WO2007077867A1 - 運転行動推定装置、運転支援装置、車両評価システム、ドライバモデル作成装置、及び運転行動判定装置 - Google Patents

運転行動推定装置、運転支援装置、車両評価システム、ドライバモデル作成装置、及び運転行動判定装置 Download PDF

Info

Publication number
WO2007077867A1
WO2007077867A1 PCT/JP2006/326041 JP2006326041W WO2007077867A1 WO 2007077867 A1 WO2007077867 A1 WO 2007077867A1 JP 2006326041 W JP2006326041 W JP 2006326041W WO 2007077867 A1 WO2007077867 A1 WO 2007077867A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
driving
vehicle
driver model
data
Prior art date
Application number
PCT/JP2006/326041
Other languages
English (en)
French (fr)
Inventor
Kazuya Takeda
Katunobu Itou
Chiyomi Miyajima
Koji Ozawa
Hirokazu Nomoto
Kazuaki Fujii
Seiichi Suzuki
Original Assignee
National University Corporation Nagoya University
Equos Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005378929A external-priority patent/JP4781104B2/ja
Priority claimed from JP2006101053A external-priority patent/JP4791874B2/ja
Application filed by National University Corporation Nagoya University, Equos Research Co., Ltd. filed Critical National University Corporation Nagoya University
Priority to CN2006800499780A priority Critical patent/CN101389521B/zh
Priority to US12/087,130 priority patent/US8140241B2/en
Priority to EP06843423A priority patent/EP1997705B1/en
Publication of WO2007077867A1 publication Critical patent/WO2007077867A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection

Definitions

  • Driving behavior estimation device driving support device, vehicle evaluation system, driver model creation device, and driving behavior determination device
  • the present invention relates to a driving behavior estimation device, a driving support device, and a vehicle evaluation system.
  • a driving behavior estimation device For example, a device, a system, and the like that perform driving estimation, driving support, and vehicle evaluation using a driver model
  • the present invention also relates to a driver model creation device that serves as a driving condition evaluation standard, and a device that performs driving state evaluation and driving support using a driver model.
  • Patent Document 1 proposes a technique for evaluating the risk of an intersection road using a driver model that uses fuzzy rules and -Ural network.
  • Patent Document 1 JP 2002-140786 A
  • a driver model is configured using fuzzy rules or -Ural networks, so it is necessary to create fuzzy rules, learn backpropagation, etc.
  • the model cannot be created easily.
  • the conventional driver model is a model for evaluating the risk of intersection roads, and it has been less powerful than the driver model that estimates the driving behavior of driving behavior.
  • the present invention can be easily created, and the driving characteristics of the driver can be more accurately determined.
  • the primary purpose is to estimate driving behavior using an expressible driver model.
  • a driving state such as a driving operation estimated from the driver model is estimated as a normal driving state, and this and the current driving state are determined. By comparing, the current driving can be evaluated.
  • the driving state estimated by the driver model force was not necessarily a normal driving state for the driver.
  • a second object of the present invention is to create a more accurate driver model that serves as an evaluation criterion for the driving state.
  • a third object of the present invention is to provide a driving support device that uses the driver model to perform more accurate driving state evaluation and driving support.
  • the fourth objective is to evaluate the driving state with higher accuracy for the driving behavior of the driver.
  • the driving behavior estimation device uses the time series data of N types of feature quantities detected as the vehicle travels to learn data, and the probability distribution that each data exists in the N-dimensional space is obtained.
  • Driving action estimation includes: a maximum posterior probability calculating means for calculating posterior probability; and an output means for outputting an estimated value of the specific feature quantity X with respect to the acquired feature quantity based on the calculated maximum posterior probability.
  • the first objective is achieved by installing it in the equipment.
  • the N types of feature quantities are temporal variations with respect to n types (n ⁇ N) of feature quantities. It is characterized by including.
  • the driving behavior estimation device includes an operation amount of an operation device directly operated by a driver and a time change amount of the operation amount.
  • the driver model learns time series data of the N types of feature quantities. It is characterized by being described as GMM (Gaussian mixture model) calculated by the EM algorithm as the probability distribution of each data.
  • GMM Gausian mixture model
  • the driver model for the accelerator using the accelerator operation amount, the brake operation amount, the vehicle speed of the host vehicle, the inter-vehicle distance from the preceding vehicle, and the driver model for the brake as the feature amount
  • the driving behavior estimation device according to claim 1, claim 2, claim 3, or claim 4 that estimates the accelerator operation amount and the brake operation amount as the feature amount X, and the vehicle speed of the host vehicle.
  • Driving data acquisition means for acquiring an inter-vehicle distance, and controlling an engine throttle and a brake pedal according to an accelerator operation amount and a brake operation amount estimated by the athletic behavior estimation device with respect to the acquired traveling data.
  • a driving control means for automatically following the vehicle ahead of the vehicle.
  • the driver model for the accelerator using the accelerator operation amount, the brake operation amount, the vehicle speed of the host vehicle, the inter-vehicle distance from the preceding vehicle, and the driver model for the brake as the feature amount
  • the driving operation estimation device according to claim 1, claim 2, claim 3, or claim 4 that estimates an accelerator operation amount and a brake operation amount as the feature amount X, and is an evaluation target.
  • Means for acquiring vehicle performance data of the vehicle, means for acquiring driving data and a road model for simulation, and an accelerator obtained by applying the acquired driving data and road model to the driving behavior estimation device The vehicle dynamics calculation means for estimating the vehicle behavior including the acceleration of the vehicle to be evaluated with respect to the operation amount and the brake operation amount, and the evaluation based on the estimated vehicle behavior. And evaluating means for evaluating the running performance of the vehicle of interest, the is provided a vehicle evaluation system.
  • the driving operation information acquisition means for acquiring driving operation information in vehicle driving, and the acquired driving operation information.
  • Create a driver model of driving operation according to the driver's condition A driver model creating device is provided with a driver model creating means to achieve the second object.
  • the invention described in claim 8 is characterized in that, in the driver model creation device according to claim 7, the state determination means determines at least whether or not the state of the driver is normal. To do.
  • the driving environment acquisition means for detecting a specific driving environment, and the driving operation information for each driving environment.
  • the driver model creating means creates a driver model for each driving environment.
  • the driver model creation device according to claim 7, claim 8 or claim 9 further includes a biological information acquisition means for acquiring the biological information of the driver, The state determination means determines a driver's state based on the acquired biological information.
  • the driver model acquisition means for acquiring the driver model of the driving operation in the normal state and the driving operation that is normally operated in the normal state are estimated by using the acquired driver model.
  • the driver model acquisition unit is configured to perform a current driving from a driver model of driving operation in a normal state created for each driving environment.
  • the driver model corresponding to the environment is acquired.
  • a driver state determination means for determining the state of the driver from the biological information of the driver. And the driving support means performs driving support according to the determined driving behavior and the determined driver state.
  • the driving support means of the above driving support means provides at least one driving support of alerting by voice or image, information provision, vibration, and rest area guidance according to the determination contents. To do.
  • the driver model acquisition means for acquiring the driver model of the driving operation in the normal state and the driving operation normally operated in the normal state are estimated by using the acquired driver model.
  • the driver describes the probability distribution that each data in the N-dimensional space exists using the time series data of the N kinds of feature quantities detected as the vehicle travels as learning data.
  • the maximum a posteriori probability in the driver model for the feature quantity excluding the specific feature quantity X is calculated and output as the estimated value of the specific feature quantity X, so it can be easily created. It is possible to estimate the driving behavior closer to the driving characteristics of the driver.
  • the seventh to tenth aspects of the present invention since a driver model of driving operation according to the driver's condition is created, a more accurate driver model can be obtained.
  • the driving operation is normally performed in the normal state estimated using the driving model of the driving operation in the normal state, and the driving operation based on the current driving operation information. Since the driving behavior of the driver is determined and driving assistance is performed according to the determined driving behavior, the driving state can be evaluated and driving assistance can be performed with higher accuracy.
  • the driving behavior of the driver is determined based on the driving operation that is normally operated in the normal state estimated using the driving model of the driving operation in the normal state and the driving operation based on the current driving operation information. This makes it possible to evaluate the driving state with higher accuracy.
  • driving behavior characteristics that are different for each driver are modeled, so that vehicle control and driving support are performed in accordance with the characteristics of the driver, and safe and comfortable safe driving is supported.
  • a vehicle design evaluation system using objective evaluation criteria based on statistical data will be constructed.
  • GMM Global System for Mobile Communications
  • the Gaussian calculated by the EM (Expectatio n Maximization) algorithm using, as learning data, traveling data that also has multiple types of feature amount forces such as accelerator operation amount, vehicle speed, and inter-vehicle distance.
  • the mixed model is adopted as the driver model.
  • This Gaussian mixture model is composed of parameters of the joint probability density function obtained by calculating the joint probability density distribution by the EM algorithm, and for each driver, as well as for the driver's accelerator operation and brake operation as necessary. It is generated for each estimated feature quantity for the inter-vehicle distance maintenance range.
  • the feature value X is estimated by calculating the maximum posterior probability.
  • a driver model of the driver A is generated in advance, and auto-cruise (ACC) that automatically travels following the vehicle ahead is executed.
  • ACC auto-cruise
  • the accelerator control engine throttle control
  • the accelerator operation is performed close to the driving operation of the driver that generated the driver model.
  • FIG. 1 shows the principle regarding generation of a driver model by the driving behavior estimation apparatus according to the present embodiment and estimation of driving behavior based on the generated driver model.
  • the vehicle speed V the inter-vehicle distance F with the preceding vehicle
  • the primary dynamic features ⁇ AF (first-order differential value), secondary ⁇ , ⁇ AF (second-order differential value), and accelerator operation amount G as the driver model for accelerator operation and primary dynamic feature amount ⁇ G
  • brake operation amount B as the driver model for brake operation
  • the case of using the first-order dynamic feature value ⁇ B the first-order dynamic feature value
  • the driving data 1 composed of the accelerator operation amount, the vehicle speed, the inter-vehicle distance, etc. is used as learning data, and the driver model 2 based on the GMM for each driver corresponding to the driving data. Is generated in advance by the EM algorithm.
  • the corresponding driver model 2 is used, and the measured value of the driving data 1 at time t (V, F, ⁇ , ⁇ ' ⁇ )
  • the maximum a posteriori probability 4 for 3 the amount of accelerator operation 5 that the driver will operate is estimated.
  • the driver determines the amount of operation of the accelerator pedal and the brake pedal based on the current vehicle speed, the inter-vehicle distance, and the primary and secondary dynamic feature quantities. Based on the assumption that
  • Driver model 2 using GMM requires learning data, and features driving data as feature values. Data 1 was used.
  • the driving data 1 is data that is actually driven by the driver for which the driver model is to be generated. By using the driving data 1 that has been measured and stored in advance, offline learning becomes possible. In addition, it is possible to use the driving data 1 measured and collected in real time while the driver is actually driving.
  • a model that matches the characteristics of each driver can be obtained by generating a GMM for each driver.
  • the driver model features include the vehicle speed, the inter-vehicle distance, and the primary and secondary dynamic features, the accelerator pedal operation amount, and the accelerator pedal operation amount.
  • a first order dynamic feature is used.
  • modeling by adding a dynamic feature amount to a feature amount allows consideration of the temporal relationship before and after, and a smooth and highly natural estimation result can be obtained.
  • V, F, ⁇ , AF, ⁇ data other than accelerator pedal operation amount, brake pedal operation amount, etc.
  • the dynamic feature amount in the travel data is obtained by calculating the measured value force of the accelerator operation amount, the vehicle speed, and the inter-vehicle distance, but may be actually measured.
  • the driver model 2 is generated by calculating a mixed Gaussian distribution (GMM) for the running data 1.
  • GMM mixed Gaussian distribution
  • ⁇ 1 is the mean vector group
  • ⁇ i is the variance-covariance matrix group
  • M is the number of mixtures.
  • ⁇ like i means a vector.
  • EM algorithm for example, according to Sei Nakagawa, “Speech Recognition by Probabilistic Model” (IEICE 1988, P51 to P54), a mixed Gaussian distribution is estimated by an EM algorithm.
  • the driver determines the amount of operation of the accelerator pedal and brake pedal based on the current vehicle speed, the inter-vehicle distance, and their primary and secondary dynamic features. Estimate exercise behavior such as the amount of operation of the dar.
  • the motor behavior such as the accelerator pedal operation amount with the highest probability under the given conditions is estimated.
  • the accelerator pedal operation amount AG (t) and the brake pedal operation amount AB (t) are estimates of the value x (t) that maximizes the conditional probability under the condition where y (t) is given.
  • the posterior probabilities are calculated by the following formulas (1) and (2), respectively.
  • ⁇ G (t) arg max p (G
  • AB (t) arg max p (BI ⁇ B, V (t), F (t), ⁇ V (t), ⁇ F (t), ⁇ AV (t), ⁇ ⁇ F (t)) ( 2) [0028] where AG (t), where ⁇ is displayed before, means an estimated value.
  • Equation (1) and (2) t is the time, and G, B, V, F, and ⁇ are the accelerator pedal operation amount, the brake pedal operation amount, the vehicle speed, the inter-vehicle distance, and the dynamic feature amount, respectively.
  • the values of the accelerator pedal and the brake pedal that maximize the conditional probability are numerical values with a certain step size (for example, 100 steps from 0 to 10000) in the interval from the minimum value to the maximum value.
  • the probability may be calculated by performing integration, and the value of the accelerator pedal and the brake pedal when the probability becomes maximum may be used as the estimation result.
  • FIG. 2 shows an outline of driving behavior estimation based on the maximum posterior probability.
  • FIG. 2 shows a case where Ax (t) is estimated when a feature value y (t) at a certain time t is given.
  • FIG. 3 shows the configuration of the driving behavior estimation device.
  • the driving behavior estimation device in the present embodiment includes a driver model generation unit 10 and a driving behavior estimation unit 11.
  • This driving behavior estimation device is realized by a computer system equipped with a CPU, ROM, RAM, and the like.
  • the driving behavior estimation device may be configured without the driver model generation unit 10 by using a driver model generated by another device.
  • the driver model generation unit 10 includes a driver information acquisition unit 101, a travel data acquisition unit 102, a simultaneous probability density distribution calculation unit 103, and a simultaneous probability density function parameter storage unit 104.
  • the driver information acquisition unit 101 is information for associating the generated driver model with the driver, and includes a driver ID. That is, this is a driver ID that identifies the driver when the travel data acquired by the travel data acquisition unit 102 is measured.
  • the travel data acquisition unit 102 acquires travel data as learning data for generating a driver model by GMM.
  • FIG. 4 shows the travel data acquired by the travel data acquisition unit 102.
  • the driving data includes driving environment data (a) and driver operation data (b).
  • driving data are listed as data that can be used as data, and are not necessarily required. Data is appropriately selected depending on the driver model to be generated.
  • the traveling environment data includes traveling state data and road state data.
  • the driving status data changes depending on the driving and environment, and includes vehicle speed, distance between vehicles, weather, presence / absence of traffic jam (degree of traffic jam), brightness, and other data.
  • the road condition data is data representing road conditions and does not change depending on the environment.
  • the road condition data includes road type, pavement form, road width, number of lanes, friction coefficient, unevenness coefficient, curve curvature, cant, slope, line of sight, and other data.
  • the driver operation data includes a steering wheel operation amount, an accelerator pedal operation amount, a brake pedal operation amount, an inter-vehicle distance maintenance range amount, and other data.
  • This driver operation data is often the driving behavior (estimated value of feature value X) estimated using the generated driver model. Therefore, the number of driver operation data corresponding to the number of driver models to be generated is acquired. For example, when creating a driver model for operating the accelerator pedal and a driver model for operating the brake, the accelerator pedal operation amount and the brake pedal operation amount are acquired.
  • Both are also acquired when a driver model common to accelerator and brake operations is generated.
  • the travel data acquired by the travel data acquisition unit 102 may be acquired in advance as travel data that has been measured and stored in advance, or a predetermined value may be obtained while the driver is actually driving. It may be possible to acquire the detected data sequentially at every sampling time.
  • the joint probability density distribution calculation unit 103 calculates the joint probability density distribution in the Gaussian mixture model using the acquired traveling data as learning data.
  • the joint probability density function parameter ⁇ i, ⁇ ⁇ ⁇ , ⁇ i ⁇ obtained as a result of the calculation by the joint probability density distribution calculation unit 103 is associated with the driver ID acquired by the driver information acquisition unit 101, and the joint probability is calculated. It is stored in the density function parameter storage unit 104.
  • the joint probability density function parameter to be stored is for (driver ID) and It is stored so that it can be distinguished whether the driving behavior is a driver model.
  • FIG. 5 is a flowchart showing driver model generation processing by the driver model generation unit 10 configured as described above.
  • Driver information acquisition unit 101 acquires driver information (step 10) and travel data acquisition unit 1
  • the travel data is acquired all at once or sequentially (step 11).
  • step 10 and step 11 may be reversed or parallel.
  • the joint probability density distribution calculation unit 103 calculates the joint probability density distribution using the acquired travel data as learning data (step 12), and associates the joint probability density function parameter with the driver information as a driver model. This is stored in the joint probability density function parameter storage unit 104 (step 13), and the process is terminated.
  • the driving behavior estimation unit 11 includes a driver information acquisition unit 111 and a travel data acquisition unit.
  • a driver model selection unit 113 a driver model selection unit 113, a maximum posterior probability calculation unit 114, and an estimated value output unit 115 of the feature quantity X.
  • the driver information acquisition unit 111 acquires a driver ID for specifying the target of the driver model.
  • This driver information is acquired mainly by the input of the operator (the driver himself or another operator).
  • driver information used as driver information, stored in association with the driver ID, and the driver information is acquired. Even if you specify the driver ID.
  • the driving data acquisition unit 112 includes driving behavior (features) estimated by the driver model among the driving data (N types of feature quantities) used when the driver model generation unit 10 generates the driver model to be used. Travel data excluding (X) is acquired (N—one feature quantity)
  • the driver model selection unit 113 is based on the joint probability density function parameter storage unit 104.
  • the driver model (simultaneous probability density function parameter) to be applied is selected.
  • the maximum posterior probability calculation unit 114 applies the driving data acquired by the driving data acquisition unit 112 to the driver model selected by the driver model selection unit 113, and uses the above formulas (1), (2), etc. And calculate the maximum posterior probability.
  • the estimated value output unit 115 of the feature quantity X outputs the value calculated by the maximum posterior probability calculation unit 114 as an estimated value of the feature quantity X.
  • FIG. 6 is a flowchart showing a process of estimating a specific driving action using the generated driver model.
  • driver information is acquired by the driver information acquisition unit 111 (step 20).
  • the travel data acquisition unit 112 acquires travel data at the present time (time t) (step 21).
  • the travel data acquired here is N—one type of travel data excluding the feature amount X.
  • step 20 and step 21 Even if the order of step 20 and step 21 is reversed, process them in parallel.
  • the corresponding simultaneous probability density function parameter storage unit 104 selects and reads the corresponding simultaneous probability density function parameter (driver model) (step 22).
  • the driver model may be selected from the driver information without using the traveling data. In this case, the driver model may be selected before obtaining the driving data.
  • a driver model may be selected in advance. It can be omitted if necessary.
  • the maximum posterior probability calculation unit 114 calculates the maximum posterior probability by applying the acquired traveling data to the selected driver model (step 23).
  • Equation (1) For the calculation of the maximum posterior probability, use Equation (1) above if the estimated driving behavior (feature value X) is the accelerator operation amount, and Equation (2) if it is the brake operation amount.
  • the calculated calculation result in the maximum posterior probability calculation unit 114 is used as the estimated value of the feature value X at time t by the driver model from the estimated value output unit 115 of the feature value X.
  • This driving support device is a device that performs automatic following operation (ACC) by following the vehicle ahead.
  • ACC automatic following operation
  • the driver can drive by himself / herself by using the driver model that also generates the driving data force of the driver while driving, the inter-vehicle distance, accelerator operation, and brake operation during ACC operation. This is an ACC that is close to the driving sensation.
  • the driver model is generated in advance using the actual driving operation force driving data of the driver in a state where the ACC is operable as learning data.
  • the generated driver model reflects the driver's driving habits, such as the relationship between the vehicle speed and the inter-vehicle distance, and the amount of accelerator and brake operation when adjusting the distance.
  • the wrinkles related to the driver's inter-vehicle maintenance operation are learned and stored as a driver model.
  • the driver model to be generated includes vehicle data (accelerator operation amount, brake operation amount, vehicle speed,...;), forward vehicle data (vehicle distance, relative speed, vehicle type,...;), road environment data (ambient brightness, Three types of information are generated by correlating the forecast, tunnel, rainfall, road surface, lane width, road congestion, etc.).
  • the road environment data includes information that changes with TPO, such as ambient brightness, weather, road surface conditions, and road congestion.
  • illuminance meter Also equipped with illuminance meter, rainfall sensor, road surface detection sensor, lane recognition device, various sensors for observing surrounding congestion, image recognition device, etc., and actively acquiring surrounding information such as the type of vehicle ahead You can also obtain weather forecasts and VICS information from the network.
  • the driver is released from the accelerator operation car by monitoring and maintaining the inter-vehicle distance from the preceding vehicle in the same manner as the normal ACC. .
  • current road environment information is collected, and the accelerator operation amount, brake operation amount, etc. are estimated using a driver model created in advance.
  • the vehicle distance is adjusted according to the estimated distance maintenance range, and the engine throttle and brake are controlled according to the estimated accelerator operation amount and the estimated brake operation amount. I do.
  • the inter-vehicle distance maintenance range estimation amount is calculated by calculating the inter-vehicle distance force that the driver normally maintains between the vehicle ahead and the scene similar to the current situation.
  • the range of the inter-vehicle distance in the scene is reflected.
  • the estimated accelerator operation amount is calculated as the accelerator operation force that the driver usually performs when adjusting the inter-vehicle distance in a scene that is similar to the current situation, so that the driver prefers the distance to the vehicle ahead in that scene.
  • the method of operation that closes the distance is reflected.
  • the estimated amount of brake operation is calculated as the brake operation force that the driver usually performs when adjusting the inter-vehicle distance in a scene similar to the current situation, and this reduces the distance to the vehicle ahead in that scene that the driver likes. It reflects the way of operating the distance (freeing immediately, relaxing etc.).
  • the system can be made closer to the driver's sensibility by reproducing the habits of changing the distance between vehicles, even when external factors such as ambient brightness, weather, and road surface conditions change.
  • Fig. 7 shows the configuration of the driving support device to which the driving behavior estimation device is applied.
  • the driving support device includes a travel data acquisition unit 12, an accelerator unit 13, a brake unit 14, an ECU (electronic control unit) 15, an ACC switch 16, and a navigation device 17.
  • the configuration of the driving support device described with reference to FIG. 7 is not all necessary, but describes the parts and devices that can be used to perform automatic follow-up. It is possible to configure the driving support device by appropriately selecting according to the function.
  • the travel data acquisition unit 12 includes a vehicle speed sensor 120 that detects the vehicle speed of the host vehicle, an inter-vehicle distance sensor 121 that detects an inter-vehicle distance from the preceding vehicle, an imaging device 12 2 that images the front of the vehicle, and a GPS + Vehicle communication distance measuring unit 123 and road environment information collecting unit 124 are provided.
  • the GPS + inter-vehicle communication distance measurement unit 123 specifies the position (latitude and longitude) of the host vehicle with a GPS device, and receives the coordinate values (latitude and longitude) of the preceding vehicle through inter-vehicle communication with the preceding vehicle. Then, the inter-vehicle distance between the two vehicles is calculated.
  • the road environment information collection unit 124 collects road environment information from headlight switches, wiper switches, road surface detection sensors, lane recognition devices, VICS, vehicle periphery monitoring sensors, and other devices.
  • the accelerator unit 13 includes an accelerator pedal 131, an accelerator pedal position sensor 132, and an engine throttle control device 133.
  • the brake unit 14 includes a brake pedal 141, a brake pedal position sensor 142, a brake control device 143, and a brake lamp 144.
  • the ECU 15 includes a forward vehicle recognition / tracking unit 151, an ACC availability determination unit 152, a driver model generation unit 153, and an ACC processing unit 154.
  • the ACC processing unit 154 includes an inter-vehicle distance monitoring / maintaining unit 154a, an accelerator operating unit 154b, a brake operating unit 154c, and a driving action estimating unit 154d.
  • the driving behavior estimation unit 154d calculates estimated values for the inter-vehicle distance maintenance range, the accelerator operation, and the brake operation.
  • ECU15 is a computer system with CPU, ROM, RAM, and interface parts. It is composed of stems.
  • the ACC switch 16 is a switch by which the driver selects whether or not to execute ACC running.
  • the driving operation amount is estimated using the generated driver model, and automatic follow-up traveling according to the estimated amount is performed.
  • the navigation device 17 includes a current position detection unit 171, map information 172, and the like.
  • the current position detection unit 171 detects the current position (latitude, longitude) of the vehicle using a GPS receiver or the like, and functions as the GPS of the travel data acquisition unit 12.
  • Figure 8 shows the automatic generation process for the ACC driver model.
  • the ECU 15 determines whether or not the ACC switch 16 is off (step 31). If the ACC switch 16 is on (ie, 31; N), the driver has requested ACC travel, so the driver model is not generated, and the ACC switch 16 is monitored for turning off.
  • step 31; Y the ECU 15 determines whether the vehicle ahead can recognize or not (step 32).
  • the vehicle ahead can be recognized when the vehicle recognition / tracking unit 151 ahead recognizes the vehicle and the distance sensor 121 detects the distance from the vehicle ahead.
  • Forward vehicle recognition / tracking unit 151 recognizes and tracks the forward vehicle using a captured image captured in front of the vehicle captured by imaging device 122.
  • Step 32; N If the preceding vehicle cannot be recognized! / (Step 32; N), the inter-vehicle distance data cannot be obtained, and the driver model for AC C cannot be generated.
  • the ECU 15 determines the map information power of the navigation device 17 to determine whether or not the scene power is ACC operable. For example, if you are driving on a highway or Tokyo Metropolitan Expressway, there is no merging lane for a predetermined distance on a toll road or bypass road. It is judged. [0068] If the scene is not capable of ACC operation (step 33; N), the ECU 15 returns to step 31 and repeats the process.
  • step 34 the ECU 15 executes the driver model generation process described in FIG. 5 (step 34) and ends the process.
  • a driver model for the inter-vehicle distance maintenance range a driver model for the accelerator operation, and a driver model for the brake operation are generated.
  • the driver model is automatically generated based on the actual driving state in the environment where the ACC driving is actually executed. Therefore, the generated driver models reflect the driver's driving habits, such as the relationship between vehicle speed and inter-vehicle distance, and the amount of accelerator and brake operation when adjusting the distance. Become.
  • FIG. 9 is a flowchart showing the operation of the ACC process.
  • the ECU 15 monitors whether or not the ACC switch 16 is turned on (step 41).
  • the ECU 15 collects road environment information (step 42).
  • the road environment information collected by the ECU 15 includes the estimated operation amounts (axle operation amount, brake operation amount, and inter-vehicle distance maintenance range estimation amount) from the travel data used in the driver model generation process (step 34). This is the driving data excluded.
  • the ECU 15 determines in the forward vehicle recognition / tracking unit 151 whether or not the forward vehicle to be followed can be recognized (step 43).
  • step 43; ⁇ If the vehicle ahead cannot be recognized (step 43; ⁇ ), the automatic follow-up cannot be maintained, so the ACC switch 16 is turned off and the driver is notified by voice or image (step 44). ), The process ends.
  • step 43; ⁇ the ECU 15 executes the driving action estimation process described in FIG. 6 (step 45), and the inter-vehicle distance maintenance range estimation amount, the accelerator The estimated amount and the brake operation estimated amount are calculated. Then, the current inter-vehicle distance is determined (step 46), and if it is within the inter-vehicle distance adjustment range, the ECU 15 maintains the current accelerator opening (step 37).
  • the ECU 15 controls the brake control device 143 according to the estimated brake value estimated by the brake operation driver model (step 48).
  • the ECU 15 controls the engine throttle control device 133 according to the estimated value of the accelerator estimated by the accelerator operation driver model (step 49).
  • the ECU 15 determines whether or not the ACC switch 16 is turned off (step 50). If the ACC switch 16 is not turned off (step 50; N), the ECU 15 returns to step 42, continues the ACC drive, and is turned off. If it is received (Step 50; Y), the process is terminated.
  • the driver's driving habits such as the relationship between the vehicle speed and the inter-vehicle distance and the operation amount of the accelerator and the brake when adjusting the distance are reflected.
  • Driver model is generated, and the accelerator (engine throttle) and brake are operated based on the accelerator operation amount, brake operation amount, and inter-vehicle distance adjustment range estimated by this driver model. Realized.
  • This vehicle evaluation system generates a driver model based on traveling data when a plurality of drivers such as professional drivers and general drivers actually travel in various vehicle performances and traveling conditions.
  • the estimated value of the generated driver model (nondle operation) is used to develop a virtual runway that is deployed using a drive simulator that does not evaluate the performance of the vehicle by actually driving the vehicle.
  • the vehicle's acceleration performance, deceleration performance, steering performance, stable running performance, etc. are evaluated by operating the vehicle using the amount, accelerator pedal operation amount, brake pedal operation amount, etc.
  • the vehicle evaluation system uses the GMM-based driver model 19 to estimate the driver's pedal operation amount, and calculates the vehicle acceleration speed a (t) based on the estimated pedal operation amount.
  • the vehicle dynamics calculation unit 20 to calculate, the traveling environment update unit 21 to update the vehicle speed V (t) and the inter-vehicle distance F (t) using the vehicle's acceleration speed a (t) and the position of the preceding vehicle, vehicle speed v (
  • a dynamic feature quantity calculation unit 22 is provided for calculating primary and secondary changes (dynamic feature quantities) of t) and inter-vehicle distance F (t).
  • the driver model 19 uses traveling data measured using actual driving or a drive simulator, and the target user population for the vehicle to be evaluated, such as a professional driver or a general driver. Multiple driver models are created from driving data of drivers that can be considered (for example, 100 examples).
  • an accelerator driver model 192 and a brake driver model 193 are generated, and an application determination unit 191 determines and selects one of them.
  • a driver model for steering wheel for estimating the steering amount of the driver's steering wheel is generated, and the application determining unit 191 uses the driver model for steering wheel. May also be selectable.
  • a driving behavior estimation device is applied to the driver model 19, which receives a feature quantity and a dynamic feature quantity such as a vehicle speed and an inter-vehicle distance, and specifies values of an accelerator pedal and a brake pedal that the driver will operate. It is.
  • the driver model] _ 9 as described in the driving behavior estimate system, the driver current vehicle speed, inter-vehicle distance, and one of them primary, based on second-order dynamic features, an accelerator Te pedal and the brake It is based on the assumption that the amount of pedal operation is determined.
  • the vehicle dynamics calculation unit 20 calculates the vehicle from the accelerator pedal operation amount G (t) and the brake pedal operation amount B (t) at a certain time t and the vehicle speed V (t-1) at the previous time.
  • the acceleration speed is calculated using the model (vehicle performance data such as vehicle weight, engine performance, brake performance, and gear ratio for the vehicle to be evaluated).
  • vehicle performance data such as vehicle weight, engine performance, brake performance, and gear ratio for the vehicle to be evaluated.
  • the vehicle model was implemented in MATLAB (a computer language that can handle matrix operations powerfully based on FORTRAN) with reference to the internal model of the driving simulator used to record the learning data.
  • the vehicle acceleration is calculated in consideration of gear ratio, vehicle weight, and road friction coefficient.
  • the driving environment updating unit 21 uses the acceleration speed a (t) at time t input from the vehicle dynamics calculation unit 20 to use the vehicle speed V (t + 1) at the next time (t + 1). Calculate and update the inter-vehicle distance F (t + 1).
  • V (t + l) V (t) + a (t) XT
  • the preceding vehicle has a traveling distance at each time, and the difference between the traveling distance of the preceding vehicle at time t and the traveling distance of the own vehicle is obtained. To calculate the distance between vehicles.
  • FIG. 11 shows the configuration of the driving behavior estimation device.
  • the driving behavior estimation device is composed of data used for evaluation, an evaluation execution part, and evaluation result data.
  • the vehicle performance data 25, the evaluation driver model 26, the simulation execution data 27, and the road model 28 are used as the usage data, and the driving evaluation data 36 is output and stored as evaluation result data.
  • the evaluation execution unit includes a road data development unit 29, a travel environment development unit 30, a driving behavior estimation unit 31, a vehicle dynamics calculation unit 32, a simulation travel processing unit 34, and a travel performance evaluation unit 35. , ROM, RAM, etc. Composed.
  • the vehicle performance data 25 is the performance data of the vehicle to be evaluated. As shown in FIG. 12 (a), vehicle weight, engine performance, brake performance, gear ratio, suspension spring constant, etc. Consists of data.
  • each driver model generated by the driving behavior estimation device described above is used.
  • the simulation execution data 27 is travel state data developed in a virtual space, and is composed of vehicle speed, inter-vehicle distance, weather, traffic congestion, and the like.
  • the road model 28 is data relating to a test road developed in a virtual space, as shown in FIG. 12 (c).
  • the driving behavior estimation unit 31 corresponds to the driver model 19
  • the vehicle dynamics calculation unit 32 corresponds to the vehicle dynamics calculation unit 20.
  • the simulation travel processing unit 34 and the travel environment development unit 30 correspond to the travel environment update unit 21 and the dynamic feature amount calculation unit 22.
  • FIG. 13 is a flowchart showing the operation of the design evaluation process.
  • the vehicle performance data 25 is input to the vehicle dynamics calculation unit 32 (step 61), and the vehicle dynamics model is developed in the simulation space (step 62).
  • the runway model 28 is input to the road data development unit 29 (step 63), and the simulation execution data 27 is input to the travel environment development unit 30 (step 64), thereby making the simulation execution environment into the simulation space. Expand (step 65).
  • the driving environment data (driving data) force at time t is also calculated as the driver behavior estimation values (accelerator pedal operation amount G (t) and brake pedal operation amount B ( t)) is calculated (step 68).
  • vehicle performance data 25 such as gear ratio, vehicle weight, and road friction coefficient is used. Then, the vehicle travel estimation data 33 such as the acceleration speed a (t) is calculated (step 69).
  • the vehicle travel estimation data 33 to be calculated is as shown in Fig. 12 (d) in addition to the acceleration speed a (t).
  • step 74 it is determined whether or not the simulation running process for all data up to time tn of the simulation execution data 27 is completed (step 74). If not completed (step 74; N), step 68 Return to and continue the simulation using the driver model.
  • step 74; Y When the processing up to time tn is completed (step 74; Y), the traveling performance evaluation unit 35 outputs traveling evaluation data and the processing is terminated (step 75).
  • the travel performance data output from the travel performance evaluation unit 35 includes acceleration curves for accelerator opening as acceleration performance, deceleration curves for brake operation amount as deceleration performance, and steering performance.
  • a travel curve with respect to the steering wheel operation amount, a travel trajectory with respect to the road direction, etc. are output as stability travel performance.
  • Driving data was recorded using a driving simulator for GMM learning.
  • the course is a straight line, and the behavior data of the preceding vehicle is adopted so that all vehicle speeds appear in order to give variations to the learning data.
  • the run was performed twice for 10 minutes, and the twice was used as learning data.
  • Fig. 14 (a) shows the behavior of the preceding vehicle
  • Fig. 14 (b) shows the driving data recorded.
  • Figure 14 (c) shows the behavior of the preceding vehicle used for the evaluation.
  • FIG. 15 shows a simulation result using the vehicle evaluation system of the present embodiment under the above conditions.
  • Figure 15 shows the vehicle speed results (a), the inter-vehicle distance results (b), and the accelerator pedal results (c).
  • the solid line shows the simulation results and the broken line shows the actual data.
  • the driving behavior estimation device As described above, the driving behavior estimation device, the driving support device, and the vehicle evaluation system according to the present invention have been described. Although one embodiment has been described, the present invention is not limited to the described embodiment, and various modifications can be made within the scope described in each claim.
  • the driver model based on GMM learns the relationship between signals such as vehicle speed and inter-vehicle distance and driving action signals from the learning data. The pedal operation amount is not estimated correctly.
  • the accelerator may be set to be fully depressed.
  • driving state data vehicle information such as accelerator, brake, steering operation amount, vehicle speed, inter-vehicle distance, acceleration, etc.
  • driving part is extracted and a driver model is created.
  • the driver model is created only when the driver is driving in the normal state based on the biological information of the driver, the driver model can be made more accurate and neutral.
  • the current driver's driving behavior is "as usual” by comparing the driving behavior under normal conditions estimated by the created driver model and the current driver's driving behavior in real time. Or whether it deviates.
  • the driver's “reaction speed” and “stagger” are used as indicators when comparing “normal” driving with current driving.
  • the information indicating the driver's state is determined in a composite manner by taking into account the change in the biological information that is not only evaluated by the change in the driving behavior based on the driver model. Accurately detects driver fatigue and reduced attention.
  • a driver model for each driver can be easily generated by using a GMM (Gaussian mixture model) as the driver model, as in the first embodiment. Driving operation behavior is easily estimated and output by calculation that maximizes the conditional probability.
  • GMM Gausian mixture model
  • the driver model creation device there are a plurality of types such as an accelerator operation amount, a vehicle speed, a brake operation amount, a steering operation amount, an inter-vehicle distance, and an acceleration.
  • the Gaussian mixture model calculated by the EM (Expectation Maximization) algorithm is used as the driver model, with the running data that is the feature power as learning data.
  • This Gaussian mixture model is composed of parameters of the joint probability density function obtained by calculating the joint probability density distribution by the EM algorithm, and for each driver, as well as for the driver's accelerator operation and brake operation as necessary. It is generated for each estimated feature quantity for the inter-vehicle distance maintenance range.
  • the driving excluding the specific feature amount X among the plurality of feature amounts used in the driver model.
  • the maximum posterior probability in the driver model for this driving data Y the feature quantity X is estimated.
  • Fig. 16 shows the configuration of the driving support device to which the driver model creation device is applied.
  • the driving support device includes an ECU (electronic control unit) 50, a host vehicle information acquisition unit 51, a host vehicle surrounding environment information acquisition unit 52, a biological information acquisition unit 53, an information provision unit 54, a driver model processing unit 55, a data storage unit Has 56.
  • ECU electronic control unit
  • the configuration of the driving support device described with reference to FIG. 16 is not limited to the need for all components and devices that can be used to create a driver model and provide driving support in this embodiment. It is possible to configure the driving assistance device by selecting it appropriately according to the function etc. of the driving assistance device to be adopted, and it is possible to additionally use other equipment and devices having similar functions. Is possible.
  • the ECU 50 is configured by a computer system including CPU, ROM, RAM, and interface sections.
  • the ECU 50 monitors the driver driving behavior based on the acquired information of the own vehicle information acquiring unit 51, monitors the driver biological information based on the acquired information of the biological information acquiring unit 53, and supplies the driver assist content information providing unit 54 to the driving assist. Instructions.
  • the ECU 50 also supplies the driver model processing unit 55 with data necessary for creating and outputting the driver model.
  • the own vehicle information acquisition unit 51 includes a steering wheel steering angle sensor 511, an accelerator pedal sensor 512, a brake pedal sensor 513, a speedometer 514, an acceleration sensor 515, an electric operation state acquisition ⁇ 516, a timer 517, and other sensors. ing.
  • FIG. 17 shows the own vehicle information as driving operation information acquired by the own vehicle information acquisition unit 51. This is just an example.
  • the steering wheel angle sensor 511 detects the steering wheel operation amount (angle)
  • the accelerator pedal sensor 512 detects the accelerator operation amount
  • the brake pedal sensor 513 detects the brake operation amount
  • the speedometer 514 detects the vehicle speed.
  • the acceleration sensor 515 detects the show axis acceleration, pitch axis acceleration, and roll axis acceleration.
  • the electric operation status acquisition unit 516 detects the blinker operation status, the light operation status, and the wiper operation status.
  • the timer 517 measures various times such as operation time and operation time.
  • the own vehicle surrounding environment information acquisition unit 52 includes a vehicle surrounding information acquisition unit 521, a road information acquisition unit 522, and a network unit 523.
  • the vehicle surrounding information acquisition unit 521 includes various sensors such as an infrared sensor, a millimeter wave sensor, an ultrasonic sensor, an image recognition device, and an inter-vehicle distance sensor.
  • the image recognition device performs image processing on the outside image captured by the image input device, and recognizes obstacles around the vehicle, pedestrians, vehicles, and the like.
  • FIG. 18 illustrates vehicle surrounding environment information acquired by the vehicle surrounding information acquisition unit 521.
  • the vehicle peripheral information acquisition unit 521 acquires the vehicle, pedestrian, obstacle, and other various information.
  • Specific information to be acquired includes, for example, the types of vehicles (passenger cars, motorcycles, bicycles, etc.) existing in the detected vicinity, inter-vehicle distance, relative speed, and attributes (oncoming vehicles, parallel vehicles, direct (left, right) ) Cars, etc. are acquired for each vehicle.
  • the road information acquisition unit 522 includes a GPS device for detecting the current position of the vehicle, and map information for acquiring road information corresponding to the detected current position and surrounding information such as presence / absence of a signal.
  • the road information acquisition unit 522 includes an image recognition device that recognizes signs and road environments. This image recognition device is shared with the image recognition of the vehicle surrounding information acquisition unit 521.
  • FIG. 19 illustrates vehicle surrounding environment information acquired by the road information acquisition unit 522.
  • the road information acquisition unit 522 has a road type, road shape, road width, own vehicle position, road surface condition, road brightness, presence / absence of signal, road attributes (traffic rules), etc. Various information is acquired.
  • the network unit 523 is connected to a traffic information network such as VICS or a weather information center, and acquires traffic information and weather information.
  • a traffic information network such as VICS or a weather information center
  • FIG. 20 illustrates vehicle surrounding environment information acquired by the network unit 523.
  • the congestion information acquired by VICS includes the distance of congestion, the distance of congestion, the presence of accidents, the presence or absence of traffic closure, the presence or absence of chain restrictions, and so on.
  • the weather information acquired by the weather information center includes weather information such as sunny, cloudy, rainy, rainfall probability, temperature, and other information.
  • the own vehicle surrounding environment information acquired by the own vehicle surrounding environment information acquisition unit 52 is a part of the own vehicle information acquired by the own vehicle information acquisition unit 51 (for example, going straight based on the amount of steering wheel operation). , Right turn, left turn, etc.) and situation setting according to the situation table 563 described later.
  • the biometric information acquisition unit 53 acquires biometric information for determining whether the driver is in a normal state or an abnormal state during driving of the vehicle, and an electrocardiograph, a sphygmomanometer, a heart rate sensor, A perspiration sensor and other various sensors are provided.
  • the biometric information acquisition unit 53 detects the heart rate and the amount of sweating at predetermined time intervals and supplies them to the ECU 50.
  • the heart rate sensor detects a heart rate by, for example, collecting a heart rate signal from the hand of a driving driver with an electrode disposed on a steering wheel.
  • a dedicated sensor may be placed on the driver's body such as the wrist.
  • the sweat sensor is arranged on the steering and detects the sweat state from the change in the current value that flows depending on the sweat state.
  • FIG. 21 illustrates biometric information acquired by the biometric information acquisition unit 53.
  • the biometric information acquisition unit 53 acquires cardiac potential, RR interval, heart rate, respiratory rate, body temperature, blood pressure, skin potential, moisture loss (sweat volume), myoelectric potential, electroencephalogram potential, and the like.
  • the information providing unit 54 includes a driving operation assist unit, a voice output unit, and a screen output unit for performing a driving operation assist and warning according to the driving state of the driver.
  • FIG. 22 illustrates information provided by the information providing unit 54 and the contents of assist.
  • the driving operation assist unit performs steering operation assist, accelerator operation assist, brake operation assistance, and the like as assistance for correcting the driving operation by the driver. Control the output. For example, if there is a wobble in the handle operation by the driver, the torque is operated so that the steering becomes heavy, and if the brake depressing force is weak, the output to the brake depression amount is assisted.
  • the voice output unit outputs a warning voice and the screen output unit displays a warning screen.
  • the driver model processing unit 55 includes a driver model creation unit 551, a driver model storage unit 552, and a driver model output unit 553.
  • the driver model creation unit 551 functions as a driver model creation device, and accumulates the own vehicle information when the driver is in the normal state among the own vehicle information acquired by the own vehicle information acquisition unit 51.
  • the own vehicle information in the normal state is accumulated for each situation determined by the own vehicle surrounding environment information acquisition unit 52 acquired when the information is acquired, and a driver model is created for each situation. Is done.
  • the driver model storage unit 552 stores the driver model created by the driver model creation unit 551 for each situation.
  • driver model creation section 551 creates a driver model for the situation and stores it in driver model storage section 552.
  • driver model of the corresponding situation model creates a new driver model together with the own vehicle information accumulated before then, and updates the driver model.
  • Driver model update is supported It may be created and updated every time there is a predetermined amount of additional accumulation, every time new vehicle information of the situation to be acquired is acquired.
  • FIG. 23 conceptually shows the storage contents of the driver model storage unit 552.
  • driver models are classified by situation.
  • Each stored driver model a, b, c, ... is linked to the corresponding situation data (situations a, b, c, ...), and the tag for the system to cite the driver model Function as.
  • the driver model output unit 553 estimates the driver's operation amount in the normal state, that is, the normal (normal) driving operation amount for the situation n based on the driver model n corresponding to the specific situation n. And output.
  • the driving behavior deviation data which is basic data for determining the driving behavior state (reaction delay, wandering, etc.), which will be described later, is displayed at predetermined time intervals. Obtained every time.
  • driver model creation unit 551 and the driver model output unit 553 in the driver model processing unit 55 are realized by the ECU 50, and the driver model storage unit 552 may be stored in the data storage unit 56.
  • the data storage unit 56 stores various data and tables necessary for the driver model creation process and the driving operation assist process according to the present embodiment.
  • the data storage unit 56 is a magnetic recording medium such as a flexible disk, hard disk, and magnetic tape, a semiconductor recording medium such as a memory chip and an IC card, and optical information such as a CD-ROM, MO, and PD (phase change rewritable optical disk). And other recording media on which data and computer programs are recorded by various methods.
  • Different recording media may be used depending on the recording contents.
  • Driving behavior deviation data 561 and host vehicle information 562 are stored in the data storage unit 56, and a situation table 563 is stored.
  • Driving behavior deviation data 561 is the driver mode for the current driving situation n. It is the difference data between the normal driving operation amount estimated from Dell n and the operation amount based on the actual own vehicle information, and is calculated and stored at every predetermined time interval for the current driving situation n .
  • host vehicle information 562 host vehicle information when the vehicle travels in a normal state is accumulated for each situation.
  • a driver model for the situation is created at the next point where a predetermined amount of the vehicle information is accumulated. Once the driver model is created, it is updated each time the own vehicle information of the corresponding situation is acquired.
  • the situation table 563 is a table for determining the corresponding situations a, b, c,... From the acquired own vehicle information and the surrounding environment information of the own vehicle.
  • Fig. 24 conceptually shows the contents of situation data. As shown in FIG. 24, a situation flag is set for each situation &, b, c,... Corresponding to the driver model a, b, c,.
  • one data is selected for each small item in the own vehicle information and the surrounding environment information of the own vehicle.
  • FIG. 25 is a flowchart showing the processing operation of driver model creation processing for creating a driver model of “normal driving behavior” (normal) of the driver.
  • the driver model is created by collecting and accumulating the biological information of the driver, the own vehicle information, and the surrounding environment information of the own vehicle while traveling, and setting the situation flag and the driver model.
  • the creation of may be performed when the vehicle is not running.
  • Driver model creation unit 551 collects and accumulates biological information at each time point from biological information acquisition unit 53 while the vehicle is traveling (step 110). Various information such as biological information is collected via the ECU 50 (the same applies hereinafter).
  • the driver model creation unit 551 determines whether or not the current driver status is normal by monitoring the change state of the collected and accumulated biometric information power (step 11). D o
  • FIG. 26 to FIG. 28 conceptually show a method for determining whether or not the driver is in a normal state.
  • Fig. 26 shows the state in which the driver's heart rate variability is monitored for mental changes caused by shaking and impatience.
  • Fig. 26 (a) if the heart rate measurement value falls between the predetermined upper and lower thresholds hi and h2, it is determined to be normal (stable! /) .
  • an abnormal state is determined when the values deviate from both sides of the upper and lower thresholds hl and h2 within a predetermined time. Even if you go over it, you may decide that it is abnormal.
  • Fig. 27 shows the state of monitoring the mental change of the Lorentz plot analysis ability of the electrocardiogram.
  • a normal state (moderate tension state) and an abnormal state (extreme tension state, distraction state, drowsiness state) are determined.
  • FIG. 28 shows a case in which it is determined from the obtained biological information whether or not the normal state power is based on whether the sympathetic nervous system is dominant or the parasympathetic nervous system is dominant.
  • the image pickup force of the driver also measures the size of the pupil and the size is divergent, the exchange nervous system is the most dominant and attention is required in extreme tension. It is judged that the power may be low.
  • the pupil size is in a contracted state, the parasympathetic nervous system is in a relaxed state, and depending on the degree of contraction, attention may be low and attention may be very low It is judged.
  • the pupillary size is moderately dominant in the exchange nervous system, it is judged as a normal state with a high level of attention in a moderate tension state.
  • Fig. 28 For each measurement item of action items (heart rate, cardiac contractility, etc.) shown in Fig. 28 including pupil size, extreme tension, moderate tension, relaxed state (low attention), relaxation Values for classification into four states (states with very low attention) are determined in advance.
  • driver biometric information case determination in the driver biometric information monitoring process (see FIG. 33) described later, extreme tension Five states are determined based on the method described in FIGS. 26 to 28: a state, a moderate tension state, a state of distraction, a relaxed state, and a sleepy state.
  • the biometric information power also determines whether the driver is normal or not. If normal (step 111; Y), the driver model creation unit 551 uses the information for creating a normal driver model. Thus, the own vehicle information and the surrounding environment information of the own vehicle are collected from the own vehicle information acquisition unit 51 and the own vehicle surrounding environment information acquisition unit 52 (step 112).
  • FIG. 29 illustrates the own vehicle information and the surrounding environment information acquired by the own vehicle information acquisition unit 51 and the surrounding environment information acquisition unit 52 when turning right at the intersection.
  • the acquired information includes road type, road condition, own vehicle speed, own vehicle position, direction of travel, and signal status (red, (Blue, yellow, etc.), presence / absence of front vehicle, front vehicle type, front vehicle relative position, front vehicle relative speed, presence / absence of oncoming vehicle, oncoming vehicle type, oncoming vehicle relative position, oncoming vehicle relative speed, presence of pedestrians None, pedestrian type, pedestrian position, pedestrian travel direction, weather, etc. are acquired. In this embodiment, these pieces of information are obtained and used for setting the situations described later. However, it is not always necessary to use all of them. On the other hand, you can set the situation with more detailed information!
  • the driver model creation unit 551 sets a situation flag from the collected own vehicle information and the surrounding environment information of the own vehicle according to the situation tape rule 563 (see Fig. 24), and collects the own vehicle information in the normal state. It is stored in the vehicle information 562 of the situation to be performed (step 113).
  • the driver model creation unit 551 creates a normal driver model for normal time corresponding to the situation set in step 113 according to the own vehicle information 562 at normal time collected and accumulated (step 114). Return to the main routine.
  • the biometric information ability also determines whether or not the driver is in a normal state. If it is not normal (step 111; N), the driver model creation unit 551 creates an abnormal driver model as in the normal state.
  • the own vehicle information at the time of abnormality and the own vehicle surrounding environment information are collected from the own vehicle information obtaining unit 51 and the own vehicle surrounding environment information obtaining unit 52 (step 115).
  • the driver model creation unit 551 sets a situation flag from the collected own vehicle information and the surrounding environment information of the own vehicle according to the situation tape rule 563 (see Fig. 24), and collects the own vehicle information at the time of abnormality. Is stored in the vehicle information 562 of the situation to be performed (step 116).
  • the driver model creation unit 551 creates an abnormal driver model for an abnormality corresponding to the situation set in Step 116 according to the own vehicle information 562 at the time of abnormality collected and accumulated (Step 117). Return to the main routine.
  • the normal driver model and the abnormal driver model are created according to whether the biological information is normal or abnormal has been described.
  • a driver model corresponding to the state of the biological information may be created, such as higher or lower than the threshold value.
  • driver model creation unit 551 the creation of the driver model by the driver model creation unit 551 will be described.
  • the driver model is created by GMM.
  • driver model creation device The principle regarding the creation of a normal driver model by the driving support device (driver model creation device) in this embodiment and the estimation of the amount of driving operation based on the created driver model is as described in FIG. 1 and the first embodiment. It is.
  • the feature amount may be created using a combination of other information among all the information acquired by the own vehicle information acquisition unit 51.
  • the driving data 1 (own vehicle information) for each situation, which is composed of the accelerator operation amount, the vehicle speed, the inter-vehicle distance, etc., is used as learning data, and the GMM corresponding to each situation is used.
  • Driver model 2 is created in advance using the EM algorithm.
  • the driver model may be created for each driver.
  • the corresponding driver model 2 is used, and the measured value of driving data 1 at time t (V, F, ⁇ , ⁇ ' ⁇ )
  • the maximum a posteriori probability 4 for 3 the amount of accelerator operation 5 that the driver will operate is estimated.
  • Driving behavior deviation data is calculated by estimating the next operation amount using each operation amount estimated in this way as travel data and comparing it with an actual measurement value (vehicle information) at each time.
  • the driver is able to determine the current vehicle speed, the inter-vehicle distance, and their primary order.
  • driver model creation and driving behavior estimation are as described in the first embodiment.
  • the driving data 1 is generated by the driver model. It is the data that is actually driven by the target driver, and the driving data 1 measured and collected in real time when the driver is actually driving is used. Further, offline learning may be performed by using the travel data 1 measured and accumulated in advance.
  • FIG. 30 is a flowchart showing the processing operation of the driver driving behavior monitoring process.
  • the ECU 50 collects own vehicle information and own vehicle surrounding environment information from the own vehicle information acquiring unit 51 and the own vehicle surrounding environment information acquiring unit 52 (step 120).
  • the ECU 50 sets a situation flag based on the acquired host vehicle information and host vehicle surrounding environment information (step 121).
  • the ECU 50 performs matching processing with the situation table 563 based on the set situation flag, and searches for a situation that matches the current situation such as the acquired surrounding environment information of the vehicle, so that a corresponding driver model exists. (Step 122).
  • step 122; N If the corresponding driver model does not exist (step 122; N), the process returns to the main routine.
  • step 122; Y when a situation that matches the current situation is searched and a corresponding driver model exists (step 122; Y), the ECU 50 links the matching situation to the situation.
  • the attached driver model is read from the driver model storage unit 552 and output to the driver model output unit 553 (step 123).
  • the ECU 50 inputs the own vehicle information (actually measured value) acquired at the time t by the own vehicle information acquisition unit 51 to the driver model output unit 553 as an initial value (t) (step 124). Then, the driver model output unit 553 inputs the own vehicle information (t) at time t to the driver model and calculates the maximum a posteriori probability, thereby calculating the estimated value of the driving behavior data (operation amount) at time t + 1. “t + 1” is output to the ECU 50 (step 125).
  • the ECU 50 obtains the own vehicle information (t + 1) at the current time (time t + 1) (steps 1). 126), the driving behavior deviation data (“t + 1” — (t + 1)) at time t + 1 is calculated and stored in the driving behavior deviation data 561 (step 127).
  • the ECU 50 determines whether or not the stored driving behavior deviation data 561 has accumulated a predetermined number (step 128), and if it is less than the predetermined number (step 128; N), the operation amount estimated in step 125 is estimated.
  • the value “t + 1” is input to the driver model as (t) (step 129), and the process proceeds to step 125, so that the driving behavior deviation data 561 at the next time is further accumulated (steps 125 to 27).
  • step 50 determines the driving behavior deviation tendency from the state of the driving behavior deviation data 561, outputs it (step 130), and returns to the main routine.
  • the deviation tendency of driving behavior is determined based on two items: presence / absence of “reaction speed delay” and presence / absence of “operation fluctuation”.
  • Fig. 32 shows the amount of driving operation in the normal state output from the driver model output unit 553.
  • the driving maneuver output (ordinary driving) output from the driver model is the most probable driving action that the driver normally takes when the driver inputs the initial value of the current driving maneuver. It represents the output value of a high manipulated variable, and t represents the virtual manipulated variable that should normally be operated in this way (should be the manipulated variable) under normal conditions.
  • the virtual operation amount is compared with the operation amount of the current driving to determine the tendency of the reaction speed to be slow and the operation fluctuation.
  • the operation amount based on the own vehicle information is acquired by the own vehicle information acquisition unit 51 after the predetermined time has elapsed. If it is determined that the reaction rate tends to be delayed.
  • the amount of increase increases. If the reduction amount (absolute value of driving behavior deviation data) is greater than or equal to a predetermined value, It is judged that the work is wobbled.
  • the ECU 50 collects and accumulates biological information at each time point from the biological information acquisition unit 53 while the vehicle is traveling (step 141).
  • the ECU 50 determines the current state (case) of the driver biometric information in the same manner as described in FIGS. 26 to 28 by monitoring the state of change in the collected and accumulated biometric information power (step). 142) Return to the main routine.
  • the driver biometric information monitoring process described above includes the driver biometric information collection (step 110) in the driver model creation process during travel described in FIG. 25, and whether the change in the driver biometric information is normal or not.
  • This determination can also be used.
  • the driver model creation process monitors whether the driver is in the normal state in step 111, but as shown in Fig. 25, which state corresponds to the state that is not normal. It is also judged according to Fig. 26 to Fig. 28 and output.
  • This determination from the eye state may be used in one or both of the driver model creation process (step 111) and the driver biological information monitoring process (step 142).
  • the number of blinks, blinking time, eyelid opening, and eye movement are detected by image processing as the driver status, and the values and conditions are To determine sleepiness.
  • the values and conditions are To determine sleepiness.
  • fatigue occurs when the number of blinks is increased, when the movement of the eyelids is convulsed, when the eyes are rubbed, or when the eyes are blurred. Judge that there is.
  • FIG. 35 is a flowchart showing the operation of the driving support process based on the driving state of the driver and the biological information case.
  • the ECU 50 obtains the driving behavior deviation tendency determined and output in step 130 of the driver driving behavior monitoring process (FIG. 30) as the driver state (step 151) and the driver biological information monitoring processing (FIG. 33).
  • the driver biometric information case determined and output in step 142 is acquired (step 152).
  • the ECU 50 determines the details of the driving assistance from the acquired driving behavior deviation tendency and the biological information case, approaches the driver (step 153), and returns to the main routine.
  • FIG. 36 is a table showing the driver state (a) estimated from the acquired driving behavior and the biometric information case, and the contents of the driving assistance performed in accordance with the estimated driver state. .
  • the table in FIG. 36 (b) is stored in the ROM of the ECU 50.
  • each driving action response (response delay, wobble, response delay + wobble, both without) and each biological information case (extreme tension, moderate tension, distracting attention)
  • Relaxed state, drowsiness state, etc. the driver's state is estimated such as being distracted, getting tired, sloppy driving, drowsiness, impatience, looking away, etc.
  • the ECU 50 recommends breaks by providing alerts and facility information by voice and vibration, alert + a 1
  • the information providing unit 54 provides driving support such as providing information to distract you.
  • ECU50 is dangerous because it concentrates on driving other than driving to + a1, so it will call attention and automatically increase the inter-vehicle distance from the preceding vehicle. Control and so on.
  • ECU50 alerts + «2 to concentrate on driving and The driver feels that he / she is less likely to drive, researches with the power of his / her speech, conversational functions and sensors, guides a break to take a dose, takes a troubled consultation, The operation which improves the problem which has.
  • ECU50 also alerts + ⁇ ; 3 to wake up and prompts them to take a break immediately.
  • the ECU 50 may provide specific explanations to make it easier for the driver to be satisfied, such as warnings and warnings, as the content of the alert, as to what was the problem of driving operations and biological information. good.
  • driver model creation device and the driving support device of the present invention has been described above, the present invention is not limited to the described embodiment, and various kinds of devices are included within the scope described in each claim. It is possible to perform deformation.
  • the determined driving behavior power may also determine the content of driving support.
  • FIG. 1 is an explanatory diagram showing the principle relating to generation of a driver model by the driving behavior estimation device in the first embodiment and estimation of driving behavior based on the generated driver model.
  • FIG. 2 is an explanatory diagram showing an outline of estimation of driving behavior based on the maximum posterior probability.
  • FIG. 3 is an explanatory diagram showing the configuration of the driving behavior estimation device.
  • FIG. 4 is an explanatory diagram showing travel data acquired by a travel data acquisition unit.
  • FIG. 5 is a flowchart showing driver model generation processing by a driver model generation unit.
  • FIG. 6 is a flowchart showing a process for estimating a specific driving action using a generated driver model.
  • FIG. 7 is a configuration diagram of a driving support device to which the driving behavior estimation device is applied.
  • FIG. 8 is a flowchart showing an automatic generation processing operation of an ACC driver model.
  • FIG. 9 is a flowchart showing the operation of ACC processing.
  • FIG. 10 is a conceptual explanatory diagram showing an outline of a vehicle evaluation system.
  • FIG. 11 is a configuration diagram of a driving behavior estimation device.
  • ⁇ 12 It is an explanatory diagram showing an overview of each data in the driving behavior estimation device.
  • FIG. 14 is an explanatory diagram showing the behavior and driving data of the preceding vehicle for learning and the behavior of the preceding vehicle for evaluation.
  • FIG. 15 is an explanatory diagram showing a simulation result using the vehicle evaluation system.
  • FIG. 17 is an explanatory diagram illustrating host vehicle information acquired by the host vehicle information acquisition unit.
  • FIG. 18 is an explanatory diagram illustrating vehicle surrounding environment information acquired by the vehicle surrounding information acquisition unit.
  • ⁇ 19] An explanatory diagram illustrating vehicle surrounding environment information acquired by the road information acquisition unit.
  • ⁇ 20] An explanatory diagram illustrating vehicle surrounding environment information acquired by the network unit.
  • FIG. 24 is an explanatory diagram conceptually showing the contents of situation data.
  • FIG. 25 is a flowchart showing a processing operation of a driver model creation process for creating a driver model of “ordinary driving behavior” (normal) of a driver.
  • FIG. 27 is an explanatory diagram showing a state in which mental changes are monitored from Lorentz plot analysis of an electrocardiogram.
  • ⁇ 28 It is an explanatory diagram showing a case where it is determined whether or not the normal state power is obtained from the acquired biological information.
  • FIG. 29 is an explanatory diagram illustrating host vehicle information and host vehicle surrounding environment information acquired by the host vehicle information acquiring unit and host vehicle surrounding environment information acquiring unit when making a right turn at an intersection.
  • FIG. 30 is a flowchart showing a processing operation of a driver driving action monitoring process.
  • FIG. 31 is an explanatory diagram regarding the setting of the own vehicle information and own vehicle surrounding environment information situation flag and the search for a suitable situation.
  • FIG. 32 is an explanatory diagram conceptually comparing the estimated value of the driving operation amount (normal driving) in the normal state and the driving amount of the current driving (own vehicle information) in the driver model output unit force. .
  • FIG. 33 is a flowchart of a driver's biometric information monitoring process while driving.
  • FIG. 34 is an explanatory diagram for determining a normal state, drowsiness, and fatigue state of a driver's eyes.
  • FIG. 35 is a flowchart showing an operation of a driving support process based on a driver driving state and a biological information case.
  • FIG. 36 is an explanatory diagram showing, as a table, the state of the driver estimated from the acquired driving behavior and the biometric information case, and the content of driving assistance performed in accordance with the estimated driver state. Explanation of symbols
  • Vehicle environment information acquisition section 521 Vehicle surrounding information acquisition unit 522 Road information acquisition unit 523 Network unit 53 Biometric information acquisition unit 54 Information provision unit
  • Driver model processing unit 551 Driver model creation unit 552
  • Driver model storage unit 553 Driver model output unit 56

Description

明 細 書
運転行動推定装置、運転支援装置、車両評価システム、ドライバモデル 作成装置、及び運転行動判定装置
技術分野
[0001] 本発明は、運転行動推定装置、運転支援装置、及び車両評価システムに係り、例 えば、ドライバモデルを使用して運転行動を推定、運転支援、及び車両評価を行う装 置、システム、及び、運転状態の評価基準となるドライバモデルの作成装置、及びド ライバモデルを使用した運転状態の評価と運転支援を行う装置に関する。
背景技術
[0002] 車両運転者 (ドライノく)の運転操作のモデル化、及びその応用につ 、て種々の提 案がされている。
例えば、特許文献 1記載技術では、ファジールールや-ユーラルネットワークを使 用したドライバモデルにより、交差点道路の危険度を評価する技術について提案さ れている。
[0003] 特許文献 1 :特開 2002— 140786
発明の開示
発明が解決しょうとする課題
[0004] 特許文献 1記載技術では、ファジールールや-ユーラルネットワークを使用してのド ライバモデルを構成しているため、ファジールールの作成や、バックプロパゲーション 等の学習が必要であり、ドライバモデルを容易に作成することができな 、。
また、従来技術では、一般的なドライバを対象としたモデルの作成は可能であるが 、運転者毎の運転操作の特徴をより正確に表現することは困難であった。
このため、複数の運転者毎の特徴を表すドライバモデルを作成することができなか つた o
さらに、従来のドライバモデルは、交差点道路の危険度を評価するためのモデルで あり、運転動作の運転行動を推定するドライバモデルではな力つた。
[0005] そこで本発明は、容易に作成することが可能で、ドライバの運転特徴をより正確に 表現可能なドライバモデルを使用し、運転行動を推定することを第 1の目的とする。
[0006] また、特許文献 1記載のようなドライバモデルを使用することで、ドライバモデルから 推定される運転操作等の運転状態を正常な運転状態として推定し、これと現在の運 転状態とを比較することで、現在の運転に対する評価を行うことができる。
しかし、ドライバモデル力 推定される運転状態は、必ずしもその運転者にとっての 正常な運転状態であるとは限らな力つた。
また、特定の運転者が実際に車両を運転することで運転状態のデータを収集し、こ れに基づ 、て予めドライバモデルを作成したとしても、必ずしも正常状態での運転が 行われているとは限らな力つた。
[0007] そこで本発明は、運転状態の評価基準となる、より精度の高いドライバモデルを作 成することを第 2の目的とする。
また、該ドライバモデルを使用した、より精度の高い運転状態の評価と運転支援を 行う運転支援装置を提供することを第 3の目的とする。
また、ドライバの運転行動に対して、より精度の高い運転状態の評価を行うことを第 4の目的とする。
課題を解決するための手段
[0008] (1)請求項 1記載の運転行動推定装置では、車両走行に伴い検出される N種類の 特徴量の時系列データを学習データとし、 N次元空間における各データが存在する 確率分布を記述したドライバモデルと、前記 N種類の内の特定の特徴量 Xを除 ヽた 少なくとも 1つ以上の特徴量を取得する特徴量取得手段と、前記取得した特徴量に 対する、前記ドライバモデルにおける最大事後確率を算出する最大事後確率算出手 段と、前記算出した最大事後確率に基づいて、前記取得した特徴量に対する前記特 定の特徴量 Xの推定値を出力する出力手段と、を運転行動推定装置に具備させて前 記第 1の目的を達成する。
(2)請求項 2に記載した発明では、請求項 1に記載の運転行動推定装置にお!、て、 前記 N種類の特徴量は、 n種類 (n<N)の特徴量に対する時間変化量を含む、こと を特徴とする。
(3)請求項 3に記載した発明では、請求項 1又は請求項 2に記載の運転行動推定装 置において、前記特徴量 Xは、ドライバが直接操作する操作装置の操作量及び該操 作量の時間変化量を含む、ことを特徴とする。
(4)請求項 4に記載した発明では、請求項 1、請求項 2又は請求項 3に記載の運転行 動推定装置において、前記ドライバモデルは、前記 N種類の特徴量の時系列データ を学習データとし、各データが存在する確率分布として、 EMアルゴリズムにより算出 された GMM (ガウス混合モデル)で記述されて!ヽる、ことを特徴とする。
(5)請求項 5に記載した発明では、特徴量として、アクセル操作量、ブレーキ操作量 、 自車両の車速、前方車両との車間距離を使用したアクセル用のドライバモデルと、 ブレーキ用のドライバモデルを使用し、前記特徴量 Xとして、アクセル操作量及びブ レーキ操作量を推定する請求項 1、請求項 2、請求項 3、又は請求項 4記載の運転行 動推定装置と、自車両の車速と車間距離を取得する走行データ取得手段と、前記取 得した走行データに対して前記運動行動推定装置で推定されるアクセル操作量、及 びブレーキ操作量に従って、エンジンスロットル及びブレーキペダルを制御すること で前記前方車両に対する自動追従走行を行う走行制御手段と、を運転支援装置に 具備させる。
(6)請求項 6に記載した発明では、特徴量として、アクセル操作量、ブレーキ操作量 、 自車両の車速、前方車両との車間距離を使用したアクセル用のドライバモデルと、 ブレーキ用のドライバモデルを使用し、前記特徴量 Xとして、アクセル操作量及びブ レーキ操作量を推定する請求項 1、請求項 2、請求項 3、又は請求項 4記載の運転行 動推定装置と、評価対象となる車両の車両性能データを取得する手段と、シミュレ一 シヨン用の走行データと走路モデルを取得する手段と、前記取得した走行データと走 路モデルを前記運転行動推定装置に適用することで得られるアクセル操作量とブレ ーキ操作量に対し、前記評価対象となる車両の加速度を含む車両の挙動を推定す る車両ダイナミクス計算手段と、前記推定した車両の挙動から、前記評価対象となる 車両の走行性能を評価する評価手段と、を車両評価システムに具備させる。
(7)請求項 7に記載の発明では、運転者の状態を判断する状態判断手段と、車両走 行における運転操作情報を取得する運転操作情報取得手段と、前記取得した運転 操作情報に基づいて運転者の状態に応じた運転操作のドライバモデルを作成するド ライバモデル作成手段と、をドライバモデル作成装置に具備させて前記第 2の目的を 達成する。
(8)請求項 8に記載した発明では、請求項 7に記載のドライバモデル作成装置にお いて、前記状態判断手段は、少なくとも運転者の状態が正常か否かを判断する、こと を特徴とする。
(9)請求項 9に記載した発明では、請求項 7又は請求項 8に記載のドライバモデル作 成装置において、特定の走行環境を検出する走行環境取得手段と、走行環境毎に 前記運転操作情報を蓄積し、前記ドライバモデル作成手段は、前記走行環境毎にド ライバモデルを作成する、ことを特徴とする。
(10)請求項 10に記載した発明では、請求項 7、請求項 8又は請求項 9に記載のドラ ィバモデル作成装置にお 、て、運転者の生体情報を取得する生体情報取得手段を 備え、前記状態判断手段は、前記取得した生体情報に基づいて運転者の状態を判 断する、ことを特徴とする。
(11)請求項 11に記載した発明では、正常状態における運転操作のドライバモデル を取得するドライバモデル取得手段と、前記取得したドライバモデルを使用し、正常 状態で通常運転される運転操作を推定する運転操作推定手段と、前記推定した運 転操作と、現在の運転操作情報に基づく運転操作とから、ドライバの運転行動を判 定する運転行動判定手段と、前記判定した運転行動に応じた運転支援を行う運転支 援手段と、を運転支援装置に具備させて前記第 3の目的を達成する。
(12)請求項 12に記載した発明では、請求項 11に記載の運転支援装置において、 前記ドライバモデル取得手段は、走行環境毎に作成された正常状態における運転 操作のドライバモデルから、現在の走行環境に対応するドライバモデルを取得する、 ことを特徴とする。
(13)請求項 13に記載した発明では、請求項 11又は請求項 12に記載の運転支援 装置にお ヽて、運転者の生体情報から運転者の状態を判定する運転者状態判定手 段を備え、前記運転支援手段は、前記判定した運転行動と前記判定した運転者状 態とに応じた運転支援を行う、ことを特徴とする。
(14)請求項 14に記載した発明では、請求項 11、請求項 12、又は請求項 13に記載 の運転支援装置において、運転支援手段は、判定内容に応じて、音声又は画像に よる注意喚起、情報提供、振動、休憩所の案内のうちの少なくとも 1以上の運転支援 を行う、ことを特徴とする。
(15)請求項 15に記載した発明では、正常状態における運転操作のドライバモデル を取得するドライバモデル取得手段と、前記取得したドライバモデルを使用し、正常 状態で通常運転される運転操作を推定する運転操作推定手段と、前記推定した運 転操作と、現在の運転操作情報に基づく運転操作とから、ドライバの運転行動を判 定する運転行動判定手段と、を運転行動判定装置に具備させることで第 4の目的を 達成する。
発明の効果
請求項 1から請求項 6記載の発明では、車両走行に伴!、検出される N種類の特徴 量の時系列データを学習データとし、 N次元空間における各データが存在する確率 分布を記述したドライバモデルを使用し、特定の特徴量 Xを除いた特徴量に対する、 前記ドライバモデルにおける最大事後確率を算出し、前記特定の特徴量 Xの推定値 として出力するので、容易に作成することが可能で、ドライバの運転特徴により近い 運転行動を推定することができる。
請求項 7から請求項 10記載の本発明では、運転者の状態に応じた運転操作のドラ ィバモデル作成するので、より精度の高 ヽドライバモデルを得ることができる。
請求項 11から請求項 14記載の本発明では、正常状態における運転操作のドライ バモデルを使用して推定した正常状態で通常運転される運転操作と、現在の運転操 作情報に基づく運転操作とから、ドライバの運転行動を判定し、判定した運転行動に 応じた運転支援を行うので、より精度の高い運転状態の評価と運転支援を行うことが できる。
請求項 15記載の発明では、正常状態における運転操作のドライバモデルを使用し 推定した正常状態で通常運転される運転操作と、現在の運転操作情報に基づく運 転操作とから、ドライバの運転行動を判定するので、より精度の高い運転状態の評価 を行うことができる。
発明を実施するための最良の形態 [0010] 以下、本発明の運転行動推定装置、運転支援装置、及び車両評価システムにおけ る好適な第 1の実施形態について、図 1から図 15を参照して詳細に説明する。
(1)第 1の実施形態の概要
本実施形態では、ドライバ個々人で異なっている運転行動特性をモデルィ匕すること で、ドライバの特性に合わせた車両制御や運転支援を行い、安心かつ快適な安全運 転を支援する。また、統計的データに基づいた客観的な評価基準を用いた車両設計 評価システムを構築する。
ここで、ドライバのモデルィ匕処理及びモデルを用いた出力計算処理が簡単であれ ば、上記用途が安易且つ安価に実現可能となる。
そこで、本実施形態では、ドライバモデルに GMM (ガウス混合モデル)を用いること で、各ドライバ毎のドライバモデルを簡便に生成することができ、さらに、条件付き確 率を最大化する計算により、運転操作行動を容易に推定し出力する。
[0011] すなわち、本実施形態の運転行動推定装置では、アクセル操作量、車速、車間距 離等の複数種類の特徴量力もなる走行データを学習データとして EM (Expectatio n Maximization)アルゴリズムにより算出したガウス混合モデルをドライバモデルと して採用する。
このガウス混合モデルは、 EMアルゴリズムにより、同時確率密度分布を計算するこ とで得られる同時確率密度関数のパラメータで構成され、必要に応じて各ドライバ毎 、更にドライバのアクセル操作用、ブレーキ操作用、車間距離維持範囲用等の推定 する特徴量毎に生成される。
[0012] そして、ドライバモデルに使用した複数の特徴量のうちの特定の特徴量 Xを除く走 行データ Y(=yl、 y2、 ···)を測定し、この走行データ Yに対するドライバモデルにお ける最大事後確率を算出することで、特徴量 Xを推定する。
[0013] 例えば、ドライバ甲のドライバモデルを予め生成しておき、前方車両に追随して自 動走行するオートクルーズ (ACC)を実行する。
すなわち、 ACCにおいて、特徴量 x=アクセル操作量を除ぐ車速や車間距離等 の走行データ Yを検出し、甲のドライバモデルにおける最大事後確率を算出する。こ の値は、同一条件下においてドライバ甲が実際に操作するであろうアクセル操作量と 推定され、推定したアクセル操作量に従ってアクセル制御(エンジンスロットル制御) が実行される。
これにより、ドライバモデルを生成したドライバの運転操作に近 ヽアクセル操作が行 われること〖こなる。
[0014] また、ある設計値データ (性能データ)の車両を、走路モデルによる仮想空間を走 行させる際に、予め生成してお!、たドライバモデルを使用して各種運転行動の特徴 量を推定することで、車両の性能を評価する。
[0015] (2)第 1の実施形態の詳細
図 1は、本実施形態における運転行動推定装置によるドライバモデルの生成と、生 成したドライバモデルに基づく運転行動の推定に関する原理を表したものである。 なお、ドライバモデルの生成と運転行動の推定については、特徴量として車速 V、 前方車両との車間距離 Fと、これらの 1次の動的特徴量 Δν、 A F (1階微分値)、 2次 の動的特徴量 Δ Δν、 Δ A F (2階微分値)、及びアクセル操作のドライバモデルとし てアクセル操作量 Gと 1次の動的特徴量 Δ G、ブレーキ操作のドライバモデルとして ブレーキ操作量 Bと 1次の動的特徴量 Δ Bを使用する場合について説明する。
[0016] 本実施形態の運転行動推定装置では、アクセル操作量、車速、車間距離等から構 成される走行データ 1を学習データとして、走行データに対応する各ドライバ毎の G MMによるドライバモデル 2を EMアルゴリズムにより予め生成しておく。
[0017] そして、ドライバの運転行動(例えば、アクセル操作量)を推定する場合、対応する ドライバモデル 2を使用し、時刻 tにおける走行データ 1の測定値 (V、F、 Δν、 · '·)3 に対する最大事後確率 4を計算することで、該ドライバが操作するであろうアクセル操 作量 5を推定するようになって ヽる。
[0018] この例の運転行動推定装置では、ドライバは現在の車速、車間距離、及びそれら の 1次、 2次の動的特徴量に基づいてアクセルペダルとブレーキペダルの操作量を 決めて 、るとの仮定に基づ 、て 、る。
[0019] 以下、ドライバモデルの生成と運転行動の推定の原理について詳細に説明する。
(Α)ドライバモデルの学習
GMMを用いたドライバモデル 2では、学習データを必要とし、特徴量として走行デ ータ 1を使用した。
走行データ 1は、所定の測定間隔 s (sは任意であるが本実施形態では s = 0. 1秒) 毎の時系列データを使用する。
走行データ 1は、ドライバモデル生成の対象となるドライバが実際に運転したデータ であり、予め測定、保存しておいた走行データ 1を使用することで、オフラインの学習 が可能になる。また、実際にドライバが運転している際にリアルタイムで測定、収集し た走行データ 1を使用するようにしてもょ ヽ。
[0020] 本実施形態の運転行動推定装置では、各ドライバごとに GMMを生成することで、 各ドライバの特性に合ったモデルィ匕が可能となる。
ドライバモデルの特徴量 (走行データ 1)としては、上述したように、車速、車間距離 、及びそれらの 1次、 2次の動的特徴量とアクセルペダル操作量、及びアクセルぺダ ル操作量の 1次の動的特徴量が使用される。
このように、特徴量に動的特徴量を加えてモデル化することで、前後の時間関係を 考慮することになり、滑らかで自然性の高!ヽ推定結果を得ることができる。
なお、説明では、 1次及び 2次の動的特徴量を使用した場合について説明するが、 1次の動的特徴量だけ使用するようにしてもょ 、。
[0021] 同様に、ブレーキペダルに関するドライバモデル化も可能である。
なお、アクセルペダル用、ブレーキペダル用、車間距離範囲用等の複数のドライバ モデルを生成する場合には、アクセルペダル操作量、ブレーキペダル操作量等以外 のデータ(V、 F、 Δν、 AF、 · ··)は同一のデータを使用してもよい。
[0022] 本実施形態において、走行データのうち動的特徴量についてはアクセル操作量、 車速、車間距離の測定値力 計算により求めているが、実際に測定するようにしても よい。
[0023] そして、本実施形態では、走行データ 1に対する混合ガウス分布 (GMM)を計算す ることで、ドライバモデル 2を生成する。
すなわち、走行データ 1に対する同時確率密度分布を EMアルゴリズムを使用して 算出し、算出した同時確率密度関数のパラメータ = { i, →μ ί, ∑i I i= l, 2, 3, 〜M}を GMMによるドライバモデル 2としてデータベース等の記憶手段に記憶して おく。
ここで、 は重みを、→ 1は平均べクトル群を、∑iは分散共分散行列群を、 Mは 混合数を表す。また、→ iのように前に→を表示したものはベクトルを意味する。 このように、本実施形態の GMMでは特徴次元間の相関も考慮して、全角共分散 行列を用いている。
[0024] なお、 EMアルゴリズムとしては、例えば、中川聖ー著、「確率モデルによる音声認 識」(電子情報通信学会 1988、 P51〜P54)に従って、混合ガウス分布の EMアル ゴリズムによる推定を行う。
[0025] (B)運転行動(アクセルペダル及びブレーキペダル操作量)の推定
ドライバは現在の車速、車間距離、及びそれらの 1次、 2次の動的特徴量に基づい てアクセルペダルとブレーキペダルの操作量を決めて!/、ると!/、う仮定に基づき、ぺダ ルの操作量等の運動行動を推定する。
すなわち、特徴量の同時分布から、与えられた条件下において最も確率の高いァ クセルペダル操作量等の運動行動を推定する。
[0026] これは、条件付確率の最大化の問題であり、最大事後確率の計算による。
すなわち、アクセルペダル操作量 AG(t)と、ブレーキペダル操作量 AB(t)は、 y(t) が与えられた条件で条件付き確率を最大にする値 x(t)の推定であり、最大事後確率 として、それぞれ次の式(1)、 (2)で計算される。
[0027] Λ G(t) = arg max p (G | Δ G,V(t),F(t), Δ V(t), Δ F(t), Δ Δ V(t), Δ Δ F(t)) 式( 1)
AB(t) = arg max p(B I Δ B,V(t),F(t), Δ V(t), Δ F(t), Δ AV(t), Δ Δ F(t)) 式(2) [0028] ここで、 AG(t)のように、前に Λを表示したものは推定値であることを意味する。
また、
p(G I AG,V,F,AV,AF,A Δν,Δ AF)
= {p(G,V,F,AV,AF,A Δν,Δ AF,AG)}/{ J J ··· J p(G,V,F, AV, AF, Δ AV, Δ Δ F, Δ G) d Δ G,dV,dF,d Δ V,d Δ F,d Δ Δν,άΔ AF}
p(B I AB,V,F,AV,AF,A Δν,Δ AF)
= {p(B,V,F,AV,AF,A Δν,Δ AF,AB)}/{ J J ··· J p(B,V,F, AV, AF, Δ Δν,Δ Δ F, Δ B) d Δ B,dV,dF,d Δ V,d Δ F,d Δ ΔΥ,άΔ AF} である。
[0029] 式(1)、 (2)において、 tは時刻、 G,B,V,F, Δはそれぞれ、アクセルペダル操作量、 ブレーキペダル操作量、車速、車間距離、及び動的特徴量を表す。
[0030] ただし、条件付確率を最大にするアクセルペダル及びブレーキペダルの値は、最 小値カゝら最大値までの区間において、ある刻み幅(例えば、 0から 10000まで 100刻 み)で数値積分を行うことにより確率を算出し、その確率が最大となったときのァクセ ルペダル及びブレーキペダルの値を推定結果としてもよい。
[0031] 図 2は、最大事後確率による運転行動の推定に関する概略を表したものである。
この図 2では、簡単のため、ある時刻 tの特徴量 y(t)が与えられたときに Ax(t)を推定 する場合を示している。
[0032] 図 3は、運転行動推定装置の構成を表したものである。
本実施形態における運転行動推定装置は、ドライバモデル生成部 10と、運転行動 推定部 11とを備えている。
この運転行動推定装置は、 CPU, ROM, RAM等を備えたコンピュータシステムに より実現される。
なお、運転行動推定装置としては、他装置により生成したドライバモデルを使用す ることで、ドライバモデル生成部 10を備えな ヽ構成とすることも可能である。
[0033] ドライバモデル生成部 10は、運転者情報取得部 101、走行データ取得部 102、同 時確率密度分布計算部 103、同時確率密度関数パラメータ記憶部 104を備えてい る。
運転者情報取得部 101は、生成したドライバモデルとドライバとを対応つけるため の情報で、運転者 IDで構成される。すなわち、走行データ取得部 102で取得する走 行データを測定した際のドライバを特定する運転者 IDである。
[0034] 走行データ取得部 102は、 GMMによるドライバモデルを生成するための学習デー タとしての走行データを取得する。
図 4は、走行データ取得部 102で取得する走行データを表したものである。
図 4に示されるように、走行データとしては、走行環境データ (a)、及びドライバ操作 データ (b)が存在する。 但し、これらの走行データは、データとして使用可能なものを列記したものであり必 ずしも全てが必要となるデータではない。生成するドライバモデルによって、データが 適宜選択されるものである。
[0035] 図 4 (a)に示されるように、走行環境データは、走行状況データと道路状況データと がある。
走行状況データは、走行や環境によって変化するデータで、車速、車間距離、天 候、渋滞有無 (渋滞の程度)、明るさ、その他のデータが存在する。
道路状況データは、道路の状態を表すデータで、環境により変化しないデータであ る。道路状況データには、道路種別、舗装形態、道路幅、車線数、摩擦係数、凹凸 係数、カーブ曲率、カント、傾斜、見通し、その他のデータが存在する。
[0036] 図 4 (b)に示されるように、ドライバ操作データには、ハンドル操作量、アクセルぺダ ル操作量、ブレーキペダル操作量、車間距離維持範囲量、その他のデータが存在 する。 このドライバ操作データは、生成するドライバモデルを使用して推定する運転 行動(特徴量 Xの推定値)となる場合が多い。このため、生成するドライバモデルの数 に応じた数のドライバ操作データが取得される。例えば、アクセルペダル操作用のド ライバモデルと、ブレーキ操作用のドライバモデルを作成する場合には、アクセルぺ ダル操作量とブレーキペダル操作量が取得される。
また、アクセル操作とブレーキ操作共通のドライバモデルが生成される場合にも両 者が取得される。
[0037] 走行データ取得部 102で取得する走行データは、予め測定し保存された走行デー タを一括して取得するようにしてもよぐまた、実際にドライバが運転している間に所定 のサンプリング時間毎に検出したデータを順次取得するようにしてもょ 、。
[0038] 同時確率密度分布計算部 103 (図 3)は、取得した走行データを学習データとして、 ガウス混合モデルにおける同時確率密度分布を計算する。
この同時確率密度分布計算部 103による計算の結果得られる、同時確率密度関数 パラメータ { i, →μ ί, ∑i}を、運転者情報取得部 101で取得した運転者 IDに関連 付けて同時確率密度関数パラメータ記憶部 104に格納する。
なお、格納する同時確率密度関数パラメータは、誰の(運転者 ID)、何に対する (推 定する運転行動)ドライバモデルかを区別可能に格納される。
[0039] 図 5は、このように構成されたドライバモデル生成部 10によるドライバモデル生成処 理を表したフローチャートである。
運転者情報取得部 101で運転者情報を取得し (ステップ 10)、走行データ取得部 1
02で走行データを一括して又は順次取得する (ステップ 11)。
なお、ステップ 10とステップ 11の順序は逆であっても、並列であってもよい。
[0040] 次に、同時確率密度分布計算部 103において、取得した走行データを学習データ として同時確率密度分布を計算し (ステップ 12)、同時確率密度関数パラメータをドラ ィバモデルとして運転者情報に関連付けて同時確率密度関数パラメータ記憶部 104 に格納し (ステップ 13)、処理を終了する。
[0041] 図 3において、運転行動推定部 11は、運転者情報取得部 111、走行データ取得部
112、ドライバモデル選択部 113、最大事後確率計算部 114、及び特徴量 Xの推定 値出力部 115を備えている。
[0042] 運転者情報取得部 111は、ドライバモデルの対象を特定するための運転者 IDを取 得する。
この運転者情報は、主として操作者 (ドライバ本人又は他の操作者)の入力によつ て取得される。
なお、ドライバ (運転者)の体重や身長その他運転者を特定することが可能な情報 を、運転者情報とし、これを運転者 IDと関連付けて保存しておき、運転者情報を取得 することで運転者 IDを特定するようにしてもょ 、。
[0043] 走行データ取得部 112は、使用するドライバモデルをドライバモデル生成部 10で 生成する際に使用した走行データ (N種類の特徴量)のうち、該ドライバモデルで推 定する運転行動 (特徴量 X)を除 ヽた走行データ (N— 1種類の特徴量)が取得される
[0044] ドライバモデル選択部 113は、運転者情報取得部 111で取得した運転者 ID、及び 走行データ取得部 112で取得した走行データに基づ ヽて、同時確率密度関数パラメ ータ記憶部 104から適用するドライバモデル(同時確率密度関数パラメータ)を選択 する。 [0045] 最大事後確率計算部 114は、走行データ取得部 112で取得した走行データを、ド ライバモデル選択部 113で選択したドライバモデルに適用し、上記式(1)、(2)等を 使用して最大事後確率を計算する。
[0046] 特徴量 Xの推定値出力部 115は、最大事後確率計算部 114で計算した値を、特徴 量 Xの推定値として出力する。
[0047] 図 6は、生成したドライバモデルを使用して特定の運転行動を推定する処理を表し たフローチャートである。
まず、運転者情報取得部 111で運転者情報を取得する (ステップ 20)。 そして、走行データ取得部 112において、現時点(時刻 t)における走行データを取 得する (ステップ 21)。ここで取得する走行データは、特徴量 Xを除いた N— 1種類の 走行データである。
なお、ステップ 20とステップ 21の順序は逆であっても、並行して処理するようにして ちょい。
[0048] そして、運転者情報及び走行データに従って、同時確率密度関数パラメータ記憶 部 104から対応する同時確率密度関数パラメータ (ドライバモデル)を選択し読み込 む (ステップ 22)。
なお、ドライバモデルを選択するために、走行データを使用せずに、運転者情報か らドライバモデルを選択するようにしてもよい。この場合には、走行データの取得前に ドライバモデルを選択するようにしてもよ 、。
また、運転行動推定装置が適用される装置、例えば、後述する自動追随運転装置 (ACC装置)によっては、予めドライバモデルが選択されている場合があり、その場合 には、ステップ 20とステップ 22は必要に応じて省略可能である。
[0049] 次に、最大事後確率計算部 114にお 、て、取得した走行データを選択したドライバ モデルに適用して最大事後確率を計算する (ステップ 23)。
最大事後確率の計算については、推定する運転行動(特徴量 X)がアクセル操作量 であれば上記式(1)により、ブレーキ操作量であれば式(2)による。
[0050] そして、計算された最大事後確率計算部 114における計算結果を、特徴量 Xの推 定値出力部 115から、そのドライバモデルによる時刻 tにおける特徴量 Xの推定値とし て出力し (ステップ 24)、メインルーチンにリターンする。
[0051] (3)運転支援装置
次に、以上説明した運転行動推定装置を使用した応用例である運転支援装置に ついて説明する。
この運転支援装置は、前方車両に追随して自動追随運転 (ACC)を行う装置であ る。 この運転支援装置では、 ACC動作時の車間距離、アクセル操作、ブレーキ操 作を、運転中のドライバの走行データ力も生成したドライバモデルを使用して自動操 作することで、ドライバが自分で運転して!/、る走行感覚に近 ヽ ACCを行うものであり、 ドライバの違和感が解消される。
[0052] (4)運転支援装置の概要
ドライバが運転を行う際にはそれぞれ癖がある。従来の ACC動作では、単純に車 速や車間距離を一定値に保つように自動走行するため、車速時、車間距離や前方 車両との距離を調節する際のアクセル ·ブレーキの使い方が自分 (ドライバ)の癖とは 異なる為、違和感を覚えるなどの問題がある。
[0053] 本実施形態の運転支援装置では、 ACCが動作可能な状態におけるドライバの実 際の運転操作力 走行データを学習データとしてドライバモデルを予め生成しておく 。これにより、生成されたドライバモデルには、車速と車間距離の関係や、距離調節 をする際のアクセルやブレーキの操作量等の、そのドライバの運転操作の癖が反映 されること〖こなる。
[0054] すなわち、ドライバの普段の運転力 ドライバの車間維持操作に関わる癖をドライバ モデルとして学習し保存しておく。
生成するドライバモデルは、自車データ(アクセル操作量、ブレーキ操作量、車速、 …;)、前方車両データ (車間距離、相対速度、車種、…;)、道路環境データ (周囲の明 るさ、見通し、トンネル、降雨量、路面 、車線幅、道路の混み具合、その他)、の 3つ の情報を相関させて生成する。
[0055] 道路環境データには周辺の地理的な情報のほかに、周囲の明るさや天候、路面状 況、道路の混み具合などの TPOで変化する情報が含まれる。
これらは、時計 (時刻)や前照灯スィッチ、ワイパースィッチなど力 周囲の暗さ、降 雨状況を推定する。
また、照度計や降雨センサ、さらに路面 検知センサ、車線認識装置、周囲の混み 具合を観察する各種センサ、画像認識装置などを搭載し、前方車両の車種など周囲 の情報を積極的に取得しても良 、し、天気予報や VICS情報などをネットワーク上か ら取得しても良い。
[0056] そして、 ACCが実行されると(自動追随運転中)、通常の ACCと同様に前方車両と の車間距離を監視、維持をすることで、ドライバは、アクセル操作カゝら解放される。 すなわち、 ACCの実行中において、現在の道路環境情報を収集し、予め作成した ドライバモデルを使用してアクセル操作量、ブレーキ操作量等を推定する。
この推定値を元に、車間距離維持範囲推定量に沿い車間距離調整を行い、ァクセ ル操作推定量、ブレーキ操作推定量に沿ってエンジンスロットル、ブレーキを制御す ることで、車両の自動追随走行を行う。
[0057] ここで、車間距離維持範囲推定量とは、ドライバが現状に似たシーンにぉ 、て普段 前方車両との間に維持している車間距離力 算出され、これにより、ドライバが好む そのシーンでの車間距離の範囲が反映される。
アクセル操作推定量とは、普段ドライバが現状に似たシーンにおいて車間距離を 調整する際に行うアクセル操作力 算出され、これにより、ドライバが好むそのシーン での前方車両との距離が開 、た際の距離を詰める操作のやり方 (すぐに追!、つく、ゆ つくり追いつく etc)が反映される。
ブレーキ操作推定量とは、普段ドライバが現状に似たシーンにぉ 、て車間距離を 調整する際に行うブレーキ操作力 算出され、これにより、ドライバが好むそのシーン での前方車両との距離が縮んだ際の距離を空ける操作のやり方 (すぐに空ける、ゆつ くり空ける etc)が反映される。
[0058] このように、ドライバの癖を再現する操作で車間距離維持を行!ヽ、ドライバが感じる 違和感を低減することができる。
また、周囲の明るさや天候、路面状況などの外的要因に対しても変化する車間距 離のとり方の癖をも再現し、よりドライバの感性に近づいたシステムとすることができる [0059] (5)運転行動推定装置の詳細
図 7は、運転行動推定装置を適用した運転支援装置の構成を表したものである。 運転支援装置は、走行データ取得部 12、アクセル部 13、ブレーキ部 14、 ECU (電 子制御装置) 15、 ACCスィッチ 16、ナビゲーシヨン装置 17を備えている。
なお、図 7により説明する運転支援装置の構成については、その全てが必要という ことではなく、自動追随走行を行う為に使用可能な各部や装置について説明するも のであり、採用する運転支援装置の機能等に応じて適宜選択して運転支援装置を 構成することが可能である。
[0060] 走行データ取得部 12は、自車両の車速を検出する車速センサ 120と、前方車両と の車間距離を検出する車間距離センサ 121と、車両の前方を撮像する撮像装置 12 2と、 GPS +車車間通信測距部 123と、道路環境情報収集部 124を備えている。
GPS +車車間通信測距部 123は、 GPS装置で自車両の位置 (緯度、経度)を特定 すると共に、前方車両との車車間通信により前方車両の座標値 (緯度、経度)を受信 することで、両車両間の車間距離を算出する。
道路環境情報収集部 124は、前照灯スィッチ、ワイパースィッチ、路面 検知セン サ、車線認識装置、 VICS、車両周辺監視センサ、その他の装置、各部から道路環 境情報を収集する。
[0061] アクセル部 13は、アクセルペダル 131、アクセルペダル位置センサ 132、エンジン スロットル制御装置 133を備えている。
ブレーキ部 14は、ブレーキペダル 141、ブレーキぺダノレ位置センサ 142、ブレーキ 制御装置 143、ブレーキランプ 144を備えている。
[0062] ECU15は、前方車両認識 ·追跡部 151、 ACC可否判断部 152、ドライバモデル生 成部 153、 ACC処理部 154を備えている。
ACC処理部 154は、車間距離監視'維持部 154a、アクセル操作部 154b、ブレー キ操作部 154c、運転行動推定部 154dを備えて 、る。
運転行動推定部 154dでは、車間距離維持範囲、アクセル操作、ブレーキ操作の 各推定値が算出される。
ECU15は、 CPU、 ROM, RAM,インターフェイスの各部を備えたコンピュータシ ステムで構成されている。
[0063] ACCスィッチ 16は、 ACC走行を実行するか否かをドライバが選択するスィッチで ある。
この ACCスィッチ 16がオフの場合に、ドライバモデルが生成される。
また ACCスィッチ 16がオンの場合に、生成したドライバモデルを使用して運転操作 量が推定され、推定量に応じた自動追随走行が行われる。
[0064] ナビゲーシヨン装置 17は、現在位置検出部 171、地図情報 172等を備えている。
なお、現在位置検出部 171は、 GPS受信装置等により車両の現在位置 (緯度、経 度)を検出し、走行データ取得部 12の GPSとして機能するようになっている。
[0065] このように構成された運転支援装置における動作について次に説明する。
図 8は、 ACC用ドライバモデルの自動生成処理について表したものである。
まず、 ECU15は、 ACCスィッチ 16がオフか否か判断する(ステップ 31)。 ACCスィッチ 16がオン(すなわち、 31 ;N)であれば、ドライバにより ACC走行が要 求されているので、ドライバモデルの生成は行わず、 ACCスィッチ 16がオフになるの を監視する。
[0066] 一方、 ACCスィッチ 16がオフである場合 (ステップ 31; Y)、 ECU15は、前方車両 が認識可能カゝ否カゝ判断する (ステップ 32)。
前方車両の認識は、前方車両認識 ·追跡部 151において認識可能であり、かつ、 車間距離センサ 121で前方車両との距離が検出されている場合に、認識可能である と判断される。前方車両認識 ·追跡部 151における、前方車両の認識、追跡は、撮像 装置 122で撮像した車両前方の撮像画像で行われる。
[0067] 前方車両を認識できな!/、場合 (ステップ 32 ;N)、車間距離データが得られず、 AC C用のドライバモデルを生成できな 、ので、ステップ 31に戻る。
一方、前方車両を認識できる場合 (ステップ 32 ; Y)、次いで、 ECU15は、 ACC動 作可能なシーン力否かをナビゲーシヨン装置 17の地図情報力も判断する。例えば、 高速道路や首都高速を走行中である場合、有料道路やバイパス道路で所定距離の 間合流車線がな 、道路を走行して ヽる場合には、 ACC動作可能な道路を走行中で あると判断される。 [0068] ECU15は、 ACC動作可能なシーンでない場合 (ステップ 33 ; N)ステップ 31に戻 つて処理を繰り返す。
一方、 ACC動作可能なシーンであれば (ステップ 33 ;Y)、 ECU15は、図 5で説明 したドライバモデル生成処理を実行し (ステップ 34)、処理を終了する。
このドライバモデル生成処理では、車間距離維持範囲用のドライバモデル、ァクセ ル操作用のドライバモデル、ブレーキ操作用のドライバモデルが生成される。
[0069] このように、本実施形態の運転支援装置では、 ACCスィッチ 16がオンされて ヽれ ば実際に ACC走行が実行される環境における実際の運転状態に基づいて自動的 にドライバモデルが生成されるため、生成された各ドライバモデルには、車速と車間 距離の関係や、距離調節をする際のアクセルやブレーキの操作量等の、そのドライ バの運転操作の癖が反映されることになる。
[0070] 以上のようにして生成した各ドライバモデルを使用して実際に ACC走行を実行する 場合の動作について次に説明する。
図 9は ACC処理の動作を表したフローチャートである。
ECU15は、 ACCスィッチ 16がオンされたか否かを監視している(ステップ 41)。 ACCスィッチ 16のオンが検出されると (ステップ 41 ;Y)、 ECU15は、道路環境情 報を収集する (ステップ 42)。ここで ECU15が収集する道路環境情報は、ドライバモ デル生成処理 (ステップ 34)で使用した走行データのうち、推定する操作量 (ァクセ ル操作量、ブレーキ操作量、及び車間距離維持範囲推定量)を除いた走行データで ある。
[0071] 次に ECU15は、前方車両認識 ·追跡部 151において、追随すべき前方車両を認 識できるカゝ否かを判断する (ステップ 43)。
前方車両を認識できな 、場合 (ステップ 43 ;Ν)には、自動追随走行を維持すること ができないので ACCスィッチ 16をオフにすると共に、その旨をドライバに音声や画像 により通知し (ステップ 44)、処理を終了する。
[0072] 一方、前方車両を認識可能であれば (ステップ 43 ; Υ)、 ECU15は、図 6で説明し た運転行動推定処理を実行し (ステップ 45)、車間距離維持範囲推定量、アクセル 操推定量、ブレーキ操作推定量を算出する。 そして、現在の車間距離について判断し (ステップ 46)、車間距離調整範囲内であ れば、 ECU15は、現状のアクセル開度を維持する(ステップ 37)。
一方、車間距離が車間距離調整範囲以下であれば、 ECU15は、ブレーキ操作用 ドライバモデルで推定したブレーキの推定値に従って、ブレーキ制御装置 143を制 御する (ステップ 48)。
また、車間距離が車間距離調整範囲以上であれば、 ECU15は、アクセル操作用ド ライバモデルで推定したアクセルの推定値にしたがって、エンジンスロットル制御装 置 133を制御する(ステップ 49)。
[0073] ついで ECU15は、 ACCスィッチ 16がオフされたか否かを判断し (ステップ 50)、ォ フされていなければ (ステップ 50 ;N)、ステップ 42に戻り、 ACC駆動を継続し、オフさ れて ヽれば (ステップ 50 ;Y)処理を終了する。
[0074] このように本実施形態の運転支援装置によれば、車速と車間距離の関係や、距離 調節をする際のアクセルやブレーキの操作量等の、そのドライバの運転操作の癖が 反映されたドライバモデルが生成され、このドライバモデルにより推定したアクセル操 作量、ブレーキ操作量、車間距離調整範囲に基づいてアクセル (エンジンスロットル) やブレーキが操作されるので、ドライバの走行感覚に近い ACCが実現される。
[0075] (6)車両評価システム
次に、説明した運転行動推定装置を使用した第 2の応用例である車両評価システ ムについて説明する。
この車両評価システムは、各種車両性能や走行条件において、プロドライバや一般 ドライバ等の複数のドライバが実際に走行した際の走行データに基づいてドライバモ デルを生成する。
そして、この車両評価システムでは、実際に車両を運転することで車両の性能評価 をするのではなぐドライブシミュレータを使用して展開される仮想走路を、生成したド ライバモデルの推定値(ノヽンドル操作量、アクセルペダルの操作量、ブレーキペダル の操作量等)を使用して操作させることで、車両の加速性能、減速性能、操舵性能、 安定走行性能等の各種項目を評価するものである。
[0076] (7)車両評価システムの詳細 図 10は、車両評価システムの概要を表したものである。
この図 10に示されるように車両評価システムは、ドライバのペダル操作量を推定す るための GMMに基づくドライバモデル 19、推定したペダルの操作量に基づいて自 車の加車速 a (t)を算出する車両ダイナミクス計算部 20、そして自車の加車速 a (t)と 先行車両の位置を用いて車速 V (t)と車間距離 F (t)を更新する走行環境更新部 21 、車速 v(t)と車間距離 F (t)の 1次、 2次変化量 (動的特徴量)を計算する動的特徴量 計算部 22を備えている。
[0077] ドライバモデル 19は、実走行やドライブシミュレータ等を使用して測定した走行デ ータを使用し、プロドライバや、一般ドライバ等の、評価対象となる車両に対するター ゲットユーザの母集団と見なせるドライバ (例えば、 100例)の走行データから、複数 のドライバモデルが作成される。
ドライバモデルとしては、アクセル用のドライバモデル 192と、ブレーキ用のドライバ モデル 193が生成され、そのいずれかを適用するかについて適用判定部 191で判 定され選択される。
なお、アクセル用のドライバモデル 192及びブレーキ用のドライバモデル 193以外 に、ドライバのハンドル操舵量を推定するためのハンドル用のドライバモデルを生成 しておき、適用判定部 191で、ハンドル用のドライバモデルも選択できるようにしても よい。
[0078] ドライバモデル 19には、運転行動推定装置が適用され、車速や車間距離といった 特徴量及び動的特徴量を受け取り、ドライバが操作するであろうアクセルペダルとブ レーキペダルの値を指定する部分である。このドライバモデル ]_ 9では、運転行動推 定装置で説明したように、ドライバは現在の車速、車間距離、及びそれらの 1次、 2次 の動的特徴量に基づ 、てアクセルペダルとブレーキペダルの操作量を決めて 、ると の仮定に基づいている。
[0079] 車両ダイナミクス計算部 20では、ある時刻 tにおけるアクセルペダル操作量 G (t)と ブレーキペダル操作量 B (t)、及び、一つ前の時刻の車速 V (t— 1)から、車両モデ ル (評価対象となる車両に関する車両重量、エンジン性能、ブレーキ性能、ギア比等 の車両性能データ)を用いて、加車速を算出する。 車両モデルには、学習データの収録に用いたドライビングシミュレータの内部のモ デルを参考に MATLAB(FORTRANを基に、マトリクス演算を強力に扱えるようにし たコンピュータ言語)で実装した。
この車両モデルでは、ギア比や車重、道路の摩擦係数などを考慮して、車両の加 車速を計算している。
[0080] 走行環境更新部 21では、車両ダイナミクス計算部 20から入力された時刻 tにおけ る加車速 a (t)を用いて、次の時刻(t+1)の車速 V(t+1)、車間距離 F(t+1)を計 算し、更新する。
次の時刻 (t+ 1)における車速と車間距離は、
V(t+l)=V(t)+a(t) XT
F(t+l)=Df(t+l)-(Dm(t)+V(t+l) XT)
によって計算される。
ただし、 a(t)は車両ダイナミクス計算部 20から出力された加車速、 Df(t)は時刻 tま での前方車両の走行距離を示し、 Dm(t)は時刻までの自車両の走行距離を示す。 また、 Tはシステムの更新時間 (サンプリング周期)であり、本実施形態では T=0.1 秒とした。
[0081] また、車間距離を計算するために、先行車の各時刻における走行距離を持ってお り、その先行車の時刻 tにおける走行距離と自車の走行距離の差を求めることによつ て車間距離を算出している。
[0082] 図 11は、運転行動推定装置の構成を表したものである。
図 11に示されるように、運転行動推定装置は、評価に使用するデータと、評価の実 行部と、評価結果データとから構成される。
使用データとしては、車両性能データ 25、評価用ドライバモデル 26、シミュレーショ ン実行用データ 27、走路モデル 28が使用され、評価結果データとして走行評価デ ータ 36が出力及び記憶される。
評価の実行部としては、道路データ展開部 29、走行環境展開部 30、運転行動推 定部 31、車両ダイナミクス計算部 32、シミュレーション走行処理部 34、走行性能評 価部 35を備え、これらは CPU、 ROM、 RAM等力もなるコンピュータシステムにより 構成される。
[0083] 車両性能データ 25は、評価対象となる車両の性能データであり、図 12 (a)に示さ れるように、車両重量、エンジン性能、ブレーキ性能、ギア比、サスペンションバネ定 数等の各データで構成される。
評価用ドライバモデル 26は、上述した運転行動推定装置で生成した各ドライバモ デルが使用される。
シミュレーション実行用データ 27は、図 12 (b)に示されるように、仮想空間上に展 開される走行状況データであり、車速、車間距離、天候、渋滞の有無などから構成さ れる。この走行状況データは、時系列のデータとして、時間 t=tl, t2, t3' "毎のデ ータが使用される。
走路モデル 28は、図 12 (c)に示されるように、仮想空間上に展開されるテスト走行 道路に関するデータである。
[0084] 評価実行部と、図 10で説明した運転行動推定装置とを対比すると、運転行動推定 部 31がドライバモデル 19に相当し、車両ダイナミクス計算部 32が車両ダイナミクス計 算部 20に相当し、シミュレーション走行処理部 34及び走行環境展開部 30が走行環 境更新部 21及び動的特徴量計算部 22に相当する。
[0085] 次にこのように構成された車両評価システムにおける車両の設計評価処理につい て説明する。
図 13は、設計評価処理の動作を表したフローチャートである。
車両性能データ 25から車両ダイナミクス計算部 32に入力し (ステップ 61)、車両ダ イナミクスモデルをシミュレーション空間に展開する(ステップ 62)。
ついで、走路モデル 28を道路データ展開部 29に入力し (ステップ 63)、シミュレ一 シヨン実行用データ 27を走行環境展開部 30に入力する (ステップ 64)ことで、シミュ レーシヨン実行環境をシミュレーション空間に展開する(ステップ 65)。
そして、評価用ドライバモデル 26を運転行動推定部 31に入力し、シミュレーション 走行の実行を t=0から開始する (ステップ 67)。
[0086] っ 、で、運転行動推定部 31にお 、て、時刻 tにおける走行環境データ(走行デー タ)力もドライバ行動推定値 (アクセルペダル操作量 G (t)とブレーキペダル操作量 B ( t) )を計算する (ステップ 68)。
[0087] そして車両ダイナミクス計算部 32において、時刻 tにおけるアクセルペダル操作量
G (t)とブレーキペダル操作量 B (t)、及び、一つ前の時刻の車速 V(t— 1)から、ギア 比や車重、道路の摩擦係数などの車両性能データ 25を用いて、加車速 a (t)等の車 両走行推定データ 33を計算する (ステップ 69)。
計算する車両走行推定データ 33は、加車速 a (t)の他、図 12 (d)に示されるように
、 自車速度、車間距離、重心位置、タイヤ角、ョーレート、ピッチレート等である。
[0088] そして、シミュレーション走行処理部 34において、車両ダイナミクス計算部 32で計 算された時刻 tにおける車両走行推定データ 33を用いて、次の時刻 (t+ 1)の車速 V
(t+ 1)、車間距離 F (t+ 1)を計算し、更新する (ステップ 70)。
また、 t=t+ 1の車両走行推定データ 33をシミュレーション走行処理部 34で計算 する (ステップ 71)。
[0089] そして、走行環境展開部 30で、車両走行推定データ 33より t=t+ 1のシミュレーシ ヨン実行環境を更新し (ステップ 72)、走行性能評価部 35で、道路データに対する走 行軌跡を計算 ·記憶 (ステップ 73)する。
[0090] そして、シミュレーション実行用データ 27の時刻 tnまでの全データについてのシミ ユレーシヨン走行処理が終了したか否かを判定し (ステップ 74)、終了していなければ (ステップ 74 ; N)ステップ 68に戻って、ドライバモデルを使用したシミュレーションを 継続する。
[0091] 時刻 tnまでの処理が終了して 、る場合 (ステップ 74 ;Y)、走行性能評価部 35から 走行評価データを出力して処理を終了する (ステップ 75)。
走行性能評価部 35から出力される走行評価データとしては、図 12 (e)に示される ように、加速性能としてアクセル開度に対する加速曲線、減速性能としてブレーキ操 作量に対する減速曲線、操舵性能としてハンドル操作量に対する走行曲線、安定性 走行性能として道路方向に対する走行軌跡、などが出力される。
[0092] (8)シミュレーション実験
(8— 1) GMMによるドライバモデルの学習
GMMの学習のためにドライビングシミュレータを用いて運転データを収録した。 コースは直線で、学習データにバリエーションを持たせるために全ての車速が出現 するように先行車の挙動データを採用した。
また、走行は 10分間を二回行い、二回分を学習データとした。
[0093] 図 14 (a)に先行車の挙動を示し、図 14 (b)に収録した運転データを示す。
先行車の挙動のノ リエーシヨンを考慮したため、全ての車速が出現していることが わかる。アクセルペダル操作とブレーキペダル操作のそれぞれのモデルは、全角共 分散行列を持つ 16混合の多次元混合正規分布 (GMM)として学習した。
[0094] (8— 2)シミュレーション結果と考察
構築した車両評価システムを評価するために、学習データには含まれな 、先行車 の挙動を用意し、収録を行った。
コースは直線で、先行車の挙動は実環境で収録されたものを用いた。図 14 (c)に 評価のために用いた先行車の挙動を示す。
この先行車のデータを用いて、運転行動を生成し、実際の運転データと比較した。
[0095] シミュレーション条件は以下の通りである。
学習データ; 20分(10分 2回)
特徴量; Vゝ F、 G、 Δν、 AF、 A G, Δ Δν、 Δ AF
コース;直線
Δ窓幅; 0. 8秒、
混合数; 16
更新時間; 0. 1秒
[0096] 図 15は、以上の条件において本実施形態の車両評価システムを用いたシミュレ一 シヨン結果を表したものである。
図 15は、車速の結果 (a)、車間距離の結果 (b)、及びアクセルペダルの結果 (c)で あり、実線がシミュレーション結果であり、破線が実際のデータを示している。
図 15に示されるように、例えば、アクセルペダル操作に関して、実際のアクセル操 作信号の波形の特徴を良く捉えており、 GMMによるモデル化がうまくいっていると考 えられる。
[0097] 以上、本発明の運転行動推定装置、運転支援装置、車両評価システムにおける第 1の実施形態について説明したが、本発明は説明した実施形態に限定されるもので はなぐ各請求項に記載した範囲にぉ 、て各種の変形を行うことが可能である。 例えば、説明した実施形態では、 GMMに基づくドライバモデルは学習データから 車速や車間距離といった信号と運転行動信号の関係を学習しているため、学習デー タにない条件 (分布の裾)になると、ペダル操作量の推定がうまくいかない。
例えば、追従走行において、 100mを越えるような車間距離や lmといった車間距 離での走行は、学習データに含まれておらず、このような学習データに含まれないよ うな条件になった場合、推定がうまく行われず、結果として、先行車に離され続けたり 、衝突してしまう。
そこで、このような状況を避けるために、車間距離が L1以下 (例えば、 2m以下)のと きはドライバモデルによる推定を行わず、フルブレーキをかけ、車間距離が L2以上( 例えば、 100m以上)のときはアクセルを全開まで踏み込むように設定してもよい。
[0098] 次に、本発明のドライバモデル作成装置及び運転支援装置における好適な第 2の 実施の形態について、図 16から図 36を参照して詳細に説明する。
(9)第 2の実施形態の概要
本実施形態では、ドライバの生体情報を検出することで、ドライバの平常状態か否 かを認識する。そしてドライバの運転中に運転状態のデータ(自車両情報、例えば、 アクセル、ブレーキ、ステアリングの操作量、車速、車間距離、加速度など)を収集し 、その運転状態データのうち、ドライバが平常状態で運転している部分を抽出してド ライバモデルを作成する。
これにより、ドライバに意識させることなぐ正常時のドライバモデルを自動的に作成 することができる。
また、ドライバの生体情報を元に正常状態で運転している場合のみを正常時の運 転行動としてドライバモデルを作成するので、より精度の高 、ニュートラルなドライバ モデルとすることができる。
[0099] 本実施形態では、例えば、片道 3車線の国道で、信号が青の交差点を右折専用車 線から右折する場合で、対向車があり、横断歩道に歩行者力 ^、る場合、というように、 走行中における自車両周辺環境の各場面 (シチュエーション)毎にドライバモデルが 作成される。
[0100] また、作成したドライバモデルカゝら推定される正常時の運転行動と、現在のドライバ の運転行動とをリアルタイムに比較することで、現在のドライバの運転行動が「いつも どおり」であるか、又は逸脱して 、るかを監視する。
「いつもの」運転と現在の運転の比較を行う際の指標として、例えばドライバの「反 応速度」と「ふらつき」を用いる。
[0101] 更に、本実施形態では、ドライバモデルに基づく運転行動の変化を評価するだけ でなぐ生体情報の変化も加味することで、ドライバの状態を示す情報を複合的に判 断し、より高精度にドライバの疲労や注意力の低下を検知する。
[0102] その結果、ドライバ本来の運転行動力 逸脱があった場合、これについて注意喚起
、警告や情報提示を行うことで、その人に合った安全運転支援を行うことができる。 また、明らかな疲労や注意力の低下を発現する前の前兆段階でのドライバ状態の 検知を可能とし、予め疲労がピークに達する前に休憩を促すなどの高度な案内が可 能となる。
[0103] 本実施形態では、第 1の実施形態と同様にドライバモデルに GMM (ガウス混合モ デル)を用いることで、各ドライバ毎のドライバモデルを簡便に生成することができ、さ らに、条件付き確率を最大化する計算により、運転操作行動を容易に推定し出力す る。
[0104] すなわち、本実施形態のドライバモデル作成装置、運転支援装置、及び運転行動 判定装置では、アクセル操作量、車速、ブレーキ操作量、ステアリングの操作量、車 間距離、加速度等の複数種類の特徴量力 なる走行データを学習データとして EM (Expectation Maximization)アルゴリズムにより算出したガウス混合モデルをドラ ィバモデルとして採用する。
このガウス混合モデルは、 EMアルゴリズムにより、同時確率密度分布を計算するこ とで得られる同時確率密度関数のパラメータで構成され、必要に応じて各ドライバ毎 、更にドライバのアクセル操作用、ブレーキ操作用、車間距離維持範囲用等の推定 する特徴量毎に生成される。
[0105] そして、ドライバモデルに使用した複数の特徴量のうちの特定の特徴量 Xを除く走 行データ Y(=yl、 y2、 ···)を測定し、この走行データ Yに対するドライバモデルにお ける最大事後確率を算出することで、特徴量 Xを推定する。
[0106] 例えば、車両周辺の走行環境(シチュエーション)と同一のシチュエーションにおけ るドライバモデルを用い、現在の自車状態をドライバモデルに入力し、それ以降の運 転状態 (例えば、特徴量 χ=アクセル操作量)の時間変化を推定し、実際の運転状態 と比較することで、操作の遅れや操作のふらつき等の有無が判定される。
[0107] (10)第 2の実施形態の詳細
図 16は、ドライバモデル作成装置を適用した運転支援装置の構成を表したもので ある。
運転支援装置は、 ECU (電子制御装置) 50、自車両情報取得部 51、自車両周辺 環境情報取得部 52、生体情報取得部 53、情報提供部 54、ドライバモデル処理部 5 5、データ記憶部 56を備えている。
なお、図 16により説明する運転支援装置の構成については、その全てが必要とい うことではなぐ本実施形態にけるドライバモデルの作成及び運転支援を行う為に使 用可能な各部や装置について説明するものであり、採用する運転支援装置の機能 等に応じて適宜選択して運転支援装置を構成することが可能であり、また、同様な機 能を有する他の機器、装置を追加使用することが可能である。
[0108] ECU50は、 CPU, ROM, RAM,インターフェイスの各部を備えたコンピュータシ ステムで構成されている。
ECU50は、自車両情報取得部 51の取得情報に基づくドライバ運転行動の監視、 生体情報取得部 53の取得情報に基づくドライバ生体情報の監視、運転支援としての ドライバアシスト内容の情報提供部 54への指示、を行うようになっている。 ECU50は 、また、ドライバモデルの作成、出力に必要なデータをドライバモデル処理部 55に供 給するようになっている。
[0109] 自車両情報取得部 51は、ハンドル舵角センサ 511、アクセルペダルセンサ 512、 ブレーキペダルセンサ 513、速度計 514、加速度センサ 515、エレキ動作状況取得 咅 516、タイマー 517、その他のセンサを備えている。
図 17は、自車両情報取得部 51で取得する、運転操作情報としての自車両情報を 例示したものである。
図 17に示されるように、ハンドル舵角センサ 511はハンドル操作量 (角度)、ァクセ ルペダルセンサ 512はアクセル操作量、ブレーキペダルセンサ 513はブレーキ操作 量を、速度計 514は車速を検出する。
加速度センサ 515は、ョー軸加速度、ピッチ軸加速度、ロール軸加速度を検出する
[0110] エレキ動作状況取得部 516は、ウィンカー動作状況、ライト動作状況、ワイパー動 作状況を検出する。
タイマー 517は、運転時刻、運転時間等の各種時間を計測する。
[0111] 自車両周辺環境情報取得部 52は、車両周辺情報取得部 521、道路情報取得部 5 22、及びネットワーク部 523を備えている。
車両周辺情報取得部 521は、赤外線センサ、ミリ波センサ、超音波センサ、画像認 識装置、車間距離センサ等の各種センサを備えている。画像認識装置は、画像入力 装置で撮像された車外画像の画像処理を行い、車両周辺の障害物や、歩行者、車 両等の存在対象を認識する。
[0112] 図 18は、車両周辺情報取得部 521で取得する車両周辺環境情報を例示したもの である。
この図 18に示されるように、車両周辺情報取得部 521により、車両、歩行者、障害 物、その他各種情報が取得される。
具体的に取得される情報としては、例えば、検出した周辺に存在する車両の種類( 乗用車、バイク、自転車等)、車間距離、相対速度、属性 (対向車、並走車、直行 (左 、右)車、等が各車両毎に取得される。
同様に、歩行者、障害物に対しても、その各々に対する情報が取得される。
[0113] 道路情報取得部 522は、車両の現在位置を検出する GPS装置や、検出した現在 位置に対応する道路情報や信号の有無等の周辺情報を取得するための地図情報を 備えている。
また、道路情報取得部 522は、標識や道路環境を認識する画像認識装置を備えて いるが、この画像認識装置は車両周辺情報取得部 521の画像認識と共有されている [0114] 図 19は、道路情報取得部 522で取得する車両周辺環境情報を例示したものであ る。
道路情報取得部 522では図 19に示されるように、道路種別、道路形状、道路幅、 自車位置、路面状況、道の明るさ、信号の有無と状態、道路属性 (交通規則)、その 他の各種情報が取得される。
[0115] ネットワーク部 523は、 VICS等の交通情報網や気象情報センタと接続して、交通 情報や気象情報を取得する。
図 20は、ネットワーク部 523で取得する車両周辺環境情報を例示したものである。 図 20に示されるように、 VICS等で取得する渋滞情報には、渋滞の距離、混雑の距 離、事故の有無、通行止めの有無、チ ーン規制の有無等がある。
また、気象情報センタで取得する気象情報には、晴れ、曇り、雨等の天候情報、降 水確率、気温、その他の情報がある。
[0116] 自車両周辺環境情報取得部 52で取得した自車両周辺環境情報は、上記した自車 両情報取得部 51で取得した自車両情報の一部 (例えば、ハンドル操作量に基づぐ 直進、右折、左折等の情報)と共に、後述するシチュエーションテーブル 563に従つ て、シチュエーションの設定に使用される。
[0117] 生体情報取得部 53は、車両の運転中におけるドライバが正常状態か異常状態か を判断するための生体情報を取得し、そのためのセンサとして、心電計、血圧計、心 拍センサ、発汗センサその他の各種センサを備えている。
生体情報取得部 53は、車両が走行を開始すると、所定時間間隔で心拍数と発汗 量を検出して ECU50に供給するようになって 、る。
心拍センサは、例えば、ステアリングに配置された電極により、運転中の運転者の 手から心拍信号を採取することで心拍数を検出するようになっている。なお、心拍セ ンサは、専用のセンサを手首等の運転者の身体に配置するようにしてもょ 、。
発汗センサは、ステアリングに配置され、発汗状態によって流れる電流値の変化か ら発汗状態を検出する。
[0118] 図 21は、生体情報取得部 53で取得する生体情報を例示したものである。 生体情報取得部 53では、心電位、 R— R間隔、心拍、呼吸数、体温、血圧、皮膚電 位、失水分量 (発汗量)、筋電位、脳波電位等が取得対象となる。
[0119] 情報提供部 54は、ドライバの運転状態に応じた運転操作アシストや警告を行うため の運転操作アシスト部、音声出力部、画面出力部を備えている。
図 22は、情報提供部 54で提供する情報、アシストの内容を例示したものである。 この図 22に示されるように、運転操作アシスト部は、ドライバによる運転操作を補正 するアシストとして、ハンドル操作アシスト、アクセル操作アシスト、ブレーキ操作ァシ スト等を行うため、各操作部のトルク値の出力を制御する。例えば、運転者によるハン ドル操作にふらつきがある場合にはステアリングが重くなるようにトルク操作をし、ブレ ーキの踏み力が弱い場合にブレーキの踏み込み量に対する出力が大きくなるように アシストする。
また、運転者の状態に応じて、音声出力部は警告音声を出力し、画面出力部は警 告画面を表示する。
[0120] ドライバモデル処理部 55は、ドライバモデル作成部 551、ドライバモデル記憶部 55 2、ドライバモデル出力部 553を備えている。
ドライバモデル作成部 551は、ドライバモデル作成装置として機能し、自車両情報 取得部 51で取得した自車両情報のうち、運転者の状態が正常状態である場合の自 車両情報を蓄積し、該正常状態の自車両情報力 ドライバモデルを作成する。
正常状態の自車両情報は、該情報を取得した際に自車両周辺環境情報取得部 5 2で取得した自車両周辺環境情報力 決定されるシチュエーション毎に蓄積され、各 シチュエーション毎にドライバモデルが作成される。
[0121] ドライバモデル記憶部 552は、ドライバモデル作成部 551で作成されたドライバモ デルが各シチュエーション毎に保存される。
ドライバモデル作成部 551では、各シチュエーションに対する自車両情報が所定量 蓄積されると、そのシチュエーションのドライバモデルを作成し、ドライバモデル記憶 部 552に記憶する。そして、新たな自車両情報が取得される毎に、対応するシチユエ ーシヨンのドライバモデルがそれ以前に蓄積済みの自車両情報と併せて新たにドライ バモデルを作成し、ドライバモデルを更新する。なお、ドライバモデルの更新は、対応 するシチュエーションの新たな自車両情報を取得する毎ではなぐ所定量の追加蓄 積がある毎に作成、更新を行うようにしてもよい。
[0122] 図 23はドライバモデル記憶部 552の記憶内容を概念的に表したものである。
この図 23に示されるように、ドライバモデルは、シチュエーション毎に分類されてい る。記憶される各ドライバモデル a、 b、 c、…は、対応するシチュエーションデータ(シ チユエーシヨン a、 b、 c、 ···)に紐付けされており、システムがドライバモデルを引用す る為のタグとして機能する。
こうすることでドライバモデルの検索時に、「ドライバがあるレベルでの疲労具合」の ケースのドライバモデルを一括取得しておくなどのキャッシュ操作が可能になる。
[0123] ドライバモデル出力部 553は、特定のシチュエーション nに対応するドライバモデル nに基づいて、正常状態におけるドライバの操作量、すなわち、シチュエーション nに 対するいつもの(正常時の)運転操作量を推定し、出力する。
この推定運転操作量と、現在の自車両情報とを比較することで、後述する運転行動 の状態 (反応遅れ、ふらつき等)を判断するための基礎データである、運転行動逸脱 データが所定時間間隔毎に得られる。
[0124] なお、ドライバモデル処理部 55におけるドライバモデル作成部 551とドライバモデ ル出力部 553の両機能を ECU50で実現し、ドライバモデル記憶部 552をデータ記 憶部 56に保存するようにしてもよ!、。
[0125] データ記憶部 56には、本実施形態によるドライバモデル作成処理、及び運転操作 アシスト処理に必要な各種データやテーブルが格納される。
データ記憶部 56は、フレキシブルディスク、ハードディスク、磁気テープ等の磁気 記録媒体、メモリチップや ICカード等の半導体記録媒体、 CD— ROMや MO、 PD ( 相変化書換型光ディスク)等の光学的に情報が読み取られる記録媒体、その他各種 方法でデータやコンピュータプログラムが記録される記録媒体が含まれる。
記録媒体には、記録内容に応じて異なる媒体を使用するようにしてもよい。
[0126] データ記憶部 56には、運転行動逸脱データ 561、自車両情報 562が保存され、ま た、シチュエーションテーブル 563が格納されて!、る。
運転行動逸脱データ 561は、現在走行中のシチュエーション nに対してドライバモ デル nから推定される正常時の運転操作量と、実際の自車両情報に基づく操作量と の差分データであり、現在走行中のシチュエーション nに対して所定時間間隔毎に 算出され、保存される。
自車両情報 562は、正常状態で走行した際の自車両情報が各シチュエーション毎 に蓄積される。この自車両情報が所定量蓄積された次点で、そのシチュエーションに 対するドライバモデルが作成される。ドライバモデルは、一度作成された以後は、対 応するシチュエーションの自車両情報を取得する毎に更新される。
[0127] シチュエーションテーブル 563は、取得した自車両情報と自車両周辺環境情報か ら、対応するシチュエーション a、 b、 c、…を決定するためのテーブルである。
図 24は、シチュエーションデータの内容を概念的に表したものである。 この図 24に示されるように、ドライバモデル a、 b、 c、…に対応する各シチユエーショ ン&、 b、 c、…毎に、そのシチュエーションとなるためのシチュエーションフラグが設定 されている。
シチュエーションフラグは、自車両情報と自車両周辺環境情報における各小項目 毎に 1つのデータが選択されている。
[0128] 次に、以上のように構成された運転支援装置による各種処理動作について説明す る。
図 25は、ドライバの「普段の運転行動」(正常時)のドライバモデルを作成するドライ バモデル作成処理の処理動作を表したフローチャートである。
本実施形態において、ドライバモデルの作成は、車両走行中において実行される 力 ドライバの生体情報、自車両情報、自車両周辺環境情報の収集と蓄積を走行中 に行い、シチュエーションフラグの設定及びドライバモデルの作成については、車両 走行中以外に行うようにしてもよい。
[0129] ドライバモデル作成部 551は、車両走行中において生体情報取得部 53から各時 点における生体情報を収集、蓄積する (ステップ 110)。なお、生体情報等の各種情 報は ECU50を介して収集する(以下同じ)。
次いでドライバモデル作成部 551は、収集、蓄積した生体情報力もその変化状態 を監視することで、現在のドライバの状態が正常状態カゝ否かを判断する (ステップ 11 D o
[0130] 図 26〜図 28は、ドライバが正常状態か否かを判断する方法について概念的に表 したものである。
図 26は、ドライバの心拍数の変動力も動揺や焦りに起因する精神的 (メンタル)な変 化を監視する状態について表したものである。
図 26 (a)に示されるように、所定の上下の閾値 hiと h2間に心拍の測定値が入って V、る場合には正常な状態 (安定して!/、る状態)と判断する。
一方、図 26 (b)に示されるように、心拍の測定値が下側閾値 hi以下、又は上側閾 値 h2以上を検出した場合には動揺や焦りに起因した異常な状態 (不安定な状態)と 判断する。
なお、本実施形態では図 26 (b)に示されるように、所定時間内に上下閾値 hl、 h2 間の両側から外れた場合に異常状態と判断するが、いずれか一方の閾値を所定時 間超えて ヽる場合も異常と判断するようにしてもょ ヽ。
[0131] 図 27は、心電図のローレンツプロット解析力 メンタルな変化を監視する状態につ いて表したものである。
ローレンツプロット解析では、任意の時刻 nにおける心電位の R—R間隔を RRnとし 、次の時刻 n+ 1における心電位の R—R間隔を RRn+ 1とした場合に、横軸を RRn の値、縦軸を RRn+ 1の値に取ったグラフが作成される。ここで、 R— R間隔は、心電 位のピーク値力 次のピーク値までの時間間隔で、心拍の間隔が該当する。
[0132] このローレンツプロット解析によると、極度の緊張状態である場合には、図 27 (a)に 示されるように、心拍間隔が同一間隔となり、プロット点の集合は y=x線の一力所に 集中する。
また適度な緊張状態 (適度な注意力がある状態)では、心拍間隔が適度のゆれをも つて観測され、図 27 (b)に示されるように、プロット点の集合は y=x線上に細長くプロ ットされる。
また、注意力が散漫な状態では、心拍間隔の揺れが大きくなり、図 27 (c)に示され るように、プロット点の集合も y=x線上で原点方向及びこれと直角方向にも膨らむよう な集合が観測される。 また、眠気がある状態では、図 27 (d)に示されるように、プロット点の集合は、心拍 間隔は y=x線方向のプロット領域が広がる力 原点側の幅が狭く原点から離れるに 従って広くなる傾向がある。
[0133] このローレンツプロット解析により、正常な状態 (適度な緊張状態)と、正常でない状 態 (極度の緊張状態、注意力が散漫な状態、眠気がある状態)が判断される。
[0134] 図 28は、取得した生体情報から、交感神経系優位の状態カゝ、副交感神経系優位 の状態かによつて正常状態力否かを判断する場合について表したものである。 この図 28に示されるように、例えば、ドライバの撮像画像力も瞳孔の大きさを測定し 、その大きさが散大である場合には、交換神経系が最も優位であり極度の緊張状態 で注意力が低い可能性があると判断される。逆に、瞳孔の大きさが収縮状態である 場合には、副交感神経系が優位な弛緩状態であり、収縮の程度に応じて、注意力が 低 、、注意力が極めて低 、可能性があると判断される。
一方、交換神経系が適度に優位である瞳孔サイズの場合に、適度の緊張状態で注 意力が高い正常状態と判断される。
[0135] 瞳孔のサイズを含め、図 28に示した作用項目(心拍数、心臓収縮力等)の各測定 項目毎に、極度の緊張、適度の緊張、弛緩状態 (注意力が低い)、弛緩状態 (注意力 が極めて低 、)の 4状態に区分する為の値が予め決められて 、る。
なお、ドライバモデルの作成においては、正常状態か正常状態でないかについて 判断されるが、後述するドライバ生体情報監視処理(図 33参照)におけるドライバ生 体情報ケース判定 (ステップ 142)では、極度の緊張状態、適度の緊張状態、注意力 が散漫な状態、弛緩状態、眠気がある状態の 5つの状態が、図 26〜図 28で説明し た方法に基づ 、て判定される。
[0136] 以上のように、生体情報力もドライバが正常状態力否かを判断し、正常であれば (ス テツプ 111 ; Y)、ドライバモデル作成部 551は、正常ドライバモデル作成用の情報と して、正常時の自車両情報と自車両周辺環境情報を、自車両情報取得部 51と自車 両周辺環境情報取得部 52から収集する (ステップ 112)。
[0137] 図 29は、交差点を右折する際に自車両情報取得部 51と自車両周辺環境情報取 得部 52で取得される自車両情報と自車両周辺環境情報にっ 、て例示したものであ る。
この図 29に示されるような交差点を右折する場合には、取得される情報として、道 路種別、道路状況、自車速度、自車位置、進行方向、自車側の信号の状態 (赤、青 、黄等)、前方車両の有無、前方車両の種類、前方車両相対位置、前方車両相対速 度、対向車の有無、対向車車種、対向車相対位置、対向車相対速度、歩行者の有 無、歩行者の種類、歩行者の位置、歩行者の進行方向、天気、等が取得される。 なお、本実施形態ではこれらの情報にっ 、て取得し後述のシチュエーションの設 定に使用されるが、必ずしもその全てを使用する必要はなぐいずれか一部の情報 に基づくシチュエーションの設定を行ってもよぐ逆に、より詳細な情報によるシチュ エーシヨンの設定を行うようにしてもよ!、。
[0138] ドライバモデル作成部 551は、収集した自車両情報と自車両周辺環境情報から、 シチュエーションテープノレ 563 (図 24参照)に従ってシチュエーションフラグを設定し 、収集した正常時の自車両情報を、該当するシチュエーションの自車両情報 562に 蓄積する (ステップ 113)。
[0139] 次いで、ドライバモデル作成部 551は、収集及び蓄積した正常時の自車両情報 56 2に従って、ステップ 113で設定したシチュエーションに対応する正常時用の正常ド ライバモデルを作成し (ステップ 114)、メインルーチンにリターンする。
[0140] 一方、生体情報力もドライバが正常状態力否かを判断し、正常でなければ (ステツ プ 111 ;N)、ドライバモデル作成部 551は、正常時と同様に、異常ドライバモデル作 成用の情報として、異常時の自車両情報と自車両周辺環境情報を、自車両情報取 得部 51と自車両周辺環境情報取得部 52から収集する (ステップ 115)。
[0141] ドライバモデル作成部 551は、収集した自車両情報と自車両周辺環境情報から、 シチュエーションテープノレ 563 (図 24参照)に従ってシチュエーションフラグを設定し 、収集した異常時の自車両情報を、該当するシチュエーションの自車両情報 562に 蓄積する (ステップ 116)。
[0142] 次いで、ドライバモデル作成部 551は、収集及び蓄積した異常時の自車両情報 56 2に従って、ステップ 116で設定したシチュエーションに対応する異常時用の異常ド ライバモデルを作成し (ステップ 117)、メインルーチンにリターンする。 [0143] なお、本実施形態では生体情報が正常か異常かに応じて正常ドライバモデルと異 常ドライバモデルを作成する場合について説明したが、例えば、異常状態として、生 体情報が所定の上下の閾値よりも高い、低いのように、生体情報の状態に応じたドラ ィバモデルをそれぞれ作成するようにしてもよ 、。
[0144] ここで、ドライバモデル作成部 551によるドライバモデルの作成にっ 、て説明する。
本実施形態では、ドライバモデルを GMMにより作成する。
本実施形態における運転支援装置 (ドライバモデル作成装置)による、正常時のド ライバモデルの作成と、作成したドライバモデルに基づく運転操作量の推定に関する 原理は図 1及び第 1実施形態で説明したとおりである。
なお、特徴量については、自車両情報取得部 51で取得した全ての情報のうちの他 の情報の組合せを使用して作成するようにしてもよ 、。
[0145] 本実施形態の運転支援装置では、アクセル操作量、車速、車間距離等から構成さ れる各シチュエーション毎の走行データ 1 (自車両情報)を学習データとして、各シチ ユエーシヨンに対応する GMMによるドライバモデル 2を EMアルゴリズムにより予め作 成する。
なお、ドライバモデルは各ドライバ毎に作成するようにしてもよい。
[0146] そして、ドライバの運転行動(例えば、アクセル操作量)を推定する場合、対応する ドライバモデル 2を使用し、時刻 tにおける走行データ 1の測定値 (V、F、 Δν、 · ' ·)3 に対する最大事後確率 4を計算することで、該ドライバが操作するであろうアクセル操 作量 5を推定するようになって ヽる。
このようにして推定した各操作量を走行データとして次の操作量を推定し、各時刻 毎の実測値 (自車両情報)と比較することで運転行動逸脱データが算出される。
[0147] この例の運転支援装置では、ドライバは現在の車速、車間距離、及びそれらの 1次
、 2次の動的特徴量に基づ!/、てアクセルペダルとブレーキペダルの操作量を決めて
V、るとの仮定に基づ!/、て!/、る。
[0148] 以下、ドライバモデルの作成と運転行動の推定の原理については第 1実施形態で 説明した通りである。
なお、(Α)ドライバモデルの学習、において、走行データ 1は、ドライバモデル作成 の対象となるドライバが実際に運転したデータであり、実際にドライバが運転している 際にリアルタイムで測定、収集した走行データ 1を使用する。また、予め測定し蓄積し ておいた走行データ 1を使用することで、オフラインの学習を行うようにしてもよい。
[0149] また、最大事後確率による運転行動の推定に関する概略については、第 1実施形 態において説明した図 2で表した通りである。
[0150] 以上のようにして各シチュエーション毎に作成されたドライバモデルを使用して、ド ライバの運転行動の状態を特定するドライバ運転行動監視処理について説明する。 図 30は、ドライバ運転行動監視処理の処理動作を表したフローチャートである。
ECU50は、自車両情報と自車両周辺環境情報を、自車両情報取得部 51と自車 両周辺環境情報取得部 52から収集する (ステップ 120)。
[0151] 次に、 ECU50は、図 31 (a)に示されるように、取得した自車両情報と自車両周辺 環境情報を元に、シチュエーションフラグを設定する (ステップ 121)。
そして ECU50は、設定したシチュエーションフラグを元に、シチュエーションテープ ル 563とマッチング処理を行 、、取得した自車両周辺環境情報等の現状に適合する シチュエーションを検索することで、対応するドライバモデルが存在するか否かを判 断する (ステップ 122)。
対応するドライバモデルが存在しない場合には (ステップ 122 ; N)メインルーチンに リターンする。
[0152] 一方、図 31 (b)に示されるように、現状に適合するシチュエーションが検索され、対 応するドライバモデルが存在する場合 (ステップ 122 ; Y)、 ECU50は、適合するシチ ユエーシヨンに紐付けされたドライバモデルをドライバモデル記憶部 552から読み出 し、ドライバモデル出力部 553に出力する (ステップ 123)。
[0153] 次に、 ECU50は、自車両情報取得部 51で時刻 tにおいて取得した自車両情報( 実測値)を初期値 (t)としてドライバモデル出力部 553に入力する (ステップ 124)。 すると、ドライバモデル出力部 553は、時刻 tにおける自車両情報 (t)をドライバモデ ルに入力し、最大事後確率を計算することで時刻 t+ 1における運転行動データ (操 作量)の推定値「t+ 1」を ECU50に出力する(ステップ 125)。
[0154] ついで ECU50は、現在(時刻 t+ 1)における自車両情報 (t+ 1)を取得し (ステツ プ 126)、時刻 t+ 1における運転行動逸脱データ(「t+ 1」—(t+ 1) )を算出して運 転行動逸脱データ 561に記憶する (ステップ 127)。
そして ECU50は、記憶した運転行動逸脱データ 561が所定数蓄積した力否かを 判断し (ステップ 128)、所定数未満であれば (ステップ 128 ;N)、ステップ 125で推 定した操作量の推定値「t+ 1」を (t)としてドライバモデルに入力し (ステップ 129)、ス テツプ 125に移行することで、更に次時刻の運転行動逸脱データ 561の蓄積を継続 する(ステップ 125〜27)。
[0155] 一方、所定数の運転行動逸脱データ 561が蓄積されると (ステップ 128 ; Y)、 ECU
50は、運転行動逸脱データ 561の状態から運転行動逸脱傾向を判断し、出力して( ステップ 130)、メインルーチンにリターンする。
本実施形態では、運転行動の逸脱傾向としては、「反応速度の遅れ」の有無と、「操 作のふらつき」の有無の 2項目について判断する。
[0156] 図 32は、ドライバモデル出力部 553から出力された正常状態における運転操作量
(V、つもの運転)の推定値と、現在の運転の操作量(自車両情報)とを概念的に比較 したものである。
この図 32において、ドライバモデルから出力された運転操作量 (いつもの運転)は、 ドライバモデルに現在の運転操作量の初期値を入力し、ドライバが正常時にお 、て 普段取る運転行動として最も確率の高い操作量の出力値を表したもので、正常時で あれば通常このような運転をするはず (操作量であるはず)である、 t 、う仮想の操作 量を表している。
[0157] この仮想の操作量に対して、現在の運転の操作量を照らし合わせて反応速度の遅 れと操作のふらつきの傾向を判断する。
例えば、図 32 (a)に示すように、ドライバモデルで推定した操作量は時間経過と共 に増加する場合において、所定時間経過後に自車両情報による操作量が自車両情 報取得部 51で取得される場合には、反応速度の遅れ傾向があると判断される。 また、図 32 (b)に示すように、ドライバモデルで推定した操作量と比較して、取得さ れる自車両情報による操作量が時間経過と共に増カロしたり、減少したりする場合で増 カロ、減少量 (運転行動逸脱データの絶対値)が所定値以上である場合には、運転操 作にふらつきがあるものと判断される。
[0158] 一方、ドライバモデルで推定した操作量と、取得される自車両情報による操作量と がほぼ一致する場合、すなわち、運転行動逸脱データの絶対値が所定値以下の状 態が継続する場合には、反応遅れ、ふらつき共にない正常状態と判断される。
[0159] 次に、走行中におけるドライバの生体情報の監視処理について図 33のフローチヤ ートに従って説明する。
まず、 ECU50は、車両走行中において生体情報取得部 53から各時点における生 体情報を収集、蓄積する (ステップ 141)
次いで ECU50は、収集、蓄積した生体情報力もその変化状態を監視することで、 図 26〜図 28で説明した方法と同様の方法により、現在のドライバ生体情報の状態( ケース)を判定し (ステップ 142)、メインルーチンにリターンする。
[0160] なお、以上説明したドライバ生体情報監視処理は、図 25で説明した走行中におけ るドライバモデル作成処理におけるドライバ生体情報収集 (ステップ 110)と、ドライバ 生体情報の変化が正常化否かの判断 (ステップ 111)で兼用することが可能である。 この場合、ドライバモデル作成処理では、ステップ 111でドライバの状態が正常状 態であることを監視しているのに対して、図 25において説明したように、正常状態で ない場合にどの状態に該当しているのかについても図 26〜図 28に従って判定し、 出力する。
[0161] なお、該判定を兼用する場合には、ドライバモデル作成部 551、 ECU50のいずれ 力がその判定を行う。
[0162] また、図 34 (a)、 (b)に示されるように、ドライバの目の状態から正常状態と、眠気、 疲労状態を判定するようにしてもょ ヽ。
この目の状態からの判定は、ドライバモデル作成処理 (ステップ 111)、及びドライバ 生体情報監視処理 (ステップ 142)の何れか一方、又は双方において使用するように してちよい。
[0163] 具体的には、図 34 (a)に示すように、ドライバの状態として、瞬き回数、瞬き時間、 瞼の開度、視線の動きを画像処理により検出し、その値や状態に応じて眠気の状態 を判定する。 また、図 34 (b)に示すように、瞬き回数が増大している場合や、瞼の動きが痙攣し ている場合、目をこすっている場合、目頭をもんでいる場合に、疲労していると判定 する。
[0164] 図 35は、ドライバの運転状態及び生体情報ケースに基づく運転支援処理の動作を 表したフローチャートである。
ECU50は、ドライバの状態として、ドライバ運転行動監視処理(図 30)のステップ 1 30で判断され出力された運転行動逸脱傾向を取得する (ステップ 151)と共に、ドラ ィバ生体情報監視処理(図 33)のステップ 142で判定され出力されたドライバ生体情 報ケースを取得する(ステップ 152)。
そして、 ECU50は、取得した運転行動逸脱傾向と生体情報ケースとから、運転支 援の内容を決定しドライバへのアプローチを行い (ステップ 153)、メインルーチンにリ ターンする。
[0165] 図 36は、取得した運転行動と生体情報ケースとから推定されるドライバの状態 (a) と、推定されるドライバの状態に対応して行う運転支援の内容を表にしたものである。 なお、図 36 (b)の表は、 ECU50の ROMに格納されている。
図 36 (a)に示すように、各運転行動 (反応遅れ、ふらつき、反応遅れ +ふらつき、 両者なし)と、各生体情報ケース (極度の緊張状態、適度な緊張状態、注意力が散漫 な状態、弛緩状態、眠気がある状態)との組合せに応じて、何かに気を取られていた 、疲れてきた、漫然運転、眠気、焦り、よそ見等といったドライバの状態が推定される そして、これら各組合せから推定される各状態に対応して、図 36 (b)に示されるよう に、 ECU50は、音声や振動による注意喚起、施設情報を提供して休憩を勧める、注 意喚起 + a 1、情報を提供して気分を紛らわす、等の運転支援を情報提供部 54から 行う。
[0166] なお、図 36における運転支援のうち、 ECU50は + a 1に対して、運転以外に集中 して危険なため、注意の喚起を促すと共に前方車両との車間距離を自動的に大きく 開ける制御などを行う。
また、 ECU50は、 + « 2に対して、運転に集中するよう注意喚起を行うと共に、ドラ ィバが何に対して運転が疎かになるほど負荷を感じて 、るの力、会話機能やセンサ を用いてリサーチし、一服させるための休憩を案内したり、悩み相談に乗ったり、ドラ ィバが抱える問題を改善する動作を行う。
また ECU50は、 + ο; 3に対して、目を覚ますよう注意喚起を行うと共に、すぐに休 憩を取らせるなどの案内を行う。
また、 ECU50は、注意喚起の内容として、運転操作や生体情報の何がどう問題で あった力 警告して 、る、などのドライバの納得を得やすくするための具体的な説明 を行っても良い。
[0167] 以上、本発明のドライバモデル作成装置及び運転支援装置における 1実施形態に ついて説明したが、本発明は説明した実施形態に限定されるものではなぐ各請求 項に記載した範囲において各種の変形を行うことが可能である。
例えば、説明した実施形態では、判定した運転行動と生体情報ケースとから運転 支援の内容を決定する場合について説明したが、判定した運転行動力も運転支援 内容を決定するようにしてもょ 、。
図面の簡単な説明
[0168] [図 1]第 1実施形態における運転行動推定装置によるドライバモデルの生成と、生成 したドライバモデルに基づく運転行動の推定に関する原理を表した説明図である。
[図 2]最大事後確率による運転行動の推定に関する概略を表した説明図である。
[図 3]運転行動推定装置の構成を表した説明図である。
[図 4]走行データ取得部で取得する走行データを表した説明図である。
[図 5]ドライバモデル生成部によるドライバモデル生成処理を表したフローチャートで ある。
[図 6]生成したドライバモデルを使用して特定の運転行動を推定する処理を表したフ ローチャートである。
[図 7]運転行動推定装置を適用した運転支援装置の構成図である。
[図 8] ACC用ドライバモデルの自動生成処理動作を表したフローチャートである。
[図 9]ACC処理の動作を表したフローチャートである。
[図 10]車両評価システムの概要を表した概念説明図である。 [図 11]運転行動推定装置の構成図である。
圆 12]運転行動推定装置における各データの概要を表した説明図である。
圆 13]設計評価処理の動作を表したフローチャートである。
[図 14]学習用の先行車の挙動と運転データ、及び評価用の先行車の挙動を表した 説明図である。
[図 15]車両評価システムを用いたシミュレーション結果を表した説明図である。
圆 16]本願発明の第 2実施形態におけるドライバモデル作成装置を適用した運転支 援装置の構成図である。
[図 17]自車両情報取得部で取得する自車両情報を例示した説明図である。
[図 18]車両周辺情報取得部で取得する車両周辺環境情報を例示した説明図である 圆 19]道路情報取得部で取得する車両周辺環境情報を例示した説明図である。 圆 20]ネットワーク部で取得する車両周辺環境情報を例示した説明図である。
圆 21]生体情報取得部で取得する生体情報を例示した説明図である。
圆 22]情報提供部で提供する情報、アシストの内容を例示した説明図である。
圆 23]ドライバモデル記憶部の記憶内容を概念的に表した説明図である。
[図 24]シチュエーションデータの内容を概念的に表した説明図である。
[図 25]ドライバの「普段の運転行動」(正常時)のドライバモデルを作成するドライバモ デル作成処理の処理動作を表したフローチャートである。
圆 26]ドライバの心拍数の変動からメンタルな変化を監視する状態について表した説 明図である。
[図 27]心電図のローレンツプロット解析からメンタルな変化を監視する状態について 表した説明図である。
圆 28]取得した生体情報から、正常状態力否かを判断する場合について表した説明 図である。
圆 29]交差点を右折する際に自車両情報取得部と自車両周辺環境情報取得部で取 得される自車両情報と自車両周辺環境情報について例示した説明図である。
[図 30]ドライバ運転行動監視処理の処理動作を表したフローチャートである。 [図 31]自車両情報と自車両周辺環境情報力 シチュエーションフラグの設定と、適合 するシチュエーションの検索についての説明図である。
[図 32]ドライバモデル出力部力 出力された正常状態における運転操作量 (いつも の運転)の推定値と、現在の運転の操作量(自車両情報)とを概念的に比較した説明 図である。
[図 33]走行中におけるドライバの生体情報の監視処理についてのフローチャートで ある。
[図 34]ドライバの目の状態力 正常状態と、眠気、疲労状態を判定する場合の説明 図である。
[図 35]ドライバ運転状態及び生体情報ケースに基づく運転支援処理の動作を表した フローチャートである。
[図 36]取得した運転行動と生体情報ケースとから推定されるドライバの状態と、推定 されるドライバの状態に対応して行う運転支援の内容を表にした説明図である。 符号の説明
10 ドライバモデル生成部
101 運転者情報取得部
102 走行データ取得部
103 同時確率密度分布計算部
104 同時確率密度関数パラメータ記憶部
11 運転行動推定部
111 運転者情報取得部
112 走行データ取得部
113 ドライバモデル選択部
114 最大事後確率計算部
115 特徴量 Xの推定値出力部
50 ECU
51 自車両情報取得部
52 自車両周辺環境情報取得部 521 車両周辺情報取得部 522 道路情報取得部 523 ネットワーク部 53 生体情報取得部 54 情報提供部
55 ドライバモデル処理部 551 ドライバモデル作成部 552 ドライバモデル記憶部 553 ドライバモデル出力部 56 データ記憶部

Claims

請求の範囲
[1] 車両走行に伴い検出される N種類の特徴量の時系列データを学習データとし、 N 次元空間における各データが存在する確率分布を記述したドライバモデルと、 前記 N種類の内の特定の特徴量 Xを除 ヽた少なくとも 1つ以上の特徴量を取得する 特徴量取得手段と、
前記取得した特徴量に対する、前記ドライバモデルにおける最大事後確率を算出 する最大事後確率算出手段と、
前記算出した最大事後確率に基づいて、前記取得した特徴量に対する前記特定 の特徴量 Xの推定値を出力する出力手段と、
を備えたことを特徴とする運転行動推定装置。
[2] 前記 N種類の特徴量は、 n種類 (nく N)の特徴量に対する時間変化量を含む、 ことを特徴とする請求項 1に記載の運転行動推定装置。
[3] 前記特徴量 Xは、ドライバが直接操作する操作装置の操作量及び該操作量の時間 変化量を含む、
ことを特徴とする請求項 1又は請求項 2に記載の運転行動推定装置。
[4] 前記ドライバモデルは、前記 N種類の特徴量の時系列データを学習データとし、各 データが存在する確率分布として、 EMアルゴリズムにより算出された GMM (ガウス 混合モデル)で記述されて!ヽる、
ことを特徴とする請求項 1、請求項 2又は請求項 3に記載の運転行動推定装置。
[5] 特徴量として、アクセル操作量、ブレーキ操作量、自車両の車速、前方車両との車 間距離を使用したアクセル用のドライバモデルと、ブレーキ用のドライバモデルを使 用し、前記特徴量 Xとして、アクセル操作量及びブレーキ操作量を推定する請求項 1 、請求項 2、請求項 3、又は請求項 4記載の運転行動推定装置と、
自車両の車速と車間距離を取得する走行データ取得手段と、
前記取得した走行データに対して前記運動行動推定装置で推定されるアクセル操 作量、及びブレーキ操作量に従って、エンジンスロットル及びブレーキペダルを制御 することで前記前方車両に対する自動追従走行を行う走行制御手段と、
を具備したことを特徴とする運転支援装置。
[6] 特徴量として、アクセル操作量、ブレーキ操作量、自車両の車速、前方車両との車 間距離を使用したアクセル用のドライバモデルと、ブレーキ用のドライバモデルを使 用し、前記特徴量 Xとして、アクセル操作量及びブレーキ操作量を推定する請求項 1 、請求項 2、請求項 3、又は請求項 4記載の運転行動推定装置と、
評価対象となる車両の車両性能データを取得する手段と、
シミュレーション用の走行データと走路モデルを取得する手段と、
前記取得した走行データと走路モデルを前記運転行動推定装置に適用することで 得られるアクセル操作量とブレーキ操作量に対し、前記評価対象となる車両の加速 度を含む車両の挙動を推定する車両ダイナミクス計算手段と、
前記推定した車両の挙動から、前記評価対象となる車両の走行性能を評価する評 価手段と、
を具備したことを特徴とする車両評価システム。
[7] 運転者の状態を判断する状態判断手段と、
車両走行における運転操作情報を取得する運転操作情報取得手段と、 前記取得した運転操作情報に基づいて運転者の状態に応じた運転操作のドライバ モデルを作成するドライバモデル作成手段と、
を具備したことを特徴とするドライバモデル作成装置。
[8] 前記状態判断手段は、少なくとも運転者の状態が正常か否かを判断する、
ことを特徴とする請求項 7に記載のドライバモデル作成装置。
[9] 特定の走行環境を検出する走行環境取得手段と、
走行環境毎に前記運転操作情報を蓄積し、
前記ドライバモデル作成手段は、前記走行環境毎にドライバモデルを作成する、 ことを特徴とする請求項 7又は請求項 8に記載のドライバモデル作成装置。
[10] 運転者の生体情報を取得する生体情報取得手段を備え、
前記状態判断手段は、前記取得した生体情報に基づ!、て運転者の状態を判断す る、
ことを特徴とする請求項 7、請求項 8又は請求項 9に記載のドライバモデル作成装 置。
[11] 正常状態における運転操作のドライバモデルを取得するドライバモデル取得手段と 前記取得したドライバモデルを使用し、正常状態で通常運転される運転操作を推 定する運転操作推定手段と、
前記推定した運転操作と、現在の運転操作情報に基づく運転操作とから、ドライバ の運転行動を判定する運転行動判定手段と、
前記判定した運転行動に応じた運転支援を行う運転支援手段と、
を具備したことを特徴とする運転支援装置。
[12] 前記ドライバモデル取得手段は、走行環境毎に作成された正常状態における運転 操作のドライバモデルから、現在の走行環境に対応するドライバモデルを取得する、 ことを特徴とする請求項 11に記載の運転支援装置。
[13] 運転者の生体情報から運転者の状態を判定する運転者状態判定手段を備え、 前記運転支援手段は、前記判定した運転行動と前記判定した運転者状態とに応じ た運転支援を行う、
ことを特徴とする請求項 11又は請求項 12に記載の運転支援装置。
[14] 運転支援手段は、判定内容に応じて、音声又は画像による注意喚起、情報提供、 振動、休憩所の案内のうちの少なくとも 1以上の運転支援を行う、
ことを特徴とする請求項 11、請求項 12、又は請求項 13に記載の運転支援装置。
[15] 正常状態における運転操作のドライバモデルを取得するドライバモデル取得手段と 前記取得したドライバモデルを使用し、正常状態で通常運転される運転操作を推 定する運転操作推定手段と、
前記推定した運転操作と、現在の運転操作情報に基づく運転操作とから、ドライバ の運転行動を判定する運転行動判定手段と、
を具備したことを特徴とする運転行動判定装置。
PCT/JP2006/326041 2005-12-28 2006-12-27 運転行動推定装置、運転支援装置、車両評価システム、ドライバモデル作成装置、及び運転行動判定装置 WO2007077867A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800499780A CN101389521B (zh) 2005-12-28 2006-12-27 驾驶行动推定装置、驾驶支援装置、车辆评价系统
US12/087,130 US8140241B2 (en) 2005-12-28 2006-12-27 Driving action estimating device, driving support device, vehicle evaluating system, driver model creating device, and driving action determining device
EP06843423A EP1997705B1 (en) 2005-12-28 2006-12-27 Drive behavior estimating device, drive supporting device, vehicle evaluating system, driver model making device, and drive behavior judging device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005378929A JP4781104B2 (ja) 2005-12-28 2005-12-28 運転行動推定装置、及び運転支援装置
JP2005-378929 2005-12-28
JP2006-101053 2006-03-31
JP2006101053A JP4791874B2 (ja) 2006-03-31 2006-03-31 運転支援装置及び運転行動判定装置

Publications (1)

Publication Number Publication Date
WO2007077867A1 true WO2007077867A1 (ja) 2007-07-12

Family

ID=38228221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326041 WO2007077867A1 (ja) 2005-12-28 2006-12-27 運転行動推定装置、運転支援装置、車両評価システム、ドライバモデル作成装置、及び運転行動判定装置

Country Status (3)

Country Link
US (1) US8140241B2 (ja)
EP (1) EP1997705B1 (ja)
WO (1) WO2007077867A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018765A (ja) * 2007-07-13 2009-01-29 Osaka Prefecture Univ ドライバ特性検出装置
WO2009107210A1 (ja) * 2008-02-28 2009-09-03 パイオニア株式会社 車両の運転評価装置、方法、及びコンピュータプログラム
EP2182501A1 (en) * 2008-10-30 2010-05-05 Aisin Aw Co., Ltd. Safe driving evaluation system and safe driving evaluation program
CN104192145A (zh) * 2014-07-21 2014-12-10 厦门雅迅网络股份有限公司 一种车辆有限变速巡航方法
WO2015122158A1 (ja) * 2014-02-12 2015-08-20 株式会社デンソー 運転支援装置
CN106611505A (zh) * 2015-10-27 2017-05-03 大陆汽车投资(上海)有限公司 基于驾驶行为的行车辅助方法
WO2017187605A1 (ja) * 2016-04-28 2017-11-02 株式会社日立製作所 制御装置
WO2018117782A1 (es) * 2016-12-19 2018-06-28 Kitazawa Molina Elvia Isabel Método basado en nivel de estado de alerta de operadores de camiones para asignación automática de tareas en un sistema de manejo de flotas
CN108791055A (zh) * 2018-06-13 2018-11-13 蔡璟 一种汽车驾驶异常监测系统
US10627813B2 (en) 2015-04-21 2020-04-21 Panasonic Intellectual Property Management Co., Ltd. Information processing system, information processing method, and program
JP2020087109A (ja) * 2018-11-28 2020-06-04 トヨタ自動車株式会社 推定装置
CN111284498A (zh) * 2018-12-10 2020-06-16 丰田自动车株式会社 驾驶支援装置、系统、方法、可穿戴装置以及存储介质
US10759446B2 (en) 2015-04-21 2020-09-01 Panasonic Intellectual Property Management Co., Ltd. Information processing system, information processing method, and program
WO2020261613A1 (ja) * 2019-06-25 2020-12-30 株式会社疲労科学研究所 情報処理装置、情報処理方法及びプログラム
WO2021065372A1 (ja) * 2019-10-04 2021-04-08 日立Astemo株式会社 車両制御装置
CN113525400A (zh) * 2021-06-21 2021-10-22 上汽通用五菱汽车股份有限公司 变道提醒方法、装置、车辆及可读存储介质

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006053809A1 (de) * 2006-11-15 2008-05-21 Robert Bosch Gmbh Verfahren zur Einstellung von Kenngrößen eines Bremssystems in einem Kraftfahrzeug
KR20090054171A (ko) * 2007-11-26 2009-05-29 한국전자통신연구원 차량 및 운전자 정보 관리 시스템 및 그 방법
DE112009001740A5 (de) * 2008-10-21 2011-04-21 Continental Teves Ag & Co. Ohg Vorrichtung und Verfahren zur Steuerung und/oder Regelung eines Fahrzeugs unter Verwendung von Informationen über Fahrzeuge benachbarter Fahrspuren
US8849492B2 (en) * 2010-05-17 2014-09-30 Toyota Jidosha Kabushiki Kaisha Driving assistance apparatus
JP5447662B2 (ja) 2010-06-08 2014-03-19 トヨタ自動車株式会社 走行モデル作成装置及び運転支援装置
US8965676B2 (en) * 2010-06-09 2015-02-24 Toyota Motor Engineering & Manufacturing North America, Inc. Computationally efficient intersection collision avoidance system
CN102985956B (zh) * 2010-06-29 2017-03-08 本田技研工业株式会社 堵车预测显示方法
DE102010044024A1 (de) * 2010-11-17 2012-05-24 Bayerische Motoren Werke Aktiengesellschaft Fahrassistenzsystem in einem Kraftfahrzeug
GB2485581B (en) * 2010-11-19 2013-12-18 Fmg Support Ltd A method of improving driver safety
US9266533B2 (en) * 2010-12-30 2016-02-23 Institute Of Automation, Chinese Academy Of Sciences Adaptive cruise control system and method for vehicle
US8698639B2 (en) 2011-02-18 2014-04-15 Honda Motor Co., Ltd. System and method for responding to driver behavior
US9292471B2 (en) 2011-02-18 2016-03-22 Honda Motor Co., Ltd. Coordinated vehicle response system and method for driver behavior
DE112012001026T5 (de) * 2011-02-28 2013-12-19 Hitachi Automotive Systems, Ltd. Bremssteuervorrichtung
JP5598411B2 (ja) * 2011-04-20 2014-10-01 日産自動車株式会社 車両用情報提供装置
JP5856387B2 (ja) * 2011-05-16 2016-02-09 トヨタ自動車株式会社 車両データの解析方法及び車両データの解析システム
US9014915B2 (en) * 2011-07-25 2015-04-21 GM Global Technology Operations LLC Active safety control for vehicles
CN103827938A (zh) * 2011-09-22 2014-05-28 丰田自动车株式会社 驾驶辅助装置
PT106102B (pt) 2012-01-19 2014-08-11 Inst Superior Técnico Dispositivo e método para reconhecimento biométrico contínuo baseado em sinais eletrocardiográficos
EP2618108B1 (en) * 2012-01-19 2018-10-17 Volvo Car Corporation Driver assisting system
US8635018B2 (en) * 2012-02-03 2014-01-21 International Business Machines Corporation Managing a driver profile
CN103247091B (zh) * 2012-02-07 2016-01-20 厦门金龙联合汽车工业有限公司 一种驾驶评价系统及方法
US9848813B2 (en) * 2012-08-14 2017-12-26 Volvo Lastvagnar Ab Method for determining the operational state of a driver
US9751534B2 (en) 2013-03-15 2017-09-05 Honda Motor Co., Ltd. System and method for responding to driver state
US10499856B2 (en) 2013-04-06 2019-12-10 Honda Motor Co., Ltd. System and method for biological signal processing with highly auto-correlated carrier sequences
KR101509693B1 (ko) * 2013-06-12 2015-04-16 현대자동차 주식회사 운전자의 단기 운전 성향을 판단하는 장치 및 방법
IN2013MU02083A (ja) * 2013-06-19 2015-07-10 Tata Consultancy Services Ltd
EP2853458B1 (en) * 2013-09-30 2019-12-18 Hitachi, Ltd. Method and apparatus for performing driving assistance
KR20150071094A (ko) * 2013-12-17 2015-06-26 현대자동차주식회사 고객 사용정보 및 차량상태 기반 차종 추천 시스템 및 방법
US9650051B2 (en) 2013-12-22 2017-05-16 Lytx, Inc. Autonomous driving comparison and evaluation
US9995584B1 (en) 2014-01-10 2018-06-12 Allstate Insurance Company Driving patterns
US10902521B1 (en) 2014-01-10 2021-01-26 Allstate Insurance Company Driving patterns
US10429203B1 (en) 2014-01-17 2019-10-01 Allstate Insurance Company Driving analysis based on movement data
KR20150087985A (ko) * 2014-01-23 2015-07-31 한국전자통신연구원 안전운행정보 표출 장치 및 그 방법
JP6307356B2 (ja) 2014-06-06 2018-04-04 株式会社デンソー 運転コンテキスト情報生成装置
KR102051142B1 (ko) * 2014-06-13 2019-12-02 현대모비스 주식회사 차량용 운전자 위험 지수 관리 시스템 및 그 방법
US10078099B2 (en) * 2014-06-24 2018-09-18 Truemotion, Inc. Methods and systems for aligning a mobile device to a vehicle
EP3147171A4 (en) * 2014-08-05 2018-01-24 Launch Tech Company Limited Method, device, and system for generating driving behavior guidance information
DE102014218806A1 (de) * 2014-09-18 2016-03-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren, Vorrichtung, System, Computerprogramm und Computerprogrammprodukt zur Anzeige von Einflussfaktoren von Fahrstreckenabschnitten auf ein Fahrzeug
BR112017016820A2 (pt) 2015-02-05 2018-04-03 Uber Technologies Inc determinação de modo programático de informações de localização em conexão com um serviço de transporte
JP6315827B2 (ja) * 2015-03-27 2018-04-25 国立大学法人名古屋大学 運転支援装置
US10518783B2 (en) * 2015-03-31 2019-12-31 Hitachi Automotive Systems, Ltd. Automatic driving control device
US10204528B2 (en) 2015-08-05 2019-02-12 Uber Technologies, Inc. Augmenting transport services using driver profiling
JP6598019B2 (ja) * 2015-04-21 2019-10-30 パナソニックIpマネジメント株式会社 運転支援方法およびそれを利用した運転支援装置、運転制御装置、車両、運転支援プログラム
GB2538806B (en) * 2015-05-29 2021-04-07 Sevcon Ltd Method and apparatus
JP6519434B2 (ja) * 2015-10-08 2019-05-29 株式会社デンソー 運転支援装置
WO2017100167A1 (en) * 2015-12-06 2017-06-15 Voicebox Technologies Corporation System and method of conversational adjustment based on user's cognitive state and/or situational state
US10552573B2 (en) * 2016-03-18 2020-02-04 Toyota Jidosha Kabushiki Kaisha Vehicle simulation device for crowd-sourced vehicle simulation data
WO2017200835A1 (en) * 2016-05-15 2017-11-23 Mechanical Simulation Corporation A system and method to stabilize motorcycles
US10672198B2 (en) 2016-06-14 2020-06-02 Uber Technologies, Inc. Trip termination determination for on-demand transport
US10129221B1 (en) 2016-07-05 2018-11-13 Uber Technologies, Inc. Transport facilitation system implementing dual content encryption
US10640117B2 (en) 2016-08-17 2020-05-05 Allstate Insurance Company Driving cues and coaching
US10678240B2 (en) * 2016-09-08 2020-06-09 Mentor Graphics Corporation Sensor modification based on an annotated environmental model
US9919648B1 (en) * 2016-09-27 2018-03-20 Robert D. Pedersen Motor vehicle artificial intelligence expert system dangerous driving warning and control system and method
US10089880B2 (en) * 2016-11-08 2018-10-02 International Business Machines Corporation Warning driver of intent of others
DE102016224544A1 (de) 2016-12-09 2017-12-28 Audi Ag Verfahren und Steuerungssystem zum Betreiben mindestens einer manuell aktivierbaren Fahrzeugvorrichtung in einem Kraftfahrzeug sowie Steuervorrichtung
CN107150690B (zh) * 2017-01-09 2019-06-07 石家庄铁道大学 一种基于道路标线的驾驶疲劳预警方法
JP6544594B2 (ja) 2017-01-26 2019-07-17 パナソニックIpマネジメント株式会社 情報処理システム、情報処理方法、プログラムおよび車両
US10371542B2 (en) 2017-02-17 2019-08-06 Uber Technologies, Inc. System and methods for performing multivariate optimizations based on location data
US10402771B1 (en) * 2017-03-27 2019-09-03 Uber Technologies, Inc. System and method for evaluating drivers using sensor data from mobile computing devices
US10445950B1 (en) 2017-03-27 2019-10-15 Uber Technologies, Inc. Vehicle monitoring system
CN110431610B (zh) 2017-03-31 2021-12-21 本田技研工业株式会社 车载装置、信息管理系统及方法
CN107067724B (zh) * 2017-05-04 2019-10-11 陕西科技大学 智慧城市车辆行驶资源评估系统
DE102017111077A1 (de) * 2017-05-22 2018-11-22 Lsp Innovative Automotive Systems Gmbh Bremsvorrichtung, insbesondere für elektrisch angetriebene Kraftfahrzeuge
US20180357580A1 (en) * 2017-06-09 2018-12-13 Ford Global Technologies, Llc Vehicle driver workload management
CN110740911B (zh) * 2017-06-26 2021-06-01 日产自动车株式会社 车辆的行驶辅助方法及行驶辅助装置
CN109213134B (zh) * 2017-07-03 2020-04-28 百度在线网络技术(北京)有限公司 生成自动驾驶策略的方法和装置
JP6912324B2 (ja) * 2017-08-30 2021-08-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 情報処理方法、情報処理装置及び情報処理プログラム
US10300922B2 (en) * 2017-09-29 2019-05-28 Denso International America, Inc. Risk assessment system for assessing current driver behavior relative to past behavior and behaviors of other drivers
JP6950432B2 (ja) * 2017-10-05 2021-10-13 トヨタ自動車株式会社 運転支援装置、情報処理装置、運転支援システム、運転支援方法
US11273836B2 (en) * 2017-12-18 2022-03-15 Plusai, Inc. Method and system for human-like driving lane planning in autonomous driving vehicles
US10623834B1 (en) 2018-01-15 2020-04-14 United Services Automobile Association (Usaa) Vehicle tracking techniques
JP6944386B2 (ja) 2018-01-16 2021-10-06 株式会社日立製作所 故障診断支援装置
JP2019157652A (ja) * 2018-03-07 2019-09-19 トヨタ自動車株式会社 内燃機関の制御装置
JP7100471B2 (ja) 2018-03-14 2022-07-13 フォルシアクラリオン・エレクトロニクス株式会社 車載装置、走行状態推定方法、サーバ装置、情報処理方法、及び走行状態推定システム
US11727794B2 (en) * 2018-03-14 2023-08-15 Micron Technology, Inc. Systems and methods for evaluating and sharing human driving style information with proximate vehicles
US10997429B2 (en) 2018-04-11 2021-05-04 Micron Technology, Inc. Determining autonomous vehicle status based on mapping of crowdsourced object data
US11042156B2 (en) 2018-05-14 2021-06-22 Honda Motor Co., Ltd. System and method for learning and executing naturalistic driving behavior
US11161518B2 (en) 2018-06-15 2021-11-02 Micron Technology, Inc. Detecting road conditions based on braking event data received from vehicles
CN110733509A (zh) * 2018-07-18 2020-01-31 阿里巴巴集团控股有限公司 驾驶行为分析方法、装置、设备以及存储介质
IL262678A (en) * 2018-10-29 2020-04-30 Moshe Rave Benny A method and system for encouraging a driver to drive safely
US10894542B2 (en) * 2018-10-30 2021-01-19 International Business Machines Corporation Driving feedback based safety system
CN109543245B (zh) * 2018-10-31 2021-08-10 百度在线网络技术(北京)有限公司 无人车应对能力边界信息确定方法、装置和电子设备
US11097730B2 (en) * 2018-12-05 2021-08-24 Volkswagen Aktiengesellschaft Implicit activation and control of driver assistance systems
US11814059B1 (en) * 2019-04-05 2023-11-14 Zoox, Inc. Simulating autonomous driving using map data and driving data
US11300977B2 (en) * 2019-05-01 2022-04-12 Smartdrive Systems, Inc. Systems and methods for creating and using risk profiles for fleet management of a fleet of vehicles
US11609579B2 (en) 2019-05-01 2023-03-21 Smartdrive Systems, Inc. Systems and methods for using risk profiles based on previously detected vehicle events to quantify performance of vehicle operators
US11262763B2 (en) 2019-05-01 2022-03-01 Smartdrive Systems, Inc. Systems and methods for using risk profiles for creating and deploying new vehicle event definitions to a fleet of vehicles
US10915766B2 (en) * 2019-06-28 2021-02-09 Baidu Usa Llc Method for detecting closest in-path object (CIPO) for autonomous driving
US20210086769A1 (en) * 2019-09-20 2021-03-25 Lyft, Inc. Environmental torque profile adaptation
KR20210047477A (ko) * 2019-10-22 2021-04-30 현대자동차주식회사 오류 모니터링을 이용한 운전자 숙련용 주행 모델 생성 장치 및 방법
US11494517B2 (en) 2020-02-12 2022-11-08 Uber Technologies, Inc. Computer system and device for controlling use of secure media recordings
CN112721949B (zh) * 2021-01-12 2022-07-12 重庆大学 一种自动驾驶车辆纵向驾驶拟人化程度评价方法
KR20230081276A (ko) * 2021-11-30 2023-06-07 현대자동차주식회사 기계 학습 기반의 제동 선도 튜닝 장치, 방법 및 컴퓨터로 독출 가능한 저장 매체

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132931A (ja) * 1994-11-14 1996-05-28 Toyota Motor Corp 車両用走行制御装置
JPH1199848A (ja) * 1997-09-30 1999-04-13 Nissan Motor Co Ltd 車両挙動推定装置
JP2000020898A (ja) * 1998-06-30 2000-01-21 Fujitsu Ltd 走行支援装置、車線変更可否判断装置、その方法及び記録媒体
JP2002140786A (ja) 2000-11-01 2002-05-17 Nec Corp 危険度評価装置
JP2002157673A (ja) * 2000-11-22 2002-05-31 Natl Inst For Land & Infrastructure Management Mlit 道路交通評価装置
JP2002331850A (ja) * 2001-05-07 2002-11-19 Nissan Motor Co Ltd 運転行動意図検出装置
JP2004114954A (ja) * 2002-09-27 2004-04-15 Nissan Motor Co Ltd 車両用運転操作補助装置
JP2005092285A (ja) * 2003-09-12 2005-04-07 Toyota Central Res & Dev Lab Inc 車両運転状態推定装置、及びドライバの車両運転特性推定装置
JP2005125819A (ja) * 2003-10-21 2005-05-19 Toyota Motor Corp ドライバモデル構築方法、操作予測方法および操作予測装置
JP2005178628A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 車両の統合制御システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251651A (ja) * 1994-03-15 1995-10-03 Nissan Motor Co Ltd 車間距離制御装置
JP4096384B2 (ja) * 1997-09-30 2008-06-04 日産自動車株式会社 運転行動パターン認識装置
JP4226455B2 (ja) 2003-12-16 2009-02-18 日産自動車株式会社 運転意図推定装置、車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
US7349767B2 (en) * 2003-12-16 2008-03-25 Nissan Motor Co., Ltd. Method and system for intention estimation and operation assistance
JP4541973B2 (ja) * 2005-06-09 2010-09-08 富士通テン株式会社 運転支援装置および運転支援方法
DE602005017144D1 (de) * 2005-08-18 2009-11-26 Honda Res Inst Europe Gmbh Fahrerassistenzsystem

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132931A (ja) * 1994-11-14 1996-05-28 Toyota Motor Corp 車両用走行制御装置
JPH1199848A (ja) * 1997-09-30 1999-04-13 Nissan Motor Co Ltd 車両挙動推定装置
JP2000020898A (ja) * 1998-06-30 2000-01-21 Fujitsu Ltd 走行支援装置、車線変更可否判断装置、その方法及び記録媒体
JP2002140786A (ja) 2000-11-01 2002-05-17 Nec Corp 危険度評価装置
JP2002157673A (ja) * 2000-11-22 2002-05-31 Natl Inst For Land & Infrastructure Management Mlit 道路交通評価装置
JP2002331850A (ja) * 2001-05-07 2002-11-19 Nissan Motor Co Ltd 運転行動意図検出装置
JP2004114954A (ja) * 2002-09-27 2004-04-15 Nissan Motor Co Ltd 車両用運転操作補助装置
JP2005092285A (ja) * 2003-09-12 2005-04-07 Toyota Central Res & Dev Lab Inc 車両運転状態推定装置、及びドライバの車両運転特性推定装置
JP2005125819A (ja) * 2003-10-21 2005-05-19 Toyota Motor Corp ドライバモデル構築方法、操作予測方法および操作予測装置
JP2005178628A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 車両の統合制御システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OZAWA K. ET AL.: "Undo Kodo Shingo ni Fukumareru Kojinsei no Model-ka", IEICE TECHNICAL REPORT, vol. 104, no. 581, 15 January 2005 (2005-01-15), pages 17 - 24, XP003015095 *
See also references of EP1997705A4 *
SEIICHI NAKAGAWA: "Speech Recognition with Probability Models", 1988, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, pages: 51 - 54

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018765A (ja) * 2007-07-13 2009-01-29 Osaka Prefecture Univ ドライバ特性検出装置
WO2009107210A1 (ja) * 2008-02-28 2009-09-03 パイオニア株式会社 車両の運転評価装置、方法、及びコンピュータプログラム
JP4849495B2 (ja) * 2008-02-28 2012-01-11 パイオニア株式会社 車両の運転評価装置、方法、及びコンピュータプログラム
EP2182501A1 (en) * 2008-10-30 2010-05-05 Aisin Aw Co., Ltd. Safe driving evaluation system and safe driving evaluation program
US8258982B2 (en) 2008-10-30 2012-09-04 Aisin Aw Co., Ltd. Safe driving evaluation system and safe driving evaluation program
WO2015122158A1 (ja) * 2014-02-12 2015-08-20 株式会社デンソー 運転支援装置
JP2015153048A (ja) * 2014-02-12 2015-08-24 株式会社デンソー 運転支援装置
CN104192145A (zh) * 2014-07-21 2014-12-10 厦门雅迅网络股份有限公司 一种车辆有限变速巡航方法
US10759446B2 (en) 2015-04-21 2020-09-01 Panasonic Intellectual Property Management Co., Ltd. Information processing system, information processing method, and program
US10627813B2 (en) 2015-04-21 2020-04-21 Panasonic Intellectual Property Management Co., Ltd. Information processing system, information processing method, and program
CN106611505A (zh) * 2015-10-27 2017-05-03 大陆汽车投资(上海)有限公司 基于驾驶行为的行车辅助方法
WO2017187605A1 (ja) * 2016-04-28 2017-11-02 株式会社日立製作所 制御装置
WO2018117782A1 (es) * 2016-12-19 2018-06-28 Kitazawa Molina Elvia Isabel Método basado en nivel de estado de alerta de operadores de camiones para asignación automática de tareas en un sistema de manejo de flotas
CN108791055A (zh) * 2018-06-13 2018-11-13 蔡璟 一种汽车驾驶异常监测系统
JP2020087109A (ja) * 2018-11-28 2020-06-04 トヨタ自動車株式会社 推定装置
CN111284498A (zh) * 2018-12-10 2020-06-16 丰田自动车株式会社 驾驶支援装置、系统、方法、可穿戴装置以及存储介质
WO2020261613A1 (ja) * 2019-06-25 2020-12-30 株式会社疲労科学研究所 情報処理装置、情報処理方法及びプログラム
WO2021065372A1 (ja) * 2019-10-04 2021-04-08 日立Astemo株式会社 車両制御装置
JPWO2021065372A1 (ja) * 2019-10-04 2021-04-08
JP7301994B2 (ja) 2019-10-04 2023-07-03 日立Astemo株式会社 車両制御装置
CN113525400A (zh) * 2021-06-21 2021-10-22 上汽通用五菱汽车股份有限公司 变道提醒方法、装置、车辆及可读存储介质

Also Published As

Publication number Publication date
US8140241B2 (en) 2012-03-20
EP1997705B1 (en) 2012-06-13
EP1997705A4 (en) 2011-03-02
US20090234552A1 (en) 2009-09-17
EP1997705A1 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
WO2007077867A1 (ja) 運転行動推定装置、運転支援装置、車両評価システム、ドライバモデル作成装置、及び運転行動判定装置
JP4791874B2 (ja) 運転支援装置及び運転行動判定装置
JP4781104B2 (ja) 運転行動推定装置、及び運転支援装置
US20230043557A1 (en) Adaptive and Personalized Navigation System
US8280560B2 (en) Adaptive vehicle control system with driving style recognition based on headway distance
US8280601B2 (en) Adaptive vehicle control system with integrated maneuver-based driving style recognition
US7996345B2 (en) Generating attribute models for use in adaptive navigation systems
JP4803490B2 (ja) 運転者状態推定装置及び運転支援装置
US8060260B2 (en) Adaptive vehicle control system with driving style recognition based on vehicle passing maneuvers
US7831407B2 (en) Adaptive vehicle control system with driving style recognition based on vehicle U-turn maneuvers
JP2017188099A (ja) ドライバの動的道路シーンに対する精通度インデックスのリアルタイム作成
US8195341B2 (en) Adaptive vehicle control system with driving style recognition based on maneuvers at highway on/off ramps
US20100023223A1 (en) Adaptive vehicle control system with driving style recognition
US20100023265A1 (en) Adaptive vehicle control system with integrated driving style recognition
US20100019964A1 (en) Adaptive vehicle control system with driving style recognition and road condition recognition
US20100023197A1 (en) Adaptive vehicle control system with driving style recognition based on behavioral diagnosis
US20100152951A1 (en) Adaptive vehicle control system with driving style recognition based on vehicle accelerating and decelerating
US20100019880A1 (en) Adaptive vehicle control system with driving style recognition based on traffic sensing
US20100023180A1 (en) Adaptive vehicle control system with driving style recognition based on lane-change maneuvers
US20100023216A1 (en) Adaptive vehicle control system with driving style recognition based on vehicle left/right turns
US20100152950A1 (en) Adaptive vehicle control system with driving style recognition based on vehicle stopping
JP5041160B2 (ja) 運転支援装置
US11040720B2 (en) Sleepiness level prediction device and sleepiness level prediction method
US8170740B2 (en) Adaptive vehicle control system with driving style recognition based on vehicle launching
JP4919172B2 (ja) 車両案内装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049978.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006843423

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12087130

Country of ref document: US