WO2007085249A1 - Matériau de titane et fabrication - Google Patents

Matériau de titane et fabrication Download PDF

Info

Publication number
WO2007085249A1
WO2007085249A1 PCT/DE2007/000210 DE2007000210W WO2007085249A1 WO 2007085249 A1 WO2007085249 A1 WO 2007085249A1 DE 2007000210 W DE2007000210 W DE 2007000210W WO 2007085249 A1 WO2007085249 A1 WO 2007085249A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
titanium material
dispersoids
sintering
vacuum conditions
Prior art date
Application number
PCT/DE2007/000210
Other languages
German (de)
English (en)
Inventor
Dirk Handtrack
Christa Sauer
Bernd Kieback
Original Assignee
Technische Universität Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Dresden filed Critical Technische Universität Dresden
Publication of WO2007085249A1 publication Critical patent/WO2007085249A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • Titanium material and process for its preparation
  • the invention relates to a titanium material and a method for producing such a titanium material. It can be used particularly advantageously for implants in human and veterinary medicine.
  • Metallic materials e.g. powder-metallurgically produced and dispersion-strengthened are known per se as, for example, oxide dispersion strengthened (ODS) superalloys, TiC dispersion strengthened copper.
  • ODS oxide dispersion strengthened
  • Titanium materials are known to be suitable for use as a bioimplant, with pure titanium being biologically best tolerated. With regard to the mechanical properties, however, there are deficits that can be improved by alloying. Vanadium is often used as a suitable alloying element. However, vanadium can be cytotoxic, so that such alloys are less suitable for these applications.
  • the titanium material according to the invention is characterized in that dispersoids are present which have a maximum mean dispersoid size of 100 nm, preferably a maximum average dispersoid size of 80 nm. Only individual dispersoids should be up to 120 nm in size. These dispersoids may be formed of titanium with carbon, boron and / or silicon. In a titanium material according to the invention, dispersoids of titanium compounds of only one of these three components mentioned (C, B, Si) but also of more than one of these components can be included, thereby providing a further possibility for influencing the mechanical properties.
  • the designated chemical compounds with which dispersoids can be formed are chemically very stable and do not affect the use of bioimplants.
  • the proportion of dispersoids which should be present in the titanium material should be in the range 1 to 10% by mass, preferably between 3 to 9% by mass, and in the range 1 to 10% by volume, preferably between 3 and 9% by vol. be held.
  • the dispersoids should be homogeneously distributed in the titanium material, which can be achieved by the method according to the invention, which will be discussed below.
  • the dispersoids are formed reactively from one or more organic compounds in the preparation. Only in this way, the particularly advantageous and inventively desired small sizes of the individual dispersoids can be achieved.
  • the procedure is such that metallic titanium powder is subjected to high energy milling together with at least one organic compound which, apart from carbon, can also be formed with boron and / or silicon. Reactive with titanium carbides, borides and / or suicides or compounds of several components in the form of finest Dispersoids, also formed as a mixed form with carbon, which are evenly distributed in the titanium material. Subsequently, the resulting powder mixture is compacted and preferably sintered for this purpose.
  • the high energy milling should be carried out in a gas-tight grinding container and thereby in an argon atmosphere.
  • the storage and transport of the mixture ground in this way should also be carried out within an argon atmosphere.
  • the absorbed hydrogen should be removed.
  • the release of hydrogen can be achieved by means of a sintering upstream heat treatment in a high vacuum. In this case, temperatures in the range 300 to 500 0 C, preferably at about 400 0 C should be maintained.
  • spark plasma sintering can be used particularly advantageously.
  • the titanium material according to the invention with the dispersoids embedded therein in addition to the expected high hardness and strength, surprisingly also achieved an increased elongation at break in the range up to 10% (known titanium materials can achieve elongation at break, which is 1-2%). The latter is certainly due to the very small-scale (nanoscale) dispersoids.
  • organic compounds can be used. As already mentioned, one or more such connections can be used. These may be, for example, silanes, boranes, alkanes, alkenes, alkynes, cycloalkanes, polyenes, aromatics or terpenes.
  • the organic compound used should be as free of oxygen as possible, but at least low in oxygen.
  • organometallic compounds In the event that organometallic compounds are to be used, any toxic effect of the particular metal should be taken into account and such an organometallic compound should be avoided. However, such compounds with titanium as the metal can be readily used.
  • a powder mixture can be compacted by extrusion or extreme plastic deformation.
  • titanium material with TiC contained in dispersoid form gas atomized titanium powder with an average particle size of 45 microns and decane, are used as an organic compound.
  • the respective proportions of titanium and decane were chosen so that the proportion of carbon was kept at 1% by mass.
  • Titanium powder and decane were ground in a planetary ball mill with stainless steel balls of 10 mm diameter in a gas-tight grinding container in argon atmosphere. Such an atmosphere was also complied with during filling.
  • the grinding ball powder mass ratio was kept at 10: 1.
  • the grinding was carried out at a speed of 50 rev / min and then over a period of 4 hours at 200 rev / min.
  • the mixing and milling process was carried out in reversing operation.
  • the hydrogen was removed by means of a heat treatment in a high vacuum at a temperature of 400 0 C. This heat treatment was carried out for 30 minutes.
  • the mixture was placed in a spark plasma sintering plant, as described by SPS Syntex Inc., for example.
  • Sinter SPS-515S is available. This sintering was carried out while maintaining a vacuum. It was heated at a heating rate of 100 K / min to a maximum temperature of 700 0 C and then after a holding time of 5 to 10 min. cooled at a cooling rate in the range 100 to 300 K / min. During sintering, a pressure of 80 MPa was maintained. To achieve the highest possible density sintering should take place at a pressure of between 50 and 100 MPa.
  • the titanium material thus produced with TiC Dispersoids reached a hardness of about 270 HV 0.5, a flexural strength of 1430 MPa and an elongation at break of about 5%.
  • the mean dispersoid size was well below 80 nm.
  • titanium powder for the production of a titanium material with titanium carbides and titanium silicides in dispersoid form was also titanium powder, as used in Example 1 and as the organic compound hexamethyldisilane.
  • the proportion of hexamethyldisilane was chosen so that a silicon content of 0.5% by mass and a proportion of carbon of 0.6% by mass could be taken into account in the starting composition.
  • the grinding was again carried out with slight deviation in the second milling stage, as in Example 1. It was milled for considerably longer than 4 hours, namely 64 hours, and instead of 200 rpm at 150 rpm.
  • the finished titanium material reached a hardness of 320 HV 0.5, a bending strength of 1930 MPa and an elongation at break of about 10%. All dispersoids contained in the titanium material had a maximum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention concerne un matériau de titane et son procédé de fabrication. Le matériau de titane est notamment destiné à être employé dans des implants en médecine humaine et vétérinaire. L'invention vise à mettre en oeuvre un matériau de titane exempt de constituants toxiques et présentant des propriétés mécaniques améliorées en tant que titane pur. Selon l'invention, le matériau de titane présente des carbures, des borures et/ou des siliciures de titane se présentant sous la forme de dispersoïdes, la granulométrie moyenne des dispersoïdes étant inférieure à 100 nm.
PCT/DE2007/000210 2006-01-26 2007-01-26 Matériau de titane et fabrication WO2007085249A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006005225.0 2006-01-26
DE200610005225 DE102006005225B3 (de) 2006-01-26 2006-01-26 Titanwerkstoff und Verfahren zu seiner Herstellung

Publications (1)

Publication Number Publication Date
WO2007085249A1 true WO2007085249A1 (fr) 2007-08-02

Family

ID=37853005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/000210 WO2007085249A1 (fr) 2006-01-26 2007-01-26 Matériau de titane et fabrication

Country Status (2)

Country Link
DE (1) DE102006005225B3 (fr)
WO (1) WO2007085249A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112247156A (zh) * 2020-10-21 2021-01-22 吉林大学 内生纳米TiC颗粒的钛合金粉体及其制备方法和应用
CN113355545A (zh) * 2021-06-16 2021-09-07 北京理工大学 一种钛合金材料的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2958409C (fr) * 2014-09-23 2017-11-07 National Research Council Of Canada Compositions a base de titane, leurs procedes de fabrication et leurs utilisations
CN104475741A (zh) * 2014-12-17 2015-04-01 扬州大学 一种机械合金化制备三硅化五钛金属间化合物粉体的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3813224A1 (de) * 1988-04-20 1988-08-25 Krupp Gmbh Verfahren zur einstellung feinstkristalliner bis nanokristalliner strukturen in metall-metallmetalloid-pulvern
US4915905A (en) * 1984-10-19 1990-04-10 Martin Marietta Corporation Process for rapid solidification of intermetallic-second phase composites
JPH10237567A (ja) * 1997-02-28 1998-09-08 Nippon Steel Corp 高温高強度を有するTiAl基合金とその製造方法
WO2004046262A2 (fr) * 2002-11-15 2004-06-03 University Of Utah Revetements au borure de titane integres appliques sur des surfaces en titane et procedes associes
EP1657317A1 (fr) * 2004-11-12 2006-05-17 General Electric Company Objet présentant des particules ultrafines de boure de titane dispersées dans une matrice à base de titane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915905A (en) * 1984-10-19 1990-04-10 Martin Marietta Corporation Process for rapid solidification of intermetallic-second phase composites
DE3813224A1 (de) * 1988-04-20 1988-08-25 Krupp Gmbh Verfahren zur einstellung feinstkristalliner bis nanokristalliner strukturen in metall-metallmetalloid-pulvern
JPH10237567A (ja) * 1997-02-28 1998-09-08 Nippon Steel Corp 高温高強度を有するTiAl基合金とその製造方法
WO2004046262A2 (fr) * 2002-11-15 2004-06-03 University Of Utah Revetements au borure de titane integres appliques sur des surfaces en titane et procedes associes
EP1657317A1 (fr) * 2004-11-12 2006-05-17 General Electric Company Objet présentant des particules ultrafines de boure de titane dispersées dans une matrice à base de titane

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. HANDTRACK, F.DESPANG, C. SAUER, B. KIEBACK, N. REINFRIED, Y. GRIN: "Fabrication of ultra-fine grained dispersion-strengthened titanium materials by spark plasma sintering", MATERIALS SCIENCE AND ENGINEERING, vol. A437, 2006, pages 423 - 429, XP002431576 *
HAIBO FENG, DECHANG JIA, YU ZHOU: "Spark Plasma sintering reaction sythesized TiB reinforced titanium matrix composites", COMPOSITES, vol. A36, 2005, pages 558 - 563, XP002431575 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112247156A (zh) * 2020-10-21 2021-01-22 吉林大学 内生纳米TiC颗粒的钛合金粉体及其制备方法和应用
CN113355545A (zh) * 2021-06-16 2021-09-07 北京理工大学 一种钛合金材料的制备方法
CN113355545B (zh) * 2021-06-16 2022-05-10 北京理工大学 一种钛合金材料的制备方法

Also Published As

Publication number Publication date
DE102006005225B3 (de) 2007-04-05

Similar Documents

Publication Publication Date Title
EP2944401B1 (fr) Procédé de fabrication d'un composant en alliage métallique comportant une phase amorphe
EP2010687B1 (fr) Corps en métal dur et procédé de son production
EP3589773B1 (fr) Cible de pulvérisation et procédé de production d'une cible de pulvérisation
EP2185738B1 (fr) Fabrication d'alliages a base d'aluminures de titane
DE4412768A1 (de) Verfahren zum Herstellen von Teilchen aus metallischer Schmelze
EP1838479A2 (fr) Melanges en poudres metalliques
EP1718777A1 (fr) Procede pour produire un alliage de molybdene
WO2005028692A1 (fr) Alliage ods molybdene-silicium-bore
DE102018113340B4 (de) Dichteoptimierte Molybdänlegierung
DE102006013746A1 (de) Gesinterter verschleißbeständiger Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung
DE2314384B2 (de) Dichter Siliciumcarbidkörper und Verfahren zu dessen Herstellung
DE102006005225B3 (de) Titanwerkstoff und Verfahren zu seiner Herstellung
DE3524276A1 (de) Aluminiumlegierung zur herstellung von ultra-feinkoernigem pulver mit verbesserten mechanischen und gefuegeeigenschaften
EP2046522A1 (fr) Mélanges de poudres métalliques
DE60317582T2 (de) Verfahren zum sintern von aluminium- und aluminiumlegierungsteilen
DE2200670B2 (fr)
DE4037480A1 (de) Verfahren zur herstellung eines beschichteten hartmetallschneidkoerpers
WO2015027256A2 (fr) Poudre métallique à base de chrome
EP0387237A2 (fr) Procédé pour la fabrication d'outils et d'objets par métallurgie de poudres
DE19711642A1 (de) Verfahren zur Herstellung eines Stahl-Matrix-Verbundwerkstoffes sowie Verbundwerkstoff, hergestellt nach einem derartigen Verfahren
DE102019104492B4 (de) Verfahren zur herstellung einer kristallinen aluminium-eisen-silizium-legierung
DE102020211428A1 (de) Verfahren zur Herstellung von Bauteilen aus einem keramischen Kompositwerkstoff
WO2017032825A1 (fr) Alliages de vanadium résistants à l'oxydation et destinés à des éléments structuraux exposés à des températures élevées
AT513422B1 (de) Hexagonales WC-Pulver, Verfahren zu dessen Herstellung sowie Verwendung des Pulvers
WO1993018195A1 (fr) Procede de fabrication d'un corps fritte en poudre d'acier fortement allie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 07721881

Country of ref document: EP

Kind code of ref document: A1