WO2007083376A1 - 光コヒーレンストモグラフィー装置および計測ヘッド - Google Patents

光コヒーレンストモグラフィー装置および計測ヘッド Download PDF

Info

Publication number
WO2007083376A1
WO2007083376A1 PCT/JP2006/300719 JP2006300719W WO2007083376A1 WO 2007083376 A1 WO2007083376 A1 WO 2007083376A1 JP 2006300719 W JP2006300719 W JP 2006300719W WO 2007083376 A1 WO2007083376 A1 WO 2007083376A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measured
measurement
sample
measuring
Prior art date
Application number
PCT/JP2006/300719
Other languages
English (en)
French (fr)
Inventor
Masami Tamura
Original Assignee
Shofu Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shofu Inc. filed Critical Shofu Inc.
Priority to PCT/JP2006/300719 priority Critical patent/WO2007083376A1/ja
Priority to US12/087,846 priority patent/US7965392B2/en
Priority to DE112006003666T priority patent/DE112006003666T5/de
Publication of WO2007083376A1 publication Critical patent/WO2007083376A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4542Evaluating the mouth, e.g. the jaw
    • A61B5/4547Evaluating teeth

Definitions

  • the present invention relates to an optical coherence tomography (tomographic measurement using low coherence light as a probe), which is one of nondestructive tomographic techniques.
  • An image obtained by an X-ray imaging apparatus is merely a transmission image, and information on the X-ray traveling direction of a subject is detected by being superimposed. For this reason, it is impossible to know the internal structure of the subject in three dimensions. Also, because X-rays are harmful to the human body, the annual exposure dose is determined, so that only qualified operators can handle the device, and only in rooms surrounded by shielding materials such as lead glass. I can not use it.
  • an optical coherence tomography device (hereinafter referred to as an OCT device) is harmless to the human body and can obtain 3D information of a subject with high resolution. (For example, see Patent Documents 1 to 4).
  • FIG. 13 is a diagram showing the configuration of a conventional OCT apparatus.
  • the light emitted from the light source 2 is collimated by the lens 3 and then divided into reference light 6 and measurement light 5 by the beam splitter 4.
  • the measurement light 5 passes through the galvanometer mirror 8 and is collected by the objective lens 9 on the sample 10 to be measured. After being scattered and reflected, the measurement light 5 passes through the objective lens 9, the galvano mirror 8, and the peep splitter 4 again. The light is condensed on the detector 14.
  • the reference light 6 passes through the objective lens 12 and is reflected by the reference mirror 13. After passing through the beam splitter 4, it enters the condenser lens 7 in parallel with the measurement light 5 and is condensed on the photodetector 14.
  • the light source 2 is a temporally low coherence light source. Lights emitted at different times from light sources with low temporal coherence are extremely unlikely to interfere. Therefore, the interference signal force S appears only when the distance of the optical path through which the measurement light 5 passes and the distance of the optical path through which the reference light 6 passes are substantially equal.
  • the intensity of the interference signal is measured by the photodetector 14 while changing the optical path length difference between the measurement light 5 and the reference light 6 by driving the reference mirror 13 in the optical axis direction of the reference light 6, the sample to be measured A reflectance distribution in the depth direction (z-axis direction) of 10 can be obtained. In other words, the structure in the depth direction of the sample 10 to be measured is obtained by optical path length difference scanning.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-329577
  • Patent Document 2 JP 2002-310897
  • Patent Document 3 Japanese Patent Laid-Open No. 11-325849
  • Patent Document 4 JP 2001-059714 A
  • Non-patent document 1 Laser research October 2003 issue: Technology development of optical coherence tomography centered on medical treatment
  • Non-Patent Document 2 Journal of Biomedical Optics, October 2002, Vol.7 No.4: Imaging cari eslesions and lesion progression with polarization sensitive optical coherence tomogr aphy
  • Non-Patent Document 3 APPLIED OPTICS, Vol.37, No.16, 1 June 1998: Imaging of hard- and soft— tissuestructure In the oral cavity by optical coherence tomography
  • Non-Patent Document 4 OPTICS EXPRESS, Vol.3, No.6,14 September 1998: Dental OCT
  • Non-Patent Document 5 OPTICS EXPRESS, Vol.3, No.6, 14 September 1998: In vivo OCT Ima ging of hardand soft tissue of the oral cavity
  • OCT devices are not used in actual dental practice. There is no OCT device for dental measurement that is not practical at present at the present time. This is because the OCT device requires two-dimensional mechanical scanning including the depth direction to obtain a single tomographic image, which takes time for imaging, and makes the device complicated, expensive, and durable. This is because of the problem of being inferior.
  • an object of the present invention is to provide an optical coherence tomography apparatus that has a simple structure and can be imaged at high speed.
  • an optical coherence tomography device includes a light source, a measurement for irradiating a reference mirror and a sample to be measured with a light source emitted from the light source.
  • a light splitting unit that divides the light into light
  • an interference unit that causes the measurement light reflected by the sample to be measured and the reference light reflected by the reference mirror to interfere with each other, and light detection that measures the interference light
  • a measurement head that can be moved by the operation of an external force, and at least one of a position or a direction in which the measurement light is irradiated onto the measurement sample changes as the measurement head moves.
  • a mechanical quantity sensor that measures the movement of the measuring head in at least one direction, the interference light measured by the light detector, and the movement of the measuring head measured by the mechanical quantity sensor. Zui by, and a calculation unit for obtaining the information of the measured sample.
  • an optical coherence tomography device includes a light source, measurement light for irradiating a reference mirror and a sample to be measured with a light source emitted from the light source.
  • a light splitting unit that divides the light into light, an interference unit that causes the measurement light reflected by the sample to be measured and the reference light reflected by the reference mirror to interfere with each other, and light detection that measures the interference light Based on the interference light measured by the light detection unit, an arithmetic unit for obtaining information of the sample to be measured, an optical fiber through which the measurement light passes, A measuring head provided at the tip of an optical fiber and guiding the measuring light from the optical fiber to the sample to be measured; and the measuring head changes the direction of the optical axis of the measuring light.
  • the optical axis changing unit is detachable from the measuring head.
  • FIG. 1 is a diagram illustrating an example of a configuration of a Fourier domain optical coherence tomography apparatus (hereinafter referred to as an FD-OCT apparatus) in the first embodiment.
  • FD-OCT apparatus Fourier domain optical coherence tomography apparatus
  • FIG. 2 is a diagram illustrating an example of a configuration of an FD-OCT apparatus according to a second embodiment.
  • FIG. 3 (a) is a diagram showing an example of the configuration of a measurement head.
  • (b) is a diagram showing another example of the configuration of the measurement head.
  • FIG. 5 is a diagram showing images in a plurality of measurement area data.
  • FIG. 6 is a diagram showing a preferred example of the configuration of the measurement head.
  • FIG. 7 is a diagram showing another preferred example of the configuration of the measurement head.
  • FIG. 8 (a) is a diagram showing another preferred example of the configuration of the measurement head.
  • (b) is a diagram showing still another preferred example of the configuration of the measuring head.
  • FIG. 9 is a diagram showing another preferred example of the configuration of the measurement head.
  • FIG. 10 is a diagram showing another preferred example of the configuration of the measurement head.
  • FIG. 11 (a) is a diagram showing an example in which the position of the reference mirror is switched. (b) is a diagram illustrating an example of a configuration in which a reference mirror that reflects reference light is switched between a plurality of reference mirrors at different positions.
  • FIG. 12 is a diagram showing an example in which a sterilization cap is attached to a measurement head.
  • FIG. 13 is a diagram showing a configuration of a conventional OCT apparatus.
  • An optical coherence tomography device includes a light source, a light splitting unit that divides the light source light emitted from the light source into reference light that irradiates a reference mirror and measurement light that irradiates a sample to be measured.
  • An interference unit that causes the measurement light reflected by the sample to be measured and the reference light reflected by the reference mirror to interfere to form interference light, a light detection unit that measures the interference light, and an external force operation
  • a measuring head that is movable, wherein at least one of a position or a direction in which the measurement light is irradiated onto the sample to be measured changes as the measuring head moves, and the measurement head Based on a mechanical quantity sensor that measures movement in at least one direction of the head, the interference light measured by the light detection unit, and the movement of the measurement head measured by the mechanical quantity sensor, the sample to be measured And a calculation unit for obtaining the information.
  • an acceleration sensor for example, an acceleration sensor, an angular velocity sensor, or the like can be used.
  • acceleration sensors there can be provided three acceleration sensors with sensitive axes arranged in three directions orthogonal to each other.
  • angular velocity sensor three angular velocity sensors that detect angular velocities around three mutually orthogonal axes can be provided. Any combination of the above three acceleration sensors and the above three angular velocity sensors can be used.
  • the mechanical quantity sensor can be appropriately selected and arranged according to the purpose of imaging, that is, the measurement region of the sample to be measured and the manner of movement of the measurement head for imaging the sample.
  • the position at which the measurement light is irradiated onto the sample to be measured is changed by an operation of moving the measurement head in at least one direction, and therefore, a plurality of tomographic images continuous in the one direction of the sample to be measured.
  • information can be obtained from the tomographic images continuous in the one direction.
  • the position of the measuring head moved in the one direction is obtained from the acceleration measured by one acceleration sensor having a sensitive axis arranged in the one direction.
  • the light splitting unit and the interference unit have both functions by a beam splitter or a fiber coupler.
  • An optical coherence tomography device includes a light source, a light splitting unit that divides the light source light emitted from the light source into reference light that irradiates a reference mirror and measurement light that irradiates a sample to be measured.
  • An interference unit that causes the measurement light reflected by the sample to be measured and the reference light reflected by the reference mirror to interfere with each other to form interference light, a light detection unit that measures the interference light, and the light detection unit.
  • a calculation unit that obtains information of the sample to be measured based on the interference light measured in step (b), an optical fiber through which the measurement light passes, and a tip of the optical fiber, and the measurement light is transmitted to the optical fiber.
  • the measurement head for guiding the measurement sample to the sample to be measured and the measurement head include one or more optical axis changing units that change the direction of the optical axis of the measurement light, and the optical axis changing unit includes It is detachable from the measuring head.
  • the measurement light passes through an optical fiber and is irradiated onto the sample to be measured through the measurement head provided at the tip of the optical fiber. Therefore, the measurement head can move according to the position of the sample to be measured.
  • the measurement head includes an optical path changing unit including one or more mirrors that change the irradiation direction of the measurement light
  • an optical path changing unit including one or more mirrors that change the irradiation direction of the measurement light
  • various measurement samples in a limited space such as in the oral cavity can be used. You can shoot from any direction.
  • the optical path changing unit can be attached to and detached from the measurement head, it can be selected whether or not the optical path changing unit is to be put on according to the environment of the sample to be measured. As a result, for example, a sample to be measured in a complicated place such as in the oral cavity can be photographed from various directions.
  • a measurement head is a measurement head that is provided at the tip of an optical fiber and guides the measurement light emitted from the tip end force of the optical fiber from the optical fiber to the sample to be measured.
  • One or two or more optical axis changing units that change the direction of the optical axis of light are provided, and the optical axis changing unit is detachable from the measuring head.
  • FIG. 1 is a diagram illustrating an example of a configuration of a Fourier domain optical coherence tomography apparatus (hereinafter referred to as an FD-OCT apparatus) in the first embodiment.
  • FD-OCT apparatus Fourier domain optical coherence tomography apparatus
  • the FD-OCT apparatus detects a spectrum obtained by separating the interference light between the measurement light reflected by the sample to be measured and the reference light reflected by the reference mirror, and this spectral force is measured by the sample light.
  • This is an OCT apparatus characterized in that information in the irradiation direction is obtained using inverse Fourier transform.
  • the FD-OCT apparatus includes an OCT unit 100, a measurement head 201, and a computer 27.
  • the OCT unit 100 is provided with a light source 16, a fiber coupler 19, a reference mirror 24, a diffraction element 25, and a CCD camera 26.
  • the measuring head 201 is provided with a galvanometer mirror 20 and an objective lens 21.
  • the computer 27 is connected so as to be able to communicate with the light source 16, the CCD camera 26, and the galvanometer mirror 20.
  • the computer 27 is, for example, a personal computer, and includes at least a calculation unit such as a CPU and a recording unit such as a hard disk.
  • the configurations of the OCT unit 100, the measurement head 201, and the computer 27 are not limited to the configurations shown in FIG.
  • the function of the calculator 27 can be incorporated in the OCT unit 100.
  • the sample 22 to be measured is a living tissue of the oral cavity region or an artificial composition of the oral region of the jaw.
  • the light source 16 is a temporally low coherent light source. In other words, it is a light source whose wavelength is distributed in a narrow range.
  • the light source 16 is preferably a superluminescent diode, for example.
  • the fiber coupler 19 is an example of an optical interferometer that functions as a light splitting unit and an interference unit.
  • An optical interferometer is an input / output interchangeable optical component that outputs two directions by causing two input lights to interfere with each other. Examples of the optical interferometer include a beam splitter and a half mirror in addition to the fiber coupler 19.
  • the diffraction element 25 is a reflective or transmissive optical member having a diffraction spectroscopic function.
  • the diffraction element 25 is preferably, for example, a grating element, a diffraction grating, a prism, or the like.
  • the diffraction element 25 may be a slice of an optical recording medium.
  • An example of optical recording media For example, CD, DVD, MO.
  • the CCD camera 26 is an example of a light detection unit.
  • a one-dimensional light detector, a two-dimensional light detector, or the like can be used.
  • a linear CCD is preferred for the one-dimensional photodetector, and a CCD imaging device and a CMOS imaging device are preferred for the two-dimensional photodetector.
  • the two-dimensional photodetector includes a two-dimensional imaging device.
  • the measurement head 201 is preferably configured to be operated by an operator by hand. When light is transmitted between the OCT unit 100 and the measurement head 201 by the optical fiber 18, the movable range of the measurement head 201 is widened.
  • the FD-OCT device When the FD-OCT device is applied to dentistry, it is assumed that the FD-OCT device is used on the chair side of the chair where the patient is usually sitting at the time of medical examination. In this case, in order to position the measuring head, the entire OCT unit must be precisely positioned in the patient's oral cavity in the aerial optical system (the optical path to the measuring head is air rather than optical fiber). It is also unrealistic for an operator to operate a relatively heavy OCT unit.
  • the measurement head 201 is configured to be operated by a hand of an operator, the operator can easily use the chair side by an operator in dental practice. The operator can use the FD-OCT device when the positional relationship between the patient and the measurement head is free.
  • the coordinate system is defined as follows.
  • the optical axis direction of the measurement light 28 that is, the depth direction of the sample 22 to be measured is z
  • the tomographic plane is the zy plane (the galvano mirror 20 scan direction is y).
  • x, y, z are directions corresponding to x, y, z of the sample 22 to be measured.
  • X the optical axis direction of the measurement light 28
  • the tomographic plane is the zy plane (the galvano mirror 20 scan direction is y).
  • x, y, z are directions corresponding to x, y, z of the sample 22 to be measured.
  • Optically means that even if the spatial direction changes with a mirror or lens, such as an optical fiber, the light travel direction is z, and the direction scanned with a galvanometer mirror is y, both z and y.
  • the vertical direction is X.
  • the light emitted from the light source 16 is collimated by the lens 17 and then divided into the reference light 29 and the measurement light 28 by the fiber coupler 19.
  • the measurement light 28 passes through the optical fiber 18 and the galvano mirror 20 and is collected by the objective lens 21 onto the sample 22 to be measured, where it is scattered and reflected. Later, the light is again guided to the diffraction element 25 by the condenser lens 30 through the objective lens 21, the galvanometer mirror 20, the optical fiber 18, and the fiber coupler 19.
  • the reference light 29 is reflected by the reference mirror 24 through the optical fiber 18 and the lens 23, and is again interfered with the measurement light 28 by the fiber coupler 19 through the lens 23. In parallel, the light enters the condenser lens 30 and is guided to the diffraction element 25.
  • the measurement light 28 and the reference light 29 are simultaneously split by the diffraction element 25 and overlapped in the spectral region, so that spectral interference fringes on the CCD camera 26, that is, the combined power of the measurement light 28 and the reference light 29 A spectrum is formed.
  • a spectral correlation fringe measured by the CCD camera 26 is subjected to inverse Fourier transform in a computer 27, whereby a combined correlation between the measurement light 28 and the reference light 29 is obtained. From this combined correlation, the reflectance characteristic in the depth direction (z-axis direction) of the sample 22 to be measured is obtained. From this reflectance characteristic, information on the structure, composition, or optical characteristics of the sample 22 in the depth direction can be obtained.
  • a scanning method in the y-axis direction in addition to the method of driving the calano mirror 20, a method of using a cylindrical lens described later, a method of driving a lens, a method of driving an optical fiber, and a sample 22 to be measured are used.
  • a method of driving, a method of moving the measuring head 201 by an operator described later, or the like can be used.
  • FIG. 2 is a diagram illustrating an example of the configuration of an FD-OCT apparatus that expands light in the y-axis direction using a cylindrical lens.
  • the FD-OCT apparatus shown in FIG. 2 is different from the FD-OCT apparatus shown in FIG. 1 in that a cylindrical lens 33 is provided and a beam splitter 34 is used instead of the fiber coupler 19. And the scanning direction of the galvanometer mirror 20.
  • the method of driving the carpano mirror 20 is used as the scanning method in the y-axis direction.
  • the FD-OCT apparatus shown in FIG. Instead of scanning in the y-axis direction, light expansion in the y-axis direction by the cylindrical lens 33 is adopted.
  • the cylindrical lens 33 has a direction that functions as a lens and a direction that does not function as a lens.
  • the direction in which it functions as a lens and the cross section in the plane including the optical axis are the same as the cross section of a normal convex lens or concave lens, and this cross sectional shape is the same regardless of the position in the direction that does not function as a lens. is there.
  • the cylindrical lens 33 is arranged so as to have a directional force y direction that functions as a lens.
  • the light spread in the y direction by the cylindrical lens 33 is distributed and irradiated in the y direction of the sample 22 to be measured (the y direction on the cylindrical lens 33 and the y direction of the sample 22 to be measured are optically identical). And not necessarily spatially the same direction).
  • Cylindrical lens 33 serves as a light expansion means in the y direction.
  • the cross section of the measurement light 28 is linear along the y-axis direction.
  • this optical fiber 18 is a light whose cross section is bundled on a one-dimensional line.
  • the fiber or fiber must be bundled in a two-dimensional circle.
  • the direction of the grooves of the diffraction element 25 is preferably the y-axis direction.
  • the cross section in the y-axis direction of the sample 22 to be measured can be obtained by CCD without mechanical scanning in the y-axis direction. Can be obtained with a camera 26 one-shot. Therefore, the carpano mirror 20 can obtain a three-dimensional structure of the sample 22 to be measured only by scanning in the X-axis direction.
  • the operator uses the measuring head 2 Use the method of scanning in the X axis direction by moving 01.
  • FIGS. 3A and 3B are diagrams showing an example of the configuration of the measurement head in the present embodiment.
  • the measurement head 201 shown in FIG. 3 (a) includes an acceleration sensor 38.
  • a sensor Gx included in the acceleration sensor 38 detects acceleration in the X-axis direction.
  • the measurement head 201 is movable at least in the X-axis direction with respect to the sample 22 to be measured, for example, by an external operation such as an operator's operation.
  • the acceleration sensor 38 is connected to a computer 27 (see, for example, FIG. 1), and data detected by the acceleration sensor is sent to the computer 27.
  • each cross-section information can be specified by the y-direction acceleration sensor information. In this case, scanning in the y-axis direction by the carpano mirror 20 or light expansion in the y-axis direction by the cylindrical lens 33 can be omitted.
  • the structure of the sample 22 to be measured in the z-axis direction is obtained from the spectral interference fringes.
  • the y-axis direction or the X-axis direction can be moved by moving the measuring head 201. Therefore, mechanical running Incorporating the scissors means into the device can be omitted. As a result, the structure of the device is simplified and imaging can be performed at high speed.
  • the measurement head 204 is a modification of the measurement head 201.
  • the measurement head 204 shown in FIG. 3B includes an acceleration / angular velocity sensor 39.
  • the acceleration sensor 39 includes acceleration sensors Gx, Gy, Gz that detect acceleration in the x, y, and z axis directions, and angular velocity sensors ⁇ , ⁇ , and ⁇ that detect angular velocities around the x, y, and z axes, respectively. Including.
  • the measuring head 204 is movable with respect to the sample 22 to be measured by an external operation such as an operator's operation.
  • the acceleration / angular velocity sensor 39 is connected to the computer 27, and the data detected by the acceleration / angular velocity sensor 39 is sent to the computer 27.
  • the spatial position and direction of can be specified.
  • three-dimensional data including the internal structure of the sample 22 to be measured can be obtained within the range in which the measurement head 204 has moved. In this case, scanning in the X-axis and y-axis directions by the carpano mirror 20 can be omitted.
  • the computer 27 resets the position / direction information.
  • the subsequent movement of the measuring head 204 is performed by integrating the output of the acceleration sensor twice in the computer 27 with time and integrating the output of the angular velocity sensor once in the computer 27 with time.
  • Required as direction data The position / direction data of the measuring head 204 is stored in synchronization with the cross-sectional image data acquired when the measuring head 204 moves.
  • the calculator 27 calculates the position of the tomographic image after reset from the position 'direction data of the measuring head 204', spatially synthesizes each tomographic image data, and the internal structure of the sample 22 to be measured. Construct 3D data including
  • the computer 27 can also display on the monitor the connection of the measurement cross section, the display of the arbitrary cross section, the alignment display of the measurement cross section, the body surface display, or a combination thereof.
  • the acceleration / angular velocity sensor 39 provided in the measurement head 204 detects the three-dimensional movement of the measurement head 204 during OCT measurement, whereby the inside of the sample 22 to be measured is detected.
  • the measurement area data including information can be positioned in 3D space with 6 degrees of freedom.
  • the imaging range of the OCT apparatus including the FD-OCT apparatus is limited to several mm ⁇ several mm even when mechanical scanning such as a galvanometer mirror is performed.
  • the imaging range of the OCT apparatus including the FD-OCT apparatus is limited to several mm ⁇ several mm even when mechanical scanning such as a galvanometer mirror is performed.
  • only one tooth is 5 to 15 mm.
  • the periodontal tissue is 2 Omm, and the dental arch is 100-150mm.
  • the tomographic image can be obtained by scanning or expanding in the X-axis or y-axis direction using a galvano-mirror cylindrical lens, etc. Even in the FD-OCT apparatus, the width of the tomographic image is several millimeters and exceeded It is necessary to measure the tomographic image of the region separately.
  • the force described for the FD-OCT device is not necessarily the FD-OCT device, and is not the FD-OCT device! /, Or the OCT device! / ⁇ .
  • the CCD camera 26 may be a photo detector using a simple mirror instead of the diffraction element 25.
  • Embodiment 2 The FD-OCT apparatus according to Embodiment 2 can be applied to the FD-OCT apparatus shown in FIG. 1 or 2 except for the parts described below, and the description thereof is omitted.
  • the computer 27 positions the information of the sample 22 to be measured, which is measured by the measuring head, in a three-dimensional space.
  • a reference object 41 whose shape is known in advance is attached to the sample 22 to be measured.
  • FIG. 4 (a) is a diagram showing an example of a state where the reference object 41 is attached to the sample 22 to be measured.
  • FIG. 4B is a diagram illustrating an example of the reference object 41.
  • the reference object 41 can specify the position and direction of any cross section.
  • the reference object 41 is preferably a quadrangular pyramid. The following process flow will be described.
  • the position / direction information is reset in the computer 27.
  • the first tomographic image including the reference object 41 whose shape is known in advance is acquired at the same time as the reset, and the coordinate system of the sample 22 to be measured is determined based on the reference object 41.
  • the tomographic image acquired by the movement of the measuring head 205 is also measured together with the reference object 41, and the position / direction of the tomographic image is calculated in the computer 27 based on the position 'direction of the reference object 41. Calculate.
  • Each tomographic image data is spatially synthesized to construct 3D data including the internal structure of the sample 22 to be measured.
  • the FD-OCT apparatus fixed the measurement object 22 with the reference object 41 whose shape was known in advance before the OCT measurement operation. This is another method, and the following method can also be used.
  • the whole or part of the measured object is identified from a part of the measurement data and used as reference shape data.
  • collating the shape of the reference object from the entire OCT measurement data of the measurement object it is possible to position multiple or continuous OCT tomographic image data of the measurement object in 6 degrees of freedom in 3D space. .
  • the force described for the FD-OCT device is not necessarily the FD-OCT device. It is not an FD-OCT device! /, But an OCT device! / ⁇ [0085] (Embodiment 3)
  • the OCT apparatus according to Embodiment 3 can be applied to the FD-OCT apparatus shown in FIG. 1 or FIG. 2 except for the part described below, and the description thereof is omitted.
  • the cross-sectional image of the sample 22 to be measured measured by the FD-OCT apparatus is positioned in a three-dimensional space.
  • these measurement area data in the three-dimensional space are extracted. Determine the positional relationship with 6 degrees of freedom.
  • FIG. 5 is a diagram showing images in a plurality of measurement area data.
  • the image range 42 is a cross-sectional image of the sample 22 to be measured obtained by the FD—OCT apparatus.
  • the image range 43 is a cross-sectional image when a measurement region different from the measurement region of the image range 42 is measured, for example, by moving the measurement head. The process flow will be described below.
  • the position and direction are reset in the computer 27 (see, for example, Fig. 1).
  • the computer 27 extracts a feature pattern 45 from the image range 42.
  • the feature pattern is, for example, an image of a lesion part included in the measurement sample 22
  • a measurement area different from the measurement area of the image range 42 is measured by moving the measurement head or the like. It is assumed that the cross-sectional image obtained at this time is the image range 43.
  • the calculator 27 extracts a feature pattern 45 from the image range 43. Since a series of measurements are measured discontinuously or continuously while moving the measurement head, the position of the feature pattern can be tracked by continuing this operation.
  • the computer 27 regards the feature pattern 45 in the image range 42 and the feature pattern in the image range 43 as the same pattern, and connects the images.
  • the right side 40 of the image range 43 can be connected so as to match the position indicated by the two-dot chain line 44 in the image range 42.
  • the computer 27 performs the image connection process as described above for a plurality of images, thereby A wide range of data including the internal structure of the sample 22 to be measured is constructed.
  • the force described for the FD-OCT device is not necessarily the FD-OCT device, and is not the FD-OCT device! /, But the OCT device! / ⁇
  • FIG. 6 to 12 are diagrams illustrating the configuration of the measurement head of the OCT apparatus according to the fourth embodiment.
  • the FD-OCT apparatus shown in FIG. 1 or FIG. 2 or the conventional OCT apparatus can be applied to the parts other than those described below.
  • FIG. 6 is a diagram showing a preferred example of the configuration of the measurement head of the OCT apparatus in the present embodiment.
  • the measurement head 210 is provided at the tip of the optical fiber 18.
  • the optical fiber guides the measurement light emitted from the light splitting unit (for example, beam splitter 34) of the OCT unit 101 (for example, FIG. 2) to the sample 22 to be measured, and reflects the measurement light reflected by the sample 22 to be measured.
  • the light is again guided to the interference part of the OCT unit 101 (for example, the beam splitter 34).
  • the measurement head 210 is preferably used as a measurement head of a FD-OCT apparatus of a type using a cylindrical lens, such as the FD-OCT apparatus shown in FIG.
  • the optical fiber 18 is bundled, and from the optical fiber 18, the measurement light spread in the y direction is distributed and irradiated along the y direction of the sample 22 to be measured.
  • the dotted line g represents the central imaging light beam
  • the alternate long and short dash line h represents the imaging area.
  • the tip portion of the tip end of the optical fiber 18 is the irradiation condensing unit 210a.
  • the irradiation condensing unit 210a collimates the measurement light through the lens 46 without changing the optical axis direction with respect to the optical axis direction of the optical fiber at the tip of the optical fiber, and irradiates the sample 22 to be measured. Further, the irradiation condensing unit 210a condenses the reflected z-direction light from the sample 22 to be measured.
  • FIG. 7 is a diagram showing another preferred example of the configuration of the measurement head of the OCT apparatus in the present embodiment.
  • the irradiation condensing unit 21 la is a scanning fixed to the irradiation condensing unit 21 la.
  • the optical axis direction of the measurement light is changed to a direction different from the optical axis direction of the optical fiber 18 at the tip of the optical fiber 18 by the driven mirror 49 (galvano mirror) and the non-scanning mirror 47 (fixed mirror). . That is, the galvanometer mirror 49 and the mirror 47 serve as an optical axis changing unit.
  • the measurement head 211 can be used as, for example, a measurement head of a FD-OCT apparatus of a type having a galvano mirror such as the FD-OCT apparatus shown in FIG.
  • the number of the optical fiber 18 is one, and the measurement light emitted from the optical fiber 18 is scanned in the y-axis direction by the Calpano mirror 49. That is, the galvano mirror 49 rotates to move the imaging point in the sample to be measured within the imaging range 51.
  • the measurement heads 210 and 211 shown in FIGS. 6 and 7 are effective for tomographic image measurement from the anterior surface, canine tooth, and first molar molar surface.
  • FIG. 8 (a) is a diagram showing still another preferred example of the configuration of the measurement head of the OCT apparatus in the present embodiment.
  • the measurement head 212 can be used as a measurement head of a FD-OCT apparatus of a type using a cylindrical lens, for example, like the measurement head of the OCT apparatus shown in FIG.
  • the optical fibers 18 are bundled, and from the optical fibers 18, the measurement light spread in the y direction is distributed and irradiated along the y direction of the sample 22 to be measured.
  • the dotted line g represents the central image light beam
  • the alternate long and short dash line h represents the imaging area.
  • the irradiation condensing unit 212a changes the optical axis direction of the measurement light by the fixed mirror 47 that is not driven to scan.
  • FIG. 8 (b) is a diagram showing another preferred example of the configuration of the measurement head of the OCT apparatus in the present embodiment.
  • the measurement head 213 can be used, for example, as a measurement head of a FD-OCT apparatus of a type having a galvano mirror like the FD-OCT apparatus shown in FIG.
  • the single measurement light emitted from the optical fiber 18 is scanned in the y-axis direction by the Carpano mirror 49.
  • the irradiation condensing unit 213a is configured to change the optical axis direction of the measurement light by the scanning driven mirror (galvano mirror) 49 fixed to the irradiation condensing unit 213a.
  • 18 Change the direction of the optical axis of the optical fiber 18 at the tip.
  • the measurement heads 212 and 213 shown in Fig. 8 (a) and Fig. 8 (b) are effective for tomographic image measurement from the occlusal surface of the tooth. It is also effective for tomographic measurements from the lingual side of the molar part in addition to the occlusal surface.
  • FIG. 9 is a diagram showing still another preferred example of the configuration of the measurement head of the OCT apparatus in the present embodiment.
  • the measurement head 214 can be used, for example, as a measurement head of a FD-OCT apparatus of a type using a cylindrical lens like the measurement head of the OCT apparatus shown in FIG.
  • the optical fibers 18 are bundled, and from the optical fibers 18, the measurement light spread in the y direction is distributed and irradiated along the y direction of the sample 22 to be measured.
  • the dotted line g represents the central imaging light beam
  • the alternate long and short dash line h represents the imaging area.
  • the irradiation condensing unit 214a changes the optical axis direction of the measurement light by using two mirrors 47A and 47B which are fixed to the irradiation condensing unit 214a and are not driven to scan.
  • the irradiation condensing unit 214a can realize an L-shaped shape and can have an open space in which the tooth buds as the sample 22 to be measured can be arranged inside the L-shaped.
  • FIG. 10 is a diagram showing still another preferred example of the configuration of the measurement head of the OCT apparatus in the present embodiment.
  • the measurement head 215 can be used, for example, as a measurement head of a FD-OCT apparatus of the type having a galvano mirror like the FD-OCT apparatus shown in FIG.
  • the number of the optical fiber 18 is one, and the measurement light emitted from the optical fiber 18 is scanned in the y-axis direction by the Calpano mirror 49.
  • the irradiation condensing unit 215a changes the optical axis direction of the measurement light by a mirror (galvano mirror) 49 that is driven by scanning and a mirror 47 that is not driven by scanning.
  • the irradiation condensing unit 215a has an L-shaped shape, and has an open space in which the tooth buds as the sample 22 to be measured can be placed inside the L-shaped.
  • the measurement heads 214 and 215 shown in FIGS. 9 and 10 are effective for tomographic image measurement from the lingual side of the tooth.
  • At least a part of the irradiation condensing units 210a to 215a can be separated from the tip of the optical fiber 18 or the OCT unit and can be replaced. I prefer to be possible.
  • the tip of the measuring head 215 shown in FIG. 10 can be rotated in the direction of the arrow j. Further, it is possible to adopt a mode in which the mirror closest to the subject of the irradiation condensing unit of the measuring head can be rotated.
  • the optical distance of the measurement light in the irradiation condensing unit becomes long.
  • the optical distance of the measurement light and the optical distance of the reference light must be approximately the same. Therefore, if the optical distance of the measurement light changes, it is necessary to change the optical distance of the reference light accordingly. That is, the optical splitting force (interference part) force of the beam splitter 34 or fiber force piper 19 is equal to the optical distance to the approximate center position of the measurement range, and the optical splitting part (interference part) force is equal to the optical distance to the reference mirror.
  • the optical splitting force (interference part) force of the beam splitter 34 or fiber force piper 19 is equal to the optical distance to the approximate center position of the measurement range
  • the optical splitting part (interference part) force is equal to the optical distance to the reference mirror.
  • the position of the reference mirror may be changed, or the reference mirror that reflects the reference light may be switched between a plurality of reference mirrors having different positions. preferable.
  • FIG. 11 (a) is a diagram illustrating an example in which the position of the reference mirror is switched.
  • the positions of the reference mirror 24 and the lens 23 are switched between a position indicated by a solid line and a position indicated by a dotted line. These can be run manually or manually.
  • two positions of the reference mirror 24 and the lens 23 are shown by a solid line and a dotted line.
  • Three or more stop positions for the reference mirror 24 and the lens 23 may be provided, and the position of the reference mirror 24 may be switched at three or more positions having different optical distances.
  • FIG. 11 (b) is a diagram showing an example of a configuration in which the reference mirror that reflects the reference light is switched between a plurality of reference mirrors at different positions.
  • two reference mirrors 24A and 24B having different reference optical path lengths are provided. Switching between these two reference mirrors 24A and 24B is performed by the switching mirror 52.
  • the switching mirror 52 has its end It rotates about 45 degrees as the rotation axis 53.
  • the switching mirror 52 is rotated by a motor or manually.
  • the solid line and the broken line indicate the optical path that switches with the angle of the switching mirror 52. It is also possible to switch three or more reference mirrors 24 having different optical distances by providing three or more stop angles for the switching mirror 52. You can have multiple lenses that focus on the reference mirror 24 along with the reference mirror 24.
  • the irradiation condensing units 210a to 215a can be designed so that the optical distance of the measurement light does not change. That is, an optical axis changing unit such as the mirror 47 or the calpano mirror 49 can be arranged so that the optical distances of the measurement light beams from the irradiation condensing units 210a to 215a are equal. Moreover, the optical distance of measurement light can be adjusted by providing an optical fiber in the irradiation condensing part 210a-215a.
  • the optical distance of the measurement light is equal to the optical distance of the measurement light in the measurement head 213 shown in FIG. 8 (b) and the measurement head 215 shown in FIG.
  • the distance between the mirror 47 and the carpano mirror 49 can be set.
  • the measuring head is inserted into the oral cavity.
  • the measuring head may touch the tooth buds. Therefore, it is necessary to sterilize or disinfect the measuring head. Therefore, it is preferable that a cover such as a cap or a cover made of a material that can transmit measurement light (z-direction object reflected light) can be attached to the tip of the measurement head.
  • FIG. 12 is a diagram showing an example when a sterilization cap is attached to the measurement head.
  • a cap 55 is attached to the tip of the measuring head 216.
  • the cap 55 includes a constriction 55a for being fixed to the measuring head 216.
  • the constriction is also provided in the housing of the measuring head 216.
  • Cap 55 and measuring head 216 need to be sterilizable. Therefore, it is preferable to use a material that is heat resistant at a temperature of 100 ° C. or higher and 150 ° C. or lower, or a material that is not altered or deformed by a sterilization gas, as a component of the measuring head 216.
  • the cap 55 should be made of a material that does not change the optical properties of the measurement light except the intensity and wavelength. That's right.
  • the cap is preferably made of a transparent material and is disposable. Suitable materials include glass resin and ceramic. These only need to transmit the measurement light, and need not be transparent with visible light.
  • the measurement head that is effective in the present embodiment, it is possible to measure a sample to be measured, which has been difficult to measure by the OCT apparatus.
  • dentitions are arranged in a complicated manner, and the surfaces of individual teeth have various angles and directions. This also varies greatly from individual to individual.
  • it has a measuring head to irradiate the measuring light perpendicularly to the tooth surface. It is necessary to turn the hand in various directions.
  • the measurement head that is effective in the present embodiment it is possible to irradiate measurement light perpendicularly to the tooth surface with respect to the dentition in the oral cavity from various directions.
  • the present invention can be used as an optical coherence tomography apparatus that can measure at high speed and has a simple structure and is inexpensive, and particularly as an apparatus for dental measurement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 光コヒーレンストモグラフィー装置は、光源16と、光源光を、参照光29と被計測試料22に照射する計測光28とに分ける光分割部19と、計測光28と、参照光29とを干渉させて干渉光とする干渉部19と、干渉光を計測する光検出部26と、運動可能な計測ヘッド201であって、その運動によって計測光28が被計測試料22に照射される位置が変化する計測ヘッド201と、計測ヘッド201の運動を測定する力学量センサ38と、光検出部26で計測された干渉光と、力学量センサ38で測定された計測ヘッド201の運動に基づいて、被計測試料22の情報を求める演算部27とを備える。これにより、構造が簡単で、高速で撮像できる光コヒーレンストモグラフィー装置を提供することができる。

Description

明 細 書
光コヒーレンストモグラフィー装置および計測ヘッド
技術分野
[0001] 本発明は、非破壊断層計測技術の 1つである光コヒーレンストモグラフィー (低コヒ 一レンスな光をプローブとして用いる断層計測)装置に関する。
背景技術
[0002] 従来、歯科の診断において、顎口腔領域を撮影するために、 X線撮影装置、口腔 内力メラ、歯科用カメラ、 X線 CT、 MRI等が使用されてきた。
[0003] X線撮影装置で得られる像は、あくまで透過像であり、被写体の X線進行方向の情 報は、重ねあわされて検出される。そのため、被写体の内部構造を 3次元的に知るこ とができない。また、 X線は人体に有害であるため、年間被爆線量が決められており、 資格を持った術者しか装置を扱えない上に、鉛'鉛ガラスなどの遮蔽部材に囲まれた 部屋でしか使用できない。
[0004] 口腔内力メラは、口腔内組織の表面のみを撮像するので、歯等の内部情報が得ら れない。 X線 CTは、 X線撮影装置と同様人体に有害である上に、分解能が悪ぐ装 置も大型かつ高価である。 MRIは、分解能が悪ぐ装置が大型かつ高価である上に 、水分のな 、歯の内部構造は撮影できな 、。
[0005] ところで、光コヒーレンストモグラフィー装置(以下、 OCT装置と称する)は、人体に 無害で、被写体の 3次元情報が高分解能で得られるため、角膜や網膜の断層計測 等の眼科の分野で応用されている(例えば、特許文献 1〜4参照)。
[0006] ここで、従来の OCT装置について説明する。図 13は、従来の OCT装置の構成を 示す図である。図 13に示す OCT装置を構成する OCTユニット 1において、光源 2か ら射出された光はレンズ 3でコリメートされた後に、ビームスプリッタ 4により、参照光 6 と計測光 5に分けられる。計測光 5は、ガルバノミラー 8を経て対物レンズ 9によって被 計測試料 10に集光され、そこで散乱、反射した後に再び対物レンズ 9、ガルバノミラ 一 8、ピープスプリッタ 4を通って集光レンズ 7によって光検出器 14に集光される。一 方、参照光 6は、対物レンズ 12を通って参照ミラー 13で反射し、再び、対物レンズ 12 、ビームスプリッタ 4を通過した後に、計測光 5と並行に集光レンズ 7に入射し光検出 器 14に集光される。
[0007] 光源 2は、時間的に低コヒーレンスな光源である。時間的に低コヒーレンスな光源か ら、異なった時刻に出た光どうしは極めて干渉しにくい。そのため、計測光 5が通過す る光路の距離と、参照光 6が通過する光路の距離がほぼ等しいときにのみ干渉信号 力 S現れることとなる。その結果、参照ミラー 13を参照光 6の光軸方向に動力して計測 光 5と参照光 6の光路長差を変化させながら、光検出器 14で干渉信号の強度を計測 すると、被計測試料 10の奥行き方向(z軸方向)の反射率分布を得ることができる。つ まり、光路長差走査により、被計測試料 10の奥行き方向の構造が得られる。
[0008] 参照ミラー 13による被計測試料の奥行き方向(z軸方向)の走査に加えて、ガルバ ノミラー 8による横方向(X軸方向)の走査を行うことで、被計測試料 10の 2次元断面 画像が得られる。このような OCT装置では、数; z mという高分解能な計測が可能であ る。したがって、 OCT装置によって、非破壊、非接触で生体内部の高分解能な画像 を得ることができる。
[0009] OCT装置の歯科の分野への適用につ!/、ては、 OCT装置を用いて、歯の断層を撮 影した例が開示されている (例えば、非特許文献 1〜5参照)。
特許文献 1:特開 2003 - 329577号
特許文献 2 :特開 2002— 310897号
特許文献 3:特開平 11― 325849号
特許文献 4 :特開 2001— 059714号
非特許文献 1:レーザー研究 2003年 10月号:医療を中心とする光コヒーレンストモ グラフィ一の技術展開
非特許文献 2 : Journal of Biomedical Optics, October 2002, Vol.7 No.4 : Imaging cari eslesions and lesion progression with polarization sensitive optical coherencetomogr aphy
非特許文献 3 : APPLIED OPTICS, Vol.37, No.16, 1 June 1998: Imaging of hard- and soft— tissuestructure In the oral cavity by optical coherence tomography
非特許文献 4 : OPTICS EXPRESS, Vol.3,No.6,14 September 1998: Dental OCT 非特許文献 5 : OPTICS EXPRESS, Vol.3,No.6,14 September 1998: In vivo OCT Ima ging of hardand soft tissue of the oral cavity
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、 OCT装置は実際の歯科診療に使用されていない。 OCT装置を歯科 診断に使用することは、少なくとも現時点では実用的ではなぐ歯科測定用の OCT 装置は製品として存在していない。なぜならば、 OCT装置では、 1枚の断層像を得る のに奥行き方向を含む 2次元の機械的走査が必要であるため、撮像に時間が力かる 上に、装置が複雑で高価となり、耐久性も劣っているという課題があつたためである。
[0011] そこで、本発明は上記課題を鑑み、構造が簡単で、高速で撮像できる光コヒーレン ストモグラフィー装置を提供することを目的とする。
課題を解決するための手段
[0012] 上記目的を達成するために、本発明に力かる光コヒーレンストモグラフィー装置は、 光源と、前記光源から出射した光源光を、参照ミラーに照射する参照光と被計測試 料に照射する計測光とに分ける光分割部と、前記被計測試料で反射した前記計測 光と、前記参照ミラーで反射した参照光とを干渉させて干渉光とする干渉部と、前記 干渉光を計測する光検出部と、外部力 の操作によって、運動可能な計測ヘッドで あって、該計測ヘッドが運動することにより、前記計測光が前記被計測試料に照射さ れる位置または方向の少なくとも 1つが変化する計測ヘッドと、前記計測ヘッドの少な くとも一方向の運動を測定する力学量センサと、前記光検出部で計測された前記干 渉光と、前記力学量センサで測定された前記計測ヘッドの運動に基づいて、前記被 計測試料の情報を求める演算部とを備える。
[0013] 上記目的を達成するために、本発明に力かる光コヒーレンストモグラフィー装置は、 光源と、前記光源から出射した光源光を、参照ミラーに照射する参照光と被計測試 料に照射する計測光とに分ける光分割部と、前記被計測試料で反射した前記計測 光と、前記参照ミラーで反射した参照光とを干渉させて干渉光とする干渉部と、前記 干渉光を計測する光検出部と、前記光検出部で計測された前記干渉光に基づ 、て 、前記被計測試料の情報を求める演算部と、前記計測光が通る光ファイバと、前記 光ファイバの先端に設けられ、前記計測光を前記光ファイバから前記被計測試料へ 導く計測ヘッドと、前記計測ヘッドは、前記計測光の光軸の方向を変更する 1または 2以上の光軸変更部を備え、前記光軸変更部は、前記計測ヘッドに着脱可能である 発明の効果
[0014] 本発明によれば、構造が簡単で、高速で撮像できる光コヒーレンストモグラフィー装 置を提供することができる。
図面の簡単な説明
[0015] [図 1]実施の形態 1におけるフーリエドメイン光コヒーレンストモグラフィー装置(以下、 FD— OCT装置と称する)の構成の一例を表す図である。
[図 2]実施の形態 2における FD— OCT装置の構成の一例を表す図である。
[図 3] (a)は、計測ヘッドの構成の例を示す図である。 (b)は、計測ヘッドの構成の別 の例を示す図である。
[図 4] (a)は、参照物体 41を被計測試料 22に取りつけた状態の例を示す図である。 ( b)は参照物体 41の例を示す図である。
[図 5]複数の計測領域データにおける画像を示す図である。
[図 6]計測ヘッドの構成の好ましい一例を示す図である。
[図 7]計測ヘッドの構成の好ましい他の例を示す図である。
[図 8] (a)は計測ヘッドの構成の好ましい他の例を示す図である。 (b)は、計測ヘッド の構成の好ましいさらに他の例を示す図である。
[図 9]計測ヘッドの構成の好ましい他の例を示す図である。
[図 10]計測ヘッドの構成の好ましい他の例を示す図である。
[図 11] (a)は、参照ミラーの位置を切り替える場合の例を示す図である。 (b)は、位置 の異なる複数の参照ミラー間で参照光を反射する参照ミラーが切り替わる構成の例 を示す図である。
[図 12]滅菌用キャップを計測ヘッドに装着した場合の例を示す図である。
[図 13]従来の OCT装置の構成を示す図である。
符号の説明 、 100、 101 OCTユニット 、 16 光源
、 17、 23、 46 レンズ 、 34 ビームスプリッタ 、 28 計測光
、 29 参照光
、 20、 49 ガルバノミラー 、 12、 21 対物レンズ0、 22 被計測試料
3、 24 参照ミラー
光検出器
8 光ファイバ
9 ファイバカップラ
5 回折素子
6 CCDカメラ
7 計算機
集光レンズ
3 シリンドリカルレンズ
加速度センサ
加速度'角速度センサ1 参照物体
、 43 画像範囲
特徴パターン
ミラー
撮像範囲
切替ミラー
回転軸
キャップ 57 回転ミラー
201、 202、 204、 205、 210、 211、 212、 213、 214、 215、 216 計測ヘッド、 発明を実施するための最良の形態
[0017] 本発明にかかる光コヒーレンストモグラフィー装置は、光源と、前記光源から出射し た光源光を、参照ミラーに照射する参照光と被計測試料に照射する計測光とに分け る光分割部と、前記被計測試料で反射した前記計測光と、前記参照ミラーで反射し た参照光とを干渉させて干渉光とする干渉部と、前記干渉光を計測する光検出部と 、外部力もの操作によって、運動可能な計測ヘッドであって、該計測ヘッドが運動す ることにより、前記計測光が前記被計測試料に照射される位置または方向の少なくと も 1つが変化する計測ヘッドと、前記計測ヘッドの少なくとも一方向の運動を測定する 力学量センサと、前記光検出部で計測された前記干渉光と、前記力学量センサで測 定された前記計測ヘッドの運動に基づいて、前記被計測試料の情報を求める演算 部とを備える。
[0018] 力学量センサは、例えば、加速度センサ、角速度センサ等を用いることができる。加 速度センサとして、互いに直交する 3方向それぞれについて感応軸を配置した 3つの 加速センサを設けることができる。角速度センサとして、互いに直交する 3方向の軸周 りの角速度を検出する 3つの角速度センサを設けることができる。上記 3つの加速度 センサと、上記 3つの角速度センサのうち、任意に組み合わせたものを用いることが できる。撮影の目的、つまり被計測試料の計測領域と、それを撮像するための計測へ ッドの運動の仕方に応じて、力学量センサを適切に選択、配置することができる。
[0019] 例えば、前記計測ヘッドを少なくとも前記一方向へ移動させる操作により、前記計 測光が前記被計測試料に照射される位置が変化するので、被計測試料の前記一方 向に連なる複数の断層画像、または前記一方向に連なる断層画像による情報が得ら れる。一方、前記一方向に感応軸を配置した 1つの加速度センサで測定された加速 度から、前記計測ヘッドの前記一方向に移動した位置が得られる。前記計測ヘッドが 移動した位置情報と、前記被計測試料の一方向に連なる複数の断層画像または連 続した断層画像による情報とを同期して得ることにより、機械的走査しなくても前記一 方向における前記被計測試料の複数のまたは連続した広 、領域の断面情報が得ら れる。その結果、機械的走査手段を装置内に組み込む必要がないので、装置の構 造が単純になり、装置が安価に製造できる。
[0020] 光分割部と干渉部は、ビームスプリッタまたはファイバカップラにより両機能を兼用 する構成が好ましい。
[0021] 本発明にかかる光コヒーレンストモグラフィー装置は、光源と、前記光源から出射し た光源光を、参照ミラーに照射する参照光と被計測試料に照射する計測光とに分け る光分割部と、前記被計測試料で反射した前記計測光と、前記参照ミラーで反射し た参照光とを干渉させて干渉光とする干渉部と、前記干渉光を計測する光検出部と 、前記光検出部で計測された前記干渉光に基づいて、前記被計測試料の情報を求 める演算部と、前記計測光が通る光ファイバと、前記光ファイバの先端に設けられ、 前記計測光を前記光ファイバから前記被計測試料へ導く計測ヘッドと、前記計測へ ッドは、前記計測光の光軸の方向を変更する 1または 2以上の光軸変更部を備え、前 記光軸変更部は、前記計測ヘッドに着脱可能である。
[0022] 前記計測光は、光ファイバを通り、光ファイバの先端に設けられた前記計測ヘッドを 通じて前記被計測試料に照射される。そのため、前記計測ヘッドは、被計測試料の 位置にあわせて移動することができる。
[0023] 前記計測ヘッドは、前記計測光の照射方向を変更する 1または 2以上のミラーを含 む光路変更部を備えるので、例えば、口腔内等の限られた空間にある被計測試料を 様々な方向から撮影することができる。また、前記光路変更部は、前記計測ヘッドに 着脱可能であるため、被計測試料の環境に合うように、前記光路変更部を着けるか 否か選択することができる。その結果、例えば、口腔内等のように入り組んだ場所に ある被計測試料を様々な方向から撮影することができる。
[0024] 本発明に力かる計測ヘッドは、光ファイバの先端に設けられ、前記光ファイバの先 端力 出射された計測光を前記光ファイバから被計測試料へ導く計測ヘッドであって 、前記計測光の光軸の方向を変更する 1または 2以上の光軸変更部を備え、前記光 軸変更部は、前記計測ヘッドに着脱可能であることを特徴とする。
[0025] 以下、本発明の実施の形態を図面を参照して説明する。
[0026] (実施の形態 1) 図 1は、実施の形態 1におけるフーリエドメイン光コヒーレンストモグラフィー装置(以 下、 FD— OCT装置と称する)の構成の一例を表す図である。
[0027] FD— OCT装置は、被計測試料で反射した計測光と参照ミラーで反射した参照光 との干渉光を分光して得られたスペクトルを検出し、このスペクトル力 被計測試料の 計測光照射方向における情報を、フーリエ逆変換を用いて求めることを特徴とする O CT装置である。
[0028] 図 1に示すように、 FD— OCT装置は、 OCTユニット 100、計測ヘッド 201および計 算機 27で構成されている。 OCTユニット 100には、光源 16、ファイバカップラ 19、参 照ミラー 24、回折素子 25、 CCDカメラ 26が設けられている。計測ヘッド 201には、ガ ルバノミラー 20、対物レンズ 21が設けられている。計算機 27は、光源 16、 CCDカメ ラ 26、ガルバノミラー 20と通信できるように接続されている。計算機 27は、例えば、パ 一ソナルコンピュータ等であり、 CPU等の演算部、ハードディスク等の記録部を少な くとも備えている。
[0029] なお、 OCTユニット 100、計測ヘッド 201、計算機 27の構成は、図 1に示す構成に 限られない。例えば、計算機 27の機能を OCTユニット 100内に組み込むことができ る。
[0030] 本実施の形態において、被計測試料 22は、生体の顎口腔領域組織または、顎口 腔領域の人工組成物である。
[0031] 光源 16は、時間的に低コヒーレントな光源である。すなわち、狭い範囲に波長が分 布した光源である。光源 16は、例えば、スーパールミネッセントダイオードであること が好ましい。
[0032] ファイバカップラ 19は、光分割部および干渉部の機能を果たす光学干渉器の一例 である。光学干渉器とは、 2つの入力光を干渉させて 2方向に出力する入出力可換な 光学部品である。光学干渉器の例として、ファイバカップラ 19の他にビームスプリッタ 、ハーフミラー等が挙げられる。
[0033] 回折素子 25は、回折分光機能を備えた反射型または透過型の光学的部材である 。回折素子 25は、例えば、グレーティング素子、回折格子、プリズム等であることが好 ましい。また、回折素子 25は、光記録メディアの切片でもよい。光記録メディアは例え ば、 CD、 DVD, MO等である。
[0034] CCDカメラ 26は、光検出部の一例である。光検出部として、例えば、 1次元光検出 器、 2次元光検出器などを用いることができる。 1次元光検出器は、リニア CCDが好 ましぐ 2次元光検出器は CCD撮像素子、 CMOS撮像素子が好ましい。 2次元光検 出器は 2次元撮像装置を含む。
[0035] 計測ヘッド 201は、操作者が手持ちで操作できる構成であることが好ま ヽ。 OCT ユニット 100と計測ヘッド 201の間を、光ファイバ 18によって光が伝達されることで、 計測ヘッド 201の可動範囲が広くなる。
[0036] FD— OCT装置を歯科用に適用する場合、患者が通常診療の際に座っている椅 子のチェアサイドで FD— OCT装置が使用されることが想定される。この場合、計測 ヘッドを位置付けするのに、空中光学系(計測ヘッドへの光路を光ファイバではなく 空中とする)では、 OCTユニット全体を患者の口腔に精密に位置付けしなければなら ない。また、比較的重い OCTユニットを、操作者が持って操作するのは、非現実的で ある。
[0037] 計測ヘッド 201は、操作者が手持ちで操作できる構成であるため、歯科診療におい て、操作者がチェアサイドで手軽に利用できる。患者と計測ヘッドの位置関係がフリ 一な状態で、操作者が FD— OCT装置を使用できる。
[0038] 次に、図 1に示す FD— OCT装置の動作について説明する。以下の説明において 、座標系を次のように定義する。図 1に示すように、被計測試料 22においては計測光 28の光軸方向すなわち被計測試料 22の奥行き方向を z、断層面を zy面 (ガルバノミ ラー 20のスキャン方向を yにとることで実現)とし、被計測試料 22以外の場所では被 計測試料 22の x、 y、 zのそれぞれに光学的に対応する方向を x、 y、 zとする。光学的 に対応するとは、ミラーやレンズ'光ファイバ等で空間的な方向が変化しても、光の進 行方向を z、ガルバノミラー等で走査される方向を y、 zと yの両方に垂直な方向を Xと するということである。
[0039] 光源 16から射出された光はレンズ 17でコリメートされた後に、ファイバカップラ 19に より、参照光 29と計測光 28に分けられる。計測光 28は、光ファイバ 18、ガルバノミラ 一 20を経て対物レンズ 21によって被計測試料 22に集光され、そこで散乱、反射した 後に再び対物レンズ 21、ガルバノミラー 20、光ファイバ 18、ファイバカップラ 19を通 つて集光レンズ 30によって回折素子 25に導かれる。
[0040] 一方、参照光 29は、光ファイバ 18、レンズ 23を通って参照ミラー 24で反射し、再び 、レンズ 23を通ってファイバカップラ 19で計測光 28と干渉させられて、計測光 28と並 行に集光レンズ 30に入射し回折素子 25に導かれる。
[0041] この計測光 28と参照光 29は、回折素子 25で同時に分光されスペクトル領域で重 ねあわされることで CCDカメラ 26上にスペクトルの干渉縞、つまり計測光 28と参照光 29の結合パワースペクトルを形成する。この CCDカメラ 26によって計測されるスぺク トル干渉縞を計算機 27内でフーリエ逆変換することによって、計測光 28と参照光 29 の結合相関が得られる。この結合相関より、被計測試料 22の奥行き方向(z軸方向) の反射率特性が得られる。この反射率特性から、被計測試料 22の奥行き方向にお ける構造、組成または光学特性に関する情報が得られる。
[0042] したがって、参照ミラー 24を動力して、計測光 28の光路長と参照光 29の光路長を 調節し、 z軸方向の走査を行う必要がない。すなわち、 z軸方向の機械的操作を行うこ となぐ被計測試料 22の奥行き方向 (z軸方向)の構造に関する情報を得ることができ る。
[0043] 被計測試料 22の 2次元断面画像を得るためには、 z軸方向に加えて、 y軸方向の 走査を行うこと必要がある。本実施の形態において、 y軸方向の走査は、ガルバノミラ 一 20を駆動することにより行われている。
[0044] なお、 y軸方向の走査方法として、カルパノミラー 20を駆動する方法の他に、後述 するシリンドリカルレンズを用いる方法や、レンズを駆動する方法、光ファイバを駆動 する方法、被計測試料 22を駆動する方法、または、後述する操作者が計測ヘッド 20 1を動かす方法等を用いることができる。
[0045] ここで、 y軸方向の走査方法の変形例として、シリンドリカルレンズを用いる方法を説 明する。
[0046] 図 2は、シリンドリカルレンズを用いて y軸方向に光を拡張する FD— OCT装置の構 成の一例を表す図である。図 2において、図 1に示す FD— OCT装置と同じ部分には 、同じ番号を付し、その説明を省略する。 [0047] 図 2に示す FD— OCT装置が図 1に示す FD— OCT装置と異なる点は、シリンドリ カルレンズ 33が設けられている点と、ファイバカップラ 19の代わりにビームスプリッタ 3 4が用いられている点と、ガルバノミラー 20の走査方向がである。
[0048] 図 1に示す FD— OCT装置においては、 y軸方向の走査方法として、カルパノミラー 20を駆動させる方法を用いていたが、図 2に示す FD— OCT装置においては、カル ノ ノミラー 20による y軸方向の走査に替えて、シリンドリカルレンズ 33による y軸方向 への光拡張を採用している。
[0049] シリンドリカルレンズ 33には、レンズとして機能する方向とレンズとして機能しない方 向とがある。シリンドリカルレンズ 33は、レンズとして機能する方向と光軸を含む平面 内での断面は、通常の凸レンズまたは凹レンズの断面と同様であり、この断面形状は レンズとして機能しない方向における位置によらず同一である。シリンドリカルレンズ 3 3は、レンズとして機能する方向力 y方向となる様に配置する。つまり、シリンドリカル レンズ 33によって y方向に広げられた光が被計測試料 22の y方向に分布照射される (シリンドリカルレンズ 33上の y方向と被計測試料 22の y方向は、光学的に同一な方 向であり、必ずしも空間的に同一の方向ではない)。シリンドリカルレンズ 33が y方向 光拡張手段になっている。計測光 28の断面は、 y軸方向に沿う線状となる。
[0050] なお、シリンドリカルレンズ 33と同様の機能を、シリンドリカルミラーを用いて実現す ることちでさる。
[0051] 計測光は y軸方向に空間的に拡張された光であるために、この光を光ファイバで導 光する場合には、この光ファイバ 18は、断面を 1次元線上に束ねた光フアイノ^また は断面を 2次元円形に束ねた光ファイバであることが必要となる。
[0052] また、回折素子 25の溝の向きは、 y軸方向であることが好ましい。
[0053] 前記計測光 28は、被計測試料 22の y軸方向に分布照射されるので、 y軸方向に機 械的走査をしなくても、被計測試料 22の y軸方向の断面を CCDカメラ 26ワンショット で得ることができる。そのため、カルパノミラー 20は、 X軸方向に走査を行うだけで、 被計測試料 22の 3次元構造を得ることができる。
[0054] 被計測試料 22の 3次元構造を得るには、 z軸方向および y軸方向の操作にカ卩えて、 X軸方向の走査を行う必要がある。本実施の形態においては、操作者が計測ヘッド 2 01を動かすことによって、 X軸方向の走査を行う方法を用いて 、る。
[0055] 図 3 (a)および (b)は、本実施の形態における計測ヘッドの構成の例を示す図であ る。
[0056] まず、図 3 (a)に示す計測ヘッド 201について説明する。
[0057] 図 3 (a)に示す計測ヘッド 201は、加速度センサ 38を備えている。加速度センサ 38 に含まれるセンサ Gxは、 X軸方向の加速度を検出する。計測ヘッド 201は、例えば、 操作者の操作等の外部からの操作により、被計測試料 22に対して、少なくとも X軸方 向に移動可能となっている。
[0058] 操作者が、計測ヘッド 201を X軸方向に動かすと、計測光 28が被計測試料 22に照 射される位置が変化する。この位置の変化は、加速度センサ 38によって検出された 加速度を積分することによって得られる。従って、 X方向に連なる被計測試料 22の各 断面情報を取得するとともに、これらに同期して加速度センサ 38の情報を得ることに より、各断面情報の X方向の位置を特定することが出来る。すなわち、操作者が計測 ヘッド 201を X方向に動かすことで、 X方向の走査が可能となる。その結果、 X軸方向 の機械的走査が不要になるので、 X軸方向の機械的な走査手段を計測ヘッド 201内 に組み込む必要がなくなり、構造が簡単、小型化した計測ヘッドが、安価で得られる ようになる。
[0059] 加速度センサ 38は、計算機 27 (例えば図 1参照)に接続されており、加速度センサ が検出したデータは、計算機 27へ送られる。
[0060] なお、計測ヘッド 201に X方向の加速度センサと y方向の加速度センサを 2個装着 する構成にしてもょ ヽ。操作者が計測ヘッド 201を y方向に動力ゝした場合にぉ ヽても 、 X方向に動力した場合と同様に、 y方向に連なる被計測試料 22の各断面情報と、こ れらに同期した y方向の加速度センサの情報により、各断面情報の y方向の位置を特 定することができる。この場合、カルパノミラー 20による y軸方向の走査または、シリン ドリカルレンズ 33による y軸方向への光拡張は省略できる。
[0061] 本実施の形態に力かる FD— OCT装置においては、上述のように、被計測試料 22 の z軸方向の構造は、スペクトル干渉縞から求められる。 y軸方向または X軸方向の走 查は、計測ヘッド 201を動かすことによって行うことができる。そのため、機械的な走 查手段を装置に組み込むことを省略できる。その結果、装置の構造が簡単になり、高 速で撮像が可能となる。
[0062] 次に、図 3 (b)に示す計測ヘッド 204につ 、て説明する。計測ヘッド 204は、計測へ ッド 201の変形例である。
[0063] 図 3 (b)に示す計測ヘッド 204は、加速度 ·角速度センサ 39を備えている。加速度 センサ 39は、 x、 y、 z軸方向の加速度をそれぞれ検出する加速度センサ Gx、 Gy、 G zおよび、 x、 y、 z軸周りの角速度を検出する角速度センサ Ω χ、 Ωγ, Ω ζを含む。計 測ヘッド 204は、操作者の操作等の外部からの操作により、被計測試料 22に対して 移動可能となっている。また、加速度'角速度センサ 39は、計算機 27に接続されて おり、加速度 ·角速度センサ 39が検出したデータは、計算機 27へ送られる。
[0064] 加速度 ·角速度センサ 39を計測ヘッド 204に設けることで、操作者による計測へッ ド 204の任意の動きに対して、動きの際に計測ヘッド 204が計測した複数の計測断 面のそれぞれの空間的位置 ·方向を特定することができる。その結果、計測ヘッド 20 4が動 ヽた範囲で、被計測試料 22の内部構造を含む 3次元データを得ることができ る。この場合、カルパノミラー 20による X軸および y軸方向の走査を省略することがで きる。
[0065] 以下に被計測試料 22の 3次元データを得る処理の流れの例を説明する。
[0066] 計測開始時に、計算機 27において位置 ·方向情報をリセットする。リセットと同時に 最初の断層画像を取得し、この断面画像の面を x=0上の zy面とし、断層像の奥行き 方向を z方向、横方向を y方向とし、断層像の中心を y=0、 z = 0とする。
[0067] その後の計測ヘッド 204の動きは、加速度センサの出力を計算機 27内で 2回時間 積分、角速度センサの出力を計算機 27内で 1回時間積分することで、計測ヘッド 20 4の位置 ·方向データとして求められる。計測ヘッド 204の位置 ·方向データは、計測 ヘッド 204が動いた際に取得した断面画像データと同期して保存される。
[0068] 計算機 27は、計測ヘッド 204の位置'方向データから、リセット後の断層画像の位 置'方向を演算し、各断層画像データを空間的に合成して被計測試料 22の内部構 造を含む 3次元データを構築する。
[0069] 計算機 27においては、被計測試料 22の 3次元データに関するデータ処理 (例えば 、組織の抽出、病変部の特定、データ解析等)が行われ、これら処理結果は、保存さ れる。
[0070] また、計算機 27は、計測断面の接続、任意断面の表示、計測断面の整列表示、立 体表面表示、またはこれらの組み合わせ等をモニタに表示することもできる。
[0071] 本実施の形態によれば、計測ヘッド 204に設けられた加速度 ·角速度センサ 39に よって、 OCT計測時の計測ヘッド 204の 3次元的動きを検出することにより、被計測 試料 22の内部情報を含む計測領域データの 3次元空間上の 6自由度の位置決めを 行うことができる。
[0072] また、 FD— OCT装置を含む OCT装置の撮像範囲は、ガルバノミラー等の機械的 走査を行っても、数 mm X数 mmと限られている。これに対し、例えば、口腔およびそ の周辺組織においては、歯 1本だけとつても 5〜15mmである。歯周組織を入れると 2 Omm、歯列弓は 100〜 150mmと!ヽぅ大きさである。
[0073] ガルバノミラーゃシリンドリカルレンズ等を用いた X軸または y軸方向の走査もしくは 拡張により断層画像が得られる FD— OCT装置においても、その断層画像の幅は数 mmであり、それを超えた領域の断層画像については、別途計測する必要がある。
[0074] そのため、多くの場合には y方向に連なる複数の断層画像を複数回の計測で取得 する必要がある力 これらの「連なった複数の断層画像データ」の位置関係を求める 必要がある。本実施の形態によると、連なった複数の断層画像の 3次元的位置'方向 関係が明確になるため、広い範囲の計測データが構築可能となる。また、複数の断 層画像の 3次元的な位置および方向関係を特定することができる。
[0075] ひいては、 OCT装置の持つ被計測試料の 3次元的内部情報を定量的に取得でき るという基本的特性や、非侵襲性、高分解能等の優れた特性が例えば、歯科分野等 で生力されることになる。
[0076] なお、本実施の形態においては、 FD— OCT装置について説明を行った力 必ず しも FD— OCT装置である必要はなく、 FD— OCT装置ではな!/、OCT装置でもよ!/ヽ 。す例えば、回折素子 25の代わりに単純なミラーを用いて、 CCDカメラ 26は光検出 器である構成でもよい。
[0077] (実施の形態 2) 実施の形態 2における FD— OCT装置は、以下に説明する部分以外の部分は、図 1または図 2に示す FD— OCT装置を適用することができるので、その説明を省略す る。
[0078] 本実施の形態における FD— OCT装置では、計算機 27 (例えば図 1参照)が、計 測ヘッドで計測された被計測試料 22の情報の 3次元空間上の位置決めを行う。本実 施の形態においては、予めその形状が判っている参照物体 41を被計測試料 22に取 りつけたものを測定する。
[0079] 図 4 (a)は、参照物体 41を被計測試料 22に取りつけた状態の例を示す図である。
図 4 (b)は参照物体 41の例を示す図である。参照物体 41は、どの断面をとつてもそ の断面の位置と方向が特定できるものとする。参照物体 41は、四角錐であることが好 ましい。以下の処理の流れを説明する。
[0080] 計測開始時に、計算機 27内で位置 ·方向情報をリセットする。リセットと同時に予め その形状が判っている参照物体 41を含む最初の断層画像を取得し、参照物体 41を 基準とした被計測試料 22の座標系を決定する。
[0081] その後、計測ヘッド 205が移動して取得された断層画像についても参照物体 41と ともに計測し、計算機 27内で、参照物体 41の位置'方向を基に、断層画像の位置 · 方向を演算する。各断層画像データを空間的に合成して被計測試料 22の内部構造 を含む 3次元データを構築する。
[0082] 上記処理において、 FD— OCT装置は、 OCT計測操作をする以前に予めその形 状が判っている参照物体 41を被計測試料 22に固定して計測した。これとは別の方 法であって、以下に示す方法を用いることもできる。
[0083] 計測ヘッドの移動を伴い、複数または連続した OCT断層画像データを計測した O CT計測操作以降に、計測データの一部より被計測物体の全体または部分を特定し 参照形状データとし、被計測物体の OCT計測データ全体の中から該参照物体の形 状を照合することにより、被計測物体の複数または連続した OCT断層画像データの 3次元空間上の 6自由度の位置決めを行うこともできる。
[0084] なお、本実施の形態においては、 FD— OCT装置について説明を行った力 必ず しも FD— OCT装置である必要はなく、 FD— OCT装置ではな!/、OCT装置でもよ!/ヽ [0085] (実施の形態 3)
実施の形態 3における OCT装置は、以下に説明する部分以外の部分は、図 1また は図 2に示す FD— OCT装置を適用することができるので、その説明を省略する。
[0086] 本実施の形態における FD— OCT装置では、 FD— OCT装置で計測された被計 測試料 22の断面画像の 3次元空間上の位置決めを行う。本実施の形態にお!、ては 、被計測試料 22の内部情報を含む複数の計測領域データの中から共通のデータ構 造を抽出することにより、これらの計測領域データの 3次元空間上の 6自由度の位置 関係を決定する。
[0087] 図 5は、複数の計測領域データにおける画像を示す図である。画像範囲 42は、 FD — OCT装置で得られた被計測試料 22のある断面画像である。画像範囲 43は、例え ば、計測ヘッドが移動すること等により、画像範囲 42の計測領域とは別の計測領域 を計測した場合の断面画像である。以下処理の流れを説明する。
[0088] 計測開始時に、計算機 27 (例えば図 1参照)内で位置,方向をリセットする。リセット 時に被計測試料 22の断面を計測する。このリセット時の計測で得られた断面画像が 画像範囲 42であるとする。計算機 27は、この画像範囲 42から特徴パターン 45を抽 出する。特徴パターンは、例えば、被計測試料 22に含まれる病変部の画像等である
[0089] その後、例えば、計測ヘッドが移動すること等により、画像範囲 42の計測領域とは 別の計測領域を計測する。その際に得られた断面画像が画像範囲 43であるとする。 計算機 27は、画像範囲 43中から特徴パターン 45を抽出する。一連の計測は、計測 ヘッドを移動しながら不連続または連続して計測されるので、この作業を続けることで 、特徴パターンの位置を追跡することができる。
[0090] 計算機 27は、画像範囲 42中の特徴パターン 45と画像範囲 43中の特徴パターン を同一パターンとみなして、各画像を接続する。図 5に示す場合では、画像範囲 43 の右辺 40を画像範囲 42中で二点鎖線 44で示す位置にあわせるように接続すること ができる。
[0091] 計算機 27は、以上のような画像接続処理を複数の画像について行うことによって、 被計測試料 22の内部構造を含む広範囲なデータを構築する。
[0092] なお、本実施の形態においては、 FD— OCT装置について説明を行った力 必ず しも FD— OCT装置である必要はなく、 FD— OCT装置ではな!/、OCT装置でもよ!/ヽ
[0093] (実施の形態 4)
図 6〜12は実施の形態 4における OCT装置の計測ヘッドの構成を表す図である。 本実施の形態における OCT装置で、以下に説明する部分以外については、図 1ま たは図 2に示す FD— OCT装置または従来の OCT装置を適用することができるので
、その説明は省略する。
[0094] 図 6は、本実施の形態における OCT装置の計測ヘッドの構成の好ましい一例を示 す図である。
[0095] 図 6に示す例においては、計測ヘッド 210は、光ファイバ 18の先端に設けられてい る。光ファイバは、 OCTユニット 101 (例えば図 2参照)の光分割部(例えば、ビームス プリッタ 34)から照射された計測光を被計測試料 22へ導き、被計測試料 22で反射し た計測光を、再び OCTユニット 101の干渉部(例えば、ビームスプリッタ 34)へ導く。
[0096] 計測ヘッド 210は、例えば、図 2に示す FD— OCT装置のようにシリンドリカルレン ズを用いたタイプの FD— OCT装置の計測ヘッドとして用いることが好まし 、。光ファ ィバ 18は、束ねたものであって、光ファイバ 18からは、 y方向に広げられた計測光が 被計測試料 22の y方向に沿って分布照射される。図 6中、点線 gは、中心結像光線 を表し、一点鎖線 hは、撮像エリアを示す。
[0097] 計測ヘッド 210において、光ファイバ 18の先端力も先の部分は、照射集光部 210a である。照射集光部 210aは、計測光を、光ファイバ先端部の光ファイバの光軸方向 に対して、光軸方向を変更することなぐレンズ 46を通してコリメートし、被計測試料 2 2に照射する。また、照射集光部 210aは、被計測試料 22からの z方向反射光を集光 する。
[0098] 図 7は、本実施の形態における OCT装置の計測ヘッドの構成の好ましい他の例を 示す図である。
[0099] 図 7に示す例において、照射集光部 21 laは、照射集光部 21 laに固定された走査 駆動されるミラー 49 (ガルバノミラー)と走査駆動されないミラー 47 (固定ミラー)により 計測光の光軸方向を、光ファイバ 18先端部の光ファイバ 18の光軸方向とは別の方 向に変更する。つまり、ガルバノミラー 49およびミラー 47が光軸変更部となる。
[0100] 計測ヘッド 211は、例えば、図 1に示す FD— OCT装置のようなガルバノミラーを備 えるタイプの FD— OCT装置の計測ヘッドとして用いることができる。光ファイバ 18は 1本であって、光ファイバ 18から出た計測光は、カルパノミラー 49によって、 y軸方向 に走査される。すなわち、ガルバノミラー 49が回転運動することによって、被計測試 料内の結像点が撮像範囲 51内を移動する。
[0101] 図 6および図 7に示す計測ヘッド 210、 211は、前歯、犬歯、第 1大臼歯の頰側面か らの断層画像計測に有効である。
[0102] 図 8 (a)は、本実施の形態における OCT装置の計測ヘッドの構成の好ましいさらに 他の例を示す図である。
[0103] 計測ヘッド 212は、例えば、図 2に示す OCT装置の計測ヘッドのようにシリンドリカ ルレンズを用いたタイプの FD— OCT装置の計測ヘッドとして用いることができる。光 ファイバ 18は、束ねたものであって、光ファイバ 18からは、 y方向に広げられた計測 光が被計測試料 22の y方向に沿って分布照射される。図 8 (a)中、点線 gは、中心結 像光線を表し、一点鎖線 hは、撮像エリアを示す。
[0104] 照射集光部 212aは、固定された走査駆動されないミラー 47により計測光の光軸方 向を変更する。
[0105] 図 8 (b)は、本実施の形態における OCT装置の計測ヘッドの構成の好ましいさら に他の例を示す図である。
[0106] 計測ヘッド 213は、例えば、図 1に示す FD— OCT装置のようにガルバノミラーを備 えるタイプの FD— OCT装置の計測ヘッドとして用いることができる。光ファイバ 18は
1本であって、光ファイバ 18から出た計測光は、カルパノミラー 49によって、 y軸方向 に走査される。
[0107] 図 8 (b)に示す例において、照射集光部 213aは、照射集光部 213aに固定された 走査駆動されるミラー (ガルバノミラー) 49により計測光の光軸方向を、光ファイバ 18 先端部の光ファイバ 18の光軸方向に対して変更する。 [0108] 図 8 (a)および図 8 (b)に示す計測ヘッド 212、 213は、歯の咬合面からの断層画像 計測に有効である。また、咬合面以外に臼歯部の舌側面からの断層計測にも有効で ある。
[0109] 図 9は、本実施の形態における OCT装置の計測ヘッドの構成の好ましいさらに他 の例を示す図である。
[0110] 計測ヘッド 214は、例えば、図 2に示す OCT装置の計測ヘッドのようにシリンドリカ ルレンズを用いたタイプの FD— OCT装置の計測ヘッドとして用いることができる。光 ファイバ 18は、束ねたものであって、光ファイバ 18からは、 y方向に広げられた計測 光が被計測試料 22の y方向に沿って分布照射される。図 9中、点線 gは、中心結像 光線を表し、一点鎖線 hは、撮像エリアを示す。
[0111] 照射集光部 214aは、照射集光部 214aに固定された 2つの走査駆動されないミラ 一 47A、 47Bにより計測光の光軸方向を変更する。照射集光部 214aは L字型の形 状を実現し、この L字型の内側に被計測試料 22である歯芽を配置することが可能な 開いた空間を有することができる。
[0112] 図 10は、本実施の形態における OCT装置の計測ヘッドの構成の好ましいさらに他 の例を示す図である。
[0113] 計測ヘッド 215は、例えば、図 1に示す FD— OCT装置のようにガルバノミラーを備 えるタイプの FD— OCT装置の計測ヘッドとして用いることができる。光ファイバ 18は 1本であって、光ファイバ 18から出た計測光は、カルパノミラー 49によって、 y軸方向 に走査される。
[0114] 図 10に示す例において、照射集光部 215aは、走査駆動されるミラー (ガルバノミラ 一) 49と走査駆動されないミラー 47により計測光の光軸方向を変更する。照射集光 部 215aは、 L字型の形状を実現し、この L字型の内側に被計測試料 22である歯芽を 配置することが可能な開いた空間を有する。
[0115] 図 9および図 10に示す計測ヘッド 214、 215は、歯の舌側面からの断層画像計測 に有効である。
[0116] 図 6〜13に示す計測ヘッド 210〜215において、照射集光部 210a〜215aの少な くとも一部は、光ファイバ 18先端部または OCTユニットから分離可能で、かつ取り替 え可能であることが好ま 、。
[0117] また、図 6〜13に示す計測ヘッド 210〜215の少なくとも一部は回転可能であるこ とが好ましい。例えば、図 10に示す計測ヘッド 215の先端部分が矢印 jの方向に回 転可能とすることができる。また、計測ヘッドの照射集光部の最も被写体に近いミラー が回転可能であるような態様とすることもできる。
[0118] ここで、計測ヘッド 210〜215において、照射集光部 210a〜215aの少なくとも一 部を分離または、取り替えた場合の例を説明する。
[0119] 例えば、図 6に示す照射集光部 210aを取り外し、図 8に示す照射集光部 212aに 取り替えた場合、照射集光部内の計測光の光学的距離は長くなる。しかしながら、 O CT装置においては、計測光の光学的距離と参照光の光学的距離が略一致する必 要がある。そのため、計測光の光学的距離が変化すると、それにあわせて参照光の 光学的距離も変化させる必要がある。すなわち、ビームスプリッタ 34またはファイバ力 ップラ 19等の光分割部 (干渉部)力も計測範囲の略中心位置までの光学的距離が、 光分割部 (干渉部)力も参照ミラーまでの光学的距離と等しくなる様に、参照光の光 学的距離を変化させる必要がある。
[0120] 参照光の光学的距離を変化させる方法につ!、ては、参照ミラーの位置が変更され るか、位置の異なる複数の参照ミラー間で参照光を反射する参照ミラーが切り替わる ことが好ましい。
[0121] 図 11 (a)は、参照ミラーの位置を切り替える場合の例を示す図である。参照ミラー 2 4とレンズ 23の位置は実線で示す位置と点線で示す位置とに切り替わる。これらはリ -ァァクチユエータまたは手動で動作することができる。図 11 (a)では、実線と点線で 参照ミラー 24とレンズ 23の 2つの位置が示されている。参照ミラー 24とレンズ 23の停 止位置を 3ケ所以上設けて、光学的距離の異なる 3ケ所以上で参照ミラー 24の位置 を切り替えても良い。
[0122] 図 11 (b)は、位置の異なる複数の参照ミラー間で参照光を反射する参照ミラーが 切り替わる構成の例を示す図である。図 11 (b)に示す構成においては、参照光路長 の異なる 2つの参照ミラー 24A、 24Bが設けられている。これら 2つの参照ミラー 24A 、 24Bの切り替えは、切替ミラー 52によって行われる。切替ミラー 52は、その端部を 回転軸 53として略 45度回転する。切替ミラー 52はモーターまたは手動により回転す る。図 11 (b)においては、実線と破線で切替ミラー 52の角度と切り替わる光路を示し ている。切替ミラー 52の停止角度を 3つ以上設けて、光学的距離の異なる 3ケ所以上 の参照ミラー 24を切り替えることもできる。参照ミラー 24とともに参照ミラー 24へ結像 するレンズを複数備えて ヽてもよ ヽ。
[0123] また、照射集光部 210a〜215aのうちいずれか 2つを互いに取り替えた場合でも 、計測光の光学的距離が変化しないように照射集光部 210a〜215aを設計すること もできる。すなわち、照射集光部 210a〜215aの計測光の光学的距離が等しくなるよ うに、ミラー 47やカルパノミラー 49等の光軸変更部を配置することもできる。また、照 射集光部 210a〜215a内に光ファイバを備えることで、計測光の光学的距離を調整 することができる。
[0124] 例えば、図 7に示す計測ヘッド 211において、計測光の光学的距離が、図 8 (b)に 示す計測ヘッド 213および図 10に示す計測ヘッド 215における計測光の光学的距 離と等しくなるように、ミラー 47とカルパノミラー 49との間の距離を設定することができ る。
[0125] ところで、計測ヘッドは口腔内に挿入する使用形態が想定される。計測ヘッドが口 腔内に挿入された際、歯芽に触れる可能性がある。従って、計測ヘッドを滅菌もしく は除菌する必要がある。そのため、計測ヘッドの先端に、計測光 (z方向物体反射光) が透過可能な材料のキャップまたはカバー等の覆いを取り付けることが可能であるこ とが好ましい。
[0126] 図 12は、滅菌用キャップを計測ヘッドに装着した場合の例を示す図である。図 12 に示すように、計測ヘッド 216の先端部にキャップ 55が装着されている。キャップ 55 は、計測ヘッド 216に固定されるためのくびれ 55aを備える。キャップ 55のくびれ 55a に対応して計測ヘッド 216のハウジングにもくびれが設けられている。
[0127] キャップ 55および計測ヘッド 216は、滅菌可能である必要がある。そのため、計測 ヘッド 216の構成部品には 100°C以上 150°C以下の温度で耐熱性のある素材また は、滅菌用ガスによって変質、変形しない素材を使用することが好ましい。キャップ 5 5は強度,波長を除く計測光の光学的性質を変化させない素材を使用することが好ま しい。また、位相 ·偏光状態の影響について既知の素材を使用することが好ましい。 キャップは透明な素材であり、デイスポーサブル (使い捨て)であることが好ましい。好 適な材料として、ガラスゃ榭脂、セラミックがあげられる。これらは計測光を透過すれ ば良く、必ずしも可視光で透明である必要は無 、。
[0128] 以上のように、本実施の形態に力かる計測ヘッドを用いることで、従来計測が困難 であった被計測試料を OCT装置により計測することができる。例えば、歯列は複雑な 並び方をしており、個々の歯の面は、いろいろな角度、方向をもつ。また、これは個人 によっても大きく差がある。これら多様な方向を向 、て 、る面を口腔と 、う限られた開 口部から挿入した計測ヘッドで計測するとなれば、計測光を歯面に垂直に当てるた めに、計測ヘッドを持つ手をいろいろな方向に向ける必要がある。従来の OCT装置 では、多くの場合、患者が無理な姿勢となる場合や、計測光を計測したい歯面に垂 直に当てることが不可能な場合も生じていた。本実施の形態に力かる計測ヘッドによ れば、様々な方向から口腔内の歯列に対して、計測光を歯面に垂直に当てることが できる。
産業上の利用可能性
[0129] 本発明は、高速計測が可能であり、かつ簡単な構造で安価な光コヒーレンストモグ ラフィー装置として、特に歯科測定用装置として利用可能である。

Claims

請求の範囲
[1] 光源と、
前記光源から出射した光源光を、参照ミラーに照射する参照光と被計測試料に照 射する計測光とに分ける光分割部と、
前記被計測試料で反射した前記計測光と、前記参照ミラーで反射した参照光とを 干渉させて干渉光とする干渉部と、
前記干渉光を計測する光検出部と、
外部力もの操作によって、運動可能な計測ヘッドであって、該計測ヘッドが運動す ることにより、前記計測光が前記被計測試料に照射される位置または方向の少なくと も 1つが変化する計測ヘッドと、
前記計測ヘッドの少なくとも一方向の運動を測定する力学量センサと、 前記光検出部で計測された前記干渉光と、前記力学量センサで測定された前記計 測ヘッドの運動に基づいて、前記被計測試料の情報を求める演算部とを備える光コ ヒーレンストモグラフィー装置。
[2] 光源と、
前記光源から出射した光源光を、参照ミラーに照射する参照光と被計測試料に照 射する計測光とに分ける光分割部と、
前記被計測試料で反射した前記計測光と、前記参照ミラーで反射した参照光とを 干渉させて干渉光とする干渉部と、
前記干渉光を計測する光検出部と、
前記光検出部で計測された前記干渉光に基づ!、て、前記被計測試料の情報を求 める演算部と、
前記計測光が通る光ファイバと、
前記光ファイバの先端に設けられ、前記計測光を前記光ファイバから前記被計測 試料へ導く計測ヘッドと、
前記計測ヘッドは、前記計測光の光軸の方向を変更する 1または 2以上の光軸変 更部を備え、
前記光軸変更部は、前記計測ヘッドに着脱可能である光コヒーレンストモグラフィー 装置。
光ファイバの先端に設けられ、前記光ファイバの先端から出射された計測光を前記 光ファイバから被計測試料へ導く計測ヘッドであって、
前記計測光の光軸の方向を変更する 1または 2以上の光軸変更部を備え、 前記光軸変更部は、前記計測ヘッドに着脱可能であることを特徴とする計測ヘッド
PCT/JP2006/300719 2006-01-19 2006-01-19 光コヒーレンストモグラフィー装置および計測ヘッド WO2007083376A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2006/300719 WO2007083376A1 (ja) 2006-01-19 2006-01-19 光コヒーレンストモグラフィー装置および計測ヘッド
US12/087,846 US7965392B2 (en) 2006-01-19 2006-01-19 Optical coherence tomography device and measuring head
DE112006003666T DE112006003666T5 (de) 2006-01-19 2006-01-19 Vorrichtung zur optischen Kohärenztomographie und Messkopf

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/300719 WO2007083376A1 (ja) 2006-01-19 2006-01-19 光コヒーレンストモグラフィー装置および計測ヘッド

Publications (1)

Publication Number Publication Date
WO2007083376A1 true WO2007083376A1 (ja) 2007-07-26

Family

ID=38287338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300719 WO2007083376A1 (ja) 2006-01-19 2006-01-19 光コヒーレンストモグラフィー装置および計測ヘッド

Country Status (3)

Country Link
US (1) US7965392B2 (ja)
DE (1) DE112006003666T5 (ja)
WO (1) WO2007083376A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136476A1 (ja) * 2012-03-14 2013-09-19 株式会社吉田製作所 プローブ
CN105121998A (zh) * 2012-12-13 2015-12-02 哈德斯菲尔德大学 干涉设备及使用这种设备的样品特征确定设备

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5538368B2 (ja) 2008-05-15 2014-07-02 アクサン・テクノロジーズ・インコーポレーテッド Octの結合プローブおよび一体化システム
US8120781B2 (en) 2008-11-26 2012-02-21 Zygo Corporation Interferometric systems and methods featuring spectral analysis of unevenly sampled data
JP5259374B2 (ja) * 2008-12-19 2013-08-07 富士フイルム株式会社 光構造観察装置及びその構造情報処理方法
CA2763826C (en) 2009-06-17 2020-04-07 3Shape A/S Focus scanning apparatus
TWI425188B (zh) * 2009-08-31 2014-02-01 Zygo Corp 顯微鏡系統和成像干涉儀系統
JP2013075035A (ja) * 2011-09-30 2013-04-25 Canon Inc 光断層像撮像方法、光断層像撮像装置およびプログラム
US20140340691A1 (en) * 2011-12-23 2014-11-20 Nikon Corporation Enhancements to integrated optical assembly
EP2904988B1 (de) * 2014-02-05 2020-04-01 Sirona Dental Systems GmbH Verfahren zur intraoralen dreidimensionalen Vermessung
CN104490362A (zh) * 2014-12-19 2015-04-08 上海电力学院 基于光子纳米喷射的高横向分辨光学相干层析系统
EP3280350B1 (en) 2015-04-10 2019-01-23 3M Innovative Properties Company A dental light irradiation device
DE102015107485B3 (de) * 2015-05-12 2016-09-29 Hochschule Für Technik Und Wirtschaft Berlin Verfahren und Vorrichtung zur Bestimmung optischer Tiefeninformationen eines optisch streuenden Objekts
EP3326576B1 (en) * 2016-11-25 2019-03-20 3M Innovative Properties Company A dental treatment system
JP6768500B2 (ja) * 2016-12-28 2020-10-14 株式会社キーエンス 光走査高さ測定装置
JP6831700B2 (ja) * 2016-12-28 2021-02-17 株式会社キーエンス 光走査高さ測定装置
JP6829992B2 (ja) * 2016-12-28 2021-02-17 株式会社キーエンス 光走査高さ測定装置
CN111419192A (zh) * 2020-04-29 2020-07-17 首都医科大学宣武医院 基于ps-oct的牙体硬组织早期脱矿及龋病的可视化成像装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344268A (ja) * 2002-05-29 2003-12-03 Olympus Optical Co Ltd 光イメージング装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134003A (en) * 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US6289235B1 (en) * 1998-03-05 2001-09-11 Wake Forest University Method and system for creating three-dimensional images using tomosynthetic computed tomography
DE19814057B4 (de) 1998-03-30 2009-01-02 Carl Zeiss Meditec Ag Anordnung zur optischen Kohärenztomographie und Kohärenztopographie
US6882429B1 (en) * 1999-07-20 2005-04-19 California Institute Of Technology Transverse optical fiber devices for optical sensing
JP3410051B2 (ja) 1999-08-20 2003-05-26 理化学研究所 形状測定方法及び装置
JP2001174404A (ja) 1999-12-15 2001-06-29 Takahisa Mitsui 光断層像計測装置および計測方法
JP3564373B2 (ja) 2000-09-08 2004-09-08 独立行政法人 科学技術振興機構 光計測システム
EP1340970A4 (en) * 2000-11-06 2007-06-27 Jtekt Corp SENSOR ELEMENT FOR A MECHANICAL SIZE, LOAD SENSOR ELEMENT, ACCELERATION SENSOR ELEMENT, AND PRESSURE SENSOR ELEMENT
JP2002310897A (ja) 2001-04-13 2002-10-23 Japan Science & Technology Corp 光コヒーレンストモグラフィーにおける透光体の動きによる高速光遅延発生方法及びその高速光遅延発生装置
JP2003028791A (ja) * 2001-05-09 2003-01-29 Olympus Optical Co Ltd 光イメージング装置
US6809866B2 (en) * 2001-08-03 2004-10-26 Olympus Corporation Optical imaging apparatus
JP3667716B2 (ja) 2002-05-13 2005-07-06 直弘 丹野 光コヒーレンストモグラフィー装置
JP2004271464A (ja) * 2003-03-12 2004-09-30 Denso Corp 半導体力学量センサ
US7184150B2 (en) 2003-03-24 2007-02-27 D4D Technologies, Llc Laser digitizer system for dental applications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344268A (ja) * 2002-05-29 2003-12-03 Olympus Optical Co Ltd 光イメージング装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136476A1 (ja) * 2012-03-14 2013-09-19 株式会社吉田製作所 プローブ
JP5688185B2 (ja) * 2012-03-14 2015-03-25 株式会社吉田製作所 プローブ
CN105121998A (zh) * 2012-12-13 2015-12-02 哈德斯菲尔德大学 干涉设备及使用这种设备的样品特征确定设备

Also Published As

Publication number Publication date
US7965392B2 (en) 2011-06-21
DE112006003666T5 (de) 2009-01-02
US20090021745A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
WO2007083376A1 (ja) 光コヒーレンストモグラフィー装置および計測ヘッド
JP4822454B2 (ja) 歯科用光コヒーレンストモグラフィー装置
US11051002B2 (en) Focus scanning apparatus
JP2008194108A (ja) 位置方向検出機能付き3次元上特性測定・表示装置
JP5930531B2 (ja) 撮像装置および撮像方法
JP4688094B2 (ja) 光コヒーレンストモグラフィー装置
US12011336B2 (en) Tomography convergence-type oral scanner
JP2009293998A (ja) 干渉断層撮影装置
JP2006132995A (ja) 光コヒーレンストモグラフィー装置および計測ヘッド
Jung et al. Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror
JP2008194107A (ja) 歯科用3次元上特性測定・表示装置
JP2009131313A (ja) 光断層画像表示方法
CA3060334A1 (en) Oct image capture device
CN109313016B (zh) 利用流体分割的口内3d扫描仪
JP2008309613A (ja) 光断層画像化装置
WO2010113459A1 (ja) 眼科観察装置
WO2007083375A1 (ja) 歯科測定用フーリエドメイン光コヒーレンストモグラフィー装置
CN116211246A (zh) 具有断层摄影功能的口腔扫描仪及利用其的口腔的断层摄影方法
RU179037U1 (ru) Устройство эндоскопической оптической когерентной томографии
CN111419192A (zh) 基于ps-oct的牙体硬组织早期脱矿及龋病的可视化成像装置
TWI253510B (en) Biological tissue scanning system and its method
EP4230119A1 (en) Intraoral scanner having tomographic imaging function and method for detecting cracks in oral structures using the same
Saliha et al. Comparison between X-ray Stereoscopy and Laser Doppler Vibrometry for Motion Measurement in Biomechanics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12087846

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060036661

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006003666

Country of ref document: DE

Date of ref document: 20090102

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06711965

Country of ref document: EP

Kind code of ref document: A1