WO2007088772A1 - 超音波探触子 - Google Patents

超音波探触子 Download PDF

Info

Publication number
WO2007088772A1
WO2007088772A1 PCT/JP2007/051191 JP2007051191W WO2007088772A1 WO 2007088772 A1 WO2007088772 A1 WO 2007088772A1 JP 2007051191 W JP2007051191 W JP 2007051191W WO 2007088772 A1 WO2007088772 A1 WO 2007088772A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic matching
matching layer
acoustic
ultrasonic probe
rubber
Prior art date
Application number
PCT/JP2007/051191
Other languages
English (en)
French (fr)
Inventor
Koetsu Saito
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to KR1020137013583A priority Critical patent/KR20130080860A/ko
Priority to US12/162,584 priority patent/US8454518B2/en
Priority to EP07707423.5A priority patent/EP1981308A4/en
Priority to KR1020087018886A priority patent/KR101464769B1/ko
Priority to JP2007556829A priority patent/JP5037362B2/ja
Priority to CN200780004100XA priority patent/CN101379871B/zh
Publication of WO2007088772A1 publication Critical patent/WO2007088772A1/ja
Priority to US13/875,764 priority patent/US8986213B2/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to an ultrasonic probe used for transmitting ultrasonic waves to a subject such as a living body or receiving ultrasonic waves from the subject.
  • An ultrasonic diagnostic apparatus irradiates a living subject such as a human animal with an ultrasonic wave, detects an echo signal reflected in the living body, and displays a tomographic image of tissue in the living body on a monitor. Provide information necessary for diagnosis of subjects. At this time, the ultrasonic diagnostic apparatus uses an ultrasonic probe to transmit ultrasonic waves into the subject and receive echo signals from the subject.
  • FIG. 12 shows an example of such an ultrasonic probe.
  • the ultrasonic probe 20 includes a plurality of piezoelectric elements 11 arranged in a certain direction for transmitting and receiving ultrasonic waves to and from a subject (not shown), and a subject of the piezoelectric elements 11.
  • Acoustic matching layer 12 (12a, 12b, 12c) consisting of one or more layers (three layers in the figure) provided on the front side (upper side of FIG. 12) and the object side surface of acoustic matching layer 12
  • the acoustic lens 13 and the back load material 14 provided on the back surface opposite to the acoustic matching layer 12 with respect to the piezoelectric element 11 are configured.
  • Electrodes are arranged on the front surface and the back surface of the piezoelectric element 11, respectively, and transmit and receive electrical signals to and from the piezoelectric element 11.
  • the piezoelectric element 11 is formed by a piezoelectric ceramic such as a PZT system, a single crystal, a composite piezoelectric material in which the above materials and a polymer are combined, or a high molecular piezoelectric material represented by PVDF or the like, and converts voltage into ultrasonic waves. Then, the signal is transmitted into the subject, or the echo reflected in the subject is converted into an electric signal and received.
  • a plurality of piezoelectric elements 11 are arranged in the X direction. Such a plurality of arrangements of the piezoelectric elements 11 can be deflected or focused by electronically scanning ultrasonic waves, enabling so-called electronic scanning.
  • the acoustic matching layer 12 is provided to efficiently transmit and receive ultrasonic waves into the subject. More specifically, it plays a role of bringing the acoustic impedance of the piezoelectric element 11 close to the acoustic impedance of the subject stepwise.
  • the acoustic matching layer 12 is integrally formed on the plurality of piezoelectric elements 11, but is divided and arranged corresponding to each piezoelectric element 11.
  • a configuration that widens the directivity of ultrasonic waves is also known (see, for example, Patent Documents 1 and 2).
  • the acoustic lens 13 plays a role of narrowing the ultrasonic beam in order to increase the resolution of the diagnostic image.
  • the acoustic lens 13 is formed in a force-bulb shape that extends along the Y direction in the figure (a direction orthogonal to the arrangement direction X of the piezoelectric elements 11) and is convex in the Z direction.
  • the sound beam can be focused in the Y direction.
  • the acoustic lens 13 is an optional element and is provided as necessary.
  • the back surface load member 14 is coupled to and holds the piezoelectric element 11, and further plays a role of attenuating unnecessary ultrasonic waves.
  • the X direction in the figure is also referred to as the “(piezoelectric element) arrangement direction”, the Y direction as the “(piezoelectric element) width direction”, and the Z direction as the “(piezoelectric element) thickness direction”. Shall be.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-125494
  • Patent Document 2 JP 2005-198261
  • An electronic scanning ultrasonic diagnostic apparatus is a group of piezoelectric elements that are driven by giving a certain delay time to each piezoelectric element, and transmitting and receiving ultrasonic waves from the piezoelectric element into the subject.
  • the ultrasonic beam is converged or diffused, and an ultrasonic image having a wide viewing width or high resolution can be obtained.
  • This configuration is already known as a general system.
  • As an ultrasonic probe in order to obtain such a high-resolution ultrasonic image, it is important that the piezoelectric element force acoustic matching layer arranged in a plurality of predetermined directions to be electronically scanned, and further, If necessary, the directivity of the ultrasonic beam emitted to the subject through the acoustic lens is wide.
  • An electronic scanning ultrasonic probe is a group of piezoelectric elements (for example, 64 elements) arranged in a plurality. By controlling the phase by delaying the transmission / reception time of each child, the ultrasonic beam is narrowed to a desired position to make the beam thin and high resolution, or the ultrasonic beam is deflected to form a fan shape. To scan.
  • the opening of the ultrasonic wave becomes larger by that amount, and the beam is strongly focused. In other words, it can be made thinner, and as a result, the resolution can be improved.
  • all acoustic matching layers are divided and adjoined corresponding to a plurality of piezoelectric elements arranged in a certain direction as shown in Patent Document 1. For example, the acoustic coupling between the piezoelectric element and the acoustic matching layer may be reduced.
  • the present invention has been made in view of the above-described conventional circumstances, and an object thereof is to provide an ultrasonic probe that can be easily processed and can obtain a high-resolution image.
  • the ultrasonic probe of the present invention includes a plurality of arranged piezoelectric elements and an acoustic matching layer provided on one surface of the plurality of piezoelectric elements as a rubber elastic material force.
  • the acoustic matching layer is provided without being divided, it is not necessary to perform division processing together with the piezoelectric element, so that it is possible to eliminate the difficulty of processing and obtain a stable ultrasonic probe. Can do.
  • the directivity can be equal to or wider than that obtained by dividing the acoustic matching layer.
  • phase control can be freely performed using an array of many piezoelectric elements, and the ultrasonic beam can be narrowed and deflected to obtain an ultrasonic image with high resolution.
  • the ultrasonic probe of the present invention is characterized in that an acoustic impedance of the rubber elastic material is larger than an acoustic impedance of the subject smaller than an acoustic impedance of the piezoelectric element.
  • the acoustic impedance of the rubber elastic material is made larger than the acoustic impedance of the subject that is smaller than the acoustic impedance of the piezoelectric element, so that the acoustic impedance of the piezoelectric element is gradually increased. Therefore, it is possible to transmit and receive ultrasonic waves efficiently within the subject.
  • the ultrasonic probe of the present invention is characterized in that the sound velocity of the acoustic matching layer has a value of 1650 m / sec or less.
  • the ultrasonic probe of the present invention further includes an acoustic matching layer arranged individually corresponding to each piezoelectric element between the acoustic matching layer and the plurality of piezoelectric elements. It is characterized by.
  • the processing is stable. Therefore, an ultrasonic probe can be created with high accuracy.
  • a divided acoustic matching layer is provided between the planar acoustic matching layer and the plurality of piezoelectric elements, the acoustic impedance of the piezoelectric element is brought close to the acoustic impedance of the subject stepwise to apply ultrasonic waves. It can be sent and received efficiently within the subject.
  • the present invention provides a plurality of arranged piezoelectric elements and one surface of the plurality of piezoelectric elements, an acoustic impedance is 1.8 to 2.2 megarails, and a sound velocity is 1650 m / sec, or A third acoustic matching layer having a value less than that; and first and second acoustic matching layers provided between the third acoustic matching layer and the plurality of piezoelectric elements. It is an ultrasonic probe.
  • the acoustic impedance of the third acoustic matching layer is 1.8 to 2.2 megarails, the sound velocity is 1650 mZsec or less, and the first and second acoustic matching layers are
  • the acoustic impedance of the piezoelectric element can be brought close to the acoustic impedance of the subject in a stepwise manner, and ultrasonic waves can be efficiently transmitted and received within the subject.
  • the third acoustic matching layer is provided on one surface of the plurality of piezoelectric elements, and the first and second acoustic matching layers are: It is characterized by being arranged individually corresponding to each piezoelectric element.
  • the first and second acoustic matching layers arranged individually corresponding to each piezoelectric element are provided between the third acoustic matching layer and the plurality of piezoelectric elements.
  • the acoustic impedance of the piezoelectric element can be gradually approached to the acoustic impedance of the subject, and ultrasonic waves can be efficiently transmitted and received within the subject.
  • the ultrasonic probe of the present invention is characterized in that the third acoustic matching layer is a rubber elastic material.
  • the ultrasonic probe of the present invention is provided with a plurality of arranged piezoelectric elements and a second surface having a sound velocity of 1650 mZsec or less, provided on one surface of the plurality of piezoelectric elements. And a third acoustic matching layer, and a first acoustic matching layer provided between the second and third acoustic matching layers and the plurality of piezoelectric elements.
  • the second and third acoustic matching layers are provided on one surface of the plurality of piezoelectric elements, and the first acoustic matching layers are respectively It is characterized by being arranged individually corresponding to the piezoelectric elements.
  • the ultrasonic probe of the present invention is characterized in that the second and third acoustic matching layers are made of a rubber elastic material.
  • the ultrasonic probe of the present invention is provided with a plurality of arranged piezoelectric elements and one surface of the plurality of piezoelectric elements, and a sound velocity is 4650 mZsec or less. And a first, second, and third acoustic matching layer provided between the fourth acoustic matching layer and the plurality of piezoelectric elements.
  • the directivity is equal to or wider than the configuration in which the acoustic matching layer is divided. can do.
  • the acoustic impedance of the piezoelectric elements gradually approaches the acoustic impedance of the subject.
  • ultrasonic waves can be efficiently transmitted and received within the subject.
  • the fourth acoustic matching layer is provided on one surface of the plurality of piezoelectric elements, and the first, second, and third acoustic matching are performed.
  • the layers are individually arranged so as to correspond to the respective piezoelectric elements.
  • the provision of the fourth acoustic matching layer reduces the number of acoustic matching layers that are added and divided together with the piezoelectric element, thereby eliminating the difficulty of processing and providing a stable ultrasonic probe. You can get a child.
  • the third and fourth acoustic matching layers are provided on one side of the plurality of piezoelectric elements, and the first and second acoustic matching layers are It is characterized by being arranged individually corresponding to each piezoelectric element. [0041] According to the above configuration, by providing the third and fourth acoustic matching layers, the number of acoustic matching layers to be processed and divided together with the piezoelectric element is reduced. An ultrasonic probe can be obtained.
  • the ultrasonic probe of the present invention is characterized in that the third acoustic matching layer is made of a rubber elastic material and has a sound velocity of 1650 m / sec or less.
  • the ultrasonic probe according to the present invention is characterized in that the fourth acoustic matching layer is a rubber elastic material.
  • the acoustic matching layer is made of a rubber elastic material, and the sound velocity is set to a value of 1650 m / sec or less, so that the acoustic matching layer is equal to or more than the divided configuration.
  • the ultrasonic probe of the present invention is an ultrasonic probe comprising a back surface load material and a plurality of piezoelectric elements arranged on the top surface of the back surface load material, the back surface load material and the above A first polymer film provided between each of the plurality of piezoelectric elements and individually provided with an electrical terminal corresponding to each piezoelectric element; and provided on an upper surface of each of the plurality of piezoelectric elements.
  • First acoustic matching layers arranged individually in correspondence with each other, and a second polymer film provided on the upper surface of the first acoustic matching layer and provided with electrical terminals individually corresponding to each piezoelectric element
  • a second acoustic matching layer provided on the upper surface of the second polymer film and arranged individually corresponding to each piezoelectric element, and provided on the upper surface of the second acoustic matching layer, and rubber Elastic material force 3rd acoustic Characterized in that it comprises an etching layer.
  • the third acoustic matching layer by forming the third acoustic matching layer with a rubber elastic material, it is possible to widen the frequency band and expand the directivity.
  • the third acoustic matching layer without dividing, the number of acoustic matching layers that are processed and divided together with the piezoelectric element is reduced, so that the difficulty of processing can be solved.
  • an electrical terminal can be easily formed by providing an electrical terminal on the polymer film. As a result, it is possible to freely control the phase by using a large number of piezoelectric element arrays, to narrow down and deflect the ultrasonic beam, and to obtain an ultrasonic image with high resolution.
  • the sound velocity of the third acoustic matching layer is 1650m. It has a value of / sec or less.
  • the acoustic impedance of the second polymer film is smaller than the acoustic impedance of the second acoustic matching layer, and the thickness is 0 with respect to the operating frequency. It is characterized by being less than 07 wavelengths.
  • the ultrasonic probe of the present invention is an ultrasonic probe including a plurality of piezoelectric elements arranged on the upper surface of a back surface load material, wherein the back surface load material and the plurality of piezoelectric elements are provided.
  • a first polymer film provided between the first piezoelectric film and an electrical terminal; and a first acoustic pine provided on an upper surface of the plurality of piezoelectric elements and individually arranged corresponding to each piezoelectric element.
  • a second polymer film provided on the upper surface of the chucking layer, the first acoustic matching layer, and individually provided with electrical terminals corresponding to each piezoelectric element; and the upper surface of the second polymer film.
  • a second acoustic matching layer having a rubber elastic material force and a third acoustic matching layer provided on the upper surface of the second acoustic matching layer and also having a rubber elastic material force.
  • the second and third acoustic matching layers with a rubber elastic material, it is possible to widen the frequency band and expand the directivity.
  • the second and third acoustic matching layers without being divided, the number of acoustic matching layers that are processed and divided together with the piezoelectric elements is reduced, so that the difficulty of processing can be eliminated.
  • an electrical terminal can be easily formed by providing an electrical terminal on the polymer film. Accordingly, it is possible to freely control the phase using an array of many piezoelectric elements, to narrow and deflect the ultrasonic beam, and to obtain an ultrasonic image with high resolution.
  • the ultrasonic probe of the present invention is characterized in that the rubber elastic material is mainly composed of synthetic rubber, silicone rubber, urethane rubber or elastomer.
  • the main component of the synthetic rubber is an ethylene-propylene copolymer rubber, a black-open rubber, a butadiene rubber, an isoprene rubber, a styrene-butadiene copolymer rubber, or an acrylonitrile-butadiene copolymer rubber material. It is characterized by that.
  • the acoustic matching layer provided on one surface of the piezoelectric element is made of a rubber elastic material, so that the acoustic matching layer without dividing the acoustic matching layer can be obtained. Since directivity equivalent to or higher than that of the divided configuration can be achieved, it is possible to provide an ultrasonic probe that is easy to process and that provides a high-resolution diagnostic image.
  • FIG. 1 is a schematic perspective view showing the ultrasonic probe according to the first embodiment of the present invention.
  • FIG. 3 is a schematic perspective view showing an ultrasonic probe according to a second embodiment of the present invention.
  • FIG. 4 is a schematic perspective view showing an ultrasonic probe according to a third embodiment of the present invention.
  • FIG. 6 is a schematic perspective view showing an ultrasonic probe according to a fourth embodiment of the present invention.
  • FIG. 7 is a schematic perspective view showing an ultrasonic probe according to a fifth embodiment of the present invention.
  • FIG. 8 is a schematic perspective view showing an ultrasonic probe according to a sixth embodiment of the present invention.
  • FIG. 9a is a schematic perspective view showing the ultrasonic probe according to the first embodiment of the present invention.
  • FIG. 9b is a schematic sectional view showing the ultrasonic probe according to the first embodiment of the present invention.
  • FIG. 11 is a schematic perspective view showing an ultrasonic probe according to a second embodiment of the invention.
  • FIG. 12 is a schematic perspective view showing the configuration of an ultrasonic probe according to the prior art.
  • FIG. 1 shows a partial schematic perspective view of an ultrasonic probe 10 according to the first embodiment.
  • the ultrasonic probe 10 includes a plurality of arranged piezoelectric elements 1 and acoustic matching arranged on the front side in the thickness direction on the subject side (upper side in the figure) corresponding to each piezoelectric element 1.
  • Layer 2 first acoustic matching layer
  • back load material 3 disposed on the thickness direction rear surface (downward in the figure) on the opposite side of acoustic matching layer 2 with respect to piezoelectric element 1, if necessary, It is composed of four acoustic lenses arranged on the acoustic matching layer 2 as required.
  • the functions of these components are the same as those described in the prior art.
  • a ground electrode 5 is provided on the front surface in the thickness direction Z of the piezoelectric element 1, and a signal electrode 6 is provided on the back surface. Both electrodes 5 and 6 are formed on the front and back surfaces of the piezoelectric element 1 by gold or silver deposition, sputtering, or silver baking, respectively.
  • Both electrodes 5, 6 are electrically connected to an ultrasonic diagnostic apparatus (not shown) via an electric terminal 7 via a cable, and apply a regular pulse voltage generated by the ultrasonic diagnostic apparatus to the piezoelectric element 1. Conversely, the echo reception wave converted into an electrical signal by the piezoelectric element 1 is transmitted to the main body of the ultrasonic diagnostic apparatus.
  • the piezoelectric element 1 is divided into individual parts, and the parts of the divided grooves are filled with a material such as silicone rubber or urethane rubber having a small acoustic coupling. Yes.
  • FIG. 2 is a diagram showing the relationship between the directivity angle of the ultrasonic waves in the arrangement direction X of the plurality of piezoelectric elements 1 shown in FIG. 1 and the sound velocity of the rubber elastic material of the sound matching layer 2. .
  • the so-called electronic scanning type ultrasonic probe 10 in which a plurality of piezoelectric elements 1 are arranged, the arranged piezoelectric elements 1 It is an important point to improve the resolution of the ultrasound image how wide the directivity in the X direction can be.
  • the piezoelectric element 1 provided on the back load material 3 is divided by a slicing machine or the like, and the divided grooves are filled with silicone rubber or urethane rubber. Thereafter, an acoustic matching layer 2 made of a rubber elastic material is provided on the surface of the piezoelectric elements 1 divided and arranged.
  • the acoustic matching layer 2 is made of a material having a value between the acoustic impedances of the piezoelectric element 1 and the subject (not shown), and its thickness is Basically, the thickness is one quarter of the frequency used. Furthermore, an acoustic lens 4 is provided on the surface of the acoustic matching layer 2 with a material such as silicone rubber as necessary.
  • the acoustic matching layer 2 is conventionally provided on the piezoelectric element 1 in order to widen directivity, and then divided in the same manner as the piezoelectric element 1. This is because if the acoustic matching layer 2 is not divided into the same elements as the piezoelectric element 1, the acoustic matching layer 2 is continuously connected. This is in order to avoid the narrowing.
  • the piezoelectric element 1, the acoustic matching layer 2, and even a part of the back load material 3 are jointly divided by a slicing machine, and the division interval is particularly narrow as 0.1 mm. In order to process a plurality of materials together, it becomes difficult to uniformly and stably divide the material.
  • a single piece of piezoelectric elements 1 connected to each other without being divided is arranged on the surface of the piezoelectric element 1 in which only the piezoelectric elements 1 are divided and arranged so that the processing can be easily performed uniformly and stably.
  • the acoustic matching layer 2 of rubber elastic material is provided in this state, and the directivity can be equal to or higher than that of the configuration in which the acoustic matching layer 2 is divided.
  • the rubber elastic body as the material of the acoustic matching layer 2 uses a material having a value between the acoustic impedances of the piezoelectric element 1 and the subject, and the thickness is a thickness of a quarter wavelength of the operating frequency. Based on. As a result of examining various materials as an acoustic matching layer 2 through experiments, it was found that there was a difference in directivity even in materials with the same rubber elastic body, hardness, and acoustic impedance. It was.
  • the intensity of the ultrasonic beam radiated in the direction Z decreases by 6 dB in the direction of about 23 degrees from the direction Z.
  • the divided grooves of the piezoelectric element 1 and the acoustic matching layer 2 are filled with a silicone rubber material.
  • the silicone rubber (hard material) is used as the material of the acoustic matching layer 2.
  • the dividing groove into which the piezoelectric element 1 is divided is filled with a silicone rubber material in the same manner as the structure in which the acoustic matching layer 2 is divided.
  • materials other than urethane rubber which are the materials listed above, use materials filled with an arbitrary amount of fillers such as alumina, carbon, or calcium carbonate in order to adjust acoustic impedance.
  • FIG. 2 shows the results of the relationship between the directivity angle measured at a level of 6 dB at a frequency of 3.5 MHz and the sound speed of the material. As shown in Fig. 2, there is a good correlation with the sound speed, and the correlation coefficient is 0.86. This proved that in the configuration in which the acoustic matching layer 2 is not divided, it is necessary to pay attention to the speed of sound when widening the directivity.
  • the directivity angles when the materials of the acoustic matching layer 2 used are used are as follows.
  • Each directivity angle is 25 degrees for silicone rubber, 23.5 degrees for chloroprene rubber, 23.5 degrees for ethylene-propylene copolymer rubber, 22.9 degrees for acrylonitrile-butadiene copolymer rubber, urethane.
  • the result was 20 degrees for rubber.
  • the variation in the measurement results is considered to be about ⁇ 0.5 degrees.
  • the sound velocity of the acoustic matching layer 2 should be about 1650mZsec.
  • a material having a sound speed of 165 OmZsec or less for example, a material such as silicone rubber, as shown in FIG.
  • the speed of sound is around 1650mZsec or less than that of urethane rubber (for example, urethane resin for medium size made by SUNREC Co., Ltd.
  • the speed of sound is 1580 mZsec and the acoustic impedance is 2.1 megarails), so the standard of sound is that the directivity angle is narrower with urethane rubber.
  • the material is basically limited to a rubber elastic material.
  • the acoustic matching layer 2 is provided as a single continuous film without being divided in the same manner as the piezoelectric element 1, the acoustic matching layer is used when securing or widening directivity. It was necessary to pay attention to the speed of sound of the second material.
  • a material having an acoustic impedance value of about 2 megarails as listed in the above material is not limited to a rubber elastic material but also exists in a plastic material or the like.
  • fillers are filled in polyethylene, polystyrene, or epoxy resin shown in Reference 2.
  • the speed of sound of these materials is about 1800 mZsec or more, and when these materials are configured without dividing the acoustic matching layer 2 as in the configuration of this embodiment, As can be seen from the trend in Figure 2, the directivity becomes narrower. When such a material is used, it is necessary to divide the acoustic matching layer 2 in the same manner as the piezoelectric element 1 so that the directivity is widened.
  • the material of the acoustic matching layer 2 when the main component is a rubber elastic body such as synthetic rubber, silicone rubber, or urethane rubber, the force described above, an elastomer having a rubber elastic body is also used. The same effect can be obtained even when a series of materials is used.
  • a rubber elastic body such as synthetic rubber, silicone rubber, or urethane rubber
  • the case where the piezoelectric elements are arranged one-dimensionally has been described.
  • the same effect can be obtained when the piezoelectric elements are arranged two-dimensionally.
  • a configuration in which a plurality of piezoelectric elements are arranged has been described.
  • a rubber elastic body may be used for the acoustic matching layer even in the case of a single body in which no piezoelectric elements are arranged. .
  • FIG. 3 shows a partial schematic perspective view of the ultrasonic probe 10 according to the second embodiment.
  • This ultrasonic probe 10 has a plurality of arranged piezoelectric elements 1 and two layers arranged on the front side in the thickness direction on the subject side (upper side in the figure) corresponding to each piezoelectric element 1.
  • the back load material 3 is arranged on the back in the thickness direction (lower part of the figure), and if necessary, it is composed of four acoustic lenses arranged on the acoustic matching layer 2 (2a, 2b) .
  • the functions of these components are the same as those described in the prior art.
  • the ground electrode 5 is provided on the front surface in the thickness direction Z of the piezoelectric element 1, and the signal electrode 6 is provided on the back surface. Both electrodes 5 and 6 are formed on the front and back surfaces of the piezoelectric element 1 by gold or silver deposition, sputtering, or silver baking, respectively.
  • Both electrodes 5 and 6 are electrically connected to an ultrasonic diagnostic apparatus (not shown) via an electric terminal 7 via a cable, and apply a regular pulse voltage generated by the ultrasonic diagnostic apparatus to the piezoelectric element 1. Conversely, the echo reception wave converted into an electrical signal by the piezoelectric element 1 is transmitted to the main body of the ultrasonic diagnostic apparatus.
  • the piezoelectric element 1 and the first acoustic matching layer 2a located on the piezoelectric element 1 side are individually divided, and acoustic coupling is performed to the divided grooves. It is filled with materials such as small silicone rubber and urethane rubber. Furthermore, the piezoelectric element
  • the second acoustic matching layer 2b On the upper surface of the acoustic matching layer 2a located on the 1 side, the second acoustic matching layer 2b is provided with a continuous film that is not divided. Furthermore, if necessary, an acoustic lens is provided using a material such as silicone rubber.
  • the resolution of the ultrasonic image is improved by how wide the directivity in the X direction of the arranged piezoelectric elements 1 can be increased. It is the same as in the first embodiment that it is an important point.
  • the acoustic matching layer 2 is a single layer.
  • a piezoelectric ceramic such as a PZT system is used as the piezoelectric element.
  • the directivity cannot be widened unless the acoustic matching layer 2 is divided as in the piezoelectric element 1. It was. This is because it is divided by a slicing machine like the piezoelectric element 1. For this reason, the thickness of the acoustic matching layer 2 is increased by increasing the number of layers, and the amount of material to be divided becomes larger, which makes it difficult to work when dividing, making it uniform and stable. It has become difficult to create.
  • the present embodiment has a configuration that can solve these problems and widen the directivity.
  • the piezoelectric element 1 and the piezoelectric element 1 are positioned as shown in FIG.
  • the acoustic matching layer 2a is divided and a single acoustic matching layer 2b is provided on the upper surface of the acoustic matching layer 2a.
  • the material of the piezoelectric element 1 is a material such as a piezoelectric ceramic such as PZT, a piezoelectric single crystal such as PZN-PT or PMN-PT, or a composite piezoelectric material in which the material is combined with a polymer.
  • a piezoelectric ceramic such as PZT
  • a piezoelectric single crystal such as PZN-PT or PMN-PT
  • a composite piezoelectric material in which the material is combined with a polymer.
  • an epoxy resin in which a filler such as metal or oxide is filled in a graphite or epoxy resin is used for the acoustic matching layer 2a.
  • the materials of the acoustic matching layer 2b are those described in the first embodiment, such as silicone rubber, chloroprene rubber, ethylene-propylene copolymer rubber, acrylonitrile-butadiene copolymer rubber, and urethane rubber.
  • silicone rubber chloroprene rubber, ethylene-propylene copolymer rubber, acrylonitrile-butadiene copolymer rubber, and urethane rubber.
  • urethane rubber The same material as the rubber elastic body is used.
  • a filler such as a metal or an oxide is used as the main material of the rubber elastic body. It can be obtained by filling and adjusting.
  • the acoustic matching layer 2b is provided as a single continuous film without being divided, and the directivity is equal to or more than the directivity of the configuration in which the acoustic matching layer 2b is divided.
  • the rubber elastic body material is selected so that the sound velocity of the rubber elastic body material is 1650 mZsec or less. This is obtained from the result shown in FIG. 2 of the first embodiment.
  • the processing is stable even if divided at a narrow interval (for example, O.lmm).
  • a narrow interval for example, O.lmm
  • the acoustic matching layer 2a located on the piezoelectric element 1 side of the two acoustic matching layers 2 is divided in the same manner as the piezoelectric element 1, and is further continuously formed on the upper surface of the acoustic matching layer 2a.
  • attention must be paid to the sound speed of the material of the acoustic matching layer 2b in order to ensure or widen the directivity.
  • the acoustic matching layer 2b material is not limited to a rubber elastic material, but also exists in a plastic material or the like.
  • a plastic material or the like there are materials such as polyethylene, polystyrene, polyimide, epoxy resin or epoxy resin shown in Reference 2 filled with a filler, but the sound speed of these materials is 1800 mZsec or more.
  • the directivity angle becomes narrow as is apparent from the results shown in FIG.
  • the acoustic matching layer 2b needs to be divided similarly to the piezoelectric element 1 and the acoustic matching layer 2a.
  • the case where two acoustic matching layers 2 are used has been described.
  • three or more acoustic matching layers are provided, and acoustic matching is located on the subject side. The same effect can be obtained even when the layers are formed in a continuous form using a rubber elastic material without dividing the layers.
  • the case where the piezoelectric elements are arranged one-dimensionally has been described. However, the same effect can be obtained when the piezoelectric elements are arranged two-dimensionally.
  • a configuration in which a plurality of piezoelectric elements are arranged will be described.
  • a rubber elastic body may be used for the acoustic matching layer even in the case of a single body in which the piezoelectric elements are not arranged.
  • FIG. 4 shows a partial schematic perspective view of the ultrasound probe 10 according to the third embodiment.
  • the ultrasonic probe 10 includes a plurality of arranged piezoelectric elements 1 and three layers arranged on the front side in the thickness direction on the subject side (upper side in the figure) corresponding to each piezoelectric element 1.
  • the rear load material 3 is arranged, and if necessary, the acoustic lens 4 force is arranged on the acoustic matching layer 2 (2a, 2b, 2c).
  • the functions of these components are the same as those described in the prior art.
  • a ground electrode 5 is provided on the front surface in the thickness direction Z of the piezoelectric element 1, and a signal electrode 6 is provided on the back surface. Both electrodes 5 and 6 are formed on the front and back surfaces of the piezoelectric element 1 by gold or silver deposition, sputtering, or silver baking, respectively.
  • Both electrodes 5 and 6 are electrically connected to an ultrasonic diagnostic apparatus (not shown) via an electrical terminal 7 via a cable, and apply a regular pulse voltage generated by the ultrasonic diagnostic apparatus to the piezoelectric element 1. Conversely, the echo reception wave converted into an electrical signal by the piezoelectric element 1 is transmitted to the main body of the ultrasonic diagnostic apparatus.
  • the piezoelectric element 1, and the first acoustic matching layer 2a and the second acoustic matching layer 2b located on the piezoelectric element 1 side are individually divided, and these divided
  • the groove is filled with materials such as silicone rubber and urethane rubber that have a small acoustic coupling.
  • a continuous film that does not divide the third acoustic matching layer 2c is provided on the upper surface of the second acoustic matching layer 2b.
  • an acoustic lens is provided using a material such as silicone rubber.
  • the resolution of the ultrasonic image is improved by how the directivity in the X direction of the arranged piezoelectric elements 1 can be increased. It is the same as in the second embodiment that this is an important point.
  • the acoustic matching layer 2 is two layers.
  • a further wide band can be achieved.
  • the acoustic matching layer 2 (2a, 2b, 2c) must be divided in the same manner as the piezoelectric element 1 as shown in References 1 and 2. It was a force that could not widen the directivity.
  • the thickness of the acoustic matching layer 2 is increased by increasing the number of layers in order to divide it by a slicing machine, etc., in the same way as the piezoelectric element 1. Due to the increased amount of material, it is difficult to process when dividing, making it difficult to create a uniform and stable material.
  • the present embodiment has a configuration that can solve these problems, can achieve a wide bandwidth, and can widen directivity.
  • the piezoelectric element 1 and the first and second acoustic matching layers 2a and 2b located on the piezoelectric element 1 side are Further, the first acoustic matching layer 2a and the second acoustic matching layer 2b are further divided so that one continuous third acoustic matching layer 2c is provided.
  • the material of the piezoelectric element 1 includes materials such as piezoelectric ceramics such as PZT, piezoelectric single crystals such as PZN-PT and PMN-PT, or composite piezoelectric materials in which the above materials are combined with polymers.
  • the first acoustic matching layer 2a is made of silicon single crystal having a value in the range of acoustic impedance of 8 to 20 megarail, glass such as quartz or fused quartz, free-cutting ceramic, or graphite.
  • the second acoustic matching layer 2b is a graphite having an acoustic impedance in the range of 3 to 8 megarails, or an epoxy resin filled with a filler such as a metal or an oxide. Use epoxy resin.
  • the material of the third acoustic matching layer 2c is mainly composed of a rubber elastic body such as silicone rubber, chloroprene rubber, ethylene-propylene copolymer rubber, acrylonitrile-butadiene copolymer rubber, and urethane rubber. Is used.
  • the acoustic impedance of each of the acoustic matching layers 2 (2a, 2b, 2c) is selected depending on each material or frequency characteristics. For example, the frequency is set to a center frequency of 3.5 MHz, the acoustic impedance of the back load material 3 is 7 megarails, and the piezoelectric element 1 is a PZT-based piezoelectric ceramic material equivalent to PZT-5H.
  • Layer 2a uses a graph impedance of acoustic impedance 9 Megarails
  • the second acoustic matching layer 2b uses epoxy resin filled with an acid with an acoustic impedance of 4 Megarails
  • the third acoustic matching layer 2c The acoustic impedance was calculated in a configuration with a variable range of 1.5 to 2.5 megarails.
  • Figure 5 shows the results of evaluations at a frequency characteristic ratio band of 1-6 dB and pulse lengths of 6 dB, 20 dB, and -40 dB.
  • the horizontal axis is the acoustic impedance value of the third acoustic matching layer 2c
  • the left vertical axis is the pulse length
  • the right vertical axis is the frequency ratio band (bandwidth / center frequency) at -6 dB. Represents.
  • the pulse length is almost the same even if the acoustic impedance of the third acoustic matching layer 2c changes at the level of 6dB, but it changes at the level of 20dB and 40dB, and the acoustic impedance It can be seen that the value is small in the range of 1.8 to 2.3 Megarails. The smaller the pulse length, the higher the resolution and the better. Therefore, it is important to reduce the pulse length to improve the resolution.
  • the greater the value of the ratio band the deeper the resolution and the depth of test.
  • the ratio band will be 80% or less, and wideband noise will not be possible. I understand.
  • the acoustic impedance of the third acoustic matching layer 2c is preferably in the range of 1.8 to 2.2 megarails.
  • the material in which the acoustic impedance of the third acoustic matching layer 2c is in the range of 1.8 to 2 megarails a material obtained from the main material of the main rubber elastic body can be used as it is.
  • a material having an acoustic impedance outside the range can be obtained by filling with a filler and adjusting.
  • the third acoustic matching layer 2c is provided as a single continuous film without being divided.
  • the elastic material is a rubber elastic body whose directivity is equal to or greater than the directivity of the configuration obtained by dividing the third acoustic matching layer 2c, and the sound velocity of the elastic material is It is to select a material having a value of 1650 mZsec or less. This is the same as the result shown in FIG. 2 of the first embodiment.
  • the first and second acoustic matching layers 2a and 2b located on the piezoelectric element 1 side of the three acoustic matching layers 2 are divided in the same manner as the piezoelectric element 1, and the second In the configuration in which one continuous third acoustic matching layer 2c is provided on the top surface of the acoustic matching layer 2b, the sound velocity of the material of the third acoustic matching layer 2c is used to ensure or widen the directivity. It is necessary to pay attention to.
  • a material suitable for the third acoustic matching layer 2c is not limited to a rubber material, and a plastic material or the like is also conceivable.
  • a plastic material or the like is also conceivable.
  • the directivity angle becomes narrower as is apparent from the results shown in FIG.
  • the third acoustic matching layer 2c must be divided in the same manner as the piezoelectric element 1 and the first and second acoustic matching layers 2a and 2b.
  • the material of the third acoustic matching layer 2c is chloroprene rubber, ethylene-propylene copolymer rubber, or acrylonitrile-butene copolymer rubber that is a synthetic rubber.
  • chloroprene rubber ethylene-propylene copolymer rubber
  • acrylonitrile-butene copolymer rubber that is a synthetic rubber.
  • other synthetic rubbers such as butadiene rubber, isoprene rubber, styrene butadiene copolymer rubber, or acrylic rubber.
  • the acoustic matching layer 2 is three layers.
  • four or more acoustic matching layers are provided, and the acoustic matching layer located on the subject side is provided. The same effect can be obtained even when the layers are formed in a continuous form using a rubber elastic material without dividing the layers.
  • the case where the piezoelectric elements are arranged one-dimensionally has been described. However, the same effect can be obtained when the piezoelectric elements are arranged two-dimensionally.
  • the force described for the configuration in which a plurality of piezoelectric elements are arranged is used.
  • three or more acoustic matching layers are formed on the subject side. Even if a rubber elastic body is used for the acoustic matching layer located at, a wide band effect can be obtained.
  • FIG. 6 shows a partial schematic perspective view of the ultrasonic probe 10 according to the fourth embodiment.
  • This ultrasonic probe 10 has a plurality of arranged piezoelectric elements 1 and three layers arranged on the front side in the thickness direction corresponding to each piezoelectric element 1 on the subject side (upper side in the figure).
  • the rear load material 3 is arranged, and the acoustic lens 4 force is arranged on the acoustic matching layer 2 (2a, 2b, 2c) as necessary.
  • the functions of these components are the same as those described in the prior art.
  • the ground electrode 5 is provided on the front surface in the thickness direction Z of the piezoelectric element 1, and the signal electrode 6 is provided on the back surface. Both electrodes 5 and 6 are formed on the front and back surfaces of the piezoelectric element 1 by gold or silver deposition, sputtering, or silver baking, respectively. [0130] Both electrodes 5 and 6 are electrically connected to an ultrasonic diagnostic apparatus (not shown) via an electric terminal 7 and via a cable, and apply a regular pulse voltage generated by the ultrasonic diagnostic apparatus to the piezoelectric element 1. Conversely, the echo reception wave converted into an electrical signal by the piezoelectric element 1 is transmitted to the main body of the ultrasonic diagnostic apparatus.
  • the piezoelectric element 1 and the first acoustic matching layer 2a located on the piezoelectric element 1 side are individually divided, and acoustic coupling is made to the divided groove portions. It is filled with materials such as small silicone rubber and urethane rubber. Further, a continuous film is provided on the upper surface of the first acoustic matching layer 2a without dividing the second acoustic matching layer 2b and the third acoustic matching layer 2c. Furthermore, if necessary, an acoustic lens is provided using a material such as silicone rubber.
  • the resolution of the ultrasonic image is improved by how the directivity in the X direction of the arranged piezoelectric elements 1 can be increased. It is the same as in the second and third embodiments that this is an important point.
  • the acoustic matching layer 2 has two layers.
  • a further broadband display is possible.
  • the acoustic matching layer is made up of three or more layers, as shown in References 1 and 2, the acoustic matching layer 2 (2a, 2b, 2c) must also be divided similarly to the piezoelectric element 1. In other words, it was a force that could not broaden the directionality.
  • the present embodiment solves these problems, has a configuration capable of wideband transmission and wide directivity.
  • the piezoelectric element 1 and the first acoustic matching layer 2a located on the piezoelectric element 1 side are divided, and further The configuration is such that the second and third acoustic matching layers 2b and 2c are provided on the upper surface of the first acoustic matching layer 2a.
  • the material of piezoelectric element 1 includes piezoelectric ceramics such as PZT, PZN-PT, PMN-P
  • a material such as a piezoelectric single crystal such as a T-based material or a composite piezoelectric material in which the above materials and a polymer are combined is used.
  • the first acoustic matching layer 2a has an acoustic impedance in the range of 8 to 20 megarails.
  • a material such as silicon single crystal, quartz, fused silica, etc., free-cutting ceramic, or graphite is used, and the second acoustic matching layer 2b has an acoustic impedance of 3 to 8 megarails.
  • a rubber elastic body filled with a filler such as metal powder or oxide powder having a range of values is used.
  • the material of the third acoustic matching layer 2c is a material mainly composed of a rubber elastic body such as silicone rubber, chloroprene rubber, ethylene-propylene copolymer rubber, acrylonitrile-butadiene copolymer rubber, and urethane rubber. Is used.
  • the point of this embodiment is that the second acoustic matching layer 2b is also provided in a configuration that is not divided like the third acoustic matching layer 2c.
  • the directivity becomes narrow as described above, which is not desirable.
  • the directionality is narrowed even if the configuration is not divided, and it is better to have as few components as possible when processing and dividing. This is described in the embodiment.
  • the second acoustic matching layer 2b is also the third acoustic matching layer as described in FIG. 2 and the third embodiment. If the material is a rubber elastic material such as the acoustic matching layer 2c and the sound velocity is 1650 mZsec or less, the directivity can be obtained without dividing the second acoustic matching layer 2b. It is possible to obtain a habit characteristic that is not narrow.
  • the second acoustic matching layer 2b is a material having an acoustic impedance in the range of 3 to 8 megarails and a sound velocity of 1650 m / sec or less, for example, acrylo-tolyl-butadiene.
  • a material filled with copper metal powder (average particle size 1.2 micrometer) filler at a ratio of 9 by weight to polymerized rubber 1 has an acoustic impedance of 5.3 megarails and a sound velocity of 1070 mZsec.
  • the second acoustic matching layer 2b is made of a material having a desired value.
  • the material of the second acoustic matching layer 2b As the material of the second acoustic matching layer 2b, a case has been described in which a material in which a filler of copper powder is filled in acrylonitrile monobutadiene copolymer rubber, which is a synthetic rubber, is used. Power This chloroprene rubber, ethylene-propylene copolymer rubber, butadiene rubber, isoprene rubber, styrene-butadiene copolymer rubber or acrylic rubber, synthetic rubber, silicone rubber, urethane rubber, elastomer-based materials, etc. The same effect can be obtained even if the material is a combination of fillers.
  • the acoustic matching layer 2 is three layers.
  • four or more acoustic matching layers are provided, and the acoustic matching layer located on the subject side is provided. The same effect can be obtained even when the layers are formed in a continuous form using a rubber elastic material without dividing the layers.
  • the case where the piezoelectric elements are arranged one-dimensionally has been described. However, the same effect can be obtained when the piezoelectric elements are arranged two-dimensionally.
  • the force described for the configuration in which a plurality of piezoelectric elements are arranged is used.
  • three or more acoustic matching layers are formed on the subject side. Even if a rubber elastic body is used for the acoustic matching layer located at, a wide band effect can be obtained.
  • FIG. 7 shows a partial schematic perspective view of the ultrasonic probe 10 according to the fifth embodiment.
  • the ultrasonic probe 10 includes a plurality of arranged piezoelectric elements 1 and four layers arranged on the front side in the thickness direction on the subject side (upper side in the figure) corresponding to each piezoelectric element 1.
  • the back load material 3 is arranged on the lower side of the acoustic lens 4 and, if necessary, the acoustic lens 4 force is arranged on the acoustic matching layer 2 (2a, 2b, 2c, 2d).
  • the functions of these components are the same as those described in the prior art.
  • a ground electrode 5 is provided on the front surface in the thickness direction Z of the piezoelectric element 1, and a signal electrode 6 is provided on the back surface. Both electrodes 5 and 6 are formed on the front and back surfaces of the piezoelectric element 1 by gold or silver deposition, sputtering, or silver baking, respectively.
  • Both electrodes 5, 6 are electrically connected to an ultrasonic diagnostic device (not shown) via a cable via an electrical terminal 7, and a regular pulse voltage generated by the ultrasonic diagnostic device is applied to the piezoelectric element 1. Conversely, the echo reception wave converted into an electrical signal by the piezoelectric element 1 is transmitted to the main body of the ultrasonic diagnostic apparatus.
  • the piezoelectric element 1 and the acoustic matching layers 2a, 2b and 2c located on the piezoelectric element 1 side are individually divided, and the divided grooves are acoustically separated. It is filled with materials such as silicone rubber and urethane rubber that have a small bond. Furthermore, a continuous film that does not divide the acoustic matching layer 2d is provided on the upper surface of the acoustic matching layer 2c. Furthermore, if necessary, an acoustic lens is provided using a material such as silicone rubber.
  • the resolution of the ultrasonic image is improved by how wide the directivity in the direction of the arranged piezoelectric elements 1 can be increased. This is an important point.
  • the acoustic matching layer 2 provided on the subject side of the piezoelectric element 1 By making the acoustic matching layer 2 provided on the subject side of the piezoelectric element 1 into multiple layers, a wide band can be obtained. However, when the acoustic matching layer is multi-layered to four or more layers, the three acoustic matching layers 12 are divided in the same way as the piezoelectric element 11 as shown in FIG. 12 (see Patent Documents 1 and 2). If it was not made the structure, the directivity could not be widened. [0154] This is because, as with the piezoelectric element 11, the acoustic matching layer 12 is further multi-layered by dividing the acoustic matching layer 12 in order to be divided by a slicing machine or the like. Due to the increased amount of material, it is difficult to process when dividing, making it difficult to create uniform and stable materials. The present embodiment has a configuration in which these problems are solved, a wide band is possible, and a wide directivity can be obtained.
  • the first, second, and third acoustic matching layers 2a, 2b, 2c is divided, and a single fourth acoustic matching layer 2d is provided on the upper surface of the third acoustic matching layer 2c.
  • the material of the piezoelectric element 1 is a material such as a piezoelectric ceramic such as PZT, a piezoelectric single crystal such as PZN-PT or PMN-PT, or a composite piezoelectric material in which the material is combined with a polymer.
  • the first acoustic matching layer 2a is made of a material such as silicon single crystal, crystal, tellurite glass, or free-cutting ceramics having an acoustic impedance smaller than that of the piezoelectric element 1.
  • a glass-based material typified by fused quartz or the like whose acoustic impedance is smaller than that of the first acoustic matching layer 2a, graphite, or epoxy resin, metal or oxide
  • the acoustic impedance is smaller than that of the second acoustic matching layer 2b.
  • the material of the fourth acoustic matching layer 2d includes silicone rubber, chloroprene rubber, ethylene-propylene copolymer rubber, and acrylonitrile-butadiene copolymer having an acoustic impedance smaller than that of the third acoustic matching layer 2c.
  • a material mainly composed of polymer rubber and rubber elastic body such as polyurethane rubber is used.
  • the thickness of these acoustic matching layers 2 (2a, 2b, 2c, 2d) is based on the thickness of a quarter wavelength of the used frequency.
  • the piezoelectric element 1 and the first, second, and third acoustic matching layers 2 (2a, 2b, and 2c) are divided so that the processing is easy, uniform, and stable.
  • the fourth acoustic matching layer 2d made of a rubber elastic material is provided in a single piece connected to the upper surface of the third acoustic matching layer 2c without being divided. Force and directivity are the fourth acoustic pine The point is that it can be made equal to or more than the structure divided up to 2d.
  • the acoustic matching layer is made of a rubber elastic material, and the sound velocity is high as described in Fig. 2 of the first embodiment. Any material having a value of 1650 mZsec or less may be used. A material with this property is used for the fourth acoustic matching layer.
  • the material of the fourth acoustic matching layer 2d As the material of the fourth acoustic matching layer 2d, the force explained when the main body uses a rubber elastic body such as synthetic rubber, silicone rubber, or urethane rubber. Even if a system material is used, the same effect can be obtained.
  • a rubber elastic body such as synthetic rubber, silicone rubber, or urethane rubber.
  • the case where the piezoelectric elements are arranged one-dimensionally has been described. However, the same effect can be obtained when the piezoelectric elements are arranged two-dimensionally.
  • a configuration in which a plurality of piezoelectric elements are arranged has been described. However, in the case of a single element in which no piezoelectric elements are arranged, three or more acoustic matching layers are formed on the subject side. Even if a rubber elastic body is used for the acoustic matching layer, a wide band effect can be obtained.
  • the fourth acoustic matching layer located on the subject side of the acoustic matching layer defines the speed of sound with a rubber elastic body and is configured not to be divided, thereby increasing the frequency bandwidth and directivity.
  • An ultrasonic probe can be obtained, and the phase can be freely controlled using an array of many piezoelectric elements, the ultrasonic beam can be narrowed down, and the ultrasonic beam can be deflected. Therefore, it is possible to obtain an ultrasonic probe that provides an ultrasonic image with high resolution.
  • FIG. 8 shows a partial schematic perspective view of the ultrasonic probe 10 according to the sixth embodiment.
  • This ultrasonic probe 10 has a plurality of arranged piezoelectric elements 1 and four layers arranged on the front side in the thickness direction on the subject side (upper side in the figure) corresponding to each piezoelectric element 1.
  • the back load material 3 is arranged on the lower side of the acoustic lens 4 and, if necessary, the acoustic lens 4 force is arranged on the acoustic matching layer 2 (2a, 2b, 2c, 2d).
  • the functions of these components are the same as those described in the prior art.
  • a ground electrode 5 is provided on the front surface in the thickness direction Z of the piezoelectric element 1, and a signal electrode 6 is provided on the back surface. Both electrodes 5 and 6 are formed on the front and back surfaces of the piezoelectric element 1 by gold or silver deposition, sputtering, or silver baking, respectively.
  • Both electrodes 5 and 6 are electrically connected to an ultrasonic diagnostic apparatus (not shown) via an electric terminal 7 via a cable, and apply a regular pulse voltage generated by the ultrasonic diagnostic apparatus to the piezoelectric element 1. Conversely, the echo reception wave converted into an electrical signal by the piezoelectric element 1 is transmitted to the main body of the ultrasonic diagnostic apparatus.
  • the piezoelectric element 1 and the first and second acoustic matching layers 2a and 2b positioned on the piezoelectric element 1 side are divided. It is filled with materials such as silicone rubber and urethane rubber that have low acoustic coupling.
  • a continuous film is provided on the upper surface of the second acoustic matching layer 2b without dividing the third acoustic matching layer 2c and the fourth acoustic matching layer 2d. Furthermore, if necessary, a configuration in which an acoustic lens is provided using a material such as silicone rubber is adopted. [0171] In the so-called electronic scanning type ultrasonic probe 10 in which a plurality of piezoelectric elements 1 are arranged, the resolution of the ultrasonic image is improved by how the directivity in the X direction of the arranged piezoelectric elements 1 can be increased. It is the same as in the first embodiment that it is an important point.
  • the piezoelectric element 1 and the first and second acoustic matching layers 2a and 2b located on the piezoelectric element 1 side are In addition, a third acoustic matching layer 2c is provided on the upper surface of the second acoustic matching layer 2b, and a fourth acoustic matching layer 2d is provided on the upper surface of the third acoustic matching layer 2c.
  • the material of the piezoelectric element 1 includes materials such as piezoelectric ceramics such as PZT, piezoelectric single crystals such as PZN-PT and PMN-PT, or composite piezoelectric materials in which the above materials and polymers are combined.
  • the first acoustic matching layer 2a is made of a material such as silicon single crystal, crystal, tellurite glass, or free-cutting ceramics having an acoustic impedance smaller than that of the piezoelectric element 1.
  • a glass-based material typified by fused quartz or the like whose acoustic impedance is smaller than that of the first acoustic matching layer 2a, graphite, or epoxy resin, metal or oxide
  • the acoustic impedance is smaller than that of the second acoustic matching layer 2b.
  • a natural material having a sound velocity of 1650 mZsec or less is used.
  • the material of the fourth acoustic matching layer 2d includes silicone rubber, chloroprene rubber, ethylene-propylene copolymer rubber, acrylonitrile-butadiene copolymer having an acoustic impedance smaller than that of the third acoustic matching layer 2c.
  • a material mainly composed of elastic rubber such as polymer rubber and urethane rubber is used.
  • the thickness of these acoustic matching layers 2 (2a, 2b, 2c, 2d) is based on the thickness of a quarter wavelength of the used frequency.
  • the piezoelectric element 1 and the first and second acoustic matching layers 2 (2a, 2b) are divided and arranged so as to be easily processed, uniformly, and stably formed.
  • a third acoustic matching layer 2c made of a rubber elastic material in a state of being connected to the upper surface of the second acoustic matching layer 2b without being divided, and further on the upper surface in the same manner as the third acoustic matching layer 2c.
  • the fourth acoustic matching layer 2d is provided in a single connected state without being divided. Force The point is that the directivity can be made equal to or more than the configuration in which the third and fourth acoustic matching layers 2c and 2d are divided.
  • the directivity becomes narrow as described above, which is not desirable. However, there is no problem if the directivity is reduced even if the configuration is not divided, and it is better to reduce the number of components as much as possible when processing and dividing. Explains.
  • the third acoustic matching layer 2c also has a fourth configuration as described in FIG. 2 and the first embodiment. If the material is a rubber elastic material, such as the acoustic matting layer 2d, and the force and speed of sound are 1650 mZsec or less, the directivity can be reduced without dividing the third acoustic matching layer 2c. It is possible to obtain certain characteristics.
  • the third acoustic matching layer 2c has a value that the acoustic impedance has between the second and fourth acoustic matching layers 2b and 2d, and the sound velocity has a value of 1650 mZsec or less.
  • acrylonitrile butadiene copolymer rubber 1 is filled with copper metal powder (average particle size 1.2 micrometers) at a ratio of 9 in a material with an acoustic impedance of 5.3 megarails and a sound speed of 1070 m. / sec, and a material having a characteristic value desired for the third acoustic matching layer 2c is used.
  • a material having acoustic impedance and sound velocity values required for the third acoustic matching layer 2c can be obtained.
  • Power This chloroprene rubber, ethylene-propylene copolymer Synthetic rubber such as synthetic rubber, butadiene rubber, isoprene rubber, styrene butadiene copolymer rubber or acrylic rubber, silicone rubber, urethane rubber, elastomeric materials, etc. Is obtained.
  • the acoustic matching layer 2 is four layers.
  • two or more acoustic matching layers are provided and positioned on the subject side. The same effect can be obtained even when the acoustic matching layer is formed as a continuous body using a rubber elastic material without dividing the acoustic matching layer.
  • the case where the piezoelectric elements are arranged one-dimensionally has been described. However, the same effect can be obtained when the piezoelectric elements are arranged two-dimensionally.
  • the force described for the configuration in which a plurality of piezoelectric elements are arranged is used.
  • three or more acoustic matching layers are formed on the subject side. Even if a rubber elastic body is used for the acoustic matching layer located at, a wide band effect can be obtained.
  • FIG. 9a shows a partial schematic perspective view of the ultrasonic probe 10 according to the seventh embodiment
  • FIG. 9b shows a schematic cross-sectional view seen from the X direction shown in FIG. 9a.
  • the ultrasonic probe 10 includes a plurality of arranged piezoelectric elements 1, and three layers arranged on the front side in the thickness direction on the subject side (upper side in the figure) corresponding to each piezoelectric element 1.
  • the rear load material 3 is arranged, and the acoustic lens 4 force is arranged on the acoustic matching layer 2 (2a, 2b, 2c) as necessary.
  • the functions of these components are the same as those described in the prior art.
  • the ground electrode 5 is provided on the front surface in the thickness direction Z of the piezoelectric element 1, and the signal electrode 6 is provided on the back surface. Both electrodes 5, 6 can be used for gold or silver deposition, sputtering, or silver firing. Formed on the front and back surfaces of the piezoelectric element 1 by soldering or the like.
  • a film 8 (first polymer film) in which a polymer film such as polyimide is provided with a metal film such as copper is provided between the signal electrode 6 and the film 8.
  • the metal film electrical terminals 7 are in contact with each other, and the polymer film is in contact with the back load material 3 side.
  • a conductor such as a graphite (in the case of an insulator material, a metal conductor is formed by wrapping around the insulator).
  • a first acoustic matching layer 2a is provided, and on the upper surface of the first acoustic matching layer 2a, a polymer film such as polyimide and a metal film such as copper (thickness has little effect on characteristics!
  • a film 9 second polymer film provided with 5 micrometers or less
  • the first acoustic matching layer 2a which is the conductor, and the metal film of the film 9 are in contact with each other.
  • a second acoustic matting layer 2b of graphite or epoxy resin in which a filler such as metal or oxide is filled in epoxy resin is provided on the upper surface of the polymer film of the film 9.
  • a filler such as metal or oxide is filled in epoxy resin.
  • the material of the first acoustic matching layer 2a is an insulator
  • this structure is established if a conductor is formed on the entire periphery of the insulator by a method such as plating.
  • the material of the matching layer 2a need not be a conductor.
  • the second acoustic matching layer 2b may be an insulator or a conductor.
  • a part of the back load material 3, the film 8, the piezoelectric element 1, the first acoustic matching layer 2a, the film 9, and the second acoustic matching layer 2b are slicing machine. Process and divide with etc.
  • the divided groove after the division is filled with a material such as silicone rubber or urethane rubber having a small acoustic coupling, and the second acoustic matching layer 2 b and the upper surface of the portion filled in the division groove are filled with the first groove.
  • 3 acoustic matching layer 2c is provided.
  • the third acoustic matching layer 2c is provided in a connected state without being divided as shown in the figure.
  • the material of the third acoustic matching layer 2c is a material mainly composed of rubber elastic bodies such as silicone rubber, chloroprene rubber, ethylene-propylene copolymer rubber, acrylonitrile-butadiene copolymer rubber, and urethane rubber. Is used. If necessary, the third An acoustic lens 4 using a material such as silicone rubber is formed on the upper surface of the acoustic matching layer 2c.
  • the signal electrode 6 passes through the metal film of the electrical terminal 7 of the film 8, and the ground electrode 5 passes through the first acoustic matching layer 2a and the conductor of the metal film of the film 9, via the cable.
  • This is an electrical connection that is electrically connected to an ultrasonic diagnostic device (not shown) and applied by the ultrasonic diagnostic device to the regularity V and pulse voltage applied to the piezoelectric element 1 and conversely converted into an electrical signal by the piezoelectric element 1.
  • a wave is transmitted to the ultrasonic diagnostic apparatus main body.
  • the acoustic impedances of the piezoelectric element 1 and the subject are about 30 megarails and about 1.54 megarails, respectively, and the difference between them is large, resulting in an acoustic mismatch.
  • the band becomes narrower.
  • a wide frequency band can be obtained.
  • the number of acoustic matching layers can be increased by increasing the number of layers to two layers from one layer and three layers from two layers.
  • the directivity of the piezoelectric element 1 with a frequency of 3.5 MHz is divided when the distance between the piezoelectric elements 1 is 0.38 mm (the state in which two divided by an interval of 0.19 mm are electrically bundled).
  • the angle is defined at a level of 6 dB
  • the type of configuration in which the acoustic matching layer 2 is divided simultaneously with the piezoelectric element 1 has a directivity angle of about 23 degrees.
  • the dividing groove into which the piezoelectric element 1 and the first and second acoustic matching layers 2a and 2b are divided is filled with a silicone rubber material.
  • Piezoelectric element 1 is divided into the same specifications by the above method, and among the three acoustic matching layers, the first and second acoustic matching layers 2a and 2b on the piezoelectric element 1 side are the piezoelectric elements.
  • a silicone rubber is used as the material for the third acoustic matching layer 2 located on the subject side.
  • Hardness is Shore A hardness 76, sound velocity 915 mZsec, acoustic impedance 2.1 M-rails
  • Chloroprene rubber Hardness is Shore A hardness 70, sound velocity 1630 mZsec, sound impedance 2.16 M-rails
  • ethylene propylene Copolymer rubber hardness is Shore A hardness 65, sound speed 1480mZsec, acoustic impedance 1.94 Megarails
  • Atari mouth-tolulu butadiene copolymer rubber hardness is Shore A hardness 60, sound speed 1640mZsec, acoustic inn -Dance 1.97 megarails
  • urethane rubber hardness is Shore A hardness 78, sound velocity 1850mZsec, acoustic impedance 1.98 megarails
  • An acoustic lens made of silicone rubber was provided on the top surface of 2, and the directional characteristics of ultrasonic waves in the direction
  • the divided groove where the piezoelectric element 1 and the first and second acoustic matching layers are divided is divided into the second acoustic matching layer 2.
  • the divided groove width is about 0.03 mm at this time
  • a material filled with an arbitrary amount of filler such as alumina, carbon, or calcium carbonate is used in order to adjust acoustic impedance.
  • Each directivity angle is 25 degrees for silicone rubber, 23.5 degrees for chloroprene rubber, 23.5 degrees for ethylene-propylene copolymer rubber, 22.9 degrees for acrylonitrile-butadiene copolymer rubber, urethane
  • the result was 20 degrees for rubber.
  • the variation in the measurement results is considered to be about ⁇ 0.5 degrees.
  • the acoustic matching layer If the speed of sound is limited, the value should be 1650 mZsec, or a rubber elastic material having a value less than that.
  • the acoustic matching layer 2 is configured to have a multilayer structure with three layers, and the force is applied to the third acoustic matching layer 2c located on the subject side at a sound speed of 1650 m / sec.
  • a rubber elastic material having a value less than or equal to or less than that is used so as not to be divided so that the directivity can be widened.
  • the acoustic matching layer 2 is multi-layered with three layers, it is possible to increase the bandwidth, and these directivity angles and the directivity of the configuration in which the conventional acoustic matching layer 2 is divided together with the piezoelectric element 1 are also possible.
  • the sound velocity of the acoustic matching layer 2 located on the subject side should be made of a material close to 1650 mZsec. become.
  • urethane rubber which has a narrow directivity angle, has a sound velocity of around 1650mZsec or less than that of urethane rubber (for example, urethane resin for mid-size UE-644 grade manufactured by SUNREC Co., Ltd. Since the speed of sound is 1580 mZsec and the acoustic impedance is 2.1 megarails), the standard of urethane rubber is that the directivity angle is narrower. If a material with a speed of sound of 1650 mZsec or less is selected, the material is basically limited to a rubber elastic material.
  • the acoustic matching layer 2 is continuous without being divided in the same manner as the piezoelectric element 1. In the configuration provided with a single film of shape, when securing or widening the directivity, it was necessary to pay attention to the sound speed of the material of the acoustic matching layer 2.
  • the material having the acoustic impedance of the third acoustic matching layer 2c having a value in the vicinity of 2 megarails as described in the above material is present not only in the rubber material but also in the plastic material.
  • the plastic material for example, there are materials such as polyethylene, polystyrene, or epoxy resin shown in Reference 2 filled with a filler, but the sound velocity of these materials is about 18 OOmZsec or more.
  • the third acoustic matching layer 2c is configured not to be divided as in the configuration of the embodiment, the directivity is narrowed as is apparent from the tendency of FIG. When such a material is used, it is necessary to divide the acoustic matching layer 2 in the same manner as the piezoelectric element 1 so that the directivity is widened.
  • the metal film of the film 9 provided between the first and second acoustic matching layers is a force that uses a material such as copper. Therefore, the influence on the frequency characteristics is small, so there is no need to consider it, but the polymer film of film 9 is made of a material such as polyimide.
  • the acoustic impedance of the polymer film is smaller than that of the first and second acoustic matching layers 2a and 2b, and is about 3 megarails, and the sound velocity is as slow as 2200 m / sec. Affects properties.
  • the acoustic impedance of each acoustic matching layer in a configuration with three acoustic matching layers is 8 to 20 megarails for the first acoustic matching layer 2a, 3 to 8 megarails for the second acoustic matching layer,
  • the third acoustic matching layer has a value in the range of 1.7-2.4 Megarails!
  • the acoustic impedance of the first acoustic matching layer is 10 megarails
  • the acoustic impedance force of the second acoustic matching layer is a megarails material
  • a polyimide material is used as the polymer film of the film 9
  • Figure 10 shows the result of calculating the ratio band at 6 dB of the frequency characteristics at a frequency of 3.5 MHz when configured with three acoustic matching layers.
  • the horizontal axis shows the value obtained by normalizing the thickness of the polyimide polymer film as film 8 with the wavelength
  • the vertical axis shows the frequency band of the frequency characteristic at -6 dB (in the bandwidth Z). Show the value of the heart frequency).
  • the acoustic matching layer is composed of three layers, a wide band characteristic of 90% or more is obtained, and as the thickness of the film 9 increases, the specific band is increased. It tends to become smaller and smaller. Considering the use of three acoustic matching layers to increase the bandwidth, it is necessary to secure at least 90% of the specific bandwidth.
  • the polymer thickness of film 9 must be 0.07 wavelength or less.
  • the thickness below 0.07 wavelength is 44 micrometers or less.
  • the rubber elastic body is provided in the material of the third acoustic matching layer located on the subject side of the acoustic matching layer, so that it is possible to widen the frequency and expand the directivity.
  • the difficulty of processing is eliminated.
  • the electrical terminal is taken out from the conductor provided on the film, a high-quality and stable ultrasonic probe can be obtained.
  • the phase can be freely controlled using an array of many piezoelectric elements, the ultrasonic beam can be narrowed down, and the ultrasonic beam can be deflected, so that an ultrasonic image with high resolution can be obtained.
  • An ultrasonic probe providing can be obtained.
  • the material of the third acoustic matching layer 2c is chloroprene rubber, ethylene-propylene copolymer rubber, or acrylonitrile-butene copolymer rubber, which is a synthetic rubber.
  • chloroprene rubber ethylene-propylene copolymer rubber
  • acrylonitrile-butene copolymer rubber which is a synthetic rubber.
  • other synthetic rubbers such as butadiene rubber, isoprene rubber, styrene butadiene copolymer rubber, or acrylic rubber.
  • the force described in the case where a rubber elastic body such as synthetic rubber, silicone rubber, or urethane rubber is used as the material of the third acoustic matching layer 2c. Similar effects can be obtained even when an elastomeric material having an elastic body is used.
  • the structure described in which a plurality of piezoelectric elements are arranged has been described.
  • three or more acoustic matching layers are formed. Even if a rubber elastic body is used for the acoustic matching layer located on the specimen side, there is an effect that a wide band can be obtained.
  • FIG. 11 is a partial schematic perspective view of the ultrasonic probe 10 according to the eighth embodiment.
  • the ultrasonic probe 10 includes a plurality of arranged piezoelectric elements 1 and three layers arranged on the front side in the thickness direction corresponding to each piezoelectric element 1 on the subject side (upper side in the figure).
  • the rear load material 3 is arranged, and the acoustic lens 4 force is arranged on the acoustic matching layer 2 (2a, 2b, 2c) as necessary.
  • the functions of these components are the same as those described in the prior art.
  • a ground electrode 5 is provided on the front surface in the thickness direction Z of the piezoelectric element 1, and a signal electrode 6 is provided on the back surface. Both electrodes 5 and 6 are formed on the front and back surfaces of the piezoelectric element 1 by gold or silver deposition, sputtering, or silver baking, respectively.
  • a film 8 (first polymer film) in which a polymer film such as polyimide is provided with a metal film such as copper is provided between the signal electrode 6 and the film 8.
  • the metal film electrical terminals 7 are in contact with each other, and the polymer film is in contact with the back load material 3 side.
  • the ground electrode 5 side provided on one surface of the piezoelectric element there is a conductor such as a graphite (in the case of an insulator material, a metal conductor is formed by wrapping around the insulator).
  • the first one The acoustic matching layer 2a is provided. After forming the structure as described above, a part of the back load material 3, the film 8, the piezoelectric element 1, and the first acoustic matching layer 2a are divided by scanning with a slicing machine or the like.
  • the divided groove after the division is filled with a material such as silicone rubber or urethane rubber having a small acoustic coupling, and further, on the upper surface of the first acoustic matching layer 2a and the portion filled in the division groove.
  • a film 9 second polymer film
  • a second acoustic matching layer 2b is provided on the upper surface of 9, and a third acoustic matching layer 2c is further provided on the upper surface (subject side) of the second acoustic matching layer 2b.
  • the film 9, and the second and third acoustic matching layers 2b and 2c are provided in a connected state without being divided as illustrated.
  • the materials of the second and third acoustic matching layers 2c are mainly rubber elastic materials such as silicone rubber, chloroprene rubber, ethylene-propylene copolymer rubber, acrylonitrile-butadiene copolymer rubber, and urethane rubber. Is used.
  • an acoustic lens 4 using a material such as silicone rubber is formed on the upper surface of the third acoustic matching layer 2c.
  • the second acoustic matching layer 2b is provided so as not to be divided similarly to the third acoustic matching layer 2c. If the second acoustic matching layer 2b is not divided like the piezoelectric element 1, the directivity becomes narrow as described above, which is not desirable. However, if the directivity is narrowed even in a configuration that does not divide, it is better to reduce the number of components as much as possible when processing and dividing. Yes.
  • the second acoustic matching layer 2b is also used in the second and seventh embodiments.
  • a rubber elastic material such as the third acoustic matching layer 2c and a material having a sound velocity of 1 650 m / sec or less!
  • the second acoustic matching layer 2b is a material having an acoustic impedance in the range of 3 to 8 megarails and a sound velocity of 1650 mZsec or less.
  • a material in which a filler of copper metal powder (average particle size 1.2 micrometer) is filled at a ratio of 9 by weight to the chloro-tolulu butadiene copolymer rubber 1 has an acoustic impedance of 5.3 megarails.
  • the sound velocity is 1070 mZsec, and a material having the desired value of characteristics as the second acoustic matching layer 2b can be obtained.
  • a material mainly composed of a synthetic rubber-based rubber elastic body is filled with other high-density fillers such as tungsten, silver, iron, nickel and other metal powders and oxides.
  • a material having acoustic impedance and sound velocity values required for the second acoustic matching layer 2b can be obtained.
  • the thickness of the polymer film 9 of the film 9 provided between the first acoustic matching layer and the second acoustic matching layer 2b is 0.07 wavelength or less as in the first embodiment.
  • synthetic rubber chloroprene rubber, ethylene-propylene copolymer rubber, and acrylonitrile butadiene copolymer rubber are used as materials for the second and third acoustic matching layers 2b and 2c.
  • synthetic rubbers such as butadiene rubber, isoprene rubber, styrene butadiene copolymer rubber, or talyl rubber.
  • the rubber elastic body is provided as the material of the second and third acoustic matching layers of the acoustic matching layer, so that it is possible to widen the frequency band and expand the directivity.
  • the second and third acoustic matching layers do not need to be processed and divided together with the piezoelectric element, the additional difficulty is eliminated.
  • the conductor-powered electrical terminal provided on the film is taken out, a high-quality and stable ultrasonic probe can be obtained. As a result, it is possible to freely control the phase by using an array of many piezoelectric elements, and the ultrasonic beam can be narrowed down and the ultrasonic beam can be deflected. An ultrasonic probe that provides an image can be obtained.
  • the ultrasonic probe according to the present invention can be used in various medical fields for performing ultrasonic diagnosis of a subject such as a human body, and also in an industrial field for the purpose of internal flaw detection of materials and structures. is there.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 本発明は、加工の困難さを解消するとともに、超音波の指向性を広くすることができ、高分解能の診断画像を得ることができる超音波探触子を提供することを目的とする。  超音波探触子10は、配列された複数の圧電素子1と、各圧電素子1に対応して被検体側(図の上方)となる厚さ方向前面に配置された音響マッチング層2と、必要に応じて圧電素子1に対して音響マッチング層2の反対側となる厚さ方向背面(図の下方)に配置された背面負荷材3と、必要に応じて音響マッチング層2上に配置された音響レンズ4から構成されている。音響マッチング層2は、ゴム弾性体材料からなり、複数の圧電素子1の片側に、分割されることなく平面状に設けられる。

Description

明 細 書
超音波探触子
技術分野
[0001] 本発明は、生体等の被検体への超音波の発信または被検体からの超音波の受信 に使用される超音波探触子に関する。
背景技術
[0002] 超音波診断装置は、超音波をヒトゃ動物等の生体の被検体内に照射し、生体内で 反射されるエコー信号を検出して生体内組織の断層像等をモニタに表示し、被検体 の診断に必要な情報を提供する。この際、超音波診断装置は、被検体内への超音 波の送信と、被検体内からのエコー信号を受信するために超音波探触子を利用して いる。
[0003] 図 12は、このような超音波探触子の一例を示している。図 12において、超音波探 触子 20は、被検体(図示せず)との間で超音波を送受信するべぐ一定方向に配列 された複数個の圧電素子 11と、圧電素子 11の被検体側の前面(図 12の上方)に設 けられる 1層以上 (図示は 3層)からなる音響マッチング層 12 (12a、 12b、 12c)と、音 響マッチング層 12の被検体側表面に設けられた音響レンズ 13と、圧電素子 11に対 して音響マッチング層 12の反対側となる背面に設けられる背面負荷材 14とから構成 されている。
[0004] 圧電素子 11の前面と背面には、それぞれ図示しない電極が配置され、圧電素子 1 1との間で電気信号の送受信を行う。圧電素子 11は、 PZT系等の圧電セラミック、単 結晶、前記材料と高分子を複合した複合圧電体、あるいは PVDF等に代表される高 分子の圧電体等によって形成され、電圧を超音波に変換して被検体内に送信し、あ るいは被検体内で反射したエコーを電気信号に変換して受信する。図示の例では、 X方向に複数の圧電素子 11が配列されている。このような圧電素子 11の複数個の 配列は、電子的に超音波を走査して偏向あるいは集束することができ、いわゆる電子 走査を可能とする。
[0005] 音響マッチング層 12は、超音波を効率よく被検体内に送受信するために設けられ 、より具体的には、圧電素子 11の音響インピーダンスを段階的に被検体の音響イン ピーダンスに近づける役割を果たす。図示の例では、 3層の音響マッチング層 12a、 12b、 12cが設けられている力 これは 1層から 2層であっても 4層以上であってもよい 。また図示の例では、音響マッチング層 12が複数の圧電素子 11の上に一体に形成 されているが、各圧電素子 11にそれぞれ対応して分割して配置している。また、超音 波の指向性を広くする構成も知られている (例えば、特許文献 1、 2参照)。
[0006] 音響レンズ 13は、診断画像の分解能を高めるために超音波ビームを絞る役割を果 たす。図示の例では、音響レンズ 13は図の Y方向(圧電素子 11の配列方向 Xに直 交する方向)に沿って延びると共に、 Z方向に凸状となる力まぼこ型に形成され、超音 波ビームを Y方向に絞ることができる。音響レンズ 13はオプション要素であり、必要に 応じて設けられる。
[0007] 背面負荷材 14は、圧電素子 11に結合されてこれを保持し、さらに不要な超音波を 減衰させる役割を果たす。なお、本明細書では、図の X方向を「(圧電素子の)配列 方向」、 Y方向を「(圧電素子の)幅方向」、 Z方向を「(圧電素子の)厚さ方向」とも呼 ぶものとする。
[0008] 特許文献 1:特開 2003— 125494号公報
特許文献 2 :特開 2005— 198261号公報
発明の開示
発明が解決しょうとする課題
[0009] 電子走査型の超音波診断装置は、圧電素子を任意の群にして個々の圧電素子に 一定の遅延時間与えて駆動し、圧電素子から被検体内に超音波の送信と受信を行 う。このような遅延時間を与えることで超音波ビームが収束あるいは拡散され、広い視 野幅あるいは高分解能の超音波画像を得ることができる。
[0010] この構成は、一般的なシステムとして既に知られている。超音波探触子として、係る 高分解能の超音波画像を得るために重要なことは、電子的に走査する複数個の所 定の方向に配列された個々の圧電素子力 音響マッチング層、更には必要に応じて 音響レンズを介して被検体に放射される超音波ビームの指向性が広いことである。
[0011] 電子走査型の超音波探触子は、複数個配列したある群の圧電素子 (例えば 64素 子)のそれぞれの送受信時間を遅延させて位相を制御することにより、超音波ビーム を所望の位置に絞ってビームを細くし高分解能化したり、あるいは超音波ビームを偏 向したりして扇形状に走査する。
[0012] この場合、超音波ビームは、それぞれの群で使用する圧電素子の数が多ければ( 例えば 64素子から 96素子にすれば)、その分だけ超音波の開口が大きくなりビーム を強く絞る、つまり細くすることができ、結果として分解能を向上させることが可能とな る。
[0013] し力しながら、開口を大きくするためには、個々の圧電素子の指向性が広くないと、 いくら開口を大きく(遅延をかけて電気信号を印加する素子数を多く)しても、寄与し ない圧電素子が出てきて結果として開口は狭くなり、超音波ビームを細く絞ることがで きなくなる。以上のことから、圧電素子の指向性は広くすることが望まれている。
[0014] 指向性を広くするための 1つの方策として、特許文献 1に示すような複数個の一定 の方向に配列された圧電素子に対応して全ての音響マッチング層までを分割し、隣 接する圧電素子及び音響マッチング層相互間での音響的な結合を小さくした構成と することが挙げられる。
[0015] し力しながら、この構成においては、配列された圧電素子及び音響マッチング層毎 に分割して配列する必要があり、超音波の周波数を広帯域ィヒするために音響マッチ ング層を多層化すると、分割加工するときに加工が困難になり安定した特性の超音 波探触子を得ることが困難になる。
[0016] 近年、超音波探触子の使用周波数がより広帯域化される傾向にあり、複数の周波 数で使用する場合が多くなつてきていることから、高分解能の超音波画像を得るため に、広帯域化と共に超音波探触子の指向性を広くすることがますます重要になってき ている。
[0017] 本発明は、上記従来の事情に鑑みてなされたものであって、加工が容易で、高分 解能の画像を得ることができる超音波探触子を提供することを目的として 、る。
課題を解決するための手段
[0018] 本発明の超音波探触子は、配列された複数の圧電素子と、ゴム弾性体材料力 な り、前記複数の圧電素子の一方の面に設けられた音響マッチング層とを備えることを 特徴とする。
[0019] 上記構成によれば、音響マッチング層を分割することなく設けることにより、圧電素 子と共に分割加工する必要がなくなるため、加工の困難さを解消し安定した超音波 探触子を得ることができる。また、音響マッチング層をゴム弾性体材料とすることにより 、音響マッチング層を分割した構成と同等若しくはそれより広い指向性にすることが できる。これにより、多くの圧電素子の配列を使用して自由に位相制御を行い、超音 波ビームを細く絞って偏向することが可能になり、分解能の高い超音波画像を得るこ とがでさる。
[0020] また、本発明の超音波探触子は、前記ゴム弾性体材料の音響インピーダンスが、 前記圧電素子の音響インピーダンスより小さぐ前記被検体の音響インピーダンスよ り大きいことを特徴とする。
[0021] 上記構成によれば、ゴム弾性体材料の音響インピーダンスを、圧電素子の音響イン ピーダンスより小さぐ被検体の音響インピーダンスより大きくすることにより、圧電素 子の音響インピーダンスを段階的に被検体の音響インピーダンスに近づけ、超音波 を効率よく被検体内に送受信することができる。
[0022] また、本発明の超音波探触子は、前記音響マッチング層の音速が、 1650m/sec, またはそれ以下の値を有することを特徴とする。
[0023] 上記構成によれば、音響マッチング層の音速を 1650m/sec、またはそれ以下の 値とすることにより、分割しない音響マッチング層であっても、分割した構成と同等若 しくはそれより広 、指向性にすることができる。
[0024] また、本発明の超音波探触子は、前記音響マッチング層と前記複数の圧電素子の 間に、それぞれの圧電素子に対応させて個別に配列された音響マッチング層をさら に備えることを特徴とする。
[0025] 上記構成によれば、圧電素子側の音響マッチング層だけを圧電素子と同じように分 割するので、圧電素子を狭い間隔 (例えば O. lmm)で分割しても、加工は安定し、均 一に精度高く超音波探触子を作成することができる。また、平面状の音響マッチング 層と複数の圧電素子の間に、分割した音響マッチング層を備えるので、圧電素子の 音響インピーダンスを段階的に被検体の音響インピーダンスに近づけ、超音波を効 率よく被検体内に送受信することができる。
[0026] また、本発明は、配列された複数の圧電素子と、前記複数の圧電素子の一方の面 に設けられ、音響インピーダンスが 1.8〜2.2メガレールスであり、かつ音速が 1650 m/sec,またはそれ以下の値を有する第 3の音響マッチング層と、前記第 3の音響マ ツチング層と前記複数の圧電素子の間に設けられた第 1、第 2の音響マッチング層と を備えることを特徴とする超音波探触子である。
[0027] 上記構成によれば、第 3の音響マッチング層の音響インピーダンスを 1.8〜2.2メガ レールスとし、かつ音速を 1650mZsec、またはそれ以下の値とするとともに、第 1、 第 2の音響マッチング層を備えることにより、圧電素子の音響インピーダンスを段階的 に被検体の音響インピーダンスに近づけ、超音波を効率よく被検体内に送受信する ことができる。
[0028] また、本発明の超音波探触子は、前記第 3の音響マッチング層が、前記複数の圧 電素子の一方の面に設けられ、前記第 1、第 2の音響マッチング層は、それぞれの圧 電素子に対応させて個別に配列されることを特徴とする。
[0029] 上記構成によれば、第 3の音響マッチング層と複数の圧電素子の間に、それぞれ の圧電素子に対応させて個別に配列された第 1、第 2の音響マッチング層を備えるの で、圧電素子の音響インピーダンスを段階的に被検体の音響インピーダンスに近づ け、超音波を効率よく被検体内に送受信することができる。
[0030] また、本発明の超音波探触子は、前記第 3の音響マッチング層が、ゴム弾性体材料 であることを特徴とする。
[0031] また、本発明の超音波探触子は、配列された複数の圧電素子と、前記複数の圧電 素子の一方の面に設けられ、音速が 1650mZsec、またはそれ以下の値を有する第 2、第 3の音響マッチング層と、前記第 2、第 3の音響マッチング層と前記複数の圧電 素子の間に設けられた第 1の音響マッチング層とを備えることを特徴とする。
[0032] 上記構成によれば、第 2、第 3の音響マッチング層の音速を 1650m/sec、または それ以下の値とすることにより、音響マッチング層を分割した構成と同等若しくはそれ より広い指向性にすることができる。これにより、多くの圧電素子の配列を使用して自 由に位相制御を行い、超音波ビームを細く絞って偏向することが可能になり、分解能 の高 、超音波画像を得ることができる。
[0033] また、本発明の超音波探触子は、前記第 2、第 3の音響マッチング層が、前記複数 の圧電素子の一方の面に設けられ、前記第 1の音響マッチング層が、それぞれの圧 電素子に対応させて個別に配列されることを特徴とする。
[0034] 上記構成によれば、第 2、第 3の音響マッチング層を設けることにより、圧電素子と 共に加工して分割する音響マッチング層を少なくすることができ、加工の困難さを解 消し安定した超音波探触子を得ることができる。
[0035] また、本発明の超音波探触子は、前記第 2、第 3の音響マッチング層が、ゴム弾性 体材料であることを特徴とする。
[0036] また、本発明の超音波探触子は、配列された複数の圧電素子と、前記複数の圧電 素子の一方の面に設けられ、音速が 1650mZsec、またはそれ以下の値を有する第 4の音響マッチング層と、前記第 4の音響マッチング層と前記複数の圧電素子の間に 設けられた第 1、第 2、第 3の音響マッチング層とを備えることを特徴とする。
[0037] 上記構成によれば、第 4の音響マッチング層の音速を 1650m/sec、またはそれ以 下の値とすることにより、音響マッチング層を分割した構成と同等若しくはそれより広 い指向性にすることができる。また、第 1、第 2、第 3の音響マッチング層を第 4の音響 マッチング層と複数の圧電素子の間に設けることにより、圧電素子の音響インピーダ ンスを段階的に被検体の音響インピーダンスに近づけ、超音波を効率よく被検体内 に送受信することができる。
[0038] また、本発明の超音波探触子は、前記第 4の音響マッチング層が、前記複数の圧 電素子の一方の面に設けられ、前記第 1、第 2、第 3の音響マッチング層が、それぞ れの圧電素子に対応させて個別に配列されることを特徴とする。
[0039] 上記構成によれば、第 4の音響マッチング層を設けることにより、圧電素子と共に加 ェして分割する音響マッチング層が少なくなるため、加工の困難さを解消し安定した 超音波探触子を得ることができる。
[0040] また、本発明の超音波探触子は、前記第 3、第 4の音響マッチング層が、前記複数 の圧電素子の片側に設けられ、前記第 1、第 2の音響マッチング層が、それぞれの圧 電素子に対応させて個別に配列されることを特徴とする。 [0041] 上記構成によれば、第 3、第 4の音響マッチング層を設けることにより、圧電素子と 共に加工して分割する音響マッチング層が少なくなるため、加工の困難さを解消し安 定した超音波探触子を得ることができる。
[0042] また、本発明の超音波探触子は、前記第 3の音響マッチング層が、ゴム弾性体材料 で、音速が 1650m/sec、またはそれ以下の値を有することを特徴とする。また、本 発明の超音波探触子は、前記第 4の音響マッチング層が、ゴム弾性体材料であること を特徴とする。
[0043] 上記構成によれば、音響マッチング層をゴム弾性体材料とし、音速を 1650m/sec 、またはそれ以下の値とすることにより、音響マッチング層を分割した構成と同等若し くはそれより広 、指向性にすることができる。
[0044] 本発明の超音波探触子は、背面負荷材と、前記背面負荷材の上面に配列された 複数の圧電素子とを備える超音波探触子であって、前記背面負荷材と前記複数の 圧電素子との間に設けられ、それぞれの圧電素子に対応させて個別に電気端子を 設けた第 1の高分子フィルムと、前記複数の圧電素子の上面に設けられ、それぞれ の圧電素子に対応させて個別に配列された第 1の音響マッチング層と、前記第 1の 音響マッチング層の上面に設けられ、それぞれの圧電素子に対応させて個別に電気 端子を設けた第 2の高分子フィルムと、前記第 2の高分子フィルムの上面に設けられ 、それぞれの圧電素子に対応させて個別に配列された第 2の音響マッチング層と、 前記第 2の音響マッチング層の上面に設けられ、ゴム弾性体材料力 なる第 3の音響 マッチング層とを備えることを特徴とする。
[0045] 上記構成によれば、第 3の音響マッチング層をゴム弾性体材料で形成することによ り、周波数の広帯域化と指向性の拡大が可能になる。また、第 3の音響マッチング層 を分割することなく設けることにより、圧電素子と共に加工して分割する音響マツチン グ層が少なくなるため、加工の困難さを解消できる。また、高分子フィルムに電気端 子を設けることにより、電気端子を容易に形成することができる。これにより、多くの圧 電素子の配列を使用して自由に位相制御を行い、超音波ビームを細く絞って偏向す ることが可能になり、分解能の高い超音波画像を得ることができる。
[0046] また、本発明の超音波探触子は、前記第 3の音響マッチング層の音速が、 1650m /sec,またはそれ以下の値を有することを特徴とする。また、本発明の超音波探触 子は、前記第 2の高分子フィルムの音響インピーダンスが、前記第 2の音響マツチン グ層の音響インピーダンスより小さぐ且つ、厚さが使用周波数に対して 0. 07波長以 下であることを特徴とする。
[0047] また、本発明の超音波探触子は、背面負荷材の上面に配列された複数の圧電素 子を備える超音波探触子であって、前記背面負荷材と前記複数の圧電素子との間 に設けられ、電気端子を設けた第 1の高分子フィルムと、前記複数の圧電素子の上 面に設けられ、それぞれの圧電素子に対応させて個別に配列された第 1の音響マツ チング層と、前記第 1の音響マッチング層の上面に設けられ、それぞれの圧電素子 に対応させて個別に電気端子を設けた第 2の高分子フィルムと、前記第 2の高分子フ イルムの上面に設けられ、ゴム弾性体材料力 なる第 2の音響マッチング層と、前記 第 2の音響マッチング層の上面に設けられ、ゴム弾性体材料力もなる第 3の音響マツ チング層とを備えることを特徴とする。
[0048] 上記構成によれば、第 2、第 3の音響マッチング層をゴム弾性体材料で形成するこ とにより、周波数の広帯域化と指向性の拡大が可能になる。また、第 2、第 3の音響マ ツチング層を分割することなく設けることにより、圧電素子と共に加工して分割する音 響マッチング層が少なくなるため、加工の困難さを解消できる。また、高分子フィルム に電気端子を設けることにより、電気端子を容易に形成することができる。これにより 、多くの圧電素子の配列を使用して自由に位相制御を行い、超音波ビームを細く絞 つて偏向することが可能になり、分解能の高い超音波画像を得ることができる。
[0049] また、本発明の超音波探触子は、前記ゴム弾性体材料の主体が、合成ゴム、シリコ ーンゴム、ウレタンゴムまたはエラストマ一であることを特徴とする。さらに、本発明の 超音波探触子は、前記合成ゴムの主体が、エチレン プロピレン共重合ゴム、クロ口 プレンゴム、ブタジエンゴム、イソプレンゴム、スチレン ブタジエン共重合ゴムまたは アクリロニトリル一ブタジエン共重合ゴム材料であることを特徴とする。
発明の効果
[0050] 本発明によれば、圧電素子の一方の面に設けた音響マッチング層をゴム弾性体材 料で構成することにより、音響マッチング層を分割することなぐ音響マッチング層を 分割した構成と同等あるいはそれ以上の指向性にさせることができるため、加工が容 易で、高分解能な診断画像が得られる超音波探触子を提供することができる。 図面の簡単な説明
[0051] [図 1]本発明に係る第 1実施形態の超音波探触子を示す概略斜視図
[図 2]音響マッチング層の音速と指向角の関係を示す図
[図 3]本発明に係る第 2実施形態の超音波探触子を示す概略斜視図
[図 4]本発明に係る第 3実施形態の超音波探触子を示す概略斜視図
[図 5]第 3の音響マッチング層の音響インピーダンスとパルス長、比帯域の関係を示 す図
[図 6]本発明に係る第 4実施形態の超音波探触子を示す概略斜視図
[図 7]本発明に係る第 5実施形態の超音波探触子を示す概略斜視図
[図 8]本発明に係る第 6実施形態の超音波探触子を示す概略斜視図
[図 9a]本発明に係る第 1実施形態の超音波探触子を示す概略斜視図
[図 9b]本発明に係る第 1実施形態の超音波探触子を示す概略断面図
[図 10]高分子フィルムの厚みと比帯域の関係を示す図
[図 11]本発明に係る第 2実施形態の超音波探触子を示す概略斜視図
[図 12]従来技術に係る超音波探触子の構成を示す概略斜視図
符号の説明
[0052] 1 圧電素子
2、 2a、 2b、 2c、 2d 音響マッチング層
3 背面負荷材
4 音響レンズ
5 接地電極
6 信号用電極
7 電気端子
8, 9 フィルム
10 超音波探触子 12 音響整合層
13 音響レンズ
14 背面負荷材
20 超音波探触子
発明を実施するための最良の形態
[0053] (第 1実施形態)
以下、本発明に係る第 1実施形態の超音波探触子について、図面を参照して説明 する。図 1は、第 1実施形態に係る超音波探触子 10の一部概略斜視図を示している
[0054] この超音波探触子 10は、配列された複数の圧電素子 1と、各圧電素子 1に対応し て被検体側(図の上方)となる厚さ方向前面に配置された音響マッチング層 2 (第 1の 音響マッチング層)と、必要に応じて圧電素子 1に対して音響マッチング層 2の反対 側となる厚さ方向背面(図の下方)に配置された背面負荷材 3と、必要に応じて音響 マッチング層 2上に配置された音響レンズ 4カゝら構成されている。これら各構成要素 のそれぞれの機能は、従来技術で説明したものと同様である。
[0055] 圧電素子 1の厚さ方向 Zの前面には接地電極 5が、背面には信号用電極 6がそれ ぞれ設けられている。両電極 5、 6は、金や銀の蒸着、スパッタリング、あるいは銀の焼 き付け等により圧電素子 1の前面、背面にそれぞれ形成される。
[0056] 両電極 5、 6は、電気端子 7を経由しケーブルを介して図示しない超音波診断装置 と電気的に接続され、超音波診断装置で作られる規則正しいパルス電圧を圧電素子 1に印加し、逆に圧電素子 1が電気信号に変換したエコー受信波を超音波診断装置 本体に送信する。
[0057] また、図示の例では、圧電素子 1は個々に分割されており、これら分割された溝の 部分には音響的な結合が小さいシリコーンゴムやウレタンゴム等のような材料が充填 されている。
[0058] 図 2は、図 1に示す複数個の圧電素子 1の配列方向 Xの超音波の指向性角度と音 響マッチング層 2のゴム弾性体材料の音速との関係を示した図である。複数の圧電 素子 1を配列したいわゆる電子走査型の超音波探触子 10では、配列した圧電素子 1 の X方向の指向性を如何に広くできるかが超音波画像の分解能を向上させる重要な ポイントである。
[0059] 第 1実施形態では、図 1に示すように、背面負荷材 3上に設けた圧電素子 1をスライ シンダマシーンなどにより分割し、分割した分割溝にシリコーンゴムやウレタンゴムを 充填し、その後分割し配列された圧電素子 1の面上にゴム弾性体材料の音響マッチ ング層 2を設ける。
[0060] 音響マッチング層 2は既に知られているように、圧電素子 1と被検体 (図示せず)のそ れぞれの音響インピーダンスの間の値を有した材料を用いて、その厚みは使用周波 数の 4分の 1波長の厚みを基本としている。更に、音響マッチング層 2面上には、必要 に応じてシリコーンゴムなどの材料で音響レンズ 4を設ける。
[0061] 音響マッチング層 2は、従来では指向性を広くするために圧電素子 1上に設けた後 、圧電素子 1と同じに分割した構成にしていた。これは音響マッチング層 2を圧電素 子 1と同じに分割しないと、音響マッチング層 2が連続して繋がっているために、音響 マッチング層 2内で横方向にも超音波が伝播して指向性が狭くなるということを回避 するためである。
[0062] しかし、圧電素子 1と音響マッチング層 2、更には背面負荷材 3の一部まで一緒にス ライシンダマシーンでカ卩ェ分割して、特に分割間隔が 0. 1mmという狭い間隔になつ てくると複数の材料を一緒に加工するために、均一に、安定的に分割することが困難 になってくると 、う課題を有して 、た。
[0063] 本実施形態は、加工が容易で均一に、また安定して作成できるように圧電素子 1の みを分割して配列した圧電素子 1面上に、分割しな 、で連結した 1枚の状態でゴム弾 性体材料の音響マッチング層 2を設けた構成にし、しかも指向性は、音響マッチング 層 2を分割した構成と同等あるいはそれ以上にできるようにしたことがポイントである。
[0064] 音響マッチング層 2の材料としてのゴム弾性体は、圧電素子 1と被検体のそれぞれ の音響インピーダンスの間の値を有した材料を用い、厚みは使用周波数の 4分の 1 波長の厚みを基本にしている。音響マッチング層 2として、いろいろな材料を実験に より検討した結果、同じゴム弾性体で、硬さ、および音響インピーダンスも同じような 値を有した材料においても、指向性に違いがあることを見出した。 [0065] 例えば、周波数が 3.5MHzの圧電素子 1を、圧電素子 1の間隔 0. 38mm (0. 19m mの間隔で分割した 2つを電気的に束ねた状態)に分割したときの指向性の角度は、 — 6dBのレベルで定義すると音響マッチング層 2を圧電素子 1と同時に分割した構成 のタイプは、約 23度の指向角となる。
[0066] すなわち、例えば、方向 Zに放射した超音波ビームの強さが 6dB低下するのが、 方向 Zから約 23度の方向となる。なお、圧電素子 1および音響マッチング層 2の分割 した分割溝には、シリコーンゴム材を充填した構成にして 、る。
[0067] 前記の方法で圧電素子 1を同様の仕様で分割して、音響マッチング層 2は分割しな いで図 1のように構成したタイプにおいて、音響マッチング層 2の材料として、シリコー ンゴム(硬さがショァ A硬度で 76、音速 915mZsec、音響インピーダンス 2. 1メガ レールス)、クロロプレンゴム(硬さがショァ A硬度で 70、音速 1630mZsec、音響ィ ンピーダンス 2. 16メガレールス)、エチレン プロピレン共重合ゴム(硬さがショァ A硬度で 65、音速 1480mZsec、音響インピーダンス 1. 94メガレールス)、アタリ口 二トリル—ブタジエン共重合ゴム(硬さがショァ A硬度で 60、音速 1640mZsec、音 響インピーダンス 1. 97メガレールス)、およびウレタンゴム(硬さがショァ A硬度で 7 8、音速 1850mZsec、音響インピーダンス 1. 98メガレールス)のそれぞれ用いて配 列された圧電素子 1面上に設け、更にその音響マッチング層 2の上面にシリコーンゴ ムの音響レンズを設けて、圧電素子 1の配列方向の超音波の指向特性を測定した。
[0068] その結果、音響マッチング層 2の材料による指向特性に違いがあることがわ力つた。
なお、圧電素子 1を分割した分割溝には、音響マッチング層 2まで分割した構成と同 様にシリコーンゴムの材料を充填して 、る。
[0069] また、上記に挙げた材料のウレタンゴム以外の材料には、音響インピーダンスを調 整するためにアルミナ、カーボンあるいは炭酸カルシウムなどのフィラーを任意の量 を充填した材料を用いて 、る。
[0070] 上記のような 5種類の材料を音響マッチング層 2の指向特性の違いは、材料の硬さ
、音響インピーダンス等との相関はなぐ影響していな力つた。指向特性に影響して いる、つまり相関があつたのは、音響マッチング層 2材料の音速の特性であり、これは 良好な相関が見られた。 [0071] 3.5MHzの周波数で 6dBのレベルで測定した指向性角度と材料の音速との関係 の結果を図 2に示す。図 2に示すように音速との良好な相関が見られ、相関係数は 0 . 86となっている。このことから、音響マッチング層 2を分割しないで設けた構成にお いて、指向性を広くする場合には音速に注目する必要があることがわ力つた。前記使 用した音響マッチング層 2のそれぞれの材料を用いたときの指向性角度は以下のよう になっている。
[0072] それぞれの指向性角度は、シリコーンゴムは 25度、クロロプレンゴムは 23. 5度、ェ チレン一プロピレン共重合ゴムは 23. 5度、アクリロニトリル一ブタジエン共重合ゴム は 22. 9度、ウレタンゴムは 20度という結果であった。なおこの測定結果のばらつき は、 ±0. 5度程度あると考えている。
[0073] これらの指向性角度と従来の音響マッチング層 2まで圧電素子 1と共に分割した構 成の指向性角度を比較すると、従来構成の指向性角度とほぼ同等レベルの指向性 角度を得るには、音響マッチング層 2の音速は 1650mZsec付近の材料を使用すれ ば良いということになる。更に指向性を広くする場合には、図 2の結果力も音速が 165 OmZsec以下の材料、例えばシリコーンゴムのような材料を用いれば良いということが ゎカゝる。
[0074] また、指向性角度が狭い結果となっているウレタンゴムにおいても、ウレタンゴムの 中でも音速が 1650mZsec付近あるいはそれ以下の種類 (例えばサンュレック株式 会社製中型用ウレタン榭脂 UE-644グレードは、音速が 1580mZsec、音響インピ 一ダンスが 2. 1メガレールス)も存在するのでウレタンゴムでは指向角が狭くなるとい うことではなぐその基準は音速にあるということである。音速が 1650mZsec以下の 材料を選択すると、基本的にはゴム弾性体である材料に絞り込まれる。
[0075] 以上のように、音響マッチング層 2を圧電素子 1と同じように分割しないで連続した 形状の 1枚のフィルムで設ける構成において、指向性を確保あるいは広くする場合に は、音響マッチング層 2の材料の音速に注目する必要がある事が分力つた。
[0076] 例えば、音響インピーダンスが上記材料に挙げたように約 2メガレールスの値を有 する材料は、ゴム弾性体材料に限らずプラスチック材料等にも存在する。例えば、ポ リエチレン、ポリスチレン、あるいは参考文献 2に示したエポキシ榭脂に充填材を充填 した材料等もあるがこれらの材料の音速はいずれも約 1800mZsec以上であり、これ らの材料を本実施形態の構成のように音響マッチング層 2を分割しな 、構成にした場 合には、図 2の傾向からも明らかのように、指向性は狭くなる。このような材料を用いる 場合にはやはり音響マッチング層 2を圧電素子 1と同様に分割する構成にして指向 性を広くする必要がある。
[0077] なお、音響マッチング層 2の材料として、主体が合成ゴムであるクロロプレンゴム、ェ チレン一プロピレン共重合ゴム、アクリロニトリル一ブタジエン共重合ゴムを用いた場 合について説明した力 このほかの合成ゴム例えばブタジエンゴム、イソプレンゴム、 スチレン ブタジエン共重合ゴムあるいはアクリルゴム等の材料を主体としたものの 材料であっても同様の効果が得られる。
[0078] また、音響マッチング層 2の材料として、主体が合成ゴム、シリコーンゴム、ある 、は ウレタンゴム等のゴム弾性体を用いた場合にっ 、て説明した力 このほかゴム弾性体 を有するエラストマ一系の材料を用いた場合であっても、同様の効果が得られる。
[0079] また、第 1の実施の形態では 1次元に圧電素子を配列した構成の場合について説 明したが、このほか圧電素子が 2次元に配列した場合についても同様の効果がある。 また、第 1の実施の形態では、圧電素子を複数個配列した構成について説明したが 、この他、圧電素子を配列しない単体の場合についても、音響マッチング層にゴム弹 性体を用いてもよい。
[0080] また、第 1の実施の形態では、複数個の圧電素子がほぼ直線状に配列したいわゆ るリニア型について説明したが、この他、複数個の圧電素子を曲面に配列したコンペ ックス型、コンケープ型の場合についても同様の効果がある。
[0081] (第 2実施形態)
次に、本発明に係る第 2実施形態の超音波探触子について、図面を参照して説明 する。図 3は、第 2実施形態に係る超音波探触子 10の一部概略斜視図を示している
[0082] この超音波探触子 10は、配列された複数の圧電素子 1と、各圧電素子 1に対応し て被検体側(図の上方)となる厚さ方向前面に配置された 2層の音響マッチング層 2 ( 2a、 2b)と、必要に応じて圧電素子 1に対して音響マッチング層 2 (2a、 2b)の反対側 となる厚さ方向背面(図の下方)に配置された背面負荷材 3と、必要に応じて音響マ ツチング層 2 (2a、 2b)上に配置された音響レンズ 4カゝら構成されている。これら各構 成要素のそれぞれの機能は、従来技術で説明したものと同様である。
[0083] 圧電素子 1の厚さ方向 Zの前面には接地電極 5が、背面には信号用電極 6がそれ ぞれ設けられている。両電極 5、 6は、金や銀の蒸着、スパッタリング、あるいは銀の焼 き付け等により圧電素子 1の前面、背面にそれぞれ形成される。
[0084] 両電極 5、 6は、電気端子 7を経由しケーブルを介して図示しない超音波診断装置 と電気的に接続され、超音波診断装置で作られる規則正しいパルス電圧を圧電素子 1に印加し、逆に圧電素子 1が電気信号に変換したエコー受信波を超音波診断装置 本体に送信する。
[0085] また、図示の例では、圧電素子 1と圧電素子 1側に位置する第 1の音響マッチング 層 2aは、個々に分割されており、これら分割された溝の部分には音響的な結合が小 さいシリコーンゴムやウレタンゴム等のような材料が充填されている。更に、圧電素子
1側に位置する音響マッチング層 2aの上面には第 2の音響マッチング層 2bを分割し ない連続した 1枚のフィルムで設ける。更に、必要に応じてシリコーンゴムなどの材料 を用いて音響レンズを設けた構成にする。
[0086] 複数の圧電素子 1を配列したいわゆる電子走査型の超音波探触子 10では、配列し た圧電素子 1の X方向の指向性を如何に広くできるかが超音波画像の分解能を向上 させる重要なポイントであることは第 1の実施の形態と同様である。
[0087] 第 1実施形態では、音響マッチング層 2は 1層の場合について説明したが、圧電素 子 1と被検体との音響インピーダンスの差が大きい例えば、圧電素子として PZT系の ような圧電セラミックスを用いた場合には、約 30メガレールス、被検体の音響インピー ダンスは約 1. 5メガレールスと大きな差があるため、 1層の音響マッチング層では周 波数の広帯域ィ匕に限界がある。広帯域ィ匕するためには音響マッチング層 2を 2層以 上の多層化する必要がある。
[0088] し力しながら、音響マッチング層を 2層以上の多層化する場合には、音響マツチン グ層 2も圧電素子 1と同様に分割した構成にしなければ指向性を広くすることができ なかった。この事は、圧電素子 1と同じようにスライシングマシーンなどで分割するた めに、音響マッチング層 2を多層化することによって厚みは層が増加した分、厚くなり 更には分割する材料がより多くなるため、分割するときの加工が困難になり、均一で 安定したものを作成することが困難になっている。本実施の形態はこれらの課題を解 決し、且つ指向性を広くできる構成である。
[0089] 本実施形態で 2層以上の多層化の音響マッチング層、ここでは 2層の音響マツチン グ層にしたときにおいて、図 3に示すように、圧電素子 1と圧電素子 1側に位置する音 響マッチング層 2aとを分割して、更に音響マッチング層 2aの上面に連続した 1枚の音 響マッチング層 2bを設けた構成にする。
[0090] 圧電素子 1の材料としては、 PZT系のような圧電セラミックス、 PZN-PT、 PMN-P T系のような圧電単結晶、または前記材料と高分子を複合した複合圧電体などの材 料を用い、また音響マッチング層 2aには、グラフアイト、エポキシ榭脂に金属または酸 化物などのフィラーを充填したエポキシ榭脂を用いる。
[0091] また、音響マッチング層 2bの材料としては、シリコーンゴム、クロロプレンゴム、ェチ レン一プロピレン共重合ゴム、アクリロニトリル一ブタジエン共重合ゴム、およびウレタ ンゴムなど第 1の実施の形態で説明したものと同じゴム弾性体を主体とした材料を用 いる。
[0092] 音響マッチング層 2bの音響インピーダンスが第 1の実施の形態の場合と違う値が必 要な場合には、主体となるゴム弾性体の主体材料に金属、酸ィ匕物などのフィラーを 充填して調整することによって得ることができる。
[0093] ここで音響マッチング層 2bは、分割しないで連続した 1枚のフィルムとして設ける条 件は、指向性が音響マッチング層 2bを分割した構成の指向性と、同等か若しくはそ れ以上の特性が得られるように、ゴム弾性体であること、更に前記ゴム弾性体材料の 音速は 1650mZsec、若しくはそれ以下の値を有する材料を選択することである。こ れは第 1の実施の形態の図 2で示した結果から 、える。
[0094] このように圧電素子 1と同じように分割する音響マッチング層の数を少なくすることが 可能になることによって、例え狭い間隔 (例えば O.lmm)で分割しても、加工は安定 し、均一に精度高く超音波探触子を作成することができ、しかも、指向性も狭くするこ とがない構成にすることが可能となる。 [0095] 以上のように、 2層の音響マッチング層 2の圧電素子 1側に位置する音響マッチング 層 2aを圧電素子 1と同じように分割し、更に音響マッチング層 2aの上面には、連続し た 1枚の音響マッチング層 2bを設けた構成において、指向性を確保あるいは広くす る場合には、音響マッチング層 2bの材料の音速に注目する必要がある。
[0096] 例えば、音響マッチング層 2b材料としてはゴム弾性体材料に限らずプラスチック材 料等にも存在する。例えば、ポリエチレン、ポリスチレン、ポリイミド、エポキシ榭脂ある いは参考文献 2に示したエポキシ榭脂に充填材を充填した材料等もあるがこれらの 材料の音速はいずれも 1800mZsec以上であり、これらの材料を本実施形態の構成 のように音響マッチング層 2を分割しない構成にした場合には、図 2に示す結果から も明らかのように、指向性角度は狭くなる。このような材料を用いる場合には、やはり 音響マッチング層 2bを圧電素子 1と音響マッチング層 2a同様に分割する必要がある といえる。
[0097] なお、第 2の実施の形態では、音響マッチング層 2bの材料として、合成ゴムである クロロプレンゴム、エチレン一プロピレン共重合ゴム、アクリロニトリル一ブタジエン共 重合ゴムを用いた場合にっ 、て説明した力 このほかの合成ゴム例えばブタジエン ゴム、イソプレンゴム、スチレン ブタジエン共重合ゴムあるいはアクリルゴム等の材 料を主体としたものの材料であっても同様の効果が得られる。
[0098] また、第 2の実施の形態では、音響マッチング層 2bの材料として、合成ゴム、シリコ ーンゴム、あるいはウレタンゴム等のゴム弾性体を用いた場合について説明したが、 このほかゴム弾性体を有するエラストマ一系の材料を用いた場合であっても、同様の 効果が得られる。
[0099] また、第 2の実施の形態では、音響マッチング層 2を 2層とした場合について説明し たが、このほか 3層以上の音響マッチング層を設け、被検体側に位置する音響マッチ ング層を分割しな 、でゴム弾性体の材料を用いて連続体で形成し場合であっても、 同様の効果が得られる。
[0100] また、第 2の実施の形態では、 1次元に圧電素子を配列した構成の場合について 説明したが、このほか圧電素子が 2次元に配列した場合についても同様の効果があ る。また、第 2の実施の形態では、圧電素子を複数個配列した構成について説明し た力 この他、圧電素子を配列しない単体の場合についても、音響マッチング層にゴ ム弾性体を用いてもよい。
[0101] また、第 2の実施の形態では、複数個の圧電素子がほぼ直線状に配列した ヽゎゅ るリニア型について説明したが、この他、複数個の圧電素子を曲面に配列したコンペ ックス型、コンケープ型の場合についても同様の効果がある。
[0102] (第 3実施形態)
次に、本発明に係る第 3実施形態の超音波探触子について、図面を参照して説明 する。図 4は、第 3実施形態に係る超音波探触子 10の一部概略斜視図を示している
[0103] この超音波探触子 10は、配列された複数の圧電素子 1と、各圧電素子 1に対応し て被検体側(図の上方)となる厚さ方向前面に配置された 3層の音響マッチング層 2 ( 2a、 2b、 2c)と、必要に応じて圧電素子 1に対して音響マッチング層 2 (2a、 2b、 2c) の反対側となる厚さ方向背面(図の下方)に配置された背面負荷材 3と、必要に応じ て音響マッチング層 2 (2a、 2b、 2c)上に配置された音響レンズ 4力 構成されている 。これら各構成要素のそれぞれの機能は、従来技術で説明したものと同様である。
[0104] 圧電素子 1の厚さ方向 Zの前面には接地電極 5が、背面には信号用電極 6がそれ ぞれ設けられている。両電極 5、 6は、金や銀の蒸着、スパッタリング、あるいは銀の焼 き付け等により圧電素子 1の前面、背面にそれぞれ形成される。
[0105] 両電極 5、 6は、電気端子 7を経由しケーブルを介して図示しない超音波診断装置 と電気的に接続され、超音波診断装置で作られる規則正しいパルス電圧を圧電素子 1に印加し、逆に圧電素子 1が電気信号に変換したエコー受信波を超音波診断装置 本体に送信する。
[0106] また、図示の例では、圧電素子 1と、圧電素子 1側に位置する第 1の音響マッチング 層 2aおよび第 2の音響マッチング層 2bは、個々に分割されており、これら分割された 溝の部分には音響的な結合が小さいシリコーンゴムやウレタンゴム等のような材料が 充填されている。更に、第 2の音響マッチング層 2bの上面には第 3の音響マッチング 層 2cを分割しない連続した 1枚のフィルムを設ける。更に、必要に応じてシリコーンゴ ムなどの材料を用いて音響レンズを設けた構成にする。 [0107] 複数の圧電素子 1を配列したいわゆる電子走査型の超音波探触子 10では、配列し た圧電素子 1の X方向の指向性を如何に広くできるかが超音波画像の分解能を向上 させる重要なポイントであることは第 2の実施の形態と同様である。
[0108] 第 2実施形態では、音響マッチング層 2が 2層の場合について説明したが、音響マ ツチング層 2を更に 3層化することにより、更なる広帯域ィ匕が可能となる。しかしながら 、音響マッチング層を 3層以上の多層化する場合には、参考文献 1, 2に示すように、 音響マッチング層 2 (2a、 2b、 2c)を圧電素子 1と同様に分割した構成にしなければ 指向性を広くすることができな力つた。
[0109] この事は、圧電素子 1と同じようにスライシングマシーンなどで分割するために、音 響マッチング層 2を多層化することによって厚みは、層が増加した分、厚くなり、更に は分割する材料がより多くなるため、分割するときの加工が困難になり、均一で安定 したものを作成することが困難になっている。本実施の形態はこれらの課題を解決し 、広帯域ィ匕が可能で、且つ指向性を広くできる構成である。
[0110] 本実施形態の 3層の音響マッチング層にしたときにおいて、図 4に示すように、圧電 素子 1と圧電素子 1側に位置する第 1、第 2の音響マッチング層 2a、 2bとを分割して、 更に第 1の音響マッチング層 2a、第 2の音響マッチング層 2bの上面に連続した 1枚の 第 3の音響マッチング層 2cを設けた構成にする。
[0111] 圧電素子 1の材料としては、 PZT系のような圧電セラミックス、 PZN-PT、 PMN-P T系のような圧電単結晶、または前記材料と高分子を複合した複合圧電体などの材 料を用い、また第 1の音響マッチング層 2aには、音響インピーダンス 8〜20メガレー ルスの範囲の値を有するシリコン単結晶、水晶、溶融石英などのガラス、快削性セラ ミックス、またはグラフアイトなどの材料が用いられ、また、第 2の音響マッチング層 2b としては、音響インピーダンスが 3〜8メガレールスの範囲の値を有するグラフアイト、 またはエポキシ榭脂に金属または酸ィ匕物などのフィラーを充填したエポキシ榭脂を 用いる。
[0112] また、第 3の音響マッチング層 2cの材料としては、シリコーンゴム、クロロプレンゴム 、エチレン一プロピレン共重合ゴム、アクリロニトリル一ブタジエン共重合ゴム、および ウレタンゴムなどのゴム弾性体を主体とした材料を用いる。 [0113] 音響マッチング層 2 (2a、 2b、 2c)のそれぞれの音響インピーダンスは、各材料ある いは周波数特性により選択される。例えば、周波数を 3. 5MHzの中心周波数に設 定して、背面負荷材 3の音響インピーダンス 7メガレールス、圧電素子 1に PZT系の 圧電セラミックスで PZT-5H相当の材料を用い、第 1の音響マッチング層 2aは音響ィ ンピーダンス 9メガレールスのグラフアイトを用い、第 2の音響マッチング層 2bは音響 インピーダンス 4メガレールスの酸ィ匕物を充填したエポキシ榭脂を用いて、第 3の音 響マッチング層 2cの音響インピーダンスを 1.5〜2.5メガレールスの範囲で可変した 構成において計算した。
[0114] 一 6dBでの周波数特性の比帯域、およびパルス長 6dB、 一 20dB、—40dBのレ ベルで評価した結果を図 5に示す。図 5において、横軸は第 3の音響マッチング層 2c の音響インピーダンス値、また左側の縦軸はパルス長、右側の縦軸は— 6dBでの周 波数比帯域 (帯域幅/中心周波数)の値を表している。
[0115] 図 5において、パルス長は— 6dBのレベルでは第 3の音響マッチング層 2cの音響ィ ンピーダンスが変化してもほとんど変わらないが、 20dB、 一 40dBのレベルでは変 化があり、音響インピーダンスが 1. 8〜2. 3メガレールスの範囲で小さい値になって いることがわかる。このパルス長は、小さい値になるほど分解能が高くなり良好である ので、小さい値にすることが分解能を向上させることで重要である。
[0116] 一方、比帯域の値が大きいほど分解能、被検深度が深くなる。図 5の周波数比帯域 について見ると、第 3の音響マッチング層 2cの音響インピーダンスが約 2. 3メガレー ルスより大きくなると、比帯域は 80%以下になり、広帯域ィ匕ができなくなつてくることが わかる。以上のように、パルス長および比帯域の両特性の結果から、第 3の音響マツ チング層 2cの音響インピーダンスは 1. 8〜2. 2メガレールスの範囲が望ましいことが ゎカゝる。
[0117] 第 3の音響マッチング層 2cの音響インピーダンスが 1. 8〜2. 2メガレールスの範囲 の材料としては、主体となるゴム弾性体の主体材料単体で得られるものはそのまま使 用できるが、音響インピーダンスが範囲外の値を有する材料については、フィラーな どを充填して調整することによって得ることができる。
[0118] ここで第 3の音響マッチング層 2cは、分割しないで連続した 1枚のフィルムとして設 ける条件が、指向性が第 3の音響マッチング層 2cを分割した構成の指向性と、同等 か若しくはそれ以上の特性が得られるようなゴム弾性体であること、更に前記弾性体 材料の音速は 1650mZsec以下の値を有する材料を選択することである。これは第 1 の実施の形態の図 2で示した結果力もいえることである。
[0119] このように圧電素子 1と同じように分割する音響マッチング層の数を少なくすることが 可能になることによって、例え狭い間隔 (例えば O. lmm)で分割しても、加工は安定 し、均一に精度高く超音波探触子を作成することができ、しかも、指向性も狭くするこ とがない構成にすることが可能となる。
[0120] 以上のように、 3層の音響マッチング層 2の圧電素子 1側に位置する第 1、第 2の音 響マッチング層 2a、 2bを圧電素子 1と同じように分割し、更に第 2の音響マッチング層 2bの上面には、連続した 1枚の第 3の音響マッチング層 2cを設けた構成において、 指向性を確保あるいは広くする場合には、第 3の音響マッチング層 2cの材料の音速 に注目する必要がある。
[0121] 例えば、第 3の音響マッチング層 2cに適した材料として、ゴム材料に限らず、プラス チック材料等も考えられる。例えば、ポリエチレン、ポリスチレン、ポリイミド、エポキシ 榭脂あるいは参考文献 2に示したエポキシ榭脂に充填材を充填した材料等もあるが これらの材料の音速はいずれも 1800mZsec以上であり、これらの材料を本実施形 態の構成のように第 3の音響マッチング層 2cを分割しない構成にした場合には、図 2 に示す結果からも明らかのように、指向性角度は狭くなる。このような材料を用いる場 合には、やはり第 3の音響マッチング層 2cを圧電素子 1と第 1、第 2の音響マッチング 層 2a、 2b同様に分割する必要があるといえる。
[0122] なお、第 3の実施の形態では、第 3の音響マッチング層 2cの材料として、合成ゴム であるクロロプレンゴム、エチレン一プロピレン共重合ゴム、アクリロニトリル一ブタジェ ン共重合ゴムを用いた場合にっ 、て説明した力 このほかの合成ゴム例えばブタジ ェンゴム、イソプレンゴム、スチレン ブタジエン共重合ゴムあるいはアクリルゴム等の 材料を主体としたものの材料であっても同様の効果が得られる。
[0123] また、第 3の実施の形態では、第 3の音響マッチング層 2cの材料として、合成ゴム、 シリコーンゴム、あるいはウレタンゴム等のゴム弾性体を用いた場合について説明し た力 このほかゴム弾性体を有するエラストマ一系の材料を用いた場合であっても、 同様の効果が得られる。
[0124] また、第 3の実施の形態では、音響マッチング層 2を 3層とした場合について説明し たが、このほか 4層以上の音響マッチング層を設け、被検体側に位置する音響マッチ ング層を分割しな 、でゴム弾性体の材料を用いて連続体で形成し場合であっても、 同様の効果が得られる。
[0125] また、第 3の実施の形態では、 1次元に圧電素子を配列した構成の場合について 説明したが、このほか圧電素子が 2次元に配列した場合についても同様の効果があ る。また、第 3の実施の形態では、圧電素子を複数個配列した構成について説明し た力 この他、圧電素子を配列しない単体の場合についても、 3層以上の音響マッチ ング層にして被検体側に位置する音響マッチング層にゴム弾性体を用いても同様に 広帯域ィ匕できる効果がある。
[0126] また、第 3の実施の形態では、複数個の圧電素子がほぼ直線状に配列した ヽゎゅ るリニア型について説明したが、この他、複数個の圧電素子を曲面に配列したコンペ ックス型、コンケープ型の場合についても同様の効果がある。
[0127] (第 4実施形態)
次に、本発明に係る第 4実施形態の超音波探触子について、図面を参照して説明 する。図 6は、第 4実施形態に係る超音波探触子 10の一部概略斜視図を示している
[0128] この超音波探触子 10は、配列された複数の圧電素子 1と、各圧電素子 1に対応し て被検体側(図の上方)となる厚さ方向前面に配置された 3層の音響マッチング層 2 ( 2a、 2b、 2c)と、必要に応じて圧電素子 1に対して音響マッチング層 2 (2a、 2b、 2c) の反対側となる厚さ方向背面(図の下方)に配置された背面負荷材 3と、必要に応じ て音響マッチング層 2 (2a、 2b、 2c)上に配置された音響レンズ 4力 構成されている 。これら各構成要素のそれぞれの機能は、従来技術で説明したものと同様である。
[0129] 圧電素子 1の厚さ方向 Zの前面には接地電極 5が、背面には信号用電極 6がそれ ぞれ設けられている。両電極 5、 6は、金や銀の蒸着、スパッタリング、あるいは銀の焼 き付け等により圧電素子 1の前面、背面にそれぞれ形成される。 [0130] 両電極 5、 6は、電気端子 7を経由しケーブルを介して図示しない超音波診断装置 と電気的に接続され、超音波診断装置で作られる規則正しいパルス電圧を圧電素子 1に印加し、逆に圧電素子 1が電気信号に変換したエコー受信波を超音波診断装置 本体に送信する。
[0131] また、図示の例では、圧電素子 1と、圧電素子 1側に位置する第 1の音響マッチング 層 2aが個々に分割されており、これら分割された溝の部分には音響的な結合が小さ いシリコーンゴムやウレタンゴム等のような材料が充填されている。更に、第 1の音響 マッチング層 2aの上面には、第 2の音響マッチング層 2b、第 3の音響マッチング層 2c を分割しないで連続したフィルムを設ける。更に、必要に応じてシリコーンゴムなどの 材料を用いて音響レンズを設けた構成にする。
[0132] 複数の圧電素子 1を配列したいわゆる電子走査型の超音波探触子 10では、配列し た圧電素子 1の X方向の指向性を如何に広くできるかが超音波画像の分解能を向上 させる重要なポイントであることは第 2、 3の実施の形態と同様である。
[0133] 第 2実施形態では、音響マッチング層 2は 2層の場合について説明したが、音響マ ツチング層 2を更に 3層化することにより、更なる広帯域ィ匕が可能となる。しかしながら 、音響マッチング層を 3層以上の多層化する場合には、参考文献 1, 2に示すように、 音響マッチング層 2 (2a、 2b、 2c)も圧電素子 1と同様に分割した構成にしなければ指 向性を広くすることができな力つた。
[0134] この事は、圧電素子 1と同じようにスライシングマシーンなどで分割するために、音 響マッチング層 2を多層化することによって厚みは、層が増加した分、高くなり更には 分割する材料がより多くなるため、分割するときの加工が困難になり、均一で安定し たものを作成することが困難になっている。本実施の形態はこれらの課題を解決し、 広帯域ィ匕が可能で、且つ指向性を広くできる構成である。
[0135] 本実施形態の 3層の音響マッチング層にしたときにおいて、図 6に示すように、圧電 素子 1と圧電素子 1側に位置する第 1の音響マッチング層 2aとを分割して、更に第 1 の音響マッチング層 2aの上面に連続した第 2、第 3の音響マッチング層 2b、 2cを設 けた構成にする。
[0136] 圧電素子 1の材料としては、 PZT系のような圧電セラミックス、 PZN-PT、 PMN-P T系のような圧電単結晶、または前記材料と高分子を複合した複合圧電体などの材 料を用い、また第 1の音響マッチング層 2aには、音響インピーダンス 8〜20メガレー ルスの範囲の値を有するシリコン単結晶、水晶、溶融石英などのガラス、快削性セラ ミックス、またはグラフアイトなどの材料が用いられ、また、第 2の音響マッチング層 2b としては、音響インピーダンスが 3〜8メガレールスの範囲の値を有する金属粉、酸ィ匕 物粉などのフィラーを充填したゴム弾性体を用いる。
[0137] また、第 3の音響マッチング層 2cの材料としては、シリコーンゴム、クロロプレンゴム 、エチレン一プロピレン共重合ゴム、アクリロニトリル一ブタジエン共重合ゴム、および ウレタンゴムなどのゴム弾性体を主体とした材料を用いる。本実施形態のポイントは 第 2の音響マッチング層 2bも第 3の音響マッチング層 2cと同様に分割しない構成に して設けることである。
[0138] 第 2の音響マッチング層 2bとして、圧電素子 1のように分割しない場合には前述し ているように指向性が狭くなるため、望ましくない。しかし、分割しない構成にしても指 向性が狭くならければ、問題ないわけであり、し力も、加工して分割するときにはでき るだけ、構成部品数は少ない方がよいことは第 2、 3の実施形態で説明している。
[0139] 第 2、第 3の音響マッチング層 2b、 2cを分割しない構成にするためには、第 2の音 響マッチング層 2bも図 2および第 3の実施形態で説明したように、第 3の音響マッチ ング層 2cのようにゴム弾性体の材料で、しカゝも音速が 1650mZsec若しくはそれ以下 の値を有する材料を用いれば、第 2の音響マッチング層 2bも分割しなくとも指向性が 狭くならな ヽ特性を得ることができる。
[0140] 第 2の音響マッチング層 2bは、音響インピーダンスが 3〜8メガレールスの範囲で、 且つ音速が 1650m/sec若しくはそれ以下の値を有する材料としては、例えば、ァク リロ-トリル—ブタジエン共重合ゴム 1に対して、銅金属粉 (平均粒径 1. 2マイクロメ一 トル)のフイラ一を重量比で 9の割合で充填した材料は音響インピーダンスが 5. 3メガ レールス、また音速は 1070mZsecであり、第 2の音響マッチング層 2bとして要望さ れる値の特性を有して 、る材料を用いる。
[0141] このように合成ゴム系のゴム弾性体を主体とした材料に、タングステン、銀、鉄、ニッ ケルなどの金属粉や酸ィ匕物のような密度の大きいフィラーを充填することにより、第 2 の音響マッチング層 2bに要望される音響インピーダンス、音速の値の材料を得ること ができる。
[0142] このように圧電素子 1と同じように分割する音響マッチング層の数を少なくすることが 可能になることによって、例え狭い間隔 (例えば O.lmm)で分割しても、加工は安定 し、均一に精度高く超音波探触子を作成することができ、しかも、指向性も狭くするこ とがない構成にすることが可能となる。
[0143] なお、第 4の実施の形態では、第 2の音響マッチング層 2bの材料として、合成ゴム であるアクリロニトリル一ブタジエン共重合ゴムに銅粉のフィラーを充填した材料を用 いた場合について説明した力 このほ力クロロプレンゴム、エチレン一プロピレン共重 合ゴム、ブタジエンゴム、イソプレンゴム、スチレン ブタジエン共重合ゴムあるいはァ クリルゴム等合成ゴム、シリコーンゴム、あるいはウレタンゴム、エラストマ一系の材料 等と、ほかのフィラーの組み合わせた材料であっても同様の効果が得られる。
[0144] また、第 4の実施の形態では、音響マッチング層 2を 3層とした場合について説明し たが、このほか 4層以上の音響マッチング層を設け、被検体側に位置する音響マッチ ング層を分割しな 、でゴム弾性体の材料を用いて連続体で形成し場合であっても、 同様の効果が得られる。
[0145] また、第 4の実施の形態では、 1次元に圧電素子を配列した構成の場合について 説明したが、このほか圧電素子が 2次元に配列した場合についても同様の効果があ る。また、第 4の実施の形態では、圧電素子を複数個配列した構成について説明し た力 この他、圧電素子を配列しない単体の場合についても、 3層以上の音響マッチ ング層にして被検体側に位置する音響マッチング層にゴム弾性体を用いても同様に 広帯域ィ匕できる効果がある。
[0146] また、第 4の実施の形態では、複数個の圧電素子がほぼ直線状に配列した ヽゎゅ るリニア型について説明したが、この他、複数個の圧電素子を曲面に配列したコンペ ックス型、コンケープ型の場合についても同様の効果がある。
[0147] (第 5実施形態)
以下、本発明に係る第 5実施形態の超音波探触子について、図面を参照して説明 する。図 7は、第 5実施形態に係る超音波探触子 10の一部概略斜視図を示している [0148] この超音波探触子 10は、配列された複数の圧電素子 1と、各圧電素子 1に対応し て被検体側(図の上方)となる厚さ方向前面に配置された 4層の音響マッチング層 2 ( 2a、 2b、 2c、 2d)と、必要に応じて圧電素子 1に対して音響マッチング層 2 (2a、 2b、 2c、 2d)の反対側となる厚さ方向背面(図の下方)に配置された背面負荷材 3と、必 要に応じて音響マッチング層 2 (2a、 2b、 2c、 2d)上に配置された音響レンズ 4力 構 成されている。これら各構成要素のそれぞれの機能は、従来技術で説明したものと 同様である。
[0149] 圧電素子 1の厚さ方向 Zの前面には接地電極 5が、背面には信号用電極 6がそれ ぞれ設けられている。両電極 5、 6は、金や銀の蒸着、スパッタリング、あるいは銀の焼 き付け等により圧電素子 1の前面、背面にそれぞれ形成される。
[0150] 両電極 5、 6は、電気端子 7を経由しケーブルを介して図示しない超音波診断装置 と電気的に接続され、超音波診断装置で作られる規則正しいパルス電圧を圧電素子 1に印加し、逆に圧電素子 1が電気信号に変換したエコー受信波を超音波診断装置 本体に送信する。
[0151] また、図示の例では、圧電素子 1と、圧電素子 1側に位置する音響マッチング層 2a 、 2bおよび 2cは、個々に分割されており、これら分割された溝の部分には音響的な 結合が小さいシリコーンゴムやウレタンゴム等のような材料が充填されている。更に、 音響マッチング層 2cの上面には音響マッチング層 2dを分割しない連続した 1枚のフ イルムを設ける。更に、必要に応じてシリコーンゴムなどの材料を用いて音響レンズを 設けた構成にする。
[0152] 複数の圧電素子 1を配列したいわゆる電子走査型の超音波探触子 10では、配列し た圧電素子 1の方向の指向性を如何に広くできるかが超音波画像の分解能を向上さ せる重要なポイントである。
[0153] 圧電素子 1の被検体側に設ける音響マッチング層 2を多層化することにより、広帯 域ィ匕が可能となる。し力しながら、音響マッチング層を 4層以上に多層化する場合に は、図 12 (特許文献 1, 2参照)に示すように、 3層の音響マッチング層 12も圧電素子 11と同様に分割した構成にしなければ指向性を広くすることができな力つた。 [0154] このことは、圧電素子 11と同じようにスライシングマシーンなどで分割するために、 音響マッチング層 12を更に多層化することによって厚みは、層が増加した分、厚くな り更には分割する材料がより多くなるため、分割するときの加工が困難になり、均一で 安定したものを作成することが困難になっている。本実施の形態はこれらの課題を解 決し、広帯域ィ匕が可能で、且つ指向性を広くできる構成である。
[0155] 本実施形態の 4層の音響マッチング層にしたときにおいて、図 7に示すように、圧電 素子 1と圧電素子 1側に設けた第 1、 2、 3の音響マッチング層 2a、 2b、 2cとを分割し て、更に第 3の音響マッチング層 2cの上面に連続した 1枚の第 4の音響マッチング層 2dを設けた構成にする。
[0156] 圧電素子 1の材料としては、 PZT系のような圧電セラミックス、 PZN-PT、 PMN-P T系のような圧電単結晶、または前記材料と高分子を複合した複合圧電体などの材 料を用い、また第 1の音響マッチング層 2aには、音響インピーダンスが圧電素子 1より 小さい値を有するシリコン単結晶、水晶、テルライトガラス、快削性セラミックスなどの 材料が用いられ、また、第 2の音響マッチング層 2bとしては、音響インピーダンスが第 1の音響マッチング層 2aより小さい値を有する溶融石英などを代表とするガラス系材 料、グラフアイト、またはエポキシ榭脂に金属または酸ィ匕物などのフィラーを充填した エポキシ榭脂を用い、第 3の音響マッチング層 2cの材料としては、音響インピーダン スが第 2の音響マッチング層 2bより小さい値を有するグラフアイト、またはエポキシ榭 脂に金属または酸ィ匕物などのフィラーを充填したエポキシ榭脂を用いる。
[0157] また、第 4の音響マッチング層 2dの材料としては、音響インピーダンスが第 3の音響 マッチング層 2cより小さい値を有するシリコーンゴム、クロロプレンゴム、エチレン一プ ロピレン共重合ゴム、アクリロニトリル一ブタジエン共重合ゴム、およびポリウレタンゴ ムなどのゴム弾性体を主体とした材料を用いる。これら音響マッチング層 2 (2a、 2b、 2c、 2d)の厚みは公知のように、使用周波数の 4分の 1波長の厚みを基本にする。
[0158] 本実施形態は、加工が容易で均一に、また安定して作成できるように圧電素子 1と 第 1、第 2、第 3の音響マッチング層 2 (2a、 2b、 2c)までを分割して配列し、第 3の音 響マッチング層 2cの上面に分割しないで連結した 1枚の状態でゴム弾性体材料の第 4の音響マッチング層 2dを設けた構成にしている。し力も指向性は、第 4の音響マツ チング層 2dまで分割した構成と同等あるいはそれ以上にできるようにしたことがボイ ントである。
[0159] 音響マッチング層を分割しない構成で指向性を広くするためには、第 1の実施の形 態の図 2でも説明したように、音響マッチング層は、ゴム弾性体材料で、しかも音速は 1650mZsec若しくはそれ以下の値の特性を有するものであればよい。この特性を 有した材料を第 4の音響マッチング層に用いる。
[0160] なお、第 4の音響マッチング層 2dの材料として、主体が合成ゴムであるクロ口プレン ゴム、エチレン一プロピレン共重合ゴム、アクリロニトリル一ブタジエン共重合ゴムを用 いた場合について説明した力 このほかの合成ゴム例えばブタジエンゴム、イソプレ ンゴム、スチレン ブタジエン共重合ゴムあるいはアクリルゴム等の材料を主体とした ものの材料であっても同様の効果が得られる。
[0161] また、第 4の音響マッチング層 2dの材料として、主体が合成ゴム、シリコーンゴム、 あるいはウレタンゴム等のゴム弾性体を用いた場合について説明した力 このほかゴ ム弾性体を有するエラストマ一系の材料を用いた場合であっても、同様の効果が得ら れる。
[0162] また、第 5の実施の形態では 1次元に圧電素子を配列した構成の場合について説 明したが、このほか圧電素子が 2次元に配列した場合についても同様の効果がある。 また、第 5の実施の形態では、圧電素子を複数個配列した構成について説明したが 、この他、圧電素子を配列しない単体の場合についても、 3層以上の音響マッチング 層にして被検体側に位置する音響マッチング層にゴム弾性体を用いても同様に広帯 域ィ匕できる効果がある。
[0163] また、第 5の実施の形態では、複数個の圧電素子がほぼ直線状に配列した ヽゎゅ るリニア型について説明したが、この他、複数個の圧電素子を曲面に配列したコンペ ックス型、コンケープ型の場合についても同様の効果がある。
[0164] 以上の構成により、前記音響マッチング層の被検体側に位置する第 4の音響マッチ ング層としてゴム弾性体で音速を規定して、分割しない構成にすることにより周波数 の広帯域化と指向性の拡大が可能になり、さらに、第 4の音響マッチング層を圧電素 子と共に加工して分割することが必要なくなるため、加工の困難さは解消され安定し た超音波探触子を得ることができ、多くの圧電素子の配列を使用して自由に位相制 御できることになり、超音波ビームを細く絞る事ができ、また、超音波ビームを偏向す る事ができるため、分解能の高い超音波画像を提供する超音波探触子を得ることが できる。
[0165] (第 6実施形態)
次に、本発明に係る第 6実施形態の超音波探触子について、図面を参照して説明 する。図 8は、第 6実施形態に係る超音波探触子 10の一部概略斜視図を示している
[0166] この超音波探触子 10は、配列された複数の圧電素子 1と、各圧電素子 1に対応し て被検体側(図の上方)となる厚さ方向前面に配置された 4層の音響マッチング層 2 ( 2a、 2b、 2c、 2d)と、必要に応じて圧電素子 1に対して音響マッチング層 2 (2a、 2b、 2c、 2d)の反対側となる厚さ方向背面(図の下方)に配置された背面負荷材 3と、必 要に応じて音響マッチング層 2 (2a、 2b、 2c、 2d)上に配置された音響レンズ 4力 構 成されている。これら各構成要素のそれぞれの機能は、従来技術で説明したものと 同様である。
[0167] 圧電素子 1の厚さ方向 Zの前面には接地電極 5が、背面には信号用電極 6がそれ ぞれ設けられている。両電極 5、 6は、金や銀の蒸着、スパッタリング、あるいは銀の焼 き付け等により圧電素子 1の前面、背面にそれぞれ形成される。
[0168] 両電極 5、 6は、電気端子 7を経由しケーブルを介して図示しない超音波診断装置 と電気的に接続され、超音波診断装置で作られる規則正しいパルス電圧を圧電素子 1に印加し、逆に圧電素子 1が電気信号に変換したエコー受信波を超音波診断装置 本体に送信する。
[0169] また、図示の例では、圧電素子 1と、圧電素子 1側に位置する第 1、第 2の音響マツ チング層 2a、 2bが分割されており、これら分割された溝の部分には音響的な結合が 小さいシリコーンゴムやウレタンゴム等のような材料が充填されている。
[0170] 更に、第 2の音響マッチング層 2bの上面には、第 3の音響マッチング層 2c、第 4の 音響マッチング層 2dを分割しないで連続したフィルムを設ける。更に、必要に応じて シリコーンゴムなどの材料を用いて音響レンズを設けた構成にする。 [0171] 複数の圧電素子 1を配列したいわゆる電子走査型の超音波探触子 10では、配列し た圧電素子 1の X方向の指向性を如何に広くできるかが超音波画像の分解能を向上 させる重要なポイントであることは第 1の実施の形態と同様である。
[0172] 本実施形態の 4層の音響マッチング層にしたときにおいて、図 8に示すように、圧電 素子 1と圧電素子 1側に位置する第 1、第 2の音響マッチング層 2a、 2bとを分割して、 更に第 2の音響マッチング層 2bの上面に連続した第 3の音響マッチング層 2cを設け 、更に第 3の音響マッチング層 2cの上面に連続した第 4の音響マッチング層 2dを設 けた構成にする。
[0173] 圧電素子 1の材料としては、 PZT系のような圧電セラミックス、 PZN-PT、 PMN-P T系のような圧電単結晶、または前記材料と高分子を複合した複合圧電体などの材 料を用い、また第 1の音響マッチング層 2aには、音響インピーダンスが圧電素子 1より 小さい値を有するシリコン単結晶、水晶、テルライトガラス、快削性セラミックスなどの 材料が用いられ、また、第 2の音響マッチング層 2bとしては、音響インピーダンスが第 1の音響マッチング層 2aより小さい値を有する溶融石英などを代表とするガラス系材 料、グラフアイト、またはエポキシ榭脂に金属または酸ィ匕物などのフィラーを充填した エポキシ榭脂を用い、第 3の音響マッチング層 2cの材料としては、音響インピーダン スが第 2の音響マッチング層 2bより小さい値を有し、ゴム弾性体材料で、且つ音速が 1650mZsec若しくはそれ以下の値を有するものを用 、る。
[0174] また、第 4の音響マッチング層 2dの材料としては、音響インピーダンスが第 3の音響 マッチング層 2cより小さい値を有するシリコーンゴム、クロロプレンゴム、エチレン一プ ロピレン共重合ゴム、アクリロニトリル一ブタジエン共重合ゴム、およびウレタンゴムな どのゴム弾性体を主体とした材料を用いる。これら音響マッチング層 2 (2a、 2b、 2c、 2d)の厚みは公知のように、使用周波数の 4分の 1波長の厚みを基本にする。
[0175] 本実施形態は、加工が容易で均一に、また安定して作成できるように圧電素子 1と 第 1、第 2の音響マッチング層 2 (2a、 2b)までを分割して配列し、第 2の音響マツチン グ層 2bの上面に分割しないで連結した 1枚の状態でゴム弾性体材料の第 3の音響マ ツチング層 2cと、更にその上面に第 3の音響マッチング層 2cと同様に分割しないで 連結した 1枚の状態で、第 4の音響マッチング層 2dを設けた構成にしている。し力も 指向性は、第 3、第 4の音響マッチング層 2c、 2dまで分割した構成と同等あるいはそ れ以上にできるようにしたことがポイントである。
[0176] 第 3の音響マッチング層 2cとして、圧電素子 1のように分割しない場合には前述して いるように指向性が狭くなるため、望ましくない。しかし、分割しない構成にしても指向 性が狭くならければ、問題ないわけであり、し力も、加工して分割するときにはできる だけ、構成部品数は少ない方がよいことは第 1の実施形態で説明している。
[0177] 第 3、第 4の音響マッチング層 2c、 2dを分割しない構成にするためには、第 3の音 響マッチング層 2cも図 2および第 1の実施形態で説明したように、第 4の音響マツチン グ層 2dのようにゴム弾性体の材料で、し力も音速が 1650mZsec若しくはそれ以下 の値を有する材料を用いれば、第 3の音響マッチング層 2cも分割しなくとも指向性が 狭くならな ヽ特性を得ることができる。
[0178] 第 3の音響マッチング層 2cは、音響インピーダンスは第 2、第 4の音響マッチング層 2b、 2dの間を有する値を有し、音速が 1650mZsec若しくはそれ以下の値を有する 材料としては、例えば、アクリロニトリル ブタジエン共重合ゴム 1に対して、銅金属粉 (平均粒径 1. 2マイクロメートル)のフイラ一を 9の割合で充填した材料は音響インピー ダンスが 5. 3メガレールス、また音速は 1070m/secであり、第 3の音響マッチング層 2cとして要望される値の特性を有して 、る材料を用いる。
[0179] このように合成ゴム系のゴム弾性体を主体とした材料に、タングステン、銀、鉄、ニッ ケルなどの金属粉や酸ィ匕物のような密度の大きいフィラーを充填することにより、第 3 の音響マッチング層 2cに要望される音響インピーダンス、音速の値の材料を得ること ができる。
[0180] このように圧電素子 1と同じように分割する音響マッチング層の数を少なくすることが 可能になることによって、例え狭い間隔 (例えば O. lmm)で分割しても、加工は安定 し、均一に精度高く超音波探触子を作成することができ、しかも、指向性も狭くするこ とがない構成にすることが可能となる。
[0181] なお、第 6の実施の形態では、第 3の音響マッチング層 2cの材料として、合成ゴム であるアクリロニトリル一ブタジエン共重合ゴムに銅粉のフィラーを充填した材料を用 いた場合について説明した力 このほ力クロロプレンゴム、エチレン一プロピレン共重 合ゴム、ブタジエンゴム、イソプレンゴム、スチレン ブタジエン共重合ゴムあるいはァ クリルゴム等合成ゴム、シリコーンゴム、あるいはウレタンゴム、エラストマ一系の材料 等と、ほかのフィラーの組み合わせた材料であっても同様の効果が得られる。
[0182] また、第 6の実施の形態では、音響マッチング層 2を 4層とした場合について説明し たが、このほか 2層若しくは 5層以上の音響マッチング層を設け、被検体側に位置す る音響マッチング層を分割しな 、でゴム弾性体の材料を用いて連続体で形成した場 合であっても、同様の効果が得られる。
[0183] また、第 6の実施の形態では、 1次元に圧電素子を配列した構成の場合について 説明したが、このほか圧電素子が 2次元に配列した場合についても同様の効果があ る。また、第 6の実施の形態では、圧電素子を複数個配列した構成について説明し た力 この他、圧電素子を配列しない単体の場合についても、 3層以上の音響マッチ ング層にして被検体側に位置する音響マッチング層にゴム弾性体を用いても同様に 広帯域ィ匕できる効果がある。
[0184] また、第 6の実施の形態では、複数個の圧電素子がほぼ直線状に配列した ヽゎゅ るリニア型について説明したが、この他、複数個の圧電素子を曲面に配列したコンペ ックス型、コンケープ型の場合についても同様の効果がある。
[0185] (第 7実施形態)
次に、本発明に係る第 7実施形態の超音波探触子について、図面を参照して説明 する。図 9aは、第 7実施形態に係る超音波探触子 10の一部概略斜視図を示し、また 図 9bは、図 9aに示す X方向から見た概略断面図を示している。
[0186] この超音波探触子 10は、配列された複数の圧電素子 1と、各圧電素子 1に対応し て被検体側(図の上方)となる厚さ方向前面に配置された 3層の音響マッチング層 2 ( 2a、 2b、 2c)と、必要に応じて圧電素子 1に対して音響マッチング層 2 (2a、 2b、 2c) の反対側となる厚さ方向背面(図の下方)に配置された背面負荷材 3と、必要に応じ て音響マッチング層 2 (2a、 2b、 2c)上に配置された音響レンズ 4力 構成されている 。これら各構成要素のそれぞれの機能は、従来技術で説明したものと同様である。
[0187] 圧電素子 1の厚さ方向 Zの前面には接地電極 5が、背面には信号用電極 6がそれ ぞれ設けられている。両電極 5、 6は、金や銀の蒸着、スパッタリング、あるいは銀の焼 き付け等により圧電素子 1の前面、背面にそれぞれ形成される。
[0188] 以下に更に詳細に説明する。 PZT系のような圧電セラミックス、 PZN-PT、 PMN- PT系のような圧電単結晶、または前記材料と高分子を複合した複合圧電体などの材 料の圧電素子 1に設けた信号電極 6と背面負荷材 3の間には、ポリイミドなどの高分 子フィルムに銅などの金属膜を設けたフィルム 8 (第 1の高分子フィルム)を設けており 、前記信号用電極 6と前記フィルム 8の金属膜の電気端子 7が接するようにし、前記 背面負荷材 3側が高分子のフィルムが接するように設ける。
[0189] 一方、圧電素子 1面上に設けた接地電極 5側には、グラフアイトのような導体 (絶縁 体材料であれば絶縁体の周囲をめつきなどで金属の導体を構成する)である第 1の 音響マッチング層 2aを設け、更に前記第 1の音響マッチング層 2aの上面には、ポリイ ミドなどの高分子フィルムに銅などの金属膜 (厚みは特性に影響が小さ!/、ように 5マイ クロメートル以下)を設けたフィルム 9 (第 2の高分子フィルム)を設けており、前記導体 である第 1の音響マッチング層 2aと前記フィルム 9の金属膜が接するように構成する。
[0190] 更に、前記フィルム 9の高分子フィルムの上面には、グラフアイト、またはエポキシ榭 脂に金属または酸ィ匕物などのフィラーを充填したエポキシ榭脂の第 2の音響マツチン グ層 2bを設ける。また、第 1の音響マッチング層 2aの材料が絶縁体である場合には、 前記絶縁体の全周囲にめっきなどの方法により導体を形成すれば、本構成が成立 するので、必ずしも第 1の音響マッチング層 2aの材料は導体である必要はない。また 、第 2の音響マッチング層 2bは絶縁体、導体は問わない。
[0191] 以上にような構成に形成した後、背面負荷材 3の一部、フィルム 8、圧電素子 1、第 1の音響マッチング層 2a、フィルム 9、および第 2の音響マッチング層 2bをスライシン グマシーンなどで加工して分割する。分割後の分割溝には、音響的な結合が小さい シリコーンゴムやウレタンゴム等のような材料を充填し、更に第 2の音響マッチング層 2 bおよび分割溝に充填した部分の上面には、第 3の音響マッチング層 2cを設ける。
[0192] 第 3の音響マッチング層 2cは、図示のように分割しないで連結した状態で設けてい る。また、第 3の音響マッチング層 2cの材料としては、シリコーンゴム、クロロプレンゴ ム、エチレン一プロピレン共重合ゴム、アクリロニトリル一ブタジエン共重合ゴム、およ びウレタンゴムなどのゴム弾性体を主体とした材料を用いる。更に必要に応じて、第 3 の音響マッチング層 2cの上面にはシリコーンゴムなどの材料を用いた音響レンズ 4を 構成する。
[0193] 信号用電極 6は、フィルム 8の電気端子 7の金属膜を経由し、また、接地電極 5は第 1の音響マッチング層 2a、フィルム 9の金属膜の導体を経由し、ケーブルを介して図 示しない超音波診断装置と電気的に接続され、超音波診断装置で作られる規則正し V、パルス電圧を圧電素子 1に印加し、逆に圧電素子 1が電気信号に変換したェコ一 受信波を超音波診断装置本体に送信する。
[0194] 複数の圧電素子 1を配列したいわゆる電子走査型の超音波探触子 10では、配列し た圧電素子 1の方向の指向性を如何に広くできるかが超音波画像の分解能を向上さ せる重要なポイントである。
[0195] 一方、圧電素子 1と被検体の音響インピーダンスは、それぞれ、約 30メガレールス、 約 1. 54メガレールスであり、その差が大きいために音響的な不整合が生じ、このた めに周波数の帯域は狭くなる。この音響的な不整合をなくすために、音響インピーダ ンスが圧電素子 1と被検体の間の値を有する材料を音響マッチング層として設けるこ とにより、周波数の広帯域ィ匕が可能になる。
[0196] この音響マッチング層の音響インピーダンスを段階的に圧電素子力 被検体に近 づけていく段階数を多くすることにより、さらに周波数の広帯域ィ匕が可能になる。した がって、音響マッチング層は 1層より 2層、さらには 2層より 3層と層数を多くすることに よってより広帯域ィ匕が可能になる。
[0197] また、圧電素子 1と同じように分割する音響マッチング層の数を少なくすることによつ て、例え狭い間隔 (例えば O. lmm)で分割しても、加工は安定し、均一に精度高く超 音波探触子を作成することができ、しかも、指向性も狭くすることがない構成にするこ とが可能となる。
[0198] 例えば、周波数が 3.5MHzの圧電素子 1を、圧電素子 1の間隔 0. 38mm (0. 19m mの間隔で分割した 2つを電気的に束ねた状態)分割したときの指向性の角度は、 6dBのレベルで定義すると音響マッチング層 2を圧電素子 1と同時に分割した構成の タイプは、約 23度の指向角となる。なお、圧電素子 1および第 1、第 2の音響マツチン グ層 2a、 2bを分割した分割溝には、シリコーンゴム材を充填した構成にしている。 [0199] 前記の方法で圧電素子 1を同様の仕様で分割して、 3層の音響マッチング層の内、 圧電素子 1側の第 1、第 2の音響マッチング層 2a、 2bは、前記圧電素子 1と同じに分 割して、被検体側に位置する第 3の音響マッチング層は分割しない構成にしたタイプ において、被検体側に位置する第 3の音響マッチング層 2の材料として、シリコーンゴ ム(硬さがショァ—A硬度で 76、音速 915mZsec、音響インピーダンス 2. 1メガレー ルス)、クロロプレンゴム(硬さがショァ A硬度で 70、音速 1630mZsec、音響インピ 一ダンス 2. 16メガレールス)、エチレン プロピレン共重合ゴム(硬さがショァ A硬 度で 65、音速 1480mZsec、音響インピーダンス 1. 94メガレールス)、アタリ口-トリ ルーブタジエン共重合ゴム(硬さがショァ A硬度で 60、音速 1640mZsec、音響ィ ンピーダンス 1. 97メガレールス)、およびウレタンゴム(硬さがショァ A硬度で 78、 音速 1850mZsec、音響インピーダンス 1. 98メガレールス)のそれぞれ用いて配列 された圧電素子 1面上に設け、更にその音響マッチング層 2の上面にシリコーンゴム の音響レンズを設けて、圧電素子 1の配列方向における超音波の指向特性を測定し た。
[0200] その結果、第 3の音響マッチング層 2の材料による指向特性に違いがあることがわ かった。なお、圧電素子 1および第 1、第 2の音響マッチング層を分割した分割溝 (こ のときの分割溝幅は約 0.03mmである)には、第 2の音響マッチング層 2まで分割し た構成と同様にシリコーンゴムの材料を充填している。
[0201] また、上記に挙げた材料のウレタンゴム以外の材料には、音響インピーダンスを調 整するためにアルミナ、カーボンあるいは炭酸カルシウムなどのフィラーを任意の量 を充填した材料を用いて 、る。
[0202] 指向特性の違いは、材料の硬さ、音響インピーダンス等との相関はなぐあまり影響 していな力つた。指向特性に影響している、つまり相関があつたのは、第 3の音響マツ チング層 2材料の音速特性であり、これは良好な相関が見られた。
[0203] 3.5MHzの周波数で 6dBのレベルで測定した指向性角度と、材料の音速との関 係の結果を図 2 (既出)に示す。図 2に示すように音速との良好な相関が見られ、相関 係数は 0. 86となっている。このことから、被検体側に位置する音響マッチング層 2を 分割しないで設けた構成において、指向性を広くする場合には、音速に注目する必 要があることがわ力つた。前記使用した音響マッチング層 2のそれぞれの材料を用い たときの指向 ¾角度は以下のようになって!/、る。
[0204] それぞれの指向性角度は、シリコーンゴムは 25度、クロロプレンゴムは 23. 5度、ェ チレン一プロピレン共重合ゴムは 23. 5度、アクリロニトリル一ブタジエン共重合ゴム は 22. 9度、ウレタンゴムは 20度という結果であった。なおこの測定結果のばらつき は、 ±0. 5度程度あると考えている。
[0205] このことは、多層化した音響マッチング層を全て圧電素子 1と同じように分割しない 構成にしても、分割した構成と同等若しくはそれ以上の指向特性を得るには、音響マ ツチング層の音速を限定すれば良ぐその値は 1650mZsec、若しくはそれ以下の 値を有するゴム弾性体材料であると 、える。
[0206] これらの結果を踏まえて、本実施形態では音響マッチング層 2を 3層と多層化した 構成にして、し力も、被検体側に位置する第 3の音響マッチング層 2cに音速 1650m /sec,若しくはそれ以下の値を有するゴム弾性体材料を用いて、分割しない構成に して、指向性も広くできるようにしている。
[0207] し力も、音響マッチング層 2を 3層と多層化していることから広帯域化も可能となり、 これらの指向性角度と、従来の音響マッチング層 2まで圧電素子 1と共に分割した構 成の指向性角度を比較すると、従来構成の指向性角度とほぼ同等レベルの指向性 角度を得るには、被検体側に位置する音響マッチング層 2の音速は 1650mZsec付 近の材料を使用すれば良いということになる。更に指向性を広くする場合には、音速 力 S l650mZsec以下の材料、例えばシリコーンゴムのような材料を用いれば良いとい うこと力 Sわ力る。
[0208] また、指向性角度が狭い結果となっているウレタンゴムにおいても、ウレタンゴムの 中でも音速が 1650mZsec付近あるいはそれ以下の種類 (例えばサンュレック株式 会社製中型用ウレタン榭脂 UE-644グレードは、音速が 1580mZsec、音響インピ 一ダンスが 2. 1メガレールス)も存在するため、ウレタンゴム材料は指向角が狭くなる ということではなぐその基準は音速にあるということである。音速が 1650mZsec以 下の材料を選択すると、基本的にはゴム弾性体である材料に絞り込まれる。
[0209] 以上のように、音響マッチング層 2を圧電素子 1と同じように分割しないで連続した 形状の 1枚のフィルムで設ける構成において、指向性を確保あるいは広くする場合に は、音響マッチング層 2の材料の音速に注目する必要がある事が分力つた。
[0210] また、第 3の音響マッチング層 2cとしての音響インピーダンスが上記材料に挙げた ように 2メガレールス付近の値を有する材料は、ゴム材料に限らずプラスチック材料等 にも存在する。例えば、ポリエチレン、ポリスチレン、あるいは参考文献 2に示したェポ キシ榭脂に充填材を充填した材料等もあるが、これらの材料の音速はいずれも約 18 OOmZsec以上であり、これらの材料を本実施形態の構成のように、第 3の音響マツ チング層 2cを分割しない構成にした場合には、図 2の傾向からも明らかのように、指 向性は狭くなる。このような材料を用いる場合には、やはり音響マッチング層 2を圧電 素子 1と同様に分割する構成にして指向性を広くする必要がある。
[0211] また、第 1と第 2の音響マッチング層の間に設けたフィルム 9の金属膜は銅などの材 料を用いる力 銅の音速が 4700mZsecと早くし力も 5マイクロメートル以下の厚みに 形成できるため、周波数特性などに影響は小さぐあまり考慮する必要がないが、フィ ルム 9の高分子フィルムはポリイミドなどの材料が用いられる。
[0212] 前記高分子フィルムの音響インピーダンスは、第 1と第 2の音響マッチング層 2a、 2b より小さく約 3メガレールスの値であり、更には音速が 2200m/secと遅いために、厚 みが周波数特性に影響する。一般的に、 3層の音響マッチング層を設けた構成での 各音響マッチング層の音響インピーダンスは第 1の音響マッチング層 2aは 8〜20メガ レールス、第 2の音響マッチング層は 3〜8メガレールス、第 3の音響マッチング層は 1 . 7〜2.4メガレールスの範囲の値が用いられて!/、る。
[0213] 本実施形態において、第 1の音響マッチング層の音響インピーダンスが 10メガレー ルス、第 2の音響マッチング層の音響インピーダンス力 メガレールスの材料を用い、 フィルム 9の高分子フィルムとしてポリイミドの材料を用いて 3層の音響マッチング層で 構成した場合、 3. 5MHzの周波数で、周波数特性の 6dBでの比帯域を計算した 結果を図 10に示す。
[0214] 図 10において、横軸は、フィルム 8としてポリイミドの高分子フィルムの厚みを波長 で正規化した値で示し、また縦軸は、周波数特性の— 6dBでの比帯域 (帯域幅 Z中 心周波数)の値を示して 、る。 [0215] 図 10に示すように、 3層の音響マッチング層にしているために、比帯域は 90%以上 の広帯域特性が得られており、フィルム 9の厚みが厚くなるにしたがって、比帯域は 小さくなつて ヽく傾向となって ヽる。広帯域化のために 3層の音響マッチング層にして いることを考慮すると、比帯域は少なくとも 90%以上の確保が必要となる。ここで比帯 域を 90%以上と規定すると、フィルム 9の高分子の厚みは 0.07波長以下にしなけれ ばならない。ちなみに今回のように周波数が 3.5MHzでフィルム 9の高分子フィルム にポリイミドを使用した場合の 0.07波長以下の厚みは 44マイクロメートル以下となる。
[0216] このように、音響マッチング層の間に音響インピーダンスが前記音響マッチング層 の音響インピーダンスの範囲から外れた値のものが介在する場合には、周波数特性 などに影響が小さくなるように厚みなどを設定することが必要であり、今回は影響が小 さ 、0.07波長以下の厚みに設定すればょ 、ことを明らかにした。
[0217] 以上のように、音響マッチング層の被検体側に位置する第 3の音響マッチング層の 材料にゴム弾性体を設けており、周波数の広帯域化と指向性の拡大が可能になる。 また、第 3の音響マッチング層を圧電素子と共に加工して分割することが必要なくなる ため、加工の困難さが解消される。また、フィルムに設けた導体から電気端子を取り 出しているために、品質の高い安定した超音波探触子を得ることができる。これにより 、多くの圧電素子の配列を使用して自由に位相制御できることになり、超音波ビーム を細く絞る事ができ、また、超音波ビームを偏向する事ができるため、分解能の高い 超音波画像を提供する超音波探触子を得ることができる。
[0218] なお、第 7の実施の形態では、第 3の音響マッチング層 2cの材料として、合成ゴム であるクロロプレンゴム、エチレン一プロピレン共重合ゴム、アクリロニトリル一ブタジェ ン共重合ゴムを用いた場合にっ 、て説明した力 このほかの合成ゴム例えばブタジ ェンゴム、イソプレンゴム、スチレン ブタジエン共重合ゴムあるいはアクリルゴム等の 材料を主体としたものの材料であっても同様の効果が得られる。
[0219] また、第 7の実施の形態では、第 3の音響マッチング層 2cの材料として、合成ゴム、 シリコーンゴム、あるいはウレタンゴム等のゴム弾性体を用いた場合について説明し た力 このほかゴム弾性体を有するエラストマ一系の材料を用いた場合であっても、 同様の効果が得られる。 [0220] また、第 7の実施の形態では、圧電素子を複数個配列した構成について説明した 力 この他、圧電素子を配列しない単体の場合についても、 3層以上の音響マツチン グ層にして被検体側に位置する音響マッチング層にゴム弾性体を用いても同様に、 広帯域ィ匕できる効果がある。
[0221] また、第 7の実施の形態では、複数個の圧電素子がほぼ直線状に配列したいわゆ るリニア型について説明したが、この他、複数個の圧電素子を曲面に配列したコンペ ックス型、コンケープ型の場合についても同様の効果がある。
[0222] (第 8実施形態)
次に、本発明に係る第 8実施形態の超音波探触子について、図面を参照して説明 する。図 11は、第 8実施形態に係る超音波探触子 10の一部概略斜視図を示してい る。
[0223] この超音波探触子 10は、配列された複数の圧電素子 1と、各圧電素子 1に対応し て被検体側(図の上方)となる厚さ方向前面に配置された 3層の音響マッチング層 2 ( 2a、 2b、 2c)と、必要に応じて圧電素子 1に対して音響マッチング層 2 (2a、 2b、 2c) の反対側となる厚さ方向背面(図の下方)に配置された背面負荷材 3と、必要に応じ て音響マッチング層 2 (2a、 2b、 2c)上に配置された音響レンズ 4力 構成されている 。これら各構成要素のそれぞれの機能は、従来技術で説明したものと同様である。
[0224] 圧電素子 1の厚さ方向 Zの前面には接地電極 5が、背面には信号用電極 6がそれ ぞれ設けられている。両電極 5、 6は、金や銀の蒸着、スパッタリング、あるいは銀の焼 き付け等により圧電素子 1の前面、背面にそれぞれ形成される。
[0225] 以下に更に詳細に説明する。 PZT系のような圧電セラミックス、 PZN-PT、 PMN- PT系のような圧電単結晶、または前記材料と高分子を複合した複合圧電体などの材 料の圧電素子 1に設けた信号電極 6と背面負荷材 3の間には、ポリイミドなどの高分 子フィルムに銅などの金属膜を設けたフィルム 8 (第 1の高分子フィルム)を設けており 、前記信号用電極 6と前記フィルム 8の金属膜の電気端子 7が接するようにし、前記 背面負荷材 3側が高分子のフィルムが接するように設ける。
[0226] 一方、圧電素子 1面上に設けた接地電極 5側には、グラフアイトのような導体 (絶縁 体材料であれば絶縁体の周囲をめつきなどで金属の導体を構成する)である第 1の 音響マッチング層 2aを設けた構成にする。以上にような構成に形成した後、背面負 荷材 3の一部、フィルム 8、圧電素子 1、第 1の音響マッチング層 2aをスライシングマシ ーンなどでカ卩ェして分割する。
[0227] 分割後の分割溝には、音響的な結合が小さいシリコーンゴムやウレタンゴム等のよ うな材料を充填し、さらに、第 1の音響マッチング層 2aおよび分割溝に充填した部分 の上面には、接地電極 5から第 1の音響マッチング層を経由して取り出す電気端子の 機能を有する金属膜の導体と高分子フィルムを有したフィルム 9 (第 2の高分子フィル ム)を設け、さらにフィルム 9の上面には、第 2の音響マッチング層 2bを設け、さらに、 前記第 2の音響マッチング層 2bの上面 (被検体側)に、第 3の音響マッチング層 2cを 設ける。
[0228] フィルム 9、第 2、第 3の音響マッチング層 2b、 2cは、図示のように分割しないで連 結した状態で設けている。また、第 2、第 3の音響マッチング層 2cの材料としては、シ リコーンゴム、クロロプレンゴム、エチレン一プロピレン共重合ゴム、アクリロニトリル一 ブタジエン共重合ゴム、およびウレタンゴムなどのゴム弾性体を主体とした材料を用 いる。更に必要に応じて、第 3の音響マッチング層 2cの上面にはシリコーンゴムなど の材料を用いた音響レンズ 4を構成する。
[0229] 本実施形態のポイントは、第 2の音響マッチング層 2bも第 3の音響マッチング層 2c と同様に分割しない構成にして設けることである。第 2の音響マッチング層 2bとして、 圧電素子 1のように分割しな 、場合には、前述して 、るように指向性が狭くなるため、 望ましくない。しかし、分割しない構成にしても指向性が狭くならければ問題なぐし 力も、加工して分割するときには、可能な限り構成部品数は少ない方がよいことは、 第 7の実施形態でも説明している。
[0230] 指向性が狭くならないように、第 2、第 3の音響マッチング層 2b、 2cを分割しない構 成にするためには、第 2の音響マッチング層 2bも、図 2および第 7の実施形態で説明 したように、第 3の音響マッチング層 2cのようにゴム弾性体の材料で、しかも音速が 1 650m/sec,若しくはそれ以下の値を有する材料を用いればよ!、。
[0231] 第 2の音響マッチング層 2bは、音響インピーダンスが 3〜8メガレールスの範囲で、 且つ音速が 1650mZsec、若しくはそれ以下の値を有する材料としては、例えば、了 クリロ-トリルーブタジエン共重合ゴム 1に対して、銅金属粉 (平均粒径 1. 2マイクロメ 一トル)のフイラ一を重量比で 9の割合で充填した材料は音響インピーダンスが 5. 3メ ガレールス、また音速は 1070mZsecであり、第 2の音響マッチング層 2bとして要望 される値の特性を有している材料を得ることができる。
[0232] このように合成ゴム系のゴム弾性体を主体とした材料に、ほかのタングステン、銀、 鉄、ニッケルなどの金属粉や酸ィ匕物のような密度の大きいフィラーを充填することによ り、第 2の音響マッチング層 2bに要望される音響インピーダンスおよび音速の値の材 料を得ることができる。
[0233] また、第 1の音響マッチング層と、第 2の音響マッチング層 2bの間に設けたフィルム 9の高分子フィルムの厚みについては、第 1実施形態と同様に厚みは、 0.07波長以 下にする。
[0234] なお、第 8の実施の形態では、第 2、第 3の音響マッチング層 2b、 2cの材料として、 合成ゴムであるクロロプレンゴム、エチレン一プロピレン共重合ゴム、アクリロニトリル ブタジエン共重合ゴムを用いた場合について説明した力 このほかの合成ゴム例 えばブタジエンゴム、イソプレンゴム、スチレン ブタジエン共重合ゴムあるいはアタリ ルゴム等の材料を主体としたものの材料であっても同様の効果が得られる。
[0235] 以上のように、音響マッチング層の第 2、第 3の音響マッチング層の材料にゴム弾性 体を設けており、周波数の広帯域化と指向性の拡大が可能になる。また、第 2、第 3 の音響マッチング層を圧電素子と共に加工して分割することが必要なくなるため、加 ェの困難さは解消される。また、フィルムに設けた導体力 電気端子を取り出してい るために、品質の高い安定した超音波探触子を得ることができる。これにより、多くの 圧電素子の配列を使用して自由に位相制御できることになり、超音波ビームを細く絞 る事ができ、また、超音波ビームを偏向する事ができるため、分解能の高い超音波画 像を提供する超音波探触子を得ることができる。
[0236] なお、第 8の実施の形態では、第 2、第 3の音響マッチング層 2b、 2cの材料として、 合成ゴム、シリコーンゴム、あるいはウレタンゴム等のゴム弾性体を用いた場合につい て説明したが、このほかゴム弾性体を有するエラストマ一系の材料を用いた場合であ つても、同様の効果が得られる。 [0237] また、第 8の実施の形態では、圧電素子 1とともに、第 1の音響マッチング層まで分 割した構成について説明したが、このほか圧電素子 1とともに、第 1層の音響マツチン グ層 2a、フィルム 9まで分割し、その上面に、音速が 1650mZsec若しくはそれ以下 でゴム弾性体を有した第 2、第 3の音響マッチング層 2b、 2cを形成した構成にしても 、同様の効果が得られる。
[0238] また、第 8の実施の形態では、複数個の圧電素子がほぼ直線状に配列した ヽゎゅ るリニア型について説明したが、この他、複数個の圧電素子を曲面に配列したコンペ ックス型、コンケープ型の場合についても同様の効果がある。
[0239] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2006年 1月 31日出願の日本特許出願(特願 2006— 023170)、 2006年 1月 31日出願の日本特許出願 (特願 2006— 023169)に基づくものであり、その内容はここ に参照として取り込まれる。
産業上の利用可能性
[0240] 本発明に係る超音波探触子は、人体等の被検体の超音波診断を行う各種医療分 野、さらには材料や構造物の内部探傷を目的とした工業分野において利用が可能 である。

Claims

請求の範囲
[1] 配列された複数の圧電素子と、
ゴム弾性体材料からなり、前記複数の圧電素子の一方の面に設けられた音響マツ チング層とを備えることを特徴とする超音波探触子。
[2] 前記ゴム弾性体材料の音響インピーダンスは、前記圧電素子の音響インピーダン スより小さぐ前記被検体の音響インピーダンスより大きいことを特徴とする請求項 1記 載の超音波探触子。
[3] 前記音響マッチング層の音速は、 1650mZsec、またはそれ以下の値を有すること を特徴とする請求項 1記載の超音波探触子。
[4] 前記音響マッチング層と前記複数の圧電素子の間に、それぞれの圧電素子に対 応させて個別に配列された音響マッチング層をさらに備えることを特徴とする請求項
1記載の超音波探触子。
[5] 配列された複数の圧電素子と、
前記複数の圧電素子の一方の面に設けられ、音響インピーダンスが 1.8〜2.2メガ レールスであり、かつ音速が 1650mZsec、またはそれ以下の値を有する第 3の音響 マッチング層と、
前記第 3の音響マッチング層と前記複数の圧電素子の間に設けられた第 1、第 2の 音響マッチング層とを備えることを特徴とする超音波探触子。
[6] 前記第 3の音響マッチング層は、前記複数の圧電素子の一方の面に設けられ、 前記第 1、第 2の音響マッチング層は、それぞれの圧電素子に対応させて個別に配 列されることを特徴とする請求項 5記載の超音波探触子。
[7] 前記第 3の音響マッチング層は、ゴム弾性体材料であることを特徴とする請求項 5 記載の超音波探触子。
[8] 配列された複数の圧電素子と、
前記複数の圧電素子の一方の面に設けられ、音速が 1650mZsec、またはそれ以 下の値を有する第 2、第 3の音響マッチング層と、
前記第 2、第 3の音響マッチング層と前記複数の圧電素子の間に設けられた第 1の 音響マッチング層とを備えることを特徴とする超音波探触子。
[9] 前記第 2、第 3の音響マッチング層は、前記複数の圧電素子の一方の面に設けら れ、
前記第 1の音響マッチング層は、それぞれの圧電素子に対応させて個別に配列さ れることを特徴とする請求項 8記載の超音波探触子。
[10] 前記第 2、第 3の音響マッチング層は、ゴム弾性体材料であることを特徴とする請求 項 8記載の超音波探触子。
[11] 配列された複数の圧電素子と、
前記複数の圧電素子の一方の面に設けられ、音速が 1650mZsec、またはそれ以 下の値を有する第 4の音響マッチング層と、
前記第 4の音響マッチング層と前記複数の圧電素子の間に設けられた第 1、第 2、 第 3の音響マッチング層とを備えることを特徴とする超音波探触子。
[12] 前記第 4の音響マッチング層は、前記複数の圧電素子の一方の面に設けられ、 前記第 1、第 2、第 3の音響マッチング層は、それぞれの圧電素子に対応させて個 別に配列されることを特徴とする請求項 11記載の超音波探触子。
[13] 前記第 3、第 4の音響マッチング層は、前記複数の圧電素子の一方の面に設けら れ、
前記第 1、第 2の音響マッチング層は、それぞれの圧電素子に対応させて個別に配 列されることを特徴とする請求項 11記載の超音波探触子。
[14] 前記第 3の音響マッチング層は、ゴム弾性体材料で、音速が 1650mZsec、または それ以下の値を有することを特徴とする請求項 13記載の超音波探触子。
[15] 前記第 4の音響マッチング層は、ゴム弾性体材料であることを特徴とする請求項 11 記載の超音波探触子。
[16] 背面負荷材と、前記背面負荷材の上面に配列された複数の圧電素子とを備える超 音波探触子であって、
前記背面負荷材と前記複数の圧電素子との間に設けられ、それぞれの圧電素子 に対応させて個別に電気端子を設けた第 1の高分子フィルムと、
前記複数の圧電素子の上面に設けられ、それぞれの圧電素子に対応させて個別 に配列された第 1の音響マッチング層と、 前記第 1の音響マッチング層の上面に設けられ、それぞれの圧電素子に対応させ て個別に電気端子を設けた第 2の高分子フィルムと、
前記第 2の高分子フィルムの上面に設けられ、それぞれの圧電素子に対応させて 個別に配列された第 2の音響マッチング層と、
前記第 2の音響マッチング層の上面に設けられ、ゴム弾性体材料力 なる第 3の音 響マッチング層とを備えることを特徴とする超音波探触子。
[17] 前記第 3の音響マッチング層の音速は、 1650mZsec、またはそれ以下の値を有 することを特徴とする請求項 16記載の超音波探触子。
[18] 前記第 2の高分子フィルムの音響インピーダンスは、前記第 2の音響マッチング層 の音響インピーダンスより小さぐ且つ、厚さが使用周波数に対して 0. 07波長以下 であることを特徴とする請求項 16記載の超音波探触子。
[19] 背面負荷材と、前記背面負荷材の上面に配列された複数の圧電素子を備える超 音波探触子であって、
前記背面負荷材と前記複数の圧電素子との間に設けられ、電気端子を設けた第 1 の高分子フィルムと、
前記複数の圧電素子の上面に設けられ、それぞれの圧電素子に対応させて個別 に配列された第 1の音響マッチング層と、
前記第 1の音響マッチング層の上面に設けられ、それぞれの圧電素子に対応させ て個別に電気端子を設けた第 2の高分子フィルムと、
前記第 2の高分子フィルムの上面に設けられ、ゴム弾性体材料力 なる第 2の音響 マッチング層と、
前記第 2の音響マッチング層の上面に設けられ、ゴム弾性体材料力 なる第 3の音 響マッチング層とを備えることを特徴とする超音波探触子。
[20] 前記第 2、第 3の音響マッチング層の音速は、 1650mZsec、またはそれ以下の値 を有することを特徴とする請求項 19記載の超音波探触子。
[21] 前記第 2の高分子フィルムの音響インピーダンスは、前記第 2の音響マッチング層 の音響インピーダンスより小さぐ且つ、厚さが使用周波数に対して 0. 07波長以下 であることを特徴とする請求項 19記載の超音波探触子。
[22] 前記ゴム弾性体材料の主体は、合成ゴム、シリコーンゴム、ウレタンゴムまたはエラ ストマーであることを特徴とする請求項 1、 7、 10、 15、 16および 19のいずれか一項 記載の超音波探触子。
[23] 前記合成ゴムの主体は、エチレン一プロピレン共重合ゴム、クロロプレンゴム、ブタ ジェンゴム、イソプレンゴム、スチレン ブタジエン共重合ゴムまたはアクリロニトリル ブタジエン共重合ゴム材料であることを特徴とする請求項 22記載の超音波探触子
PCT/JP2007/051191 2006-01-31 2007-01-25 超音波探触子 WO2007088772A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020137013583A KR20130080860A (ko) 2006-01-31 2007-01-25 초음파 탐촉자
US12/162,584 US8454518B2 (en) 2006-01-31 2007-01-25 Ultrasonic probe
EP07707423.5A EP1981308A4 (en) 2006-01-31 2007-01-25 ULTRASOUND PROBE
KR1020087018886A KR101464769B1 (ko) 2006-01-31 2007-01-25 초음파 탐촉자
JP2007556829A JP5037362B2 (ja) 2006-01-31 2007-01-25 超音波探触子
CN200780004100XA CN101379871B (zh) 2006-01-31 2007-01-25 超声波探针
US13/875,764 US8986213B2 (en) 2006-01-31 2013-05-02 Ultrasonic probe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-023169 2006-01-31
JP2006-023170 2006-01-31
JP2006023169 2006-01-31
JP2006023170 2006-01-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/162,584 A-371-Of-International US8454518B2 (en) 2006-01-31 2007-01-25 Ultrasonic probe
US13/875,764 Continuation US8986213B2 (en) 2006-01-31 2013-05-02 Ultrasonic probe

Publications (1)

Publication Number Publication Date
WO2007088772A1 true WO2007088772A1 (ja) 2007-08-09

Family

ID=38327349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051191 WO2007088772A1 (ja) 2006-01-31 2007-01-25 超音波探触子

Country Status (7)

Country Link
US (2) US8454518B2 (ja)
EP (1) EP1981308A4 (ja)
JP (1) JP5037362B2 (ja)
KR (2) KR101464769B1 (ja)
CN (1) CN101379871B (ja)
RU (1) RU2419388C2 (ja)
WO (1) WO2007088772A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070613A1 (ja) * 2010-11-25 2012-05-31 株式会社 東芝 超音波プローブ
WO2014013735A1 (ja) * 2012-07-17 2014-01-23 パナソニック株式会社 超音波探触子

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562534B2 (en) * 2006-04-28 2013-10-22 Panasonic Corporation Ultrasonic probe
KR101117276B1 (ko) * 2009-06-18 2012-03-20 김완철 초음파를 이용한 주름 완화 장치
KR101009181B1 (ko) * 2010-01-04 2011-01-18 삼성전기주식회사 턴테이블용 슬립방지부재
JP5765332B2 (ja) * 2010-03-16 2015-08-19 コニカミノルタ株式会社 超音波診断装置
KR101117203B1 (ko) * 2010-07-07 2012-03-16 한국전기연구원 연속파용 도플러 초음파 변환기 및 그 제작 방법
JP5943677B2 (ja) * 2012-03-31 2016-07-05 キヤノン株式会社 探触子、及びそれを用いた被検体情報取得装置
JP6073600B2 (ja) * 2012-08-28 2017-02-01 東芝メディカルシステムズ株式会社 超音波プローブおよび圧電振動子
WO2014069697A1 (ko) * 2012-11-01 2014-05-08 알피니언메디칼시스템 주식회사 복수의 음향 경로를 갖는 프로브
JP6175780B2 (ja) * 2013-01-28 2017-08-09 セイコーエプソン株式会社 超音波デバイス、超音波プローブ、電子機器および超音波画像装置
JP6326833B2 (ja) * 2014-01-31 2018-05-23 セイコーエプソン株式会社 超音波デバイス、超音波デバイスの製造方法、プローブ、電子機器、超音波画像装置
CN107580721B (zh) * 2015-05-11 2021-02-19 测量专业股份有限公司 用于具有金属保护结构的超声波换能器的阻抗匹配层
KR101625657B1 (ko) * 2015-10-27 2016-05-30 알피니언메디칼시스템 주식회사 초음파 프로브
CN106264605B (zh) * 2016-08-04 2020-10-09 无锡海斯凯尔医学技术有限公司 超声装置及产生机械振动的装置
JP6445083B2 (ja) * 2017-05-12 2018-12-26 株式会社リンクス 超音波装置及び超音波ユニット
JP7108816B2 (ja) * 2017-06-30 2022-07-29 パナソニックIpマネジメント株式会社 音響整合層
EP3706436B1 (en) * 2017-11-01 2023-09-27 FUJIFILM Corporation Resin composition for acoustic matching layer, hardened product, acoustic matching sheet, acoustic wave probe, acoustic wave measurement device, acoustic wave probe production method
WO2019088145A1 (ja) * 2017-11-01 2019-05-09 富士フイルム株式会社 音響整合層用樹脂組成物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット
JP7079648B2 (ja) * 2018-04-24 2022-06-02 富士フイルムヘルスケア株式会社 超音波探触子の製造方法、超音波探触子、超音波検査装置、スマートフォン、および、タブレット
EP4025351A1 (en) * 2019-09-10 2022-07-13 Surf Technology AS Ultrasound transducer and method of manufacturing
CN110721891B (zh) * 2019-10-29 2021-11-05 深圳市索诺瑞科技有限公司 一种超声换能器加工方法
CN111360000B (zh) * 2019-10-30 2024-08-09 江苏核电有限公司 一种一回路取样管线超声波振动去污装置及其去污方法
US12101594B2 (en) * 2021-03-09 2024-09-24 Baker Hughes Oilfield Operations Llc Acoustic transducers, methods of designing acoustic transducers, and methods of forming acoustic transducers
NO348147B1 (en) * 2023-02-06 2024-09-02 Elop Tech As A device, system and method for acoustic impedance adaptation

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240800A (ja) * 1985-04-18 1986-10-27 Matsushita Electric Ind Co Ltd 複合センサ
JPH0984194A (ja) * 1995-09-13 1997-03-28 Toshiba Corp 超音波プローブ
JPH1056694A (ja) * 1996-08-08 1998-02-24 Toshiba Corp 超音波プローブ
JP2000014672A (ja) * 1998-06-30 2000-01-18 Toshiba Corp 超音波プローブおよびその製造方法
JP2000094665A (ja) * 1998-09-24 2000-04-04 Toshiba Corp インクジェット記録装置
JP2003125494A (ja) 2001-07-05 2003-04-25 General Electric Co <Ge> イメージング・システムの分解能を高める超音波トランスデューサ
JP2004120283A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 超音波プローブ
JP2005198261A (ja) 2003-12-09 2005-07-21 Toshiba Corp 超音波プローブ及び超音波診断装置
JP2005277988A (ja) * 2004-03-26 2005-10-06 Fuji Photo Film Co Ltd 超音波トランスデューサアレイ
JP2006023170A (ja) 2004-07-07 2006-01-26 Kusano Kagaku:Kk 分注装置
JP2006023169A (ja) 2004-07-07 2006-01-26 Daipura Uintesu Kk 耐候性試験装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972299A (ja) * 1982-10-18 1984-04-24 Toshiba Corp 超音波探触子装置およびその製造方法
JPS63220847A (ja) * 1987-03-10 1988-09-14 松下電器産業株式会社 超音波探触子
JP2758199B2 (ja) 1989-03-31 1998-05-28 株式会社東芝 超音波探触子
JP3251328B2 (ja) * 1992-05-13 2002-01-28 株式会社日立メディコ 超音波探触子
JPH06253394A (ja) 1993-02-27 1994-09-09 Nippon Dempa Kogyo Co Ltd 配列型の超音波探触子
JP2606249Y2 (ja) 1993-12-21 2000-10-10 ジーイー横河メディカルシステム株式会社 超音波探触子
DE19620133C2 (de) * 1996-05-18 2001-09-13 Endress Hauser Gmbh Co Schall- oder Ultraschallsensor
RU4674U1 (ru) 1996-06-27 1997-08-16 Саратовский научно-исследовательский институт травматологии и ортопедии Ультразвуковое устройство для визуализации и исследования состояния структур
ATE283118T1 (de) * 1998-03-26 2004-12-15 Exogen Inc Gruppierungen von biegsamen wandlerelementen
CA2332158C (en) * 2000-03-07 2004-09-14 Matsushita Electric Industrial Co., Ltd. Ultrasonic probe
JP3903105B2 (ja) * 2000-05-23 2007-04-11 富士フイルム株式会社 動的変化検出方法、動的変化検出装置及び超音波診断装置
US6936009B2 (en) * 2001-02-27 2005-08-30 General Electric Company Matching layer having gradient in impedance for ultrasound transducers
JP3655860B2 (ja) * 2001-09-27 2005-06-02 アロカ株式会社 超音波探触子
RU2232547C2 (ru) 2002-03-29 2004-07-20 Общество с ограниченной ответственностью "АММ - 2000" Способ и устройство для получения ультразвуковых изображений структур и сосудов головного мозга
JP2005027752A (ja) * 2003-07-08 2005-02-03 Toshiba Corp 圧電振動子、圧電振動子の製造方法、超音波探触子および超音波診断装置
JP4256309B2 (ja) * 2003-09-29 2009-04-22 株式会社東芝 超音波プローブおよび超音波診断装置
US7224104B2 (en) * 2003-12-09 2007-05-29 Kabushiki Kaisha Toshiba Ultrasonic probe and ultrasonic diagnostic apparatus
US20050165313A1 (en) * 2004-01-26 2005-07-28 Byron Jacquelyn M. Transducer assembly for ultrasound probes
JP4373982B2 (ja) * 2006-01-11 2009-11-25 株式会社東芝 アレイ式超音波プローブおよび超音波診断装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240800A (ja) * 1985-04-18 1986-10-27 Matsushita Electric Ind Co Ltd 複合センサ
JPH0984194A (ja) * 1995-09-13 1997-03-28 Toshiba Corp 超音波プローブ
JPH1056694A (ja) * 1996-08-08 1998-02-24 Toshiba Corp 超音波プローブ
JP2000014672A (ja) * 1998-06-30 2000-01-18 Toshiba Corp 超音波プローブおよびその製造方法
JP2000094665A (ja) * 1998-09-24 2000-04-04 Toshiba Corp インクジェット記録装置
JP2003125494A (ja) 2001-07-05 2003-04-25 General Electric Co <Ge> イメージング・システムの分解能を高める超音波トランスデューサ
JP2004120283A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 超音波プローブ
JP2005198261A (ja) 2003-12-09 2005-07-21 Toshiba Corp 超音波プローブ及び超音波診断装置
JP2005277988A (ja) * 2004-03-26 2005-10-06 Fuji Photo Film Co Ltd 超音波トランスデューサアレイ
JP2006023170A (ja) 2004-07-07 2006-01-26 Kusano Kagaku:Kk 分注装置
JP2006023169A (ja) 2004-07-07 2006-01-26 Daipura Uintesu Kk 耐候性試験装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1981308A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070613A1 (ja) * 2010-11-25 2012-05-31 株式会社 東芝 超音波プローブ
JP2012114713A (ja) * 2010-11-25 2012-06-14 Toshiba Corp 超音波プローブ
US8717848B2 (en) 2010-11-25 2014-05-06 Kabushiki Kaisha Toshiba Ultrasound probe
WO2014013735A1 (ja) * 2012-07-17 2014-01-23 パナソニック株式会社 超音波探触子

Also Published As

Publication number Publication date
US8986213B2 (en) 2015-03-24
KR20080094020A (ko) 2008-10-22
KR20130080860A (ko) 2013-07-15
EP1981308A1 (en) 2008-10-15
KR101464769B1 (ko) 2014-11-24
US20130245453A1 (en) 2013-09-19
US8454518B2 (en) 2013-06-04
JPWO2007088772A1 (ja) 2009-06-25
EP1981308A4 (en) 2016-04-06
CN101379871A (zh) 2009-03-04
RU2008135361A (ru) 2010-03-10
JP5037362B2 (ja) 2012-09-26
RU2419388C2 (ru) 2011-05-27
US20090062655A1 (en) 2009-03-05
CN101379871B (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
JP5037362B2 (ja) 超音波探触子
US8562534B2 (en) Ultrasonic probe
EP2295154B1 (en) Ultrasonic transducer, ultrasonic probe and producing method
EP2637166B1 (en) Ultrasound backing element, transducer and ultrasound probe including the same
CN109069107B (zh) 超声设备接触
JP2019518499A (ja) 接触する超音波装置
CN106413563B (zh) 超声换能器
JP2008307117A (ja) 超音波探触子
WO2014013735A1 (ja) 超音波探触子
JP3468678B2 (ja) 超音波探触子
JP2002209292A (ja) 超音波探触子
WO2005029910A1 (ja) 超音波探触子
JPH11347032A (ja) 超音波探触子
KR101625657B1 (ko) 초음파 프로브
KR101638578B1 (ko) 열 분산 향상을 위한 흡음층을 가진 초음파 트랜스듀서
JP7014178B2 (ja) アレイ型超音波振動子、超音波プローブ、超音波カテーテル、手持ち手術器具及び医療機器
JP4424958B2 (ja) 超音波探触子
JP2007075130A (ja) 超音波探触子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12162584

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2007556829

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2007707423

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780004100.X

Country of ref document: CN

Ref document number: 4017/CHENP/2008

Country of ref document: IN

Ref document number: 2007707423

Country of ref document: EP

Ref document number: 1020087018886

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008135361

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020137013583

Country of ref document: KR