WO2007091434A1 - Ofdm送信装置およびその制御方法 - Google Patents

Ofdm送信装置およびその制御方法 Download PDF

Info

Publication number
WO2007091434A1
WO2007091434A1 PCT/JP2007/051292 JP2007051292W WO2007091434A1 WO 2007091434 A1 WO2007091434 A1 WO 2007091434A1 JP 2007051292 W JP2007051292 W JP 2007051292W WO 2007091434 A1 WO2007091434 A1 WO 2007091434A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
peak suppression
waveform
data
peak
Prior art date
Application number
PCT/JP2007/051292
Other languages
English (en)
French (fr)
Inventor
Takashi Kitahara
Yuta Seki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007091434A1 publication Critical patent/WO2007091434A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2618Reduction thereof using auxiliary subcarriers

Definitions

  • the present invention relates to an OFDM transmitter and a control method thereof.
  • a peak suppression waveform (kernel) is generated using subcarriers randomly allocated in advance, and the peak suppression waveform is cyclically shifted according to the peak position and amplitude of the transmission signal. Then, the peak power is suppressed by subtracting the transmission signal power after adjusting the amplitude.
  • FIG. 1 is a block diagram showing a configuration of an OFDM transmission apparatus according to a conventional technique. This conventional technology will be explained based on Fig. 1.
  • the transmission data is modulated by a modulator (MOD) 11, converted to serial Z parallel by a data subcarrier mapping unit 12, and mapped to a data subcarrier.
  • the parallel signal to which the transmission data is mapped is subjected to an inverse fast Fourier transform (hereinafter referred to as “IFFT”) by the IFFT unit 13 and is output to the tone reservation unit 14.
  • IFFT inverse fast Fourier transform
  • the transmission data signal input to the tone reservation unit 14 is stored in the storage unit 16 via the selection unit 15 and output to the peak suppression waveform subtraction unit 17.
  • the peak suppression waveform subtraction unit 17 subtracts a peak suppression signal (kernel), which will be described in detail later, from the transmission data signal output from the storage unit 16 to generate a transmission data signal in which the peak value is suppressed. .
  • the transmission data signal in which the peak value is suppressed is subjected to a process of inserting a guard inverter by a guard inverter (GI) insertion unit 18.
  • the signal subjected to the guard interval insertion processing is subjected to predetermined wireless transmission processing such as up-conversion and amplification in the wireless transmission unit 19 and is output to the outside through the transmission antenna 20 as a transmission signal.
  • the peak suppression subcarrier phase data for generating the peak suppression signal (kernel) is subjected to serial Z-parallel conversion by the random mapping unit 21 and the peak suppression subcarrier selected at random in advance.
  • the IFFT unit 22 performs IFFT processing. Note that all subcarriers at this time are set to the same Cf phase.
  • the signal subjected to IFFT processing as described above has its waveform stored in the storage unit 23 as a peak suppression reference signal (kernel).
  • the kernel stored in the storage unit 23 is adjusted in position and amplitude via the cyclic shift amplitude adjustment unit 24 and is output to the peak suppression waveform subtraction unit 17 as a peak suppression signal.
  • the peak suppression waveform subtraction unit 17 subtracts the peak suppression signal from the transmission data signal from the storage unit 16 to generate a transmission data signal in which the peak value is suppressed.
  • the cyclic shift amplitude adjustment unit 24 is controlled as follows. That is, the peak search unit 25 searches for the peak position and amplitude of the transmission data signal stored in the storage unit 16, and based on the peak position and amplitude, the delay amount / weighting coefficient calculation unit 26 A predetermined delay amount and a predetermined weight coefficient are calculated. The delay / weight coefficient calculating unit 26 outputs the delay amount and the weight coefficient to the cyclic shift amplitude adjusting unit 24.
  • the cyclic shift amplitude adjustment unit 24 sets the readout timing of the waveform signal stored in the storage unit 23 according to the designated delay amount, and reads out according to the set weighting factor. By weighting the data, the peak timing of the peak suppression signal that is the output is adjusted and the amplitude value at the peak timing is set and used as the subtraction input of the peak suppression waveform subtraction unit 17.
  • the output signal of the peak suppression waveform subtraction unit 17 can be stored in the storage unit 16 again via the selection unit 15. Accordingly, the peak suppression waveform subtraction unit 17 repeatedly performs a subtraction operation for peak suppression, and outputs the signal to the signal power guard interval (GI) insertion unit 18 in which the peak value is suppressed.
  • the GI insertion unit 18 performs guard interval insertion processing on the input signal and outputs the result to the wireless transmission unit 19.
  • the radio transmission unit 19 performs predetermined radio transmission processing such as up-conversion and amplification as an input to obtain a transmission signal, and the transmission signal is output to the outside via the transmission antenna 20.
  • the peak suppression waveform subtraction unit 17 repeats the operation of subtracting the generated transmission waveform force from the generated peak suppression reference signal (kernel).
  • the efficiency of the amplifier is improved by outputting an OFDM signal whose peak value is suppressed to the outside (Non-patent Document 1).
  • Non-Patent Document 1 Tone Reservation method for PAPR Reduction scheme IEEE C802.16e-03 / 60rl IEEE802.16 Broadband Wireless Access Working Group Task Group e (Mobile Wireless MAN) Contributed Document date 2003/11/10
  • An object of the present invention is to provide an OFDM transmission apparatus with a small processing delay and low power consumption, and a control method thereof.
  • the OFDM transmission apparatus of the present invention is arranged symmetrically with respect to the second NZ out of a subcarrier group composed of N subcarriers in total (N is a plurality), and the subcarrier group is represented by m.
  • First phase data that is mapped to any one of 1, 1, 1, j, and 1 j to the subcarrier selection means to perform and the peak suppression subcarrier selected by the subcarrier selection means
  • Force Kernel waveform generating means for generating a kernel waveform indicating a peak suppression reference signal except for zero data, and a subcarrier other than the peak suppression subcarrier selected by the sub
  • second mapping means for mapping transmission data
  • second inverse fast Fourier transform means for generating a transmission data waveform by performing inverse fast Fourier transform on the transmission data mapped to the transmission data subcarrier
  • a peak suppression waveform subtracting means for subtracting the kernel waveform from the transmission data waveform.
  • control method of the OFDM transmitter of the present invention is symmetrically arranged around the NZ2th among subcarrier groups composed of a total of N (N is a plurality) subcarriers, and Within the sub-block divided into m (m is multiple) sub-carriers, the peak suppression sub-carriers are formed according to the communication quality of each sub-carrier from all the carriers formed to have the same sub-carrier arrangement pattern.
  • mapping step a first inverse fast Fourier transform step for performing inverse fast Fourier transform on the phase data mapped to the subcarrier for peak suppression, and A kernel waveform generation step for generating a kernel waveform indicating a reference signal for peak suppression by removing 0 data from the output in the inverse fast Fourier transform step of 1 and the peak suppression sub selected in the subcarrier selection step
  • a second mapping step for mapping transmission data to subcarriers other than the carrier; and a second mapping step for generating a transmission data waveform by performing inverse fast Fourier transform on the transmission data mapped to the transmission data subcarrier.
  • the amount of calculation required for the peak suppression process can be reduced, so that the processing delay can be shortened and the power consumption can be reduced.
  • FIG. 1 is a block diagram showing a configuration of an OFDM transmitter according to the prior art
  • FIG. 2 is a block diagram showing a configuration of an OFDM transmitter according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a subcarrier arrangement according to an embodiment of the present invention.
  • FIG. 4 shows subcarrier positions for peak suppression and transmission data according to the embodiment of the present invention. Schematic diagram showing the device
  • FIG. 5 is a diagram showing a peak suppression reference waveform (kernel) according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing conditions for peak suppression according to the embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the OFDM transmitter according to the present embodiment.
  • OFDM transmission apparatus 100 includes transmission data modulation section (MOD) 101, data subcarrier mapping section 102, first IFFT section 103, and tone reservation section 104.
  • GI guard interval
  • Modulation section 101 modulates transmission data.
  • Data subcarrier mapping section 102 performs serial Z-parallel conversion on the modulated transmission data, maps it to the subcarrier selected as the transmission data subcarrier, and outputs it to IFFT section 103.
  • IFFT section 103 performs IFFT processing on the output of data subcarrier mapping section 102 and outputs the OFDM signal obtained by this IFFT processing to tone reservation section 104.
  • the tone reservation unit 104 performs peak suppression processing on the OFDM signal and outputs the output to the GI insertion unit 105, as will be described in detail later.
  • GI insertion section 105 performs processing to insert a guard interval, and outputs the OFDM signal subjected to guard interval insertion processing to radio transmission section 106.
  • the radio transmission unit 106 performs predetermined radio transmission processing such as up-conversion and amplification on the input OFDM signal, and transmits the radio signal to the communication partner apparatus via the transmission antenna 107.
  • this communication partner apparatus When transmitting data to OFDM transmitting apparatus 100, this communication partner apparatus adds to the essential information data for information communication, and the quality of the OFDM signal previously received from OFDM transmitting apparatus 100 For example, the transmission quality data for each subcarrier is included, modulated into an OFDM signal, and transmitted to the OFDM transmitter 100.
  • the reception antenna 108 receives the OFDM signal from the communication partner apparatus, and receives the radio reception unit 109. Output to.
  • Radio reception section 109 amplifies the input OFDM signal, performs predetermined radio reception processing such as down-conversion, and outputs the received signal to demodulation section 110 as a received signal.
  • Demodulation section 110 demodulates the received signal to obtain received data, and outputs it to quality information output section 111 and information data processing section 112.
  • Quality information output section 111 extracts quality information indicating the quality of each subcarrier from the reception data of demodulation section 110 and outputs it to subcarrier selection section 113.
  • the information data processing unit 112 extracts all the information other than the quality information from the received data and performs predetermined information processing.
  • the processing performed by the information data processing unit 112 is, for example, error correction decoding processing and the like, which is equivalent to conventionally known processing, and thus detailed description thereof is omitted.
  • Subcarrier selecting section 113 receives the output of quality information output section 111 and selects a subcarrier used for peak suppression and a subcarrier used for transmission data from all the subcarriers. According to the selection result, subcarrier selection section 113 outputs peak suppression subcarrier designation data to tone reservation section 104 and outputs transmission data subcarrier designation data to data subcarrier mapping section 102.
  • the tone reservation unit 104 includes a peak suppression subcarrier mapping unit 114, an IFFT unit 115, a write data selection unit 116, a storage unit 117, a subtraction repetition control unit 118, and a peak suppression waveform subtraction unit 119.
  • the subtraction repetition control unit 118 includes a peak search unit 123, a delay / weight coefficient calculation unit 124, and a cyclic shift amplitude adjustment unit 125.
  • Peak suppression subcarrier mapping section 114 maps the suppression signal given by the external force peak suppression subcarrier phase data to the subcarrier selected by subcarrier selection section 113, and converts the parallel signal into an IFFT section. Output to 115.
  • IFFT section 115 performs IFFT processing on the signal from peak suppression subcarrier mapping section 114 and outputs the obtained OFDM signal to write data selection section 116 in the form of waveform data.
  • the write data sorting unit 116 sorts out the output power of the IFFT unit 115 other than 0 data and writes it to the storage unit 117.
  • “0 data” means that the real part amplitude or imaginary part amplitude of data is 0 (zero). Say something.
  • the waveform data written in the storage unit 117 is kernel waveform data indicating a peak suppression reference signal (kernel).
  • the write data selection unit 116 and the storage unit 117 constitute a kernel waveform generation unit for generating a kernel waveform indicating a peak suppression reference signal (kernel).
  • the waveform data indicating the peak suppression reference signal (kernel) stored in the storage unit 117 is read at a predetermined timing described later, and is sent to the peak suppression waveform subtraction unit 119 via the subtraction repetition control unit 118. Output as a subtraction signal.
  • the peak suppression waveform subtraction unit 119 repeatedly performs the subtraction process in order to suppress the peak of the OFDM signal.
  • selection unit 120 In order to repeatedly perform peak suppression waveform subtraction processing, selection unit 120 first selects data for transmission from IFFT unit 103, and performs peak suppression waveform subtraction unit 119 for the second and subsequent peak suppression waveform subtraction processing. Is stored in the storage unit 121 as peak suppression target data.
  • the read data selection unit 122 receives the output from the subcarrier selection unit 113, and when the transmission data force, which is the peak suppression target data stored in the storage unit 121, also subtracts the peak suppression waveform, the storage unit 117 The data to be read from the storage unit 121 is selected so that only the data stored in is subtracted.
  • the peak search unit 123 is a storage unit until a predetermined number of repetitions is reached or until a predetermined target PAPR (Peak to Average Power Ratio) value is reached. All the data forces stored in 121 are also searched for the peak of the transmission data that is the peak suppression target data, and the peak position information and the peak amplitude value are output to the delay amount / weight coefficient calculation unit 124.
  • Delay amount 'weighting factor calculation unit 124 calculates the kernel delay amount and weighting factor based on the peak position information and peak amplitude value, which are the peak information from peak search unit 123, and outputs them to cyclic shift amplitude adjustment unit 125, respectively. To do. This delay amount indicates the peak position, and the weighting factor indicates the peak suppression amount.
  • Cyclic shift amplitude adjustment section 125 adjusts the read start position of the peak suppression reference signal (kernel) from storage section 117 according to the delay amount, and adjusts the peak of the kernel waveform and the peak position of the peak suppression target waveform. And the amplitude is adjusted according to the weighting coefficient. As a result of this adjustment, the cyclic shift amplitude adjustment unit 125 reads the peak read from the storage unit 121. The data for suppressing the peak of the suppression target data is output to the peak suppression waveform subtraction unit 119.
  • the peak suppression waveform subtraction unit 119 subtracts the peak suppression signal from the transmission data power that is the peak suppression target, for example, until it falls below a predetermined target PAPR value.
  • the signal is output to GI insertion unit 105 or selection unit 120.
  • the transmission signal whose peak is suppressed is output to the outside via transmission radio section 106 and transmission antenna 107.
  • FIG. 3 is a schematic diagram showing a subcarrier arrangement according to the present embodiment.
  • the subcarriers form a subcarrier group consisting of N subcarriers from X (O) to X (N-1) according to IFFT size N (N is a natural number of 2 or more) And then.
  • N is a natural number of 2 or more
  • This subcarrier group covers the entire band of communication, and the subcarrier group in the parentheses group is X (NZ2).
  • the waveform after IFFT processing is expressed by the following equation (1).
  • subcarrier selecting section 113 arranges subcarrier positions for generating a peak suppression reference signal (power single channel) so as to satisfy the following three conditions.
  • First condition N / 2 (N is IFFT size) and symmetrically arranged.
  • Second condition All bands are divided into m pieces (m is a natural number of 2 or more), and they are arranged so that the same arrangement pattern is used between each sub-block. However, subcarriers are randomly arranged in the subblock.
  • Third condition Based on the quality report value of each subcarrier transmitted from an external receiver and extracted by the quality information output unit 111, the subcarrier with the lower quality report value is selected.
  • equation (2) becomes the following equation (3).
  • Equation (3) the relationship between the first term and the third term in Equation (3) and the relationship between the second term and the fourth term indicate that the subcarriers in this case are arranged symmetrically.
  • the relationship between the first term and the second term, and the relationship between the third term and the fourth term are such that when the subcarriers are divided into two blocks, they are arranged in the same manner between the subblocks. Show.
  • the subcarrier for peak suppression is selected by the carrier power subcarrier selection unit 113 indicated by X in FIG. 4 based on the quality information extracted by the quality information output unit 111 in FIG. It is used for the mapping process in the peak carrier subcarrier mapping unit 114 for peak suppression.
  • subcarrier selection section 113 assigns subcarriers that have not been selected as peak suppression subcarriers, that is, subcarriers with information quality capability, to data subcarrier mapping section 102.
  • Equation 5 m is a divisor of N (5)
  • equation (1) becomes the following equation (6).
  • FIG. 5 shows a peak suppression reference waveform (kernel) according to the present embodiment.
  • kernel waveform by the peak carrier subcarrier is x (n) as shown in Equation (4), the Q component is zero, and the calculation of the Q component is unnecessary. It is.
  • ⁇ k ⁇ N / 4 selects k + NZ2, N—k, and NZ2—k, which are subcarriers derived from k.
  • a predetermined number of peak suppression subcarriers are selected so that the selected subcarriers are subcarriers with as low communication quality as possible.
  • m 2
  • four peak suppression subcarriers are selected, which corresponds to the predetermined number of peak suppression subcarriers Z4.
  • the number of subcarriers to be selected is selected from the range of 0 ⁇ k ⁇ NZ4, for example.
  • the number of subcarriers for peak suppression is given from outside each time. Power or predetermined.
  • the present invention reduces subtraction processing for peak suppression in OFDM transmission, it is effective in performing high-speed OFDM communication accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

 OFDM送信に当たってピーク抑圧処理に必要な演算量を削減するOFDM送信装置。このOFDM送信装置では、サブキャリア選択部(113)は、N個のサブキャリアで構成されるサブキャリア群を、N/2番目のサブキャリアを中心として左右対称配置とするとともに、同じパターンで配置されたm個に分割したサブブロックとなるように形成されるキャリアから、通信品質の低いサブキャリアをピーク抑圧用サブキャリアとして選択する。書き込みデータ選別部(116)は、IFFT部(115)で算出されたピーク抑圧用OFDM信号データのうち、値が0でないデータのみを選別する。ピーク抑圧波形減算部(119)は、抑圧対象である送信データのOFDM信号から、書き込みデータ選別部(116)で0データを除いて得られたピーク抑圧用OFDM信号を減算する動作を、例えば予め定めた目標PAPR値を下回るまで繰り返す。

Description

明 細 書
OFDM送信装置およびその制御方法
技術分野
[0001] 本発明は、 OFDM送信装置およびその制御方法に関する。
背景技術
[0002] 従来技術においては、予めランダムに割り当てたサブキャリアを用いてピーク抑圧 用波形 (カーネル)を生成しておき、送信信号のピーク位置 ·振幅に応じて上記ピー ク抑圧用波形を巡回シフト、振幅調整したものを送信信号力 差し引くことによりピー ク電力を抑圧する。
[0003] 図 1は、従来技術に係る OFDM送信装置の構成を示すブロック図である。この従 来技術を、図 1に基づき説明する。送信データは、変調器 (MOD) 11で変調され、 データ用サブキャリアマッピング部 12で直列 Z並列変換されるとともに、データ用サ ブキャリアにマッピングされる。送信データがマッピングされた並列信号は IFFT部 13 で逆高速フーリエ変換(Inverse Fast Fourier Transform;以下「IFFT」という。)され、 トーンリザべーシヨン (Tone Reservation)部 14に出力される。トーンリザべーシヨン部 1 4に入力された送信データ信号は、選択部 15を介して記憶部 16に記憶され、ピーク 抑圧波形減算部 17に出力される。ピーク抑圧波形減算部 17は、記憶部 16から出力 される送信データ信号に対し、詳細を後で説明するピーク抑圧用信号 (カーネル)を 減算し、ピーク値が抑圧された送信データ信号を発生する。このピーク値が抑圧され た送信データ信号は、ガードインターノ レ (GI)挿入部 18でガードインターノ レを揷 入する処理がされる。ガードインターバル挿入処理された信号は、無線送信部 19で アップコンバートおよび増幅等、所定の無線送信処理が施され、送信アンテナ 20を 介して送信信号として外部に出力される。
[0004] 次に従来技術における、ピーク抑圧波形減算部 17の一方の入力であるピーク抑圧 用信号 (カーネル)の生成にっ 、て説明する。ピーク抑圧用信号 (カーネル)を発生 させるためのピーク抑圧サブキャリア用位相データは、ランダムマッピング部 21で直 列 Z並列変換されるとともに、予めランダムに選択しておいたピーク抑圧用サブキヤリ ァに割り当てられ、 IFFT部 22で IFFT処理される。なお、このときのサブキャリアはす ベて同 Cf立相に設定されている。
[0005] このように IFFT処理された信号は、その波形がピーク抑圧用基準信号 (カーネル) として記憶部 23に記憶される。記憶部 23に記憶されたカーネルは、巡回シフト振幅 調整部 24を介して、位置および振幅が調整され、ピーク抑圧用信号としてピーク抑 圧波形減算部 17に出力される。これによつて、ピーク抑圧波形減算部 17では、記憶 部 16からの送信データ信号に対し、ピーク抑圧用信号を減算し、ピーク値が抑圧さ れた送信データ信号を発生する。
[0006] なお、このようにピーク抑圧基準信号 (カーネル)からピーク抑圧用信号を発生する ため、巡回シフト振幅調整部 24は、次のように制御される。すなわち、ピーク検索部 2 5において、記憶部 16に記憶されている送信データ信号のピークの位置および振幅 が検索され、このピークの位置および振幅に基づき遅延量 ·重み係数算出部 26で、 カーネルの所定遅延量と所定重み係数が算出される。遅延 ·重み係数算出部 26は、 遅延量および重み係数を巡回シフト振幅調整部 24に出力する。これに応じて巡回シ フト振幅調整部 24は、指定された遅延量に応じて、記憶部 23に記憶された波形信 号の読み出しタイミングを設定し、かつ設定された重み係数に応じて読み出したデー タの重み付けを行うことにより、その出力であるピーク抑圧用信号のピークタイミング を調整するとともにピークタイミングにおける振幅値を設定し、ピーク抑圧波形減算部 17の減算入力とする。
[0007] ピーク抑圧波形減算部 17の出力信号は、選択部 15を介して再度記憶部 16に記 憶させることができる。これによつて、ピーク抑圧波形減算部 17では、ピーク抑圧のた めの減算動作が繰り返し行われ、ピーク値が抑圧された信号力 ガードインターバル (GI)挿入部 18に出力される。 GI挿入部 18は、入力された信号に対しガードインタ 一バル挿入処理を施し、無線送信部 19に出力する。無線送信部 19は、入力をアツ プコンバート、増幅など所定の無線送信処理を施して送信信号とし、送信信号は送 信アンテナ 20を介して、外部に出力される。
[0008] このようにして、従来技術にお!、ては、生成したピーク抑圧用基準信号 (カーネル) を元の送信波形力も減算する動作をピーク抑圧波形減算部 17で繰り返すことによつ て、ピーク値が抑圧された OFDM信号を外部に出力するようにして、増幅器の効率 向上を図っている (非特許文献 1)。
非特許文献 1: Tone Reservation method for PAPR Reduction scheme IEEE C802. 16e- 03/60rl IEEE802.16 Broadband Wireless Access Working Group Task Group e (Mobile Wireless MAN) Contributed Document date 2003/11/10
発明の開示
発明が解決しょうとする課題
[0009] しかしながら、従来技術においては、 IFFTサイズを Nポイントとすると、ピーク抑圧 波形減算部 17におけるピーク抑圧波形減算処理は、時間波形の長さ Nポイント毎に IQ双方の処理が必要で、 1回の減算処理につき 2N回の処理が必要となる。このた め従来技術に係る OFDM信号ピーク抑圧装置おいては、送信に要する処理遅延が 大きくなり、再送時における RTT (Round Trip Time :往復時間)の増加によるス ループットの劣化を招く。また、この減算処理等のための回路の消費電力も増大する
[0010] 本発明の目的は、処理遅延が小さぐ消費電力が少ない OFDM送信装置および その制御方法を提供することである。
課題を解決するための手段
[0011] 本発明の OFDM送信装置は、全部で N個(Nは複数)のサブキャリアで構成される サブキャリア群のうち、 NZ2番目を中心に左右対称配置となり、かつ前記サブキヤリ ァ群を m個(mは複数)に分割したサブブロック内ですベて同じサブキャリアの配置パ ターンとなるように形成されるキャリアから、各サブキャリアの通信品質に応じて、ピー ク抑圧用サブキャリアを選択するサブキャリア選択手段と、前記サブキャリア選択手 段が選択したピーク抑圧用のサブキャリアに、 1、 一 l、 j、 一jのどれか一つに統一し た位相データをマッピングする第 1のマッピング手段と、前記ピーク抑圧用のサブキヤ リアにマッピングされた前記位相データを逆高速フーリエ変換する第 1の逆高速フー リエ変換手段と、前記第 1の逆高速フーリエ変換手段の出力力 0データを除いて、 ピーク抑圧用基準信号を示すカーネル波形を発生するカーネル波形発生手段と、 前記サブキャリア選択手段が選択した前記ピーク抑圧用サブキャリア以外のサブキヤ リアに、送信データをマッピングする第 2のマッピング手段と、前記送信データ用サブ キャリアにマッピングされた前記送信データを逆高速フーリエ変換して送信データ波 形を発生する第 2の逆高速フーリエ変換手段と、前記送信データ波形から前記カー ネル波形を減算するピーク抑圧波形減算手段と、を具備する構成を採る。
[0012] また、本発明の OFDM送信装置の制御方法は、全部で N個(Nは複数)のサブキ ャリアで構成されるサブキャリア群のうち, NZ2番目を中心に左右対称配置となり、 かつ前記サブキャリア群を m個(mは複数)に分割したサブブロック内ですベて同じサ ブキャリアの配置パターンとなるように形成されるキャリアから、各サブキャリアの通信 品質に応じて、ピーク抑圧用サブキャリアを選択するサブキャリア選択ステップと、前 記サブキャリア選択ステップで選択したピーク抑圧用のサブキャリアに、 1、—l、 j、 一 jのどれか一つに統一した位相データをマッピングする第 1のマッピングステップと、前 記ピーク抑圧用のサブキャリアにマッピングされた前記位相データを逆高速フーリエ 変換する第 1の逆高速フーリエ変換ステップと、前記第 1の逆高速フーリエ変換ステツ プでの出力から 0データを除いて、ピーク抑圧用基準信号を示すカーネル波形を発 生するカーネル波形発生ステップと、前記サブキャリア選択ステップで選択した前記 ピーク抑圧用サブキャリア以外のサブキャリアに、送信データをマッピングする第 2の マッピングステップと、前記送信データ用サブキャリアにマッピングされた前記送信デ 一タを逆高速フーリエ変換して送信データ波形を発生する第 2の逆高速フーリエ変 換ステップと、前記送信データ波形から前記カーネル波形を減算するピーク抑圧波 形減算ステップと、を具備する。
発明の効果
[0013] 本発明によれば、ピーク抑圧処理に必要な演算量を削減できるので、処理遅延を 短縮でき、消費電力も小さくできる。
図面の簡単な説明
[0014] [図 1]従来技術に係る OFDM送信装置の構成を示すブロック図
[図 2]本発明の実施の形態に係る OFDM送信装置の構成を示すブロック図
[図 3]本発明の実施の形態に係るサブキャリア配置を示す模式図
[図 4]本発明の実施の形態に係るピーク抑圧用および送信データ用サブキャリア位 置を示す模式図
[図 5]本発明の実施の形態に係るピーク抑圧用基準波形 (カーネル)を示す図
[図 6]本発明の実施の形態に係るピーク抑圧のための条件を示す図
発明を実施するための最良の形態
[0015] 以下、本発明の実施の形態について図面を参照して詳細に説明する。
[0016] (実施の形態 1)
図 2は、本実施の形態に係る OFDM送信装置の構成を示すブロック図である。
[0017] 本実施の形態に係る OFDM送信装置 100は、送信データの変調部(MOD) 101 と、データ用サブキャリアマッピング部 102と、第 1の IFFT部 103と、トーンリザべーシ ヨン部 104と、ガードインターバル (GI)挿入部 105と、無線送信部 106と、送信アン テナ 107と、受信アンテナ 108と、無線受信部 109と、復調部 110と、品質情報出力 部 111と、情報データ処理部 112と、サブキャリア選択部 113とから主に構成される。
[0018] 変調部 101は、送信データを変調する。データ用サブキャリアマッピング部 102は、 変調された送信データをシリアル Zパラレル変換するとともに、送信データ用サブキ ャリアとして選択されたサブキャリアにマッピングし、 IFFT部 103に出力する。 IFFT 部 103は、データ用サブキャリアマッピング部 102の出力を IFFT処理し、この IFFT 処理によって得られる OFDM信号を、トーンリザべーシヨン部 104に出力する。トー ンリザべーシヨン部 104は、後で詳細に説明する様に、 OFDM信号のピーク抑圧処 理をして、その出力を GI挿入部 105に出力する。 GI挿入部 105は、ガードインター バルを挿入する処理をし、ガードインターバル挿入処理された OFDM信号を無線送 信部 106に出力する。無線送信部 106は、入力した OFDM信号に対してアップコン バート、増幅等の所定の無線送信処理を施し、送信アンテナ 107を介して通信相手 装置に無線送信する。
[0019] この通信相手装置は、 OFDM送信装置 100にデータを送信する際には、情報通 信のための必須の情報データに付加して、 OFDM送信装置 100から先に受信した OFDM信号の品質、例えばサブキャリア毎の送信品質データを含んで、 OFDM信 号に変調して OFDM送信装置 100に送信する。
[0020] 受信アンテナ 108は、通信相手装置からの OFDM信号を受信し、無線受信部 109 に出力する。無線受信部 109は、入力した OFDM信号を増幅し、ダウンコンバート 等所定の無線受信処理を施し、受信信号として復調部 110に出力する。復調部 110 は、受信信号を復調して受信データを得、品質情報出力部 111および情報データ処 理部 112に出力する。品質情報出力部 111は、復調部 110の受信データから各サ ブキャリアの品質を示す品質情報を抽出し、サブキャリア選択部 113に出力する。な お、情報データ処理部 112は、受信データのうち品質情報以外の情報を全て抽出し て、予め定められた情報処理を行う。この情報データ処理部 112で行われる処理は、 例えば誤り訂正復号処理などであり従来周知の処理と同等であるので、詳しい説明 は省略する。
[0021] サブキャリア選択部 113は、品質情報出力部 111の出力を受けて全サブキャリアの 中から、ピーク抑圧用に使用するサブキャリアと送信データ用に使用するサブキヤリ ァをそれぞれ選択する。サブキャリア選択部 113は、その選択結果に従い、ピーク抑 圧用サブキャリア指定データをトーンリザべーシヨン部 104に出力するとともに、送信 データ用サブキャリア指定データをデータ用サブキャリアマッピング部 102に出力す る。
[0022] 次にトーンリザべーシヨン部 104の各部について説明する。トーンリザべーシヨン部 104は、ピーク抑圧用サブキャリアマッピング部 114と、 IFFT部 115と、書き込みデ ータ選別部 116と、記憶部 117と、減算繰り返し制御部 118と、ピーク抑圧波形減算 部 119と、選択部 120と、記憶部 121と、読み出しデータ選択部 122とを有している。
[0023] 減算繰り返し制御部 118は、ピーク検索部 123と、遅延 ·重み係数算出部 124と、 巡回シフト振幅調整部 125とを有する。
[0024] ピーク抑圧用サブキャリアマッピング部 114は、サブキャリア選択部 113で選択され たサブキャリアに、外部力 ピーク抑圧サブキャリア位相データで与えられた抑圧信 号をマッピングし、並列信号を IFFT部 115に出力する。 IFFT部 115は、ピーク抑圧 サブキャリアマッピング部 114からの信号を IFFT処理し、得られた OFDM信号を波 形データの形で書き込みデータ選別部 116に出力する。書き込みデータ選別部 116 は、 IFFT部 115の出力力も 0データ以外を選別し、記憶部 117に書き込む。なお、 本明細書において、「0データ」とはデータの実部振幅もしくは虚部振幅が 0 (ゼロ)で あるものをいう。記憶部 117に書き込まれた波形データは、ピーク抑圧用基準信号( カーネル)を示すカーネル波形のデータである。このように書き込みデータ選別部 11 6と記憶部 117とは、ピーク抑圧用基準信号 (カーネル)を示すカーネル波形を発生 するためのカーネル波形発生部を構成して 、る。
[0025] 記憶部 117に記憶されたピーク抑圧用基準信号 (カーネル)を示す波形データは、 後述する所定のタイミングで読み出され、減算繰り返し制御部 118を介して、ピーク 抑圧波形減算部 119に減算信号として出力される。ピーク抑圧波形減算部 119は、 OFDM信号のピークを抑圧するため、減算処理を繰り返し行う。
[0026] 選択部 120は、ピーク抑圧波形減算処理を繰り返し行うため、最初は IFFT部 103 から送信用のデータを選択し、 2回目以降のピーク抑圧波形減算処理の際はピーク 抑圧波形減算部 119の出力を選択し、ピーク抑圧対象データとして記憶部 121に記 憶させる。
[0027] 読み出しデータ選択部 122は、サブキャリア選択部 113からの出力を受けて記憶 部 121に記憶されたピーク抑圧対象データである送信データ力もピーク抑圧用波形 を減算する際に、記憶部 117で記憶されたデータについてのみ減算を行うように、記 憶部 121から読み出すデータを選択する。
[0028] ピーク検索部 123は、所定の繰り返し回数に達するまで、もしくは予め定めた目標 P APR(Peak to Average Power Ratio :信号波形のピーク電力対平均電力比)値を下回 るまで、記憶部 121に記憶された全てのデータ力もピーク抑圧対象データである送 信データのピークを検索し、ピーク位置情報およびピーク振幅値を遅延量 ·重み係数 算出部 124に出力する。遅延量'重み係数算出部 124は、ピーク検索部 123からの ピーク情報であるピーク位置情報およびピーク振幅値に基づき、カーネルの遅延量 と重み係数を算出し、それぞれ巡回シフト振幅調整部 125に出力する。この遅延量 は、ピーク位置を示し、また重み係数は、ピーク抑圧量を示す。
[0029] 巡回シフト振幅調整部 125は、記憶部 117からピーク抑圧用基準信号 (カーネル) の読み出し開始位置を遅延量に応じて調整して、カーネル波形のピークとピーク抑 圧対象波形のピーク位置とを一致さるとともに、重み係数に応じて振幅の調整を行う 。この調整の結果、巡回シフト振幅調整部 125は、記憶部 121から読み出されるピー ク抑圧対象データのピークを抑圧するためのデータを、ピーク抑圧波形減算部 119 に出力する。
[0030] このようにしてピーク抑圧波形減算部 119は、例えば予め定めた目標 PAPR値を下 回るまで、ピーク抑圧対象である送信データ力もピーク抑圧用信号を減算し、ピーク が抑圧された送信データ信号を GI挿入部 105な ヽしは選択部 120に出力する。
[0031] ピークが抑圧された送信信号は、送信無線部 106および送信アンテナ 107を介し て外部に出力される。
[0032] 次に本実施の形態で行う IFFT処理および採用するサブキャリアにつ 、て具体的 に説明する。
[0033] 図 3は、本実施の形態に係るサブキャリア配置を示す模式図である。図示するように 、サブキャリアは、 IFFTサイズ N (Nは、 2以上の自然数)に合わせて X(O)から X(N - 1)の N個のサブキャリアで構成されるサブキャリア群を形成して 、る。このサブキヤ リア群は通信の全帯域をカバーし、かっこのサブキャリア群の中央のサブキャリアが X (NZ2)である。この場合、 IFFT処理後の波形は次の式(1)で表わされる。
[数 1]
Figure imgf000010_0001
[0034] 本実施の形態においては、サブキャリア選択部 113は、ピーク抑圧用基準信号 (力 一ネル)生成用のサブキャリア位置を次の 3条件を満たすように配置する。第 1条件: N/2 (Nは IFFTサイズ)を中心に左右対称に配置する。第 2条件:全帯域を m個 (m は、 2以上の自然数)に分割したとして、それぞれのサブブロック間では同じ配置パタ ーンとなるように配置する。但し、サブブロック内では、サブキャリアはランダムに配置 する。第 3条件:外部の受信装置から送信され、品質情報出力部 111で抽出される 各サブキャリアの品質報告値に基づき、品質報告値が低いサブキャリアほど、選択す るようにする。
[0035] 第 1条件および第 2条件を式で示すと次の式 (2)で表される。
[数 2]
Figure imgf000011_0001
(N
Figure imgf000011_0002
- jのいずれか
[0036] これを m= 2の場合について説明すると、式(2)は次の式(3)のようになる。
[数 3]
Figure imgf000011_0003
[0037] 図 4は、式(3)の内容であるピーク抑圧用基準信号 (カーネル)生成用サブキャリア のキャリア位置(図 4において、 Xで示す。)およびデータ送信用サブキャリアのキヤリ ァ位置(図 4において、〇で示す。)を模式的に示す図である。すなわち、図 4におい ては、サブブロックは # 0および # 1で示す 2サブブロック(m= 2)である。ピーク抑圧 用サブキャリアは全体で左右対称の位置にある。また、サブブロック # 0内でのピーク 抑圧用サブキャリア配置位置とサブブロック # 1でのピーク抑圧用サブキャリア配置 位置は、同じ配置パターンとなっている。なお、式(3)の第 1項と第 3項の関係、第 2 項と第 4項の関係は、この場合におけるサブキャリアが左右対称に配置されているこ とを示している。また、第 1項と第 2項の関係、第 3項と第 4項の関係は、サブキャリア を 2つのブロックに分割した際、それぞれのサブブロック間で同じ配置になって 、るこ とを示している。
[0038] なお図 4において、ピーク抑圧用のサブキャリアは、図 2の品質情報出力部 111で 抽出された品質情報に基づき、図 4の Xで示すキャリア力 サブキャリア選択部 113 によって選択され、ピーク抑圧用サブキャリアマッピング部 114でのマッピング処理に 使用される。相対的に、サブキャリア選択部 113は、ピーク抑圧用のサブキャリアに選 択されなかったサブキャリア、すなわち情報品質力 力つたサブキャリアをデータ用サ ブキャリアマッピング部 102に割り当てる。
[0039] 次に以上のようにサブキャリアを配置した場合の物理的な意味について説明する。
すなわち、サブキャリアを左右対称位置に配置すると、これは式(3)に関連して、 X ( Ν— k) =X (k)であることを意味し、かつ Χ (0) =Χ (Ν/2) = 0を前提条件として与え 、これらの条件を式(1)に当てはめると、次の式 (4)のようになり、 x(n)は、実数のみ 、もしくは虚数のみとなる。
[数 4]
Figure imgf000012_0001
また、全帯域を m等分し、それぞれのサブブロックはすべて同じパターンに配置す ると、次の式 (5)で示す条件が成立する。
[数 5] mは Nの約数 ( 5 )
Figure imgf000012_0002
この式(5)が示す条件を式(1)に当てはめると、式(1)は、次の式 (6)となる。
[数 6] ex j—— k
'(") = W. Ν
Figure imgf000012_0003
( 6 [0042] 式(6)において、 x(n) =0となるのは、 nが mの倍数でない場合である。すなわち、 x (n)は 0≤n≤Nの区間において、((m— l) Zm)Nポイントでゼロとなることを意味 する。
[0043] 式 (4)および式(6)が示す内容であるピーク抑圧のための演算量の減少を、図 5を 用いて説明する。図 5は、本実施の形態に係るピーク抑圧用基準波形 (カーネル)を 示す。すなわち、図 5においては、式 (4)が示すようにピーク抑圧用サブキャリアによ るカーネル波形は x(n)が実数となるので、 Q成分はゼロであり、 Q成分の演算は不 要である。
[0044] また、式 (6)が示すように帯域の分割配置により、 I成分のうち((m— l) Zm)Nボイ ントはゼロとなり、その分ピーク抑圧用に行うピーク抑圧波形減算部 119での減算処 理回数は減少する。具体的には、従来技術においては IQ両成分合わせて 2Nボイン トの減算処理が必要であったもの力 本実施の形態では I成分(2Nの半分)の Nボイ ントから((m— 1) /m) Nポイントを引いて得られる NZmポイントのみにつ!、て減算 を行えばよいことになる。すなわち、ピーク抑圧のための減算処理は、(NZm) Z2N の lZ2mに削減できる。
[0045] 次にピーク抑圧のための減算処理を lZ2mに削減するピーク抑圧用サブキャリア の選択方法の一例を図 6を用いて具体的に説明する。図 6では m= 2の場合を示し ている。 0≤n≤Nの区間から任意の、例えば k番目のサブキャリア(k)を選択したとき 、式(3)で示される残りのサブキャリアは k+NZ2、 N— k、 NZ2— kで表すことがで きる。このとき、 k、 k+N/2, N— k、 NZ2— kの 4つのサブキャリア全てが 0〜Nの 範囲内にある必要があるため、実質は図 6に示すように、 kとして 0≤k≤N/4から任 意に一つ選択し、その後 kに関連して派生するサブキャリアである k+NZ2、 N—k、 NZ2—kを選択すればよい。この際、選択されたサブキャリアがなるべく通信品質の 低いサブキャリアになるように、予め定めた数だけピーク抑圧用サブキャリアを選択す る。具体的には、本実施の形態において m= 2の場合 1つのピーク抑圧用サブキヤリ ァを選択すると 4つのピーク抑圧用サブキャリアが選択されるので、予め定めたピーク 抑圧用サブキャリア数 Z4に相当する個数のサブキャリアを例えば 0≤ k≤ NZ4の区 間から選択する。なお、ピーク抑圧用サブキャリアの数は外部から都度に与えられる 力 もしくは予め定めている。
[0046] このように本実施の形態によれば、 OFDM送信のマルチキャリアの配置に関し、「(
1)ピーク抑圧用サブキャリアを全サブキャリア数 ·Νの NZ2を中心に左右対称に配 置する。(2)キャリアの全帯域を m個に分割してサブブロックを形成し、各サブブロッ クの送信データ用サブキャリアとピーク抑圧用サブキャリアの配置パターンを同一に する。(3)ピーク抑圧用サブキャリアには通信品質の低いサブキャリアを割り当て、か つピーク抑圧用サブキャリアの位相を 1、— 1、 j、 一 jのいずれかに統一する。」という 拘束条件を設定するのみで、ピーク抑圧のための演算を、従来に比べて、 lZ2mに 減少させることができる。この演算量が減少すると、その分 OFDM送信装置の送信 処理速度が向上するとともに消費電力を減少させることができる。
[0047] 2006年 2月 6日出願の特願 2006— 029056の日本出願に含まれる明細書、図面 および要約書の開示内容は、すべて本願に援用される。
産業上の利用可能性
[0048] 本発明は OFDM送信においてピーク抑圧のための減算処理を削減するので、そ の分高速の OFDM通信を行うのに有効である。

Claims

請求の範囲
[1] 全部で N個(Nは複数)のサブキャリアで構成されるサブキャリア群のうち、 NZ2番 目を中心に左右対称配置となり、かつ前記サブキャリア群を m個 (mは複数)に分割 したサブブロック内ですベて同じサブキャリアの配置パターンとなるように形成される キャリアから、各サブキャリアの通信品質に応じて、ピーク抑圧用サブキャリアを選択 するサブキャリア選択手段と、
前記サブキャリア選択手段が選択したピーク抑圧用のサブキャリアに、 1、 一 1、 j、 jのどれか一つに統一した位相データをマッピングする第 1のマッピング手段と、 前記ピーク抑圧用のサブキャリアにマッピングされた前記位相データを逆高速フー リエ変換する第 1の逆高速フーリエ変換手段と、
前記第 1の逆高速フーリエ変換手段の出力から 0データを除いて、ピーク抑圧用基 準信号を示すカーネル波形を発生するカーネル波形発生手段と、
前記サブキャリア選択手段が選択した前記ピーク抑圧用サブキャリア以外のサブキ ャリアに、送信データをマッピングする第 2のマッピング手段と、
前記送信データ用サブキャリアにマッピングされた前記送信データを逆高速フーリ ェ変換して送信データ波形を発生する第 2の逆高速フーリエ変換手段と、
前記送信データ波形から前記カーネル波形を減算するピーク抑圧波形減算手段と 、を具備する OFDM送信装置。
[2] 前記サブキャリア選択手段は、通信品質が低!、順に予め定めた数のサブキャリアを ピーク抑圧用サブキャリアとして選択する請求項 1記載の OFDM送信装置。
[3] 全部で N個(Nは複数)のサブキャリアで構成されるサブキャリア群のうち, NZ2番 目を中心に左右対称配置となり、かつ前記サブキャリア群を m個 (mは複数)に分割 したサブブロック内ですベて同じサブキャリアの配置パターンとなるように形成される キャリアから、各サブキャリアの通信品質に応じて、ピーク抑圧用サブキャリアを選択 するサブキャリア選択ステップと、
前記サブキャリア選択ステップで選択したピーク抑圧用のサブキャリアに、 1、 1、 j 、 一 jのどれか一つに統一した位相データをマッピングする第 1のマッピングステップと 前記ピーク抑圧用のサブキャリアにマッピングされた前記位相データを逆高速フー リエ変換する第 1の逆高速フーリエ変換ステップと、
前記第 1の逆高速フーリエ変換ステップでの出力から 0データを除いて、ピーク抑 圧用基準信号を示すカーネル波形を発生するカーネル波形発生ステップと、 前記サブキャリア選択ステップで選択した前記ピーク抑圧用サブキャリア以外のサ ブキャリアに、送信データをマッピングする第 2のマッピングステップと、
前記送信データ用サブキャリアにマッピングされた前記送信データを逆高速フーリ ェ変換して送信データ波形を発生する第 2の逆高速フーリエ変換ステップと、 前記送信データ波形力 前記カーネル波形を減算するピーク抑圧波形減算ステツ プと、を具備する OFDM送信装置の制御方法。
PCT/JP2007/051292 2006-02-06 2007-01-26 Ofdm送信装置およびその制御方法 WO2007091434A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006029056 2006-02-06
JP2006-029056 2006-02-06

Publications (1)

Publication Number Publication Date
WO2007091434A1 true WO2007091434A1 (ja) 2007-08-16

Family

ID=38345039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051292 WO2007091434A1 (ja) 2006-02-06 2007-01-26 Ofdm送信装置およびその制御方法

Country Status (1)

Country Link
WO (1) WO2007091434A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227724A (ja) * 2007-03-09 2008-09-25 Hitachi Communication Technologies Ltd Ofdm変調装置
JP2009055558A (ja) * 2007-08-29 2009-03-12 Hitachi Kokusai Electric Inc 直交多重信号のピーク抑圧方法、ピーク抑圧回路、及び送信装置
JP2010093788A (ja) * 2008-09-03 2010-04-22 Toshiba Corp 無線通信装置および無線通信装置の制御方法
JP2012516615A (ja) * 2009-01-30 2012-07-19 サムスン エレクトロニクス カンパニー リミテッド ケーブルデジタルビデオ放送システム及びその予約トーン処理方法
JP2012161086A (ja) * 2012-04-02 2012-08-23 Hitachi Kokusai Electric Inc ピーク抑圧回路、及び、無線送信機
JP2012209703A (ja) * 2011-03-29 2012-10-25 Fujitsu Semiconductor Ltd 送信機
JP2014192648A (ja) * 2013-03-27 2014-10-06 Nec Corp ピーク低減回路及びピーク低減方法
JP2016500971A (ja) * 2012-10-25 2016-01-14 ゼットティーイー コーポレーションZte Corporation マルチキャリアベースバンドのピーク除去装置及び方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205276A (ja) * 1998-01-20 1999-07-30 Nippon Telegr & Teleph Corp <Ntt> マルチキャリア変調装置
JP2001268050A (ja) * 2000-03-17 2001-09-28 Fujitsu Ltd マルチキャリア直接拡散送受信システム,マルチキャリア直接拡散送受信機,マルチキャリア直接拡散送信機及びマルチキャリア直接拡散受信機並びにマルチキャリア送受信システム,マルチキャリア送受信機,マルチキャリア送信機及びマルチキャリア受信機
JP2002009725A (ja) * 2000-06-22 2002-01-11 Victor Co Of Japan Ltd 直交周波数分割多重信号の生成方法、及び直交周波数分割多重信号生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205276A (ja) * 1998-01-20 1999-07-30 Nippon Telegr & Teleph Corp <Ntt> マルチキャリア変調装置
JP2001268050A (ja) * 2000-03-17 2001-09-28 Fujitsu Ltd マルチキャリア直接拡散送受信システム,マルチキャリア直接拡散送受信機,マルチキャリア直接拡散送信機及びマルチキャリア直接拡散受信機並びにマルチキャリア送受信システム,マルチキャリア送受信機,マルチキャリア送信機及びマルチキャリア受信機
JP2002009725A (ja) * 2000-06-22 2002-01-11 Victor Co Of Japan Ltd 直交周波数分割多重信号の生成方法、及び直交周波数分割多重信号生成装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227724A (ja) * 2007-03-09 2008-09-25 Hitachi Communication Technologies Ltd Ofdm変調装置
JP2009055558A (ja) * 2007-08-29 2009-03-12 Hitachi Kokusai Electric Inc 直交多重信号のピーク抑圧方法、ピーク抑圧回路、及び送信装置
US8111778B2 (en) 2007-08-29 2012-02-07 Hitachi Kokusai Electric Inc. Method for suppressing peak power of orthogonally multiplex signal, peak power suppressing circuit, and transmitter
JP2010093788A (ja) * 2008-09-03 2010-04-22 Toshiba Corp 無線通信装置および無線通信装置の制御方法
JP2012516615A (ja) * 2009-01-30 2012-07-19 サムスン エレクトロニクス カンパニー リミテッド ケーブルデジタルビデオ放送システム及びその予約トーン処理方法
US9172572B2 (en) 2009-01-30 2015-10-27 Samsung Electronics Co., Ltd. Digital video broadcasting-cable system and method for processing reserved tone
JP2012209703A (ja) * 2011-03-29 2012-10-25 Fujitsu Semiconductor Ltd 送信機
JP2012161086A (ja) * 2012-04-02 2012-08-23 Hitachi Kokusai Electric Inc ピーク抑圧回路、及び、無線送信機
JP2016500971A (ja) * 2012-10-25 2016-01-14 ゼットティーイー コーポレーションZte Corporation マルチキャリアベースバンドのピーク除去装置及び方法
US9590766B2 (en) 2012-10-25 2017-03-07 Zte Corporation Peak elimination device and method for multicarrier baseband
JP2014192648A (ja) * 2013-03-27 2014-10-06 Nec Corp ピーク低減回路及びピーク低減方法

Similar Documents

Publication Publication Date Title
JP4567483B2 (ja) Ofdm送信装置
JP4515155B2 (ja) 送信装置
WO2007091434A1 (ja) Ofdm送信装置およびその制御方法
Al-Jawhar et al. Reducing PAPR with low complexity for 4G and 5G waveform designs
JP5168584B2 (ja) 無線伝送システムにおける信号生成装置及び方法並びにそのプログラム
JP5912026B2 (ja) 通信装置および通信システム
KR100899747B1 (ko) 직교주파수분할다중 시스템의 첨두대평균 전력비 저감을위한 장치 및 방법
US8699590B2 (en) Efficient OFDM peak reduction algorithm
JP4932641B2 (ja) 通信装置におけるピーク電力低減装置
US7864874B2 (en) OFDM communications system employing crest factor reduction with ISI control
Dash et al. OFDM systems and PAPR reduction techniques in OFDM systems
JP4538052B2 (ja) Ofdm信号の処理方法及びofdm送信機
JP2010011179A (ja) 無線送信装置、無線受信装置および方法
JP2009033622A (ja) Ofdm送信装置及びofdm受信装置並びにインターリーブ方法
JP4601504B2 (ja) 送信機及び送信方法
CN110519006A (zh) 基于符号缩短的单载波交织式频分多址信号传输方法
JP5213879B2 (ja) 送信装置および変調方法
US8891644B2 (en) Communication apparatus and communication method
JP2006524923A (ja) 多重変調伝送方法
JP4772911B2 (ja) 送信装置及び受信装置
JP4539969B2 (ja) マルチキャリアスペクトル拡散通信装置及びマルチキャリアスペクトル拡散通信方法
JP3768448B2 (ja) Ofdm信号伝送装置、ofdm信号受信装置およびofdm信号受信方法
KR100829568B1 (ko) 무선 통신 방법 및 장치
JP2005033341A (ja) 送信装置、増幅回路及び送信方法
JP7464714B2 (ja) 低ピーク平均電力比に関する時間ドメイン変調スキーム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP