JP2010011179A - 無線送信装置、無線受信装置および方法 - Google Patents
無線送信装置、無線受信装置および方法 Download PDFInfo
- Publication number
- JP2010011179A JP2010011179A JP2008169075A JP2008169075A JP2010011179A JP 2010011179 A JP2010011179 A JP 2010011179A JP 2008169075 A JP2008169075 A JP 2008169075A JP 2008169075 A JP2008169075 A JP 2008169075A JP 2010011179 A JP2010011179 A JP 2010011179A
- Authority
- JP
- Japan
- Prior art keywords
- subband
- group
- mapping
- sequence
- bandwidth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
【課題】消費電力を低下させる。
【解決手段】複数のサブバンドを分類するグループ情報を生成する手段と、送信信号であるビット列を変調したシンボル列を、グループ情報に応じて各サブバンドグループに対応した1以上の、各サブバンドグループの帯域幅の合計に比例するシンボル数を有するサブシンボル列に分割する手段702と、サブシンボル列ごとに、フーリエ変換して周波数データ列を取得する手段703と、周波数データ列ごとに周波数データ列を、サブシンボル列に対応するサブバンドグループ内のサブバンドの帯域幅に応じたフィルタを用いて分割してマッピングデータ列を取得する手段704と、複数のマッピングデータ列を対応するサブバンドのサブキャリアにマッピングしてマッピング信号を取得するマッピング手段705と、マッピング信号を逆フーリエ変換して時間波形を取得する手段706と、時間波形を送信する手段と、を具備する。
【選択図】図7
【解決手段】複数のサブバンドを分類するグループ情報を生成する手段と、送信信号であるビット列を変調したシンボル列を、グループ情報に応じて各サブバンドグループに対応した1以上の、各サブバンドグループの帯域幅の合計に比例するシンボル数を有するサブシンボル列に分割する手段702と、サブシンボル列ごとに、フーリエ変換して周波数データ列を取得する手段703と、周波数データ列ごとに周波数データ列を、サブシンボル列に対応するサブバンドグループ内のサブバンドの帯域幅に応じたフィルタを用いて分割してマッピングデータ列を取得する手段704と、複数のマッピングデータ列を対応するサブバンドのサブキャリアにマッピングしてマッピング信号を取得するマッピング手段705と、マッピング信号を逆フーリエ変換して時間波形を取得する手段706と、時間波形を送信する手段と、を具備する。
【選択図】図7
Description
この発明は、DFTによるデータ変換を用いたOFDM方式の無線送信装置、無線受信装置および方法に関する。
データ列を1つのDFTで周波数変換してから複数のリソースブロックに分割し、分割した帯域ごとにフィルタ処理を施す送信方法がある(例えば、特許文献1参照)。
特開2007−306131公報
このように従来の送信方法では、データを周波数に変換するDFTの数が1つであり、データが多くなると計算量が増加する問題がある。また、使用する帯域幅の組み合わせによって時間波形のピーク電力が高くなる問題がある。また、分割された帯域ごとに閉じたフィルタ処理を実行している(すなわち、周波数的に分割されたデータごとにフィルタ処理を適用している)ため時間波形のピーク電力が高くなる問題がある。
この発明は、上述した事情を考慮してなされたものであり、消費電力を低下させることができる無線送信装置、無線受信装置および方法を提供することを目的とする。
上述の課題を解決するため、本発明の無線送信装置は、複数のサブバンドのうち、サブバンドグループに含まれる1以上のサブバンドのうちの最小帯域幅と注目サブバンドの帯域幅との最小値と、該サブバンドグループに含まれる1以上のサブバンドのうちの最大帯域幅と該注目サブバンドの帯域幅との最大値との比と1との差の絶対値のβ乗(βは正の実数)が閾値以下である場合には、該注目サブバンドは該サブバンドグループに属するとして分類して各サブバンドグループの特徴を含むグループ情報を生成する生成手段と、送信信号であるビット列を変調したシンボル列を、前記グループ情報に応じて各サブバンドグループに対応した1以上の、各サブバンドグループの帯域幅の合計に比例するシンボル数を有するサブシンボル列に分割する分割手段と、前記サブシンボル列ごとに、フーリエ変換して周波数データ列を取得する、各サブバンドグループに対応した1以上の周波数変換手段と、前記周波数データ列ごとに該周波数データ列を、前記サブシンボル列に対応するサブバンドグループ内のサブバンドの帯域幅に応じたフィルタを用いて分割してマッピングデータ列を取得する、各サブバンドグループに対応した1以上の分割手段と、複数の前記マッピングデータ列を対応するサブバンドのサブキャリアにマッピングしてマッピング信号を取得するマッピング手段と、前記マッピング信号を逆フーリエ変換して時間波形を取得する周波数逆変換手段と、前記時間波形を送信する送信手段と、を具備することを特徴とする。
また、本発明の無線送信装置は、複数のサブバンドのうち、注目サブバンドの帯域幅と、該注目サブバンドの帯域幅とサブバンドグループに含まれる1以上のサブバンドの帯域幅との平均値との比と1との差の絶対値のβ乗(βは正の実数)が閾値以下である場合には、該注目サブバンドは該サブバンドグループに属するとして分類して各サブバンドグループの特徴を含むグループ情報を生成する生成手段と、送信信号であるビット列を変調したシンボル列を、前記グループ情報に応じて各サブバンドグループに対応した1以上の、各サブバンドグループの帯域幅の合計に比例するシンボル数を有するサブシンボル列に分割する分割手段と、前記サブシンボル列ごとに、フーリエ変換して周波数データ列を取得する、各サブバンドグループに対応した1以上の周波数変換手段と、前記周波数データ列ごとに該周波数データ列を、前記サブシンボル列に対応するサブバンドグループ内のサブバンドの帯域幅に応じたフィルタを用いて分割してマッピングデータ列を取得する、各サブバンドグループに対応した1以上の分割手段と、複数の前記マッピングデータ列を対応するサブバンドのサブキャリアにマッピングしてマッピング信号を取得するマッピング手段と、前記マッピング信号を逆フーリエ変換して時間波形を取得する周波数逆変換手段と、前記時間波形を送信する送信手段と、を具備することを特徴とする。
本発明の無線受信装置は、データ信号および、使用する複数のサブバンドを示すサブバンド情報またはグループ情報を受信する受信手段と、前記データ信号をフーリエ変換し周波数データ列を得る周波数変換手段と、前記サブバンド情報を受信した場合には前記サブバンド情報を復調し、前記グループ情報を受信した場合にはグループ情報を復調する復調手段と、前記サブバンド情報を復調した場合には前記サブバンド情報を送信した無線送信装置と同一の手法によって前記複数のサブバンドを1以上のサブバンドグループに分類する分類手段と、前記周波数データ列をサブバンドグループごとに分割しデマッピングしグループ周波数データを取得する取得手段と、前記グループ周波数データの重複部分を合成し、複数の合成周波数データを取得する取得手段と、合成周波数データごとに該合成周波数データを逆フーリエ変換し、受信サブシンボル列を得る周波数逆変換手段と、各サブバンドグループで計算した受信サブシンボル列を合成し受信シンボル列を得る合成手段と、前記受信シンボル列を復調する復調手段と、を具備することを特徴とする。
本発明の無線送信装置、無線受信装置および方法によれば、消費電力を低下させることができる。
以下、図面を参照しながら本発明の実施形態に係る無線送信装置、無線受信装置および方法について詳細に説明する。なお、以下の実施形態では、同一の番号を付した部分については同様の動作を行うものとして、重ねての説明を省略する。
(第1の実施形態)
本実施形態の無線通信システムは、図1に示すように、本実施形態の無線送信装置と無線受信装置を含む。この無線通信システムの無線送信装置101と無線受信装置102との間の通信には、複数の離散的で断片的な帯域(サブバンド)を使用する。
(第1の実施形態)
本実施形態の無線通信システムは、図1に示すように、本実施形態の無線送信装置と無線受信装置を含む。この無線通信システムの無線送信装置101と無線受信装置102との間の通信には、複数の離散的で断片的な帯域(サブバンド)を使用する。
次に、本実施形態の無線送信装置101と無線受信装置102との間の通信で使用するサブバンドの一例について図2を参照して説明する。
本実施形態の無線送信装置は、使用するサブバンドの組み合わせに応じて、適応的な送信信号処理を施すことに特徴がある。使用するサブバンドは時間や場所に応じて変化するような状況も想定して決定されている。図2の例では、SB1からSB5までの5つのサブバンドがあり、それぞれのサブバンドの中心周波数がF1からF5で、帯域幅がW1からW5となっている。
本実施形態の無線送信装置は、使用するサブバンドの組み合わせに応じて、適応的な送信信号処理を施すことに特徴がある。使用するサブバンドは時間や場所に応じて変化するような状況も想定して決定されている。図2の例では、SB1からSB5までの5つのサブバンドがあり、それぞれのサブバンドの中心周波数がF1からF5で、帯域幅がW1からW5となっている。
次に、本実施形態の無線送信装置101について図3を参照して説明する。
本実施形態の無線送信装置101は、使用するサブバンドを無線送信装置自身が空き周波数をキャリアセンシングにより決定するような通信システムを想定している。
本実施形態の無線送信装置101は、使用するサブバンドを無線送信装置自身が空き周波数をキャリアセンシングにより決定するような通信システムを想定している。
無線送信装置101は、切り替え部301、RF受信部302、キャリアセンス部303、サブバンド決定部304、サブバンド情報変調部305、グループ決定部306、送信信号処理部307、信号選択部308、RF送信部309を含む。
切り替え部301は、動作時の時刻がキャリアセンス期間、サブバンド情報送信期間、データ通信期間のいずれであるかによって、RF受信部302とアンテナとを接続するか、RF送信部309とアンテナとを接続するかを切り替える。1つの時間フレームは、例えば図4に示すように、キャリアセンス期間401、サブバンド情報送信期間402、データ通信期間403の順に配置されている。
キャリアセンス部303は、キャリアセンス期間401において、アンテナから受信信号を取得し、システムが使用可能な周波数帯の干渉レベルを測定する。
サブバンド決定部304は、キャリアセンス部303が測定した干渉レベルが閾値よりも低い周波数帯域を決定する。サブバンド決定部304が決定する周波数帯域は、データ通信期間403において無線送信装置が無線受信装置へデータを送信するときに使用するサブバンドである。サブバンド決定部304は、各サブバンドの中心周波数と帯域幅とを含むサブバンド情報を生成する。サブバンド情報の一例を図5に示す。本実施形態の送信方法は、OFDM方式をベースにしているので、帯域幅とサブキャリア数は情報として等価になる。つまり、図5の例の場合には、サブキャリア間隔 = W1/C1 = W2/C2 = ・・・ = W5/C5である。
サブバンド情報変調部305は、サブバンド情報送信期間402において、サブバンド決定部304からの出力のサブバンド情報を、無線受信装置に通知するためのデータ変調を施す。RF送信部309が変調されたサブバンド情報をサブバンド情報変調部305から受け取り、無線受信装置へアンテナから送信する。サブバンド情報の具体的な変調手法や送信手法については、本発明の対象外であるが、例えば、常に、特定に周波数帯で決まった変調手法で送信するなどの手法がある。また、サブバンド情報送信期間において送信する情報は、サブバンド情報ではなく、グループ決定部306で決定されるグループ情報であっても当然よい(これに伴う受信処理は図21参照)。ただし、無線送信装置と無線受信装置が、グループを構成する際に同じアルゴリズムを実装していれば、サブバンド情報とグループ情報は情報として等価になる。
グループ決定部306は、サブバンド決定部304が生成したサブバンド情報に基づいて、N個(Nは1以上の整数)のサブバンド(図2ではN=5)を、K個(Kは1以上N以下の整数)のグループに分割し、グループ情報を生成する。グループの決定手法については、後にグループ化する2つの方針を提示し具体的に4つの計算メトリックを提示して説明する。図6は、サブバンドのグループ化の一例を示す図であり、図2の5つサブバンド(SB1〜SB5)を2つのグループに分割している。図6の例では、SB1とSB3が第1グループであり、SB2、SB4、SB5が第2グループである。また、第nグループ(図2では、n=1、2)のサブバンドの合計帯域幅をTWnとする。グループ情報は、図6に含まれる情報のうち、グループごとに、サブバンド、サブバンド数、帯域幅、および、サブキャリア数の情報を含んでいる。
送信信号処理部307は、データ通信期間403において、ビット列を取得し、グループ決定部306から取得したグループ情報に基づいて、このビット列からマッピングデータ列を生成し、使用するサブバンドのサブキャリアにマッピングし、逆フーリエ変換(IFFT)によって時間軸の信号(時間波形)を生成する。RF送信部309は、この生成された信号(ベースバンド信号)からRF信号へ変換し、アンテナを介して無線受信装置に向けて送信する。送信信号処理部307の詳細については後に図7、図15、図18、図20を参照して説明する。
次に、図3の送信信号処理部307について図7から図14を参照して説明する。
送信信号処理部307は、変調部701、シンボル列分配部702、複数のDFT(discrete Fourier transform)変換部703、複数の周波数分割部704、サブバンドマッピング部705、IFFT変換部706を含む。
送信信号処理部307は、変調部701、シンボル列分配部702、複数のDFT(discrete Fourier transform)変換部703、複数の周波数分割部704、サブバンドマッピング部705、IFFT変換部706を含む。
変調部701は、送信データのビット列をデータ変調し、シンボルを要素とするシンボル列に変換する。シンボルは、複素数データであり、例えば、BPSK(binary phase shift keying)変調やQAM(quadrature amplitude modulation)変調の信号点を意味する。
シンボル列分配部702は、変調部701から出力されたシンボル列を、グループ決定部306で決定されたグループ数に分割し、グループ数に対応した複数のサブシンボル列を生成する。
各DFT変換部703は、各グループに対応するサブシンボル列を入力し、入力サイズと同じ大きさのDFT変換によって周波数変換し、周波数データ列を取得する。
各周波数分割部704は、グループ情報を参照し、対応するDFT変換部703が得た周波数データ列をグループ内のサブバンドにマッピングするためのデータであるマッピングデータ列に変換する。
サブバンドマッピング部705は、グループ情報を参照し、それぞれの周波数分割部704が得た各マッピングデータ列を、対応するサブバンドのサブキャリアにマッピングする。
IFFT変換部706は、サブバンドマッピング部705の出力信号に逆フーリエ変換処理を施し時間軸の信号に変換する。IFFT変換部の出力信号に対して、通信路におけるマルチパスフェージング対策のために、ガードインターバルを付加する処理を施してもよい(図示せず)。IFFT変換部706の出力信号はRF送信部309に渡される。
以下、送信信号処理部307の詳細について、図2および図5に対応するサブバンドが図6のようにグループ化された場合を例として図8から図14を参照して説明する。なお、変調部701は、R(2以上の自然数)個のシンボル(S(n),n=1,2,…,R)を要素とするシンボル列を出力するとする。
シンボル列分配部702は、変調部701の出力であるシンボル列を、図8に示すように、グループ決定部306が決定したグループ数である2つのグループに分割する。図6に示されている、第1グループに割り振られるシンボル数R1、および、第2グループに割り振られるシンボル数R2は、シンボル列分配部702で計算される。この場合、R2 = R−R1である。
ここで、サブキャリア数(帯域幅)とシンボル数の関係について説明する。送信するシンボル数Rと、使用するサブバンドの合計のサブキャリア数Cとすれば、C = (1+α)×Rと表すことができる。図5の例では、C = C1+C2+C3+C4+C5である。このとき、αは帯域幅の拡張率でありシステムごとに与えられる、例えば、1つだけのサブバンドを使用するような状況であれば、フィルタのロールオフ率に相当する。サブキャリア拡張数を、E = C−Rとして定義すると、上述のようにR個のシンボルを複数のグループに分割するのと、拡張分のE個のサブキャリアを複数のグループに分割するのは全く同じ意味である。つまり、シンボルの分割と拡張分の分割のいずれか一方を計算すれば、もう一方は自動的に計算されることになる。図6のシンボル数とサブキャリア数の関係は、TC1 = R1+E1、TC2 = R2+E2であることは明らかである。
シンボル列分配部702が行う各グループでのシンボル数の決定手法は、各グループの合計サブキャリア数(または、合計帯域幅)によってシンボル数を割り振る手法で、以下の式で計算できる。
R1 = R×TC1/(TC1+TC2)
R2 = R−R1
ただし、計算結果が実数でない場合には、四捨五入や小数点以下の切捨て等をする。
R2 = R−R1
ただし、計算結果が実数でない場合には、四捨五入や小数点以下の切捨て等をする。
次に、図8に示すように、第1グループに対応するDFT変換部703がシンボル列分配部702から出力された、第1サブシンボル列(S(n),n=1,2,…,R1)を、入力サイズR1と同じ大きさのDFT変換によって周波数変換を行い、R1個の周波数データを含む第1周波数データ列(F1(n),n=1,2,…,R1)に変換する。第2グループに対応するDFT変換部703がシンボル列分配部702から出力された、第2サブシンボル列(S(n+R1),n=1,2,…,R2)を、入力サイズR2と同じ大きさのDFT変換によって周波数変換を行い、R2個の周波数データを含む第2周波数データ(F2(n),n=1,2,…,R2)に変換する。
次に、第1グループに対応する周波数分割部704の動作について図9を参照して説明する。図9は、対応するDFT変換部703の出力である第1周波数データ列を、グループ内のサブバンドにマッピングするためのデータである第1マッピングデータ列に変換するための動作を説明する図である。
まず、図9に示すように、第1周波数データ列を、周波数軸上に前後に繰り返し周期的に並べたデータ列を作成する。次に、グループ内のサブバンドそれぞれに対応して、そのデータ列に対して、サブバンドの帯域幅を持つフィルタによって、データ列が互いにオーバーラップするように切り出す。図9では、SB1の帯域幅(W1;C1に対応)を持つフィルタ1と、SB3の帯域幅(W3;C3に対応)を持つフィルタ3とが、互いにオーバーラップするように第1周波数データ列をフィルタによる整形をしながら抽出している。また、図9において、フィルタ1が2箇所記述されているが、フィルタ1をR1×(サブチャネル幅)だけ平行移動したものであり、どちらも同じデータを切り出すものである。
まず、図9に示すように、第1周波数データ列を、周波数軸上に前後に繰り返し周期的に並べたデータ列を作成する。次に、グループ内のサブバンドそれぞれに対応して、そのデータ列に対して、サブバンドの帯域幅を持つフィルタによって、データ列が互いにオーバーラップするように切り出す。図9では、SB1の帯域幅(W1;C1に対応)を持つフィルタ1と、SB3の帯域幅(W3;C3に対応)を持つフィルタ3とが、互いにオーバーラップするように第1周波数データ列をフィルタによる整形をしながら抽出している。また、図9において、フィルタ1が2箇所記述されているが、フィルタ1をR1×(サブチャネル幅)だけ平行移動したものであり、どちらも同じデータを切り出すものである。
同様に、第2グループに対応する周波数分割部704の動作について図10を参照して説明する。図10は、対応するDFT変換部703の出力である第2周波数データ列を、グループ内のサブバンドにマッピングするためのデータである第2マッピングデータ列に変換するための動作を説明する図である。
まず、図10に示すように、第2周波数データ列を、周波数軸上に前後に繰り返し周期的に並べたデータ列を作成する。次に、グループ内のサブバンドそれぞれに対応して、そのデータ列に対して、サブバンドの帯域幅を持つフィルタによって、データ列が互いにオーバーラップするように切り出す。図10では、SB2の帯域幅(W2;C2に対応)を持つフィルタ2と、SB4の帯域幅(W4;C4に対応)を持つフィルタ4と、SB5の帯域幅(W5;C5に対応)を持つフィルタ5とが、互いにオーバーラップするように第2周波数データ列をフィルタによる整形をしながら抽出している。また、図10において、フィルタ2が2箇所記述されているが、フィルタ2をR2×(サブチャネル幅)だけ平行移動したものであり、どちらも同じデータを切り出すものである。
サブバンドマッピング部705は、図9、図10に示したように生成されたマッピングデータ列を、それぞれ対応するサブバンドのサブキャリアに図11に示すようにマッピングする。サブバンドマッピング部705の出力は、IFFT変換部706へ送られ、逆フーリエ変換処理が施され時間軸の信号が出力される。
次に、各周波数分割部704が備えているフィルタの決定手法について図12を参照して説明する。図12は、図10のサブバンドごとのフィルタを書き出した図である。
無線受信装置が同じ受信フィルタによる信号合成をした場合において、完全再構成可能なフィルタの条件は、フィルタの合計値の2乗が、中心のR2サブキャリアの周波数においてフラットになるようなフィルタである。具体的な例としては、非オーバーラップ部分がフラット(つまり、1)で、オーバーラップ部分が、ルートロールオフ関数になっているようなフィルタである。さらに、隣接するフィルタでは、オーバーラップ部分は、同じ関数を反転した形状になる。例えば、図12において、フィルタ2の右側と、フィルタ4の左側のオーバーラップ領域は対称な形状になっている。すなわち、フィルタ2とフィルタ4のオーバーラップ領域でフィルタ2の右側とフィルタ4の左側が周波数S1に関して対称となっている。また、フィルタ4とフィルタ5のオーバーラップ領域でフィルタ4の右側とフィルタ5の左側が周波数S2に関して対称となっている。
無線受信装置が同じ受信フィルタによる信号合成をした場合において、完全再構成可能なフィルタの条件は、フィルタの合計値の2乗が、中心のR2サブキャリアの周波数においてフラットになるようなフィルタである。具体的な例としては、非オーバーラップ部分がフラット(つまり、1)で、オーバーラップ部分が、ルートロールオフ関数になっているようなフィルタである。さらに、隣接するフィルタでは、オーバーラップ部分は、同じ関数を反転した形状になる。例えば、図12において、フィルタ2の右側と、フィルタ4の左側のオーバーラップ領域は対称な形状になっている。すなわち、フィルタ2とフィルタ4のオーバーラップ領域でフィルタ2の右側とフィルタ4の左側が周波数S1に関して対称となっている。また、フィルタ4とフィルタ5のオーバーラップ領域でフィルタ4の右側とフィルタ5の左側が周波数S2に関して対称となっている。
次に、第2周波数データ列を分割するフィルタの一例について図13を参照して説明する。
図13に示す例では、フィルタは左右対称な形状であり、オーバーラップする形状が全て等しくなるようなフィルタである。図13の場合では、オーバーラップする帯域幅でのサブキャリア数をVとすれば、フィルタ2、フィルタ4、フィルタ5のフラット部分のサブキャリア数は、それぞれU2 = C2−2×V、U4 = C4−2×V、U5 = C5−2×Vとなり、オーバーラップするサブキャリア数からのみ、自動的にフィルタ形状を決定することができる。
図13に示す例では、フィルタは左右対称な形状であり、オーバーラップする形状が全て等しくなるようなフィルタである。図13の場合では、オーバーラップする帯域幅でのサブキャリア数をVとすれば、フィルタ2、フィルタ4、フィルタ5のフラット部分のサブキャリア数は、それぞれU2 = C2−2×V、U4 = C4−2×V、U5 = C5−2×Vとなり、オーバーラップするサブキャリア数からのみ、自動的にフィルタ形状を決定することができる。
次に、オーバーラップするサブキャリア数Vの値の決定手法について説明する。オーバーラップサブキャリア数がV2であれば、フィルタ処理による帯域幅の拡張によるサブキャリア数の増加は、N2×V2 = 3×V2となる。先に説明したように、サブキャリア拡張数がE2であるので、V2 = E2/3で計算できる。Vが整数でない場合には、小数点以下は切り捨てて考えればいい。同様にして、図14に示すように、第1グループでは、オーバーラップするサブキャリア数は、V1 = E1/2で計算できる。
ここで、n=0がフィルタの中心である。
次に、図3に示したグループ決定部306の動作例について詳細に説明する。
グループ化する方針の1点目は、サブバンドの帯域幅が近いもの同士をグループ化することである。このようにする利点としては、先に説明したオーバーラップ領域が確保しやすい点にある。例えば、帯域幅の大きく異なるサブバンドを同じグループにした場合には、小さいサブバンドの帯域幅以上はオーバーラップできない。そのため、帯域の大きな信号に対してはロールオフ率の小さいフィルタを適用したような構成になってしまうからである。さらに、別の利点としては、同じような大きさのものをグループ化すると、時間波形のピーク電力が小さくなる傾向があることである。
グループ化する方針の1点目は、サブバンドの帯域幅が近いもの同士をグループ化することである。このようにする利点としては、先に説明したオーバーラップ領域が確保しやすい点にある。例えば、帯域幅の大きく異なるサブバンドを同じグループにした場合には、小さいサブバンドの帯域幅以上はオーバーラップできない。そのため、帯域の大きな信号に対してはロールオフ率の小さいフィルタを適用したような構成になってしまうからである。さらに、別の利点としては、同じような大きさのものをグループ化すると、時間波形のピーク電力が小さくなる傾向があることである。
グループ決定の第1の手法は、グループ内のサブバンドの帯域幅の最小値と最大値との比と1との差の絶対値のβ乗(βは正の実数)をメトリックとし、メトリックが閾値以下になるようにグループ化する。閾値以下になるグループが複数ある場合には、その比が最も1に近いグループに属するようにグループ化させる。より詳しくは、複数のサブバンドのうち、サブバンドグループに含まれる1以上のサブバンドのうちの最小帯域幅と第1サブバンドの帯域幅との最小値と、このサブバンドグループに含まれる1以上のサブバンドのうちの最大帯域幅と第1サブバンドの帯域幅との最大値との比と1との差の絶対値のβ乗(βは正の実数)が閾値以下である場合には、第1サブバンドはこのサブバンドのグループ(サブバンドグループと呼ぶ)に属するとして分類する。
グループ決定の第2の手法は、グループ内の各サブバンドの帯域幅とグループ内のサブバンドの帯域幅の平均値との比と1との差の絶対値のβ乗をメトリックとし、メトリックが閾値以下になるようにグループ化する。閾値以下になるグループが複数ある場合には、帯域幅の比が最も1に近いグループに属するようにグループ化させる。ただし、βは設計パラメータである。より詳しくは、複数のサブバンドのうち、第1サブバンドの帯域幅と、第1サブバンドの帯域幅とサブバンドグループに含まれる1以上のサブバンドの帯域幅との平均値との比と1との差の絶対値のβ乗が閾値以下である場合には、第1サブバンドはこのサブバンドグループに属するとして分類する。
グループ決定部306が行うグループ決定の第1から第2の手法を簡略化したアルゴリズムを以下に説明する。
まず、サブバンドを帯域幅が小さい順もしくは大きい順に並べ替える。サブバンドを順番に試行し、一つ前のサブバンドと同じグループに含めるかどうかを順次判定してゆく。判定手法としては、第1から第2のいずれかの手法での計算メトリックを用いることができる。例えば、k−1番目(k:1以上の自然数)のサブバンドが属するグループは、現時点でグループ内のサブバンド数がNs、合計帯域幅がWt、最小帯域幅がWmin、最大帯域幅がWmaxであったとした場合には、k番目のサブバンドのサブバンド幅がWkであったとすれば、Wmean = (Wt+Wk)/(Ns+1)とすると、第1および第2の手法では以下のメトリックをそれぞれ用いることができる。
まず、サブバンドを帯域幅が小さい順もしくは大きい順に並べ替える。サブバンドを順番に試行し、一つ前のサブバンドと同じグループに含めるかどうかを順次判定してゆく。判定手法としては、第1から第2のいずれかの手法での計算メトリックを用いることができる。例えば、k−1番目(k:1以上の自然数)のサブバンドが属するグループは、現時点でグループ内のサブバンド数がNs、合計帯域幅がWt、最小帯域幅がWmin、最大帯域幅がWmaxであったとした場合には、k番目のサブバンドのサブバンド幅がWkであったとすれば、Wmean = (Wt+Wk)/(Ns+1)とすると、第1および第2の手法では以下のメトリックをそれぞれ用いることができる。
第1の手法の計算メトリック = |1−min(Wmin,Wk)/max(Wmax,Wk)|β
第2の手法の計算メトリック = |1−Wk/Wmean|β
この計算メトリックが閾値以下であれば、k番目のサブバンドはk−1番目と同じグループになり、そうでなければ、k番目のサブバンドが新たなグループとなる。この判定を順次繰り返すことで、全サブバンドを簡単にグループ化することができる。なお、この手法によれば、全サブバンドが1つのグループになることもある。
第2の手法の計算メトリック = |1−Wk/Wmean|β
この計算メトリックが閾値以下であれば、k番目のサブバンドはk−1番目と同じグループになり、そうでなければ、k番目のサブバンドが新たなグループとなる。この判定を順次繰り返すことで、全サブバンドを簡単にグループ化することができる。なお、この手法によれば、全サブバンドが1つのグループになることもある。
グループ化する方針の2点目としては、サブバンドの帯域幅の合計値ができるだけ近くなるように、グループ化する手法がある。このような手法の利点は、DFT変換による計算量を削減することが可能になることである。例えば、2つにグループ化した場合のシンボル数が、R1、R2(= R−R1)である場合に、DFT変換の処理量の合計は、R1×log(R1)+R2×log(R2)のオーダーになる。このとき、計算量の合計が最小になるのは、R1=R2=R/2の場合である。
グループ決定の第4の手法は、グループ数がNの場合において、各グループ内のサブバンドの合計帯域幅と、R/Nとの差の絶対値のβ乗を計算メトリックとし、その値が最小になるように、サブバンドのグループ化を実施する。
以上のいずれかの手法によってグループ化されたサブバンドに関して、全てではなく一部のグループのみを送信することも可能である。例えば、各グループの時間波形の和の振幅値が閾値以下になるような、グループの組み合わせを選んで送信することもできる。なお、第3の手法および第4の手法による場合には、Nは2以上である必要がある。
(送信信号処理部307の第1変形例)
図15に送信信号処理部307の第1変形例を示す。第1変形例が図7の送信信号処理部307と異なるところは、サブバンドマッピング部1501とIFFT変換部1502とが複数設けられ、さらに新たにグループ選択部1503が設けられることである。
図15に送信信号処理部307の第1変形例を示す。第1変形例が図7の送信信号処理部307と異なるところは、サブバンドマッピング部1501とIFFT変換部1502とが複数設けられ、さらに新たにグループ選択部1503が設けられることである。
サブバンドマッピング部1501は、周波数分割部704と同数設けられ1対1対応で周波数分割部704に接続し、周波数分割部704の出力であるマッピングデータ列それぞれに対してサブバンドのサブキャリアにマッピングする。
IFFT変換部1502は、周波数分割部704と同数設けられ1対1対応でサブバンドマッピング部1501に接続し、サブバンドマッピング部1501の出力信号に逆フーリエ変換処理を施し時間軸の信号に変換する。
グループ選択部1503は、それぞれのグループに対するIFFT変換部1502の出力信号に対して、これらのグループの全部あるいは一部のみを選択し、選択したIFFT変換部1502の出力信号を加算した信号を出力する。グループ選択部1503が送信するグループを選択する手法は、IFFT変換部1502の出力信号を加算した時間軸の信号のピーク電力が閾値以下になるような組み合わせの中で、最も送信されるビット数が多いグループを選択する手法がある。また、全グループに対して同時に処理を施すのではなく、例えば第1グループから順次処理してゆき、累積して加算された時間軸の信号のピーク電力が一定値(閾値)を超えない範囲のグループを選択して送信するといった手法もある。
なお、第1変形例の送信信号処理部307において、グループ選択部1503が常にすべてのグループを選択した場合には、図7の送信信号処理部307と同じ出力信号になる。
なお、第1変形例の送信信号処理部307において、グループ選択部1503が常にすべてのグループを選択した場合には、図7の送信信号処理部307と同じ出力信号になる。
第1変形例では、常に全てのグループを送信する必要な必ずしもなく、適切なグループの組み合わせを選択して送信することができる。
さらに、1つ以上のグループを纏めて新たにCRC(cyclic redundancy check)グループを生成し、CRCグループで送信するデータに対して誤り検出用のCRCビットを付加することで、一部のサブバンドのみが使用不可能になった場合でも、データレートの低下を最小限に抑える手法もある。この手法について図16、図17を参照して説明する。
図16は、CRCグループ処理部1600の一例を示す図である。図3の送信信号処理部307をCRCグループ処理部1600に置き換えて適用する。CRCグループ処理部1600は、複数の送信信号処理部307、CRCグループ決定部1601、データ列分配部1602、複数のCRC付加部1603、送信CRCグループ選択部1604を含む。
図16は、CRCグループ処理部1600の一例を示す図である。図3の送信信号処理部307をCRCグループ処理部1600に置き換えて適用する。CRCグループ処理部1600は、複数の送信信号処理部307、CRCグループ決定部1601、データ列分配部1602、複数のCRC付加部1603、送信CRCグループ選択部1604を含む。
CRCグループ決定部1601は、グループ情報をグループ決定部306から受け取り、サブバンドの1つ以上のグループを含むように新たにCRCグループを生成し、複数のCRCグループのグループ情報を含んだCRCグループ情報をデータ列分配部1602および複数の送信信号処理部307に渡す。
CRCグループで送信されるデータが誤り検出の単位であり再送単位になるので、CRCグループ決定部1601は、各CRCグループによって送信される合計ビット数やシンボル数ができるだけ同じになるように設定する。CRCグループ決定部1601は、例えば図17に示すようにCRCグループを決定する。図17は、グループ決定部306によって決定したサブバンドグループとCRCグループの関係の一例を示す。図17の例では、SB1〜SB8までの8つのサブバンドがあり、これらがグループ決定部306によって第1〜第4までの4つのグループに分割されていた場合に、CRCグループ決定部1601が2つのCRCグループ(第1CRCグループと第2CRCグループ)に分類する例である。図17において、第mCRCグループ情報は、第mCRCグループに含まれるグループ情報を意味する。
CRCグループで送信されるデータが誤り検出の単位であり再送単位になるので、CRCグループ決定部1601は、各CRCグループによって送信される合計ビット数やシンボル数ができるだけ同じになるように設定する。CRCグループ決定部1601は、例えば図17に示すようにCRCグループを決定する。図17は、グループ決定部306によって決定したサブバンドグループとCRCグループの関係の一例を示す。図17の例では、SB1〜SB8までの8つのサブバンドがあり、これらがグループ決定部306によって第1〜第4までの4つのグループに分割されていた場合に、CRCグループ決定部1601が2つのCRCグループ(第1CRCグループと第2CRCグループ)に分類する例である。図17において、第mCRCグループ情報は、第mCRCグループに含まれるグループ情報を意味する。
データ列分配部1602は、データ通信期間403において、ビット列を取得し、CRCグループ決定部1601から取得したCRCグループ情報に基づいて、各CRCグループに含まれる送信するシンボル数にしたがって、各CRCグループに対応してビット列を分割し、分割したビット列をそれぞれCRC付加部1603に渡す。
各CRC付加部1603は、データ列分配部1602から取得したビット列に誤り検出のためのCRCビットを付加し、CRCビットが付加されたビット列を対応する送信信号処理部307に渡す。CRC付加部1603と送信信号処理部307は同数個設置されて2つで1組になっていて、各組はCRCグループのいずれかに対応している。
図16のそれぞれの送信信号処理部307は、CRCビットが付加されたビット列を図7で示した送信信号処理部307と同様にして必要な処理が施され時間軸の信号をそれぞれのCRCグループに対して生成し送信CRCグループ選択部1604に渡す。
送信CRCグループ選択部1604は、各CRCグループに対する各送信信号処理部307からの出力信号の全部あるいは一部のみを選択して加算した信号を生成し信号選択部308に渡す。CRCグループを選択する手法としては、加算した時間軸の信号のピーク電力が一定以下になるような組み合わせの中で、最も送信されるビット数が多いものを選択する手法などが考えられる。また、全CRCグループに対して同時に処理を施すのではなく、例えば第1CRCグループから順次処理してゆき、加算した時間軸の信号のピーク電力が一定値を超えない範囲のCRCグループを送信するといった方法も考えられる。CRCグループ処理部からの出力信号は、先に説明したように図3で示した処理が施されアンテナより送信される。
(送信信号処理部307の第2変形例)
図7で示した送信信号処理部の例では、ある孤立した長さRのシンボル列をDFT変換処理し、最終的にIFFT変換によって送信信号を生成する手法について述べた。しかし、使用するサブバンド以外への電力の漏れこみを抑えるためには、シンボル列ごとの孤立した処理ではなく、連続するシンボル列に対してオーバーラップしたDFT変換処理が有効である。図18は、シンボル列をオーバーラップ処理する場合における、送信信号処理部307の第2変形例を示す図である。図7の例との違いは、変形例ではDFT変換部703DFT変換部703がオーバーラップしたDFT変換を実行する点に加えて、位相補正部1802と信号抽出部1803が追加されていることである。
図7で示した送信信号処理部の例では、ある孤立した長さRのシンボル列をDFT変換処理し、最終的にIFFT変換によって送信信号を生成する手法について述べた。しかし、使用するサブバンド以外への電力の漏れこみを抑えるためには、シンボル列ごとの孤立した処理ではなく、連続するシンボル列に対してオーバーラップしたDFT変換処理が有効である。図18は、シンボル列をオーバーラップ処理する場合における、送信信号処理部307の第2変形例を示す図である。図7の例との違いは、変形例ではDFT変換部703DFT変換部703がオーバーラップしたDFT変換を実行する点に加えて、位相補正部1802と信号抽出部1803が追加されていることである。
シンボル列分配部1801は、次段の複数のDFT変換部703が入力するシンボル列の前後が一部オーバーラップしてDFT変換することができるように、シンボル列を複数のDFT変換部703に出力する。シンボル列分配部1801は、第kグループの場合では、前後にLkシンボルずつオーバーラップさせる。
DFT変換部703は、入力されるシンボル列に対して前後が一部オーバーラップしたDFT変換を行う。DFT変換部703は、第kグループの場合では、前後にLkシンボルずつオーバーラップさせDFT変換する。すなわち、DFT変換部のサイズは、図7の場合と比較してRkからRk+2×L1に拡大されている。ここで、Lkは、先に説明した周波数分割部704のフィルタの時間応答の長さに応じて設計する値であり、フィルタの片側の有効な長さがLk以下であるとよい。
信号抽出部1803は、図18に示すように、IFFT変換部706の出力信号の中心部分(全体のTs/Td)のみを抽出する。このように抽出する理由は、DFT変換部703でDFT変換のサイズが拡張された結果、周波数領域でのサブキャリア間隔が狭くなりIFFT変換部706の出力信号の時間長が長くなるからである。ここで、グループごとのDFT変換後のサブキャリア間隔は等しい必要があるので、オーバーラップする比率はすべて等しい必要がある。つまり、第kグループにおいて、Rkシンボルに相当する時間長をTs、Rk+2×Lkに相当する時間長をTdとすれば、これらは全グループで等しい。
位相補正部1802は、信号抽出部1803の出力信号の波形の連続性を保つために必要な処理を施す。位相補正部1802は、周波数分割部704の出力の周波数データをサブバンドにマッピングする際に、周波数領域でのフィルタの位置(中心周波数)と、サブバンドの位置(中心周波数)に依存した位相補正を適用する。位相補正部1802は、図19に示すように、フィルタの中心周波数がDFT変換のDCからxサブキャリアずれた位置であり、サブバンドの中心周波数(サブバンド内のフィルタの中心周波数)が、IFFT変換のDCからyサブキャリアずれた位置である場合には、周波数分割部704の出力の周波数データに対して、以下の式で計算される位相回転を乗積する。
ただし、ν(t)は各グループにおいてt回目のDFT変換処理に対して乗積される値である。このような処理を実施することで、位相の連続性、つまり、時間波形の連続性を保つことができ、帯域外への干渉を抑えることができる。
(送信信号処理部307の第3変形例)
図20に送信信号処理部307の第3変形例を示す。第3変形例は、図18の送信信号処理部307でサブバンドマッピング部1501およびIFFT変換部1502を周波数分割部704と同数設け、さらにグループ選択部1503を設けている。すなわち、図7の送信信号処理部307に対する図18の送信信号処理部307の関係は、図15の送信信号処理部307に対する図20の送信信号処理部307の関係と等しい。
図20に送信信号処理部307の第3変形例を示す。第3変形例は、図18の送信信号処理部307でサブバンドマッピング部1501およびIFFT変換部1502を周波数分割部704と同数設け、さらにグループ選択部1503を設けている。すなわち、図7の送信信号処理部307に対する図18の送信信号処理部307の関係は、図15の送信信号処理部307に対する図20の送信信号処理部307の関係と等しい。
第3変形例では、グループごとにサブバンドマッピング部1501がマッピングしたデータは、IFFT変換部1502によって逆フーリエ変換処理が施され、グループ選択部1503においてIFFT変換部1502の出力信号の全部あるいは一部のみが選択、加算されて送信される。それ以外は、図18の第2変形例と同様である。
次に、本実施形態の無線送信装置からの信号を受信する無線受信装置102について図21を参照して説明する。
無線受信装置102は、RF受信部2101、サブバンド情報復調部2102、グループ決定部2103、FFT変換部2104、サブバンドデマッピング部2105、複数の周波数合成部2106、複数のIDFT変換部2107、シンボル列合成部2108、シンボル列復調部2109を含んでいる。
無線受信装置102は、RF受信部2101、サブバンド情報復調部2102、グループ決定部2103、FFT変換部2104、サブバンドデマッピング部2105、複数の周波数合成部2106、複数のIDFT変換部2107、シンボル列合成部2108、シンボル列復調部2109を含んでいる。
RF受信部2101は、サブバンド情報送信期間402において、アンテナから受信された受信信号をベースバンド信号に変換するサブバンド情報復調部2102がベースバンド信号を復調しサブバンド情報を受け取る。グループ決定部2103が無線送信装置101と全く同じ手法でサブバンドのグループ情報を得る。また、サブバンド情報送信期間において送信する情報が、サブバンド情報ではなくグループ情報である場合には、グループ情報を復調するグループ情報復調部(図示せず)を、サブバンド情報復調部2102およびグループ決定部2103の代わりに設ける。このグループ情報復調部は、グループ情報を復調しグループ情報をサブバンドデマッピング部2105、複数の周波数合成部2106、シンボル列合成部2108に渡す。
データ通信期間では、RF受信部2101がアンテナから受信されたデータ信号をベースバンド信号に変換し、FFT変換部2104がベースバンド信号にフーリエ変換を施し直交する複数のサブキャリア成分に分解する。ここで、サブキャリア間隔は、無線送信装置101と無線受信装置102で同じである。FFT変換部2104は、図11に示す無線送信装置101でのサブバンドマッピング部705の出力であるマッピングデータ列に対応する受信マッピングデータ列を得る。
サブバンドデマッピング部2105は、受信マッピングデータ列とグループ情報とを受け取り、各サブバンドを所定の複数のグループに分ける。
各周波数合成部2106は、グループに対応していて、グループごとに無線送信装置101の周波数分割部704での操作の逆操作に対応する処理を行い、周波数分割部704でオーバーラップして分割された部分のサブキャリアを合成する。
周波数合成部2106の詳細について図22を参照して説明する。ここでは、無線送信装置101では、図9と図14で示したように、第1周波数データ列において、オーバーラップするサブキャリア数がV1であるように、フィルタ1とフィルタ3で分割されることで、第1マッピングデータ列と第3マッピングデータ列が生成されており、それらに対応する無線受信装置での周波数合成部2106への入力が図22で示されているとする。図22では、V1=5としている。図22で示すオーバーラップ領域における、SB1のサブキャリアでの受信信号値がa(1),a(2),…,a(5)で、無線送信装置101でのフィルタ1の同じ位置でのフィルタ係数がf(1),f(2),…,f(5)であるとし、同様に、SB3のサブキャリアでの受信信号値がb(1),b(2),…,b(5)で、フィルタ3の同じ位置でのフィルタ係数がg(1),g(2),…g(5)であるとする。このとき、SB1とSB3のオーバーラップ部分の合成値c(1),c(2),…,c(5)は、以下のように計算される。
c(n) = (a(n)×f(n)+b(n)×g(n))/(f(n)2+g(n)2) (n=1,2,…,5)
上式において、f(n)2+g(n)2 = 1であるように設計すれば、合成時に雑音増幅が発生しない。周波数合成部2106は、同様にして、他のオーバーラップ領域についてもそれぞれ合成し、各グループに対応する周波数合成部の出力を得る。
上式において、f(n)2+g(n)2 = 1であるように設計すれば、合成時に雑音増幅が発生しない。周波数合成部2106は、同様にして、他のオーバーラップ領域についてもそれぞれ合成し、各グループに対応する周波数合成部の出力を得る。
各IDFT変換部2107は、対応する周波数合成部2106の出力である受信周波数データ列を取得しIDFT変換して受信サブシンボル列を得る。シンボル列合成部2108は、複数のIDFT変換部2107で得られた複数の受信サブシンボル列を受け取り、無線送信装置101で分割されたものを元に戻すように連結し、受信シンボル列を生成する。シンボル列復調部2109は、生成された受信シンボル列を受け取り、データ復調が実行され最終的に無線送信装置101でのビット列に対する復調結果である復調ビット列を得る。
例えばサイズR1とR2のIDFT変換部2107は、図23に示すように、それぞれ第1受信周波数データ列および第2受信周波数データ列を逆フーリエ変換して、それぞれ第1受信サブシンボル列および第2受信サブシンボル列を得る。シンボル列合成部2108は、これらの第1受信サブシンボル列および第2受信サブシンボル列を合成して受信シンボル列を生成する。図23において、第1受信周波数データ列と第2受信周波数データ列は、それぞれ、図8で示した第1周波数データ列と第2周波数データ列に対応する受信データである。
例えばサイズR1とR2のIDFT変換部2107は、図23に示すように、それぞれ第1受信周波数データ列および第2受信周波数データ列を逆フーリエ変換して、それぞれ第1受信サブシンボル列および第2受信サブシンボル列を得る。シンボル列合成部2108は、これらの第1受信サブシンボル列および第2受信サブシンボル列を合成して受信シンボル列を生成する。図23において、第1受信周波数データ列と第2受信周波数データ列は、それぞれ、図8で示した第1周波数データ列と第2周波数データ列に対応する受信データである。
以上の第1の実施形態によれば、無線送信装置がキャリアセンシングによって、使用するサブバンドを決定し、使用する帯域の組み合わせによってデータ変換に使用するDFTの数とサイズを適応的に調整し、さらにフィルタ処理をDFTの単位で実行することによって、計算量を削減しつつ、時間波形のピーク電力を低下させることができ、無線送信装置の消費電力を低下させることができ、さらに、この無線送信装置によって送信された信号を復調可能な無線受信装置を実現することができる。
(第2の実施形態)
本実施形態は、図24に示すように、無線送信装置2401と無線受信装置2402と制御装置2403を含む無線通信システムの場合であり、第1の実施形態での無線通信システムとの違いは、無線送信装置101での使用するサブバンドの認識手法である。
本実施形態は、図24に示すように、無線送信装置2401と無線受信装置2402と制御装置2403を含む無線通信システムの場合であり、第1の実施形態での無線通信システムとの違いは、無線送信装置101での使用するサブバンドの認識手法である。
次に、本実施形態の無線送信装置2401について図25を参照して説明する。
本実施形態の無線送信装置2401は、図3のキャリアセンス部303、サブバンド決定部304、サブバンド情報変調部305、信号選択部308を取り除き、新たに、サブバンド情報復調部2502を含む。無線送信装置2401は、第1の実施形態の無線送信装置のようにキャリアセンスしてサブバンド情報を得るのではなく、制御装置2403からサブバンド情報を得ている。また、無線送信装置2401はキャリアセンスをしないので、無線送信装置2401が含む切り替え部2501の動作が第1の実施形態での切り替え部301とは少し異なる。
本実施形態の無線送信装置2401は、図3のキャリアセンス部303、サブバンド決定部304、サブバンド情報変調部305、信号選択部308を取り除き、新たに、サブバンド情報復調部2502を含む。無線送信装置2401は、第1の実施形態の無線送信装置のようにキャリアセンスしてサブバンド情報を得るのではなく、制御装置2403からサブバンド情報を得ている。また、無線送信装置2401はキャリアセンスをしないので、無線送信装置2401が含む切り替え部2501の動作が第1の実施形態での切り替え部301とは少し異なる。
切り替え部2501は、動作時の時刻がサブバンド情報送信期間、データ通信期間のいずれであるかによって、RF受信部302とアンテナとを接続するか、RF送信部309とアンテナとを接続するかを切り替える。1つの時間フレームは、例えば図26に示すように、サブバンド情報受信期間2601、データ通信期間2602の順に配置されている。
サブバンド受信期間において無線送信装置2401は、制御装置2403から送信されたサブバンド情報を、アンテナから受信しRF受信部302でベースバンド信号に変換して、サブバンド情報復調部2502にてデータ復調することで、サブバンド情報を得る。その後の、データ通信期間2602での動作は、第1の実施形態でのデータ通信期間403での動作と同様であるので省略する。
また、図24の無線受信装置としては、基本的に図21の例と同様である。
以上の第2の実施形態によれば、無線送信装置が制御装置からサブバンド情報を受け取り、使用するサブバンドの組み合わせによってデータ変換に使用するDFTの数を変え、さらにフィルタ処理をDFTの単位で実行することで、計算量を削減しつつピーク電力を低下させ、行比電力を低下させることが可能な無線送信装置を実現することができ、さらに、この無線送信装置によって送信された信号を復調可能な無線受信装置を実現することができる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
101、2401・・・無線送信装置、102、2402・・・無線受信装置、301、2501・・・切り替え部、302、2101・・・RF受信部、303・・・キャリアセンス部、304・・・サブバンド決定部、305、2502・・・サブバンド情報変調部、306、2103・・・グループ決定部、307・・・送信信号処理部、308・・・信号選択部、309・・・RF送信部、401・・・キャリアセンス期間、402、2601・・・サブバンド情報送信期間、403、2602・・・データ通信期間、701・・・変調部、702、1801・・・シンボル列分配部、703、1701・・・DFT変換部、704・・・周波数分割部、705、1501、2105・・・サブバンドマッピング部、706、1502・・・IFFT変換部、1503・・・グループ選択部、1600・・・CRCグループ処理部、1601・・・CRCグループ決定部、1602・・・データ列分配部、1603・・・CRC付加部、1604・・・送信CRCグループ選択部、1802・・・位相補正部、1803・・・信号抽出部、2102、2302・・・サブバンド情報復調部、2104・・・FFT変換部、2106・・・周波数合成部、2107・・・IDFT変換部、2108・・・シンボル列合成部、2109・・・シンボル列復調部、2403・・・制御装置。
Claims (17)
- 複数のサブバンドのうち、サブバンドグループに含まれる1以上のサブバンドのうちの最小帯域幅と注目サブバンドの帯域幅との最小値と、該サブバンドグループに含まれる1以上のサブバンドのうちの最大帯域幅と該注目サブバンドの帯域幅との最大値との比と1との差の絶対値のβ乗(βは正の実数)が閾値以下である場合には、該注目サブバンドは該サブバンドグループに属するとして分類して各サブバンドグループの特徴を含むグループ情報を生成する生成手段と、
送信信号であるビット列を変調したシンボル列を、前記グループ情報に応じて各サブバンドグループに対応した1以上の、各サブバンドグループの帯域幅の合計に比例するシンボル数を有するサブシンボル列に分割する第1分割手段と、
前記サブシンボル列ごとに、フーリエ変換して周波数データ列を取得する、各サブバンドグループに対応した1以上の周波数変換手段と、
前記周波数データ列ごとに該周波数データ列を、前記サブシンボル列に対応するサブバンドグループ内のサブバンドの帯域幅に応じたフィルタを用いて分割してマッピングデータ列を取得する、各サブバンドグループに対応した1以上の第2分割手段と、
複数の前記マッピングデータ列を対応するサブバンドのサブキャリアにマッピングしてマッピング信号を取得するマッピング手段と、
前記マッピング信号を逆フーリエ変換して時間波形を取得する周波数逆変換手段と、
前記時間波形を送信する送信手段と、を具備することを特徴とする無線送信装置。 - 複数のサブバンドのうち、注目サブバンドの帯域幅と、該注目サブバンドの帯域幅とサブバンドグループに含まれる1以上のサブバンドの帯域幅との平均値との比と1との差の絶対値のβ乗(βは正の実数)が閾値以下である場合には、該注目サブバンドは該サブバンドグループに属するとして分類して各サブバンドグループの特徴を含むグループ情報を生成する生成手段と、
送信信号であるビット列を変調したシンボル列を、前記グループ情報に応じて各サブバンドグループに対応した1以上の、各サブバンドグループの帯域幅の合計に比例するシンボル数を有するサブシンボル列に分割する第1分割手段と、
前記サブシンボル列ごとに、フーリエ変換して周波数データ列を取得する、各サブバンドグループに対応した1以上の周波数変換手段と、
前記周波数データ列ごとに該周波数データ列を、前記サブシンボル列に対応するサブバンドグループ内のサブバンドの帯域幅に応じたフィルタを用いて分割してマッピングデータ列を取得する、各サブバンドグループに対応した1以上の第2分割手段と、
複数の前記マッピングデータ列を対応するサブバンドのサブキャリアにマッピングしてマッピング信号を取得するマッピング手段と、
前記マッピング信号を逆フーリエ変換して時間波形を取得する周波数逆変換手段と、
前記時間波形を送信する送信手段と、を具備することを特徴とする無線送信装置。 - 複数のサブバンドを複数のサブバンドグループに分類する場合に、サブバンドグループごとにフーリエ変換する際の処理量を計算し、該処理量の合計が最小になるように前記複数のサブバンドを分類して各サブバンドグループの特徴を含むグループ情報を生成する生成手段と、
送信信号であるビット列を変調したシンボル列を、前記グループ情報に応じて各サブバンドグループに対応した1以上の、各サブバンドグループの帯域幅の合計に比例するシンボル数を有するサブシンボル列に分割する第1分割手段と、
前記サブシンボル列ごとに、フーリエ変換して周波数データ列を取得する、各サブバンドグループに対応した1以上の周波数変換手段と、
前記周波数データ列ごとに該周波数データ列を、前記サブシンボル列に対応するサブバンドグループ内のサブバンドの帯域幅に応じたフィルタを用いて分割してマッピングデータ列を取得する、各サブバンドグループに対応した1以上の第2分割手段と、
複数の前記マッピングデータ列を対応するサブバンドのサブキャリアにマッピングしてマッピング信号を取得するマッピング手段と、
前記マッピング信号を逆フーリエ変換して時間波形を取得する周波数逆変換手段と、
前記時間波形を送信する送信手段と、を具備することを特徴とする無線送信装置。 - 複数のサブバンドをN(Nは2以上の自然数)以上のサブバンドグループに分類する場合に、各サブバンドグループに含まれるサブバンドの合計帯域幅と、(全サブバンドの帯域幅/N)との差の絶対値のβ乗(βは正の実数)が最小になるように前記複数のサブバンドを分類して各サブバンドグループの特徴を含むグループ情報を生成する生成手段と、
送信信号であるビット列を変調したシンボル列を、前記グループ情報に応じて各サブバンドグループに対応した1以上の、各サブバンドグループの帯域幅の合計に比例するシンボル数を有するサブシンボル列に分割する第1分割手段と、
前記サブシンボル列ごとに、フーリエ変換して周波数データ列を取得する、各サブバンドグループに対応した1以上の周波数変換手段と、
前記周波数データ列ごとに該周波数データ列を、前記サブシンボル列に対応するサブバンドグループ内のサブバンドの帯域幅に応じたフィルタを用いて分割してマッピングデータ列を取得する、各サブバンドグループに対応した1以上の第2分割手段と、
複数の前記マッピングデータ列を対応するサブバンドのサブキャリアにマッピングしてマッピング信号を取得するマッピング手段と、
前記マッピング信号を逆フーリエ変換して時間波形を取得する周波数逆変換手段と、
前記時間波形を送信する送信手段と、を具備することを特徴とする無線送信装置。 - 各前記第2分割手段は、複数の前記フィルタによる前記周波数データ列の分割後のデータ列が互いにオーバーラップするように、前記周波数データ列を分割することを特徴とする請求項1から請求項5の無線送信装置。
- ある周波数帯域をキャリアセンシングすることにより、前記複数のサブバンドを選択する選択手段をさらに具備することを特徴とする請求項1から請求項5のいずれか1項に記載の無線送信装置。
- 無線通信システムで使用する複数のサブバンドを示すサブバンド情報を格納している制御装置から該サブバンド情報を取得する取得手段をさらに具備することを特徴とする請求項1から請求項6のいずれか1項に記載の無線送信装置。
- 前記生成手段は、前記複数のサブバンドを複数のサブバンドグループに分類し、
前記マッピング手段は、各サブバンドグループに対応して複数個あり、前記マッピングデータ列ごとにサブバンドのサブキャリアにマッピングしてマッピング信号を取得し、
前記周波数逆変換手段は、各サブバンドグループに対応して複数個あり、前記マッピング信号ごとに逆フーリエ変換して時間波形を取得し、
前記時間波形の和のピーク電力が閾値以下であるようなサブバンドグループの組み合わせを選択する選択手段をさらに具備し、
前記送信手段は、前記選択手段が選択したサブバンドグループの信号を送信することを特徴とする請求項1から請求項7のいずれか1項に記載の無線送信装置。 - 前記選択手段は、前記組み合わせの中で最も送信されるビット数が多いグループを選択することを特徴とする請求項8に記載の無線送信装置。
- 前記選択手段は、全サブバンドグループのうちの第1グループから順次累積して加算された時間波形のピーク電力が閾値を超えない範囲のグループを選択することを特徴とする請求項8に記載の無線送信装置。
- 前記グループ情報に基づいて複数のサブバンドグループを1以上のCRC(cyclic redundancy check)グループに分類して各CRCグループの特徴を含むCRCグループ情報を生成する生成手段と、
前記CRCグループ情報に基づいて、各CRCグループに含まれる送信するシンボル数にしたがって、送信信号であるビット列を、各CRCグループに対応して分割する分割手段と、
分割したビット列それぞれにCRCビットを付加する、各CRCグループに対応した1以上の付加手段と、
CRCビットが付加されたビット列から、それぞれのCRCグループに対して時間波形を生成する、各CRCグループに対応した1以上の生成手段と、
各前記生成手段からの時間波形を選択する選択手段と、
前記選択手段が選択した時間波形を加算する加算手段と、をさらに具備することを特徴とする請求項1から請求項7のいずれか1項に記載の無線送信装置。 - 前記選択手段は、加算した時間波形のピーク電力が一定以下になるような組み合わせの中で最も送信されるビット数が多いグループを選択することを特徴とする請求項11に記載の無線送信装置。
- 前記選択手段は、全CRCグループのうちの第1CRCグループから順次加算した時間波形のピーク電力が閾値を超えない範囲のCRCグループを選択することを特徴とする請求項11に記載の無線送信装置。
- 前記分割手段は、前記サブシンボル列の前後の一部がオーバーラップするように分割し、
前記周波数変換手段は、前記サブシンボル列の前後の一部を含めて該サブシンボル列をフーリエ変換して周波数データ列を取得し、
周波数データをサブバンドにマッピングする際に、前記フィルタの中心周波数とサブバンドの中心周波数に応じた位相補正を行う補正手段をさらに具備することを特徴とする請求項1から請求項7のいずれか1項に記載の無線送信装置。 - データ信号および、使用する複数のサブバンドを示すサブバンド情報またはグループ情報を受信する受信手段と、
前記データ信号をフーリエ変換し周波数データ列を得る周波数変換手段と、
前記サブバンド情報を受信した場合には前記サブバンド情報を復調し、前記グループ情報を受信した場合にはグループ情報を復調する復調手段と、
前記サブバンド情報を復調した場合には前記サブバンド情報を送信した無線送信装置と同一の手法によって前記複数のサブバンドを1以上のサブバンドグループに分類する分類手段と、
前記周波数データ列をサブバンドグループごとに分割しデマッピングしグループ周波数データを取得する第1取得手段と、
前記グループ周波数データの重複部分を合成し、複数の合成周波数データを取得する第2取得手段と、
合成周波数データごとに該合成周波数データを逆フーリエ変換し、受信サブシンボル列を得る周波数逆変換手段と、
各サブバンドグループで計算した受信サブシンボル列を合成し受信シンボル列を得る合成手段と、
前記受信シンボル列を復調する復調手段と、を具備することを特徴とする無線受信装置。 - 複数のサブバンドのうち、サブバンドグループに含まれる1以上のサブバンドのうちの最小帯域幅と注目サブバンドの帯域幅との最小値と、該サブバンドグループに含まれる1以上のサブバンドのうちの最大帯域幅と該注目サブバンドの帯域幅との最大値との比と1との差の絶対値のβ乗(βは正の実数)が閾値以下である場合には、該注目サブバンドは該サブバンドグループに属するとして分類して各サブバンドグループの特徴を含むグループ情報を生成し、
送信信号であるビット列を変調したシンボル列を、前記グループ情報に応じて各サブバンドグループに対応した1以上の、各サブバンドグループの帯域幅の合計に比例するシンボル数を有するサブシンボル列に分割し、
前記サブシンボル列ごとに、フーリエ変換して周波数データ列を取得し、
前記周波数データ列ごとに該周波数データ列を、前記サブシンボル列に対応するサブバンドグループ内のサブバンドの帯域幅に応じたフィルタを用いて分割してマッピングデータ列を取得し、
複数の前記マッピングデータ列を対応するサブバンドのサブキャリアにマッピングしてマッピング信号を取得し、
前記マッピング信号を逆フーリエ変換して時間波形を取得し、
前記時間波形を送信することを特徴とする無線送信方法。 - 複数のサブバンドのうち、注目サブバンドの帯域幅と、該注目サブバンドの帯域幅とサブバンドグループに含まれる1以上のサブバンドの帯域幅との平均値との比と1との差の絶対値のβ乗(βは正の実数)が閾値以下である場合には、該注目サブバンドは該サブバンドグループに属するとして分類して各サブバンドグループの特徴を含むグループ情報を生成し、
送信信号であるビット列を変調したシンボル列を、前記グループ情報に応じて各サブバンドグループに対応した1以上の、各サブバンドグループの帯域幅の合計に比例するシンボル数を有するサブシンボル列に分割し、
前記サブシンボル列ごとに、フーリエ変換して周波数データ列を取得し、
前記周波数データ列ごとに該周波数データ列を、前記サブシンボル列に対応するサブバンドグループ内のサブバンドの帯域幅に応じたフィルタを用いて分割してマッピングデータ列を取得し、
複数の前記マッピングデータ列を対応するサブバンドのサブキャリアにマッピングしてマッピング信号を取得し、
前記マッピング信号を逆フーリエ変換して時間波形を取得し、
前記時間波形を送信することを特徴とする無線送信方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008169075A JP2010011179A (ja) | 2008-06-27 | 2008-06-27 | 無線送信装置、無線受信装置および方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008169075A JP2010011179A (ja) | 2008-06-27 | 2008-06-27 | 無線送信装置、無線受信装置および方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010011179A true JP2010011179A (ja) | 2010-01-14 |
Family
ID=41591114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008169075A Withdrawn JP2010011179A (ja) | 2008-06-27 | 2008-06-27 | 無線送信装置、無線受信装置および方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010011179A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014146878A (ja) * | 2013-01-28 | 2014-08-14 | Omron Automotive Electronics Co Ltd | 通信システム及び通信装置 |
WO2014174801A1 (ja) * | 2013-04-24 | 2014-10-30 | 日本電気株式会社 | 無線通信装置、無線通信システム及び無線通信方法 |
JP2016506125A (ja) * | 2012-11-29 | 2016-02-25 | インターデイジタル パテント ホールディングス インコーポレイテッド | Ofdmシステムにおけるスペクトル漏れの低減 |
CN105917592A (zh) * | 2014-01-22 | 2016-08-31 | 华为技术有限公司 | 信息处理装置、网络节点和信息处理方法 |
JP2017139599A (ja) * | 2016-02-03 | 2017-08-10 | Necプラットフォームズ株式会社 | モバイルルータ、モバイルルータの通信方法及びその通信方法を実現するプログラム |
-
2008
- 2008-06-27 JP JP2008169075A patent/JP2010011179A/ja not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016506125A (ja) * | 2012-11-29 | 2016-02-25 | インターデイジタル パテント ホールディングス インコーポレイテッド | Ofdmシステムにおけるスペクトル漏れの低減 |
US9692629B2 (en) | 2012-11-29 | 2017-06-27 | Idac Holdings, Inc. | Resource block based multicarrier modulations for agile spectrum |
JP2014146878A (ja) * | 2013-01-28 | 2014-08-14 | Omron Automotive Electronics Co Ltd | 通信システム及び通信装置 |
WO2014174801A1 (ja) * | 2013-04-24 | 2014-10-30 | 日本電気株式会社 | 無線通信装置、無線通信システム及び無線通信方法 |
US9854471B2 (en) | 2013-04-24 | 2017-12-26 | Nec Corporation | Wireless communication apparatus, wireless communication system, and wireless communication method |
CN105917592A (zh) * | 2014-01-22 | 2016-08-31 | 华为技术有限公司 | 信息处理装置、网络节点和信息处理方法 |
JP2017509213A (ja) * | 2014-01-22 | 2017-03-30 | 華為技術有限公司Huawei Technologies Co.,Ltd. | 情報処理装置、ネットワークノード、および情報処理方法 |
US9912508B2 (en) | 2014-01-22 | 2018-03-06 | Huawei Technologies Co., Ltd. | Information processing apparatus, network node, and information processing method |
JP2017139599A (ja) * | 2016-02-03 | 2017-08-10 | Necプラットフォームズ株式会社 | モバイルルータ、モバイルルータの通信方法及びその通信方法を実現するプログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8929352B2 (en) | Method and apparatus for multi-carrier frequency division multiplexing transmission | |
JP4237784B2 (ja) | 送信装置及び受信装置並びに無線通信システム | |
KR100643740B1 (ko) | 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서기지국 구분을 위한 파일럿 코드 패턴 송수신 장치 및 방법 | |
US7295626B2 (en) | Orthogonal division multiple access technique incorporating single carrier and OFDM signals | |
JP4008035B2 (ja) | マルチキャリア伝送システムにおける復調を簡素化するための方法 | |
WO2021171707A1 (ja) | Otfs変調を用いた通信において高精度化されたチャネル推定手法を用いる送信装置、受信装置、通信方法、およびベースバンドチップ | |
KR102269498B1 (ko) | 다중 반송파 통신 시스템에서 전력을 제어하는 방법 및 장치 | |
JP2009505565A (ja) | パイロット信号伝送の方法及び装置 | |
JP2009505471A (ja) | 強化された周波数符号化を用いた多重搬送波変調 | |
CN106576037A (zh) | 一种波形生成及其利用的系统和方法 | |
US7839763B2 (en) | Radio transmission device, radio reception device, radio transmission method, and radio reception method | |
JPWO2019008916A1 (ja) | 無線送信装置及び送信方法 | |
US6973134B1 (en) | OFDM interference cancellation based on training symbol interference | |
JP2010011179A (ja) | 無線送信装置、無線受信装置および方法 | |
WO2007091434A1 (ja) | Ofdm送信装置およびその制御方法 | |
WO2020221226A1 (zh) | 一种基于部分传输序列技术的边信息传输方法和装置 | |
JP2005304040A (ja) | 直交周波数分割多重接続システムにおける高速周波数ホッピングのための送受信装置 | |
CN103701743B (zh) | 基于分段式扩频的ofdma发射机和接收机 | |
JP4555185B2 (ja) | 送信機、受信機およびその制御方法 | |
JP5213879B2 (ja) | 送信装置および変調方法 | |
JP6414850B2 (ja) | 送信装置、受信装置、送信方法および受信方法 | |
US8913569B2 (en) | Method and a device for determining a shifting parameter to be used by a telecommunication device for transferring symbols | |
Jhingan et al. | Performance assessment of OFDM utilizing FFT/DWT over rician channel effected by CFO | |
US20190349157A1 (en) | Receiver, transmitter, communication system for subband communication and methods for subband communication | |
JP4539969B2 (ja) | マルチキャリアスペクトル拡散通信装置及びマルチキャリアスペクトル拡散通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110906 |