WO2007080954A1 - 電動湾曲内視鏡 - Google Patents

電動湾曲内視鏡 Download PDF

Info

Publication number
WO2007080954A1
WO2007080954A1 PCT/JP2007/050303 JP2007050303W WO2007080954A1 WO 2007080954 A1 WO2007080954 A1 WO 2007080954A1 JP 2007050303 W JP2007050303 W JP 2007050303W WO 2007080954 A1 WO2007080954 A1 WO 2007080954A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending
unit
block
electric
information
Prior art date
Application number
PCT/JP2007/050303
Other languages
English (en)
French (fr)
Inventor
Toshimasa Kawai
Original Assignee
Olympus Medical Systems Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp. filed Critical Olympus Medical Systems Corp.
Priority to CN200780002393.8A priority Critical patent/CN101370421B/zh
Priority to EP07706645A priority patent/EP1972258B1/en
Publication of WO2007080954A1 publication Critical patent/WO2007080954A1/ja
Priority to US12/167,628 priority patent/US8622895B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0052Constructional details of control elements, e.g. handles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00039Operational features of endoscopes provided with input arrangements for the user
    • A61B1/00042Operational features of endoscopes provided with input arrangements for the user for mechanical operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/0016Holding or positioning arrangements using motor drive units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/009Flexible endoscopes with bending or curvature detection of the insertion part
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports

Definitions

  • the present invention includes an electric bending endoscope including an electric bending endoscope in which a curve portion is electrically bent in a state corresponding to an absolute position signal by operating a bending operation instruction unit that outputs an absolute position signal.
  • an electric bending endoscope including an electric bending endoscope in which a curve portion is electrically bent in a state corresponding to an absolute position signal by operating a bending operation instruction unit that outputs an absolute position signal.
  • This endoscope is generally provided with a bending portion that bends up, down, Z, left and right on the distal end side, and a bending wire connected to the bending portion is pulled and loosened to perform a desired bending portion. Curved in the direction.
  • the bending wire is generally a manually operated force.
  • bending power means such as an electric motor is used.
  • electric motor is used.
  • electric bending endoscope that is pulled and operated.
  • the electric motor is rotated by a bending operation instruction means provided in the operation unit, for example, a joystick that outputs a bending instruction signal of an absolute position, and the pulley is driven by the rotation of the electric motor. Is connected to this pulley
  • the joystick indicates a bending position by performing a tilting operation. That is, the direction in which the joystick is tilted is the direction in which the bending portion is desired to be bent, and the tilt angle of the joystick is the bending angle of the bending portion.
  • the tilt angle of the joystick is 0 degree
  • the bending portion is in a non-curving state (straight state). Therefore, the surgeon can easily grasp the bending state of the bending portion in the body cavity with the sense of a finger holding the joystick.
  • the motor controller of the bending control unit is usually used.
  • a microcomputer for example, a CPU or MPU
  • a sequential process is performed in the force microcomputer that plays the role of a calculation unit that controls the response speed of the motor. Therefore, if some of the processing functions are stopped, all the functions are stopped, causing a problem in the bending operation and making the entire inspection complicated.
  • the electric bending endoscope of the present invention includes a bending portion provided in an insertion portion, a bending driving means having a plurality of constituent members for bending the bending portion, and a bending for driving the bending driving means.
  • a power state means a bending state detection means for detecting the bending state information of the bending portion by detecting operation information of the bending driving means, an instruction means for outputting bending instruction information for bending the bending portion, and the instruction Bending operation control means configured by a plurality of independent logic blocks for controlling the bending instruction information of the means and the bending state information of the bending portion to coincide with each other.
  • the present invention has been made in view of the above points, and provides an electric bending endoscope capable of continuing a bending operation even when a problem occurs in a part of the function of the bending control unit. It is an object.
  • FIG. 1 is a configuration diagram showing a configuration of an electric bending endoscope apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the configuration of the front panel of the image processing apparatus of FIG.
  • FIG. 3 is a diagram showing the configuration of the bending control unit in FIG.
  • FIG. 4 is a diagram showing a configuration of a control unit of the bending control unit of FIG.
  • FIG. 6 is a diagram showing a configuration of a control processing unit of the motor controller in FIG.
  • FIG. 7 is a diagram showing a configuration of a servo abnormality detection unit of the motor controller of FIG.
  • FIG. 8 is a first explanatory diagram illustrating servo control in the motor controller of FIG.
  • FIG. 9 is a second explanatory diagram explaining servo control in the motor controller of FIG.
  • FIG. 10 is a diagram for explaining a first modification of servo control in the motor controller of FIG. Figure
  • FIG. 11 is an explanatory diagram for explaining a modification of the configuration of the FPGA in FIG.
  • FIG. 12 is an explanatory diagram for explaining a second modification of servo control in the motor controller of FIG.
  • FIG. 13 An explanatory diagram of 1 explaining the logical element blocks constituting the FPGA block abnormality monitoring unit of FIG.
  • FIG. 14 is a second explanatory diagram illustrating logical element blocks constituting the FPGA block abnormality monitoring unit in FIG.
  • FIG. 15 is a first explanatory diagram illustrating a logic determination block using the logic element block of FIG.
  • FIG. 16 is a second explanatory diagram illustrating a logical decision block using the logical element block of FIG.
  • FIG. 17 is a third explanatory diagram illustrating a logic determination block using the logic element block of FIG.
  • FIG. 19 is a flowchart for explaining processing in the FPGA of FIG.
  • FIG. 20 is a flowchart for explaining the initial mode process of FIG.
  • FIG. 21 is a flowchart for explaining the maintenance mode process of FIG.
  • FIG. 22 is a flowchart for explaining the calibration mode processing of FIG.
  • FIG. 23 is a flowchart for explaining the operation mode processing of FIG.
  • FIG. 24 is a timing chart for explaining the operation mode processing of FIG.
  • FIG. 1 is a configuration diagram showing the configuration of the electric bending endoscope apparatus
  • FIG. 2 is a diagram showing the configuration of the front panel of the image processing apparatus in FIG. 3 is a diagram showing the configuration of the bending control unit of FIG. 1
  • FIG. 4 is a diagram showing the configuration of the control unit of the bending control unit of FIG. 1
  • FIG. 5 is a diagram showing the configuration of the logic block of the FPGA of FIG. Is a diagram showing the configuration of the control processing unit of the motor controller in FIG. 5
  • FIG. 7 is a diagram showing the configuration of the servo abnormality detection unit of the motor controller in FIG. 5
  • FIG. 8 is the servo control in the motor controller in FIG. FIG.
  • FIG. 9 is a second explanatory diagram for explaining servo control in the motor controller of FIG.
  • FIG. 10 is an explanatory diagram for explaining a first modified example of servo control in the motor controller of FIG. 5
  • FIG. 11 is an explanatory diagram for explaining a modified example of the FPGA configuration of FIG.
  • FIG. 12 is an explanatory diagram for explaining a second modification of servo control in the motor controller of FIG. 5,
  • FIG. 15 is a first explanatory diagram for explaining a logic judgment block using the logic element block of FIG. FIG.
  • FIG. 16 is a second explanatory diagram illustrating a logical determination block using the logical element block of FIG. 13, and FIG. 17 is a third explanatory diagram illustrating a logical determination block using the logical element block of FIG. Figure 18 illustrates the process transition in the FPGA of Figure 5.
  • 19 is a flowchart for explaining the processing in the FPGA of FIG. 5
  • FIG. 20 is a flowchart for explaining the initial mode processing of FIG. 19
  • FIG. 21 is a flowchart for explaining the maintenance mode processing of FIG. 19
  • FIG. FIG. 23 is a flowchart for explaining the operation mode processing of FIG. 19, and
  • FIG. 24 is a timing chart for explaining the operation mode processing of FIG.
  • an electric bending endoscope apparatus 1 includes, for example, an imaging element (not shown) at the distal end rigid portion of an endoscope insertion portion (hereinafter abbreviated as an insertion portion) 9.
  • An electric bending endoscope (hereinafter abbreviated as an endoscope) 2 that is built in and bends when the bending portion 11 of the insertion portion 9 electrically pulls a bending wire (described later) constituting the bending drive means;
  • a remote control operation section hereinafter abbreviated as a remote control operation section 7 as an instruction means for performing a driving operation of the bending section 11 and an image signal transmitted via the universal cable 12 is generated as a video signal.
  • An image processing device 4 a light source device 3 that supplies illumination light through a bundle of light guide fibers (not shown) built in a universal cable 12 to an illumination optical system (not shown), and the image processing device 4 Endoscope image with video signal output
  • a monitor 6 that is a display device that displays the insufflation, is mainly composed of a pump unit 14 for water supply conduit and suction.
  • the light source device 3, the image processing device 4, and the pump unit 14 are mounted on a cart 15.
  • the pump unit 14 includes a flow rate control force set 14a having a flow rate adjusting mechanism for air supply, water supply conduit, and suction. It is installed detachably. Also, from the cart 15, hold the endoscope 2.
  • An endoscope fixing arm 13 to be fixed is provided, and a proximal end gripping portion 10 of the endoscope 2 is detachably held and fixed to the distal end of the endoscope fixing arm 13.
  • a forceps plug 10a to which a suction tube from the flow rate control cassette 14a can be connected is disposed at the proximal end gripping portion 10 of the endoscope 2, and the feeding from the universal cable 12 and the flow rate control force set 14a is arranged.
  • An air supply tube is connected.
  • an air supply / water supply tube and a suction tube (not shown) in the insertion portion 9 are connected to an air supply conduit, a water supply conduit, and a suction conduit.
  • a bending control unit 10b for controlling a motor or the like for electrically driving the bending unit 11 is built in the proximal end gripping unit 10, and the remote control operation unit 7 is provided with the bending control unit. It is connected to 10b via cable 7a.
  • the remote control operation unit 7 can be connected to the image processing apparatus 4 via the cable 7a, and can be connected to the bending control unit 10b via the universal cable 12.
  • the remote control operation unit 7 is an operation input device that performs an electric bending operation on the bending unit 11, such as a joystick, an air supply, water supply, and suction operation input switch, and an image processing device 4. It has a scope switch consisting of remote switches such as freeze and release.
  • Bending state detection means Image processing apparatus 4 as a bending operation control means can be connected to pump unit 14, and front panel 4a of image processing apparatus 4 has power switch 20, electric bending as shown in FIG.
  • the bending wire 33 for up and down which extends from the bending control portion 10b to bend the bending portion 11 and the bending wire for left and right which is not shown in the figure are inserted into the insertion portion 9. Is inserted.
  • the configuration related to the vertical bending wire 33 will be described, and the configuration related to the horizontal bending wire 33 which is the same configuration as the vertical bending wire 33 is not illustrated for simplicity. Is also omitted.
  • Both end portions of the bending wire 33 are connected and fixed to, for example, a chain (not shown), and this chain is arranged to be coupled to a rotatable vertical sprocket portion 34 constituting a bending driving means. . Therefore, when the sprocket part 34 rotates in a predetermined direction, the bending wire 33 fixed to the chain is pulled, and the bending part 11 is bent in a predetermined direction. .
  • the sprocket part 34 is disposed, for example, in the bending control part 10b.
  • the driving force of the bending motor 30 which is a bending power means for up and down which also has a three-phase motor force is combined between a plurality of gears 31 and 32 and the gears which are driving force transmission cutting restoration means, for example.
  • a clutch mechanism part 36 for attaching and detaching the state. Then, by making the bending wire 33 in a state in which no tension is applied to the bending wire 33 by the clutch mechanism portion 36, the bending portion 11 is brought into a bending-free state in which the bending portion 11 is freely bent by an external force.
  • the bending drive means includes gears 31, 32, a bending wire 33, a sprocket part 34, a clutch mechanism part 36, and the like.
  • the clutch mechanism 36 is configured so that a switching operation lever 10c (refer to Fig. 1), which is a state switching means, is moved to a driving force transmission cutting position (hereinafter referred to as a bending-free instruction position) or a driving force transmission restoring position (hereinafter referred to as By switching to the angle operation instruction position), the clutch mechanism 36 is switched between a driving force transmission disconnected state in which the clutch mechanism 36 is disconnected and a driving force transmission restoration state in which the clutch mechanism 36 is connected.
  • a switching operation lever 10c (refer to Fig. 1), which is a state switching means, is moved to a driving force transmission cutting position (hereinafter referred to as a bending-free instruction position) or a driving force transmission restoring position (hereinafter referred to as By switching to the angle operation instruction position)
  • the clutch mechanism 36 is switched between a driving force transmission disconnected state in which the clutch mechanism 36 is disconnected and a driving force transmission restoration state in which the clutch mechanism 36 is connected.
  • the bending motor 30 and the sprocket portion 34 are reversibly switched by switching the switching operation lever 10c to mechanically switch the clutch mechanism 36 to a disconnected state or a connected state. Detachable.
  • the amount of rotation of the sprocket portion 34 is detected by a potentiometer 35 which is a bending angle detection means.
  • Reference numeral 30a denotes an encoder that detects the amount of rotation of the bending motor 30.
  • Reference numeral 38 denotes a thermistor that measures the temperature of the bending motor 30.
  • the bending state detection means is constituted by a potentiometer 35 or an encoder 30a.
  • control unit 37 of the bending control unit 10b is connected to the remote control operation unit 7, the encoder 30a, the potentiometer 35, the clutch mechanism unit 36, and the thermistor 38.
  • the bending control unit 10b is connected to the power cable via the universal cable 12.
  • a power connector 50 to which a cable (not shown) is connected and an operation unit connector 51 to which a cable 7a of the remote control operation unit 7 is connected are provided.
  • the power connector 50 is connected to the control power supply 52 and the drive power supply 53 in the controller 37.
  • the control power supply unit 52 supplies power for control to each unit via the DCZDC converter 54. In addition, it supplies driving power for the three-phase sine wave power generated by the driving power supply unit 53 motor driver 55.
  • the operation unit connector 51 is connected to an FPGA (Field Programmable Gate Array) 56 as a bending operation control means in the bending control unit 10b.
  • the FPGA 56 performs configuration based on the data stored in the EEPRO M59, and builds internal cells into desired logic blocks.
  • the encoder 30a, the potentiometer 35, the clutch mechanism 36, and the thermistor 38 are connected to the FPGA 56 and controlled by the FPGA 56.
  • the FPGA 56 supplies data for generating three-phase sine wave power to the motor driver 55, and the motor driver 55 supplies the three-phase sine wave power to the curve motor 30.
  • the FPGA 56 outputs a WDT-CR signal that clears a WDT (watchdog timer) 57 when a predetermined abnormality exceeding a certain level occurs in the internal cell.
  • a reset signal is output from the WDT57 to the FPGA 56, and the FPGA 56 is reset.
  • the FPGA 56 activates the reset IC 58, performs reconfiguration with the EEPROM 59, and reconstructs the logic block of the internal cell.
  • the logic block of the FPGA 56 includes a serial communication unit 100, a serial communication control unit 101, an EEPROM controller 102, an abnormal signal processing unit 103, an LED controller 104, an operation mode controller 105, a DPRAM 106 , Clutch signal input unit 107, jig board input / output unit 108, RAM109, motor controller 110, motor drive waveform generation unit 111, 13 ⁇ 4 ⁇ (left and right) motor current 78 unit 112, 110 (up and down) motor current 8 unit 113, pote It consists of a motion control unit 114, a thermistor control unit 115, an RL encoder control unit 116, a UD encoder control unit 117, and an FPGA block abnormality monitoring unit 118.
  • the motor controller 110 includes logic blocks of a measurement processing unit 200, a control processing unit 201, a servo abnormality detection unit 202, and a servo ONZOFF control unit 203. It is made.
  • the solid line indicates the flow of normal control and data signals
  • the broken line indicates the flow of the logic block error signal and servo error signal.
  • the serial communication unit 100 performs serial communication with the remote control operation unit 7 using, for example, LVDS, and the serial communication control unit 101 controls the serial communication unit 100 and also communicates with the motor controller 110 to provide a motor controller. Data received from 110 is stored in DPRA M106.
  • the EEPROM controller 102 follows the program stored in the EEPROM 59.
  • the abnormal signal processing unit 103 monitors the power supply voltage abnormality and overcurrent of the bending motor 30, and outputs the monitoring result to the operation mode controller 105.
  • the clutch signal input unit 107 receives a state signal indicating a power transmission disconnected state or a power transmission restoration state from the clutch mechanism unit 36 and outputs the state signal to the operation mode controller 105.
  • the jig board input / output unit 108 transmits and receives data to and from a jig board (not shown) for performing a debugging process.
  • the LED controller 104 controls the LED on the jig substrate.
  • the operation mode controller 105 outputs to the motor controller 110 an operation mode corresponding to the power transmission disconnected state or the driving force transmission restored state and the connection state with the jig substrate from the clutch mechanism 36.
  • the operation mode controller 105 is supplied with a communication error signal from the serial communication control unit 101, and a servo error signal is input from the motor controller 110. The operation mode based on these error signals is selected. Outputs to the motor controller 110.
  • Motor drive waveform generator 111 reads sine wave data stored in RAM 109 via motor controller 110, generates three-phase sine wave data, and generates RL (left and right) motor drivers and UD (up and down). The three-phase sine wave data is output to the motor driver 55.
  • 13 ⁇ 4 ⁇ (left and right) motor current 78 part 112 converts the U-phase current value and the V-phase current value from the RL (left and right) motor into digital signals and outputs them to the motor controller 110.
  • UD On Bottom
  • Motor current FZB unit 113 converts the U-phase current value and V-phase current value from the UD (upper and lower) motor 30 into digital signals and outputs them to the motor controller 110.
  • the potentiometer control unit 114 converts the position information of the potentiometer 35 connected to the RL (left / right) sprocket unit and the UD (up / down) sprocket unit 34 into a digital signal and outputs the digital signal to the motor controller 110.
  • the thermistor control unit 115 converts the temperature data measured by the thermistor 38 provided in the RL (left / right) motor and the UD (up / down) motor 30 into a digital signal and outputs the digital signal to the motor controller 110.
  • the RL encoder control unit 116 and the UD encoder control unit 117 are provided in the RL (left and right) motor and the UD (up and down) motor 30, and output the count value of the encoder 30a to the motor controller 110.
  • the motor controller 110 uses the measurement processing unit 200, the control processing unit 201, the servo abnormality detection unit 202, and the servo ON / OFF control unit 203, based on the operation mode, the RL (left and right) motor and the UD (up and down ) Servo-control motor 30.
  • the logic block error signal, servo error signal, or communication error signal of each of the above logic blocks is input to the FPGA block error monitoring unit 118, and the TRG is sent to the motor controller 110 based on these error signals.
  • a signal is output and WDT57 is set to W
  • control processing unit 201 of the motor controller 110 includes a position control block 201a, a speed control block 201b, and a torque control block 201c, and also includes a servo abnormality detection unit. 202, as shown in FIG.
  • the position control block 201a compares the position command value from the remote control operation unit 7 with the output value of the encoder 30a. If the position deviation exceeds a predetermined value, the position deviation abnormality judgment block 202a outputs a servo abnormality signal. Output.
  • the speed control block 201b includes the output of the position control block 201a and the encoder 30a. Is compared with the differential value of the output value (executed by the differentiation circuit 211).
  • the rotation direction abnormality detection block 202b outputs a servo abnormality signal when it detects an abnormality in the rotation direction based on the output of the position control block 201a and the differential value of the output value of the encoder 30a.
  • the abnormal speed detection block 202c outputs a servo abnormality signal when a speed abnormality is detected based on the differential value of the output value of the encoder 30a.
  • the torque control block 201c compares the output of the speed control block 201b with the current value of the motor driver 55, and controls the motor driver 55.
  • the overload abnormality detection block 202d monitors the load state of the bending motor 30 based on the output of the speed control block 20 lb, and outputs a servo abnormality signal when it is determined as an overload state.
  • the speed control block 201b can be obtained by switching the switch unit 210b and the switch unit 210c without switching the other control unit, for example, the switch unit 210a, to the amount that the open loop gain has dropped to Sp-> 1.
  • the closed loop characteristics can be made as similar as possible.
  • a dynamic filter is inserted in the speed control block 201b, and the speed control is performed.
  • the control block 201b is eliminated, only the static gain is obtained. This does not change the dynamic characteristics. If you want the same dynamic characteristics, you can use the configuration shown in Fig. 10 or Fig. 11.
  • FIG. 10 shows an example of switching to a speed control block arranged in parallel on the cell of the FPGA 56 in advance when there is a margin in the capacity of the FPGA 56.
  • switch SW switch unit 210a, switch unit 210b, switch unit 210c, switch unit 210d, switch unit 210e, and switch unit 210f
  • switch SW switch unit 210a, switch unit 210b, switch unit 210c, switch unit 210d, switch unit 210e, and switch unit 210f
  • a signal is output from the FPGA 56 to the selection determination unit 220 via the error status line, and the FPGA code is reconfigured. Even with the program data of the first EEPROM 59, it is configured so that either the separately prepared program data of the second EEPROM 59 (program data set to cope with errors) is reset in the FPGA56. RU
  • the program data set to cope with the abnormality is stored in the selection determination unit 220.
  • FZB data uses information from the encoder 30a.
  • the data path of the switch SW222 is changed.
  • the position control FZB is performed using the data of the potentiometer 35 by switching.
  • the potentiometer 35 is used only for calibration necessary for detecting the absolute position because the data reliability is inferior to that of the encoder 30a (linearity, noise, etc.). It may be configured as follows.
  • FIG. 13 shows a basic logic configuration block 250 for each block abnormality and state detection of this embodiment.
  • the configuration in FIG. 14 shows a configuration that uses a WDT-CR to reset if any one of the abnormalities is detected (a configuration used for normal CPU processing).
  • a desired abnormality processing detection unit based on a combination of logical product and logical sum can be obtained by combining any number of these basic logical configuration blocks 250. 251 can be configured.
  • the basic logic configuration block 250 is composed of a NAND section, a NOR section, and a switching section as shown in FIG. 13, the basic logic of the Boolean algebra element can be configured. . By stacking the basic logical building blocks 250, various logical expressions can be configured.
  • the input is composed of a switching setting signal, input 1 and input 2, and the output is composed of one output.
  • a more basic basic logic configuration block can be configured. For example, if 1 input and 1 output are used, input 1 may be connected like an electric circuit. To use the logic of ND or OR, it is sufficient to fix the switch setting signal.
  • FIG. 17 shows an application example of the abnormality processing detection unit 251 in which the basic logic configuration blocks 250 (1) to (n) are combined.
  • the judgment section for each block monitoring signal in the FPGA56 as follows, it is possible to switch to normal position detection means when an error is found in the FZB system (when an error occurs in potentiometer 35 or encoder 30a) It becomes.
  • the electric bending control is performed by position control that controls the position of bending with respect to the position of the tilt angle of the joystick of the remote control operation unit 7, but the position control block 201a Depending on the occurrence of an abnormality, the position control loop can be eliminated and servo control can be executed in the speed control loop. In other words, it is possible to execute an operation for controlling the bending operation speed in accordance with the tilt angle of the joystick.
  • the action for which each conditional force is also determined can be realized by operating switching of wirings arranged in the FPGA 56 in advance.
  • FIG. 15 illustrates a determination configuration example in which the abnormality detection level is switched by combining this logic configuration block 250.
  • the switch setting signal is fixed for each block abnormality and state detection, but the switch setting signal of the first module (error level change judgment logic module) is sent to another second module ( By connecting to the output from the abnormal condition occurrence determination logic module), it is possible to switch the error level arbitrarily.
  • the mode shifts to the calibration mode, the clutch is reconnected, and the operation command value matches the scope position. Or finger When the command is turned ON, the mode switching process is resumed.
  • the mode switching process when the operation mode is selected, the operation mode is set, the servo is turned on, and when the operation mode end is instructed, the mode switching process is returned.
  • the operation mode is a mode in which an electric bending operation is performed based on an operation command of the remote controller operation unit 7, and the maintenance mode is a parameter setting (reading / writing), status monitoring, etc.
  • This mode is used for remote operation in HMI mode connected to a personal computer, which will be described later.
  • the maintenance mode when the maintenance mode is selected, the maintenance mode is set and the servo is turned on. When the maintenance mode is instructed, the process returns to the mode switching process.
  • step S1 When the power is turned on, the FPGA 56 is configured by the EEPROM controller 102 in step S1. Subsequently, initial mode processing (described later) is executed in step S2, and the end of initial mode processing is awaited in step S3.
  • step S5 it is determined whether a maintenance mode processing request has been issued from the operation mode controller 105. If a maintenance mode processing request is generated, maintenance mode processing (described later) is executed in step S6, and the process returns to step S5.
  • step S7 If there is no maintenance mode processing request, the operation mode controller 105 determines in step S7 whether the maintenance mode processing power has also returned to the mode switching processing. When returning to the mode switching process, a calibration request is generated from the operation mode controller 105 in step S8, and the process returns to step S5.
  • step S9 If the mode switching process has not been restored, the operation mode controller 105 determines whether or not the calibration request is valid in step S9. If the calibration request is valid, the operation mode is determined in step S10. The controller 105 And in step SI 1, determine whether the calibration process has been completed successfully. If the calibration process does not end normally, the process returns to step S5. If the calibration process ends normally, the calibration request is canceled in step S12, and the process returns to step S5.
  • step S13 the operation mode controller 105 determines whether or not the bending operation start command is turned off. If it is determined that the bending operation start command has been turned OFF, a calibration request is generated from the operation mode controller 105 in step S14, and the process returns to step S5.
  • step S15 If it is determined that the bending operation start command is not OFF, the operation mode controller 105 determines whether the clutch connection is OFF in step S15. If the clutch connection is OFF, the process proceeds to step S14. If the clutch connection is ON, an operation mode process (described later) is executed in step S16, and the process returns to step S5.
  • step S21 WDT57 starts first. Then, in step S22, each logic block initializes internal variables, and in step 323, 13 ⁇ 4 ⁇ (left and right) motor current? 78 section 112, UD (up and down) motor current FZB section 113, potentiometer control section 114, and thermistor control section 115 each start sampling data.
  • step S24 communication is started by the serial communication unit 100 and the serial communication control unit 101.
  • step S25 it is determined whether or not the external hardware is normal. Executes mode processing.
  • the motor controller 110 determines whether the motor current offset is normal in step S27. If the motor current offset is abnormal, the abnormal stop mode process is performed in step S26. Execute.
  • the motor controller 110 detects the rotor position of the motor 30 in step S28, and reads the parameters in the DPRAM 106 in step S29.
  • the motor controller 110 determines whether or not the parameter values read in step S30 are all "0". If the parameter values are not all "0", the process is terminated as it is. If the parameter values are all “0”, the motor controller 110 writes the parameter default values in the DPRAM 106 in step S31 and ends the process.
  • step S41 the operation mode controller 105 determines whether a servo ON request is generated from the jig, and in step S42, the servo ON request is issued. If there is, turn on the servo and return to step S41.
  • step S41 the operation mode controller 105 determines whether a servo OFF request has been generated from the jig. If there is a servo OFF request in step S44, the servo is turned OFF and the process returns to step S41.
  • step S45 the operation mode controller 105 determines whether or not the HMI mode (servo state monitor monitoring mode) request is generated from the jig, and if there is an HMI mode request in step S46, the HMI The mode process is executed and the process returns to step S41.
  • HMI mode serving state monitor monitoring mode
  • step S47 the operation mode controller 105 determines whether or not the first maintenance request is generated from the jig, and if there is a first maintenance request in step S48, executes the sine wave output mode processing. Return to step S41.
  • step S49 the operation mode controller 105 determines whether or not a second maintenance request is generated from the jig. If there is a second maintenance request in step S50, the torque control mode process is executed. Return to step S41.
  • step S51 the operation mode controller 105 determines whether a third maintenance request is generated from the jig. If there is a third maintenance request in step S52, the speed control mode process is executed and the step is executed. Return to S41.
  • step S53 the operation mode controller 105 determines whether or not a fourth maintenance request is generated from the jig. If there is a fourth maintenance request in step S54, the position control mode process is executed and the step is executed. Return to S41.
  • step S55 the operation mode controller 105 determines whether or not the fifth maintenance request has been generated from the jig, and if there is a fifth maintenance request in step S56, executes the analog input position control mode processing. Return to step S41.
  • step S57 the operation mode controller 105 requests the sixth maintenance from the jig. If there is a sixth maintenance request in step S58, the scope limit adjustment mode process is executed and the process returns to step S41.
  • step S59 the operation mode controller 105 determines whether a seventh maintenance request has been generated from the jig, and if there is a seventh maintenance request in step S60, executes the lap operation mode process. Return to step S41.
  • the lapping operation mode is a predetermined bending operation, for example, RL-> UD->
  • step S61 the operation mode controller 105 determines whether an eighth maintenance request has been generated from the jig, and if there is an eighth maintenance request in step S62, executes the calibration adjustment mode process. Return to step S41.
  • step S81 the operation mode controller 105 determines whether or not the clutch connection is OFF. If the clutch connection is OFF, the servo is turned OFF in step S82 and the process proceeds to step S83. If so, the process proceeds to step S83.
  • step S83 the operation mode controller 105 determines whether or not the clutch connection is ON. If the clutch connection is ON, the process proceeds to step S84. If the clutch connection is not ON, the process returns to step S81.
  • step S84 it is determined whether the operation amount and the current position are within a predetermined range. If they are within the predetermined range, the process proceeds to step S85, and if not within the predetermined range, the process returns to step S81.
  • step S85 it is determined whether or not the bending motion start command is ON. If the bending motion start command is ON, the process ends. If the bending motion start command is not ON, the process returns to step S81.
  • step S71 the servo is turned on, and in step S72, it is determined whether it is a torque control cycle event period. Big If yes, go to Step S74.
  • step S74 it is determined whether or not it is a position / speed control event period. If it is a position / speed control event, position / speed control calculation processing is executed in step S75, and the process returns to step S72. If it is not a control cycle event, the process proceeds to step S76. Then, in step S76, it is determined whether the servo abnormality is detected. If a servo abnormality is detected, the abnormal stop mode process is executed in step S77. If no servo abnormality is detected, the process returns to step S72. .
  • the processing is divided into logic blocks by the FPGA and the electric curve control is performed. Therefore, unlike the sequential control using the conventional microprocessor, a part of the control is performed. Even if an abnormality occurs in the servo system, the servo system can be selected effectively without stopping the entire control system, so that the operability without interrupting the inspection can be improved.
  • control unit 37 is provided in the bending control unit 10b of the endoscope 2 is not limited thereto, and the control unit 37 may be provided in the image processing device 4, or a separate controller device. It may be provided inside.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 本発明においては、FPGA56の論理ブロックは、シリアル通信ユニット100、シリアル通信制御部101、EEPROMコントローラ102、異常信号処理部103、LEDコントローラ104、運転モードコントローラ105、 DPRAM106、クラッチ信号入力部107、治具基板入出力部108、RAM109、モータコントローラ110、モータ駆動波形生成部111、RL(左右)モータ電流F/B部112、UD(上下)モータ電流F/B部113、ポテンショコントロール部114、サーミスタコントロール部115、RLエンコーダコントロール部116、UDエンコーダコントロール部117、FPGAブロック異常監視部118とから構成される。このような構成により、湾曲制御部の一部の機能に問題が生じても、湾曲操作を継続する。

Description

明 細 書
電動湾曲内視鏡
技術分野
[0001] 本発明は、絶対位置信号を出力する湾曲動作指示部を操作することによって、湾 曲部が絶対位置信号に対応する状態に電動湾曲する電動湾曲内視鏡を具備した 電動湾曲内視鏡に関する。
背景技術
[0002] 近年、体腔内に細長の挿入部を挿入することにより、体腔内の臓器を観察したり、 必要に応じ、処置具チャンネル内に挿入した処置具を用いて、各種治療処置の行え る内視鏡が広く利用されて 、る。
[0003] この内視鏡には、一般に先端部側に上下 Z左右に湾曲する湾曲部が設けられて おり、この湾曲部に接続した湾曲ワイヤを牽引'弛緩操作することによって湾曲部を 所望の方向に湾曲させられる。
[0004] 前記湾曲ワイヤは、一般的に手動で操作されていた力 近年では、例えば日本国 特開 2003 - 245246号公報等に開示されて 、るように、電動モータ等の湾曲動力 手段を用いて牽引操作する電動湾曲内視鏡もある。
[0005] この電動湾曲内視鏡では例えば、操作部に設けた湾曲動作指示手段である例え ば絶対位置の湾曲指示信号を出力するジョイスティックによって電動モータを回転さ せ、この電動モータの回転によってプーリーを回転させ、このプーリーに連結されて
V、る湾曲ワイヤを牽引して湾曲部を湾曲させて 、た。
[0006] 前記ジョイスティックは、傾倒操作することによって湾曲位置を指示する。つまり、ジ ョィスティックを傾けた方向が湾曲部を湾曲させたい方向であり、ジョイスティックの傾 倒角度が湾曲部の湾曲角度になる。そして、ジョイスティックの傾倒角度が 0度である 直立状態のとき、前記湾曲部は非湾曲状態 (直線状態)になる。したがって、術者は ジョイスティックを保持している手指の感覚で、体腔内の湾曲部の湾曲状態を容易に 把握することができる。
[0007] し力しながら、従来の電動湾曲内視鏡においては、通常、湾曲制御部のモータコン トロールを行うサーボ制御としてマイクロコンピュータ(例えば、 CPUや MPU)が用い られており、このマイクロコンピュータでは、モータの応答速度をコントロールする演算 部の役割を果たしている力 マイクロコンピュータにおいては、シーケンシャル処理が 行われているために、一部の処理機能が停止すると、全ての機能が停止してしまい、 湾曲操作に支障が生じ、検査全体が煩雑になるといった問題がある。
発明の開示
課題を解決するための手段
[0008] 本発明の電動湾曲内視鏡は、挿入部に設けられた湾曲部と、前記湾曲部を湾曲 動作させる複数の構成部材を有する湾曲駆動手段と、前記湾曲駆動手段を駆動す る湾曲動力手段と、前記湾曲駆動手段の動作情報を検知して前記湾曲部の湾曲状 態情報を検出する湾曲状態検出手段と、前記湾曲部を湾曲させる湾曲指示情報を 出力する指示手段と、前記指示手段の湾曲指示情報と前記湾曲部の湾曲状態情報 とが一致するように制御する、独立した複数の論理ブロックから構成された湾曲動作 制御手段とを備える。
[0009] 本発明は、上述した点に鑑みてなされたもので、湾曲制御部の一部の機能に問題 が生じても、湾曲操作を継続することのできる電動湾曲内視鏡を提供することを目的 としている。
図面の簡単な説明
[0010] [図 1]本発明の実施例 1に係る電動湾曲内視鏡装置の構成を示す構成図
[図 2]図 1の画像処理装置のフロントパネルの構成を示す図
[図 3]図 1の湾曲制御部の構成を示す図
[図 4]図 1の湾曲制御部の制御部の構成を示す図
[図 5]図 4の FPGAの論理ブロックの構成を示す図
[図 6]図 5のモータコントローラの制御処理部の構成を示す図
[図 7]図 5のモータコントローラのサーボ異常検出部の構成を示す図
[図 8]図 5のモータコントローラにおけるサーボ制御を説明する第 1の説明図
[図 9]図 5のモータコントローラにおけるサーボ制御を説明する第 2の説明図
[図 10]図 5のモータコントローラにおけるサーボ制御の第 1の変形例を説明する説明 図
[図 11]図 4の FPGAのコンフィギュレーションの変形例を説明する説明図
[図 12]図 5のモータコントローラにおけるサーボ制御の第 2の変形例を説明する説明 図
[図 13]図 5の FPGAブロック異常監視部を構成する論理要素ブロックを説明する 1の 説明図
[図 14]図 5の FPGAブロック異常監視部を構成する論理要素ブロックを説明する第 2 の説明図
[図 15]図 13の論理要素ブロックを用いた論理判定ブロックを説明する第 1の説明図
[図 16]図 12の論理要素ブロックを用いた論理判定ブロックを説明する第 2の説明図
[図 17]図 13の論理要素ブロックを用いた論理判定ブロックを説明する第 3の説明図
[図 18]図 5の FPGAにおける処理遷移を説明する図
[図 19]図 5の FPGAにおける処理を説明するフローチャート
[図 20]図 19のイニシャルモード処理を説明するフローチャート
[図 21]図 19のメンテナンスモード処理を説明するフローチャート
[図 22]図 19のキャリブレーションモード処理を説明するフローチャート
[図 23]図 19の動作モード処理を説明するフローチャート
[図 24]図 19の動作モード処理を説明するタイミング図
発明を実施するための最良の形態
[0011] 以下、図面を参照しながら本発明の実施例について述べる。
[0012] (実施例 1)
図 1ないし図 24は本発明の実施例 1に係わり、図 1は電動湾曲内視鏡装置の構成 を示す構成図、図 2は図 1の画像処理装置のフロントパネルの構成を示す図、図 3は 図 1の湾曲制御部の構成を示す図、図 4は図 1の湾曲制御部の制御部の構成を示す 図、図 5は図 4の FPGAの論理ブロックの構成を示す図、図 6は図 5のモータコント口 ーラの制御処理部の構成を示す図、図 7は図 5のモータコントローラのサーボ異常検 出部の構成を示す図、図 8は図 5のモータコントローラにおけるサーボ制御を説明す る第 1の説明図、図 9は図 5のモータコントローラにおけるサーボ制御を説明する第 2 の説明図、図 10は図 5のモータコントローラにおけるサーボ制御の第 1の変形例を説 明する説明図、図 11は図 4の FPGAのコンフィギユレーションの変形例を説明する説 明図、図 12は図 5のモータコントローラにおけるサーボ制御の第 2の変形例を説明す る説明図、図 13は図 5の FPGAブロック異常監視部を構成する論理要素ブロックを 説明する第 1の説明図、図 14は図 5の FPGAブロック異常監視部を構成する論理要 素ブロックを説明する第 2の説明図、図 15は図 13の論理要素ブロックを用いた論理 判定ブロックを説明する第 1の説明図、図 16は図 13の論理要素ブロックを用いた論 理判定ブロックを説明する第 2の説明図、図 17は図 13の論理要素ブロックを用いた 論理判定ブロックを説明する第 3の説明図、図 18は図 5の FPGAにおける処理遷移 を説明する図、図 19は図 5の FPGAにおける処理を説明するフローチャート、図 20 は図 19のイニシャルモード処理を説明するフローチャート、図 21は図 19のメンテナ ンスモード処理を説明するフローチャート、図 22は図 19のキャリブレーションモード 処理を説明するフローチャート、図 23は図 19の動作モード処理を説明するフローチ ヤート、図 24は図 19の動作モード処理を説明するタイミング図である。
[0013] 図 1に示すように本実施例の電動湾曲内視鏡装置 1は、内視鏡挿入部(以下、挿入 部と略記する) 9の先端硬性部に例えば撮像素子 (不図示)を内蔵し、挿入部 9の湾 曲部 11が湾曲駆動手段を構成する湾曲ワイヤ (後述)を電動で牽引することによって 湾曲動作する電動湾曲内視鏡 (以下、内視鏡と略記する) 2と、前記湾曲部 11の駆 動操作等を行う指示手段としてのリモートコントロール操作部(以下、リモコン操作部 と略記する) 7と、ユニバーサルケーブル 12を介して伝送された画像信号を映像信号 に生成する画像処理装置 4と、図示しない照明光学系にユニバーサルケーブル 12 に内蔵されたライトガイドファイバ一束 (不図示)を介して照明光を供給する光源装置 3と、前記画像処理装置 4で生成された映像信号が出力されて内視鏡画像を表示す る表示装置であるモニタ 6と、送気、送水管路及び吸引を行うポンプユニット 14とで主 に構成されている。
[0014] 光源装置 3、画像処理装置 4及びポンプユニット 14はカート 15に搭載されており、 ポンプユニット 14は、送気、送水管路及び吸引の流量調整機構を備えた流量制御力 セット 14aを着脱自在に設置されている。また、カート 15からは内視鏡 2を保持 Z固 定する内視鏡固定アーム 13が設けられており、内視鏡固定アーム 13の先端に内視 鏡 2の基端把時部 10が着脱自在に保持 Z固定されるようになっている。
[0015] 内視鏡 2の基端把時部 10には、流量制御カセット 14aからの吸引チューブが接続 可能な鉗子栓 10aが配置されると共に、ユニバーサルケーブル 12及び流量制御力 セット 14aからの送気送水チューブが接続されるようになっている。前記挿入部 9内の 図示しない例えば送気管路、送水管路、吸引管路に送気送水チューブ等及び吸引 チューブが連結される。
[0016] また、基端把時部 10内には、湾曲部 11を電動湾曲駆動するためのモータ等を制 御する湾曲制御部 10bが内蔵されており、リモコン操作部 7が該湾曲制御部 10bとケ 一ブル 7aを介して接続されるようになっている。なお、リモコン操作部 7は、画像処理 装置 4ともケーブル 7aを介して接続可能であり、ユニバーサルケーブル 12を介して 湾曲制御部 10bと接続することできるようになつている。
[0017] リモコン操作部 7は、図示はしないが、湾曲部 11を電動湾曲操作を行う操作入力デ バイスである、例えばジョイスティック、送気、送水及び吸引の操作入力スィッチ、画 像処理装置 4でのフリーズ、レリーズ等のリモートスイッチからなるスコープスィッチを 備えている。湾曲状態検出手段湾曲動作制御手段としての画像処理装置 4はポンプ ユニット 14と接続可能となっており、画像処理装置 4のフロントパネル 4aは、図 2に示 すように、パワースィッチ 20、電動湾曲内視鏡装置 1の初期化を指示し初期化完了 を告知する LED機能を有する初期化ボタン 23、湾曲部 11の電動湾曲のキヤリブレ ーシヨンを告知するキャリブレーション LED部 24、ポンプユニット 14の送気、送水及 び吸引の操作入力スィッチ群 25、電動湾曲内視鏡装置 1での検査が可能な状態を 告知する検査可能 LED26及び送気管路、送水管路、吸引管路の接続状態を表示 する管路接続表示部 27等を備えて構成されて ヽる。
[0018] 図 3に示すように、前記挿入部 9内には前記湾曲制御部 10bから延出して前記湾 曲部 11を湾曲操作する上下用の前記湾曲ワイヤ 33及び図示しない左右用の湾曲 ワイヤが挿通している。なお、以下の説明では上下用の湾曲ワイヤ 33に関わる構成 を説明し、この上下用の湾曲ワイヤ 33と同様な構成である左右用の湾曲ワイヤに関 わる構成は簡単のため不図示にして説明も省略する。 [0019] 前記湾曲ワイヤ 33の両端部は例えば図示しないチ ーンに連結固定されており、 このチェーンが湾曲駆動手段を構成する回動自在な上下用のスプロケット部 34に嚙 合配置されている。このため、前記スプロケット部 34が所定方向に回転することによ つて、前記チェーンに固定された湾曲ワイヤ 33が牽引操作されて、前記湾曲部 11が 所定方向に湾曲動作するようになって 、る。
[0020] 前記スプロケット部 34は例えば湾曲制御部 10b内に配設されている。このスプロケ ット部 34には例えば 3相モータ力もなる上下用の湾曲動力手段である湾曲モータ 30 の駆動力が、複数のギア 31、 32と駆動力伝達切断復元手段である例えば歯車同士 の嚙合状態を着脱するクラッチ機構部 36とを備えている。そして、前記クラッチ機構 部 36によって、前記湾曲ワイヤ 33に張力が力からない状態にすることにより、湾曲部 11が外力によって自由に湾曲する湾曲フリー状態になる。
[0021] なお、湾曲駆動手段は、ギア 31、 32、湾曲ワイヤ 33、スプロケット部 34及びクラッ チ機構部 36等より構成される。
[0022] 前記クラッチ機構部 36は、状態切換手段である切換操作レバー 10c (図 1参照)を 駆動力伝達切断位置 (以下、湾曲フリー指示位置と記載する)又は駆動力伝達復元 位置 (以下、アングル操作指示位置)に切換操作することによって、前記クラッチ機構 部 36が切断状態である駆動力伝達切断状態と、クラッチ機構部 36が接続状態であ る駆動力伝達復元状態とに切り換わるようになって!/、る。
[0023] つまり、前記切換操作レバー 10cを切換操作して、このクラッチ機構部 36を機械的 に切断状態或いは接続状態に切り換えることによって、前記湾曲モータ 30と前記ス プロケット部 34とは可逆的に着脱可能になっている。
[0024] 前記スプロケット部 34の回転量は、湾曲角度検出手段であるポテンショメータ 35で 検出される。なお、符号 30aは前記湾曲モータ 30の回転量を検出するエンコーダで ある。また、符号 38は、湾曲モータ 30の温度を計測するサーミスタである。湾曲状態 検出手段はポテンショメータ 35またはエンコーダ 30aにより構成される。
[0025] 湾曲制御部 10bの制御部 37には、リモコン操作部 7、エンコーダ 30a、ポテンショメ ータ 35、クラッチ機構部 36及びサーミスタ 38が接続されて 、る。
[0026] 湾曲制御部 10bは、図 4に示すように、ユニバーサルケーブル 12を介した電源ケー ブル (不図示)が接続される電源コネクタ 50と、リモコン操作部 7のケーブル 7aが接続 される操作部コネクタ 51が設けられている。電源コネクタ 50は、制御部 37内の制御 用電源部 52と、駆動用電源部 53に接続されている。制御用電源部 52は DCZDC コンバータ 54を介して制御用の電力を各部に供給するようになっている。また、駆動 用電源部 53モータドライバ 55が生成する 3相正弦波電力のための駆動電力を供給 する。
[0027] 操作部コネクタ 51は、湾曲制御部 10b内の湾曲動作制御手段としての FPGA (フィ 一ルドプログラマブルゲートアレー) 56と接続されている。この FPGA56は、 EEPRO M59に格納されているデータに基づきコンフィギュレーションを行い、内部セルを所 望の論理ブロックに構築するようになっている。エンコーダ 30a、ポテンショメータ 35、 クラッチ機構部 36及びサーミスタ 38は、 FPGA56に接続されており、 FPGA56によ り制御される。また、 FPGA56は、モータドライバ 55に対して 3相正弦波電力の生成 のためのデータを供給しており、これによりモータドライバ 55は 3相正弦波電力を湾 曲モータ 30に供給する。
[0028] FPGA56は、内部セルに一定以上の所定の異常が発生すると、 WDT (ウォッチド グタイマ) 57をクリァするWDT—CR信号を出カする。この WDT— CRにより WDT5 7からリセット信号が FPGA56に出力され、 FPGA56がリセットされる。 FPGA56は、 リセット信号が入力されると、リセット IC58を起動させ、 EEPROM59により再コンフィ ギユレーシヨンを行 、、内部セルの論理ブロックを再構築するようになって 、る。
[0029] FPGA56の論理ブロックは、図 5に示すように、シリアル通信ユニット 100、シリアル 通信制御部 101、 EEPROMコントローラ 102、異常信号処理部 103、 LEDコント口 ーラ 104、運転モードコントローラ 105、 DPRAM106,クラッチ信号入力部 107、治 具基板入出力部 108、 RAM109、モータコントローラ 110、モータ駆動波形生成部 111、 1¾^ (左右)モータ電流 78部112、 110 (上下)モータ電流 8部113、ポテ ンショコントロール部 114、サーミスタコントロール部 115、 RLエンコーダコントロール 部 116、 UDエンコーダコントロール部 117、 FPGAブロック異常監視部 118とから構 成される。また、モータコントローラ 110は、計測処理部 200、制御処理部 201、サー ボ異常検出部 202及びサーボ ONZOFF制御部 203の各論理ブロックを有して構 成されている。
[0030] なお、図 5においては、実線は通常の制御及びデータ信号の流れを示し、破線は 論理ブロック異常信号、サーボ異常信号ある 、は通信異常信号の流れを示して 、る
[0031] シリアル通信ユニット 100は、リモコン操作部 7と例えば LVDS等によりシリアル通信 を行い、シリアル通信制御部 101は、シリアル通信ユニット 100を制御すると共に、モ 一タコントローラ 110と交信し、モータコントローラ 110から受信したデータを DPRA M106に格納する。
[0032] EEPROMコントローラ 102は、 EEPROM59に格納されているプログラムに従って
、 FPGA56のコンフィギュレーションを実行する。
[0033] 異常信号処理部 103は、湾曲モータ 30の電源電圧異常及び過電流を監視し、監 視結果を運転モードコントローラ 105に出力する。
[0034] クラッチ信号入力部 107は、クラッチ機構部 36から動力伝達切断状態あるいは駆 動力伝達復元状態を示す状態信号を入力し、運転モードコントローラ 105に出力す る。
[0035] 治具基板入出力部 108は、デバッグ処理を行うための治具基板 (不図示)とデータ を送受する。また、 LEDコントローラ 104は治具基板の LEDを制御する。
[0036] 運転モードコントローラ 105は、クラッチ機構部 36から動力伝達切断状態あるいは 駆動力伝達復元状態、治具基板との接続状態に応じた運転モードをモータコント口 ーラ 110に出力する。なお、運転モードコントローラ 105には、シリアル通信制御部 1 01より通信異常信号が、またモータコントローラ 110からはサーボ異常信号が入力さ れるようになっており、これらの異常信号に基づいた運転モードをモータコントローラ 110に出力するようになって 、る。
[0037] モータ駆動波形生成部 111は、モータコントローラ 110を介して RAM109に格納さ れている正弦波データを読み出し、 3相正弦波データを生成し、 RL (左右)モータド ライバ及び UD (上下)モータドライバ 55に該 3相正弦波データを出力する。
[0038] 1¾^ (左右)モータ電流 78部112は、 RL (左右)モータより U相電流値及び V相電 流値をデジタル信号に変換してモータコントローラ 110に出力する。同様に、 UD (上 下)モータ電流 FZB部 113は、 UD (上下)モータ 30より U相電流値及び V相電流値 をデジタル信号に変換してモータコントローラ 110に出力する。
[0039] ポテンショコントロール部 114は、 RL (左右)スプロケット部及び UD (上下)スプロケ ット部 34に接続されているポテンショメータ 35の位置情報をデジタル信号に変換して モータコントローラ 110に出力する。
[0040] サーミスタコントロール部 115は、 RL (左右)モータ及び UD (上下)モータ 30に設け られているサーミスタ 38により計測された温度データをデジタル信号に変換してモー タコントローラ 110に出力する。
[0041] RLエンコーダコントロール部 116及び UDエンコーダコントロール部 117は、 RL ( 左右)モータ及び UD (上下)モータ 30に設けられて!/、るエンコーダ 30aのカウント値 をモータコントローラ 110に出力する。
[0042] そして、モータコントローラ 110は、計測処理部 200、制御処理部 201、サーボ異常 検出部 202及びサーボ ON/OFF制御部 203により、運転モードに基づいて、 RL ( 左右)モータ及び UD (上下)モータ 30をサーボ制御する。
[0043] また、 FPGAブロック異常監視部 118には、上記の各論理ブロックの論理ブロック 異常信号、サーボ異常信号あるいは通信異常信号が入力されており、これらの異常 信号に基づき、モータコントローラ 110に TRG信号を出力すると共に、 WDT57に W
DT—CRを出力するようになって 、る。
[0044] ここで、モータコントローラ 110の制御処理部 201は、図 6に示すように、位置制御 ブロック 201a、速度制御ブロック 201b及びトルク制御ブロック 201cを備えて構成さ れ、また、サーボ異常検出部 202は、図 7に示すように、位置偏差異常判定ブロック 2
02a,回転方向異常検出ブロック 202b、異常速度検出ブロック 202c及び過負荷異 常検出ブロック 202dを備えて構成されて 、る。
[0045] 次に、モータコントローラ 110におけるサーボ制御を図 8を用いて説明する。位置制 御ブロック 201aは、リモコン操作部 7からの位置指令値とエンコーダ 30aの出力値と を比較し、位置偏差が所定値を超えた場合、位置偏差異常判定ブロック 202aはサ ーボ異常信号を出力する。
[0046] また、速度制御ブロック 201bは、位置制御ブロック 201aの出力と、エンコーダ 30a の出力値の微分値 (微分回路 211にて実行)とを比較する。回転方向異常検出プロ ック 202bは、位置制御ブロック 201aの出力とエンコーダ 30aの出力値の微分値とに より回転方向の異常を検出するとサーボ異常信号を出力する。また、異常速度検出 ブロック 202cは、エンコーダ 30aの出力値の微分値に基づき速度異常を検出すると サーボ異常信号を出力する。
[0047] さらに、トルク制御ブロック 201cは、速度制御ブロック 201bの出力と、モータドライ バ 55の電流値を比較し、モータドライバ 55を制御する。過負荷異常検出ブロック 20 2dは、速度制御ブロック 20 lbの出力に基づき、湾曲モータ 30の負荷状態を監視し 、過負荷状態と判断するとサーボ異常信号を出力する。
[0048] 図 9を用いて制御ループに異常が合った場合の動作例を説明する。簡単のため、 ここでは FZB (フィードバック)構成は省略する。
[0049] 例えば、速度制御ブロック 201bで速度異常が合った場合についての内容につい て説明する。これは、位置制御指令値を直接電流制御部(トルク制御ブロック 201c) に切り替える場合を示しており、図中 Xで示したように、速度制御ブロック 201bが動 作不能となった場合に、後述する異常判断部から生成された信号を TRGを介して切 り替え SW (スィッチ部 210a、スィッチ部 210b及びスィッチ部 210c)により直接位置 制御指令値を電流制御に入力して 、る(図中の破線矢印で示すデータの流れ)。
[0050] このとき、速度制御ブロック 201bがなくなることで、予め設定されているループゲイ ンの定数も異なってくるため、速度制御ブロック 201bがな 、状態でのゲイン設定値 ( 予め速度制御が存在しない状態に設定しておく)を再設定する。
[0051] 具体的には、速度制御ゲイン設定値が「Sp」 (Sp >0)と設定していた場合に切り替 え SWを切り替えた場合には、速度制御ブロック 201bが存在しない場合のゲイン設 定値は「1」となることにより閉ループ特性が変化することは明らかである。
[0052] そのため Sp— > 1に開ループゲインが落ちた分を他の制御部、例えばスィッチ部 2 10aを切り替えず、スィッチ部 210b及びスィッチ部 210cを切り変えることで、速度制 御ブロック 201bのみ回路系からとりに除き、位置制御ブロック 201aでゲインを上げる ことにより、閉ループ特性ができるだけ同じようにすることができる。
[0053] ただし、通常、速度制御ブロック 201bには動的フィルタが挿入されており、速度制 御ブロック 201bをなくした場合に、静的ゲインのみになる。このことにより、動特性ま では変更されない。動特性も同じようにしたい場合には、図 10あるいは図 11に示す ような構成を用いれば可能となる。
[0054] 図 10では FPGA56の容量に余裕がある場合に、 FPGA56のセル上に予め並列 に配置されて 、る速度制御ブロックに切り替える例を示して 、る。
[0055] 図 10の例では、同じ構成要素を 2つ配置し、切り替え SW (スィッチ部 210a、スイツ チ部 210b、スィッチ部 210c、スィッチ部 210d、スィッチ部 210e及びスィッチ部 210 f)を用いて異常が生じた場合には各制御ブロック間のデータの流れを切り替える方 式をとり、異常判断部で生成される TRGに応じて切り替え SWを切り替えを行う構成 となっている。
[0056] 図 11の例では、予め FPGA56のコンフィギュレーション用プログラムを格納した EE PROM59を 2つ用意し、 FPGA56の内部の一部でエラーが発生した場合に対応す る構成例を示している。
[0057] 図 11の構成では、 FPGA56からエラーステータスラインを介して、選択判断部 220 に信号が出力され、 FPGAコードの再コンフィギュレーションが行われる。第 1の EEP ROM59のプログラムデータでも、別に用意した第 2の EEPROM59のプログラムデ ータ(異常時対処対応に設定されたプログラムデータ)のどちらかを FPGA56に再設 定するような構成となって 、る。
[0058] また、第 1の EEPROM59のプログラムデータにより何回かコンフィギュレーションを 実施したにも関わらず異常が発生する場合、選択判断部 220にて異常時対処対応 に設定されたプログラムデータを格納した第 2の EEPROM59によりコンフィギユレ一 シヨンを実施する FPGAコンフィギュレーションシーケンスにしてお!/ヽても構わな!/、。 これは、選択判断部 220に予め異常発生カウンタを用意し、例えば 3回異常発生した 場合には、切り替え SW221を切り替えるように構成すれば実現できる。
[0059] 次に、 FZB (フィードバック)系に異常が合った場合の例として、エンコーダ 30aの エラーが発生した対処例を図 12を用いて説明する。
[0060] 正常動作時には、 FZB系のデータはエンコーダ 30aからの情報を用いている。ここ で、エンコーダ 30aに不具合が発生した場合には、切り替え SW222のデータ経路を 切り替えて、ポテンショメータ 35のデータを用いて位置制御 FZBを行う構成となって いる。通常、ポテンショメータ 35は、データの信頼度としてはエンコーダ 30aよりも劣る (リニアティ、ノイズ等)ため、絶対位置を検出するために必要なキャリブレーション時 にのみ利用されるが、異常時に暫定動作として用いるように構成しても良 、。
[0061] 次に、 FZB系異常時において、さらにポテンショメータ 35にエラーが発生した場合 について説明する。ポテンショメータ 35に異常が生じた場合には、キャリブレーション シーケンスとの兼ね合いが生じる。ポテンショメータ 35は唯一の絶対位置検知手段 であり、クラッチ機構部 36のクラッチ OFFの場合には、内視鏡湾曲位置とリモコン操 作部 7の位置とにずれが生じる可能性がある。そのため、クラッチ機構部 36に対して クラッチ OFF指令が発生した場合、実際にはクラッチ OFF動作をしな 、ようにするか 、あるいはクラッチ OFF動作をした場合には電源を OFFするメッセージをモニタ 6に 表示させる。また内視鏡 2側には最大可動範囲制限メカストツパ (不図示)が存在する ため、リモコン操作部 7のジョイスティックの位置と湾曲位置がずれた状態でも動作可 能なように相対位置制御動作として動作させてもょ 、ことは言うまでもな 、。
[0062] 図 13は本実施例の各ブロック異常、状態検知についての基本論理構成ブロック 25 0を示している。また、図 14の構成はいずれかの異常が 1つでも検出された場合には WDT—CRによりリセットをする構成 (通常の CPU等の処理に用いられる構成)を示 している。
[0063] 図 13の基本論理構成ブロック 250を 1単位として、図 16に示すように、これら基本 論理構成ブロック 250をいくつ組み合わせることにより、論理積、論理和の組み合わ せによる所望の異常処理検出部 251を構成することが可能となる。
[0064] すなわち、基本論理構成ブロック 250は、図 13〖こ示すよう〖こ、 NAND部、 NOR部 及び切り替え部から構成されているため、ブール代数演算要素の基本論理を構成す ることができる。この基本論理構成ブロック 250を積み重ねていくことで、様々な論理 式を構成することができる。
[0065] 従来の決められたシーケンスを実行する CPUでは実現は難しいが、本実施例の重 要構成要件が FPGA56であるため、配置配線等を電気回路のように行うことが可能 であるために容易に実現することができる。 [0066] また、入力には、切替設定信号、入力 1、入力 2で構成され、出力が 1出力で構成さ れている。この構成によれば、より基本的な基本論理構成ブロックを構成することがで きる。例えば 1入力 1出力であれば、入力 1を電気回路のように接続すれば良いし、 A NDか ORの 、ずれかの論理を用いるためには切替設定信号を固定しておけば良 ヽ
[0067] 前記基本論理構成ブロック 250 (1)〜 (n)を組み合わせた異常処理検出部 251の 適用例を図 17に示す。 FPGA56内の各ブロック監視信号に対する判断部を下記の ように構成することで、 FZB系に異常が合った場合 (ポテンショメータ 35、エンコーダ 30aのエラー発生時)に正常な位置検出手段に切り替えることも可能となる。
[0068] 例えば、通常、電動湾曲制御は、リモコン操作部 7のジョイスティックの倒れ角の位 置に対する湾曲の位置を制御する位置制御で動作を行わせて 、るが、位置制御ブ ロック 201aでの異常発生に応じて、位置制御ループをなくし、速度制御ループでの サーボ制御を実行させることも可能である。換言すれば、ジョイスティックの倒れ角に 応じて湾曲動作速度を制御する動作の実行が可能となる。詳細は図示しないが、各 条件力も判断したアクションは、予め FPGA56内に配置されている配線の切り替え 等を作動させることにより実現できる。
[0069] 上記までは、異常時の切り替え状態について説明した力 図 15に本論理構成プロ ック 250を組み合わせることで異常検知レベルを切り替える判断構成例を示す。前述 したように、各ブロック異常、状態検知について切替設定信号を固定した構成による ものであるが、第 1のモジュール (エラーレベル変更判断論理モジュール)の切替設 定信号を別の第 2のモジュール (異常状態発生判断論理モジュール)からの出力と 接続することにより、エラーレベルを任意に切り替えることも可能となる。
[0070] このように構成された本実施例の作用について説明する。本実施例では、図 18に 示すように、電源が投入されると、まず、イニシャルモード処理が実行される。そして、 イニシャルモード処理後に、モード切り替え処理に移行する。
[0071] このモード切り替え処理では、例えばクラッチ切断時あるいはイニシャルモード処理 終了時の湾曲動作開始指令 OFF時においては、キャリブレーションモードに移行し 、クラッチ再接続して操作指令値とスコープ位置が一致し、あるいは湾曲動作開始指 令 ONになると、モード切り替え処理に戻る。
[0072] また、モード切り替え処理において、運転モードが選択されると運転モードとなりサ ーボが ONとなり、運転モード終了が指示されるとモード切り替え処理に戻る。
[0073] ここで、運転モードとはリモコン操作部 7の操作指令に基づいて、電動湾曲操作を 行うモードで、メンテナンスモードとは、パラメータの設定 (読み書き)、状態モニタ等 を専用の治具や後述するパソコンに接続した HMIモードによる遠隔操作等を行うモ ードである。
[0074] さらに、モード切り替え処理において、メンテナンスモードが選択されるとメンテナン スモードとなりサーボが ONとなり、メンテナンスモード終了が指示されるとモード切り 替え処理に戻る。
[0075] また、モード切り替え処理では、停止要因が発生すると異常停止モードとなり、サー ボが OFFとなる。
[0076] 上記内容を図 19のフローチャートを用いて詳細に説明する。電源が ONされると、 ステップ S1にて EEPROMコントローラ 102により FPGA56のコンフィギュレーション が実行される。続いて、ステップ S2にてイニシャルモード処理 (後述)が実行され、ス テツプ S3にてイニシャルモード処理の終了を待つ。
[0077] イニシャルモード処理が終了すると、ステップ S4にて運転モードコントローラ 105よ りキャリブレーション要求が発生する。そして、ステップ S5にて運転モードコントローラ 105よりメンテナンスモード処理要求が発生したかどうか判断する。メンテナンスモー ド処理要求が発生した場合は、ステップ S6にてメンテナンスモード処理 (後述)を実 行し、ステップ S 5に戻る。
[0078] メンテナンスモード処理要求がない場合には、ステップ S7にて運転モードコント口 ーラ 105がメンテナンスモード処理力もモード切り替え処理に復帰したかどうか判断 する。そして、モード切り替え処理に復帰した場合には、ステップ S8にて運転モード コントローラ 105よりキャリブレーション要求が発生し、ステップ S5に戻る。
[0079] モード切り替え処理に復帰していない場合には、ステップ S9にて運転モードコント ローラ 105がキャリブレーション要求が有効かどうか判断し、キャリブレーション要求が 有効の場合にはステップ S10にて運転モードコントローラ 105はキャリブレーション処 理を実行し、ステップ SI 1にてキャリブレーション処理が正常に終了したかどうか判断 する。キャリブレーション処理が正常に終了しなかった場合には、ステップ S5に戻り、 キャリブレーション処理が正常に終了した場合には、ステップ S12にてキヤリブレーシ ヨン要求を解除してステップ S5に戻る。
[0080] ステップ S9においてキャリブレーション要求が有効でないと判断すると、ステップ S1 3にて運転モードコントローラ 105は湾曲動作開始指令が OFFされた力どうか判断す る。湾曲動作開始指令が OFFされたと判断すると、ステップ S14にて運転モードコン トローラ 105よりキャリブレーション要求が発生しステップ S5に戻る。
[0081] 湾曲動作開始指令が OFFしていないと判断すると、ステップ S 15にて運転モードコ ントローラ 105はクラッチ接続が OFFカゝどうか判断する。クラッチ接続が OFFならばス テツプ S 14に進み、クラッチ接続が ONならばステップ S 16にて運転モード処理 (後述 )を実行してステップ S 5に戻る。
[0082] つぎに、図 20のフローチャートを用いてイニシャルモード処理を説明する。ステップ S21にてまず WDT57がスタートする。そして、ステップ S22にてが各論理ブロックが 内部の変数を初期化し、ステップ323にて1¾^ (左右)モータ電流?78部112、 UD ( 上下)モータ電流 FZB部 113、ポテンショコントロール部 114、サーミスタコントロー ル部 115がそれぞれ、データのサンプリングを開始する。
[0083] そして、ステップ S24にてシリアル通信ユニット 100、シリアル通信制御部 101により 通信を開始し、ステップ S25にて外部のハードウェアが正常かどうか判断し、異常の 場合はステップ S26にて異常停止モード処理を実行する。
[0084] 外部のハードウェアが正常と判断すると、ステップ S27にてモータコントローラ 110 がモータ電流のオフセットが正常かどうか判断し、モータ電流のオフセットが異常の 場合にはステップ S26にて異常停止モード処理を実行する。
[0085] そして、モータ電流のオフセットが正常と判断すると、ステップ S28にてモータコント ローラ 110がモータ 30のロータ位置を検出し、ステップ S29にて DPRAM106内の パラメータを読み込む。
[0086] 次に、モータコントローラ 110は、ステップ S30にて読み込んだパラメータ値が統べ て「0」かどうか判断し、パラメータ値が統べて「0」でな 、場合はそのまま処理を終了し 、パラメータ値が統べて「0」の場合は、ステップ S31にてモータコントローラ 110は、 パラメータのデフォルト値を DPRAM106に書き込み処理を終了する。
[0087] 次に、図 21のフローチャートを用いてメンテナンスモード処理を説明する。運転モ ードコントローラ 105と治具 (不図示)と更新を開始し、ステップ S41にて運転モードコ ントローラ 105は治具よりサーボ ON要求が発生したかどうか判断し、ステップ S42に てサーボ ON要求があればサーボを ONしてステップ S41に戻る。
[0088] 同様にステップ S41にて運転モードコントローラ 105は治具よりサーボ OFF要求が 発生したかどうか判断し、ステップ S44にてサーボ OFF要求があればサーボを OFF してステップ S41に戻る。
[0089] 次に、ステップ S45にて運転モードコントローラ 105は治具より HMIモード(サーボ 状態のモニタ監視モード)要求が発生した力どうか判断し、ステップ S46にて HMIモ ード要求があれば HMIモード処理を実行してステップ S41に戻る。
[0090] そして、ステップ S47にて運転モードコントローラ 105は治具より第 1メンテナンス要 求が発生したかどうか判断し、ステップ S48にて第 1メンテナンス要求があれば正弦 波出力モード処理を実行してステップ S41に戻る。
[0091] 続いて、ステップ S49にて運転モードコントローラ 105は治具より第 2メンテナンス要 求が発生したかどうか判断し、ステップ S50にて第 2メンテナンス要求があればトルク 制御モード処理を実行してステップ S41に戻る。
[0092] また、ステップ S51にて運転モードコントローラ 105は治具より第 3メンテナンス要求 が発生したかどうか判断し、ステップ S52にて第 3メンテナンス要求があれば速度制 御モード処理を実行してステップ S41に戻る。
[0093] そして、ステップ S53にて運転モードコントローラ 105は治具より第 4メンテナンス要 求が発生したかどうか判断し、ステップ S54にて第 4メンテナンス要求があれば位置 制御モード処理を実行してステップ S41に戻る。
[0094] 次に、ステップ S55にて運転モードコントローラ 105は治具より第 5メンテナンス要求 が発生したかどうか判断し、ステップ S56にて第 5メンテナンス要求があればアナログ 入力位置制御モード処理を実行してステップ S41に戻る。
[0095] また、ステップ S57にて運転モードコントローラ 105は治具より第 6メンテナンス要求 が発生したかどうか判断し、ステップ S58にて第 6メンテナンス要求があればスコープ リミット調整モード処理を実行してステップ S41に戻る。
[0096] 続いて、ステップ S59にて運転モードコントローラ 105は治具より第 7メンテナンス要 求が発生したかどうか判断し、ステップ S60にて第 7メンテナンス要求があればラップ 動作モード処理を実行してステップ S41に戻る。
[0097] ここで、ラップ動作モードとは、予め決められた湾曲動作、例えば RL— >UD— >
RL等のシーケンシャル動作を行わせるモードのことである。
[0098] 次に、ステップ S61にて運転モードコントローラ 105は治具より第 8メンテナンス要求 が発生したかどうか判断し、ステップ S62にて第 8メンテナンス要求があればキヤリブ レーシヨン調整モード処理を実行してステップ S41に戻る。
[0099] 以上のように、電動湾曲動作に必要な各機能について独立した動作確認を行わせ ることがでさる。
[0100] 次に、図 22のフローチャートを用いてキャリブレーションモード処理を説明する。ス テツプ S81にて運転モードコントローラ 105はクラッチ接続が OFFかどうか判断し、ク ラッチ接続が OFFならば、ステップ S82にてサーボを OFFしてステップ S83に進み、 クラッチ接続が OFFでな!/、ならば、そのままステップ S83に進む。
[0101] そして、ステップ S83にて運転モードコントローラ 105はクラッチ接続が ONかどうか 判断し、クラッチ接続が ONならばステップ S84に進み、クラッチ接続が ONでないな らばステップ S81に戻る。
[0102] ステップ S84では、操作量と現在位置が所定範囲内にあるかどうか判断し、所定範 囲内ならばステップ S85に進み、所定範囲内でな!、ならばステップ S81に戻る。
[0103] そして、ステップ S85にて湾曲動作開始指令 ONかどうか判断し、湾曲動作開始指 令 ONならば処理を終了し、湾曲動作開始指令 ONでないならばステップ S81に戻る
[0104] 次に、図 23のフローチャートを用い、また図 24のタイミングチャートを参照してて動 作モード処理を説明する。ステップ S71にてまずサーボを ONとし、ステップ S72にて トルク制御周期イベント期間かどうか判断し、トルク制御周期イベントならばステップ S 73にトルク制御演算処理を実行しステップ S72に戻り、トルク制御周期イベントでな いならば、ステップ S74に進む。
[0105] ステップ S74では、位置、速度制御イベント期間かどうかかどうか判断し、位置、速 度制御イベントならばステップ S 75に位置、速度制御演算処理を実行しステップ S 72 に戻り、位置、速度制御周期イベントでないならば、ステップ S 76に進む。そして、ス テツプ S76にてサーボ異常が検出された力どうか判断し、サーボ異常が検出された 場合はステップ S77に異常停止モード処理を実行し、サーボ異常が検出されない場 合にはステップ S72に戻る。
[0106] 以上説明したように、本実施例では、 FPGAにより処理を論理ブロックに分散し電 動湾曲制御を行っているので、従来のようなマイクロプロセッサを用いたシーケンシャ ル制御と異なり、一部のサーボ系に異常が発生しても制御系が全て停止することが なぐ効果的にサーボ系を選択することができるので、検査を中断することなぐ操作 性を向上させることができる。
[0107] なお、制御部 37を内視鏡 2の湾曲制御部 10bに設けるとした力 これに限らず、制 御部 37を画像処理装置 4内に設けても良いし、別体のコントローラ装置内に設けても 良い。
[0108] 本発明は、上述した実施例に限定されるものではなぐ本発明の要旨を変えない範 囲において、種々の変更、改変等が可能である。
[0109] 本出願は、 2006年 1月 13日に日本国に出願された特願 2006— 006146号を優 先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求 の範囲に引用されるものである。

Claims

請求の範囲
[1] 挿入部に設けられた湾曲部と、
前記湾曲部を湾曲動作させる複数の構成部材を有する湾曲駆動手段と、 前記湾曲駆動手段を駆動する湾曲動力手段と、
前記湾曲駆動手段の動作情報を検知して前記湾曲部の湾曲状態情報を検出する 湾曲状態検出手段と、
前記湾曲部を湾曲させる湾曲指示情報を出力する指示手段と、
前記指示手段の湾曲指示情報と前記湾曲部の湾曲状態情報とがー致するように 制御する、独立した複数の論理ブロックから構成された湾曲動作制御手段と を備えたことを特徴とする電動湾曲内視鏡。
[2] 前記論理ブロックは、
前記湾曲状態検出手段が検出した前記湾曲状態情報を取得する湾曲状態情報入 力論理ブロックと、
前記湾曲状態情報入力論理ブロックが取得した前記湾曲状態情報と、前記湾曲指 示情報とを演算する状態演算論理ブロックと
を備えたことを特徴とする請求項 1に記載の電動湾曲内視鏡。
[3] 前記湾曲動作制御手段を構成する前記論理ブロックの制御状態を監視するブロッ ク監視手段を
さらに備えたことを特徴とする請求項 1または 2に記載の電動湾曲内視鏡。
[4] 前記ブロック監視手段の監視結果に基づき、前記湾曲動作制御手段を構成する前 記論理ブロック選択する論理ブロック選択手段を
さらに備えたことを特徴とする請求項 3に記載の電動湾曲内視鏡。
[5] 前記ブロック監視手段及び前記論理ブロック選択手段は、前記論理ブロックにより 構成される
さらに備えたことを特徴とする請求項 4に記載の電動湾曲内視鏡。
[6] 前記湾曲状態情報は前記湾曲部の湾曲位置情報を含み、
前記状態演算論理ブロックは、
前記湾曲位置情報と前記湾曲指示情報との差分を演算し位置偏差情報を算出す る位置情報演算論理ブロックと、
前記湾曲位置情報の時間的変化率を算出する速度情報算論理ブロックと、 前記湾曲部の位置情報を演算する位置情報演算論理ブロックと
を少なくとも含む
ことを特徴とする請求項 1な 、し 5に記載の電動湾曲内視鏡。
[7] 前記論理ブロックは、論理を再構成可能な機能を有する複数論理ブロックから構成 されている
を備えたことを特徴とする請求項 1ないし 6に記載の電動湾曲内視鏡。
[8] 前記湾曲動作制御手段は、 FPGAから構成される
を備えたことを特徴とする請求項 7に記載の電動湾曲内視鏡。
PCT/JP2007/050303 2006-01-13 2007-01-12 電動湾曲内視鏡 WO2007080954A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780002393.8A CN101370421B (zh) 2006-01-13 2007-01-12 电动弯曲内窥镜
EP07706645A EP1972258B1 (en) 2006-01-13 2007-01-12 Electrically bendable endoscope
US12/167,628 US8622895B2 (en) 2006-01-13 2008-07-03 Electric bending endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-006146 2006-01-13
JP2006006146A JP4823697B2 (ja) 2006-01-13 2006-01-13 電動湾曲内視鏡

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/167,628 Continuation US8622895B2 (en) 2006-01-13 2008-07-03 Electric bending endoscope

Publications (1)

Publication Number Publication Date
WO2007080954A1 true WO2007080954A1 (ja) 2007-07-19

Family

ID=38256360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050303 WO2007080954A1 (ja) 2006-01-13 2007-01-12 電動湾曲内視鏡

Country Status (5)

Country Link
US (1) US8622895B2 (ja)
EP (1) EP1972258B1 (ja)
JP (1) JP4823697B2 (ja)
CN (1) CN101370421B (ja)
WO (1) WO2007080954A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111497249A (zh) * 2020-04-29 2020-08-07 深圳市纵维立方科技有限公司 一种3d打印机控制器及3d打印机控制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085662B2 (ja) 2007-11-29 2012-11-28 オリンパスメディカルシステムズ株式会社 内視鏡システム
CN103250406B (zh) * 2010-12-14 2017-03-01 奥林巴斯株式会社 摄像装置
WO2013015003A1 (ja) * 2011-07-28 2013-01-31 オリンパスメディカルシステムズ株式会社 内視鏡
JP6125109B2 (ja) 2014-12-03 2017-05-10 オリンパス株式会社 内視鏡
WO2016174903A1 (ja) * 2015-04-30 2016-11-03 ソニー・オリンパスメディカルソリューションズ株式会社 信号処理装置及び医療用観察システム
JP6554609B2 (ja) * 2016-06-20 2019-07-31 オリンパス株式会社 可撓管挿入装置
WO2018092399A1 (ja) * 2016-11-17 2018-05-24 オリンパス株式会社 内視鏡装置
JP7346598B2 (ja) 2020-01-16 2023-09-19 オリンパス株式会社 内視鏡システム、および内視鏡システムの情報処理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147058A (ja) * 1998-11-05 2000-05-26 Dainippon Printing Co Ltd 自己診断機能部を有するデバイス
JP2003115847A (ja) * 2001-10-09 2003-04-18 Denso Corp 制御システム及び冗長系信号処理装置
JP2003245246A (ja) * 2002-02-25 2003-09-02 Olympus Optical Co Ltd 電動湾曲内視鏡装置
JP2005342147A (ja) * 2004-06-02 2005-12-15 Olympus Corp 電子内視鏡装置
JP2006006146A (ja) 2004-06-23 2006-01-12 Asahi Sousetsu Kk オートブレッダにおける粉付け装置
WO2006019136A1 (ja) 2004-08-19 2006-02-23 Olympus Corporation 電動湾曲制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982725A (en) * 1989-07-04 1991-01-08 Olympus Optical Co., Ltd. Endoscope apparatus
US5469840A (en) * 1991-12-10 1995-11-28 Olympus Optical, Ltd. Electromotive warping type endoscope with velocity control
US5868666A (en) * 1993-11-26 1999-02-09 Olympus Optical Co., Ltd. Endoscope apparatus using programmable integrated circuit to constitute internal structure thereof
US6669629B2 (en) * 2001-04-24 2003-12-30 Olympus Optical Co., Ltd. Endoscope system comprising an electrically bendable endoscope
JP2006055348A (ja) * 2004-08-19 2006-03-02 Olympus Corp 電動湾曲制御装置
US7811277B2 (en) 2004-09-30 2010-10-12 Boston Scientific Scimed, Inc. Steerable device and system
EP1972257B1 (en) * 2006-01-13 2015-07-15 Olympus Medical Systems Corp. Electric bending endoscope

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147058A (ja) * 1998-11-05 2000-05-26 Dainippon Printing Co Ltd 自己診断機能部を有するデバイス
JP2003115847A (ja) * 2001-10-09 2003-04-18 Denso Corp 制御システム及び冗長系信号処理装置
JP2003245246A (ja) * 2002-02-25 2003-09-02 Olympus Optical Co Ltd 電動湾曲内視鏡装置
US20040054258A1 (en) 2002-02-25 2004-03-18 Olympus Optical Co., Ltd. Electric bending endoscope apparatus
JP2005342147A (ja) * 2004-06-02 2005-12-15 Olympus Corp 電子内視鏡装置
JP2006006146A (ja) 2004-06-23 2006-01-12 Asahi Sousetsu Kk オートブレッダにおける粉付け装置
WO2006019136A1 (ja) 2004-08-19 2006-02-23 Olympus Corporation 電動湾曲制御装置
EP1787572A1 (en) 2004-08-19 2007-05-23 Olympus Corporation Electric curving control apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1972258A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111497249A (zh) * 2020-04-29 2020-08-07 深圳市纵维立方科技有限公司 一种3d打印机控制器及3d打印机控制方法

Also Published As

Publication number Publication date
CN101370421A (zh) 2009-02-18
CN101370421B (zh) 2013-05-08
EP1972258B1 (en) 2013-04-03
JP2007185356A (ja) 2007-07-26
JP4823697B2 (ja) 2011-11-24
EP1972258A1 (en) 2008-09-24
US8622895B2 (en) 2014-01-07
US20080262310A1 (en) 2008-10-23
EP1972258A4 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
EP1972257B1 (en) Electric bending endoscope
JP4823697B2 (ja) 電動湾曲内視鏡
JP4823696B2 (ja) 電動湾曲内視鏡
JP4823695B2 (ja) 電動湾曲内視鏡
US8019473B2 (en) Manipulator and method of controlling manipulator
EP1787572B1 (en) Electric curving control apparatus
EP1787573B1 (en) Electric curvature control device
CN102573599B (zh) 医疗系统和控制方法
EP2583616B1 (en) Endoscope
JP4197877B2 (ja) 電動湾曲内視鏡装置及びキャリブレーション方法
JP2001275941A (ja) 電動湾曲内視鏡装置
US20130158349A1 (en) Insertion and extraction assisting device and endoscope system
US20240115117A1 (en) Manipulator system, manipulator system control method, and manipulator system control device
JP4823745B2 (ja) 機器制御システム
JP2002315719A (ja) 電動湾曲内視鏡の湾曲駆動制御装置
JP2010066407A (ja) 内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007706645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780002393.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE