WO2007091363A1 - 適応ディジタルフィルタ及び受信装置 - Google Patents

適応ディジタルフィルタ及び受信装置 Download PDF

Info

Publication number
WO2007091363A1
WO2007091363A1 PCT/JP2006/323587 JP2006323587W WO2007091363A1 WO 2007091363 A1 WO2007091363 A1 WO 2007091363A1 JP 2006323587 W JP2006323587 W JP 2006323587W WO 2007091363 A1 WO2007091363 A1 WO 2007091363A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital
signal
adaptive
filter
modulated signal
Prior art date
Application number
PCT/JP2006/323587
Other languages
English (en)
French (fr)
Inventor
Hiromitsu Kuriyama
Yuji Yamamoto
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007557746A priority Critical patent/JP4532568B2/ja
Priority to EP06833391A priority patent/EP1983657A4/en
Publication of WO2007091363A1 publication Critical patent/WO2007091363A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain
    • H04L2025/03471Tapped delay lines
    • H04L2025/03477Tapped delay lines not time-recursive
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03038Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure
    • H04L25/0305Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure using blind adaptation

Definitions

  • the present invention relates to a receiving apparatus that receives a modulated signal that has been subjected to, for example, FM modulation or phase modulation, and more particularly, to a receiving apparatus that includes an adaptive digital filter for removing the influence of transmission path characteristics such as multipath. About.
  • Receivers that receive radio FM broadcasts and the like are known to have an adaptive digital filter as an automatic equalizer to remove the influence of transmission path characteristics such as multipath! / Speak (see Patent Document 1).
  • the adaptive digital filter is formed with a transversal filter represented by the transfer function H (z) in z-transform notation shown in the following equation (la), and is generated by the front-end unit, etc.
  • the intermediate frequency signal (IF signal) is supplied via an AZD converter and an automatic gain control (AGC) circuit.
  • a digital IF signal Y (t) consisting of an impulse response sequence represented by the following equation (lb) is generated,
  • the coefficient T is the delay time of each delay element that is a component of the transversal filter, and is determined based on the sampling frequency in the AZD variation.
  • the modulated signal since the envelope of an ideal FM wave (FM modulated !, the modulated signal) is at a constant level, a predetermined constant value (reference value) and digital Use the error from the IF signal Y (t) as an evaluation function, and converge to its error power ⁇
  • a digital IF signal Y (t) that eliminates the effects of transmission path characteristics such as multipath is generated and supplied to the FM detector.
  • the demodulated signal is generated by detecting and demodulating the signal.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-209890
  • a digital IF signal X is generated by an AZD converter and an AGC circuit. (t) is generated.
  • the digital IF signal X (t) contains not only the original signal component of the IF signal but also the DC component.
  • the DC component is amplified by the AGC circuit, it becomes a high-level DC component and is included in the digital IF signal X (t).
  • an error between the above-described constant reference value and the digital IF signal Y (t) is used as an evaluation function, so that the above-described digital IF signal X (t) includes the above-described error.
  • the tap coefficients h (0) to h (m) have been changed to converge to the DC component, and a digital IF signal Y (t) that sufficiently eliminates the effects of transmission path characteristics such as multipath must be generated. In some cases, this was not possible.
  • the above-described DC component may depend on the DC offset of the AZD converter, if the maximum gain of the AGC circuit is reduced in consideration of the DC offset, for example, in a weak electric field reception state As the level of the original signal component of the IF signal input to the adaptive digital filter becomes relatively small, the function of the adaptive digital filter cannot be fully used, and as a result, the influence of transmission path characteristics such as multipath is eliminated. In some cases, it was difficult to do so.
  • the present invention has been made in view of such a conventional problem, and suppresses the influence of transmission path characteristics such as multipath even when a modulated signal contains a DC component. Accordingly, it is an object of the present invention to provide an adaptive digital filter and a receiving apparatus that can perform effective adaptive processing. Means for solving the problem
  • the invention according to claim 1 is an adaptive digital filter that removes the influence of transmission path characteristics such as multipath, and the like, on the digitized modulated signal power.
  • a transversal filter that performs predetermined digital filtering, identification determination means that calculates an error between an envelope of the output of the transversal filter and a predetermined reference value, and a tap coefficient of the transversal filter so that the error converges Adaptive control by adjusting the output, and an estimation control means for generating the output of the transversal filter as a modulated signal from which the influence of the transmission path characteristics such as the multipath is removed.
  • the invention according to claim 4 is a receiving apparatus, and includes the adaptive digital filter according to any one of claims 1 to 3, and AZD that performs analog-digital conversion of an analog modulated signal.
  • the invention according to claim 5 is a method of adaptive digital filtering that removes the influence of transmission path characteristics such as multipath, etc., when the modulated signal power digitized is digitalized.
  • a digital filtering step for applying predetermined digital filtering to the modulation signal; an identification determining step for calculating an error between an envelope of the digital filtered signal and a predetermined reference value during the digital filtering step;
  • Adaptive control is performed by adjusting the tap coefficient in the digital filtering step so that the signal is converged, and the digital filtered signal is generated as a modulated signal from which the influence of transmission path characteristics such as the multipath is removed.
  • the adaptive control is performed after the frequency characteristic of the filtering is set to a frequency characteristic that prevents passage of a DC component contained in the digitally modulated signal.
  • the invention according to claim 6 is a computer program for causing a computer to perform adaptive digital filtering that removes the influence of transmission path characteristics such as a multipath from a digitized modulated signal.
  • a discriminating and determining step for calculating an error between the envelope of the digital filtered signal and a predetermined reference value in a predetermined filtering step for the input modulated signal, and the digital signal so that the error converges An estimation control step of performing an adaptive control for adjusting a tap coefficient in a filtering step, and generating the digital filtered signal as a modulated signal from which the influence of transmission path characteristics such as the multipath is removed.
  • the tap coefficient is predetermined.
  • the frequency characteristic of the digital filtering in the digital filtering step is set to a frequency characteristic that blocks the passage of a DC component included in the digitized modulated signal, and It is characterized by performing adaptive control.
  • FIG. 1 is a block diagram showing a configuration of a receiving device and an adaptive digital filter according to an embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of a receiving device and an adaptive digital filter according to an embodiment.
  • FIG. 3 is a characteristic diagram illustrating frequency characteristics of the adaptive digital filter shown in FIG. 2 (b).
  • FIG. 1 (a) is a block diagram showing the configuration of the receiving apparatus of the present embodiment
  • FIG. 1 (b) is a block diagram showing the configuration of the adaptive digital filter.
  • the receiving apparatus of the present embodiment includes an AZD converter 1 and an automatic gain control circuit.
  • Circuit (AGC circuit) 2 an adaptive digital filter 3 as an automatic equalizer, and an FM detector 4.
  • AGC circuit 2 amplifies digital IF signal DIF to digital IF signal X (t) by automatic gain control and supplies it to adaptive digital filter 3
  • FM detector 4 from adaptive digital filter 3 Demodulation signal Ddet is generated by detecting and demodulating based on the output digital IF signal Y (t).
  • the adaptive digital filter 3 includes a transfer unit 3 A having m stages of delay elements DL (l) to DL (m) and each delay element DL (l) to DL Multiplying tap coefficients h (0) to h (m) to the input or output of (m) by m + 1 multiplier M (0) to M (m) and multipliers M (0) to M It includes an adder ADD that adds the outputs of (m), an identification determination unit 3C having an envelope detection unit EVD and a subtractor SUB, and an estimation control unit 3D.
  • the signal X (t) is adaptively subjected to predetermined digital filtering, and the output signal of the adder ADD is supplied to the FM detector 4 as a digital IF signal Y (t).
  • Each of the delay elements DL (l) to DL (m) is set to a predetermined delay time T (in terms of z conversion, ⁇ " 1 ), and the input digital IF signal X (t ) Are sequentially transferred to the delay element on the downstream side according to the delay time ⁇ .
  • the sampling frequency fs of the AZD converter 1 is set to a frequency higher than the Nyquist frequency (2 X fmax).
  • the delay time T of each delay element DL (l) to DL (m) is set to the sampling period (lZfs) which is the reciprocal of the sampling frequency fs.
  • each tap coefficient h (0) to h (m) is updated by the estimation control unit 3D, and the tap coefficients h (0) to h (m) are updated.
  • the digital IF signals X (1 :) to X (t-mT) that are the inputs or outputs of the delay elements DL (l) to DL (m), and the addition results are added by the adder ADD.
  • transversal filter 3B has a transfer function H (z) expressed by the following equation (2a), and performs a predetermined filtering process on the input digital IF signal X (t).
  • the digital IF signal Y (t) expressed by the following equation (2b) is generated.
  • the envelope detection unit EVD generates an envelope signal EY (t) indicating an envelope of the digital IF signal Y (t) by performing envelope detection on the digital IF signal Y (t).
  • the subtractor SUB calculates an error E (t) between the envelope signal EY (t) and the reference signal BS having a constant value. That is, since the envelope of an ideal FM wave (FM modulated modulated signal) is at a constant level, the error E between the reference signal BS indicating a predetermined constant value and the digital IF signal Y (t) Calculate (t) as an evaluation function.
  • the estimation control unit 3D uses the error E (t) as an evaluation function so that the error E (t) converges according to a predetermined adaptive algorithm (so that the error E (t) converges to 0).
  • the tap coefficients h (0) to h (m) of the multipliers M (0) to M (m) are updated.
  • the frequency characteristics of the transversal filter 3B reduce the influence of the transmission path characteristics such as multipath against the original signal component of the modulated signal SIF included in the input digital IF signal X (t).
  • the estimation control unit 3D is configured so that when the receiving device of the present embodiment starts reception, for example, when a user or the like turns on the power of the receiving device or during reception, the user or the like
  • the receiver starts initial reception (hereinafter referred to as “initial time”), such as when the receiver is initialized according to the instruction, each tap coefficient h (0) of the multipliers M (0) to M (m) ) To h (m) are initialized to predetermined coefficient values (hereinafter referred to as “initial coefficient values”), the transversal filter 3B is prevented from passing the DC component contained in the digital IF signal X (t).
  • the multipliers M (0) to M (m) are set so that the error E (t) converges (the error E (t) converges to 0) according to a predetermined adaptive algorithm.
  • An operation to update each tap coefficient h (0) to h (m) is started, and adaptive control is performed so as to reduce the influence of transmission path characteristics such as multipath.
  • the estimation determining unit 3D sets the error E (t) output from the subtractor SUB as the first by setting the transversal filter 3B to the frequency characteristics of the above-described high-pass filter or band-pass filter at the initial stage.
  • the adaptation process is started according to a predetermined adaptation algorithm, so that the error E (t) converges (so that the error E (t) converges to 0), and the multipliers M (0) to M ( Update, that is, adjust each tap coefficient h (0) to h (m) of m)! /
  • the estimation determination unit 3D performs the initialization process of setting the tap coefficients h (0) to h (m) to the predetermined initial coefficient values
  • the DC component is added to the digital IF signal X (t).
  • the transversal filter 3B blocks the passage of the DC component to generate the digital IF signal Y (t), and further, the envelope signal EY ( An error E (t) between t) and the reference signal BS is input to the estimation control unit 3D.
  • the estimation judgment unit 3D starts the adaptive control so as to reduce the influence of the transmission path characteristics such as multipath after the initialization process, the error E (t) input at the time of the initialization process is first calculated.
  • the tap coefficients h (0) to h (m) are adaptively adjusted so that the error E (t) converges (so that the error E (t) converges to 0). Become. For this reason, even if the digital IF signal X (t) contains a DC component, the influence of the DC component is prevented, and the influence of the transmission path characteristics such as multipath on the signal component of the IF signal SIF. It is possible to perform adaptive control so as to reduce this.
  • the tap coefficients h (0) to h (m) are set to predetermined initial coefficient values during predetermined initialization processing.
  • the transversal filter 3b is set to be the above-described high-pass filter or band-pass filter and then adaptive control is started, even if the digital IF signal X (t) contains a DC component, Suppress the influence of the DC component, and the digital IF signal X (t) I FF signal signal SSIIFF Compared with the original signal component, the influence of the transmission transmission line characteristic such as maruchichipapasu is reduced and reduced. This is where you can perform adaptive adaptive control as you do. .
  • the direct current flow fraction caused by the direct current flow offset generated by the AAZZDD converter 11 is slightly increased in the AAGGCC circuit. Suppresses the influence of the direct current DC component that is amplified and suppresses the influence of the characteristics of transmission transmission line characteristics such as maruchichipapasu In this way, the adaptive adaptive control control is performed so as to reduce and reduce the amount of noise. .
  • the adaptive adaptive digital filter is provided from 33. Based on the supplied digital digital signal YY ((tt)), the FFMM detector 44 performs detection detection and demodulation / demodulation. In this way, it is possible to improve the SSZZNN etc. of the demodulated demodulated signal signal DDddeett. .
  • the digitized taral IIFF signal XX ((tt)) contains a direct current component.
  • the adaptive digital filter 33 can suppress the influence of the direct current component of the direct current component, and receive and receive signals.
  • Adjustment and adjustment of AA ZZDD converter 11 direct DC offset and AGAGGCC circuit 22 gegainin, etc. installed in the equipment unit It becomes easy. . For this reason, it is possible to improve the degree of freedom of the design of the receiver / receiver device, and to improve the degree of freedom. It is possible to obtain effects such as the ability to easily and simply adjust the adjustment work in the manufacturing and manufacturing process. .
  • Digital digit signal signal processing unit forms a digital digital signal receiving and receiving device that generates a demodulated demodulated signal signal DDddeett. It is suitable for occasions where .
  • FIG. 2 (a) is a block diagram showing the configuration of the receiving apparatus according to the present embodiment, and the same or corresponding parts as those in FIG. Fig. 2 (b) is a block diagram showing the configuration of the adaptive digital filter, and the same or corresponding parts as in Fig. 1 (a) are indicated by the same reference numerals.
  • Figures 3 (a) and (b) are characteristic diagrams showing the frequency characteristics of the adaptive digital filter.
  • the receiving apparatus of this embodiment includes an antenna 9 and an RF unit 10 that receive incoming radio waves such as FM broadcasts, a high-frequency received signal output from the RF unit 10, and a local unit.
  • Mixer 11 that mixes the local oscillation signal from oscillator 12 and converts it to an intermediate frequency signal, and extracts IF signal (modulated signal) SIF of a predetermined occupied frequency bandwidth from the intermediate frequency signal IF filter and IF amplification unit 13, AZD converter 1, AGC circuit 2, adaptive digital filter 3, FM detector 4, and FM detector 4 output (demodulated signal) Ddet is stereo demodulated
  • the audio processing unit 5, the DZA converter 6, and the output unit 7 are configured to convert the signal from digital to analog, further amplify the power, and supply the speaker 8.
  • the adaptive digital filter 3 includes a transfer unit 3A having a plurality of stages m (m is an even number) of delay elements DL (0) to DL (m), and an identification determination unit.
  • the tap coefficients h (0) to h (m) are adjusted by 3C. It includes m + 1 multipliers M (0) to M (m), an adder ADD, an identification determination unit 3C, and an estimation control unit 3D. Configured. Furthermore, each delay time T of the multipliers M (0) to M (m) is set according to the sampling period of the AZD variation.
  • a transversal filter having a transfer function H (z) expressed by the above equation (2a) by the transfer unit 3A, multipliers M (0) to M (m), and an adder ADD (otherwise, In this case, a FIR (Finite Impulse Response) type digital filter) 3B is formed, and the digital IF signal Y (t ) Is generated.
  • H (z) expressed by the above equation (2a) by the transfer unit 3A, multipliers M (0) to M (m), and an adder ADD (otherwise, In this case, a FIR (Finite Impulse Response) type digital filter) 3B is formed, and the digital IF signal Y (t ) Is generated.
  • FIR Finite Impulse Response
  • the identification determination unit 3C includes two envelope detection units EVD and EVDX.
  • the envelope detection unit EVD multiplies the arithmetic unit 14 that calculates the square value IY (t) I 2 of the absolute value of the digital IF signal Y (t) generated by the adder ADD and the output of the arithmetic unit 14
  • Delay element 15 that delays by the same delay time T as each delay time T of units M (0) to M (m), square value IY (t) I 2 calculated by arithmetic unit 14, and output value of delay element 15 IY (tT) by adding the I 2
  • a adder 16 which generates an envelope signal EY indicating the envelope of the digital IF signal Y (t) (t).
  • Envelope detection unit EVDX includes an arithmetic unit 17 that calculates the square value of the absolute value of the digital IF signal X (t)
  • the subtractor SUB calculates an error E (t) between the reference signal BS (t) and the envelope signal EY (t) and supplies it as an evaluation function to the estimation control unit 3D.
  • the estimation control unit 3D uses the error E (t) as an evaluation function, so that the error E (t) converges according to a predetermined adaptive algorithm (so that the error E (t) converges to 0).
  • the modulated signal SIF included in the input digital IF signal X (t) Change the frequency characteristics of the transversal filter 3B to reduce the influence of the transmission path characteristics such as multipath with respect to the original signal component, and the digital IF signal Y (t) with the influence of the transmission path characteristics suppressed. Generate.
  • the estimation control unit 3D performs the tap coefficients h (0) to M (0) to M (0) to M (m) at the “initial time” when the receiving apparatus of the present embodiment starts reception.
  • the transversal filter 3B has a high-pass filter frequency characteristic that blocks the passage of the DC component contained in the digital IF signal X (t), or A bandpass that prevents the DC component contained in the digital IF signal X (t) from passing and includes the frequency bandwidth of the signal component of the digital IF signal X (t) (that is, the frequency bandwidth of the modulated signal SIF). Set to the frequency characteristics of the filter.
  • the tap coefficients h (0) to h (m) are set so that the FIR filter 3B has a transfer function H (z) represented by the following equation (3a) or the following equation (3b): Is initialized to a predetermined “initial coefficient value”.
  • a delay element connected to the output of the delay element DL (m / 2) at the mZ2 stage is 0.5, tap coefficient h (m / 2 + l) of next delay element M (m / 2 + l)
  • h (m / 2 + l) to h (m) are set to 0 to set the frequency characteristics of the high-pass filter shown in Fig. 4 (a).
  • the tap coefficient h (m / 2) of the delay element M (m / 2) located at the center is set to 0, and the tap coefficient h ( m / 2—1) is 0.5, the tap factor h (m / 2 + l) of delay element M (m / 2 + 1) is 0.5, and the remaining delay elements M (0) to M (m / 2— 2) and tap coefficients h (0) to h (m / 2 ⁇ 2) and h (m / 2 + 2) to h (m) for M (m / 2 + 2) to M (m) Setting to 0 sets the frequency characteristics of the bandpass filter shown in Fig. 4 (b).
  • the transversal filter 3B passes the DC component included in the digital IF signal X (t). Set to the frequency characteristics of the high-pass filter that prevents the signal, or the frequency characteristics of the band-pass filter that blocks the DC component contained in the digital IF signal X (t) and includes the frequency bandwidth of the modulated signal SIF. .
  • the estimation control unit 3D sets the error E (t) output from the subtracter SUB by setting the transversal filter 3B to the frequency characteristic of the above-described high-pass filter or band-pass filter as the first evaluation function.
  • the adaptive processing is started according to a predetermined adaptation algorithm so that the error E (t) converges (so that the error E (t) converges to 0), and the multipliers M (0) to M (m) By updating, or adjusting, each tap coefficient h (0) to h (m), adaptive control is performed so as to reduce the influence of transmission path characteristics such as multipath.
  • the direct current reference signal BS (t) is obtained by performing envelope detection and smoothing of the digital IF signal X (t) in the envelope detection unit EVDX.
  • the estimation controller 3D uses the error E (t) between the reference signal BS (t) and the envelope signal EY (t) of the digital IF signal Y (t) as an evaluation function, and the error E (t) converges. Since the tap coefficients h (0) to h (m) are adaptively adjusted (so that the error E (t) converges to 0), the amplitude of the digital IF signal Y (t) is changed to the digital IF It can be adjusted to the amplitude of signal X (t). Therefore, the digital IF signal Y (t) can be generated without damaging the information amount of the digital IF signal X (t).
  • the transversal filter 3b is set to be the above-described high-pass filter or band-pass filter, and then adaptive control is started. Therefore, even if the digital IF signal X (t) contains a DC component, the influence of the DC component is suppressed and the digital IF signal X (t) IF signal SIF's original signal component On the other hand, adaptive control can be performed to reduce the influence of transmission path characteristics such as multipath.
  • adaptive control is performed so as to suppress the influence of the transmission path characteristics such as multipath by suppressing the influence of the direct current component caused by the direct current offset generated by the AZD converter 1 and the direct current component amplified by the AGC circuit. It can be carried out.
  • the digital IF signal Y (t for generating the demodulated signal having a good SZN by allowing the adaptive digital filter 3 to fully perform its function to remove the multipath distortion. ) Can be generated.
  • the FM detector 4 performs detection and demodulation based on the digital IF signal Y (t) supplied from the adaptive digital filter 3, thereby demodulating.
  • the SZN of the signal Ddet can be improved.
  • the adaptive digital filter 3 is provided in the receiving apparatus in order to suppress the influence of the DC component. It is easy to adjust the DC offset of ZD converter 1 and the gain of AGC circuit 2. For this reason, it is possible to improve the degree of freedom of design of the receiving device, and to obtain effects such as simplification of adjustment work in the manufacturing process.
  • the adaptive digital filter 3 is configured to have a function of preventing the direct current component of the digital IF signal X (t) from passing.
  • the AZD conversion 1 and the AGC circuit between the two, a digital high-pass filter or a digital band-pass filter may be provided to block the passage of the DC component contained in the digital IF signal DIF.
  • a digital high-pass filter or a digital band-pass filter may be provided between the AGC circuit 2 and the adaptive digital filter 3 to prevent the DC component contained in the digital IF signal X (t) from passing. .
  • the digital filter 3 has a function between the AZD change 1 and the AGC circuit 2.
  • Digital IF signal A digital high-pass filter or digital band-pass filter that blocks the DC component contained in the DIF is installed, and the digital IF signal X ( A digital high-pass filter or digital band-pass filter may be provided to block the passage of the DC component included in t)!
  • the provision of the adaptive digital filter 3 that blocks the passage of the DC component of the digital IF signal X (t) and the digital high-pass filter or digital band-pass filter can more reliably suppress the influence of the DC component. it can.
  • adaptive digital filter 3 of the present embodiment described above has been described as comprising a so-called hardware, but a computer program that exhibits the same function is created, and the computer program is converted into a digital signal processor (DSP). ) Or a microprocessor (MPU), adaptive digital filtering may be performed to reduce the effects of transmission path characteristics such as multipath.
  • DSP digital signal processor
  • MPU microprocessor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

 ディジタル化された被変調信号からマルチパス等の伝送路特性の影響を除去する適応ディジタルフィルタであって、被変調信号に含まれている直流成分の影響を除去して適応制御を行う適応ディジタルフィルタを提供することを目的とする。  ディジタル化された被変調信号X(t)に対し所定のディジタルフィルタリングを施すトランスバーサルフィルタ3Bと、トランスバーサルフィルタ3Bの出力Y(t)のエンベロープEY(t)と所定の基準値BSとの誤差E(t)を演算する識別判定部3cと、誤差E(t)が0に収束するようにトランスバーサルフィルタ3Bのタップ係数h(0)~h(m)を調整することで適応制御を行い、トランスバーサルフィルタ3bの出力Y(t)をマルチパス等の伝送路特性の影響を除去した被変調信号として生成させる推定制御部3Dとを備え、推定制御部3Dが、タップ係数h(0)~h(m)を所定の初期係数値に設定することで、トランスバーサルフィルタ3Bの周波数特性をディジタル化された被変調信号に含まれている直流成分の通過を阻止する周波数特性に設定した後、適応制御を行うことで、被変調信号X(t)に含まれている直流成分の影響を除去する。

Description

明 細 書
適応ディジタルフィルタ及び受信装置
技術分野
[0001] 本発明は、例えば FM変調や位相変調等された被変調信号を受信する受信装置 に関し、特にマルチパス等の伝送路特性の影響を除去するための適応ディジタルフ ィルタを備えた受信装置に関する。
背景技術
[0002] 無線による FM放送等を受信する受信装置では、マルチパス等の伝送路特性の影 響を除去するため、自動等化器としての適応ディジタルフィルタを備えた受信装置が 知られて!/ヽる (特許文献 1を参照)。
[0003] 適応ディジタルフィルタは、次式(la)に示す z変換表記の伝達関数 H(z)で表される トランスバーサルフィルタ(transversal filter)を備えて形成されており、フロントエンド 部等で生成される中間周波信号 (IF信号)が AZD変換器と自動利得制御 (AGC: A utomatic Gain Control)回路を介して供給されるようになっている。そして、 AZD変 換器でアナログディジタル変換され AGC回路で自動利得制御された IF信号 (デイジ タル IF信号) X(t)に対し、トランスバーサルフィルタが複数の遅延素子で遅延転送し つつ複数のタップ係数 h(0)〜h(m)を乗算し、その乗算結果を加算することで次式(lb )で表されるインパルス応答列カゝら成るディジタル IF信号 Y(t)を生成して 、る。なお、 係数 Tは、トランスバーサルフィルタの構成要素である各遅延素子の遅延時間であり 、 AZD変^^におけるサンプリング周波数に基づ ヽて決められて ヽる。
[0004] [数 1]
H (z) =∑ h(i)z— 1 --- ( 1 a)
i=0
Y(t) =∑. h (i)X(t-iT) "' ( 1 b)
[0005] 更に、従来の適応ディジタルフィルタでは、理想的な FM波(FM変調されて!、る被 変調信号)のエンベロープが一定レベルであることから、所定の一定値 (基準値)とデ イジタル IF信号 Y(t)との誤差を評価関数とし、その誤差力^に収束することとなるよう にタップ係数 h(0)〜h(m)を適応的に調節することでマルチパス等の伝送路特性の影 響を除去したディジタル IF信号 Y(t)を生成し、 FM検波器に供給して検波及び復調 させることで復調信号を生成させることして 、る。
[0006] 特許文献 1 :特開平 10— 209890号公報
発明の開示
発明が解決しょうとする課題
[0007] ところで、上記従来の受信装置では、フロントエンド部等で生成される被変調信号 である IF信号を適応的ディジタルフィルタに供給するために、 AZD変^^と AGC 回路によってディジタル IF信号 X(t)を生成している。
[0008] ところが、 AZD変^^で IF信号をアナログディジタル変換すると、その AZD変換 器の性能に依存して、ディジタル IF信号 X(t)には IF信号本来の信号成分だけでなく 直流成分が含まれてしま 、、更にその直流成分は AGC回路で増幅されることから、 高レベルの直流成分となってディジタル IF信号 X(t)に含まれてしまう。
[0009] そして、適応ディジタルフィルタでは、上述した一定の基準値とディジタル IF信号 Y( t)との誤差を評価関数として ヽるため、ディジタル IF信号 X(t)に含まれて ヽる上述の 直流成分に収束するようにタップ係数 h(0)〜h(m)が変更されてしま 、、マルチパス等 の伝送路特性の影響を十分に除去したディジタル IF信号 Y(t)を生成することができ ない場合があった。
[0010] また、上述した直流成分が AZD変換器の直流オフセットに依存する場合があるこ とから、その直流オフセット分を考慮して AGC回路の最大ゲインを狭くすると、例えば 弱電界の受信状態のときには、適応ディジタルフィルタに入力される IF信号本来の 信号成分のレベルが相対的に小さくなつて、適応ディジタルフィルタの機能が十分に 発揮されなくなり、結果、マルチパス等の伝送路特性の影響を除去することが困難と なる等の問題を招来する場合があった。
[0011] 本発明はこのような従来の問題に鑑みてなされたものであり、被変調信号に直流成 分が含まれることとなった場合でも、マルチパス等の伝送路特性の影響を抑制すべく 、効果的な適応処理を行うことが可能な適応ディジタルフィルタと受信装置を提供す ることを目的とする。 課題を解決するための手段
[0012] 請求項 1に記載の発明は、ディジタルィ匕された被変調信号力もマルチパス等の伝 送路特性の影響を除去する適応ディジタルフィルタであって、前記ディジタル化され た被変調信号に対し所定のディジタルフィルタリングを施すトランスバーサルフィルタ と、前記トランスバーサルフィルタの出力のエンベロープと所定の基準値との誤差を 演算する識別判定手段と、前記誤差が収束するように前記トランスバーサルフィルタ のタップ係数を調整することで適応制御を行 ヽ、前記トランスバーサルフィルタの出 力を前記マルチパス等の伝送路特性の影響を除去した被変調信号として生成させる 推定制御手段と、を備え、前記推定制御手段は、前記タップ係数を所定の初期係数 値に設定することで、前記トランスバーサルフィルタの周波数特性を前記ディジタル ィ匕された被変調信号に含まれている直流成分の通過を阻止する周波数特性に設定 した後、前記適応制御を行うことを特徴とする。
[0013] 請求項 4に記載の発明は、受信装置であって、請求項 1乃至 3の何れか 1項に記載 の適応ディジタルフィルタを有すると共に、アナログの被変調信号をアナログディジタ ル変換する AZD変換器と、前記 AZD変換器の出力を自動利得制御して前記デジ タル化された被変調信号を生成し、前記適応ディジタルフィルタに入力する自動利 得制御手段と、前記トランスバーサルフィルタの出力を検波及び復調する復調手段と 、を備えることを特徴とする。
[0014] 請求項 5に記載の発明は、ディジタルィ匕された被変調信号力もマルチパス等の伝 送路特性の影響を除去する適応ディジタルフィルタリングの方法であって、前記ディ ジタル化された被変調信号に対し所定のディジタルフィルタリングを施すディジタル フィルタリング工程と、前記ディジタルフィルタリング工程にぉ 、て前記ディジタルフィ ルタリングされた信号のエンベロープと所定の基準値との誤差を演算する識別判定 工程と、前記誤差が収束するように前記ディジタルフィルタリング工程におけるタップ 係数を調整することで適応制御を行 ヽ、前記ディジタルフィルタリングされた信号を 前記マルチパス等の伝送路特性の影響を除去した被変調信号として生成させる推 定制御工程と、を備え、前記推定制御工程では、前記タップ係数を所定の初期係数 値に設定することで、前記ディジタルフィルタリング工程における前記ディジタルフィ ルタリングの周波数特性を前記ディジタルィ匕された被変調信号に含まれている直流 成分の通過を阻止する周波数特性に設定した後、前記適応制御を行うことを特徴と する。
[0015] 請求項 6に記載の発明は、コンピュータに、ディジタル化された被変調信号からマ ルチパス等の伝送路特性の影響を除去する適応ディジタルフィルタリングを行わせる コンピュータプログラムであって、前記ディジタルィ匕された被変調信号に対し所定の ルフィルタリングステップにおいて前記ディジタルフィルタリングされた信号のェンベロ ープと所定の基準値との誤差を演算させる識別判定ステップと、前記誤差が収束す るように前記ディジタルフィルタリングステップにおけるタップ係数を調整させる適応 制御を行わせ、前記ディジタルフィルタリングされた信号を前記マルチパス等の伝送 路特性の影響を除去した被変調信号として生成させる推定制御ステップと、を備え、 前記推定制御ステップは、前記タップ係数を所定の初期係数値に設定させることで、 前記ディジタルフィルタリングステップにおける前記ディジタルフィルタリングの周波数 特性を前記ディジタル化された被変調信号に含まれている直流成分の通過を阻止 する周波数特性に設定させた後、前記適応制御を行わせることを特徴とする。
図面の簡単な説明
[0016] [図 1]実施形態に係る受信装置と適応ディジタルフィルタの構成を表したブロック図で ある。
[図 2]実施例に係る受信装置と適応ディジタルフィルタの構成を表したブロック図であ る。
[図 3]図 2 (b)に示した適応ディジタルフィルタの周波数特性を例示した特性図である
発明を実施するための最良の形態
[0017] 本発明の好適な実施の形態について図 1を参照して説明する。図 1 (a)は、本実施 形態の受信装置の構成を示したブロック図、図 1 (b)は、適応ディジタルフィルタの構 成を示したブロック図である。
[0018] 図 1 (a)において、本実施形態の受信装置は、 AZD変換器 1と、自動利得制御回 路 (AGC回路) 2、自動等化器としての適応ディジタルフィルタ 3と、 FM検波器 4を備 えて構成されている。そして、図示していないフロントエンド部と IF部力 FM放送等 の到来電波を同調受信して IF信号 (被変調信号) SIFを生成し、 AZD変翻 1がそ の IF信号 SIFをディジタル IF信号 DIFにアナログディジタル変換し、 AGC回路 2が自 動利得制御によってディジタル IF信号 DIFをディジタル IF信号 X(t)に増幅して適応 ディジタルフィルタ 3に供給し、 FM検波器 4が適応ディジタルフィルタ 3から出力され るディジタル IF信号 Y(t)に基づいて検波及び復調することで復調信号 Ddetを生成す る。
[0019] 適応ディジタルフィルタ 3は、図 1 (b)〖こ示すように、 m段の遅延素子 DL(l)〜DL(m) を有する転送部 3Aと、各遅延素子 DL(l)〜DL(m)の入力又は出力に対してタップ係 数 h(0)〜h(m)を乗算する m+ 1個の乗算器 M(0)〜M(m)と、乗算器 M(0)〜M(m)の出 力を加算する加算器 ADDと、エンベロープ検出部 EVDと減算器 SUBとを有する識 別判定部 3Cと、推定制御部 3Dを備えて構成されている。そして、遅延素子 DL(1)〜 DL(m)と乗算器 M(0)〜M(m)及び加算器 ADDによって形成されたトランスバーサル フィルタ 3B力 推定制御部 3Dの制御の下で、ディジタル IF信号 X(t)に対し適応的的 に所定のディジタルフィルタリングを施し、加算器 ADDの出力信号をディジタル IF信 号 Y(t)として FM検波器 4に供給する。
[0020] 遅延素子 DL(l)〜DL(m)は、夫々、所定の遅延時間 T(z変換表記で表すと、 ζ"1)に 設定されており、入力されるディジタル IF信号 X(t)を遅延時間 Τに従って後段側の遅 延素子へと順次に転送する。
[0021] つまり、被変調信号 SIFの最大周波数を (fmax)、ナイキスト周波数を(2 X fmax)と すると、 AZD変換器 1のサンプリング周波数 fsがナイキスト周波数(2 X fmax)より高 い周波数に設定され、各遅延素子 DL(l)〜DL(m)の遅延時間 Tが、そのサンプリン グ周波数 fsの逆数のサンプリング周期(lZfs)に合わせられている。
[0022] 乗算器 M(0)〜M(m)は、推定制御部 3Dによって各タップ係数 h(0)〜h(m)が更新さ れ、そのタップ係数 h(0)〜h(m)と遅延素子 DL(l)〜DL(m)の入力又は出力であるディ ジタル IF信号 X(1:)〜 X(t-mT)とを乗算し、その乗算結果を加算器 ADDで加算させて ディジタル IF信号 Y(t)を生成させる。 [0023] 以上の構成によってトランスバーサルフィルタ 3Bは、次式 (2a)で表される伝達関数 H(z)を有し、入力されるディジタル IF信号 X(t)に対して所定のフィルタリング処理を施 すことで、次式 (2b)で表されるディジタル IF信号 Y(t)を生成する。
[0024] [数 2]
H (z) = ∑ h (i) z— 1 '" (2a)
i=0
Y(t) =∑ h (i)X{t-iT)
= h(0)X(0) + h(1 )X(1 )十… + h(m/2-1)X(m/2-1 ) + h(m/2)X(m/2)
+ h(m/2+1 )X(m/2+l ) +…十 h(m)X(m) …( 2b)
[0025] エンベロープ検出部 EVDは、ディジタル IF信号 Y(t)をエンベロープ検波することで 、ディジタル IF信号 Y(t)のエンベロープを示すエンベロープ信号 EY(t)を生成する。
[0026] 減算器 SUBは、エンベロープ信号 EY(t)と一定値の基準信号 BSとの誤差 E(t)を演 算する。すなわち、理想的な FM波 (FM変調されている被変調信号)のェンベロー プが一定レベルであることから、所定の一定値を示す基準信号 BSとディジタル IF信 号 Y(t)との誤差 E(t)を演算して評価関数として 、る。
[0027] 推定制御部 3Dは、誤差 E(t)を評価関数とし、所定の適応アルゴリズムに従って、誤 差 E(t)が収束するように (誤差 E(t)が 0に収束するように)、乗算器 M(0)〜M(m)の各タ ップ係数 h(0)〜h(m)を更新する。これにより、入力されるディジタル IF信号 X (t)に含 まれる被変調信号 SIF本来の信号成分に対し、トランスバーサルフィルタ 3Bの周波 数特性がマルチパス等の伝送路特性の影響を低減するように変化し、その伝送路特 性の影響が抑制されたディジタル IF信号 Y(t)が生成される。
[0028] 更に、推定制御部 3Dは、本実施形態の受信装置が受信を開始するとき、例えばュ 一ザ一等が受信装置の電源を投入した時や、受信中であってもユーザー等の指示 に従って受信装置が初期化される時等、受信装置が本来の受信を開始する時 (以下 「初期時」という)において、乗算器 M(0)〜M(m)の各タップ係数 h(0)〜h(m)を所定の 係数値 (以下「初期係数値」という)に初期化することで、トランスバーサルフィルタ 3B を、ディジタル IF信号 X(t)に含まれる直流成分の通過を阻止するノ、ィパスフィルタの 周波数特性、又は、ディジタル IF信号 X(t)に含まれる直流成分の通過を阻止し且つ ディジタル IF信号 X(t)に含まれる信号成分の周波数帯域幅 (つまり、被変調信号 SIF の周波数帯域幅)を包含するバンドパスフィルタの周波数特性に設定する。そして、 その初期設定の後、所定の適応アルゴリズムに従って、誤差 E(t)が収束するように( 誤差 E(t)が 0に収束するように)、乗算器 M(0)〜M(m)の各タップ係数 h(0)〜h(m)を更 新する動作を開始して、マルチパス等の伝送路特性の影響を低減するように適応制 御を行う。
[0029] つまり、推定判定部 3Dは、初期時にトランスバーサルフィルタ 3Bを上述のハイパス フィルタ又はバンドパスフィルタの周波数特性に設定することによって減算器 SUBか ら出力される誤差 E(t)を最初の評価関数として、所定の適応アルゴリズムに従って適 応処理を開始し、誤差 E(t)が収束するように (誤差 E(t)が 0に収束するように)、乗算 器 M(0)〜M(m)の各タップ係数 h(0)〜h(m)を更新、すなわち調整して!/、く。
[0030] このように、推定判定部 3Dが、タップ係数 h(0)〜h(m)を所定の初期係数値に設定 する初期化処理を行うと、ディジタル IF信号 X(t)に直流成分が含まれて 、た場合に、 トランスバーサルフィルタ 3Bがその直流成分の通過を阻止してディジタル IF信号 Y(t )を生成することとなり、更にそのディジタル IF信号 Y(t)のェンンベロープ信号 EY(t)と 基準信号 BSとの誤差 E(t)が推定制御部 3Dに入力される状態となる。そして、推定判 定部 3Dが初期化処理後、マルチパス等の伝送路特性の影響を低減するように適応 制御を開始すると、初期化処理時に入力された上述の誤差 E(t)を最初の評価関数と して、誤差 E(t)が収束するように (誤差 E(t)が 0に収束するように)、タップ係数 h(0)〜h (m)を適応的に調整することとなる。このため、ディジタル IF信号 X(t)に直流成分が含 まれていた場合でも、その直流成分の影響を阻止して、 IF信号 SIFの信号成分に対 してマルチパス等の伝送路特性の影響を低減するように適応制御を行うことが可能と なる。
[0031] 以上説明したように、本実施形態の適応ディジタルフィルタ 3によれば、所定の初期 化処理の際にタップ係数 h(0)〜h(m)を所定の初期係数値に設定することで、トランス バーサルフィルタ 3bを上述のハイパスフィルタ又はバンドパスフィルタとなるように設 定してから、引き続き適応制御を開始するので、ディジタル IF信号 X(t)に直流成分が 含まれていた場合でも、その直流成分の影響を抑制して、ディジタル IF信号 X(t)の I FF信信号号 SSIIFF本本来来のの信信号号成成分分にに対対ししててママルルチチパパスス等等のの伝伝送送路路特特性性のの影影響響をを低低減減すするるよよ ううにに適適応応制制御御をを行行ううここととががででききるる。。ここののたためめ、、 AAZZDD変変換換器器 11でで生生じじるる直直流流オオフフセセッットト等等 にによよるる直直流流分分やや、、 AAGGCC回回路路でで増増幅幅さされれるる直直流流分分のの影影響響をを抑抑制制ししてて、、ママルルチチパパスス等等のの 伝伝送送路路特特性性のの影影響響をを低低減減すするるよよううにに適適応応制制御御をを行行ううここととががででききるる。。
[[00003322]] ままたた、、本本実実施施形形態態のの受受信信装装置置にによよれればば、、適適応応デディィジジタタルルフフィィルルタタ 33かからら供供給給さされれるるデデ イイジジタタルル IIFF信信号号 YY((tt))にに基基づづ 、、てて FFMM検検波波器器 44がが検検波波及及びび復復調調をを行行ううここととでで、、復復調調信信号号 DDddeettのの SSZZNN等等をを向向上上ささせせるるここととががででききるる。。
[[00003333]] ままたた、、上上述述ししたたよよううににデディィジジタタルル IIFF信信号号 XX((tt))にに直直流流成成分分がが含含ままれれてて 、、ててもも、、適適応応デディィ ジジタタルルフフィィルルタタ 33ががそそのの直直流流成成分分のの影影響響をを抑抑制制すするるたためめ、、受受信信装装置置内内にに設設けけらられれるる AA ZZDD変変換換器器 11のの直直流流オオフフセセッットトやや AAGGCC回回路路 22ののゲゲイインン等等のの調調整整がが容容易易ととななるる。。ここののたた めめ、、受受信信装装置置のの設設計計のの自自由由度度をを向向上上ささせせるるここととががでできき、、ままたた製製造造工工程程ででのの調調整整作作業業 をを簡簡素素化化すするるここととががででききるる等等のの効効果果がが得得らられれるる。。
[[00003344]] ままたた、、本本実実施施形形態態のの受受信信装装置置のの構構成成にによよるるとと、、被被変変調調信信号号 SSIIFFかかららデディィジジタタルル信信号号 処処理理にによよっってて復復調調信信号号 DDddeettをを生生成成すするるデディィジジタタルル受受信信装装置置をを形形成成すするる場場合合にに適適ししてて いいるる。。
[[00003355]] ななおお、、以以上上にに説説明明ししたた適適応応デディィジジタタルルフフィィルルタタ 33はは、、いいわわゆゆるるハハーードドフフェェアアでで構構成成すす るるここととととししてて説説明明ししたた力力 同同様様のの機機能能をを発発揮揮すするるココンンピピュューータタププロロググララムムをを作作成成しし、、そそ ののココンンピピュューータタププロロググララムムををデディィジジタタルルシシググナナルルププロロセセッッササ((DDSSPP))ややママイイククロロププロロセセッッ ササ((MMPPUU))にに実実行行ささせせるるここととでで、、ママルルチチノノスス等等のの伝伝送送路路特特性性のの影影響響をを低低減減すするるたためめ
Figure imgf000010_0001
実施例
[0036] 次に、適応ディジタルフィルタと受信装置のより具体的な実施例について、図 2及び 図 3を参照して説明する。
[0037] 図 2 (a)は、本実施例の受信装置の構成を示したブロック図であり、図 1 (a)と同一 又は相当する部分を同一符号で示している。図 2 (b)は、適応ディジタルフィルタの 構成を示したブロック図であり、図 1 (a)と同一又は相当する部分を同一符号で示し ている。図 3 (a) (b)は、適応ディジタルフィルタの周波数特性を示した特性図である [0038] 図 2 (a)において、本実施例の受信装置は、 FM放送等の到来電波を受信するアン テナ 9及び RF部 10と、 RF部 10から出力される高周波数の受信信号と局部発振器 1 2からの局発信号とを混合し、中間周波数の信号に周波数変換する混合器 11と、そ の中間周波数の信号から所定の占有周波数帯域幅の IF信号 (被変調信号) SIFを 抽出する IFフィルタ及び IF増幅部 13と、 AZD変換器 1と、 AGC回路 2と、適応ディ ジタルフィルタ 3と、 FM検波器 4と、 FM検波器 4の出力(復調信号) Ddetをステレオ 復調等してディジタルアナログ変換し更に電力増幅してスピーカ 8に供給する、ォー ディォ処理部 5と DZA変翻6及び出力部 7を備えて構成されている。
[0039] 適応ディジタルフィルタ 3は、図 1 (b)の構成と同様に、複数段 m (mは偶数)の遅延 素子 DL(0)〜DL(m)を有する転送部 3Aと、識別判定部 3Cによってタップ係数 h(0)〜 h(m)が調整される m+ 1個の乗算器 M(0)〜M(m)と、加算器 ADDと、識別判定部 3C 及び推定制御部 3Dを備えて構成されている。更に、乗算器 M(0)〜M(m)の各遅延 時間 Tが、 AZD変 のサンプリング周期に合わせて設定されている。
[0040] ここで、転送部 3Aと乗算器 M(0)〜M(m)と加算器 ADDによって、前記式(2a)で表 される伝達関数 H(z)を有するトランスバーサルフィルタ(別言すれば、 FIR (Finite Imp ulse Response)型のディジタルフィルタ) 3Bが形成され、更に、入力されるディジタル I F信号 X(t)に対し、前記式 (2b)で表されるディジタル IF信号 Y(t)を生成する。
[0041] 識別判定部 3Cは、 2つのエンベロープ検出部 EVDと EVDXとを有して構成されて いる。
[0042] エンベロープ検出部 EVDは、加算器 ADDで生成されるディジタル IF信号 Y(t)の 絶対値の二乗値 I Y(t) I 2を演算する演算器 14と、演算器 14の出力を乗算器 M(0) 〜M(m)の各遅延時間 Tと同じ遅延時間で遅延させる遅延素子 15と、演算器 14で演 算された二乗値 I Y(t) I 2と遅延素子 15の出力値 I Y(t-T) I 2とを加算することで、 ディジタル IF信号 Y(t)のエンベロープを示すエンベロープ信号 EY(t)を生成する加 算器 16とを備えて構成されている。
[0043] エンベロープ検出部 EVDXは、ディジタル IF信号 X(t)の絶対値の二乗値 | X(t) | 2 を演算する演算器 17と、演算器 17の出力を乗算器 M(0)〜M(m)の各遅延時間 Tと 同じ遅延時間で遅延させる遅延素子 18と、演算器 17で演算された二乗値 I X(t) I 2 と遅延素子 18の出力値 I X(t-T) I 2とを加算することで、ディジタル IF信号 X(t)のェ ンべロープを示すエンベロープ信号 EX(t)を生成する加算器 19と、エンベロープ信 号 EX(t)を平滑ィ匕することによって、直流の基準信号 BS(t)を生成するディジタルロー パスフィルタ 20を備えて構成されて 、る。
[0044] 減算器 SUBは、基準信号 BS(t)とエンベロープ信号 EY(t)との誤差 E(t)を演算し、 評価関数として推定制御部 3Dに供給する。
[0045] 推定制御部 3Dは、誤差 E(t)を評価関数とし、所定の適応アルゴリズムに従って、誤 差 E(t)が収束するように (誤差 E(t)が 0に収束するように)、乗算器 M(0)〜M(m)の各タ ップ係数 h(0)〜h(m)を更新することで、入力されるディジタル IF信号 X(t)に含まれる 被変調信号 SIF本来の信号成分に対し、トランスバーサルフィルタ 3Bの周波数特性 がマルチパス等の伝送路特性の影響を低減するように変化させ、その伝送路特性の 影響が抑制されたディジタル IF信号 Y(t)を生成させる。
[0046] 更に、推定制御部 3Dは、本実施形態の受信装置が受信を開始する「初期時」にお いて、乗算器 M(0)〜M(m)の各タップ係数 h(0)〜h(m)を所定の「初期係数値」に初期 化することで、トランスバーサルフィルタ 3Bを、ディジタル IF信号 X(t)に含まれる直流 成分の通過を阻止するハイパスフィルタの周波数特性、又は、ディジタル IF信号 X(t) に含まれる直流成分の通過を阻止し且つディジタル IF信号 X(t)の信号成分の周波 数帯域幅 (つまり、被変調信号 SIFの周波数帯域幅)を包含するバンドパスフィルタの 周波数特性に設定する。
[0047] 本実施例では、 FIRフィルタ 3Bが次式 (3a)又は次式 (3b)で表される伝達関数 H(z) 等となるように各タップ係数 h(0)〜h(m)を所定の「初期係数値」に初期化している。
[0048] [数 3]
H (z) = ( 1— zっノ 2 - (3a)
H (z) = ( 1— z- 3 ) 2 "' (3b)
[0049] より具体的には、 m+ 1個の乗算器 M(0)〜M(m)のうち、第 mZ2段目の遅延素子 D L(m/2)の出力に接続された遅延素子 (すなわち中心に位置する遅延素子) M(m/2) のタップ係数 h(m/2)を 0. 5、次の遅延素子 M(m/2 + l)のタップ係数 h(m/2 + l)を 0. 5、残余の遅延素子 M(0)〜M(m/2— 1)と M(m/2 + l)〜M(m)のタップ係数 h(0)〜 h(m/2— 1)と h(m/2 + l)〜h(m)を 0に設定することで、図 4 (a)に示すハイパスフィルタ の周波数特性に設定する。
[0050] また、他の具体例として、中心に位置する遅延素子 M(m/2)のタップ係数 h(m/2)を 0 、遅延素子 M(m/2— 1)のタップ係数 h(m/2— 1)を 0. 5、遅延素子 M(m/2 + 1)のタツ プ係数 h(m/2 + l)を 0. 5、残余の遅延素子 M(0)〜M(m/2— 2)と M(m/2 + 2)〜M( m)のタップ係数 h(0)〜h(m/2— 2)と h(m/2 + 2)〜h(m)を 0に設定することで、図 4 (b) に示すバンドパスフィルタの周波数特性に設定する。
[0051] こうしてタップ係数 h(0)〜h(m)を所定の「初期係数値」に初期化することで、トランス バーサルフィルタ 3Bを、ディジタル IF信号 X(t)に含まれる直流成分の通過を阻止す るハイパスフィルタの周波数特性、又は、ディジタル IF信号 X(t)に含まれる直流成分 の通過を阻止し且つ被変調信号 SIFの周波数帯域幅を包含するバンドパスフィルタ の周波数特性に設定する。
[0052] 更に、推定制御部 3Dは、トランスバーサルフィルタ 3Bを上述のハイパスフィルタ又 はバンドパスフィルタの周波数特性に設定することによって減算器 SUBから出力され る誤差 E(t)を最初の評価関数として、所定の適応アルゴリズムに従って適応処理を開 始し、誤差 E(t)が収束するように (誤差 E(t)が 0に収束するように)、乗算器 M(0)〜M( m)の各タップ係数 h(0)〜h(m)を更新すなわち調整することで、マルチパス等の伝送 路特性の影響を低減するように適応制御を行う。
[0053] 以上に説明した本実施例の適応ディジタルフィルタ 3によると、エンベロープ検出部 EVDXにおいてディジタル IF信号 X(t)をエンベロープ検波して平滑化することで直 流の基準信号 BS(t)を生成し、推定制御部 3Dがその基準信号 BS(t)とディジタル IF 信号 Y(t)のエンベロープ信号 EY(t)との誤差 E(t)を評価関数として、誤差 E(t)が収束 するよう〖こ (誤差 E(t)が 0に収束するように)、タップ係数 h(0)〜h(m)を適応的に調整 するので、ディジタル IF信号 Y(t)の振幅を、ディジタル IF信号 X(t)の振幅に合わせる ことができる。このため、ディジタル IF信号 X(t)の情報量を損なうこと無くディジタル IF 信号 Y(t)を生成することができる。
[0054] また、本実施形態の適応ディジタルフィルタ 3によれば、所定の初期化処理の際に タップ係数 h(0)〜h(m)を所定の初期係数値に設定することで、トランスバーサルフィ ルタ 3bを上述のハイパスフィルタ又はバンドパスフィルタとなるように設定してから、 適応制御を開始するので、ディジタル IF信号 X(t)に直流成分が含まれて ヽた場合で も、その直流成分の影響を抑制して、ディジタル IF信号 X(t)の IF信号 SIF本来の信 号成分に対してマルチパス等の伝送路特性の影響を低減するように適応制御を行う ことができる。このため、 AZD変換器 1で生じる直流オフセット等による直流分や、 A GC回路で増幅される直流分の影響を抑制して、マルチパス等の伝送路特性の影響 を低減するように適応制御を行うことができる。
[0055] また、弱電界の受信状態のときでも、適応ディジタルフィルタ 3が機能を十分に発揮 させて、マルチパス歪を除去し SZNの良好な復調信号を生成するためのディジタル IF信号 Y(t)を生成することができる。
[0056] また、本実施形態の受信装置によれば、適応ディジタルフィルタ 3から供給されるデ イジタル IF信号 Y(t)に基づ 、て FM検波器 4が検波及び復調を行うことで、復調信号 Ddetの SZN等を向上させることができる。
[0057] また、上述したようにディジタル IF信号 X(t)に直流成分が含まれて 、ても、適応ディ ジタルフィルタ 3がその直流成分の影響を抑制するため、受信装置内に設けられる A ZD変換器 1の直流オフセットや AGC回路 2のゲイン等の調整が容易となる。このた め、受信装置の設計の自由度を向上させることができ、また製造工程での調整作業 を簡素化することができる等の効果が得られる。
[0058] なお、以上に述べた本実施例では、適応ディジタルフィルタ 3にディジタル IF信号 X (t)の直流成分の通過を阻止する機能を持たせる構成としているが、 AZD変翻 1と AGC回路 2の間に、ディジタル IF信号 DIFに含まれている直流成分の通過を阻止す るディジタルハイパスフィルタやディジタルバンドパスフィルタを設けてもよい。
[0059] また、 AGC回路 2と適応ディジタルフィルタ 3の間に、ディジタル IF信号 X(t)に含ま れている直流成分の通過を阻止するディジタルハイパスフィルタやディジタルバンド パスフィルタを設けてもょ 、。
[0060] また、適応ディジタルフィルタ 3にディジタル IF信号 X(t)の直流成分の通過を阻止 する機能を持たせる構成とするのに加えて、 AZD変 1と AGC回路 2の間に、デ イジタル IF信号 DIFに含まれている直流成分の通過を阻止するディジタルハイパスパ スフィルタやディジタルバンドパスフィルタを設けたり、また、 AGC回路 2と適応ディジ タルフィルタ 3の間に、ディジタル IF信号 X(t)に含まれて!/ヽる直流成分の通過を阻止 するディジタルハイパスフィルタやディジタルバンドパスフィルタを設けてもょ 、。この ように、ディジタル IF信号 X(t)の直流成分の通過を阻止する適応ディジタルフィルタ 3 と、ディジタルハイパスフィルタ又はディジタルバンドパスフィルタを設けると、直流成 分の影響をより確実に抑制することができる。
また、以上に説明した本実施例の適応ディジタルフィルタ 3は、いわゆるハードフエ ァで構成することして説明したが、同様の機能を発揮するコンピュータプログラムを作 成し、そのコンピュータプログラムをディジタルシグナルプロセッサ(DSP)やマイクロ プロセッサ(MPU)に実行させることで、マルチパス等の伝送路特性の影響を低減す るための適応ディジタルフィルタリングを行ってもよい。

Claims

請求の範囲
ディジタル化された被変調信号からマルチパス等の伝送路特性の影響を除去する
Figure imgf000016_0001
前記ディジタル化された被変調信号に対し所定のディジタルフィルタリングを施すト ランスバーサルフィルタと、
前記トランスバーサルフィルタの出力のエンベロープと所定の基準値との誤差を演 算する識別判定手段と、
前記誤差が収束するように前記トランスバーサルフィルタのタップ係数を調整するこ とで適応制御を行 ヽ、前記トランスバーサルフィルタの出力を前記マルチパス等の伝 送路特性の影響を除去した被変調信号として生成させる推定制御手段と、
を備え、
前記推定制御手段は、前記タップ係数を所定の初期係数値に設定することで、前 記トランスバーサルフィルタの周波数特性を前記ディジタルィ匕された被変調信号に含 まれている直流成分の通過を阻止する周波数特性に設定した後、前記適応制御を 行うことを特徴とする適応ディジタルフィルタ。
[2] 前記タップ係数の前記初期係数値は、前記トランスバーサルフィルタの周波数特性 をハイパスフィルタの周波数特性に設定する係数値であることを特徴とする請求項 1 に記載の適応ディジタルフィルタ。
[3] 前記タップ係数の前記初期係数値は、前記トランスバーサルフィルタの周波数特性 を、前記ディジタルィ匕された被変調信号の周波数帯域幅を含むバンドパスフィルタの 周波数特性に設定する係数値であることを特徴とする請求項 1に記載の適応ディジ タルフィルタ。
[4] 請求項 1乃至 3の何れか 1項に記載の適応ディジタルフィルタを有すると共に、 アナログの被変調信号をアナログディジタル変換する AZD変 と、 前記 AZD変換器の出力を自動利得制御して前記デジタル化された被変調信号を 生成し、前記適応ディジタルフィルタに入力する自動利得制御手段と、
前記トランスバーサルフィルタの出力を検波及び復調する検波手段と、 を備えることを特徴とする受信装置。 ディジタル化された被変調信号からマルチパス等の伝送路特性の影響を除去する 適応ディジタルフィルタリングの方法であって、
前記ディジタル化された被変調信号に対し所定のディジタルフィルタリングを施す ディジタルフィルタリング工程と、
前記ディジタルフィルタリング工程において前記ディジタルフィルタリングされた信 号のエンベロープと所定の基準値との誤差を演算する識別判定工程と、
前記誤差が収束するように前記ディジタルフィルタリング工程におけるタップ係数を 調整することで適応制御を行 ヽ、前記ディジタルフィルタリングされた信号を前記マ ルチパス等の伝送路特性の影響を除去した被変調信号として生成させる推定制御 工程と、
を備え、
前記推定制御工程では、前記タップ係数を所定の初期係数値に設定することで、 前記ディジタルフィルタリング工程における前記ディジタルフィルタリングの周波数特 性を前記ディジタル化された被変調信号に含まれている直流成分の通過を阻止する 周波数特性に設定した後、前記適応制御を行うことを特徴とする適応ディジタルフィ ルタリングの方法。
コンピュータに、ディジタル化された被変調信号からマルチパス等の伝送路特性の 影響を除去する適応ディジタルフィルタリングを行わせるコンピュータプログラムであ つて、
前記ディジタルィ匕された被変調信号に対し所定のディジタルフィルタリングを行わ
Figure imgf000017_0001
前記ディジタルフィルタリングステップにおいて前記ディジタルフィルタリングされた 信号のエンベロープと所定の基準値との誤差を演算させる識別判定ステップと、 前記誤差が収束するように前記ディジタルフィルタリングステップにおけるタップ係 数を調整させる適応制御を行わせ、前記ディジタルフィルタリングされた信号を前記 マルチパス等の伝送路特性の影響を除去した被変調信号として生成させる推定制 御ステップと、
を備え、 前記推定制御ステップは、前記タップ係数を所定の初期係数値に設定させることで 、前記ディジタルフィルタリングステップにおける前記ディジタルフィルタリングの周波 数特性を前記ディジタル化された被変調信号に含まれている直流成分の通過を阻 止する周波数特性に設定させた後、前記適応制御を行わせることを特徴とするコン ピュータプログラム。
PCT/JP2006/323587 2006-02-07 2006-11-27 適応ディジタルフィルタ及び受信装置 WO2007091363A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007557746A JP4532568B2 (ja) 2006-02-07 2006-11-27 適応ディジタルフィルタ及び受信装置
EP06833391A EP1983657A4 (en) 2006-02-07 2006-11-27 DIGITAL ADAPTIVE FILTER AND RECEIVER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006029981 2006-02-07
JP2006-029981 2006-02-07

Publications (1)

Publication Number Publication Date
WO2007091363A1 true WO2007091363A1 (ja) 2007-08-16

Family

ID=38344970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323587 WO2007091363A1 (ja) 2006-02-07 2006-11-27 適応ディジタルフィルタ及び受信装置

Country Status (3)

Country Link
EP (1) EP1983657A4 (ja)
JP (1) JP4532568B2 (ja)
WO (1) WO2007091363A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209890A (ja) 1997-01-16 1998-08-07 Ford Motor Co 適応アンテナ受信機
JP2005064618A (ja) * 2003-08-19 2005-03-10 Pioneer Electronic Corp マルチパスひずみ除去フィルタ
JP2005167717A (ja) * 2003-12-03 2005-06-23 Pioneer Electronic Corp マルチパス除去フィルタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4224842A1 (de) * 1992-07-28 1994-02-03 Sel Alcatel Ag Filtervorrichtung für ein Mehrfachfilter
JPH06350485A (ja) * 1993-06-14 1994-12-22 Matsushita Electric Ind Co Ltd 信号検出装置及び磁気再生装置
GB2372653A (en) * 2000-09-29 2002-08-28 Univ Bristol Adaptive filters
JP4294455B2 (ja) * 2003-12-03 2009-07-15 パイオニア株式会社 受信機
JP4544915B2 (ja) * 2004-06-03 2010-09-15 ルネサスエレクトロニクス株式会社 受信装置及びアナログ・ディジタル変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209890A (ja) 1997-01-16 1998-08-07 Ford Motor Co 適応アンテナ受信機
JP2005064618A (ja) * 2003-08-19 2005-03-10 Pioneer Electronic Corp マルチパスひずみ除去フィルタ
JP2005167717A (ja) * 2003-12-03 2005-06-23 Pioneer Electronic Corp マルチパス除去フィルタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1983657A4 *

Also Published As

Publication number Publication date
EP1983657A4 (en) 2010-07-07
JPWO2007091363A1 (ja) 2009-07-02
EP1983657A1 (en) 2008-10-22
JP4532568B2 (ja) 2010-08-25

Similar Documents

Publication Publication Date Title
JP3354286B2 (ja) マルチパス除去フィルタ
JP4773294B2 (ja) 適応等化装置及び受信装置
US8442474B2 (en) Method and apparatus for imbalance-free FM demodulation in direct conversion radio receivers
US8179956B2 (en) Adaptive equalizer and adaptive equalization method
JP4205509B2 (ja) マルチパスひずみ除去フィルタ
JPH0362628A (ja) ディジタル等化器
JP4294455B2 (ja) 受信機
JP4649381B2 (ja) 回り込みキャンセラ
US8223829B2 (en) Adaptive digital filter, signal processing method, FM receiver, and program
JP2616152B2 (ja) 自動等化器
JP4263553B2 (ja) マルチパスひずみ除去フィルタ
JP4263586B2 (ja) マルチパス除去フィルタ
US8040944B2 (en) Adaptive digital filter, signal processing method, FM receiver, and program
WO2007091363A1 (ja) 適応ディジタルフィルタ及び受信装置
US7433401B1 (en) Mixed-mode signal processor architecture and device
JP2007318349A (ja) Fm受信機
JP4246562B2 (ja) マルチパスひずみ除去フィルタ
El Gebali et al. Multi-frequency interference detection and mitigation using multiple adaptive IIR notch filter with lattice structure
JP3845317B2 (ja) Fm受信機のマルチパス干渉除去装置および方法
US20220271976A1 (en) Channel estimation method
JP4523968B2 (ja) 無線受信機
JP2982501B2 (ja) 干渉波除去装置
JP5049730B2 (ja) 中継装置
JPH0969790A (ja) マルチパス歪低減回路
US8611937B2 (en) FM receiving device and filtering method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007557746

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006833391

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE