の外枠部分 Pにラグ成分が
2
重畳した状態となって、そのラグ成分によって放射線検出信号は高 、信号値 (高 ヽ 画素値)を有することになつて、外枠部分 Pに高輝度が残って放射線画像に支障が 生じる。このように、照視野拡大に代表されるような放射線撮像に関する所定の動作 が放射線の照射時に割り込まれると放射線画像に支障が生じる。
[0021] ところで、この高輝度については、時間遅れ分の長時定数成分(「長期ラグ」とも呼 ばれて 、る)の大き 、FPDほど顕著になるので、出荷検査時のラグ特性の合格基準 を厳しくすることで、高輝度が現れた FPDが出荷されないように対策をとつている。し かし、合格基準を厳しくすることで、 FPDの歩留まり改善に支障が生じる。
[0022] このような不自然な高輝度を残したままにして出荷することも可能である力 その場 合には高輝度が減衰するまでにある程度の待ち時間が必要になる。その結果、被検 体に対する放射線の被曝時間を増大させたり、検査時間を延長させたり、あるいは医 師の診断を妨げたりすることにもなる。したがって、ラグ特性が従来と同程度の FPD においても、演算負荷を増大させることなぐ不自然な高輝度を除去する方法が必要 とされている。
[0023] この発明は、このような事情に鑑みてなされたものであって、放射線撮像に関する 所定の動作が放射線の照射時に割り込まれることによる放射線画像の支障を低減さ せつつ、放射線検出手段カゝら取り出された放射線検出信号カゝら放射線検出手段に 起因する放射線検出信号の時間遅れを除去することができる放射線撮像装置およ び放射線検出信号処理方法を提供することを目的とする。
課題を解決するための手段
[0024] この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、この発明の放射線撮像装置は、放射線検出信号に基づいて放射線画 像を得る放射線撮像装置であって、被検体に向けて放射線を照射する放射線照射 手段と、被検体を透過した放射線を検出する放射線検出手段と、前記放射線検出手 段から放射線検出信号を所定のサンプリング時間間隔で取り出す信号サンプリング 手段とを備え、被検体への放射線照射に伴って放射線検出手段力もサンプリング時 間間隔で出力される放射線検出信号に基づいて放射線画像が得られるように前記 装置は構成されており、前記装置は、さらに、サンプリング時間間隔で取り出される各 放射線検出信号に含まれる時間遅れ分を単数または減衰時定数が異なる複数個の 指数関数で構成されるインパルス応答によるものとして再帰的演算処理により各放射 線検出信号から除去する時間遅れ除去手段と、前記放射線照射手段の照射開始お よび照射停止のタイミングを制御する照射制御手段とを備え、(A)その照射制御手段 が放射線照射手段の照射を開始させた状態で、前記時間遅れ除去手段は再帰的 演算処理により時間遅れ分を除去して補正後放射線検出信号を求め、(B)放射線撮 像に関する所定の動作の指示に伴って、照射制御手段は、前記放射線照射手段の 照射を一時的に停止するとともに、時間遅れ除去手段は、再帰的演算処理を一時的 に停止して、前記信号サンプリング手段は、放射線照射手段の一時的な停止による 非照射時の放射線検出信号を取得し、(C)前記所定の動作の開始に伴って、照射制 御手段は、放射線照射手段の照射を再度開始させ、時間遅れ除去手段は、前記非 照射時の放射線検出信号力 得られる初期値に基づき再帰的演算処理を再度開始 することを特徴とするものである。
[0025] この発明の放射線撮像装置では、放射線照射手段による被検体への照射線に伴 つて放射線検出手段力 所定のサンプリング時間間隔で出力される放射線検出信 号に含まれる時間遅れ分を、単数または減衰時定数が異なる複数個の指数関数で 構成されるインパルス応答によるものとして、時間遅れ除去手段が除去する。各放射 線検出信号力 時間遅れ分を除去する際には、再帰的演算処理により行う。この再 帰的演算処理により各放射線検出信号が除去する処理を、次の過程にしたがって実 行する。
[0026] すなわち、 (A)放射線照射手段の照射開始および照射停止のタイミングを制御する 照射制御手段から放射線照射手段の照射を開始させた状態で、時間遅れ除去手段 は再帰的演算処理により時間遅れ分を除去して補正後放射線検出信号を求める。 そして、(B)放射線撮像に関する所定の動作の指示に伴って、照射制御手段は、放 射線照射手段の照射を一時的に停止するとともに、時間遅れ除去手段は、再帰的演 算処理を一時的に停止して、信号サンプリング手段は、放射線照射手段の一時的な 停止による非照射時の放射線検出信号を取得する。さらに、(C)上述した所定の動作 の開始に伴って、照射制御手段は、放射線照射手段の照射を再度開始させ、時間 遅れ除去手段は、上述した非照射時の放射線検出信号から得られる初期値に基づ き再帰的演算処理を再度開始する。所定の動作前にお 、ては再帰的演算処理によ り時間遅れ除去手段は時間遅れ分を除去して、得られた補正後放射線検出信号か ら放射線画像が取得されるとともに、所定の動作後においては上述した初期値に基 づく再帰的演算処理により時間遅れ除去手段は時間遅れ分を除去して、得られた補 正後放射線検出信号から放射線画像が取得される。
[0027] このように、この発明の放射線撮像装置によれば、上述した所定の動作が放射線の 照射時に割り込まれる際に、上述した (B)のように照射を一時的に停止するとともに、 再帰的演算処理を一時的に停止し、所定の動作の開始に伴って、上述した (C)のよう に照射を再度開始させ、非照射時の放射線検出信号力 得られる初期値に基づき 再帰的演算処理を再度開始する。したがって、(C)によって所定の動作後において所 定の動作前と同じように照射および再帰的演算処理が行えて、(B)の一時的な停止 により所定の動作前の照射および再帰的演算処理の影響が所定の動作後のデータ に及ぼさない。その一方で、(B)のように一時的な停止による非照射時の放射線検出 信号を信号サンプリング手段が取得して、非照射時の放射線検出信号力 得られる 初期値に基づき再帰的演算処理を (C)のように行って 、るので、上述した所定の動作 が放射線の照射時に割り込まれたとしても、放射線撮像に関する所定の動作が放射 線の照射時に割り込まれることによる放射線画像の支障を低減させつつ、放射線検 出信号力も時間遅れ分をより正確に除去することができる。
[0028] また、この発明の放射線検出信号処理方法は、被検体を照射して検出された放射 線検出信号を所定のサンプリング時間間隔で取り出し、サンプリング時間間隔で出 力される放射線検出信号に基づいて放射線画像を得る信号処理を行う放射線検出 信号処理方法であって、サンプリング時間間隔で取り出される各放射線検出信号に 含まれる時間遅れ分を単数または減衰時定数が異なる複数個の指数関数で構成さ れるインパルス応答によるものとして再帰的演算処理により各放射線検出信号から除 去する処理を、次の過程にしたがって実行する、(A)放射線の照射を開始させた状態 で、前記再帰的演算処理により時間遅れ分を除去して補正後放射線検出信号を求 め、(B)放射線撮像に関する所定の動作の指示に伴って、照射を一時的に停止する とともに再帰的演算処理を一時的に停止して、その一時的な停止による非照射時の 放射線検出信号を取得し、(C)前記所定の動作の開始に伴って、照射を再度開始さ せ、前記非照射時の放射線検出信号力 得られる初期値に基づき再帰的演算処理 を再度開始することを特徴とするものである。
[0029] この発明の放射線検出信号処理方法によれば、放射線撮像に関する所定の動作 が放射線の照射時に割り込まれる際に、上述した (B)のように照射を一時的に停止す るとともに、再帰的演算処理を一時的に停止し、所定の動作の開始に伴って、上述し た (C)のように照射を再度開始させ、非照射時の放射線検出信号力も得られる初期 値に基づき再帰的演算処理を再度開始する。したがって、(C)によって所定の動作後 において所定の動作前と同じように照射および再帰的演算処理が行えて、(B)の一時 的な停止により所定の動作前の照射および再帰的演算処理の影響が所定の動作後 のデータに及ぼさない。その一方で、(B)のように一時的な停止による非照射時の放 射線検出信号を取得して、非照射時の放射線検出信号から得られる初期値に基づ き再帰的演算処理を (C)のように行って 、るので、上述した所定の動作が放射線の照 射時に割り込まれたとしても、放射線撮像に関する所定の動作が放射線の照射時に 割り込まれることによる放射線画像の支障を低減させつつ、放射線検出信号から時 間遅れ分をより正確に除去することができる。
[0030] 上述したこれら放射線撮像装置および放射線検出信号処理方法の一例として以 下のようなものがある。
[0031] すなわち、上述した所定の動作前において放射線検出信号力も時間遅れ分を除 去する再帰的演算処理を式 A〜C、
X =Υ -∑ N [S ト-Α
k k n=l nk
T = - t τ " ·Β
S =exp(T ) - { a ·〔1 exp(T )〕 ' exp(T ) ' S ト C
nk n n n n n(k-l)
但し, A t:サンプリング時間間隔
k:サンプリングした時系列内の k番目の時点を示す添字 Y : k番目のサンプリング時点で取り出された放射線検出信号
k
X : Yから時間遅れ分を除去した補正後放射線検出信号 k k
X
k-1:—時点前の X
k
S :一時点前の s exp :指数関数
N :インパルス応答を構成する時定数が異なる指数関数の個数 n:インパルス応答を構成する指数関数の中の一つを示す添字 a :指数関数 nの強度
τ :指数関数 ηの減衰時定数
により行うとともに、再起的演算処理のための初期値を式 D、
X = 0, S = γ ·Υ - - -D
0 ηθ n 0
但し, y n:ある減衰時定数 τ ηの成分 ηの残留割合
Υ
0:再帰的演算処理の基点時である放射線非照射時に残留して 、るラグ 信号値
により行い、前記式 Dにより決定された初期値での条件で、前記式 A〜Cにより求め られた前記インパルス応答に基づ!/ヽて時間遅れ分を除去して、補正後放射線検出 信号を求めることである。
[0032] この一例によれば、上述した所定の動作前において式 A〜Cという簡潔な漸ィ匕式に よって時間遅れ分を除去した補正後放射線検出信号 X
kが速やかに求められる。
[0033] ここで、再帰的演算処理の基点時、すなわち先頭フレームにおける放射線非照射 時は、 k= 0のときであり、再帰的演算処理を行う際に k= 0のときの X , S 、すなわち k nk 初期値を上述した式 Dのように決定している。例えば、図 10に示すように、時間 tO〜 tlでの撮影のラグが透視に重なると、再帰的演算処理の基点時である放射線非照 射時(図 10では k= 0を参照)であっても、時間 tO〜tlでの撮影で発生した時間遅れ 分による残留ラグ (ラグ信号値)が存在する。すなわち、放射線非照射時であっても 放射線検出信号 Yの
k 初期値 Y
0は 0でない。
[0034] そこで、式 Dのように、 X = 0, S = γ ·Υ (Υ :再帰的演算処理の基点時である
0 ηθ η 0 0
放射線非照射時に残留しているラグ信号値)によって再帰的演算処理のための初期 値を設定して、式 Dにより決定された初期値での条件で、式 A〜Cにより求められたィ ンパルス応答に基づいて時間遅れ分を除去して、補正後放射線検出信号 Xを求め k る。
[0035] また、上述した所定の動作の一例は放射線の照視野拡大である。照視野拡大の場 合には、上述した (B)は、照視野拡大の指示に伴って上述した (照射および再帰的演 算処理の)停止および上述した (その一時的な停止による)非照射時の放射線検出 信号の取得を行い、上述した (C)は、照視野拡大の開始に伴って上述した (照射およ び再帰的演算処理の)再度の開始を行うことで、照視野拡大後において、上述した 非照射時の放射線検出信号力 得られる初期値に基づく再帰的演算処理により時 間遅れ分を除去して補正後放射線検出信号を求める。
[0036] この場合には、照視野拡大が放射線の照射時に割り込まれる際に、上述した (B)の ように照射を一時的に停止するとともに、再帰的演算処理を一時的に停止し、照視 野拡大の開始に伴って、上述した (C)のように照射を再度開始させ、再帰的演算処理 を再度開始する。したがって、(C)によって照視野拡大後において照視野拡大前と同 じょうに照射および再帰的演算処理が行えて、(B)の一時的な停止により照視野拡大 前の照射および再帰的演算処理の影響が照視野拡大後のデータに及ぼさない。そ の一方で、(B)のように一時的な停止による非照射時の放射線検出信号を取得して、 非照射時の放射線検出信号力も得られる初期値に基づき再帰的演算処理を (C)のよ うに行って!/、るので、上述した照視野拡大が放射線の照射時に割り込まれたとしても 、照視野拡大が放射線の照射時に割り込まれることによる放射線画像の支障を低減 させつつ、放射線検出信号から時間遅れ分をより正確に除去することができる。
[0037] 特に、照視野拡大前においては、再帰的演算処理の対象となる画像よりも広ぐか つ照視野拡大後にお ヽて再帰的演算処理の対象となる画像よりも狭くなるように照 視野の大きさを操作する場合には、以下のような効果を奏する。すなわち、照視野拡 大前においては、再帰的演算処理の対象となる画像よりも広ぐかつ照視野拡大後 にお!/ヽて再帰的演算処理の対象となる画像よりも狭くなる画像は、照視野拡大後の 画像 (すなわち照視野拡大後にお 、ては、再帰的演算処理の対象となる画像)から 照視野操作手段に対応した部分の画像を除いた画像になるとともに、照視野拡大前 の画像 (すなわち照視野拡大前においては、再帰的演算処理の対象となる画像)と、 照視野拡大前の画像'照視野操作手段に対応した部分の画像間になる外枠部分と を併せた画像にもなる。
[0038] 従来であれば再帰的演算処理の対象外である外枠部分が照視野拡大前後に関わ らず照射された状態で放置されて高輝度が現れて ヽたのが、上述した (B)の一時的 な停止により照視野拡大前の照射および再帰的演算処理の影響が照視野拡大後の 外枠部分のデータに及ぼさない。その一方で、(B)のように一時的な停止による非照 射時の放射線検出信号を取得して、非照射時の放射線検出信号から得られる初期 値に基づく再帰的演算処理を上述した (C)のように行って 、るので、照視野拡大後で の外枠部分においても再帰的演算処理による時間遅れ分を上述した初期値によつ てより正確に除去することができる。このこと力 、照視野拡大が放射線の照射時に 割り込まれたとしても高輝度による放射線画像の支障を低減させることができる。また 、時間遅れ分の長時定数成分 (長期ラグ)の大きい放射線検出手段においても、上 述した高輝度が現れな 、ので、高輝度が減衰するまでにある程度の待ち時間が必要 になることもなぐ被検体の負担を軽減し、医師の診断を妨げないという効果をも奏す る。
[0039] また、ある減衰時定数 τ の成分 ηの残留割合を γ として、各々の時定数成分量の 比率を γ
1: γ · · · γ
2: : γ ·
η:· · : Ν-1: γ
Νで表したときに、その比率は照視野拡大前後で 一定であるとみなせる。したがって、照視野拡大前後で共通する画素については、照 視野拡大前の照射時であって、かつ非照射時の直前である時定数成分量の比率を 用いて、非照射時の放射線検出信号に基づく画素値を減衰時定数毎に分割して、 それぞれ分割された値を上述した (一時的な停止による非照射時の放射線検出信号 力 得られる)初期値とするとともに、照視野拡大で新たに加わった部分の画素につ いては、上述した共通画素と同じ時定数成分量の比率を用いて、非照射時の放射線 検出信号に基づく画素値を減衰時定数毎に分割して、それぞれ分割された値を初 期値として、照視野拡大後において、各々の初期値に基づく再帰的演算処理により 時間遅れ分を除去して補正後放射線検出信号を求める。より具体的には、以下のよ うに行う。
[0040] すなわち、上述した照視野拡大後において放射線検出信号力も時間遅れ分を除 去する再帰的演算処理を式 A〜C、
X =Υ -∑ N [S ト-Α
k k n=l nk
T = - t τ "·Β S =exp(T ) - { a ·〔1 exp(T )〕 ' exp(T ) ' S ト C
nk n n n n n(k-l)
但し, A t:サンプリング時間間隔
k:サンプリングした時系列内の k番目の時点を示す添字
Y : k番目のサンプリング時点で取り出された放射線検出信号
k
X : Yから時間遅れ分を除去した補正後放射線検出信号
k k
X
k-1:—時点前の X
k
S :一時点前の s
n(k-l) nk
exp :指数関数
N :インパルス応答を構成する時定数が異なる指数関数の個数 n:インパルス応答を構成する指数関数の中の一つを示す添字 a :指数関数 nの強度
τ :指数関数 ηの減衰時定数
により行うとともに、前記照視野拡大前の照射時であって、かつ前記非照射時の直 前のサンプリング地点を としたときに、前記初期値を式 D、 H、
X =0, S = γ ·Υ
0 ηθ η 0
y = S V∑ Ν [S 'ト-H
η nk η=1 nk
但し, y n:ある減衰時定数 τ ηの成分 ηの残留割合
Υ
0:前記照視野拡大後における再帰的演算処理の基点時である放射線非 照射時に残留して 、るラグ信号値 (前記非照射時の放射線検出信号)
S 、サンプリング地点 での S
nk η
により行い、前記式 D、 Hにより決定された初期値での条件で、前記式 A〜Cにより 求められた前記インパルス応答に基づ ヽて時間遅れ分を除去して、補正後放射線 検出信号を求める。
この場合には、上述した照視野拡大後にお 、て式 A〜Cと 、う簡潔な漸化式によつ て時間遅れ分を除去した補正後放射線検出信号 X
kが速やかに求められる。ここで、 照視野拡大前の照射時であって、かつ非照射時の直前 (サンプリング地点 )である 時定数成分量の比率を用いて初期値を求めるのに、上述した式 D、 Hを用いることで 実現することができる。 発明の効果
[0042] この発明に係る放射線撮像装置および放射線検出信号処理方法によれば、放射 線撮像に関する所定の動作が放射線の照射時に割り込まれる際に、上述した (B)の ように照射を一時的に停止するとともに、再帰的演算処理を一時的に停止し、所定の 動作の開始に伴って、上述した (C)のように照射を再度開始させ、再帰的演算処理を 再度開始し、(B)のように一時的な停止による非照射時の放射線検出信号を取得して 、非照射時の放射線検出信号力 得られる初期値に基づき再帰的演算処理を (C)の ように行って!/、るので、放射線撮像に関する所定の動作が放射線の照射時に割り込 まれることによる放射線画像の支障を低減させつつ、放射線検出信号から時間遅れ 分をより正確に除去することができる。
図面の簡単な説明
[0043] [図 1]実施例の X線透視撮影装置の全体構成を示すブロック図である。
[図 2]実施例装置に用いられて ヽる FPDの構成を示す平面図である。
[図 3]実施例装置による X線撮影の実行時の X線検出信号のサンプリング状況を示 す模式図である。
[図 4]実施例での X線検出信号処理方法の手順を示すフローチャートである。
[図 5]実施例での X線検出信号処理方法における照視野拡大前での時間遅れ除去 用の再帰的演算処理プロセスを示すフローチャートである。
[図 6]実施例での X線検出信号処理方法における照視野拡大後での時間遅れ除去 用の再帰的演算処理プロセスを示すフローチャートである。
[図 7]実施例での照視野拡大前後、照射および再帰的演算処理の手順を示すフロー チャートである。
[図 8]実施例での照視野拡大前後の照射状況と画像とを時系列的に対応づけた図 である。
[図 9]放射線入射状況に対応した時間遅れ状況を示す図である。
[図 10]撮影のラグ (時間遅れ分)が透視に重なった時間遅れ状況を示す図である。
[図 11]照視野拡大前後の画像を模式的に表した図である。
[図 12]従来での照視野拡大前後の照射状況と画像とを時系列的に対応づけた図で ある。
符号の説明
[0044] 1 … X線管
2 … FPD (フラットパネル型 X線検出器)
3 … AZD変
11 … 時間遅れ除去部
12 … 照射制御部
13 … コリメータ
M … 被検体
発明を実施するための最良の形態
[0045] 照視野拡大が X線などに代表される放射線の照射時に割り込まれる際に、上述し た (B)のように照射を一時的に停止するとともに、再帰的演算処理を一時的に停止し 、所定の動作の開始に伴って、上述した (C)のように照射を再度開始させ、再帰的演 算処理を再度開始し、(B)のように一時的な停止による非照射時の X線検出信号を取 得して、非照射時の X線検出信号力 得られる初期値に基づき再帰的演算処理を (C )のように行うことで照視野拡大に代表される放射線撮像に関する所定の動作が放射 線の照射時に割り込まれることによる放射線画像の支障を低減させつつ、放射線検 出信号力も時間遅れ分をより正確に除去するという目的を実現した。
実施例
[0046] 以下、図面を参照してこの発明の実施例を説明する。図 1は、実施例に係る X線透 視撮影装置の全体構成を示すブロック図である。
[0047] X線透視撮影装置は、図 1に示すように、被検体 Mに向けて X線を照射する X線管 1と、被検体 Mを透過した X線を検出する FPD (フラットパネル型 X線検出器) 2と、 F PD2から X線検出信号を所定のサンプリング時間間隔 Δ tでディジタルィ匕して取り出 す AZD変翻3と、 AZD変翻3から出力される X線検出信号に基づいて X線画 像を作成する検出信号処理部 4と、検出信号処理部 4で取得された X線画像を表示 する画像モニタ 5とを備えている。つまり、被検体 Mへの X線照射に伴って AZD変換 器 3で FPD2から取り出される X線検出信号に基づ!/ヽて X線画像が得られるように本 実施例装置は構成されており、取得された X線画像が画像モニタ 5の画面に映し出さ れる。以下、本実施例装置の各部構成を具体的に説明する。 X線管 1は、この発明に おける放射線照射手段に相当し、 FPD2は、この発明における放射線検出手段に相 当し、 AZD変翻3は、この発明における信号サンプリング手段に相当する。また、 X線検出信号は、この発明における放射線検出信号に相当し、 X線画像は、この発 明における放射線画像に相当する。
[0048] 被検体 Mを挟んで X線管 1と FPD2とを対向配置する。具体的には、 X線撮影の際 に X線照射制御部 6の制御を受けながら、 X線管 1は被検体 Mにコーンビーム状の X 線を照射すると同時に、 X線照射に伴って生じる被検体 Mの透過 X線像力FPD2の X線検出面に投影されるように、 X線管 1および FPD2を対向配置する。
[0049] X線管移動機構 7および X線検出器移動機構 8によって X線管 1および FPD2が被 検体 Mに沿って往復移動可能になるようにそれぞれを構成する。また、 X線管 1およ び FPD2の移動に際しては、 X線管移動機構 7および X線検出器移動機構 8が照射 検出系移動制御部 9の制御を受けて X線の照射中心力FPD2の X線検出面の中心 に常に一致する状態が保たれるようにし、 X線管 1と FPD2との対向配置を維持した ままで一緒に移動させる。 X線管 1および FPD2が移動するにつれて被検体 Mへの X 線照射位置が変化することにより撮影位置が移動する。
[0050] FPD2は、図 2に示すように、被検体 M力もの透過 X線像が投影される X線検出面 に多数の X線検出素子 2aが被検体 Mの体軸方向 Xと体側方向 Yに沿って縦横に配 列されて構成されている。例えば、縦 30cm X横 30cm程の広さの X線検出面に X線 検出素子 2aが縦 1536 X横 1536のマトリックスで縦横に配列されている。 FPD2の 各 X線検出素子 2aが検出信号処理部 4で作成される X線画像の各画素と対応関係 にあり、 FPD2から取り出された X線検出信号に基づいて X線検出面に投影された透 過 X線像に対応する X線画像が検出信号処理部 4で作成される。
[0051] AZD変換器 3は、 X線画像 1枚分ずつの X線検出信号をサンプリング時間間隔 Δ t で連続的に取り出して、後段のメモリ部 10で X線画像作成用の X線検出信号を記憶 し、 X線検出信号のサンプリング動作 (取り出し)を X線照射の以前に開始するように 構成されている。 [0052] すなわち、図 3に示すように、サンプリング時間間隔 A tで、その時点の透過 X線像 についての全 X線検出信号が収集されてメモリ部 10に次々に格納される。 X線を照 射する以前の AZD変換器 3による X線検出信号の取り出し開始は、オペレータの手 動操作によって行われる構成でもよいし、 X線照射指示操作等と連動して自動的に 行われる構成でもよい。
[0053] また、本実施例の X線透視撮影装置は、図 1に示すように、再帰的演算処理により 各 X線検出信号から時間遅れ分を除去した補正後 X線検出信号を算出する時間遅 れ除去部 11と、 X線管 1の照射開始および照射停止のタイミングを制御する照射制 御部 12と、 X線管 1から照射される X線の照視野の大きさを操作するコリメータ 13と、 そのコリメータ 13を制御する照視野制御部 14とを備えている。時間遅れ除去部 11は 、この発明における時間遅れ除去手段に相当し、照射制御部 12は、この発明におけ る照射制御手段に相当し、コリメータ 13は、この発明における照視野操作手段に相 当する。
[0054] 時間遅れ分は、 FPD2からサンプリング時間間隔で取り出される各 X線検出信号に 含まれて 、る。その時間遅れ分を減衰時定数が異なる単数または複数個の指数関 数で構成されるインパルス応答によるものとして上述した再帰的演算処理を行って、 各 X線検出信号から時間遅れ分を除去する。この再帰的演算処理により各 X線検出 信号が除去する処理を、図 8に示すように、次の過程にしたがって実行する。
[0055] すなわち、(A)X線管 1の照射開始および照射停止のタイミングを制御する照射制御 部 12から X線管 1の照射を開始(図 8中の T、 OFF力も ONへの移行を参照)させた
1
状態で、時間遅れ除去部 11は再帰的演算処理により時間遅れ分を除去して補正後 X線検出信号を求める。そして、 (B)放射線撮像に関する所定の動作 (本実施例では 照視野拡大)の指示に伴って、照射制御部 12は、照射を一時的に停止するとともに 、時間遅れ除去部 11は、再帰的演算処理を一時的に停止(図 8中の T、サンプリン
0
グ地点 を参照)して、 AZD変換機 3は、 X線管 1の一時的な停止による非照射時 の X線検出信号を取得する。さらに、(C)上述した所定の動作 (ここでは照視野拡大) の開始に伴って、照射制御部 12は、照射を再度開始させ、時間遅れ除去部 11は、 上述した非照射時 (図 8中の T〜Tを参照)の X線検出信号力も得られる初期値に 基づき再帰的演算処理を再度開始(図 8中の T、 OFF力 ONへの移行を参照)す
2
る。
[0056] FPD2の場合、図 9に示すように、各時刻での X線検出信号には、過去の X線照射 に対応する信号が時間遅れ分 (図 9中の斜線部分を参照)として含まれる。この時間 遅れ分を時間遅れ除去部 11で除去して時間遅れのな 、補正後 X線検出信号にする 。この補正後 X線検出信号に基づいて、 X線検出面に投影された透過 X線像に対応 する X線画像を検出信号処理部 4が作成する。本実施例では、所定の動作 (ここでは 照視野拡大)前においては再帰的演算処理により時間遅れ除去部 11は時間遅れ分 を除去して、得られた補正後 X線検出信号から X線画像が取得されるとともに、所定 の動作 (ここでは照視野拡大)後にお!、ては上述した初期値に基づく再帰的演算処 理により時間遅れ除去部 11は時間遅れ分を除去して、得られた補正後 X線検出信 号から X線画像が取得される。
[0057] 具体的に時間遅れ除去部 11は、上述した所定の動作 (ここでは照視野拡大)前に ぉ 、て各 X線検出信号から時間遅れ分を除去する再帰的演算処理を、次式 A〜Cを 利用して行う。
[0058] X =Υ -∑ N [S · ·Α
k k n=l nk
T = - t τ " ·Β
S =exp(T ) - { a ·〔1 exp(T )〕 ' exp(T ) ' S ト C
nk n n n n n(k - 1)
但し, A t:サンプリング時間間隔
k:サンプリングした時系列内の k番目の時点を示す添字 Y : k番目のサンプリング時点で取り出された X線検出信号 k
X : Yから時間遅れ分を除去した補正後 X線検出信号 k k
X
k-1:—時点前の X
k
S :一時点前の s
n(k-l) nk
exp :指数関数
N :インパルス応答を構成する時定数が異なる指数関数の個数 n:インパルス応答を構成する指数関数の中の一つを示す添字 a :指数関数 nの強度 :指数関数 nの減衰時定数
つまり、式 Aの右辺の第 2項以降、すなわち式 Cでの『S = exp(T ) - { a ·〔1 exp nk n n
(T )〕 - exp(T ) - S }が時間遅れ分に該当するので、本実施例装置では、上述し n n n(k- 1)
た所定の動作 (ここでは照視野拡大)前にお 、て時間遅れ分を除去した補正後 X線 検出信号 X が式 A〜Cという簡潔な漸ィ匕式によって速やかに求められる。
k
[0059] ここで、再帰的演算処理の基点時、すなわち先頭フレームにおける X線非照射時 は、 k= 0のときであり、再帰的演算処理を行う際に k= 0のときの X , S 、すなわち初 k nk
期値を次式 Dのように決定する。
[0060] X = 0, S = γ ·Υ〜D
0 ηθ n 0
但し, y n:ある減衰時定数 τ ηの成分 ηの残留割合
Υ
0:再帰的演算処理の基点時である X線非照射時に残留して 、るラグ信 号値
例えば、図 10に示すように、時間 to〜tiでの撮影のラグが透視に重なると、再帰 的演算処理の基点時である X線非照射時(図 10では k= 0を参照)であっても、時間 t 0〜tlでの撮影で発生した時間遅れ分による残留ラグ (ラグ信号値)が存在する。す なわち、 X線非照射時であっても X線検出信号 Yの初期値 Yは 0でない。
k 0
[0061] そこで、式 Dのように、 X = 0, S = γ ·Υ (Υ :再帰的演算処理の基点時である X
0 ηθ η 0 0
線非照射時に残留して 、るラグ信号値)によって再帰的演算処理のための初期値を 設定して、式 Dにより決定された初期値での条件で、式 A〜Cにより求められたインパ ルス応答に基づいて時間遅れ分を除去して、補正後 X線検出信号 Xを求める。
k
[0062] 一方、時間遅れ除去部 11は、上述した所定の動作 (ここでは照視野拡大)後にお V、ても各 X線検出信号カゝら時間遅れ分を除去する再帰的演算処理を、式 A〜Cを利 用して行う。式 A〜Cでは、上述した照視野拡大前での再帰的演算処理と同じ式を 用いる。ここでのサンプリング時点 kについては、照視野拡大前のサンプリング時点を 用いずに以下のように設定している。すなわち、一時的な停止による非照射時(図 8 中の T〜Tを参照)から照視野拡大の開始に伴った照射および再帰的演算処理の
0 2
再度の開始(図 8中の Τ、 OFFから ONへの移行を参照)への移行において、再度の
2
開始の直前の非照射時でのサンプリング時点を k= 0に設定するとともに、再度の開 始の直後の照射時でのサンプリング時点を k= lに設定する。このように、照視野拡 大後においても時間遅れ分を除去した補正後 X線検出信号 X が式 A〜Cという簡潔 k
な漸化式によって速やかに求められる。
[0063] ここで、照視野拡大前の照射時であって、かつ非照射時の直前 (サンプリング地点
)である時定数成分量の比率を用 、て初期値を求める。具体的には再度の開始の 直前の非照射時でのサンプリング時点である k=0のときの X ,すなわち初期値を式 k
Dのように決定するとともに、式 Dでの残留割合 γを決定するために、照視野拡大前 の照射時であって、かつ非照射時の直前でのサンプリング k = k'のときの を用い nk て次式 Hのように決定する。
[0064] γ =S 7∑ N [S ' ··Η
η nk η=1 nk
但し, y n:ある減衰時定数 τ ηの成分 ηの残留割合
Υ
0:前記照視野拡大後における再帰的演算処理の基点時である X線非照 射時に残留して 、るラグ信号値 (前記非照射時の X線検出信号)
S 、サンプリング地点 での S
nk nk
式 Dでは、上述した照視野拡大前での初期値と同じ式を用いる。
[0065] なお、本実施例装置では、 AZD変換器 3や、検出信号処理部 4、 X線照射制御部 6や照射検出系移動制御部 9、時間遅れ除去部 11、照射制御部 12、照視野制御部 14は、操作部 15から入力される指示 (例えば照視野拡大の指示)やデータあるいは X線撮影の進行に従って主制御部 16から送出される各種命令にしたがって制御 '処 理を実行する。
[0066] 次に、上述の本実施例装置を用いて X線撮影を実行する場合について、図面を参 照しながら具体的に説明する。図 4は実施例での X線検出信号処理方法の手順を示 すフローチャートである。なお、ここでの撮影は、図 10に示すような過去の撮影や、今 回の透視ある!/、は撮影も含む。
[0067] 〔ステップ S 1〕 X線未照射の状態で AZD変換器 3がサンプリング時間間隔 Δ t ( = 1 Z30秒)で FPD2から X線照射前の X線画像 1枚分の X線検出信号 Yを取り出す。
k
取り出された X線検出信号をメモリ部 10に記憶する。
[0068] 〔ステップ S2〕オペレータの設定により X線が連続ないし断続的に被検体 Mに照射 されるのと並行して、サンプリング時間間隔 A tで AZD変 3による X線画像 1枚 分の X線検出信号 Υ の取り出しとメモリ部 10への記憶とを続ける。
k
[0069] 〔ステップ S3〕 X線照射が終了すれば次のステップ S4に進み、 X線照射が終了して
Vヽなければステップ S 2に戻る。
[0070] 〔ステップ S4〕メモリ部 10から 1回のサンプリングで収集した X線画像 1枚分の X線検 出信号 Y
kを読み出す。
[0071] 〔ステップ S5〕時間遅れ除去部 11が式 A〜Cによる再帰的演算処理を行い、各 X線 検出信号 Y から時間遅れ分を除去した補正後 X線検出信号 X 、すなわち、画素値 k k を求める。
[0072] 〔ステップ S6〕検出信号処理部 4が 1回のサンプリング分 (X線画像 1枚分)の補正後 X線検出信号 Xに基づいて X線画像を作成する。
k
[0073] 〔ステップ S7〕作成した X線画像を画像モニタ 5に表示する。
[0074] 〔ステップ S8〕メモリ部 10に未処理の X線検出信号 Y が残っていれば、ステップ S4 k
に戻り、未処理の X線検出信号が残っていなければ、 X線撮影を終了する。
[0075] なお、本実施例装置では、 X線画像 1枚分の X線検出信号 Y に対する時間遅れ除 k
去部 11による補正後 X線検出信号 Xの算出および検出信号処理部 4による X線画 k
像の作成をサンプリング時間間隔 A t ( = lZ30秒)で行う。すなわち、 1秒間に X線 画像を 30枚程度のスピードで次々と作成し、作成された X線画像を連続表示するこ とができるように構成する。したがって、 X線画像の動画表示が可能になる。
[0076] 次に、図 4におけるステップ S5の時間遅れ除去部 11による再帰的演算処理のプロ セスについて、図 5、図 6のフローチャートを用いて説明するとともに、図 5、図 6にお けるステップ Τ1、 ΤΓの k=0のときの X線検出信号 Υ (すなわち Y )の収集を含んだ k 0
照視野拡大前後、照射および再帰的演算処理の手順について図 7のフローチャート および図 8を用いて説明する。図 5は、実施例での X線検出信号処理方法における 照視野拡大前での時間遅れ除去用の再帰的演算処理プロセスを示すフローチヤ一 ト、図 6は、実施例での X線検出信号処理方法における照視野拡大後での時間遅れ 除去用の再帰的演算処理プロセスを示すフローチャート、図 7は、実施例での照視 野拡大前後、照射および再帰的演算処理の手順を示すフローチャート、図 8は、実 施例での照視野拡大前後の照射状況と画像とを時系列的に対応づけた図である。
[0077] 〔ステップ Ul〕照視野拡大前の非照射時に、過去の撮影で発生した時間遅れ分に よる残留ラグ (ラグ信号値)を収集する。このときには、 k=0と設定する。 k = 0のときの X線検出信号 Y (すなわち Y )の収集の処理は、図 5のステップ T1でもあるので、ス k 0
テツプ T1で後述する。
[0078] 〔ステップ U2〕照射を開始(図 8中の T、 OFF力も ONへの移行を参照)させた状態
1
で、再帰的演算処理により時間遅れ分を除去して補正後 X線検出信号を求める。より 具体的な処理については図 5のステップ T1〜T6で後述する。
[0079] 〔ステップ U3〕操作部 15 (図 1を参照)から照視野拡大の指示があれば、ステップ U
4に進み、指示がなければステップ U3に待機する。
[0080] 〔ステップ U4〕照視野拡大の指示に伴って、照射を一時的に停止するとともに再帰 的演算処理を一時的に停止(図 8中の T、サンプリング地点 を参照)して、その
0 一 時的な停止による非照射時の X線検出信号を取得する。照視野拡大の指示が入る 直前は、照視野拡大前の照射時であって、かつ非照射時の直前である。このときの サンプリング時点を上述したように k=k'とする。一方、照視野拡大の指示が入った 直後は、一時的な停止による非照射時である。このときには、 k=0と設定する。 k=0 のときの X線検出信号 Y (すなわち Y )の収集の処理は、図 6のステップ ΤΓでもある k 0
ので、ステップ τΓで後述する。
[0081] 〔ステップ U5〕照視野拡大の開始に伴って、照射を再度開始させ、再帰的演算処 理を再度開始(図 8中の T、 OFF力 ONへの移行を参照)することで、照視野拡大
2
後において、上述した非照射時(図 8中の T〜Tを参照)で取得された X線検出信号
0 2
から得られる初期値に基づく再帰的演算処理により時間遅れ分を除去して補正後 X 線検出信号を求める。より具体的な処理については図 5のステップ ΤΓ、 Τ2〜Τ6で 後述する。
[0082] 続いて、ステップ Τ1、 ΤΓの k=0のときの X線検出信号 Υ (すなわち Y )の収集を k 0 含んだ再帰的演算処理の具体的なプロセスについて説明する。先ず、照視野拡大 前について図 5を用いて説明してから、照視野拡大後について図 6を用いて説明す る。 [0083] 〔ステップ Tl〕過去の撮影で発生した時間遅れ分による残留ラグ (ラグ信号値)を収 集する。具体的には、先頭フレームにおいて AZD変翻 3が FPD2から残留ラグに よる X線画像 1枚分の X線検出信号 Υを取り出す。この X線検出信号 Υは、再帰的
0 0
演算処理の基点時である X線非照射時に残留して 、るラグ信号値 Υでもある。
0
[0084] 〔ステップ T2〕k=0とセットして、式 Aの X =0を初期値としてセットする。一方、ステ
0
ップ T1で取得されたラグ信号値 Yを式 Dに代入することで式 Cの S を求める。ここで
0 ηθ
、照視野拡大前では、ある減衰時定数 τ の成分 ηの残留割合 γ を、式 Εの条件を 満たすように設定するのが好ま 、。
[0085] すなわち、
Ν [ γ ]≤1, 0≤γ · ' ·Ε
η=1 η η
但し, ∑ Ν [ γ ] :成分 ηの残留割合 γ の総和
η=1 η η
の条件を満たすように設定するのが好ま U、。
[0086] 成分 ηの残留割合 γ の総和が 1を超えると時間遅れ分が過剰に除去され、逆に成 分 ηの残留割合 γの総和が負の値の場合には時間遅れ分が逆に加算される恐れが ある。そこで、成分 ηの残留割合 γ の総和を 0以上 1以下にして、残留割合 γを 0以 上にすることで、時間遅れ分を過不足なく除去することができる。式 Εについては、次 式 E'のようにしてもよ!、し、次式 E' 'のようにしてもよ!、。
[0087] すなわち、式 Εが次式 の場合には、式 Εは、
Figure imgf000025_0001
の条件を満たすとともに、各々の残留割合 Ύを式 F、
y = y = · · * = y = · · · = γ = y …
1 2 n N-l N
の条件を満たすように設定する。
[0088] 式 E'に式 Fを代入することで、 Ν · γ = 1となる。したがって、各々の残留割合 γ は
Ν η y = 1ZNとなり、各々の残留割合 γ は (インパルス応答を構成する時定数が異な
Ν η
る)指数関数の個数 Νで均等に分配される。このことから、 γ = 1ΖΝを式 Dの S =
Ν ηθ y ·Υに代入することで、式 Dは次式 ΕΓで表される。
η 0
[0089] すなわち、式 Dは
S =Υ /Ν· · ·ϋ' で表される。指数関数の数が 3個(N = 3)の場合は、 S , S , S を式 Dにしたがつ
10 20 30
て Y /3に全てセットする。
0
[0090] また、式 Eが次式 E~の場合には、式 Eは、
∑ N [ γ ] < 1· ··Ε"
η=1 η
の条件を満たすとともに、ある減衰時定数 τ の成分 mでの残留割合 γ 、それ以 m
外の残留割合 0
Nを式 G、
0< y < 1, y =0"*G
N
の条件を満たすように設定する。指数関数の数が 3個 (N = 3)で、減衰時定数 τ
2 の成分 2での残留割合 γ 力^ )< γ < 1を満たし (例えば γ =0. 1)、かつそれ以外
2 2 2
の残留割合が 0 = y =0を満たす場合には、 S , , S を式 Gにしたがって 0にセッ
1 3 10 30
トするとともに、 S を式 Gにしたがって γ ·Υ (例えば γ =0. 1)にセットする。
20 2 0 2
[0091] 〔ステップ Τ3〕式 A, Cで k= lとセットする。式 C、つまり S =exp(T ) · { α ·〔1— ex nl 1 1 p(T ) ] -exp(T )- S }にしたがって S , S , S を求め、さらに求められた S , S , S
1 1 ηθ 11 21 31 11 21 3 と X線検出信号 Yとを式 Aに代入することで補正後 X線検出信号 Xを算出する。
1 1 1
[0092] 〔ステップ T4〕式 A, Cで kを 1だけ増加(k二 k+ 1)した後、続いて式 Cに 1時点前の X を代入して S , S , S を求め、さらに求められた S , S , S と X線検出信号 Y k-1 lk 2k 3k lk 2k 3k k とを式 Aに代入することで補正後 X線検出信号 Xを算出する。
k
[0093] 〔ステップ T5〕未処理の X線検出信号 Y があれば、ステップ Τ4に戻り、未処理の X k
線検出信号 Yがなければ、次のステップ T6に進む。
k
[0094] 〔ステップ T6〕 1回のサンプリング分 (X線画像 1枚分)の補正後除去 X線検出信号 X を算出し、照視野拡大前において 1回の撮影分についての再帰的演算処理が終 k
了となる。
[0095] 〔ステップ ΤΓ〕照視野拡大の指示に伴った一時的な停止による非照射時に、照視 野拡大前のステップ T1と同様に残留ラグ (ラグ信号値)を収集する。この残留ラグは k =0での非照射時の X線画像 1枚分の X線検出信号 Yでもあって、この k=0で取得
0
された 1枚分の X線画像は、照視野拡大後での外枠部分 Pを含んだ照視野拡大後
2
の画像 Pである。
1
[0096] 〔ステップ T2〕照射拡大前のステップ Τ2と同じなので、その説明を省略する。ただし 、残留割合 γ ηについては、照視野拡大前のような式 Εを用いて求めずに、上述した 式 Ηを用いて求めている。
[0097] 各々の時定数成分量の比率を γ : y :…: γ :…: γ : y で表したときに、その
1 2 n N-1 N
比率は照視野拡大前後で一定であるとみなせる。したがって、照視野拡大前後で共 通する画素については、照視野拡大前の照射時であって、かつ非照射時の直前で のサンプリング k=k'のときの を用いて式 Hで表された時定数成分量の比率を用 nk
いて、非照射時の X線検出信号 (ここではステップ ΤΓで取得された Y )に基づく画
0
素値を減衰時定数毎に分割する。そして、それぞれ分割された値を、式 Dを用いて 上述した (一時的な停止による非照射時の X線検出信号力 得られる)初期値とする
[0098] 一方、照視野拡大で新たに加わった部分の画素については、上述した共通画素と 同じ時定数成分量の比率を用いて、非照射時の X線検出信号 (ここではステップ で取得された Υ )
0 に基づく画素値を減衰時定数毎に分割する。そして、それぞれ分 割された値を上述した (一時的な停止による非照射時の X線検出信号力 得られる) 初期値とする。
[0099] 例えば、指数関数の数が 3個(Ν = 3)で、 γ =0. 5、 γ =0. 3、 γ =0. 2と、 γ :
1 2 3 1 y : y =0. 5 : 0. 3 : 0. 2と比率が一定の場合には、 γ での時間遅れ分として 0. 5
2 3 1
を X線検出信号 Υに乗じて、 y での時間遅れ分として 0. 3を X線検出信号 Yに乗じ
0 2 0 て、 γでの時間遅れ分として 0. 2を X線検出信号 Υに乗じることで、 X線検出信号 Υ
3 0
0に基づく画素値を減衰時定数毎に分割することができる。
[0100] 以上をまとめると、本実施例では、共通画素や照視野拡大で新たに加わった部分 の画素に関わらず、上述した式 Dのように、非照射時の X線検出信号 Υに各々の残
0
留割合 Ύ 1 , Ύ , · · · , Ύ , · · · , Ύ , Ύ
2 n N-1 Nを画素毎にそれぞれ乗じることで、 X線検出 信号 Yに基づく画素値を減衰時定数毎に分割することになる。つまり、式 Dは、 S (i
0 ηθ
, j) = γ ·Υ (i, j)となる。ここで、体軸方向 Xと体側方向 Yとの座標を (i, j)としている n 0
。また、照視野拡大後で画素を加算するビユングを行う場合には、ビユングの対象と なる画素を加算した状態で、 X線検出信号 Y
0に各々の残留割合 γ , y , · · · , y ,
1 2 η
· · · , y , y をそれぞれ乗じればよい。 [0101] また、 k=k'のときの については、照視野拡大前の画像 P内の 1画素の値を抽 nk 0
出してもよいし、精度を上げるために照視野拡大前の画像 P内の全画素の平均値を
0
用いてもよい。
[0102] 〔ステップ T3〕照射拡大前のステップ T3と同じなので、その説明を省略する。
[0103] 〔ステップ Τ4〕照射拡大前のステップ Τ4と同じなので、その説明を省略する。
[0104] 〔ステップ Τ5〕照射拡大前のステップ Τ5と同じなので、その説明を省略する。
[0105] 〔ステップ Τ6〕照射拡大前のステップ Τ6と同じなので、その説明を省略する。ステツ プ ΤΓ、 Τ2〜Τ6を経て、照視野拡大後において 1回の撮影分についての再帰的演 算処理が終了となる。
[0106] 以上のように、本実施例の X線透視撮影装置によれば、上述した所定の動作 (ここ では照視野拡大)が X線の照射時に割り込まれる際に、上述した (Β)のように照射を一 時的に停止するとともに、再帰的演算処理を一時的に停止し、所定の動作 (照視野 拡大)の開始に伴って、上述した (C)のように照射を再度開始させ、再帰的演算処理 を再度開始する。したがって、(C)によって所定の動作 (照視野拡大)後において所定 の動作 (照視野拡大)前と同じように照射および再帰的演算処理が行えて、(Β)の一 時的な停止により所定の動作 (照視野拡大)前の照射および再帰的演算処理の影響 が所定の動作 (照視野拡大)後のデータに及ぼさない。その一方で、(Β)のように一時 的な停止による非照射時の X線検出信号を AZD変換器 3が取得して、非照射時の X線検出信号力も得られる初期値に基づき再帰的演算処理を (C)のように行って 、る ので、上述した所定の動作 (照視野拡大)が X線の照射時に割り込まれたとしても、 X 線撮像に関する所定の動作 (照視野拡大)が X線の照射時に割り込まれることによる X線画像の支障を低減させつつ、 X線検出信号カゝら時間遅れ分をより正確に除去す ることがでさる。
[0107] 特に、照視野拡大前においては、再帰的演算処理の対象となる画像 (例えば 12ィ ンチ)よりも広ぐかつ照視野拡大後にお 、て再帰的演算処理の対象となる画像 (例 えば 15インチ)よりも狭くなるように照視野の大きさ (例えば 13インチ)を操作する場 合には、以下のような効果を奏する。すなわち、照視野拡大前においては、再帰的 演算処理の対象となる画像よりも広ぐかつ照視野拡大後において再帰的演算処理 の対象となる画像よりも狭くなる画像は、図 8、図 11に示すように、照視野拡大後の画 像 P
1 (すなわち照視野拡大後においては、再帰的演算処理の対象となる画像)から コリメータ 13に対応した部分の画像 P を除いた画像になるとともに、照視野拡大前
COL
の画像 P (すなわち照視野拡大前においては、再帰的演算処理の対象となる画像)
0
と、照視野拡大前の画像 P 'コリメータ 13に対応した部分の画像 P 間にある外枠
0 COL
部分 P
2とを併せた画像にもなる。
[0108] 従来であれば再帰的演算処理の対象外である外枠部分 Pが照視野拡大前後に関
2
わらず照射された状態で放置されて高輝度が現れて!/ヽたのが、上述した (B)の一時 的な停止により照視野拡大前の照射および再帰的演算処理の影響が照視野拡大後 の外枠部分 Pのデータに及ぼさない。その一方で、(B)のように一時的な停止による
2
非照射時の X線検出信号を取得して、非照射時の X線検出信号力 得られる初期値 に基づく再帰的演算処理を上述した (C)のように行って 、るので、照視野拡大後での 外枠部分 P
2にお 、ても再帰的演算処理による時間遅れ分を上述した初期値によつ てより正確に除去することができる。
[0109] このことから、照視野拡大が X線の照射時に割り込まれたとしても高輝度による X線 画像の支障を低減させることができる。また、時間遅れ分の長時定数成分 (長期ラグ) の大きい FPD2においても、上述した高輝度が現れないので、高輝度が減衰するま でにある程度の待ち時間が必要になることもなぐ被検体 Mの負担を軽減し、医師の 診断を妨げな 、と 、う効果をも奏する。
[0110] この発明は、上記実施形態に限られることはなぐ下記のように変形実施することが できる。
[0111] (1)上述した実施例では、放射線検出手段力 SFPDであった力 この発明は、 FPD 以外の X線検出信号の時間遅れが生じる放射線検出手段を用!ヽた構成の装置にも 用!/、ることができる。
[0112] (2)上述した実施例装置は X線透視撮影装置であつたが、この発明は X線 CT装置 のように X線透視撮影装置以外のものにも適用することができる。
[0113] (3)上述した実施例装置は医用装置であつたが、この発明は、医用に限らず、非破 壊検査機器などの工業用装置にも適用することができる。 [0114] (4)上述した実施例装置は、放射線として X線を用いる装置であつたが、この発明 は、 X線に限らず、 X線以外の放射線 (例えば γ線)を用いる装置にも適用することが できる。
[0115] (5)上述した実施例では、初期値を式 Dにより決定したが、照視野拡大前において 、再帰的演算処理の基点時である X線非照射時に、図 10に示すような時間 tO〜tl での撮影で発生した時間遅れ分による残留ラグ (ラグ信号値)が存在しなければ、式 Aの X =0,式 Cの S =0を X線照射前の初期値として全てセットしてもよい。
[0116] (6)上述した実施例では、式 A〜Cにより求められたインパルス応答に基づいて時 間遅れ分を除去して、補正後 X線検出信号を求めたが、特許文献 2 (特開 2004— 2 42741号公報)の手法でも述べたように、式 a〜cにより求められたインノ ルス応答に 基づ 、て時間遅れ分を除去してもよ 、。
[0117] (7)上述した実施例では、放射線撮像に関する所定の動作は照視野拡大であった 力 照視野拡大以外でも放射線撮像に関するものであれば特に限定されない。 産業上の利用可能性
[0118] 以上のように、この発明は、フラットパネル型 X線検出器 (FPD)を備えた放射線撮 像装置に適している。

Claims

請求の範囲
[1] 放射線検出信号に基づ 、て放射線画像を得る放射線撮像装置であって、被検体 に向けて放射線を照射する放射線照射手段と、被検体を透過した放射線を検出す る放射線検出手段と、前記放射線検出手段から放射線検出信号を所定のサンプリン グ時間間隔で取り出す信号サンプリング手段とを備え、被検体への放射線照射に伴 つて放射線検出手段力 サンプリング時間間隔で出力される放射線検出信号に基 づいて放射線画像が得られるように前記装置は構成されており、前記装置は、さらに 、サンプリング時間間隔で取り出される各放射線検出信号に含まれる時間遅れ分を 単数または減衰時定数が異なる複数個の指数関数で構成されるインパルス応答によ るものとして再帰的演算処理により各放射線検出信号から除去する時間遅れ除去手 段と、前記放射線照射手段の照射開始および照射停止のタイミングを制御する照射 制御手段とを備え、(A)その照射制御手段が放射線照射手段の照射を開始させた状 態で、前記時間遅れ除去手段は再帰的演算処理により時間遅れ分を除去して補正 後放射線検出信号を求め、(B)放射線撮像に関する所定の動作の指示に伴って、照 射制御手段は、前記放射線照射手段の照射を一時的に停止するとともに、時間遅れ 除去手段は、再帰的演算処理を一時的に停止して、前記信号サンプリング手段は、 放射線照射手段の一時的な停止による非照射時の放射線検出信号を取得し、(C)前 記所定の動作の開始に伴って、照射制御手段は、放射線照射手段の照射を再度開 始させ、時間遅れ除去手段は、前記非照射時の放射線検出信号から得られる初期 値に基づき再帰的演算処理を再度開始することを特徴とする放射線撮像装置。
[2] 請求項 1に記載の放射線撮像装置において、前記所定の動作前において時間遅 れ除去手段は放射線検出信号から時間遅れ分を除去する再帰的演算処理を式 A〜 C、
X =Y -∑ N [S ト-Α
k k n=l nk
T = - t τ " ·Β
S =exp(T ) - { a ·〔1 exp(T )〕 ' exp(T ) ' S
n n(k - 1)ト C
nk n n n
但し, A t:サンプリング時間間隔
k:サンプリングした時系列内の k番目の時点を示す添字 Y : k番目のサンプリング時点で取り出された放射線検出信号 k
X : Yから時間遅れ分を除去した補正後放射線検出信号 k k
X
k-1:—時点前の X
k
S :一時点前の s
n(k-l) nk
exp :指数関数
N :インパルス応答を構成する時定数が異なる指数関数の個数 n:インパルス応答を構成する指数関数の中の一つを示す添字 a :指数関数 nの強度
τ :指数関数 ηの減衰時定数
により行うとともに、再起的演算処理のための初期値を式 D、
X = 0, S = γ ·Υ - - -D
0 ηθ n 0
但し, y n:ある減衰時定数 τ ηの成分 ηの残留割合
Υ
0:前記所定の動作前における再帰的演算処理の基点時である放射線非 照射時に残留して 、るラグ信号値
により行い、前記式 Dにより決定された初期値での条件で、前記式 A〜Cにより求め られた前記インパルス応答に基づ!/ヽて時間遅れ分を除去して、補正後放射線検出 信号を求めることを特徴とする放射線撮像装置。
[3] 請求項 1に記載の放射線撮像装置において、前記装置は、さらに、前記放射線照 射手段カゝら照射される放射線の照視野の大きさを操作する照視野操作手段を備え、 前記所定の動作は前記照視野操作手段による照視野拡大であって、前記 (B)は、照 視野拡大の指示に伴って前記停止および前記非照射時の放射線検出信号の取得 を行い、前記 (C)は、照視野拡大の開始に伴って前記再度の開始を行うことで、照視 野拡大後において、前記非照射時の放射線検出信号から得られる初期値に基づく 再帰的演算処理により時間遅れ分を時間遅れ除去手段は除去して補正後放射線検 出信号を求めることを特徴とする放射線撮像装置。
[4] 請求項 3に記載の放射線撮像装置にお 、て、前記照視野拡大前にお!/、ては、前 記再帰的演算処理の対象となる画像よりも広ぐかつ照視野拡大後において再帰的 演算処理の対象となる画像よりも狭くなるように前記照視野操作手段は照視野の大き さを操作することを特徴とする放射線撮像装置。
[5] 請求項 3に記載の放射線撮像装置にお 、て、ある減衰時定数 τ ηの成分 ηの残留 割合を γ として、各々の時定数成分量の比率を γ : γ :···: γ :···: γ γ で表し
η 1 2 η N-l Ν たときに、その比率は前記照視野拡大前後で一定であると前記時間遅れ除去手段 は設定することを特徴とする放射線撮像装置。
[6] 請求項 5に記載の放射線撮像装置において、前記照視野拡大前後で共通する画 素については、照視野拡大前の照射時であって、かつ前記非照射時の直前である 前記時定数成分量の比率を用いて、非照射時の放射線検出信号に基づく画素値を 減衰時定数毎に分割して、それぞれ分割された値を前記初期値とするとともに、照視 野拡大で新たに加わった部分の画素については、前記共通画素と同じ時定数成分 量の比率を用いて、非照射時の放射線検出信号に基づく画素値を減衰時定数毎に 分割して、それぞれ分割された値を初期値として、照視野拡大後において、各々の 初期値に基づく再帰的演算処理により時間遅れ分を時間遅れ除去手段は除去して 補正後放射線検出信号を求めることを特徴とする放射線撮像装置。
[7] 請求項 6に記載の放射線撮像装置において、前記照視野拡大後において時間遅 れ除去手段は放射線検出信号から時間遅れ分を除去する再帰的演算処理を式 Α〜 C、
X =Y -∑ N [S ト-Α
k k n=l nk
T =- t τ "·Β
S =exp(T) - {a ·〔1 exp(T )〕 'exp(T )'S ト C
nk n n n n n(k-l)
但し, At:サンプリング時間間隔
k:サンプリングした時系列内の k番目の時点を示す添字 Y : k番目のサンプリング時点で取り出された放射線検出信号
k
X : Yから時間遅れ分を除去した補正後放射線検出信号 k k
X
k-1:—時点前の X
k
S :一時点前の s
n(k-l) nk
exp :指数関数
N:インパルス応答を構成する時定数が異なる指数関数の個数 n:インパルス応答を構成する指数関数の中の一つを示す添字
a :指数関数 nの強度
τ :指数関数 ηの減衰時定数
により行うとともに、前記照視野拡大前の照射時であって、かつ前記非照射時の直 前のサンプリング地点を としたときに、前記初期値を式 D、 H、
X = 0, S = γ ·Υ
0 ηθ η 0
y = S V∑ Ν [S
η nk η=1 nk
但し, y n:ある減衰時定数 τ ηの成分 ηの残留割合
Υ
0:前記照視野拡大後における再帰的演算処理の基点時である放射線非 照射時に残留して 、るラグ信号値 (前記非照射時の放射線検出信号)
S 、サンプリング地点 での S
nk nk
により行い、前記式 D、 Hにより決定された初期値での条件で、前記式 A〜Cにより 求められた前記インパルス応答に基づ ヽて時間遅れ分を除去して、補正後放射線 検出信号を求めることを特徴とする放射線撮像装置。
[8] 被検体を照射して検出された放射線検出信号を所定のサンプリング時間間隔で取 り出し、サンプリング時間間隔で出力される放射線検出信号に基づいて放射線画像 を得る信号処理を行う放射線検出信号処理方法であって、サンプリング時間間隔で 取り出される各放射線検出信号に含まれる時間遅れ分を単数または減衰時定数が 異なる複数個の指数関数で構成されるインパルス応答によるものとして再帰的演算 処理により各放射線検出信号から除去する処理を、次の過程にしたがって実行する 、(A)放射線の照射を開始させた状態で、前記再帰的演算処理により時間遅れ分を 除去して補正後放射線検出信号を求め、(B)放射線撮像に関する所定の動作の指 示に伴って、照射を一時的に停止するとともに再帰的演算処理を一時的に停止して 、その一時的な停止による非照射時の放射線検出信号を取得し、(C)前記所定の動 作の開始に伴って、照射を再度開始させ、前記非照射時の放射線検出信号力 得 られる初期値に基づき再帰的演算処理を再度開始することを特徴とする放射線検出 信号処理方法。
[9] 請求項 8に記載の放射線検出信号処理方法において、前記所定の動作前におい て放射線検出信号力 時間遅れ分を除去する再帰的演算処理を式 A〜C、
X =Υ -∑ N [S ト-Α
k k n=l nk
T = - t τ " ·Β
S =exp(T ) - { a ·〔1 exp(T )〕 ' exp(T ) ' S ト C
nk n n n n n(k-l)
但し, A t:サンプリング時間間隔
k:サンプリングした時系列内の k番目の時点を示す添字
Y : k番目のサンプリング時点で取り出された放射線検出信号
k
X : Yから時間遅れ分を除去した補正後放射線検出信号
k k
X
k-1:—時点前の X
k
S :一時点前の s
n(k-l) nk
exp :指数関数
N :インパルス応答を構成する時定数が異なる指数関数の個数 n:インパルス応答を構成する指数関数の中の一つを示す添字 a :指数関数 nの強度
τ :指数関数 ηの減衰時定数
により行うとともに、再起的演算処理のための初期値を式 D、
X =0, S = γ ·Υ - - -D
0 ηθ n 0
但し, y n:ある減衰時定数 τ ηの成分 ηの残留割合
Υ
0:再帰的演算処理の基点時である放射線非照射時に残留して 、るラグ 信号値
により行い、前記式 Dにより決定された初期値での条件で、前記式 A〜Cにより求め られた前記インパルス応答に基づ!/ヽて時間遅れ分を除去して、補正後放射線検出 信号を求めることを特徴とする放射線検出信号処理方法。
請求項 8に記載の放射線検出信号処理方法において、前記所定の動作は放射線 の照視野拡大であって、前記 (B)は、照視野拡大の指示に伴って前記停止および前 記非照射時の放射線検出信号の取得を行い、前記 (C)は、照視野拡大の開始に伴 つて前記再度の開始を行うことで、照視野拡大後において、前記非照射時の放射線 検出信号力 得られる初期値に基づく再帰的演算処理により時間遅れ分を除去して 補正後放射線検出信号を求めることを特徴とする放射線検出信号処理方法。
[11] 請求項 10に記載の放射線検出信号処理方法において、前記照視野拡大前にお いては、前記再帰的演算処理の対象となる画像よりも広ぐかつ照視野拡大後にお
Vヽて再帰的演算処理の対象となる画像よりも狭くなるように照視野の大きさを操作す ることを特徴とする放射線検出信号処理方法。
[12] 請求項 10に記載の放射線検出信号処理方法において、ある減衰時定数 τ の成 分 ηの残留割合を γ として、各々の時定数成分量の比率を γ y :…: γ :…: γ
η 1 2 η N-l
: y で表したときに、その比率は前記照視野拡大前後で一定であると設定することを
N
特徴とする放射線検出信号処理方法。
[13] 請求項 12に記載の放射線検出信号処理方法において、前記照視野拡大前後で 共通する画素については、照視野拡大前の照射時であって、かつ前記非照射時の 直前である前記時定数成分量の比率を用いて、非照射時の放射線検出信号に基づ く画素値を減衰時定数毎に分割して、それぞれ分割された値を前記初期値とすると ともに、照視野拡大で新たに加わった部分の画素については、前記共通画素と同じ 時定数成分量の比率を用いて、非照射時の放射線検出信号に基づく画素値を減衰 時定数毎に分割して、それぞれ分割された値を初期値として、照視野拡大後におい て、各々の初期値に基づく再帰的演算処理により時間遅れ分を除去して補正後放 射線検出信号を求めることを特徴とする放射線検出信号処理方法。
[14] 請求項 13に記載の放射線検出信号処理方法において、前記照視野拡大後にお いて放射線検出信号から時間遅れ分を除去する再帰的演算処理を式 A〜C、
X =Υ -∑ N [S ト-Α
k k n=l nk
T = - t τ " ·Β
S =exp(T ) - { a ·〔1 exp(T )〕 ' exp(T ) ' S ト C
nk n n n n n(k-l)
但し, A t:サンプリング時間間隔
k:サンプリングした時系列内の k番目の時点を示す添字 Y : k番目のサンプリング時点で取り出された放射線検出信号
k
X : Yから時間遅れ分を除去した補正後放射線検出信号
k k
X :—時点前の X s :一時点前の s
n(k-l) nk
exp :指数関数
N :インパルス応答を構成する時定数が異なる指数関数の個数 n:インパルス応答を構成する指数関数の中の一つを示す添字 a :指数関数 nの強度
τ :指数関数 ηの減衰時定数
により行うとともに、前記照視野拡大前の照射時であって、かつ前記非照射時の直 前のサンプリング地点を としたときに、前記初期値を式 D、 H、
X = 0, S = γ ·Υ
0 ηθ η 0
y = S V∑ Ν [S
η nk η=1 nk
但し, y n:ある減衰時定数 τ ηの成分 ηの残留割合
Υ
0:前記照視野拡大後における再帰的演算処理の基点時である放射線非 照射時に残留して 、るラグ信号値 (前記非照射時の放射線検出信号)
S 、サンプリング地点 での S
nk η
により行い、前記式 D、 Hにより決定された初期値での条件で、前記式 A〜Cにより 求められた前記インパルス応答に基づ ヽて時間遅れ分を除去して、補正後放射線 検出信号を求めることを特徴とする放射線検出信号処理方法。
PCT/JP2006/302958 2006-02-20 2006-02-20 放射線撮像装置および放射線検出信号処理方法 WO2007096937A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06714098A EP1987771A4 (en) 2006-02-20 2006-02-20 DEVICE FOR TAKING RADIOLOGICAL IMAGES AND METHOD FOR PROCESSING RADIATION DETECTION SIGNALS
JP2008501496A JP4893733B2 (ja) 2006-02-20 2006-02-20 放射線撮像装置および放射線検出信号処理方法
CN2006800390947A CN101291625B (zh) 2006-02-20 2006-02-20 放射线摄像装置以及放射线检测信号处理方法
PCT/JP2006/302958 WO2007096937A1 (ja) 2006-02-20 2006-02-20 放射線撮像装置および放射線検出信号処理方法
US12/280,150 US7760856B2 (en) 2006-02-20 2006-02-20 Radiographic apparatus and radiation detection signal processing method
KR1020087004742A KR100970540B1 (ko) 2006-02-20 2006-02-20 방사선 촬상장치 및 방사선 검출신호처리방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/302958 WO2007096937A1 (ja) 2006-02-20 2006-02-20 放射線撮像装置および放射線検出信号処理方法

Publications (1)

Publication Number Publication Date
WO2007096937A1 true WO2007096937A1 (ja) 2007-08-30

Family

ID=38436998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302958 WO2007096937A1 (ja) 2006-02-20 2006-02-20 放射線撮像装置および放射線検出信号処理方法

Country Status (6)

Country Link
US (1) US7760856B2 (ja)
EP (1) EP1987771A4 (ja)
JP (1) JP4893733B2 (ja)
KR (1) KR100970540B1 (ja)
CN (1) CN101291625B (ja)
WO (1) WO2007096937A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011030778A (ja) * 2009-07-31 2011-02-17 Canon Inc 医用画像撮影装置およびその撮影方法
JP2014083085A (ja) * 2012-10-19 2014-05-12 Toshiba Corp 医用診断装置、x線照射装置およびx線照射方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405093B2 (ja) * 2008-12-05 2014-02-05 富士フイルム株式会社 画像処理装置及び画像処理方法
WO2011148546A1 (ja) * 2010-05-26 2011-12-01 株式会社島津製作所 X線撮影装置
JP5597055B2 (ja) 2010-07-30 2014-10-01 キヤノン株式会社 制御装置及び制御方法
JP6056380B2 (ja) * 2012-10-31 2017-01-11 コニカミノルタ株式会社 放射線画像撮影システム
JP5753551B2 (ja) * 2013-04-25 2015-07-22 日立アロカメディカル株式会社 放射線測定装置
JP6815273B2 (ja) * 2017-05-18 2021-01-20 富士フイルム株式会社 放射線画像撮影装置、画像処理装置、画像処理方法、及び画像処理プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249123A (en) 1991-11-25 1993-09-28 General Electric Company Compensation of computed tomography data for detector afterglow
JPH099153A (ja) 1995-06-07 1997-01-10 E I Du Pont De Nemours & Co 撮像パネルおよびその残留電荷を除去する方法
JP2004242741A (ja) * 2003-02-12 2004-09-02 Shimadzu Corp 放射線撮像装置
JP2005283422A (ja) * 2004-03-30 2005-10-13 Shimadzu Corp 放射線撮像装置
JP2006006387A (ja) * 2004-06-22 2006-01-12 Shimadzu Corp 放射線撮像装置および放射線検出信号処理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517544A (en) * 1991-02-20 1996-05-14 Elscint Ltd. Afterglow artifact reduction
US6643536B2 (en) * 2000-12-29 2003-11-04 Ge Medical Systems Global Technology Company, Llc System and method for synchronization of the acquisition of images with the cardiac cycle for dual energy imaging
JP2003061945A (ja) * 2001-08-30 2003-03-04 Hitachi Medical Corp X線ct装置
JP4178071B2 (ja) * 2003-04-23 2008-11-12 株式会社日立メディコ X線画像診断装置
US6920198B2 (en) * 2003-05-02 2005-07-19 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for processing a fluoroscopic image
JP4411891B2 (ja) * 2003-07-09 2010-02-10 株式会社島津製作所 放射線撮像装置および放射線検出信号処理方法
JP4483223B2 (ja) * 2003-08-08 2010-06-16 株式会社島津製作所 放射線撮像装置および放射線検出信号処理方法
JP2005064706A (ja) * 2003-08-08 2005-03-10 Shimadzu Corp 放射線撮像装置および放射線検出信号処理方法
JP4415635B2 (ja) * 2003-10-08 2010-02-17 株式会社島津製作所 放射線撮像装置
JP4208694B2 (ja) * 2003-10-21 2009-01-14 キヤノン株式会社 X線透視撮影装置
JP4882404B2 (ja) * 2006-02-14 2012-02-22 株式会社島津製作所 放射線撮像装置および放射線検出信号処理方法
KR100987857B1 (ko) * 2006-02-23 2010-10-13 가부시키가이샤 시마즈세이사쿠쇼 방사선 촬상장치 및 방사선 검출신호 처리방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249123A (en) 1991-11-25 1993-09-28 General Electric Company Compensation of computed tomography data for detector afterglow
JPH099153A (ja) 1995-06-07 1997-01-10 E I Du Pont De Nemours & Co 撮像パネルおよびその残留電荷を除去する方法
JP2004242741A (ja) * 2003-02-12 2004-09-02 Shimadzu Corp 放射線撮像装置
JP2005283422A (ja) * 2004-03-30 2005-10-13 Shimadzu Corp 放射線撮像装置
JP2006006387A (ja) * 2004-06-22 2006-01-12 Shimadzu Corp 放射線撮像装置および放射線検出信号処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1987771A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011030778A (ja) * 2009-07-31 2011-02-17 Canon Inc 医用画像撮影装置およびその撮影方法
JP2014083085A (ja) * 2012-10-19 2014-05-12 Toshiba Corp 医用診断装置、x線照射装置およびx線照射方法

Also Published As

Publication number Publication date
JP4893733B2 (ja) 2012-03-07
EP1987771A1 (en) 2008-11-05
KR20080043794A (ko) 2008-05-19
US7760856B2 (en) 2010-07-20
JPWO2007096937A1 (ja) 2009-07-09
CN101291625B (zh) 2011-05-04
EP1987771A4 (en) 2011-02-16
CN101291625A (zh) 2008-10-22
KR100970540B1 (ko) 2010-07-16
US20090034679A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP4882404B2 (ja) 放射線撮像装置および放射線検出信号処理方法
WO2007096937A1 (ja) 放射線撮像装置および放射線検出信号処理方法
JP4464612B2 (ja) 放射線撮像装置
JP5007721B2 (ja) 放射線撮像装置および放射線検出信号処理方法
JP4483223B2 (ja) 放射線撮像装置および放射線検出信号処理方法
KR100650380B1 (ko) 방사선 촬상장치 및 방사선 검출신호 처리방법
JP2009153627A (ja) X線診断装置
WO2003084404A1 (fr) Dispositif de diagnostic a images radiologiques
JP4415635B2 (ja) 放射線撮像装置
JP4581504B2 (ja) 放射線撮像装置および放射線検出信号処理方法
JP4924384B2 (ja) 放射線撮像装置および放射線検出信号処理方法
JP2009054013A (ja) 画像処理装置
JP2005027974A (ja) 放射線撮像装置および放射線検出信号処理方法
JP2003156567A (ja) X線フラットパネル検出器の感度補正方法及びその装置並びにx線検出装置
JPH0787397A (ja) X線透視診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680039094.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008501496

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087004742

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12280150

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006714098

Country of ref document: EP