WO2007077673A1 - 撥水性無機粉体及びその製造方法 - Google Patents

撥水性無機粉体及びその製造方法 Download PDF

Info

Publication number
WO2007077673A1
WO2007077673A1 PCT/JP2006/322400 JP2006322400W WO2007077673A1 WO 2007077673 A1 WO2007077673 A1 WO 2007077673A1 JP 2006322400 W JP2006322400 W JP 2006322400W WO 2007077673 A1 WO2007077673 A1 WO 2007077673A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic powder
water
silicone oil
repellent
silicon
Prior art date
Application number
PCT/JP2006/322400
Other languages
English (en)
French (fr)
Inventor
Masaki Inoue
Atsunari Fujii
Takayoshi Sasaki
Original Assignee
Agc Si-Teck Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc Si-Teck Co., Ltd. filed Critical Agc Si-Teck Co., Ltd.
Priority to EP06832461A priority Critical patent/EP1967553A4/en
Priority to JP2007552872A priority patent/JP5095418B2/ja
Publication of WO2007077673A1 publication Critical patent/WO2007077673A1/ja
Priority to US12/163,363 priority patent/US20080269358A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • C01B33/149Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume

Definitions

  • the present invention relates to a water-repellent inorganic powder and a method for producing the same, and more specifically, a stable water-repellent inorganic powder obtained by treating an inorganic powder or the like serving as a substrate with a silicon-based compound. And its manufacturing method.
  • inorganic fine particles such as silica gel particles, alumina particles, titanium oxide particles, titanium nitride particles, calcium carbonate particles, talc particles, and hydroxyapatite particles (hereinafter sometimes referred to as “inorganic powders”).
  • inorganic powders are suitably used as fillers, pigments, catalysts, etc. to be blended in cosmetics, oils, paints, printing inks, rubbers and the like. In that case, it is necessary to impart water repellency to the inorganic powder in order to disperse well in the matrix cosmetic component.
  • silicone oil dissolved in an organic solvent is added to the inorganic powder and stirred and mixed, and then heated to remove the organic solvent and the silicone oil. Film formation and baking.
  • this method uses an organic solvent such as methanol or ethyl acetate as a dispersion medium (solvent) for the silicone oil.
  • a step of collecting the powder after coating the silicone oil is required.
  • the water repellency can be obtained with a relatively small amount of silicone oil in the case of the specific surface area, pore volume force, and in other cases of the inorganic powder.
  • the processing becomes uneven. As a result, it was found that there was a problem that a large amount of silicone oil was not added and water repellency was not obtained.
  • an amino-modified silicone oil is added to the inorganic powder without a solvent, and the silicone oil is kneaded into the powder surface by a shearing low speed kneader such as a lightning machine, and a hammer.
  • a shearing low speed kneader such as a lightning machine, and a hammer.
  • a method of pulverizing with a mill or the like has also been proposed (for example, see Patent Document 4).
  • application of shearing force inevitably causes the treated powder to be crushed and changes its shape, making it difficult to surface-treat while maintaining the shape of the particles. It's not possible.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-245546
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-183027
  • Patent Document 3 Japanese Patent Laid-Open No. 5-339518
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-182729
  • Non-Patent Document 1 Kunio Ito, “Silicone Handbook” (Nikkan Kogyo Shimbun, 1990, pl56-157)
  • An object of the present invention is to provide a stable repellent in which re-elution of a silicon-based compound such as a surface-treated silicone oil is substantially suppressed even when the organic solvent is polar or non-polar! /.
  • the present inventors diligently studied from the standpoint of power, and in the case of subjecting the inorganic powder to a water repellency treatment, a specific silicone oil is selected based on an aqueous emulsion of a silicone oil that is not normally used. By using it, it has surprisingly sufficient water repellency and can be re-eluted in both polar and non-polar organic solvents.
  • the present invention has been completed by finding that a stable water-repellent inorganic powder substantially suppressed can be obtained.
  • the following water-repellent inorganic powder is provided.
  • the water-repellent inorganic powder has a reactive group with the inorganic powder.
  • a water-repellent inorganic powder characterized in that when the polar organic solvent and the nonpolar organic solvent are dispersed in a shifted manner, the residual ratio of the silicon compound is 90% or more.
  • the above-mentioned silicone compound power Methyl hydrogen silicone oil, alkoxy-modified silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, polyether-modified silicone oil, or carboxyl-modified silicone oil!
  • the water-repellent inorganic powder according to (1) which is an aqueous emulsion.
  • the solid-based mass ratio of the silicon-based compound to the inorganic powder (the amount of the silicon-based compound substance Z the mass of the inorganic powder) is 0.1Z100 to 20Z100 as described in (1) or (2) Water repellent inorganic powder.
  • the inorganic powder has a specific surface area of 5 to 2000 m 2 Zg and a pore volume of 0.01 to 5.0 ml.
  • the water-repellent inorganic powder according to (1) which is Zg porous particles.
  • the inorganic powder is a spherical silica gel or an amorphous silica gel.
  • V water-repellent inorganic powder according to any of the above.
  • the above-mentioned silicone compound power Methyl hydrogen silicone oil, alkoxy-modified silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, polyether-modified silicone oil, or carboxyl-modified silicone oil! (7)
  • the water-based emulsion is added to a sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyethylene glycol fatty acid ester, polyoxyethylene fatty acid ester, N-acyl amino acid, polyoxyethylene alkyl ether.
  • the solid-based mass ratio of the silicon compound to the inorganic powder is 0.1Z100 to 20Z100, according to (7) or (8) A method for producing a water-repellent inorganic powder.
  • the heat treatment in the second step is performed at 50 to 250 ° C. for 30 minutes to 12 hours (7) to (12
  • a treated inorganic powder is provided.
  • the water repellent treatment of the inorganic powder is carried out using the aqueous emulsion without using an organic solvent as a dispersion medium of the silicone oil.
  • Fig. 1 is a flow sheet for explaining a method for producing a water-repellent inorganic powder of the present invention.
  • FIG. 1 is a flow sheet for explaining a method for producing a water-repellent inorganic powder of the present invention.
  • the inorganic powder 10 serving as the base material is mixed with aqueous emulsion 30 of a silicon compound, and the powder is surface-treated while being mixed and stirred in a substantially dry state.
  • the second step 50 in which the treated inorganic powder is heated and baked.
  • the aqueous medium 20 ′ c is separated and removed, and the water-repellent inorganic powder 60 is obtained.
  • the aqueous emulsion 30 of the silicon compound is preferably prepared by high-pressure emulsification treatment 20 of the silicon compound 20a, the surfactant 20b, and the aqueous medium 20c.
  • the inorganic powder 10 to be subjected to the water-repellent treatment is not particularly limited, and examples thereof include fine particles of the following compounds.
  • Silica including silica gel, white carbon, air port gill, amorphous silica), My power, Tanorek, Sericite, Kaolin, Clay, Bentonite, Activated carbon, Carbon black, etc .;
  • Titanium oxide anatase type, rutile type
  • zinc oxide magnesium oxide, ferrous oxide, ferric oxide, acid-aluminum (alumina), acid-chromium, acid-cobalt, four Cobalt triacid, Cobalt acid, Cobalt oxide, Nickel oxide, Cobalt nickel oxide, Titanium oxide, Titanium oxide, Molybdenum oxide, Manganese dioxide, Manganese trioxide, Uranium oxide , Sodium oxide, barium oxide, yttrium oxide, zirconium oxide, cuprous oxide, copper oxide, cupric, stannous oxide, stannic oxide, lead monoxide, lead trioxide, lead dioxide , Oxides such as antimony trioxide antimony, antimony pentoxide, niobium oxide
  • Hydroxides such as aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, titanium hydroxide, hydroxide and chromium;
  • Halides such as aluminum chloride, titanium chloride, zirconium chloride, calcium fluoride;
  • Phosphate such as calcium phosphate, hydroxyapatite, aluminum phosphate
  • nitrides such as silicon nitride, boron nitride, magnesium nitride, titanium nitride, aluminum nitride, iron nitride, vanadium nitride, zirconium nitride, tantalum nitride
  • zeolite compounds such as zeolite, silicates
  • Carbonates such as calcium carbonate and magnesium carbonate; silicon carbide, titanium carbide, tantalum carbide, zirconium carbide, tungsten carbide, molybdenum carbide, hafnium carbide, chromium carbide, vanadium carbide, boron carbide, uranium carbide, carbonized Carbides such as beryllium;
  • the average particle size of these inorganic powders is not particularly specified, but is usually 0.01 to 00 ⁇ m, preferably 0.1 to: LOO / zm, more preferably 1 to 50. It is about ⁇ m.
  • the average particle diameter means a volume-based average particle diameter.
  • porous particles or porous particles are porous particles or porous particles.
  • the porous particles have a specific surface area of preferably 5 to 2000 m 2 Zg, more preferably 10 to 800 m 2 / g.
  • the pore volume is preferably 0.01 to 5.
  • the specific surface area was measured by the BET method, and the pore volume was measured by the mercury intrusion method.
  • the shape of the inorganic powder is not particularly limited, and it is not limited to a spherical shape, a true spherical shape, an elliptical spherical shape, an amorphous shape, a crushed shape, a cylindrical shape, a pellet shape, a square shape, a needle shape, a columnar shape, a crushed shape, a scale piece. , Leaf shape, flake shape, plate shape, confetti shape, polygonal shape and the like.
  • the inorganic powder is a spherical silica gel or an amorphous silica gel.
  • the silicon compound used in the present invention covers the surface of the inorganic fine particles by contact, adhesion, adsorption, etc., and is baked and immobilized on the surface of the inorganic powder in the next heating step. It has high affinity with the powder capable of stably imparting water repellency and has a reactive group with the inorganic powder.
  • the inorganic powder is silica gel, it is desirable to have a reactive group with a silanol group on the surface.
  • a so-called silicone oil represented by the formula (1) (or also referred to as a polysiloxane) is preferable.
  • silicone oil represented by the formula (1) (or also referred to as a polysiloxane)
  • 3 ⁇ 4 3 ⁇ 41 R 4 is independently hydrogen, carbon number 1-30
  • the alkyl group, epoxy group, o-amino group, carboxyl group, alkoxy group, phenol group, polyoxyalkylene group, polyether group, mercapto group and aryl group are selected.
  • M represents an integer of 1 to 450
  • n represents 0 or an integer of 1 to 450.
  • R 4 are alkyl groups and Z or phenyl groups.
  • silicone oil represented by the formula (1) typically, for example, methyl nodogen silicone oil, alkoxy-modified silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, polyether-modified silicone Oil or force.
  • R 3 and R 4 are hydrogen, an alkyl group, or a phenyl group. (However, Of R 4 , not all are alkyl groups and / or phenyl groups. )
  • R 4 CH
  • modified (reactive) silicone oil As at least one of R 4 , an epoxy group such as glycidyl group, glycidoxychetildalicidoxypropyl, which is a reactive group with inorganic powder; amino group, methylamino group, dimethylamino group, isopropylamino group, amino group Amino groups such as lino group, toluidino group and xylidino group; carboxyl group (also referred to as carboxylic acid group (one COOH)); alkoxy carbo group such as methoxycarbol group, ethoxycarboro group, isopropoxycarboro group, etc.
  • an epoxy group such as glycidyl group, glycidoxychetildalicidoxypropyl, which is a reactive group with inorganic powder
  • amino group methylamino group, dimethylamino group, isopropylamino group
  • Amino groups such as lino group, toluidino group and
  • An acyl group such as acetoxy group and a benzoxy group; an alkoxyl group such as a methoxy group, an ethoxy group, an isopropoxy group, a ptoxy group and a phenoxy group; a polyoxyalkylene group; a mercapto group; an aryl group (excluding a phenyl group). ); Acyl groups such as acryloyl, methacryloyl and methacryloxypropyl groups; It is preferred which ether groups or the like has been introduced.
  • these silicone oils are added to the inorganic powder in the form of aqueous emulsion, and a first step 40 is performed in which the powder is surface-treated while being mixed and stirred in a substantially dry state.
  • the aqueous emulsion of the silicone oil is a so-called OZW type emulsion in which the silicone oil is vigorously stirred together with an appropriate surfactant in an aqueous medium to disperse the silicone oil as fine droplets in the aqueous medium.
  • any of an ionic anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic nonionic surfactant can be used.
  • sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyethylene glycol fatty acid ester, polyoxyethylene fatty acid ester, N-acyl amino acid, polyoxyethylene alkyl ether It is preferred that at least one surfactant selected from the group consisting of tellurium and polyoxyethylene alkylphenol ethers is blended.
  • nonionic surfactant is particularly preferable in that hydrophilic Z lipophilicity can be easily adjusted and a more stable and fine emulsion of silicone oil is formed.
  • nonionic surfactants include the following. Sorbitan fatty esters such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, sorbitan monooleate, sorbitan dioleate, sorbitan trioleate;
  • Polyoxyethylene fatty acid esters such as polyoxyethylene monolaurate, polyoxyethylene monostearate, polyoxyethylene monooleate, polyoxyethylene distearate;
  • Polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene nonyl phenyl ether; polyoxyethylene alkyl ether Can be mentioned.
  • the fatty acid ester type is most preferred when used in a field where safety is particularly required.
  • Examples of the cationic surfactant include alkyl trimethyl ammonium salts and dialkyl dimethyl ammonium salts.
  • amphoteric surfactants examples include imidazoline surfactants and betaine surfactants.
  • the amount of the surfactant used is not particularly limited, but is 1 to 50 parts by weight, preferably 5 to 30 parts by weight, and more preferably 10 to 20 parts by weight with respect to 100 parts by weight of the silicone oil. About a part.
  • an aqueous emulsion 30 of a silicon compound is prepared by emulsifying a silicon compound such as silicone oil in an aqueous medium in the presence of a surfactant.
  • the amount of the aqueous medium used is not particularly limited, but is 20 to 200 parts by mass, preferably 60 to 160 parts by mass, more preferably 80 to 120 parts by mass with respect to 100 parts by mass of the silicone oil. .
  • This high-pressure emulsification means that a liquid containing a silicon compound, a surfactant, and an aqueous medium to be emulsified is pressurized to a high pressure with a high-pressure pump, and is press-fitted into a narrow tube, and the inside of the narrow tube is ultra-high-speed.
  • This is a method of forming extremely fine dispersed particles without using any dispersive media such as a ball mill by flowing, shearing force accompanying this, collision between fluids and the wall surface of a thin tube, cavitation, etc. .
  • the silicon compound, the surfactant, and the aqueous medium are first pressurized to about 1 to 300 MPa (10 to 3000 kgZcm 2 ) with a high-pressure pump.
  • this pressurized liquid is supplied to the narrow groove, narrow pipe, narrow pipe, orifice connected to the pump.
  • Etc. (hereinafter referred to as “thin grooves”) is press-fitted into a unit (usually referred to as “generator” or “nozzle”).
  • the groove diameter of these narrow grooves is about 20 / zm to about Lmm.
  • the pressurized fluid that has been press-fit flows in a pipe such as the narrow groove at an ultra high speed (for example, 100 to 800 mZs).
  • the ultra high-speed flow is first atomized by a shearing force with a tube wall such as a narrow groove.
  • the flow velocity on the wall of the fluid is 0, while the center velocity of the narrow groove etc. is very high, for example, 800mZs, so it is understood that there is a steep velocity gradient and therefore a very large shear force is generated.
  • a plurality of narrow grooves that run in parallel are formed, and the plurality of narrow grooves are bent at 90 ° in the middle of the flow path so as to face each other, and are joined at the front.
  • the high-speed fluids violently collide with each other and are atomized by the large impact.
  • the fine particles are also made by the impact of the high-speed fluid colliding at the bent portion (or corner portion) of the wall surface such as a narrow groove.
  • the fluid flows at an ultra-high speed, so that the pressure (static pressure) rapidly decreases and the ultra high-pressure state force abruptly releases the pressure.
  • the pressure static pressure
  • the ultra high-pressure state force abruptly releases the pressure.
  • intense cavityation occurs and fine particles are formed. That is, due to the reduced pressure, the inside of the flow path becomes lower than the vapor pressure of water, and a large amount of fine water vapor bubbles are generated, whereby the particles are rapidly dispersed and refined.
  • the emulsion obtained in one operation may be supplied again to the high-pressure emulsifier as a treatment liquid, and the emulsification treatment may be repeated. That is, the high pressure emulsification step may be repeated a plurality of times.
  • high pressure emulsification treatment of 2 to 10 passes, preferably 3 to 6 passes May be implemented.
  • the particle size distribution is relatively broad, but by repeating the nose, it is possible to obtain a finer, sharper particle size distribution, that is, a dispersion with uniform particle size. It is a preferred operation.
  • the actual high-pressure emulsifier is sold by various companies, and a desired high-pressure emulsifier can be obtained and applied according to the target particle size, particle size distribution, production amount, and the like.
  • a desired high-pressure emulsifier can be obtained and applied according to the target particle size, particle size distribution, production amount, and the like.
  • Nanomizer Yamano Machine Co., Ltd.
  • Microfly Diizer Mikuguchi Freidick Co., Ltd.
  • Ultimateizer Sugino Machine Co., Ltd.
  • Microfonole Daizai Maizai (Mizuho) (Manufactured by Kogyo Co., Ltd.).
  • the silicone oil and the aqueous medium are not compatible with each other and are therefore easily separated into two phases. Premixing with mixing) is preferred.
  • stirrer any propeller type stirrer, paddle type stirrer, anchor type stirrer, homomixer, ultramixer, colloid mill, ball mill, sand mill, roll mill and the like can be used.
  • the aqueous medium means a solvent mainly composed of water, and may contain a small amount of an organic solvent other than water in addition to pure water. The amount of the organic solvent contained can be appropriately used.
  • Examples of so-called straight silicone oil water-based emulsions include Polon MR, Polon MWS, Polon MK-206 (above methyl hydrogen silicone oil, manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
  • water-based emulsions of the modified silicone oil include Polon MF-18, Polon MF-24, Softener Silou 10 (epoxy-modified silicone oil emulsion), Po lonMF—14, PolonMF—14D, PolonMF—14EC, PolonMF—29, PolonMF—39, PolonMF—44, PolonMF—52, KM907, X—52—2265 (more amino-modified silicone oil emulsion) (more, Shin-Etsu Chemical) LE-9300, FZ-31 5, FZ-4602 (more epoxy-modified silicone oil emulsion), FZ-4632, FZ-4635, FZ-4640, FZ-4645, FZ-4658, FZ-4671 FZ-4678, (more amino-modified silicone oil emulsion), FZ-4633, FZ-4638 (more carboxyl-modified silicone oil emulsion), FZ-2105 (polyether-modified silicone oil) (epoxy-mod
  • the aqueous emulsion 30 of the specific silicon compound prepared as described above is added to the inorganic powder 10 serving as the base material and mixed in a substantially dry state.
  • surface treatment (first step) 40 of the powder is performed by a powder mixing device.
  • an aqueous emulsion of a silicon compound such as silicone oil is supplied, and the powder is mixed and stirred.
  • the apparatus is not particularly limited as long as the apparatus can perform the surface treatment. That is, an ordinary solid mixing device including a stationary type containing inorganic powder or a container that rotates itself and Z or a solid stirring blade is used.
  • an ordinary solid mixing device including a stationary type containing inorganic powder or a container that rotates itself and Z or a solid stirring blade is used.
  • V-type mixers double-cone mixers, ribbon-type mixers, rotary or continuous Mueller-type mixers, vertical screw-type mixers, single-shaft or double-shaft rotor-type mixers, etc.
  • an apparatus equipped with a water-based emulsion supply nozzle and dropping means can be used as appropriate.
  • the inorganic powder and the mixing device capable of applying movement such as rotation, swing, vibration, figure eight motion, reciprocation, vertical motion, piston motion, etc.
  • the desired mixing motion can also be applied.
  • An example of such an apparatus is a tumbler shaker mixer (manufactured by Shinmaru Enterprises).
  • the mass ratio of the silicon-based compound solid based inorganic powder can vary depending on the type of the inorganic powder, particularly the specific surface area and pore volume.
  • the mass of the silicon-based compound Z the mass of the inorganic powder 0. 1Z100 to 50Z100, and preferably 0.1 / 100 to 20 to 100. If the amount of silicon compound is too small, it will be difficult to provide sufficient water repellency. Also, if the amount of silicon compound is too large, it will not give more water repellency. Economically meaningless. Almost all of the supplied silicon compounds are fixed on the surface of the inorganic powder according to the material balance.
  • the mass of the silicon-based compound should be the mass necessary for coating the outer surface and pore area (particularly the specific surface area) of the inorganic powder.
  • the mixing and stirring is substantially performed by using the amount of water-based emulsion of the silicon compound corresponding to the pore volume or the oil absorption amount as a reference. It can be carried out in a dry state that does not wet or become a slurry, and can give satisfactory water repellency.
  • the surface treatment time under mixing and stirring in the first step depends on the kind of the treated powder, the amount of the treated powder, the kind and amount of the water-based emulsion of the silicon compound, the temperature of the inorganic powder, and the like. Usually, it is carried out for about 1 minute to 6 hours, preferably about 10 minutes to 3 hours. In addition, the first step may be performed at a temperature of 20 to 90 ° C., or even about 30 to 60 ° C. depending on circumstances, which is sufficient when it is performed at room temperature without heating. When the first step is carried out under heating or heating, it is preferable to use a solid mixer provided with heating means.
  • the treated powder in the first step, is heated to bake the silicon compound on the surface of the inorganic powder, and the second aqueous medium 20′c of the emulsion is separated. Perform step 50.
  • any general dryer can be suitably used.
  • various dryers such as a box-type dryer, an aeration band dryer, a tunnel dryer, a spray dryer, a fluidized bed dryer, a medium fluidized bed dryer, and an aeration rotary dryer can be used.
  • the heat source is not particularly limited, such as water vapor, a heating medium, electric heating, infrared heating or the like.
  • the heat treatment in the second step is performed at a temperature at which the silicon compound is firmly baked on the surface of the inorganic powder, particularly the inner surface of the pores. Usually, it is carried out at 50 to 250 ° C. for 30 minutes to 12 hours, preferably at 80 to 200 ° C. for 40 minutes to 10 hours, more preferably at 100 to 190 ° C. for 1 to 8 hours.
  • the inorganic powder 60 treated with the silicon-based compound as described above has high water repellency.
  • the inorganic powder 60 does not settle at all even after 24 hours after being put into water.
  • an inorganic powder is added with a water-based emulsion of a silicon compound such as silicone oil having a reactive group with the inorganic powder.
  • a silicon compound such as silicone oil having a reactive group
  • a silicon-based material dissolved in an organic solvent as in the past by surface-treating the powder while mixing and stirring in a substantially dry state, and further heating the powder and baking the silicon-based compound on the surface of the powder.
  • an inorganic powder having high water repellency can be produced with a much smaller amount of a silicon-based compound.
  • the surface of the inorganic powder that needs to be subjected to a water repellent treatment (particularly the inner surface of the pores in the case of porous particles) has many hydrophilic groups such as silanol groups, Medium Is more compatible with these groups and is easier to wet the surface. Therefore, even if the amount is smaller than the amount of medium necessary to completely fill the pores, the surface in the pores can be sufficiently wetted, and the surface can be substantially covered with silicone oil. Can be covered.
  • an organic solvent such as ethyl acetate, which is commonly used for silicone oil, is used, it is difficult to wet the surface because of the hydrophilic group on the surface. An amount of solvent that completely fills the pores is required, and a much larger amount of solvent is likely to be required compared to aqueous media.
  • the silicon compound-treated inorganic powder of the present invention since the silicon compound stably covers the particle surface, the treated particles are put into a polar organic solvent and a nonpolar organic solvent. When dispersed, in any solvent, the silicon compound 1S is not substantially re-eluted in the organic solvent.
  • the stability of the silicon-based compound film can be evaluated by the “silicon-based compound residual ratio (hereinafter sometimes simply referred to as“ silicon residual ratio ”;)” defined below. it can.
  • the silicon residual rate of the silicon compound surface-treated inorganic powder of the present invention is extremely excellent at 90% or more in any organic solvent of polar, nonpolar, and substantially no re-elution. You may evaluate.
  • Inorganic powder lg obtained by surface treatment with a silicon compound is charged and dispersed in 10 g of a polar organic solvent or nonpolar organic solvent, and the dispersion is allowed to stand at room temperature for 24 hours.
  • the obtained slurry dispersion is subjected to solid-liquid separation using a filter paper having an opening of 0.5 m, and the separated powder is dried at 120 ° C. for 2 hours.
  • the silicon residual ratio (the residual ratio is mass%) is an index indicating the degree of re-elution of the silicon compound covering the surface of the inorganic powder. The closer this value is to 100%, the more This indicates that the silicon compound is stably adhered to the particle surface, preventing re-elution. In practice, it is desirable that the silicon residual ratio is 90% or more, particularly 95% or more.
  • the inorganic powder of the present invention has a silicon residual ratio of 90% or more in any of a polar organic solvent and a nonpolar solvent, and is substantially free from re-elution. There is no stabilized treated powder.
  • the solvent capable of maintaining a silicon residual ratio of 90% is not particularly limited, but the solubility of the solvent in water at 25 ° C from the viewpoint of suppressing mass transfer due to the interaction with the solvent on the particle surface. Is more preferably 0.02% or more, or a solvent having an octanol water partition coefficient of 3 or less, which is a hydrophilic or hydrophobic index.
  • Nonpolar organic solvents include benzene, toluene, carbon tetrachloride, black mouth form, trichloroethylene, perchloroethylene, ethyl ether and the like.
  • the powder treated with a normal silicon compound has a low residual ratio with respect to the non-polar organic solvent when the residual ratio of silicon with respect to the polar organic solvent is large.
  • the value with respect to the polar organic solvent is usually low. It can be said that it is very surprising that the silicon residual ratio is excellent for both the polar organic solvent and the nonpolar organic solvent in the present invention.
  • silicone oil having a reactive group with an inorganic powder is selectively used. Unlike normal treatment, silicone oil is used for surface treatment as a water-based emulsion, and the silicone oil is made into a very fine droplet by the high-pressure emulsification process. Contact surface between microdroplet and inorganic powder It is speculated that the product may be fixed stably by combining the mechanisms such as increasing the product and fixing to the particle surface with a stronger force.
  • the surface of the inorganic powder is treated with a silicon-based compound such as silicone oil.
  • a silicon-based compound such as silicone oil.
  • This mixed liquid was pre-emulsified with T.K.HOMO MIXER (manufactured by Tokushu Kika Kogyo Co., Ltd.) at lOOOOrpm for 15 minutes.
  • T.K.HOMO MIXER manufactured by Tokushu Kika Kogyo Co., Ltd.
  • a high-pressure emulsifier manufactured by Yoshida Kikai Kogyo Co., Ltd., model name: Nano maizer markll, model: NM2-L200
  • the pre-emulsified liquid was mixed with a through-type generator with an orifice diameter of 120 ⁇ m at a pressure of 120 MPa.
  • the emulsion was emulsified by pass treatment.
  • the average particle diameter of the emulsified emulsion particles measured by a laser diffraction Z-scattering particle size distribution analyzer was 0.16 m.
  • This mixed solution was pre-emulsified with T.K.HOMO MIXER (manufactured by Tokushu Kika Kogyo Co., Ltd.) at lOOOOrpm for 15 minutes.
  • T.K.HOMO MIXER manufactured by Tokushu Kika Kogyo Co., Ltd.
  • a high-pressure emulsifier manufactured by Yoshida Kikai Kogyo Co., Ltd., model name: Nano maizer markll, model: NM2-L200
  • the pre-emulsified liquid was mixed with a through-type generator with an orifice diameter of 120 ⁇ m at a pressure of 120 MPa.
  • the emulsion was emulsified by pass treatment.
  • the surface-treated powder mixture was heated to 120 ° C. and dried for 3 hours to obtain silica gel which had been subjected to water repellency treatment with the target silicone resin.
  • the silica gel 0. lg was put into a beaker containing 50 ml of water in the same manner as in Example 1, and the water repellency was confirmed. I could't do it.
  • a stable water-repellent treated inorganic powder in which re-elution of the surface-treated silicon compound is substantially suppressed regardless of whether the organic solvent is polar or non-polar.
  • the stabilized inorganic powder obtained by the method of the present invention and having a high water repellency and treated with a silicon-based compound is used as a filler in cosmetics, oils, paints, printing inks, rubbers and the like. , Pigments, It is suitably used as a catalyst or the like. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2005-377091 filed on December 28, 2005 are cited here as disclosure of the specification of the present invention. Incorporate.

Abstract

 有機溶媒が極性又は非極性のいずれであっても、表面処理したシリコン系化合物の再溶出が実質的に抑制された安定な撥水処理無機粉体を提供する。  表面がシリコン系化合物で処理されている撥水性無機粉体において、上記シリコン系化合物は当該無機粉体との反応性基を有するものであり、当該撥水性無機粉体を極性有機溶媒及び非極性有機溶媒のいずれに分散させた場合において、当該シリコン系化合物の残存率が90%以上を示すものである撥水性無機粉体を使用する。このシリコン系化合物は、好ましくは、メチルハイドロジェンシリコーンオイル、アルコキシ変性シリコーンオイル、アミノ変性シリコーンオイル等の水系エマルションであり、当該水系エマルションには、ソルビタン脂肪酸エステル系、ポリオキシエチレンソルビタン脂肪酸エステル系等の界面活性剤が配合されている。

Description

明 細 書
撥水性無機粉体及びその製造方法
技術分野
[0001] 本発明は、撥水性無機粉体及びその製造方法に関し、より詳しくは、基材となる無 機粉体等をシリコン系化合物により処理して得られる安定性ある撥水性無機粉体及 びその製造方法に関する。
背景技術
[0002] 従来から、シリカゲル粒子、アルミナ粒子、酸化チタン粒子、窒化チタン粒子、炭酸 カルシウム粒子、タルク粒子、ヒドロキシアパタイト粒子等の無機微小粒子(以下、「無 機粉体」ということがある。)は、化粧料、榭脂、塗料、印刷インク、ゴム等に配合する フィラー、顔料、触媒等として好適に使用されている。その場合、マトリクスである化粧 料成分ゃ榭脂成分に良好に分散させるため、当該無機粉体に撥水性を付与するこ とが必要である。
[0003] 無機粉体を撥水性処理するためには、多くの方法が知られて 、る。なかでもシリコ ーンオイル等のシリコン系化合物で処理して撥水性とする方法は最も代表的な方法 の一つである(例えば、特許文献 1〜3及び非特許文献 1を参照。;)。
[0004] これらの方法にぉ 、ては、通常、有機溶媒に溶力したシリコーンオイルを無機粉体 に添加して撹拌 '混合し、その後加熱して有機溶媒を除去するとともに、シリコーンォ ィルの被膜形成 ·焼き付けを行うものである。
[0005] し力しながら、この方法は、シリコーンオイルの分散媒 (溶媒)として、メタノール、酢 酸ェチル等の有機溶媒を使用するため、使用する有機溶媒を大気放出することはで きず、無機粉体へのシリコーンオイル被覆後に回収する工程が必要となる。また、本 発明者らが検討したところによると、無機粉体の比表面積、細孔容積力 、さい場合に は、比較的少量のシリコーンオイルで撥水性が得られる。しかし、無機粉体がより多 孔質となり、比表面積、細孔容積が大きくなるに従い、処理にムラが生じる。その結果 、多量のシリコーンオイルを添カ卩しな 、と撥水性が得られな ヽと 、つた問題点がある ことを見いだした。 [0006] また、無機粉体にァミノ変性シリコーンオイルを溶媒なしに添加し、雷力い機等のず り剪断式低速混練機により、粉体表面にカづくでシリコーンオイルを練り込み、さらに ハンマーミル等で粉砕する方法も提案されている (例えば、特許文献 4を参照。;)。し 力しながら、剪断力の印加により、必然的に処理粉体はすりつぶされて形状が変わつ てしまうので、粒子の形状を保持したまま表面処理することは困難であり、一般的に 適用できる方法ではない。
[0007] さらに、本発明者らが、検討したところ、シリコーンオイルで表面処理して得られた 撥水性無機粉体であっても、これを当該無機粉体が実際の使用に際し配合される種 々の有機溶媒に分散させた場合、例えば極性又は非極性の有機溶媒の種類によつ ては、表面に形成したシリコーンオイル被膜の再溶出が起こり、安定的に分散しない 場合があることを見 、だした。
[0008] 特許文献 1 :特開平 10— 245546号公報
特許文献 2 :特開 2003— 183027号公報
特許文献 3:特開平 5— 339518号公報
特許文献 4:特開 2004— 182729号公報
非特許文献 1 :伊藤邦雄編著、「シリコーンハンドブック」(日刊工業新聞社、 1990年 、 pl56~157)
発明の開示
発明が解決しょうとする課題
[0009] 本発明の目的は、有機溶媒が極性又は非極性の!/、ずれであっても、表面処理した シリコーンオイルのようなシリコン系化合物の再溶出が実質的に抑制された安定な撥 水処理無機粉体を提供すること、およびこのような無機粉体の撥水処理を、当該シリ コーンオイルの分散媒として有機溶媒を使用せず、その水系エマルシヨンを使用する ことにより効果的に行う撥水性無機粉体の製造方法を提供することである。
[0010] 本発明者らは、力かる観点から鋭意検討したところ、無機粉体を撥水性処理する場 合、通常は使用されていないシリコーンオイルの水系エマルシヨンにより、かつ、特定 のシリコーンオイルを選択使用することにより、意外なことに充分な撥水性を備え、か つ、極性有機溶媒及び非極性有機溶媒のいずれの溶媒においても、その再溶出が 実質的に抑制された安定な撥水性無機粉体が得られることを見いだし、本発明を完 成した。
課題を解決するための手段
[0011] 本発明に従えば、以下の撥水性無機粉体が提供される。
(1)表面がシリコン系化合物で処理されて 、る撥水性無機粉体にぉ 、て、上記シリコ ン系化合物は当該無機粉体との反応性基を有するものであり、当該無機粉体を極性 有機溶媒及び非極性有機溶媒の 、ずれに分散させた場合にお!、て、当該シリコン 系化合物の残存率が 90%以上を示すものであることを特徴とする撥水性無機粉体。
[0012] (2)前記シリコン系化合物力 メチルハイドロジェンシリコーンオイル、アルコキシ変性 シリコーンオイル、ァミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、ポリエ 一テル変性シリコーンオイル、又はカルボキシル変性シリコーンオイルの!/、ずれかの 水系エマルシヨンである(1)に記載の撥水性無機粉体。
[0013] (3)前記水系エマルシヨンに、ソルビタン脂肪酸エステル系、ポリオキシエチレンソル ビタン脂肪酸エステル系、ポリエチレングリコール脂肪酸エステル系、ポリオキシェォ チレン脂肪酸エステル系、 N—ァシルアミノ酸系、ポリオキシエチレンアルキルエーテ ル系及びポリオキシエチレンアルキルフエ-ルエーテル系力 なる群より選択される 少なくとも 1種の界面活性剤が配合されている (2)に記載の撥水性無機粉体。
[0014] (4)前記シリコン系化合物の無機粉体に対する固体基準の質量比 (シリコン系化合 物質量 Z無機粉体質量)が 0. 1Z100〜20Z100である(1)又は(2)に記載の撥 水性無機粉体。
[0015] (5)前記無機粉体が、その比表面積が 5〜2000m2Zg、細孔容積が 0. 01〜5.0ml
Zgの多孔質粒子である(1)に記載の撥水性無機粉体。
[0016] (6)前記無機粉体が、真球状シリカゲルまたは不定形シリカゲルである(1)〜(5)の
V、ずれかに記載の撥水性無機粉体。
[0017] (7) (1)に記載の撥水性無機粉体の製造方法であって、無機粉体に当該無機粉体 との反応性基を有するシリコン系化合物の水系エマルシヨンを添加し、実質的に乾燥 状態で混合'撹拌しながら当該無機粉体を表面処理する第 1工程と、さらに処理され た無機粉体を加熱して当該シリコン系化合物を無機粉体表面に焼き付けるとともに、 前記水系エマルシヨンの水系媒体を分離する第 2工程とからなることを特徴とする撥 水性無機粉体の製造方法。
[0018] (8)前記シリコン系化合物力 メチルハイドロジェンシリコーンオイル、アルコキシ変性 シリコーンオイル、ァミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、ポリエ 一テル変性シリコーンオイル、又はカルボキシル変性シリコーンオイルの!/、ずれかの 水系エマルシヨンである(7)に記載の撥水性無機粉体の製造方法。
[0019] (9)前記水系エマルシヨンに、ソルビタン脂肪酸エステル系、ポリオキシエチレンソル ビタン脂肪酸エステル系、ポリエチレングリコール脂肪酸エステル系、ポリオキシェォ チレン脂肪酸エステル系、 N—ァシルアミノ酸系、ポリオキシエチレンアルキルエーテ ル系及びポリオキシエチレンアルキルフエ-ルエーテル系力 なる群より選択される 少なくとも 1種の界面活性剤が配合されている (8)に記載の撥水性無機粉末の製造 方法。
[0020] (10)前記シリコン系化合物の無機粉体に対する固体基準の質量比 (シリコン系化合 物質量 Z無機粉体質量)が 0. 1Z100〜20Z100である(7)又は(8)に記載の撥 水性無機粉体の製造方法。
[0021] (11)前記無機粉体が、その比表面積が 5〜2000m2Zg、細孔容積が 0. 01〜5.0 mlZgの多孔質粒子である(7)に記載の撥水性無機粉体の製造方法。
[0022] (12)前記第 1工程における表面処理を 1分〜 6時間行う(7)〜(11)のいずれかに記 載の撥水性無機粉体の製造方法。
[0023] (13)前記第 2工程における加熱処理を 50〜250°Cで 30分〜 12時間行う(7)〜(12
)の 、ずれかに記載の撥水性無機粉体の製造方法。
[0024] (14)前記無機粉体が、真球状シリカゲルまたは不定形シリカゲルである(7)〜(13) の!、ずれかに記載の撥水性無機粉体の製造方法。
発明の効果
[0025] 本発明に従えば、有機溶媒が極性又は非極性の!/、ずれであっても、表面処理した シリコーンオイル等のシリコン系化合物の再溶出が実質的に抑制された安定な撥水 処理無機粉体が提供される。また本発明に従えば、無機粉体の撥水処理を、当該シ リコーンオイルの分散媒として有機溶媒を使用せず、その水系エマルシヨンを使用す ることにより効果的に行う安定な撥水性無機粉体の製造方法が提供される。
図面の簡単な説明
[0026] [図 1]本発明の撥水性無機粉体の製造方法を説明するフローシートである。
符号の説明
10 無機粉体
20 高圧乳化処理工程
20a シリコン系化合物
20b 界面活性剤
20c 水系媒体
20' c 水系媒体
30 シリコン系化合物の水系エマノレシヨン
40 乾燥状態で混合 ·撹拌し表面処理を行う第 1工程
50 処理した無機粉体の加熱 ·焼き付けを行う第 2工程
60 撥水性無機粉体
発明を実施するための最良の形態
[0028] 以下、図面を参照しながら本発明を詳細に説明する。
図 1は、本発明の撥水性無機粉体の製造方法を説明するフローシートである。当該 方法は、基材となる無機粉体 10に、シリコン系化合物の水系エマルシヨン 30を添カロ して、実質的に乾燥状態で混合 '撹拌しながら当該粉体の表面処理を行う第 1工程 4 0と、処理した無機粉体の加熱 '焼き付けを行う第 2工程 50よりなる。第 2工程では、 また、水系媒体 20' cが分離除去され、撥水性無機粉体 60が得られる。なお、シリコ ン系化合物の水系エマルシヨン 30は、シリコン系化合物 20a、界面活性剤 20b、及 び水系媒体 20cを、高圧乳化処理 20して調整することが好ま ヽ。
[0029] (無機粉体)
本発明において撥水性処理の対象となる無機粉体 10としては、特に限定するもの ではないが、例えば、以下の化合物の微小粒子が例示される。
シリカ(シリカゲル、ホワイトカーボン、エア口ジル、非晶質シリカを含む。)、マイ力、 タノレク、セリサイト、カオリン、クレー、ベントナイト、活性炭、カーボンブラック等; [0030] 酸化チタン (アナタース型、ルチル型)、酸化亜鉛、酸化マグネシウム、酸化第一鉄 、酸化第二鉄、酸ィ匕アルミニウム(アルミナ)、酸ィ匕クロム、酸ィ匕第一コバルト、四三酸 ィ匕コバルト、酸ィ匕第二コバルト、酸化第一ニッケル、酸ィ匕第二ニッケル、酸ィ匕タンダス テン、酸ィ匕トリウム、酸化モリブデン、二酸化マンガン、三酸ィ匕マンガン、酸化ウラン、 酸ィ匕トリウム、酸化バリウム、酸化イットリウム、酸ィ匕ジルコニウム、酸化第一銅、酸ィ匕 第二銅、酸化第一スズ、酸化第二スズ、一酸化鉛、四三酸化鉛、二酸化鉛、三酸ィ匕 アンチモン、五酸化アンチモン、酸化ニオブ、酸化ルテニウム、チタン酸バリウム、酸 化銀、酸化ゲルマニウム等の酸化物;
[0031] 水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム、水酸化チタン、水 酸ィ匕クロム等の水酸ィ匕物;
塩化アルミニウム、塩化チタン、塩化ジルコニウム、フッ化カルシウム等のハロゲン化 物;
[0032] 硫酸バリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム、硫酸チタニゥ ム、硫酸ストロンチウム、硫化亜鈴、硫ィ匕カドミウム、硫ィ匕アンチモン、硫化カルシウム 、硫化銀、硫化ゲルマニウム、硫化コバルト、硫化スズ、硫化鉛、硫化ニッケル、硫ィ匕 マンガン、硫化亜鉛等の硫酸塩や硫化物;
[0033] リン酸カルシウム、ヒドロキシアパタイト、リン酸アルミニウム等のリン酸塩;窒化ケィ素 、窒化ホウ素、窒化マグネシウム、窒化チタン、窒化アルミニウム、窒化鉄、窒化バナ ジゥム、窒化ジルコニウム、窒化タンタル等の窒化物;ケィ化モリブデン、ケィ酸バリウ ム、ケィ酸マグネシウム、ケィ酸ストロンチウム、ケィ酸アルミニウム、ゼォライト等のケ ィ素化合物、ケィ酸塩;
[0034] 炭酸カルシウム、炭酸マグネシウム等の炭酸塩;炭化ケィ素、炭化チタン、炭化タン タル、炭化ジルコニウム、炭化タングステン、炭化モリブデン、炭化ハフニウム、炭化ク ロム、炭化バナジウム、炭化ホウ素、炭化ウラン、炭化ベリリウム等の炭化物等;
[0035] 金、銀、パラジウム、ロジウム、イリジウム、レニウム、ルテニウム、オスミウム等; -ッケ ル、銅、亜鉛、スズ、コノルト、鉄、アルミニウム、モリブデン、マンガン、タングステン、 ガリウム、インジウム、テクネチウム、チタン、ジルコニウム、セリウム、タンタル、ニオブ 、 ノヽフニゥム等; [0036] アルミニウム マグネシウム合金、鉄—炭素合金、鉄—銅合金、鉄—ニッケルーク ロム合金、銀—金合金、パラジウム 金合金、銀—パラジウム合金、銅—ニッケル合 金、ニッケル コバルト合金、ニッケル マグネシウム合金、スズー鉛合金等。
[0037] これらの無機粉体の平均粒径は、特に規定するものではないが、通常、 0. 01-10 00 μ m、好ましくは 0. 1〜: LOO /z m、さらに好ましくは 1〜50 μ m程度である。なお、 本明細書で、平均粒径とは、体積基準の平均粒径を意味する。
[0038] 上記無機粉体において、好ましくは、これらが多孔質粒子であるもの、または多孔 質ィ匕されているものである。当該多孔質粒子としては、その比表面積が好ましくは 5 〜2000m2Zg、より好ましくは 10〜800m2/gのものである。また、細孔容積が好ま しくは 0. 01〜5. Oml/g,より好ましくは 0. 01〜2.0mlZgの多孔質粒子である。な お、比表面積は BET法、細孔容積は水銀圧入法等で測定したものである。
[0039] また、無機粉体の形状は特に限定するものでなぐ球状、真球状、楕円球状、不定 形、破砕形状、円筒状、ペレット状、四角状、針状、円柱状、破砕状、鱗片状、葉状、 薄片状、板状、金平糖状、多角形状等いずれであってもよい。例えば、好ましくは、 無機粉体が真球状シリカゲルまたは不定形シリカゲルである。
[0040] (シリコン系化合物)
本発明において使用するシリコン系化合物は、無機微小粒子の表面に接触、付着 、吸着等によりその表面を被覆し、次の加熱工程により、当該無機粉体の表面に焼き 付けられ、固定化されて、安定して撥水性を付与しうる当該粉体と親和性が高いもの であり、かつ、当該無機粉体との反応性基を有するものである。例えば、無機粉体が シリカゲルの場合は、その表面のシラノール基との反応性基を有することが望ま ヽ 。このようなものとしては、式(1)で表されるいわゆるシリコーンオイル(またはポリシ口 キサンとも称される。)が好ましい。以下、シリコン系化合物としてシリコーンオイルを使 用する場合を例として述べる。
[0041] [化 1] R1
0 S「0 Si
R2
m n
[0042] 式(1)において、
Figure imgf000010_0001
¾ ¾一 R4は、それぞれ独立して、水素、炭素数 1〜30
のアルキル基、エポキシ基、 oアミノ基、カルボキシル基、アルコキシ基、フエ-ル基、 ポリオキシアルキレン基、ポリエーテル基、メルカプト基及びァリール基カゝら選択され る。また、 mは 1以上 450以下の整数、 nは 0または 1以上 450以下の整数を表す。た だし、
Figure imgf000010_0002
R4のうち、すべてがアルキル基及び Z又はフエ-ル基であること はない。
なお、式(1)において R2が置換基であるものを側鎖型、 R3、 R4が置換基であ るものを末端型といい、
Figure imgf000010_0003
4のいずれかが置換基であるものを片末端型、 R4の 両者が置換基であるものを両末端型と 、う。
[0043] 式(1)で表示されるシリコーンオイルを例示すれば、典型的には、例えばメチルノヽ イドロジェンシリコーンオイル、アルコキシ変性シリコーンオイル、ァミノ変性シリコーン オイル、エポキシ変性シリコーンオイル、ポリエーテル変性シリコーンオイル、又は力 ノレボキシノレ変'性シリコーンオイルである。
[0044] (ストレートシリコーン才ィル)
式(1)にお 2、 R3、 R4が、水素、アルキル基、またはフエ-ル基であるも の。(ただし、
Figure imgf000010_0004
R4のうち、すべてがアルキル基及び/又はフエ-ル基であ ることはない。 )
ストレートシリコーンオイルとしては、メチルハイドロジェンシリコーンオイル(Ri = H、 R2、 R3
Figure imgf000010_0005
R4=CH )、イソプロピルハイドロジェンシリコーンオイル (Ι^ = Η、 R2 = C H、 R3、 R4
3 3 7
=CH )、ブチルハイドロジェンシリコーンオイル (Ri = H、 R2 = C H、 R3、 R4 = CH )
3 4 9 3
、ァミルハイドロジェンシリコーンオイル (Ι^ = Η、 R2 = C H 、 R3、 R4=CH )、へキシ
5 11 3 ルハイドロジェンシリコーンオイル (Ι^ = Η、 R2 = C H 、 R3、 R4=CH )、ラウリルハイ ドロジェンシリコーンオイル (Ri = H、 R2 = C H 、 R3、 R4=CH )、ステアリルハイド口
11 23 3
ジェンシリコーンオイル(Ri = H、 R2 = C H 、 R3、 R4 = CH )、フエ-ルハイドロジェ
17 35 3
ンシリコーンオイル ( = φ ( φはフエ-ル基を示す。以下同じ。 )、 R2 = H、
Figure imgf000011_0001
CH )等が挙げられる。
3
[0045] (変性シリコーンオイル)
いわゆる変性 (反応性)シリコーンオイルとしては、
Figure imgf000011_0002
R4の少なくとも一つ として、無機粉体との反応性基である、グリシジル基、グリシドキシェチルダリシドキシ プロピル等のエポキシ基;アミノ基、メチルァミノ基、ジメチルァミノ基、イソプロピルアミ ノ基、ァ-リノ基、トルイジノ基、キシリジノ基等のアミノ基;カルボキシル基 (カルボン 酸基(一 COOH)ともいう。 );メトキシカルボ-ル基、エトキシカルボ-ル基、イソプロ ポキシカルボ-ル基等のアルコキシカルボ-ル基;ァセトキシ基、ベンゾキシ基等の ァシロキシ基;メトキシ基、エトキシ基、イソプロポキシ基、プトキシ基、フエノキシ基等 のアルコキシル基;ポリオキシアルキレン基;メルカプト基;ァリール基 (ただしフエニル 基を除く。 );ァクリロイル基、メタクリロイル基、メタクリロキシプロピル基等のァシル基; ポリエーテル基等が導入されたものが好まし 、。
[0046] (乾燥状態における粉体の混合 '処理工程 Z第 1工程)
本発明においては、これらのシリコーンオイルは、水系エマルシヨンの形態で、無機 粉体に添加され実質的に乾燥状態で混合 ·撹拌しながら当該粉体を表面処理する 第 1工程 40が行われる。
[0047] 当該シリコーンオイルの水系エマルシヨンは、上記したシリコーンオイルを適当な界 面活性剤とともに水系媒体中で強く撹拌して当該シリコーンオイルを水系媒体中で 微小液滴として分散せしめ、いわゆる OZW型エマルシヨンとして使用する。
[0048] (界面活性剤)
本発明で使用する界面活性剤としては、イオン性のァニオン系界面活性剤、カチ オン系界面活性剤、両性界面活性剤、及び非イオン性のノニオン系界面活性剤の 何れもが使用可能である。なかでもソルビタン脂肪酸エステル系、ポリオキシエチレン ソルビタン脂肪酸エステル系、ポリエチレングリコール脂肪酸エステル系、ポリオキシ エチレン脂肪酸エステル系、 N—ァシルアミノ酸系、ポリオキシエチレンアルキルエー テル系、及びポリオキシエチレンアルキルフエ-ルエーテル系力 なる群から選択さ れる少なくとも 1種の界面活性剤が配合されて ヽることが好ま U ヽ。
[0049] また、親水性 Z親油性の調節が容易であり、より安定的で微細なシリコーンオイル のエマルシヨンが形成される点では、ノ-オン系界面活性剤が特に好ましい。ノ-ォ ン系界面活性剤としては、例えば以下のものが例示される。ソルビタンモノラウレート 、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンジステアレート、 ソルビタントリステアレート、ソルビタンモノォレエート、ソルビタンジォレエート、ソルビ タントリオレエート等のソルビタン脂肪酸エステル;
[0050] ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパル ミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタ ンジステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレン ソルビタンモノォレート、ポリオキシエチレンソルビタンジォレート、ポリオキシエチレン ソルビタントリオレート等のポリオキシエチレンソルビタン脂肪酸エステル;
[0051] ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレート、ポリオキシ エチレンモノォレエート、ポリオキシエチレンジステアレート等のポリオキシエチレン脂 肪酸エステル;
[0052] ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキ シエチレンステアリルエーテル、ポリオキシエチレンォレイルエーテル、ポリオキシェ チレンノニルフエニルエーテル等のポリオキシエチレンアルキルエーテル;ポリオキシ エチレンアルキルフエ-ルエーテル等が挙げられる。
上記のうち、特により安全性の要求される分野に使用する場合には、脂肪酸エステ ノレ系のものが最も好まし 、。
[0053] また、ァ-オン系界面活性剤としては、高級アルキル硫酸エステル塩;脂肪酸石け ん;アルキルエーテル硫酸エステル塩;高級脂肪酸アミドスルホン酸塩; N—ァシルサ ルコシン酸塩;スルホコハク酸塩;リン酸エステル;アルキルベンゼンスルホン酸塩; N -ヤシ油脂肪酸ァシル -L-グルタミン酸トリエタノールァミン、 N -ラウロイル -L- グルタミン酸トリエタノールァミン、 N -ヤシ油脂肪酸ァシル -L -グルタミン酸ナトリウ ム、 N—ラウロイル一 L—グルタミン酸ナトリウム、 N—ミリストイル一 L—グルタミン酸ナ トリウム、 N—ステアロイル— L—グルタミン酸ナトリウム、 N—ヤシ油脂肪酸'硬化牛 脂脂肪酸ァシル -L -グルタミン酸ナトリゥム、 N—ステアロイル -L-グルタミン酸ナ トリウム、 N—ヤシ油脂肪酸ァシル—L—グルタミン酸カリウム、 N—ヤシ油脂肪酸ァ シル— L—グルタミン酸、 N—ステアロイルー L—グルタミン酸、 N—ラウロイルー L— ァスパラギン酸ナトリウム等の N—ァシルアミノ酸系のものが挙げられる。これらのうち 、より高い安全性が要求される分野に使用する場合には、 N—ァシルアミノ酸系のも のが最も好ましい。
[0054] また、カチオン系界面活性剤としては、アルキルトリメチルアンモ -ゥム塩、ジアルキ ルジメチルアンモ-ゥム塩等が挙げられる。
また、両性界面活性剤としては、イミダゾリン系界面活性剤、ベタイン系界面活性剤 等が挙げられる。
[0055] 界面活性剤の使用量としては、特に限定するものではないが、シリコーンオイル 10 0質量部に対し、 1〜50質量部、好ましくは 5〜30質量部、さらに好ましくは 10〜20 質量部程度である。
[0056] (高圧乳化工程)
本発明においては、シリコーンオイル等のシリコン系化合物を、界面活性剤の存在 下に水系媒体中にて乳化してシリコン系化合物の水系エマルシヨン 30を調製する。 水系媒体の使用量としては、特に限定するものではないが、シリコーンオイル 100質 量部に対し、 20〜200質量部、好ましくは 60〜160質量部、さらに好ましくは 80〜1 20質量部である。また、当該乳化を高圧乳化工程に処して行うことが好ましい。
[0057] この高圧乳化とは、高圧ポンプで、乳化すべきシリコン系化合物、界面活性剤、及 び水系媒体を含む液体を高圧に加圧し、細管内に圧入し、当該細管内を超高速で 流し、これに伴うせん断力、流体同士及び細管壁面への衝突、キヤビテーシヨン (Ca vitation)等により、ボールミル等のごとき分散メディアをなんら使用することなぐ極 めて微細な分散粒子を形成させる方法である。
[0058] すなわち、より具体的には、シリコン系化合物、界面活性剤、及び水系媒体を、まず 高圧ポンプにより、例ぇばl〜300MPa (10〜3000kgZcm2)程度に加圧する。次 いで、この加圧液体を、当該ポンプに接続された、細溝、細管、細パイプ、オリフィス 等 (以下「細溝等」 、う。 )の細管路が形成されたユニット (通常「ジェネレータ」また は「ノズル」という。)に圧入する。通常この細溝等の溝径は、 20 /z m〜: Lmm程度で ある。圧入された加圧流体は、当該細溝等の管路内を超高速 (例えば、 100〜800 mZs)で流動する。
[0059] この超高速流は、まず細溝等の管壁とのせん断力により微粒子化される。(流体の 壁面における流速は 0であり、一方、細溝等の中心速度は、例えば 800mZsの超高 速であるから、急激な速度勾配が存在し、従って極めて大きいせん断力が発生する ことが理解される。)
[0060] また、平行に走行する細溝等を複数形成し、当該複数の細溝等を流路途中で、互 いに対向するように 90° に屈曲せしめ、正面で合流するように構成することにより、 当該高速流体同士が激しく正面衝突し、その大きな衝撃で、微粒化される。この場合 、細溝等の壁面の屈曲部位 (又は角部)で、高速流体が衝突する衝撃によっても、微 細粒化される。
[0061] さらにまた、当該細溝等の細管内では、流体は超高速度で流動するため、その圧 力(静圧)が急激に低下し、超高圧の状態力 急激に圧力が開放されることになるか ら、激しいキヤビテーシヨンが発生し、微粒子が形成されるのである。すなわち、当該 減圧により、流路内は水の蒸気圧以下になり、微小な水蒸気の気泡が大量に発生し 、これにより粒子が急激に分散、微細化される。
[0062] 高圧乳化工程においては、以上のような複数の微細ィ匕メカニズムが発生、複合して 、原理的にきわめて微細、かつ、均一な微粒子力 湿式粉砕メディアなど使用せずに 、形成される。なお、上記の種々の微細ィ匕メカニズムは複合するものである力 そのう ち、特に、高速流体同士の衝突及び高速流体と細溝等の屈曲部壁面との衝突メカ二 ズムを主体とするものを、「衝突型高圧乳化装置」という。また、高速流体が多数の細 溝等 (オリフィスを含む)の管内を超高速で流動する際の壁面とのせん断力によるメカ ニズムを主体とするものを「貫通型高圧乳化装置」ということがある。
[0063] また、一回の操作 (ワンパス)で得られる乳化物を再度処理液として、高圧乳化装置 に再び供給して、乳化処理を繰り返し行ってもよい。すなわち高圧乳化工程を複数 回繰り返し行ってもよい。例えば、 2〜10パス、好ましくは 3〜6パスの高圧乳化処理 を実施してもよい。カゝくして、ワンパスの場合は、比較的粒径分布はブロードであるが 、ノ スを繰り返すと、より微細で粒径分布のシャープな、すなわち粒径の揃った分散 体を得ることが可能であり、好まし 、操作である。
[0064] なお実際の高圧乳化装置としては、各社から販売されており、 目標粒径、粒度分布 、生産量等に応じて、所望の高圧乳化装置を入手し、適用することができる。例えば 、ナノマイザ一(吉田機械興業社製、ナノマイザ一社製)、マイクロフライダイザ一 (マ イク口フライディック社製)、アルティマイザ一 (スギノマシン社製)、マイクロフノレイダィ ザ一 (みずほ工業社製)等が挙げられる。
[0065] (予備混合)
実際の乳化工程 (本乳化工程)を実施する場合においては、シリコーンオイルと水 系媒体は、互いに相溶性が無いため二相分離しやすいので、予め撹拌する等の方 法で両者をある程度均一に混合してお 予備乳化)ことが好ましい。
[0066] 予備混合を実施する場合、界面活性剤を添加して通常の撹拌機で撹拌すると 、つ た一般的な手法で十分である。撹拌機としては、プロペラ型撹拌機、パドル型撹拌機 、アンカー型撹拌機、ホモミキサー、ウルトラミキサー、コロイドミル、ボールミル、サン ドミル、ロールミル等任意のものが使用可能である。
[0067] 本発明においては、上記のようにして、高圧乳化工程によりシリコーンオイルの水系 エマルシヨンをその都度調整して使用することが最も好ましい。また、場合によっては 、水系エマルシヨンタイプとして市販されている以下のものを適宜選択使用することも できる。なお、本発明において、水系媒体とは、水を主体とする溶媒を意味し、純粋 の水の外に、少量の水以外の有機性溶媒等を含有していてもよい。含有される有機 性溶媒の量は、適宜使用できる。
[0068] (水系エマルシヨン)
いわゆるストレートシリコーンオイルの水系エマルシヨンとしては、 PolonMR、 Polo nMWS、 PolonMK— 206 (以上メチルハイドロジェンシリコーンオイル、信越化学工 業社製)等が挙げられる。
[0069] また、変性シリコーンオイルの水系エマルシヨンとしては、 PolonMF— 18、 Polon MF— 24、ソフナーシルー 10 (以上エポキシ変性シリコーンオイルエマルシヨン)、 Po lonMF—14、 PolonMF—14D、 PolonMF— 14EC、 PolonMF— 29、 PolonMF — 39、 PolonMF— 44、 PolonMF— 52、 KM907、 X— 52— 2265 (以上アミノ変 性シリコーンオイルエマルシヨン)(以上、信越化学工業社製); LE— 9300、 FZ- 31 5、 FZ— 4602 (以上エポキシ変性シリコーンオイルエマルシヨン)、 FZ— 4632、 FZ —4635、 FZ— 4640、 FZ— 4645、 FZ— 4658、 FZ— 4671、 FZ— 4678、(以上 ァミノ変性シリコーンオイルエマルシヨン)、 FZ— 4633、 FZ— 4638 (以上カルボキシ ル変性シリコーンオイルエマルシヨン)、 FZ— 2105 (ポリエーテル変性シリコーンオイ ル)(以上、 日本ュ-カー社製); SM8704CZSM8904 (ァミノ変性シリコーンオイ ルエマルシヨン)、 HMW2220 (ジビュル変性シリコーンオイルエマルシヨン)(以上、 東レ.ダウコーン-ング.シリコーン社製); TEX153 (ァミノ変性シリコーンオイルエマ ルシヨン)、 XS65— B8865 (エポキシ変性シリコーンオイルエマルシヨン)、 XA69— B5476 (ァミノポリエーテル変性シリコーンオイルエマルシヨン)(以上、 GE東芝シリコ ーン社製)等が挙げられる。
[0070] 本発明にお 、ては、基材となる無機粉体 10に、上記のようにして調製した特定のシ リコン系化合物の水系エマルシヨン 30を添加して、実質的に乾燥状態で混合'撹拌 しながら、まず、当該粉体の表面処理 (第 1工程) 40を粉体混合装置により行う。
[0071] (粉体混合装置)
第 1工程を実施するための装置としては、無機粉体を収容し、これを効率よく撹拌し ながら、シリコーンオイルのごときシリコン系化合物の水系エマルシヨンを供給し、当 該粉体を混合'撹拌しながら、その表面処理を実施することが出来る装置であれば、 特に限定するものではない。すなわち、無機粉体を収容する静置型またはそれ自体 回転する容器及び Z又は固体撹拌翼を備えた通常の固体混合装置が使用される。 例えば、 V型混合機、二重円錐型混合機、リボン型混合機、回転式又は連続式ミュ 一ラー型混合機、垂直スクリュー型混合機、単軸又は複軸ローター型混合機等に、 好ましくは、水系エマルシヨンの供給ノズルや滴下手段を備えた装置が適宜使用でき る。また、少量の無機粉体を処理する場合は、回動、揺動、振動、八の字運動、往復 動、上下動、ピストン運動等の動きを印加しうる混合機器に、当該無機粉体と水系ェ マルシヨンを収容した小型容器をセットし、当該小型容器に対し、回動、揺動等の所 望の混合運動を印加することもできる。かかる装置としては、例えば、ターブラーシェ イカ一ミキサー(シンマルエンタープライゼス社製)が挙げられる。
[0072] 第 1工程を実施する際に、シリコン系化合物固体基準の無機粉体に対する質量比 は、当該無機粉体の種類、特に比表面積や細孔容積により変わりうる。通常、シリコ ン系化合物質量 Z無機粉体質量 =0. 1Z100〜50Z100、好ましくは 0. 1/100 〜20Ζ100であることが望ましい。シリコン系化合物の量があまり少ない場合は、撥 水性を充分付与することが困難になり、また、シリコン系化合物の量力 Sこれよりあまり 多い場合は、それ以上の撥水性が付与されるわけではなく経済的に無意味である。 なお、供給されたシリコン系化合物は物質収支に従って、ほぼ全てが無機粉体の表 面に固定される。
[0073] 当該シリコン系化合物の質量は、原理的には、当該無機粉体の外表面および細孔 内面積 (特に比表面積)を被覆するために必要な質量を使用すべきである。しかし、 本発明者らの検討によれば、細孔容積または吸油量を基準として、大体、これに対 応するシリコン系化合物の水系エマルシヨン量を使用することで、当該混合'撹拌を 実質的に濡れのない、または、スラリーとならない乾燥状態で実施することができ、か つ、満足すべき撥水性を付与することができる。
[0074] 第 1工程の混合'撹拌下における表面処理時間は、処理粉体の種類、処理粉体量 、シリコン系化合物の水系エマルシヨンの種類や量、及び無機粉体の温度等によつ て変わりうるが、通常、 1分〜 6時間、好ましくは 10分〜 3時間程度行われる。また、第 1工程は、特に加熱せずに室温で実施することで充分である力 場合によっては 20 〜90°C、さらには 30〜60°C程度で実施することも可能である。加温下、または加熱 下に第 1工程を実施する場合は、上記した固体混合機にはさらに加熱手段を備えた ものを使用することが好ましい。
[0075] (加熱処理'焼き付け工程 Z第 2処理工程)
本発明にお 、ては、第 1工程にぉ 、て処理された粉体を加熱してシリコン系化合物 を無機粉体表面に焼き付けるとともに、前記エマルシヨンの水系媒体 20' cを分離す る第 2工程 50を行う。
[0076] (加熱'乾燥装置) 当該加熱 ·乾燥下において、シリコン系化合物で処理された無機粉体力 水系媒 体である水等が蒸発、除去せしめられる。この過程で、当該水系媒体中に分散して いたシリコーンオイル等のシリコン系化合物は蒸発することなく互いに近接し、当該無 機粉体の外表面、及び特に細孔内表面において、被膜を形成しながら、焼き付けら れると考えられる。
[0077] 力かる機能を奏する加熱 ·乾燥を行うための好ま U、乾燥装置としては、一般的な 乾燥器をいずれも好適に使用することができる。例えば、箱型乾燥機、通気バンド乾 燥機、トンネル乾燥機、噴霧乾燥機、流動層乾燥機、媒体流動層乾燥機、通気回転 乾燥等の各種の乾燥機を使用することができる。加熱源としては、水蒸気、加熱媒体 、電気加熱、赤外線加熱等特に限定するものではない。なお、場合によっては、第 1 工程で使用する固体混合装置に適当な加熱手段を付加せしめ、第 1工程を行ったあ とに、当該固体混合装置においてそのまま加熱処理を実施することも可能である。
[0078] 第 2工程における加熱処理は、シリコン系化合物が、無機粉体の表面特に細孔内 表面に強固に焼き付けられる温度で行われる。通常、 50〜250°Cで 30分〜 12時間 、好ましくは 80〜200°Cで 40分〜 10時間、さらに好ましくは 100〜190°Cで 1〜8時 間行われる。
[0079] 上記のごとくしてシリコン系化合物で処理された無機粉体 60は高 、撥水性が付与 されており、例えば水中に投入して 24時間経過後も全く沈降することがないものであ る。
[0080] なお、本発明によれば、以下の実施例に示すように、無機粉体に、当該無機粉体と 反応性基を有するシリコーンオイル等のシリコン系化合物の水系エマルシヨンを添カロ し、実質的に乾燥状態で混合'撹拌しながら当該粉体を表面処理し、さらに当該粉 体を加熱してシリコン系化合物を粉体表面に焼き付けることにより、従来のように有機 溶媒に溶解したシリコン系化合物を使用して表面処理する場合に比較して、はるか に少量のシリコン系化合物により、高い撥水性を有する無機粉体の製造することがで きる。
[0081] これは、撥水処理を施す必要のある無機粉体の表面 (特に多孔質粒子の場合は細 孔内表面)は、例えばシラノール基のような親水性基が多数存在するため、水性媒体 の方がこれらの基と親和性が高くその表面を濡らし易い。従って、細孔内を完全に充 填するのに必要な媒体量よりも少ない量であっても、細孔内の表面を十分に濡らすこ とができ、実質的にその表面をシリコーンオイルで十分に覆うことが出来る。これに対 し、シリコーンオイルに対し常用される酢酸ェチル等の有機溶媒を使用した場合は、 表面の親水性基のため当該表面を濡らしにくいので、細孔内の表面を完全に濡らす ためには細孔内を完全に満たす量の溶媒が必要となり、水性媒体と比べはるかに大 量の溶媒が必要となると思われる。
[0082] さらに、本発明のシリコン系化合物処理無機粉体は、当該シリコン系化合物が安定 的に当該粒子表面を覆っているので、当該処理粒子を極性有機溶媒及び非極性有 機溶媒に投入、分散させた場合、いずれの溶媒の場合でも、当該シリコン系化合物 1S 当該有機溶媒に実質的に再溶出することはないのである。
[0083] すなわち、当該シリコン系化合物被膜の安定性は、以下に規定する「シリコン系化 合物残存率 (以下、単に「シリコン残存率」ということがある。;)」により、評価することが できる。本発明のシリコン系化合物表面処無機粉体のシリコン残存率は、極性、非極 性、いずれの有機溶媒の場合でも、 90%以上という、極めてすぐれものであり、実質 的に再溶出は無いと評価してよい。
[0084] (シリコン残存率の評価方法)
シリコン系化合物で表面処理して得られた無機粉体 lgを、極性有機溶媒又は非極 性有機溶媒の 10gに投入、分散せしめ、該分散液を室温で 24時間静置する。次い で、得られたスラリー状分散液を、目開き 0. 5 mのろ紙を用いて固液分離し、分離 した粉末を 120°Cで 2時間乾燥する。得られた乾燥粉末について全窒素 ·炭素測定 機( (株)住化分析センター製、型式; SUMGRAPH NC 80)で全炭素率を測定 する。測定された全炭素率を、先に測定したブランクの処理粉末の全炭素率で除す ることにより、上記極性有機溶媒又は非極性有機溶媒における処理粉末の全炭素残 存率 (%)を算出する。算出された全炭素残存率とシリコン残存率とは率としては同じ 値であることから、ジリコン残存率が求められる。
シリコン残存率 (残存率は、質量%である。)は、無機粉体の表面を被覆したシリコ ン系化合物の再溶出の程度を示す指標であって、この値が 100%に近いほど、当該 シリコン系化合物が粒子表面に安定的に固着されており、再溶出が防止されている ことを示す。実質的には、シリコン残存率は、 90%以上あること、特には 95%以上で あることが望ましい。
[0085] 本発明の無機粉体は、後記する実施例に示すように、極性有機溶媒あるいは非極 性溶媒のいずれにおいても、そのシリコン残存率は 90%以上であり、再溶出の実質 的に無い、安定化された処理粉体である。
シリコン残存率 90%を維持できる溶媒としては、特に限定されるものではないが、 粒子表面における溶媒との相互作用に起因する物質移動を抑制する観点から、 25 °Cにおける溶媒の水への溶解度が 0. 02%以上、あるいは親水性又は疎水性の指 標であるォクタノール水分配係数が 3以下である溶媒がより好ましい。具体的には、 極性有機溶媒では、メタノール、エタノール、 1 プロパノール、ラウリルアルコール、 ブタノール、グリセリン、エチレングリコール、プロピレングリコール、カルビトール(ジ エチレングリコーノレ =モノエチノレエーテノレ)、セロソノレブ(エチレングリコーノレ =モノエ チルエーテル)、アセトン、酢酸、ジォキサン、メチルェチルケトン、メチルイソブチル ケトン、イソノナン酸イソノエル、酢酸ェチル等が挙げられる。非極性有機溶媒ではべ ンゼン、トルエン、四塩化炭素、クロ口ホルム、トリクロロエチレン、パークロロエチレン 、ェチルエーテル等が挙げられる。
[0086] なお、通常のシリコン系化合物により処理された粉体は、極性有機溶媒に対してシ リコン残存率が大きい場合は、非極性有機溶媒に対しては当該残存率は、低くなり、 逆に非極性有機溶媒に対して残存率が高 ヽ場合は、極性有機溶媒に対する値が低 くなつてしまうのが通例である。本発明におけるごとぐ極性有機溶媒及び非極性有 機溶媒の両者に対して優れたシリコン残存率を示すことは、極めて驚くべきことと言つ てよい。
[0087] この理由は、詳細には明確にすることは出来ないが、シリコン系化合物として、無機 粉体との反応性基を有するシリコーンオイルを選択使用して!/ヽること、当該特定のシ リコーンオイルを通常の処理と異なり、あえて水系エマルシヨンとして表面処理に使用 していること、及び、高圧乳化工程により当該シリコーンオイルを非常に微小な液滴 にまで、剪断したエマルシヨンとしているため、当該微小液滴と無機粉体との接触面 積が増大してより強い力で粒子表面に固着されること等のメカニズムが総合して、安 定的に固着されるのではないかと推測している。
[0088] なお、本発明で、無機粉体の表面がシリコーンオイル等のシリコン系化合物で処理 されていることは、該粉体を水に添加した際の撥水挙動、 FT— IRによる解析等によ り、容易に確認できる。
実施例
[0089] (合成例 1) (無機粉体との反応性基を有するシリコーンオイルエマルシヨンの調製) シリコーンオイルとして、シリカのシラノール基との反応性基を有するエトキシ変性シ リコーンオイル (信越シリコーン社製、商品名: KF-9909、動粘度 20mm2Zs)を選択 した。その 500g中に界面活性剤としてポリオキシエチレン脂肪酸エステル (三洋化 成工業社製、商品名:ィォネット MO- 600) 75gを溶解した溶液に、脱塩水を 425ml 添加した。
[0090] この混合液を、 T.K.HOMO MIXER (特殊機化工業社製)で lOOOOrpmで 15分間 予備乳化した。当該予備乳化液を、高圧乳化機 (吉田機械興業社製、機種名: Nano maizer markll、型式: NM2- L200)を用いて、オリフィス径 120 μ mの貫通型ジエネレ ータで 120MPaの圧力で 4パス処理して乳化を行った。
この乳化したエマルシヨン粒子のレーザー回折 Z散乱式粒度分布測定装置 (堀場 製作所社製、 LA— 920型)による平均粒子径は、 0. 16 mであった。
[0091] (合成例 2) (無機粉体との反応性基のないシリコーンオイルエマルシヨンの調製) シリコーンオイルとして、ジメチルシリコーンオイル (信越シリコーン社製、商品名: K F-96-100CS,動粘度 100mm2Zs)を選択した。その 500g中に、界面活性剤として ポリオキシエチレン脂肪酸エステル (三洋化成工業社製、商品名:ィォネット MO-600 ) 75gを溶解した溶液に、脱塩水を 425ml添加した。
[0092] この混合液を、 T.K.HOMO MIXER (特殊機化工業社製)で lOOOOrpmで 15分間 予備乳化した。当該予備乳化液を、高圧乳化機 (吉田機械興業社製、機種名: Nano maizer markll、型式: NM2- L200)を用いて、オリフィス径 120 μ mの貫通型ジエネレ ータで 120MPaの圧力で 4パス処理して乳化を行った。
この乳化したエマルシヨン粒子のレーザー回折 Z散乱式粒度分布測定装置 (堀場 製作所社製、 LA— 920型)による平均粒子径は、 0. 20 mであった。
[0093] 〔実施例 1〕
(1)表面処理すべき無機粉体として真球状シリカゲル (平均粒子径: 5 μ m、比表面 積 : 756m2Zg、細孔容積: 0.88ml/g) 30gを使用した。また、合成例 1で調製した、 エトキシ変成シリコーンオイルの水系エマルシヨン 0.3gを脱塩水 26.1mlであらかじめ 希釈して調製した。なお、シリカゲル:シリコーンオイルェマルジヨン (シリコーンオイル 純分固体換算)の固体基準の質量比 = 100 : 0. 5であった。
[0094] (2)無機粉体を容積 lOOOmLのポリエチレン容器に装入し、粉体混合機としてター ブラーシエイカーミキサー(シンマルエンタープライゼス社製)にセットした。上記シリコ ーンオイルエマルシヨンを分割添加しながら、 30分間よく粉体状態で混合し、表面処 理した。
[0095] (3)表面処理した粉体混合物を 120°Cに加熱して 3時間乾燥し、 目的のシリコーンォ ィルで撥水化処理したシリカゲルを得た。当該シリカゲル O. lgを、水 50mlが入った ビーカーに投入し、その撥水性を確認したところ、シリカゲル粉体は、 24時間後も全 く沈むことはなぐ高い撥水性を有していることが確認された。
(4)また、このシリコーンオイルで処理したシリカゲルの各有機溶媒に対するシリコン 残存率を測定したところ、トルエン: 92% クロ口ホルム: 92% イソノナン酸イソノ-ル : 95% メタノール: 98%であった。
[0096] 〔実施例 2〕
(1)表面処理すべき無機粉体として真球状シリカゲル (平均粒子径: 3 μ m、比表面 積 : 756m2Zg、細孔容積: 0.88ml/g) 30gを使用した。また、合成例 1で調製した、 エトキシ変成シリコーンオイルの水系エマルシヨン 0.3gを脱塩水 26.1mlであらかじめ 希釈して調製した。なお、シリカゲル:シリコーンオイルェマルジヨン (シリコーンオイル 純分固体換算)の固体基準の質量比 = 100 : 0. 5であった。
[0097] (2)無機粉体を容積 lOOOmLのポリエチレン容器に装入し、粉体混合機としてター ブラーシエイカーミキサー(シンマルエンタープライゼス社製)にセットした。上記シリコ ーンオイルエマルシヨンを分割添加しながら、 30分間よく粉体状態で混合し、表面処 理した。 [0098] (3)表面処理した粉体混合物を 120°Cに加熱して 3時間乾燥し、 目的のシリコーンォ ィルで撥水化処理したシリカゲルを得た。当該シリカゲル O. lgを、実施例 1と同様に 水 50mlが入ったビーカーに投入し、その撥水性を確認したところ、シリカゲル粉体は 、 24時間後も全く沈むことはなぐ高い撥水性を有していることが確認された。
[0099] (4)また、このシリコーンオイルで処理したシリカゲルの各有機溶媒に対するシリコン 残存率を測定したところ、トルエン: 90% クロ口ホルム: 93% イソノナン酸イソノ-ル : 95% メタノール: 97%であった。
[0100] 〔実施例 3〕
(1)表面処理すべき無機粉体として真球状シリカゲル (平均粒子径: 5 μ m、比表面 積 : 703m2/g、細孔容積:1.85ml/g) 30gを使用した。また、合成例 1で調製した、 エトキシ変成シリコーンオイルの水系エマルシヨン 0.3gを脱塩水 55.2mlであらかじめ 希釈して調製した。なお、シリカゲル:シリコーンオイルェマルジヨン (シリコーンオイル 純分固体換算)の固体基準の質量比 = 100 : 0. 5であった。
[0101] (2)無機粉体を容積 lOOOmLのポリエチレン容器に装入し、粉体混合機としてター ブラーシエイカーミキサー(シンマルエンタープライゼス社製)にセットした。上記シリコ ーンオイルエマルシヨンを分割添加しながら、 30分間よく粉体状態で混合し、表面処 理した。
[0102] (3)表面処理した粉体混合物を 120°Cに加熱して 3時間乾燥し、 目的のシリコーンォ ィルで撥水化処理したシリカゲルを得た。当該シリカゲル O. lgを、実施例 1と同様に 水 50mlが入ったビーカーに投入し、その撥水性を確認したところ、シリカゲル粉体は 、 24時間後も全く沈むことはなぐ高い撥水性を有していることが確認された。
[0103] (4)また、このシリコーンオイルで処理したシリカゲルの各有機溶媒に対するシリコン 残存率を測定したところ、トルエン: 92% クロ口ホルム: 92% イソノナン酸イソノ-ル : 96% メタノーノレ: 96%であった。
[0104] 〔比較例 1〕
(1)表面処理すべき無機粉体として真球状シリカゲル (平均粒子径: 5 μ m、比表面 積 : 703m2/g、細孔容積 : 0.88ml/g) 30gを使用した。また、合成例 2で調製した、 ジメチルシリコーンオイルの水系エマルシヨン 18gを脱塩水 8.4mlであらかじめ希釈し て調製した。なお、シリカゲル:シリコーンオイルェマルジヨン (シリコーンオイル純分 固体換算)の固体基準の質量比 = 100: 30であった。
[0105] (2)無機粉体を容積 lOOOmLのポリエチレン容器に装入し、粉体混合機としてター ブラーシエイカーミキサー(シンマルエンタープライゼス社製)にセットした。上記シリコ ーンオイルエマルシヨンを分割添加しながら、 30分間よく粉体状態で混合し、表面処 理した。
[0106] (3)表面処理した粉体混合物を 120°Cに加熱して 3時間乾燥し、 目的のシリコーンォ ィルで撥水化処理したシリカゲルを得た。当該シリカゲル O. lgを、実施例 1と同様に 水 50mlが入ったビーカーに投入し、その撥水性を確認したところ、シリカゲル粉体は 、 24時間後も全く沈むことはなぐ高い撥水性を有していることが確認された。
(4)しかしながら、このシリコーンオイルで処理したシリカゲルの各有機溶媒に対する シリコン残存率を測定したところ、トルエン: 73% クロ口ホルム: 72% イソノナン酸ィ ソノニノレ : 83% メタノーノレ: 95%であった。
[0107] 〔比較例 2〕
(1)表面処理すべき無機粉体として真球状シリカゲル (平均粒子径: 5 μ m、比表面 積 : 703m2/g、細孔容積:1.85ml/g) 30gを使用した。また、合成例 2で調製した、 ジメチルシリコーンオイルの水系エマルシヨン 18gを脱塩水 37.5mlであらかじめ希釈 して調製した。なお、シリカゲル:シリコーンオイルェマルジヨン (シリコーンオイル純分 固体換算)の固体基準の質量比 = 100: 30であった。
[0108] (2)無機粉体を容積 lOOOmLのポリエチレン容器に装入し、粉体混合機としてター ブラーシエイカーミキサー(シンマルエンタープライゼス社製)にセットした。上記シリコ ーンオイルエマルシヨンを分割添加しながら、 30分間よく粉体状態で混合し、表面処 理した。
[0109] (3)表面処理した粉体混合物を 120°Cに加熱して 3時間乾燥し、 目的のシリコーンォ ィルで撥水化処理したシリカゲルを得た。当該シリカゲル O. lgを、実施例 1と同様に 水 50mlが入ったビーカーに投入し、その撥水性を確認したところ、シリカゲル粉体は 、 24時間後も全く沈むことはなぐ高い撥水性を有していることが確認された。
[0110] (4)しかしながら、このシリコーンオイルで処理したシリカゲルの各有機溶媒に対する シリコン残存率を測定したところ、トルエン: 70% クロ口ホルム: 68% イソノナン酸ィ ソノニノレ : 81% メタノーノレ: 97%であった。
[0111] 〔比較例 3〕
(1)表面処理すべき無機粉体として真球状シリカゲル (平均粒子径: 5 μ m、比表面 積 : 756m2/g、細孔容積 : 0.88mlZg) 30gを使用した。また、合成例 2で調製した ジメチルシリコーンオイルの水系エマルシヨン 0. 3gを脱塩水 8. 4mlであらかじめ希 釈して調製した。なお、シリカゲル:シリコーンオイルェマルジヨン (シリコーンオイル純 分固体換算)の固体基準の質量比 = 100 : 0. 5であった。
(2)無機粉体を容積 lOOOmLのをポリエチレン容器に装入し、粉体混合機としてター ブラーシエイカーミキサー(シンマルエンタープライゼス社製)にセットした。上記シリコ ーンオイルエマルシヨンを分割添加しながら、 30分間粉体状態でよく混合し、表面処 理した。
(3)表面処理した粉体混合物を 120°Cに加熱して 3時間乾燥し、 目的のシリコーンォ ィルで撥水化処理したシリカゲルを得た。当該シリカゲル 0. lgを、実施例 1と同様に 水 50mlが入ったビーカーに投入し、その撥水性を確認したところ、シリカゲル粉体は 、投入直後に水中に沈降し、撥水性を得ることはできな力つた。
(4)このシリコーンオイルで処理したシリカゲルの各有機溶媒に対するシリコン残存 率を測定したところ、トルエン: 75%、クロ口ホルム: 76%、イソノナン酸イソノ-ル:79 %%、メタノール: 93%であった。
産業上の利用可能性
[0112] 本発明に従えば、有機溶媒が極性又は非極性のいずれであっても、表面処理した シリコン系化合物の再溶出が実質的に抑制された安定な撥水処理無機粉体が提供 される。
また、力かる無機粉体の撥水処理を、シリコン系化合物の分散媒として有機溶媒を使 用せず、その水系エマルシヨンを使用することにより効果的に行う撥水性無機粉体の 製造方法が提供される。
[0113] 本発明の方法で得られた高い撥水性を有し、シリコン系化合物で処理された安定 化無機粉体は、化粧料、榭脂、塗料、印刷インク、ゴム等に配合するフイラ一、顔料、 触媒等として好適に使用される。 なお、 2005年 12月 28日に出願された日本特許出願 2005— 377091号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] 表面がシリコン系化合物で処理されている撥水性無機粉体において、上記シリコン 系化合物は当該無機粉体との反応性基を有するものであり、当該無機粉体を極性有 機溶媒及び非極性有機溶媒の ヽずれに分散させた場合にお!ヽて、当該シリコン系 化合物の残存率が 90%以上を示すものであることを特徴とする撥水性無機粉体。
[2] 前記シリコン系化合物力 メチルハイドロジェンシリコーンオイル、アルコキシ変性シ リコーンオイル、ァミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、ポリエ 一テル変性シリコーンオイル、又はカルボキシル変性シリコーンオイルの!/、ずれかの 水系エマルシヨンである請求項 1に記載の撥水性無機粉体。
[3] 前記水系エマルシヨンに、ソルビタン脂肪酸エステル系、ポリオキシエチレンソルビ タン脂肪酸エステル系、ポリエチレングリコール脂肪酸エステル系、ポリオキシェォチ レン脂肪酸エステル系、 N—ァシルアミノ酸系、ポリオキシエチレンアルキルエーテル 系及びポリオキシエチレンアルキルフエ-ルエーテル系力 なる群より選択される少 なくとも 1種の界面活性剤が配合されている請求項 2に記載の撥水性無機粉体。
[4] 前記シリコン系化合物の無機粉体に対する固体基準の質量比 (シリコン系化合物 質量 Z無機粉体質量)が 0. 1Z100〜20Z100である請求項 1又は 2に記載の撥 水性無機粉体。
[5] 前記無機粉体が、その比表面積が 5〜2000m2Zg、細孔容積が 0. 01〜5.0mlZ gの多孔質粒子である請求項 1に記載の撥水性無機粉体。
[6] 前記無機粉体が、真球状シリカゲルまたは不定形シリカゲルである請求項 1〜5の V、ずれかに記載の撥水性無機粉体。
[7] 請求項 1に記載の撥水性無機粉体の製造方法であって、無機粉体に当該無機粉 体との反応性基を有するシリコン系化合物の水系エマルシヨンを添加し、実質的に乾 燥状態で混合'撹拌しながら当該無機粉体を表面処理する第 1工程と、さらに処理さ れた無機粉体を加熱して上記シリコン系化合物を無機粉体表面に焼き付けるととも に、前記水系エマルシヨンの水系媒体を分離する第 2工程とからなることを特徴とする 撥水性無機粉体の製造方法。
[8] 前記シリコン系化合物力 メチルハイドロジェンシリコーンオイル、アルコキシ変性シ リコーンオイル、ァミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、ポリエ 一テル変性シリコーンオイル、又はカルボキシル変性シリコーンオイルの!/、ずれかの 水系エマルシヨンである請求項 7に記載の撥水性無機粉体の製造方法。
[9] 前記水系エマルシヨンに、ソルビタン脂肪酸エステル系、ポリオキシエチレンソルビ タン脂肪酸エステル系、ポリエチレングリコール脂肪酸エステル系、ポリオキシェォチ レン脂肪酸エステル系、 N—ァシルアミノ酸系、ポリオキシエチレンアルキルエーテル 系及びポリオキシエチレンアルキルフエ-ルエーテル系力 なる群より選択される少 なくとも 1種の界面活性剤が配合されている請求項 8に撥水性無機粉末の製造方法
[10] 前記シリコン系化合物の無機粉体に対する固体基準の質量比 (シリコン系化合物 質量 Z無機粉体質量)が 0. 1Z100〜20Z100である請求項 7又は 8に記載の撥 水性無機粉体の製造方法。
[11] 前記無機粉体が、その比表面積が 5〜2000m2Zg、細孔容積が 0. 01〜5.0mlZ gの多孔質粒子である請求項 7に記載の撥水性無機粉体の製造方法。
[12] 前記第 1工程における表面処理を 1分〜 6時間行う請求項 7〜11のいずれかに記 載の撥水性無機粉体の製造方法。
[13] 前記第 2工程における加熱処理を 50〜250°Cで 30分〜 12時間行う請求項 7〜 12 の!、ずれかに記載の撥水性無機粉体の製造方法。
[14] 前記無機粉体が、真球状シリカゲルまたは不定形シリカゲルである請求項 7〜13 の!、ずれかに記載の撥水性無機粉体の製造方法。
PCT/JP2006/322400 2005-12-28 2006-11-09 撥水性無機粉体及びその製造方法 WO2007077673A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06832461A EP1967553A4 (en) 2005-12-28 2006-11-09 INORGANIC WATER-REPELLENT POWDER AND PROCESS FOR PRODUCING THE SAME
JP2007552872A JP5095418B2 (ja) 2005-12-28 2006-11-09 撥水性無機粉体
US12/163,363 US20080269358A1 (en) 2005-12-28 2008-06-27 Water-repellent inorganic powder and process for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-377091 2005-12-28
JP2005377091 2005-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/163,363 Continuation US20080269358A1 (en) 2005-12-28 2008-06-27 Water-repellent inorganic powder and process for its production

Publications (1)

Publication Number Publication Date
WO2007077673A1 true WO2007077673A1 (ja) 2007-07-12

Family

ID=38228032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322400 WO2007077673A1 (ja) 2005-12-28 2006-11-09 撥水性無機粉体及びその製造方法

Country Status (4)

Country Link
US (1) US20080269358A1 (ja)
EP (1) EP1967553A4 (ja)
JP (1) JP5095418B2 (ja)
WO (1) WO2007077673A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292915A (ja) * 2008-06-04 2009-12-17 Nippon Aerosil Co Ltd 表面改質無機酸化物粉末及び電子写真用トナー組成物
KR101110369B1 (ko) 2009-04-10 2012-02-15 한국세라믹기술원 실리카로 캡슐화된 탄탈륨 질화물의 제조방법 및 이에 의해 제조된 탄탈륨 질화물
JP2012214676A (ja) * 2011-03-31 2012-11-08 Nisshin Steel Co Ltd 塗装金属板およびその製造方法
JP2015048462A (ja) * 2013-09-04 2015-03-16 帝人株式会社 樹脂組成物
WO2016093221A1 (ja) * 2014-12-10 2016-06-16 東ソー・シリカ株式会社 疎水性シリカ及びその製造方法
JP2017177031A (ja) * 2016-03-31 2017-10-05 シーシーアイ株式会社 排水の処理方法、および排水処理用キット
WO2020230650A1 (ja) * 2019-05-10 2020-11-19 テイカ株式会社 複合表面処理無機粉体及びその製造方法、その無機粉体を配合した油性分散体及び化粧料

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11786036B2 (en) 2008-06-27 2023-10-17 Ssw Advanced Technologies, Llc Spill containing refrigerator shelf assembly
US8286561B2 (en) 2008-06-27 2012-10-16 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
ES2654377T3 (es) 2008-10-07 2018-02-13 Ross Technology Corporation Superficies resistentes a los derrames con fronteras hidrofóbicas y oleofóbicas
EP2496886B1 (en) 2009-11-04 2016-12-21 SSW Holding Company, Inc. Cooking appliance surfaces having spill containment pattern and methods of making the same
KR101830292B1 (ko) * 2009-12-24 2018-03-29 다우 코닝 도레이 캄파니 리미티드 화장료에 사용하기 위한 분말용 표면 처리제 및 이로 처리된 분말을 함유하는 화장료
KR101834885B1 (ko) 2009-12-24 2018-03-08 다우 코닝 도레이 캄파니 리미티드 카르보실록산 덴드리머 구조를 갖는 코폴리머, 및 이를 함유하는 조성물 및 화장료
JP5858441B2 (ja) 2010-03-15 2016-02-10 ロス テクノロジー コーポレーション.Ross Technology Corporation プランジャーおよび疎水性表面を得るための方法
AU2012220798B2 (en) 2011-02-21 2016-04-28 Ross Technology Corporation Superhydrophobic and oleophobic coatings with low VOC binder systems
CH705645A2 (de) * 2011-10-13 2013-04-15 Schoeller Textil Ag Textilien mit Schutzfunktion gegen Abrieb und Kontakthitze.
DE102011085428A1 (de) 2011-10-28 2013-05-02 Schott Ag Einlegeboden
EP2791255B1 (en) 2011-12-15 2017-11-01 Ross Technology Corporation Composition and coating for superhydrophobic performance
CN104080889B (zh) * 2012-02-03 2016-01-13 神岛化学工业株式会社 无卤阻燃剂、其制造方法、树脂组合物、成型体和成型部件
MX2015000119A (es) 2012-06-25 2015-04-14 Ross Technology Corp Recubrimientos elastoméricos con propiedades hidrofóbicas y/u oleofóbicas.
JP5797618B2 (ja) 2012-08-22 2015-10-21 東レ・ダウコーニング株式会社 カルボシロキサンデンドリマー構造を有する共重合体、並びに、それを含む組成物及び化粧料
CN104139433B (zh) * 2014-06-26 2017-02-15 广东博兴新材料科技有限公司 一种改性硅溶胶及其制备方法和应用
EP3192839B1 (en) 2016-01-14 2023-03-08 Omya International AG Alkoxysilane treatment of a calcium carbonate-comprising material
WO2018142542A1 (ja) * 2017-02-02 2018-08-09 日立化成株式会社 粒子処理用の処理剤、撥水性粒子及びその製造方法、撥水層並びに浸透防止構造体
EP3575267A1 (en) 2018-06-01 2019-12-04 Omya International AG Development of surface-treated magnesium hydroxide-comprising material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848910A (ja) * 1994-08-03 1996-02-20 Asahi Glass Co Ltd 表面処理金属酸化物およびその製造方法
JPH08157643A (ja) * 1994-12-07 1996-06-18 Asahi Glass Co Ltd 撥水撥油性多孔性シリカ粒子および撥水撥油性塗膜
JPH10226625A (ja) * 1997-02-18 1998-08-25 Asahi Glass Co Ltd 化粧用粉体および該粉体を含む化粧料
JPH10245546A (ja) * 1997-03-06 1998-09-14 Toagosei Co Ltd 撥水性粉末の製造方法
JP2002173611A (ja) * 2000-12-05 2002-06-21 Maruo Calcium Co Ltd 表面改質無機粒子及び該粒子を含有してなる塗料組成物
JP2006131875A (ja) * 2004-10-08 2006-05-25 Asahi Glass Si-Tech Co Ltd 撥水性無機粉体又は撥水性樹脂ビーズの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2305999A1 (fr) * 1975-04-04 1976-10-29 Rhone Poulenc Ind Supports mineraux greffes et modifies
US4175159A (en) * 1978-07-31 1979-11-20 General Electric Company Silicone emulsions for treating silicate particulate matter
DE3323908A1 (de) * 1983-07-02 1985-01-10 Bayer Ag, 5090 Leverkusen Siliconharz-emulsion
JP2646150B2 (ja) * 1990-08-27 1997-08-25 出光興産 株式会社 撥水性シリカゾルおよびその製造方法
US5449712A (en) * 1993-01-13 1995-09-12 Thoro System Products, Inc. Organosilicon emulsions for rendering porous substrates water repellent
GB9605706D0 (en) * 1996-03-19 1996-05-22 Dow Corning Method for hydrophobing gypsum
JPH1149954A (ja) * 1997-07-31 1999-02-23 Toray Dow Corning Silicone Co Ltd 離型剤
US5964934A (en) * 1997-12-18 1999-10-12 Usg Interiors, Inc. Acoustical tile containing treated perlite
DE19828364A1 (de) * 1998-06-25 1999-12-30 Degussa Hydrophobe Fällungskieselsäure
US6051672A (en) * 1998-08-24 2000-04-18 Dow Corning Corporation Method for making hydrophobic non-aggregated colloidal silica
JP4083323B2 (ja) * 1998-10-29 2008-04-30 東レ・ダウコーニング株式会社 有機ケイ素化合物系エマルジョンの製造方法
US6303663B1 (en) * 1999-03-26 2001-10-16 Cognis Corporation Process for making defoaming compositions
JP4093446B2 (ja) * 2000-11-06 2008-06-04 株式会社リコー 電子写真用トナー外添剤、その製造方法、電子写真用トナー及び電子写真現像装置
JP4306951B2 (ja) * 2000-11-07 2009-08-05 電気化学工業株式会社 表面処理された微細球状シリカ粉末および樹脂組成物
EP1908804A4 (en) * 2005-06-29 2010-06-23 Agc Si Tech Co Ltd PROCESS FOR PREPARING WATER-REPELLENT PARTICULATE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848910A (ja) * 1994-08-03 1996-02-20 Asahi Glass Co Ltd 表面処理金属酸化物およびその製造方法
JPH08157643A (ja) * 1994-12-07 1996-06-18 Asahi Glass Co Ltd 撥水撥油性多孔性シリカ粒子および撥水撥油性塗膜
JPH10226625A (ja) * 1997-02-18 1998-08-25 Asahi Glass Co Ltd 化粧用粉体および該粉体を含む化粧料
JPH10245546A (ja) * 1997-03-06 1998-09-14 Toagosei Co Ltd 撥水性粉末の製造方法
JP2002173611A (ja) * 2000-12-05 2002-06-21 Maruo Calcium Co Ltd 表面改質無機粒子及び該粒子を含有してなる塗料組成物
JP2006131875A (ja) * 2004-10-08 2006-05-25 Asahi Glass Si-Tech Co Ltd 撥水性無機粉体又は撥水性樹脂ビーズの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1967553A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292915A (ja) * 2008-06-04 2009-12-17 Nippon Aerosil Co Ltd 表面改質無機酸化物粉末及び電子写真用トナー組成物
KR101110369B1 (ko) 2009-04-10 2012-02-15 한국세라믹기술원 실리카로 캡슐화된 탄탈륨 질화물의 제조방법 및 이에 의해 제조된 탄탈륨 질화물
JP2012214676A (ja) * 2011-03-31 2012-11-08 Nisshin Steel Co Ltd 塗装金属板およびその製造方法
JP2015048462A (ja) * 2013-09-04 2015-03-16 帝人株式会社 樹脂組成物
WO2016093221A1 (ja) * 2014-12-10 2016-06-16 東ソー・シリカ株式会社 疎水性シリカ及びその製造方法
JP2016113305A (ja) * 2014-12-10 2016-06-23 東ソー・シリカ株式会社 疎水性シリカ及びその製造方法
KR20170091577A (ko) * 2014-12-10 2017-08-09 토소실리카 가부시키가이샤 소수성 실리카 및 그의 제조 방법
KR102422958B1 (ko) 2014-12-10 2022-07-20 토소실리카 가부시키가이샤 소수성 실리카 및 그의 제조 방법
JP2017177031A (ja) * 2016-03-31 2017-10-05 シーシーアイ株式会社 排水の処理方法、および排水処理用キット
WO2020230650A1 (ja) * 2019-05-10 2020-11-19 テイカ株式会社 複合表面処理無機粉体及びその製造方法、その無機粉体を配合した油性分散体及び化粧料

Also Published As

Publication number Publication date
EP1967553A4 (en) 2010-05-19
EP1967553A1 (en) 2008-09-10
JPWO2007077673A1 (ja) 2009-06-04
US20080269358A1 (en) 2008-10-30
JP5095418B2 (ja) 2012-12-12

Similar Documents

Publication Publication Date Title
WO2007077673A1 (ja) 撥水性無機粉体及びその製造方法
JP4729558B2 (ja) 粒子安定化エマルション
JP4751391B2 (ja) 電解質によるPickeringエマルションのレオロジー制御
WO2007000834A1 (ja) 撥水性粉粒体の製造方法
WO2002056844A1 (fr) Procede de production d'eau seche
EP1304332B2 (de) Mit Aminogruppen oberflächenmodifizierte Feststoffe
JP5105470B2 (ja) 懸濁安定性を有する懸濁液組成物
DE10260323A1 (de) Wasserbenetzbare silylierte Metalloxide
WO1997012945A1 (en) Aqueous thixotropes for waterborne systems
EP2167588B1 (de) Verfahren zur herstellung von hochdisperser pyrogener kieselsäure mit einer hohen positiven oberflächenladung
CN107922198B (zh) 具有高盐稳定性的含SiO2的分散体
EP1834215A1 (de) Metalloxide mit einer in einem weiten ph-bereich permanenten positiven oberflächenladung
JPH05254823A (ja) 変性ベントナイト
CN107267007A (zh) 一种防雾霾水漆及其制备方法
CN107922199B (zh) 具有高盐稳定性的含SiO2的分散体
US20070053846A1 (en) Dry coating and downstream processing of cohesive powders
JP2000191490A (ja) 超微粒子状酸化亜鉛・シリコ―ン分散体及びその製法、並びに紫外線遮蔽性化粧料
JP4842571B2 (ja) 撥水性無機粉体又は撥水性樹脂ビーズの製造方法
JP4235169B2 (ja) 水性分散液
JP2007176738A (ja) 安定化された表面処理葉状シリカ2次粒子粉末及びその製造方法
JP2009078952A (ja) 水系媒体における再分散性に優れた多孔質無機粉体及びその製造方法
JP2000191489A (ja) 超微粒子状酸化亜鉛・シリコ―ン分散体及びその製法、並びに紫外線遮蔽性化粧料
WO2018135108A1 (ja) 粒子状組成物、液体組成物、粒子状組成物の製造方法、表面改質剤、水分散性の向上方法
JP6282908B2 (ja) 酸化亜鉛の製造方法
ES2739374T3 (es) Procedimiento para la producción de una preparación de catalizador y uso de la preparación de catalizador

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007552872

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006832461

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE