JP2009054013A - 画像処理装置 - Google Patents

画像処理装置 Download PDF

Info

Publication number
JP2009054013A
JP2009054013A JP2007221194A JP2007221194A JP2009054013A JP 2009054013 A JP2009054013 A JP 2009054013A JP 2007221194 A JP2007221194 A JP 2007221194A JP 2007221194 A JP2007221194 A JP 2007221194A JP 2009054013 A JP2009054013 A JP 2009054013A
Authority
JP
Japan
Prior art keywords
image
processing
image data
edge
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007221194A
Other languages
English (en)
Inventor
Sumiya Nagatsuka
澄也 長束
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2007221194A priority Critical patent/JP2009054013A/ja
Priority to PCT/JP2008/064529 priority patent/WO2009028333A1/ja
Publication of JP2009054013A publication Critical patent/JP2009054013A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】動態画像の表示前に前処理を行うことにより診断用に画質を向上させるとともに、動態画像の画像解析前に前処理を行うことにより画像解析用に画質を向上させる。
【解決手段】本発明に係る診断用コンソール3によれば、撮影装置1により検査対象部位の動態を撮影した複数の画像データに解析処理を施す前に、前処理として粒状抑制処理を施す。また、撮影装置1により検査対象部位の動態を撮影した複数の画像データに基づく動態画像を医師の診断用に表示する前に、前処理として粒状抑制処理を施す。
【選択図】図4

Description

本発明は、画像処理装置に関するものである。
従来のフィルム/スクリーンや輝尽性蛍光体プレートを用いた放射線の静止画撮影及び診断に対し、FPD(flat panel detector)等の半導体イメージセンサを利用して検査対象部位の動態画像を撮影し、診断に応用する試みがなされるようになってきている。具体的には、半導体イメージセンサの画像データの読取・消去の応答性の早さを利用し、半導体イメージセンサの読取・消去のタイミングと合わせて放射源からパルス状の放射線を連続照射し、1秒間に複数回の撮影を行って、検査対象部位の動態を撮影する。撮影により取得された一連の複数枚の画像を順次表示することにより、医師は検査対象部位の一連の動きを認識することが可能となる。
また、動態画像を見やすく表示するための各種技術も提案されている。例えば、特許文献1には、時系列的に連続して取得された動態画像を、時間方向を奥行きに取った「時空間3次元画像」として扱い、その横断像、矢状断像を作成し、観察可能に表示する技術が記載されている。また、特許文献2には、動態画像のフレーム間差分画像を作成し、差分動画像を表示する技術が記載されている。
特開2004−305487号公報 特開2004−312434号公報
ところで、動態撮影時には複数回の放射線照射を行うため、静止画像の撮影に比べて被検者の被曝量が大きくなってしまう。また、被検者の被曝量は1秒間における撮影画像数が増えるほど大きくなってしまう。そこで、被検者の被曝線量を低減するため、動態撮影時には放射線照射線量を静止画像と比べて低く設定される。
しかしながら、被検者の被曝線量低減のため1回毎の放射線量を低減すると、撮影画像のノイズ成分が増加する。1秒間における撮影画像数が増えるほど1回当たりに照射される放射線量は小さくなるので放射線量が不足し、画像解析や診断に十分な画質の画像を得られなくなる。
上述の特許文献1、2においては、動態撮影により得られた動態画像に画像処理を施して診断しやすく表示する技術は提案されているが、画像処理を行って表示する画像の画質を向上させるための前処理については記載されておらず、放射線量が不足した画像をそのまま解析したり表示したりしていた。
本発明の課題は、動態画像の表示前に前処理を行うことにより診断用に画質を向上させるとともに、動態画像の画像解析前に前処理を行うことにより画像解析用に画質を向上させることにある。
上記課題を解決するため、請求項1に記載の発明は、
撮影により取得された人体の検査対象部位の動態を示す複数の画像データに画像処理を施す画像処理装置であって、
前記複数の画像データに基づいて動態画像を表示する表示手段と、
前記複数の画像データに解析処理を施す解析処理手段と、
前記表示手段による動態画像の表示前及び前記解析処理手段による解析前に前記複数の画像データに粒状抑制処理を施す前処理手段と、
を備える。
請求項2に記載の発明は、請求項1に記載の発明において、
前記前処理手段は、前記表示手段による動態画像の表示前と前記解析処理手段による解析前とで異なる処理条件で前記複数の画像データに粒状抑制処理を施す。
請求項3に記載の発明は、請求項2に記載の発明において、
前記粒状抑制処理は、前記画像データにおけるエッジ成分及びノイズ成分を抽出し、前記エッジ成分を強調するエッジ強調処理と前記ノイズ成分を減少させるノイズ抑制処理を含むものであり、
前記前処理手段は、前記表示手段による動態画像の表示前においては、前記画像データにおける所定の空間周波数以上の高周波数成分について、前記解析処理手段による解析前と比べてエッジ強調を強める処理条件及びノイズ抑制を強める処理条件で粒状抑制処理を施す。
請求項4に記載の発明は、請求項1又は2に記載の発明において、
前記粒状抑制処理は、前記画像データにおけるエッジ成分及びノイズ成分を抽出し、前記エッジ成分を強調するエッジ強調処理と前記ノイズ成分を減少させるノイズ抑制処理を含むものであり、
前記複数の画像データには、当該複数の画像データを取得した動態撮影時の単位時間当たりの撮影画像数の情報が付帯されており、
前記前処理手段は、前記動態撮影時の単位時間当たりの撮影画像数が大きいほどノイズ抑制を強める処理条件で前記ノイズ抑制処理を施す。
請求項1に記載の発明によれば、動態画像の表示前に前処理として画像データに粒状抑制処理を行うことにより診断用に画質を向上させるとともに、動態画像の画像解析前に画像データに前処理として粒状抑制処理を行うことにより画像解析用に画質を向上させることができる。
請求項2に記載の発明によれば、動態画像の表示前と解析前とで異なる処理条件で粒状抑制処理を施すので、診断のための動態画像の表示前には診断に応じた画質の画像データを得ることができ、解析処理前には解析に応じた画質の画像データを得ることができる。
請求項3に記載の発明によれば、動態画像の表示前には、解析前と比べて高周波成分のエッジの視認性を高めることが可能となる。
請求項4に記載の発明によれば、放射線量の不足しがちな動態撮影時の単位時間当たりの撮影画像数が大きい動態画像ほど、ノイズ成分の抑制処理を強めることが可能となる。
以下、本発明に係る一実施形態について説明する。ただし、本発明は図示例のものに限定されるものではない。
〔放射線画像撮影システム100の構成 〕
まず、構成を説明する。
図1に、本実施の形態における放射線画像撮影システム100の全体構成を示す。
図1に示すように、放射線画像撮影システム100は、撮影装置1と、撮影用コンソール2とが通信ケーブル等により接続され、撮影用コンソール2と、診断用コンソール3とがLAN(Local Area Network)等の通信ネットワークNを介して接続されて構成されている。
〔撮影装置1の構成〕
撮影装置1は、例えば、呼吸に伴う肺の膨張及び収縮の形態変化、心臓の拍動等の、周期性(サイクル)をもつ人体の動態を撮影する装置である。動態撮影は、検査対象部位に対し、放射線を連続照射して複数の画像を取得(即ち、連続撮影)することにより行う。この連続撮影により得られた一連の画像を動態画像と呼ぶ。また、動態画像を構成する複数の画像のそれぞれをフレーム画像と呼ぶ。
撮影装置1は、図1に示すように、放射線源11、放射線照射制御装置12、放射線検出部13、読取制御装置14、サイクル検出センサ15、サイクル検出装置16等を備えて構成されている。
放射線源11は、放射線照射制御装置12の制御に従って、被写体Mに対し放射線(X線)を照射する。
放射線照射制御装置12は、撮影用コンソール2に接続されており、撮影用コンソール2から入力された放射線照射条件に基づいて放射線源11を制御して放射線撮影を行う。撮影用コンソール2から入力される放射線照射条件は、例えば、連続照射時のパルスレート、パルス幅、パルス間隔、撮影開始/終了タイミング、X線管電流の値、X線管電圧の値、フィルタ種等である。パルスレートは、1秒あたりの放射線照射回数であり、後述するフレームレートと一致している。パルス幅は、放射線照射1回当たりの放射線照射時間である。パルス間隔は、連続撮影において、1回の放射線照射開始から次の放射線照射開始までの時間であり、後述するフレーム間隔と一致している。
放射線検出部13は、FPD等の半導体イメージセンサにより構成される。FPDは、例えば、ガラス基板等を有しており、基板上の所定位置に、放射線源11から照射されて少なくとも被写体Mを透過した放射線をその強度に応じて検出し、検出した放射線を電気信号に変換して蓄積する複数の画素がマトリックス状に配列されている。各画素は、例えばTFT(Thin Film Transistor)等のスイッチング部により構成されている。
読取制御装置14は、撮影用コンソール2に接続されている。読取制御装置14は、撮影用コンソール2から入力された画像読取条件に基づいて放射線検出部13の各画素のスイッチング部を制御して、当該各画素に蓄積された電気信号の読み取りをスイッチングしていき、放射線検出部13に蓄積された電気信号を読み取ることにより、画像データを取得する。そして、読取制御装置14は、取得した画像データを撮影用コンソール2に出力する。画像読取条件は、例えば、フレームレート、フレーム間隔、画素サイズ、画像サイズ(マトリックスサイズ)等である。フレームレートは、1秒あたりに取得するフレーム画像数であり、パルスレートと一致している。フレーム間隔は、連続撮影において、1回のフレーム画像の取得動作開始から次のフレーム画像の取得動作開始までの時間であり、パルス間隔と一致している。
ここで、放射線照射制御装置12と読取制御装置14は互いに接続され、互いに同期信号をやりとりして放射線照射動作と画像の読み取りの動作を同調させるようになっている。
サイクル検出センサ15は、被写体Mの検査対象部位の状態を検出して検出情報をサイクル検出装置16に出力する。サイクル検出センサ15としては、例えば、検査対象部位が肺(喚気)の場合、呼吸モニタベルト、CCD(Charge Coupled Device)カメラ、光学カメラ、スパイロメータ等を適用することができる。また、検査対象部位が心臓(血流)である場合、心電計等を適用することができる。
サイクル検出装置16は、サイクル検出センサ15により入力された検出情報に基づいて、検査対象部位の動態のサイクル数、及び現在の検査対象部位の状態が1サイクル中のどの状態であるかを検出し、検出結果(サイクル情報)を撮影用コンソール2の制御部21に出力する。ここで、サイクル数とは、より詳しくは、単位時間当たりのサイクル数のことであり、例えば、検査対象部位が肺(喚気)の場合は呼吸数(回/秒)、心臓(血流)、心臓の場合は心拍数(回/秒)である。
サイクル検出装置16は、例えば、検査対象部位が肺(喚気)の場合は、サイクル検出センサ15(呼吸モニタベルト、CCDカメラ、光学カメラ、スパイロメータ等)により肺の状態が吸気から呼気への変換点であることを示す検出情報が入力されたタイミングを1サイクルの基点とし、次にこの状態が検出されるタイミングまでの間を1サイクルとして認識する。
また、サイクル検出装置16は、検査対象部位が心臓(血流を含む)の場合は、サイクル検出センサ15(心電計等)によりR波が入力されたタイミングを基点とし、次にR波が検出されるタイミングまでの間を1サイクルとして認識する。
そして、1秒当たりに認識したサイクル数をサイクル数として検出する。
〔撮影用コンソール2の構成〕
撮影用コンソール2は、放射線照射条件や画像読取条件を撮影装置1に出力して撮影装置1による放射線撮影及び放射線画像の読み取り動作を制御するとともに、撮影装置1により取得された画像データを撮影技師によるポジショニングの確認や診断に適した画像であるか否かを表示する。
撮影用コンソール2は、図1に示すように、制御部21、記憶部22、操作部23、表示部24、通信部25を備えて構成され、各部はバス26により接続されている。
制御部21は、CPU(Central Processing Unit)、RAM(Random Access Memory)等により構成される。制御部21のCPUは、操作部23の操作に応じて、記憶部22に記憶されているシステムプログラムや各種処理プログラムを読み出してRAM内に展開し、展開されたプログラムに従って撮影用コンソール2各部の動作や、撮影装置1の放射線照射動作及び読み取り動作を集中制御する。また、制御部21には、図示しないタイマが接続されている。
記憶部22は、不揮発性の半導体メモリやハードディスク等により構成される。記憶部22は、制御部21で実行される各種プログラムやプログラムにより処理の実行に必要なパラメータ、或いは処理結果等のデータを記憶する。例えば、記憶部22は、図2に示す撮影フローの制御を行うための撮影制御処理プログラムを記憶している。また、記憶部22は、検査対象部位に対応付けて放射線照射条件及び画像読取条件を記憶している。各種プログラムは、読取可能なプログラムコードの形態で格納され、制御部21は、当該プログラムコードに従った動作を逐次実行する。
操作部23は、カーソルキー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスを備えて構成され、キーボードに対するキー操作やマウス操作により入力された指示信号を制御部21に出力する。また、操作部23は、表示部24の表示画面にタッチパネルを備えても良く、この場合、タッチパネルを介して入力された指示信号を制御部21に出力する。
表示部24は、LCD(Liquid Crystal Display)やCRT(Cathode Ray Tube)等のモニタにより構成され、制御部21から入力される表示信号の指示に従って、操作部23からの入力指示やデータ等を表示する。
通信部25は、LANアダプタやルータやTA(Terminal Adapter)等を備え、通信ネットワークNに接続された各装置との間のデータ送受信を制御する。
〔診断用コンソール3の構成〕
診断用コンソール3は、撮影用コンソールから送信された画像データを解析し、解析結果を表示するとともに、送信された画像データに基づいて動態画像を表示して医師が読影診断するための画像処理装置である。
診断用コンソール3は、図1に示すように、制御部31、記憶部32、操作部33、表示部34、通信部35を備えて構成され、各部はバス36により接続されている。
制御部31は、CPU、RAM等により構成される。制御部31のCPUは、操作部33の操作に応じて、記憶部32に記憶されているシステムプログラムや、各種処理プログラムを読み出してRAM内に展開し、展開されたプログラムに従って、後述する画像解析処理、画像表示処理を始めとする各種処理を実行し、診断用コンソール3各部の動作を集中制御する。
記憶部32は、不揮発性の半導体メモリやハードディスク等により構成される。記憶部32は、制御部31で実行される画像解析処理プログラムや画像表示処理プログラムを始めとする各種プログラムやプログラムにより処理の実行に必要なパラメータ、或いは処理結果等のデータを記憶する。これらの各種プログラムは、読取可能なプログラムコードの形態で格納され、制御部31は、当該プログラムコードに従った動作を逐次実行する。
操作部33は、カーソルキー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスを備えて構成され、キーボードに対するキー操作やマウス操作により入力された指示信号を制御部31に出力する。また、操作部33は、表示部34の表示画面にタッチパネルを備えても良く、この場合、タッチパネルを介して入力された指示信号を制御部31に出力する。
表示部34は、LCDやCRT等のモニタにより構成され、制御部31から入力される表示信号の指示に従って、操作部33からの入力指示やデータ等を表示する。
通信部35は、LANアダプタやルータやTA等を備え、通信ネットワークNに接続された各装置との間のデータ送受信を制御する。
〔放射線画像撮影システム100の動作〕
次に、上記放射線画像撮影システム100における動作について説明する。
まず、放射線画像撮影システム100における撮影の流れについて説明する。
図2に、撮影装置1及び撮影用コンソール2において実行される撮影フローを示す。
まず、撮影技師により撮影用コンソール2の操作部23が操作され、撮影対象(被写体M)の患者情報の入力、検査対象部位や撮影方向等の選択が行われる(ステップS1)。図3に、検査対象部位選択画面241の一例を示す。当該画面は、撮影技師が操作部23を介して検査対象部位を選択するための画面である。検査対象部位選択画面241は、撮影対象として選択可能な複数の部位名が表示された部位ボタンB1〜Bnを有する(nは整数)。
検査対象部位が選択されると、撮影用コンソール2の制御部21により、選択された検査対象部位に対応する放射線照射条件が読み出されて放射線照射制御装置12に設定されるとともに、選択された検査対象部位に対応する画像読取条件が記憶部22から読み出されて読取制御装置14に設定される(ステップS2)。
次いで、操作部23の操作による放射線照射の指示が待機され、操作部23により放射線照射指示が入力されると(ステップS3;YES)、制御部21により、サイクル検出装置16にサイクル検出開始の指示が出力され、サイクル検出センサ15及びサイクル検出装置16による被写体Mの検査対象部位の動態のサイクル検出が開始されるとともに(ステップS4)、放射線照射制御装置12及び読取制御装置14に撮影開始指示が出力され、撮影装置1によって動態撮影が行われる。即ち、放射線照射制御装置12に設定されたパルス間隔で放射線源11により放射線が照射され、放射線検出部13により画像データが取得される(ステップS5)。サイクル検出装置16により予め定められた動態サイクルが検出されると、制御部21により放射線照射制御装置12及び読取制御装置14に撮影終了の指示が出力され、撮影動作が停止される。
撮影により取得された画像データは順次撮影用コンソール2に入力され、制御部21により、撮影順を示す番号と対応付けて記憶部22に記憶されるとともに(ステップS6)、表示部24に表示される(ステップS7)。撮影技師は、表示された一連の動態画像によりポジショニング等を確認し、撮影により診断に適した画像が取得された(撮影OK)か、再撮影が必要(撮影NG)を判断する。そして、操作部23を操作して、判断結果を入力する。
操作部23の所定の操作により撮影OKを示す判断結果が入力されると(ステップS8;YES)、制御部21により、動態撮影で取得された一連の画像データのそれぞれに、一連の撮影を識別するための識別IDや、患者情報、検査対象部位、放射線照射条件、画像読取条件、撮影順を示す番号等の情報が付帯され、通信部25を介して診断用コンソール3に送信される(ステップS9)。そして、本処理は終了する。一方、操作部23の所定の操作により撮影NGを示す判断結果が入力されると(ステップS8;NO)、制御部21により、記憶部22に記憶された一連の画像データが削除され(ステップS10)、本処理は終了する。
診断用コンソール3においては、動態撮影により取得された一連の画像データが通信部35により受信されると、制御部31により、記憶部32に受信された画像データが記憶される。
次に、診断用コンソール3における動作について説明する。
診断用コンソール3においては、操作部33により入力される指示に応じて、動態撮影により取得された動態画像の各画像データに対し、画像解析処理、画像表示処理が施される。
〔画像解析処理〕
図4に、診断用コンソール3の制御部31により実行される画像解析処理のフローを示す。当該処理は、操作部33により処理対象の動態画像の識別IDが入力され、画像解析処理の実行が指示された際に実行される。
まず、入力された識別IDが付与されている一連の画像データ(処理対象の画像データ)が記憶部32から読み出され(ステップS21)、読み出された画像データに対し、前処理(粒状抑制処理)が施される(ステップS22)。前処理については詳細を後述する。前処理が終了すると、検査対象部位に応じて予め定められた解析処理プログラムが読み出され、前処理済みの画像データに解析処理が施され、解析結果が表示部34に表示される(ステップS23)。
ここでいう解析処理とは、動態画像における検査対象部位の所定の構造物の位置変化、形状変化等を解析する処理のことである。
位置変化の解析としては、例えば、一連のフレーム画像のそれぞれから所定の構造物の画像領域の位置を認識し、その構造物の軌跡、移動速度の変化率を求めて表示する。
また、形状変化の解析としては、例えば、一連のフレーム画像のそれぞれから所定の構造物の位置を認識し、その構造物の輪郭をカラーにして一連のフレーム画像を表示することで、輪郭/周囲長/面積の変化を医師が視認可能に表示する。或るいは、各フレーム画像の画像データにおける所定の構造物の画像領域の画素数をカウントして面積を求め、求めた面積が最大となったときの画像データと最小となったときの画像データにおける面積比を求めて表示してもよい。また、検査対象部位が肺(喚気)であれば、求めた面積比から喚気率を算出して表示してもよい。
〔画像表示処理〕
図5に、診断用コンソール3の制御部31により実行される画像表示処理のフローを示す。当該処理は、操作部33により処理対象の動態画像の識別IDが入力され、画像表示処理の実行が指示された際に実行される。
まず、入力された識別IDが付与されている一連の画像データ(処理対象の画像データ)が記憶部32から読み出され(ステップS31)、読み出された画像データに対し、前処理(粒状抑制処理)が施される(ステップS32)。前処理については詳細を後述する。前処理が終了すると、前処理済みの画像データに基づき動態画像が表示部34に施される(ステップS33)。
上記のように、解析処理を行う場合、まず、検査対象部位に応じて所定の構造物の画像領域が認識され、認識された構造物の輪郭や面積を求めて解析が行われる。そこで、前処理(粒状抑制処理)によって画像データにおけるエッジ成分を強調することで、解析処理が行いやすくなる。
一方、画像表示処理は、医師が動態画像を細部まで観察して画像診断を行うために行われる。そこで、前処理(粒状抑制処理)によって画像データの高周波成分のエッジを強調するとともに、高周波成分のノイズを抑制することによって検査対象部位の微細な構造の描画性能を高めることで、診断性能を高めることができる。
〔前処理〕
ここで、図4の画像解析処理のステップS22、及び図5の画像表示処理のステップS32において実行される前処理について詳述する。
前処理では、ステップS21又はステップS31で読み出された一連の各画像データ(原画像信号Sinとする)に対し、多重解像度分解処理→エッジ情報取得処理→ノイズ情報取得処理→画素値変換処理→差分処理→復元処理を施して、前処理済み画像データ(画像信号Soutとする)を取得する。
画像解析処理のステップS22で行われる前処理と、画像表示処理のステップS32で行われる前処理では、後述する差分処理において使用するエッジ調整係数βEk及びノイズ調整係数βNkが異なる。このように、解析処理前に行う前処理と画像表示前に行う前処理とで異なるエッジ調整係数βEk及びノイズ調整係数βNkを用いることで、それぞれの後段の処理に応じた画像データを取得する。
図6に、多重解像度分解処理〜差分処理において実現される処理機能のブロック図を示す。
図6に示す各機能は、制御部31のCPUと、記憶部32に記憶されている各機能を実現するためのプログラムとの協働によるソフトウエア処理により実現されることとするが、専用のハードウエアにより実現されるようにしてもよい。
本実施の形態においては、原画像信号Sinをラプラシアンピラミッド法により多重解像変換して互いに異なる複数の空間周波数(以下、単に周波数とする)帯域の画像信号成分に分解するものとする。このラプラシアンピラミッド法によれば迅速な処理が可能となるが、ウェーブレット変換等、他の手法を用いることも可能である。
(多重解像度分解処理)
まず、原画像信号Sinがローパスフィルタを構成するフィルタリング手段121によりフィルタリングされる。
このようなローパスフィルタによりフィルタリングされた原画像信号Sinは1画素おきにサンプリング(ダウンサンプリング)されることで、非鮮鋭画像信号g1が生成される。この非鮮鋭画像信号g1は、原画像の1/4の大きさになっている。
ついで、補間手段122において、この非鮮鋭画像信号g1のサンプリングされた間隔
に値が0の画素が補間される。この補間は、非鮮鋭画像信号g1の列毎および1行ごとに
値が0の行および列を挿入することにより行う。なお、このように補間された非鮮鋭画像信号は、1画素おきに値が0の画素が挿入されているため、信号値の変化が滑らかではない状態になっている。そして、このような補間が行われた後に、補間手段122に含まれるローパスフィルタにおいて、再度フィルタリングを施し、非鮮鋭画像信号g1′を得る
。この非鮮鋭画像信号g1′は、前記した補間直後の非鮮鋭画像信号に比べると信号値の
変化が滑らかな状態になっている。
この非鮮鋭画像信号g1′は、画像を1/4にした後に1画素おきに0の補間とフィル
タリングとをすることにより、原画像信号Sinと原画像信号と同じ大きさとなり、原画像信号Sinの空間周波数の半分より高い周波数が消えた状態になっている。
さらに、前述した非鮮鋭画像信号g1が、フィルタリング手段121によってフィルタ
リング処理される。これにより非鮮鋭画像信号g1は、さらに1画素おきにサンプリング
されて1/4(もとの1/16)の非鮮鋭画像信号g2に変換される。そして、この非鮮
鋭画像信号g2に対し、補間手段122によって同様な処理が施されて非鮮鋭画像信号g2′が生成される。
このような処理を順次繰り返すことで、非鮮鋭画像信号gk (ここで、k=1〜L)、
非鮮鋭画像信号gk′を得ることができる。非鮮鋭画像信号g1′、g2′、g3′、・・・は、周波数特性の異なる複数の周波数帯域の非鮮鋭画像信号となっている。
(エッジ情報取得処理)
多重解像度分解処理により複数の周波数帯域の非鮮鋭画像信号gk′(ここで、k=1〜L)が得られると、複数の周波数帯域の非鮮鋭画像信号gk′のうち、何れかの基準とする第n周波数帯域の非鮮鋭画像信号gn′においてエッジ情報取得処理が行われる。
エッジ情報の取得は、複数の周波数帯域の非鮮鋭画像信号gk′のうち、何れかの基準
とする第n周波数帯域の非鮮鋭画像信号gn′において行われる。
エッジ情報の取得帯域である第n周波数帯域は、画素サイズ0.5mm〜1.0mmピッチ程度の最高周波数帯域でない周波数帯域が好ましく、例えば、画素サイズ0.175ピッチの画像でダウンサンプリング率が1/2の場合、第3周波数帯域がもっとも好ましい。これは、30step/1〜2mm程度のエッジ信号にGaussianノイズを付加した擬似微小エッジ像に対して0.5mm〜1.0mmピッチの解像度でノイズ・コントラスト比が最も高くなり、エッジが認識しやすいためである。エッジ情報には、エッジ成分情報及びエッジ方向情報が含まれ、エッジ情報取得処理は、エッジ成分情報取得処理と、エッジ方向情報取得処理により構成される。
・エッジ成分情報取得処理
まず、非鮮鋭画像信号gn-1′と非鮮鋭画像信号gn′の差分画像信号Mnが求められる
。この差分画像信号Mnに図7に示すエッジ成分情報取得処理を施すことにより、エッジ成分情報が取得される。
以下、図7を参照してエッジ成分情報取得処理について説明する。
まず、差分画像信号Mnに注目画素が設定される(ステップS41)。次いで、当該注
目画素の信号値が予め定められた閾値Bh(Bhは正の信号値)以上であるか否かが判断され、閾値Bh以上であると判断された場合(ステップS42;YES)、当該注目画素が正のエッジ成分であると判別される(ステップS43)。閾値Bh以上ではない場合(ステップS42;NO)、当該注目画素の信号値が予め定められた閾値Bl(Blは負の信号値)以下であるか否かが判断され、閾値Bl以下であると判断された場合(ステップS44;YES)、当該注目画素が負のエッジ成分であると判別される(ステップS45)。
一方、当該注目画素の信号値が予め定められた閾値Bh以上でも閾値Bl以下でもない場合(ステップS44;NO)、当該注目画素が正・負のエッジ成分の画素に共に隣接しているか否かが判断され、隣接している場合(ステップS46;YES)、当該注目画素がエッジ変局点であると判断される(ステップS47)。エッジ変局点とは、エッジ成分の正負の変わり目となる信号値0付近の点であり、エッジの基準となる点である。
一方、注目画素が正・負のエッジ成分の画素に共に隣接していないと判断された場合(ステップS46;NO)、当該注目画素が非エッジ成分であると判断される(ステップS48)。
当該注目画素の成分が判別されると、判別結果(正のエッジ、負のエッジ、エッジ変局点、非エッジの何れか)を示す情報と画素位置とが対応付けてRAMに記憶される(ステップS49)。上述のステップS41〜S49が繰り返し実行され、全ての画素についての成分の判別が終了すると(ステップS50;YES)、本処理は終了する。
図8(a)は、差分画像信号Mnの或る一列分の画像信号を模式的に示す図である。図
8(b)は、図8(a)の差分画像信号Mnに上記エッジ成分情報取得処理を施した場合
のエッジ成分及び非エッジ成分の分類を模式的に示す図である。上記処理により正のエッジ、負のエッジ、エッジ変局点と判断された画素がエッジ成分として抽出される。
・エッジ方向情報取得処理
エッジ方向情報Edは、非鮮鋭画像信号gn′にソベル(Sobel)フィルタ、プレヴィッ
ト(Prewitt)フィルタ等をかけることにより取得される。
(ノイズ情報取得処理)
ノイズ情報は、例えば、最高周波数帯域(第1周波数帯域)における差分画像信号M1及び中間周波数帯域(例えば、第n周波数帯域とする)における差分画像信号Mnでの局所的な分散値、エントロピー値情報及びその画素位置情報から取得することができる。
画像のエントロピー値Seは、ある画素が画素値z を取る確率 P(z) とその画像の階調
数Z を用いて下記の式(数1)により求めることができる(Wiley-Interscience 社刊「Digital Image Processing 3rd Edition」参照)。
Figure 2009054013
中間周波数帯域でエントロピー値が所定の値より低く、最高周波数帯域でエントロピーが大きい場合、その画素位置ではノイズ成分が支配的であり、その画素位置をノイズ成分とすることができる。
(画素値変換処理)
エッジ成分情報、エッジ方向情報、ノイズ情報が取得されると、取得された情報に基づいて、原画像信号Sin及び各周波数帯域の非鮮鋭画像信号gk(k=1〜k=L-1)に画素値変換処理が施される。具体的には、原画像信号Sin及び各周波数帯域の非鮮鋭画像信号gk(k=1〜k=L-1)に対して、エッジ平滑化処理(図6にP1で示す)、ノイズ平滑化処理(図6にP2で示す)がそれぞれ別個に施される。
平滑化に用いるフィルタは多重解像度変換処理で用いるダウンサンプリングフィルタかそれに近い周波数応答のローパスフィルタであることが望ましい。図9は、多重解像度分解のダウンサンプリングをバイノミアルフィルタリング(binomial Filtering)を8回行うラプラシアンピラミッド法で行った場合に用いる平滑化フィルタ係数(5tap)の一例
である。例えば、タップ数が5tapである場合、フィルタ係数F(x)は、以下の関数(
数2)(数3)で表されることが望ましい。
Figure 2009054013
Figure 2009054013
以下、エッジ平滑化処理、ノイズ平滑化処理についてそれぞれ説明する。
・エッジ平滑化処理
エッジ平滑化処理においては、原画像信号Sin及び各周波数帯域の非鮮鋭画像信号gk(k=1〜k=L-1)のそれぞれの、上述のエッジ情報取得処理においてエッジ成分と判別
された画素について、平滑化フィルタ(例えば、図9(b)参照)によりエッジ勾配方向のみに一次元的な平滑化処理を施す。これにより、主にノイズ成分と1レベル下の周波数帯域の周波数成分からなる画像信号が得られる。
・ノイズ平滑化処理
ノイズ平滑化処理においては、原画像信号Sin及び各周波数帯域の非鮮鋭画像信号gk
(k=1〜k=L-1)のそれぞれの、上述のエッジ情報取得処理において非エッジ成分と判
別された画素について、平滑化フィルタ(例えば、図9(a)参照)により二次元的な平滑化処理を行い、エッジ成分と判別された画素については、平滑化フィルタ(例えば、図9(b)参照)によりエッジ勾配方向以外の方向又はエッジ勾配方向と垂直な方向のみに一次元的な平滑化処理を施す。これにより、主にエッジ成分と1レベル下の周波数帯域の周波数成分からなる画像信号のみが得られる。
(差分処理)
原画像信号Sin及び各周波数帯域の非鮮鋭画像信号gk(k=1〜k=L-1)にエッジ平滑化処理が施されると、まず、図6に示す減算器128において、エッジ平滑化処理済みの原画像信号SN′から非鮮鋭画像信号g1′の減算を行う。この減算は、原画像信号SN′と非鮮鋭画像信号g1′との対応する画素の間で実行される。そして、減算により得られた主にノイズ成分からなる差分信号に所定のノイズ調整係数βN1(0>βNk(k=1〜k=L-1)>−1)が掛けられ、ノイズ成分が減弱調整された差分画像信号N0が得られる。
同様に、減算器129により、ノイズ平滑化処理済みの原画像信号SE′から非鮮鋭画像信号g1′の減算を行う。この減算は、ノイズ平滑化処理済みの原画像信号SE′と非鮮鋭画像信号g1′との対応する画素の間で実行される。そして、減算により得られた主にエッジ成分からなる差分信号に、所定のエッジ調整係数βE1(βEk(k=1〜k=L-1)>1)が掛けられ、エッジ成分が強調調整された差分画像信号E0が得られる。この差分画像信号N0と差分画像画像信号E0を加算器130により加算することにより、差分画像信号B0が得られる。
また、減算器128により、エッジ平滑化処理済みの非鮮鋭画像信号gN1′から非鮮鋭画像信号g2′の減算を行う。この減算は、非鮮鋭画像信号gN1′と非鮮鋭画像信号g2′との対応する画素の間で実行される。そして、減算により得られた主にノイズ成分からなる差分信号に、所定のノイズ調整係数βN2が掛けられ、ノイズ成分が減弱調整された差分画像信号N1が得られる。
同様に、減算器129により、ノイズ平滑化処理済みの非鮮鋭画像信号gE1′から非鮮鋭画像信号g2′の減算を行う。この減算は、非鮮鋭画像信号gE1′と非鮮鋭画像信号g2′との対応する画素の間で実行される。そして、減算により得られた主にエッジ成分からなる差分信号に、所定のエッジ調整係数βE1が掛けられ、エッジ成分が強調調整された差分画像信号E1が得られる。この差分画像信号N1と差分画像信号E1を加算器130により加算することにより、差分画像信号B1が得られる。
このような処理を順次繰り返すことで、差分画像信号Bk-1(k=1〜k=L)を得る。得
られた差分画像信号Bk-1は、RAMに格納される。
ここで、上述したように、画像解析処理における前処理と画像表示処理における前処理とでは異なるエッジ調整係数βEk(k=1〜k=L-1)、ノイズ調整係数βNk(k=1〜k=L-1)が使用される。それぞれで使用されるエッジ調整係数βEk(k=1〜k=L-1)、ノイズ調整係数βNk(k=1〜k=L-1)は、処理(画像解析処理、画像表示処理)及びフレームレートの組み合わせ毎に規定されており、これらの各係数は、処理名及びフレームレートの情報と対応付けて記憶部32に予め記憶されている。そして、差分処理時に実行中の処理に応じた各係数が読み出されて設定される。エッジ調整係数βEk(k=1〜k=L-1)は、大きいほどエッジ強調処理を強めることができる。ノイズ調整係数βNk(k=1〜k=L-1)は、小さい(絶対値が大きい)ほどノイズ抑制処理を強めることができる。
画像解析処理における前処理で使用されるエッジ調整係数βEk(k=1〜k=L-1)は、下記のとおりである。
・画像データにおける解析対象構造物の周波数帯域を第n周波数帯域とすると、
エッジ調整係数:βEn>βE1〜βEn-1、βEn>βEn+1〜βEL-1
即ち、解析対象構造物の周波数帯域のエッジ調整係数は、それ以外の周波数帯域のエッジ調整係数より値の大きいものが使用される。これにより、解析対象構造物のエッジを強調することができる。
なお、解析対象構造物の周波数帯域は、検査対象部位毎に予め定められており、記憶部32に検査対象部位の部位名と周波数帯域番号(最高周波数帯域を1とした番号)が対応付けて記憶されている。
また、画像解析処理における前処理で使用されるノイズ調整係数βNk(k=1〜k=L-1)は、下記のとおりである。
・画像データにおける解析対象構造物の周波数帯域を第n周波数帯域とすると、
ノイズ調整係数:βNn+1〜βNL> βN1〜βNn
即ち、解析対象構造物の周波数帯域及びそれより高い周波数帯域に対して、解析対象構造物の周波数帯域より低い周波数帯域よりノイズ抑制の度合いを強めるノイズ調整係数が使用される。これにより、主に高周波成分であるノイズ成分を抑制することができる。なお、ノイズ成分は主に高周波成分であるので、低周波帯域から強いノイズ抑制処理をかけると画像がぼけてしまう。そこで、解析対象構造物の周波数帯域にはノイズ調整係数をかけないようにしてもよい。
画像表示処理における前処理で使用されるエッジ調整係数βEk(k=1〜k=L-1)、ノイズ調整係数βNk(k=1〜k=L-1)は、下記のとおりである。
・画像表示処理におけるβE1〜βEn>画像解析処理における前処理で使用されるエッジ調整係数βE1〜βEn
・画像解析処理におけるノイズ調整係数βN1〜βNn>画像表示処理におけるノイズ調整係数βN1〜βNn
即ち、画像表示処理においては、高周波帯域において、画像解析処理で用いたエッジ調整係数よりも大きいエッジ調整係数が使用されるとともに、画像解析処理で用いたノイズ調整係数よりも小さいノイズ調整係数が使用される。これにより、画像表示処理の前処理においては高周波成分に対するエッジ強調処理及びノイズ抑制処理を画像解析処理の前処理よりも強めることができ、画像表示処理の前処理後の画像データについて画像解析処理の前処理後の画像データに比べて高周波成分のエッジの視認性を高めることができる。
一般的に、フレームレートを高く設定するほど被写体Mの被曝量低減のために1フレーム(1撮影)あたりの放射線照射量を下げるので、フレームレートが高いほど、1枚のフレーム画像毎の粒状度が高くなる。そこで、フレームレートが高くなるほどノイズ抑制の度合いを強めるノイズ調整係数が使用され、フレームレートが低くなるほどノイズ抑制の度合いを弱めるノイズ調整係数が使用され、画像のぼけが発生しないようにする。
(復元処理)
多重解像度分解処理〜差分処理が終了すると、取得された差分画像信号Bk-1(k=1〜k=L)を原画像信号Sinに加算して逆変換し、画像信号Soutを出力する復元処理が実行される。
図10に、復元処理において実現される処理機能のブロック図を示す。
図10に示す各処理機能は、制御部31のCPUと、記憶部32に記憶されている各処理機能を実現するためのプログラムとの協働によるソフトウエア処理により実現されることとするが、専用のハードウエアにより実現されるようにしてもよい。
まず、差分画像信号BL-1が補間手段131によって各画素の間が補間されて4倍の大
きさの画像信号BL-1′とされる。次に、加算器132で、補間された画像信号BL-1′と、1段階周波数帯域の高い非鮮鋭画像信号BL-2とが対応する画素同士で加算され、加算画像信号(BL-1′+BL-2)が得られる。
次いで、この加算画像信号(BL-1′+BL-2)が、補間手段131によって各画素の間が補間されてさらに4倍の大きさの画像BL-2′とされる。つぎに、加算器132で、補
間された画像BL-2′と、1段周波数帯域の高い非鮮鋭画像信号BL-3とが対応する画素同士で加算され、加算画像信号(BL-2′+BL-3)が得られる。
以上の処理を繰り返す。そしてこの処理をより高周波の差分画像信号に対して順次行い、最終的に加算器132において補間された画像信号B1′と最高解像度の差分画像信号B0とを加算したものを加算器133で原画像信号Sinと加算して処理済み画像信号Soutを得る。
以上説明したように、診断用コンソール3によれば、撮影装置1により検査対象部位の動態を撮影した複数の画像データに解析処理を施す前に、前処理として粒状抑制処理を施す。また、撮影装置1により検査対象部位の動態を撮影した複数の画像データに基づく動態画像を医師の診断用に表示する前に、前処理として粒状抑制処理を施す。
このように、動態画像の表示前に前処理として画像データに粒状抑制処理を行うことにより診断用に画質を向上させることができ、動態画像の画像解析前に画像データに前処理として粒状抑制処理を行うことにより画像解析用に画質を向上させることができる。
また、診断用コンソール3によれば、動態画像の画像表示処理前と画像解析処理前とで異なるエッジ調整係数及びノイズ調整係数を用いて粒状抑制処理を施すので、画像解析と診断のそれぞれに応じた画質の画像データを得ることができる。特に、画像表示処理の前処理においては、画像データから抽出した高周波成分について画像解析処理前の前処理と比べてエッジ強調処理を強めるエッジ調整係数及びノイズ抑制処理を強めるノイズ調整係数を用いて粒状抑制処理を施すので、高周波成分のエッジの視認性を高め、画像を細部まで観察する診断に適した画像を得ることができる。
また、撮影時のフレームレートが高い画像データほどノイズ抑制処理を強めるノイズ調整係数を用いて粒状抑制処理を施すので、放射線が不足しがちな高いフレームレートで撮影した動態画像についても、ノイズ成分を抑えた画像を提供することができる。
なお、以上の実施の形態例においては、ラプラシアンピラミッド法を用いて多重解像度空間への変換と多重解像度空間からの逆変換を行うようにしていた。この変換と逆変換とを、ウェーブレット変換により行うことで、任意の方向(縦方向,横方向,斜め方向)についての強調処理を行うことが可能になる。
また、上記実施の形態においては、全ての周波数帯域において差分画像信号を取得し、これを原画像信号に加算することとしたが、これに限定されず、少なくとも一つの周波数帯域において差分画像信号を得てエッジ強調及び/又はノイズ抑制処理を行うことで、エッジ強調、ノイズ抑制を行うことができる。
その他、放射線画像撮影システム100を構成する各装置の細部構成及び細部動作に関しても、本発明の趣旨を逸脱することのない範囲で適宜変更可能である。
本発明の実施の形態における放射線画像撮影システムの全体構成例を示す図である。 図1に示す撮影用コンソールの制御部により実行される撮影制御処理を示すフローチャートである。 図1に示す撮影用コンソールの表示部に表示される検査対象部位選択画面の一例を示す図である。 図1に示す診断用コンソールの制御部により実行される画像解析処理を示すフローチャートである。 図1に示す診断用コンソールの制御部により実行される画像表示処理を示すフローチャートである。 図4、図5に示す前処理における多重解像度分解処理〜差分処理において実現される機能を示すブロック図である。 図4、図5に示す前処理において実行されるエッジ成分情報取得処理の一例を示すフローチャートである。 (a)は、差分画像信号の或る一列分の画像信号を模式的に示す図、(b)は、(a)の差分画像信号にエッジ成分情報取得処理を施した場合のエッジ成分及び非エッジ成分の分類を模式的に示す図である。 (a)は、多重解像度分解のダウンサンプリングをバイノミアルフィルタリングを8回行うラプラシアンピラミッド法で行った場合に用いる二次元の平滑化フィルタ係数(5tap)の一例を示す図、(b)は、多重解像度分解のダウンサンプリングをバイノミアルフィルタリングを8回行うラプラシアンピラミッド法で行った場合に用いる一次元の平滑化フィルタ係数(5tap)の一例を示す図である。 図4、図5に示す前処理において実行される復元処理において実現される処理機能を示すブロック図である。
符号の説明
100 放射線画像撮影システム
1 撮影装置
11 放射線源
12 放射線照射制御装置
13 放射線検出部
14 読取制御装置
15 サイクル検出センサ
16 サイクル検出装置
2 撮影用コンソール
21 制御部
22 記憶部
23 操作部
24 表示部
25 通信部
26 バス
3 診断用コンソール
31 制御部
32 記憶部
33 操作部
34 表示部
35 通信部
36 バス

Claims (4)

  1. 撮影により取得された人体の検査対象部位の動態を示す複数の画像データに画像処理を施す画像処理装置であって、
    前記複数の画像データに基づいて動態画像を表示する表示手段と、
    前記複数の画像データに解析処理を施す解析処理手段と、
    前記表示手段による動態画像の表示前及び前記解析処理手段による解析前に前記複数の画像データに粒状抑制処理を施す前処理手段と、
    を備える画像処理装置。
  2. 前記前処理手段は、前記表示手段による動態画像の表示前と前記解析処理手段による解析前とで異なる処理条件で前記複数の画像データに粒状抑制処理を施す請求項1に記載の画像処理装置。
  3. 前記粒状抑制処理は、前記画像データにおけるエッジ成分及びノイズ成分を抽出し、前記エッジ成分を強調するエッジ強調処理と前記ノイズ成分を減少させるノイズ抑制処理を含むものであり、
    前記前処理手段は、前記表示手段による動態画像の表示前においては、前記画像データにおける所定の空間周波数以上の高周波数成分について、前記解析処理手段による解析前と比べてエッジ強調を強める処理条件及びノイズ抑制を強める処理条件で粒状抑制処理を施す請求項2に記載の画像処理装置。
  4. 前記粒状抑制処理は、前記画像データにおけるエッジ成分及びノイズ成分を抽出し、前記エッジ成分を強調するエッジ強調処理と前記ノイズ成分を減少させるノイズ抑制処理を含むものであり、
    前記複数の画像データには、当該複数の画像データを取得した動態撮影時の単位時間当たりの撮影画像数の情報が付帯されており、
    前記前処理手段は、前記動態撮影時の単位時間当たりの撮影画像数が大きいほどノイズ抑制を強める処理条件で前記ノイズ抑制処理を施す請求項1又は2に記載の画像処理装置。
JP2007221194A 2007-08-28 2007-08-28 画像処理装置 Pending JP2009054013A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007221194A JP2009054013A (ja) 2007-08-28 2007-08-28 画像処理装置
PCT/JP2008/064529 WO2009028333A1 (ja) 2007-08-28 2008-08-13 放射線画像撮影システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221194A JP2009054013A (ja) 2007-08-28 2007-08-28 画像処理装置

Publications (1)

Publication Number Publication Date
JP2009054013A true JP2009054013A (ja) 2009-03-12

Family

ID=40505026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221194A Pending JP2009054013A (ja) 2007-08-28 2007-08-28 画像処理装置

Country Status (1)

Country Link
JP (1) JP2009054013A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524329A (ja) * 2009-04-17 2012-10-11 リバレイン メディカル グループ,リミティド ライアビリティ カンパニー 多重尺度画像の正規化及び強調
WO2019097796A1 (ja) * 2017-11-17 2019-05-23 株式会社日立製作所 医用画像処理装置および医用画像処理方法
US10438327B2 (en) 2016-09-08 2019-10-08 Fujifilm Corporation Image processing apparatus, image processing method, and image processing program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263635A (ja) * 2002-03-07 2003-09-19 Fuji Photo Film Co Ltd 画像システム
JP2005218528A (ja) * 2004-02-04 2005-08-18 Fuji Photo Film Co Ltd 画像処理方法および装置並びにプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263635A (ja) * 2002-03-07 2003-09-19 Fuji Photo Film Co Ltd 画像システム
JP2005218528A (ja) * 2004-02-04 2005-08-18 Fuji Photo Film Co Ltd 画像処理方法および装置並びにプログラム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524329A (ja) * 2009-04-17 2012-10-11 リバレイン メディカル グループ,リミティド ライアビリティ カンパニー 多重尺度画像の正規化及び強調
US9002134B2 (en) 2009-04-17 2015-04-07 Riverain Medical Group, Llc Multi-scale image normalization and enhancement
US10438327B2 (en) 2016-09-08 2019-10-08 Fujifilm Corporation Image processing apparatus, image processing method, and image processing program
WO2019097796A1 (ja) * 2017-11-17 2019-05-23 株式会社日立製作所 医用画像処理装置および医用画像処理方法
JP2019088735A (ja) * 2017-11-17 2019-06-13 株式会社日立製作所 医用画像処理装置および医用画像処理方法
US11127123B2 (en) 2017-11-17 2021-09-21 Hitachi, Ltd. Medical image processing device and medical image processing method

Similar Documents

Publication Publication Date Title
JP5195907B2 (ja) 動態画像撮影制御装置及び動態画像撮影システム
US8299413B2 (en) Method for pixel shift calculation in digital subtraction angiography and X-ray diagnostic imaging system for generating images in digital subtraction angiography
JP6122269B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP6362914B2 (ja) X線診断装置及び画像処理装置
US10546367B2 (en) Device and method for improving medical image quality
JP2003244542A (ja) 2度露光二重エネルギーx線撮影のためのモーション・アーチファクト減少アルゴリズム
JP7080025B2 (ja) 情報処理装置、情報処理方法およびプログラム
WO2014050045A1 (ja) 体動検出装置および方法
JP6071444B2 (ja) 画像処理装置及びその作動方法、プログラム
WO2013073627A1 (ja) 画像処理装置及び方法
US9595116B2 (en) Body motion detection device and method
JP5223266B2 (ja) X線画像システム
JP4830564B2 (ja) 医用画像システム
JP3973181B2 (ja) 目的物の一連の放射線医学画像を処理する方法
JP6848393B2 (ja) 動態画像処理装置
JP6002324B2 (ja) 放射線画像生成装置及び画像処理方法
JP2009054013A (ja) 画像処理装置
JP2008142178A (ja) 放射線画像処理装置
JP6743730B2 (ja) 動態解析システム
JP2009078034A (ja) エネルギーサブトラクション用画像生成装置および方法
JP4692245B2 (ja) アスベスト用位相コントラストx線撮影システム及びアスベスト用位相コントラストx線撮影方法
JP5229496B2 (ja) 画像処理装置
JP2010005109A (ja) 画像生成装置、プログラム、および画像生成方法
JP7452078B2 (ja) 画像処理装置、放射線画像システム及びプログラム
JP2019005417A (ja) 動態画像処理装置及び動態画像処理システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529