WO2007072622A1 - 電動機 - Google Patents

電動機 Download PDF

Info

Publication number
WO2007072622A1
WO2007072622A1 PCT/JP2006/320418 JP2006320418W WO2007072622A1 WO 2007072622 A1 WO2007072622 A1 WO 2007072622A1 JP 2006320418 W JP2006320418 W JP 2006320418W WO 2007072622 A1 WO2007072622 A1 WO 2007072622A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
permanent magnet
outer peripheral
inner peripheral
electric motor
Prior art date
Application number
PCT/JP2006/320418
Other languages
English (en)
French (fr)
Inventor
Hirofumi Atarashi
Shoei Abe
Tamotsu Kawamura
Hiromitsu Sato
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to CN2006800480727A priority Critical patent/CN101341645B/zh
Priority to EP06811706.8A priority patent/EP1971013A4/en
Priority to JP2007551001A priority patent/JPWO2007072622A1/ja
Priority to US12/158,533 priority patent/US8339010B2/en
Publication of WO2007072622A1 publication Critical patent/WO2007072622A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/028Means for mechanical adjustment of the excitation flux by modifying the magnetic circuit within the field or the armature, e.g. by using shunts, by adjusting the magnets position, by vectorial combination of field or armature sections
    • H02K21/029Vectorial combination of the fluxes generated by a plurality of field sections or of the voltages induced in a plurality of armature sections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to an electric motor.
  • first and second rotors provided concentrically around a rotating shaft of an electric motor have been provided, and depending on the rotational speed of the electric motor or the speed of the rotating magnetic field generated in the stator
  • an electric motor that controls the circumferential relative positions of the first and second rotors, that is, the phase difference (see, for example, Patent Document 1).
  • the first and second elements are displaced via a member that is displaced along the radial direction by the action of centrifugal force.
  • the relative position in the circumferential direction of the rotor is changed. For example, when the phase difference between the first and second rotors is controlled according to the speed of the rotating magnetic field generated in the stator, each rotor maintains its rotational speed due to inertia.
  • the relative position in the circumferential direction of the first and second rotors is changed by passing a control current through the wires and changing the rotating magnetic field velocity.
  • Patent Document 1 JP 2002-204541 A
  • the present invention has been made in view of the above circumstances, and by making the induced voltage constant variable easily and appropriately while suppressing the complication of the electric motor, it is possible to reduce the operating speed range.
  • Another object of the present invention is to provide an electric motor that can expand the torque range, improve the operating efficiency and expand the operating range with high efficiency.
  • an electric motor includes an inner circumferential rotor, and a rotational axis coaxial with the rotational axis of the inner circumferential rotor.
  • An outer peripheral side rotor, and at least one of the inner peripheral side rotor and the outer peripheral side rotor are rotated around the rotation axis to thereby rotate the inner peripheral side rotor and the outer peripheral side rotor.
  • Rotating means capable of changing the relative phase between the inner rotor and the inner rotor includes a substantially plate-like inner permanent magnet arranged along the circumferential direction, and the outer rotor A substantially plate-like outer peripheral side permanent magnet arranged along the circumferential direction, wherein the inner peripheral side permanent magnet and the outer peripheral side permanent magnet are at least the inner peripheral side rotor and the outer peripheral side described above by the rotating means.
  • Contact, Te, As comprising the opposable long sides from each other, Ru.
  • the inner peripheral side rotor and the outer peripheral side rotor each provided with the permanent magnets having a substantially rectangular shape in a cross section with respect to the direction parallel to the rotation axis are rotated by the rotating means.
  • the long side of the inner permanent magnet faces the long side of the outer permanent magnet along the radial direction.
  • the torque constant of the motor (that is, the torque Z-phase current) can be set to a relatively high value without reducing the current loss during motor operation or fixed.
  • the maximum torque value output by the motor can be increased, and the maximum value of the operating efficiency of the motor can be increased.
  • the inner peripheral permanent magnet is disposed on the outer peripheral surface of the iron core of the inner peripheral rotor, and the outer peripheral permanent magnet is the outer rotor. Characterized by being embedded in the iron core! /
  • the coercive force of the outer peripheral side permanent magnet by the outer peripheral side rotor can be improved, and the distance between the inner peripheral side permanent magnet and the outer peripheral side permanent magnet can be shortened.
  • the inner peripheral permanent magnet is embedded in an iron core of the inner peripheral rotor
  • the outer permanent magnet is an iron core of the outer rotor. It is characterized by being embedded in the interior.
  • the inner peripheral rotor and the outer peripheral rotor are arranged between the inner peripheral permanent magnets adjacent in the circumferential direction and the outer periphery adjacent in the circumferential direction. It is characterized by including a space portion provided in each iron core between the side permanent magnets.
  • the inner peripheral side permanent magnets that are not in a mutually opposed relationship are provided by providing the space portion having a relatively small permeability in the iron core between the adjacent permanent magnets in the circumferential direction. It is possible to suppress the occurrence of a short circuit between the magnetic poles of the outer peripheral side permanent magnet.
  • the space portion is an inner peripheral side extending in a direction parallel to the rotation shaft provided on the outer peripheral surface of the iron core of the inner peripheral rotor. A direction parallel to the rotating shaft provided on the rotor groove and the inner circumferential surface of the outer circumferential rotor. And an outer peripheral rotor groove portion extending in the direction.
  • the electric motor having the above configuration for example, when the relative phase between the inner rotor and the outer rotor is changed by the rotating means, the inner rotor groove and the outer periphery are changed.
  • the side rotor grooves are arranged opposite to each other, the space formed by each groove is arranged opposite to each other, and the magnetic poles of the inner peripheral side permanent magnet and the outer peripheral side permanent magnet that are not in a relationship of facing each other.
  • production of a magnetic circuit short circuit between can be suppressed further.
  • the space portion is an inner peripheral side extending in a direction parallel to the rotating shaft provided on the outer peripheral surface of the iron core of the inner peripheral rotor.
  • a pair of outer peripheral rotors extending in a direction parallel to the rotation axis provided on the outer peripheral surface of the iron core between the rotor groove and the outer peripheral permanent magnet adjacent in the circumferential direction of the outer peripheral rotor.
  • a salient pole part sandwiched between the pair of outer circumferential rotor groove parts by both side forces in the circumferential direction.
  • the electric motor having the above configuration, it is possible to suppress occurrence of a short circuit between the magnetic poles of the inner peripheral side permanent magnet and the outer peripheral side permanent magnet that are not opposed to each other by the groove portions. Rotation due to the magnet torque caused by the attractive force or repulsive force generated between the rotating magnetic field of the stator winding and each permanent magnet, and the attractive force generated between the rotating magnetic field and the salient pole part. It is possible to rotate each rotor efficiently by using torque, that is, reluctance torque.
  • the space provided between the outer peripheral side permanent magnets may be arranged on the outer periphery of the outer peripheral side rotor from the vicinity of the circumferential end of the outer peripheral side permanent magnet. It is characterized by extending toward the surface.
  • reluctance torque can be generated by the iron core between the space portions adjacent in the circumferential direction between the outer peripheral side permanent magnets, and the reluctance torque can be efficiently generated by these space portions. Can be generated.
  • the space portion is provided inside the iron core between the outer peripheral side permanent magnets.
  • the space portion is formed inside the iron core between the outer peripheral side permanent magnets, for example, compared with a case where the space portion opens on the outer peripheral surface of the iron core of the outer peripheral side rotor.
  • the rigidity of the outer circumferential rotor can be improved.
  • the inner peripheral side permanent magnet is disposed at a position shifted toward the outer peripheral side in the radial direction of the iron core of the inner peripheral side rotor
  • the outer peripheral side permanent magnet is arranged at a position shifted in the radial direction of the iron core of the outer peripheral side rotor and toward the inner peripheral side.
  • the field magnetic flux generated by the permanent magnets interlinking the stator windings can be efficiently generated by shortening the distance between the inner peripheral permanent magnet and the outer peripheral permanent magnet. It can be increased or decreased.
  • the inner peripheral permanent magnet is embedded in the iron core of the inner peripheral rotor
  • the outer permanent magnet is the iron core of the outer rotor. It is arranged on the outer peripheral surface of the main body.
  • the coercive force of the inner peripheral side permanent magnet by the inner peripheral side rotor can be improved, and the shape of the outer peripheral side rotor can be simplified.
  • the inner peripheral permanent magnet is disposed on the outer peripheral surface of the iron core of the inner peripheral rotor, and the outer permanent magnet is the outer rotor. It is arranged on the outer peripheral surface of the iron core.
  • the electric motor according to the twelfth aspect of the present invention includes a salient pole portion protruding outward in the radial direction on the outer peripheral surface of the iron core between the outer peripheral permanent magnets adjacent in the circumferential direction. It is a feature.
  • Each rotor can be efficiently rotated by using together with the rotational torque caused by the generated suction force, that is, the reluctance torque.
  • the inner peripheral permanent magnet is disposed on the outer peripheral surface of the iron core of the inner peripheral rotor, and the outer peripheral permanent magnet is the outer rotor. It is arranged on the inner peripheral surface of the iron core.
  • the field magnetic flux generated by the permanent magnets interlinking the stator windings can be efficiently generated by shortening the distance between the inner peripheral permanent magnet and the outer peripheral permanent magnet. It can be increased or decreased.
  • the electric motor according to the fourteenth aspect of the present invention is the inner peripheral salient pole portion protruding outward in the radial direction on the outer peripheral surface of the iron core between the inner peripheral permanent magnets adjacent in the circumferential direction.
  • an outer peripheral side salient pole part projecting inward in the radial direction between the outer peripheral side permanent magnets adjacent in the circumferential direction, and projecting in a substantially circumferential direction from the inner peripheral side salient pole part. It protrudes in a substantially circumferential direction from the inner peripheral side permanent magnet holding claw part and the outer peripheral side salient pole part contacting the outer peripheral surface end part of the inner peripheral side permanent magnet and comes into contact with the inner peripheral surface end part of the outer peripheral side permanent magnet.
  • an outer peripheral side permanent magnet holding claw portion is the inner peripheral salient pole portion protruding outward in the radial direction on the outer peripheral surface of the iron core between the inner peripheral permanent magnets adjacent in the circumferential direction.
  • an outer peripheral side salient pole part projecting inward in the radial direction
  • an electric motor is the outer peripheral surface of the inner peripheral side permanent magnet or the outer peripheral side rotor core disposed on at least the outer peripheral surface of the inner peripheral side rotor core.
  • the outer peripheral side permanent magnet disposed above is provided with a substantially annular holding member that is sandwiched and held from both sides in the radial direction by the outer peripheral surface of the iron core.
  • the inner peripheral side permanent magnet and the outer peripheral side permanent magnet can be appropriately held while suppressing the complicated shapes of the inner peripheral side rotor and the outer peripheral side rotor. It is out.
  • one of the inner peripheral side rotor and the outer peripheral side rotor is disposed so as to face the stator, and the stator is generated.
  • One of the other rotors is a field control rotor.
  • the stator is disposed so as to face the drive rotor,
  • the drive rotor is an inner circumferential rotor or an outer circumferential rotor.
  • this electric motor can be regarded as a so-called outer rotor type electric motor or inner rotor type electric motor. Thereby, the versatility of an electric motor can be improved.
  • the stator is disposed on an inner peripheral side of the inner peripheral rotor, and the outer peripheral rotor which is the field control rotor is provided.
  • the outer peripheral side permanent magnet is characterized in that the long side is larger than the inner peripheral side permanent magnet.
  • the electric motor is a so-called inner rotor type electric motor in which the stator is disposed on the inner peripheral side of the inner peripheral rotor, and the inner peripheral circuit facing the stator.
  • the trochanter is a driving rotor.
  • the amount of magnetic flux is increased by increasing the size of the outer peripheral side permanent magnet of the outer peripheral side rotor, which is disposed relatively far from the stator, and the induced voltage of the motor is increased.
  • the variable range of the constant can be expanded.
  • the inner peripheral permanent magnet is in contact with the inner peripheral surface of the outer peripheral rotor! /
  • the inner peripheral permanent magnet is in contact with the inner peripheral surface of the outer peripheral rotor! /
  • the electric motor according to the twentieth aspect of the present invention is characterized in that a predetermined surface treatment cover is formed on a contact surface of the inner peripheral side permanent magnet with the outer peripheral side rotor. .
  • the contact surface of the inner peripheral side permanent magnet that contacts the inner peripheral surface of the outer peripheral side rotor is subjected to a predetermined surface treatment, thereby, for example, smoothing the contact surface. Due to the sliding resistance when the inner rotor and the outer rotor relatively rotate along the circumferential direction The energy consumption required for this rotation can be reduced.
  • the magnetic flux decreases due to the wear of the inner peripheral side permanent magnet, and the magnetic resistance increases due to the increase in the distance between the inner peripheral side permanent magnet and the outer peripheral side permanent magnet. The occurrence of condition can be suppressed.
  • the electric motor according to the twenty-first aspect of the present invention is characterized in that a predetermined surface treatment cover is formed on a contact surface of the inner peripheral side permanent magnet with the outer peripheral side rotor. .
  • the contact surface of the inner peripheral side permanent magnet that contacts the inner peripheral surface of the outer peripheral rotor is subjected to a predetermined surface treatment process, for example, smoothing of the contact surface.
  • a predetermined surface treatment process for example, smoothing of the contact surface.
  • the electric motor according to the twenty-second aspect of the present invention is characterized in that a predetermined surface treatment cache is formed on the inner peripheral surface of the outer peripheral rotor.
  • a predetermined surface treatment is applied to the inner peripheral surface of the outer peripheral rotor that contacts the contact surface of the inner peripheral permanent magnet, for example, the inner surface of the outer peripheral rotor.
  • the smoothness of the surface reduces the sliding resistance when the inner and outer rotors rotate relatively along the circumferential direction, reducing the energy consumption required for this rotation. be able to. Further, for example, by hardening the inner peripheral surface of the outer rotor, it is possible to suppress the occurrence of problems such as an increase in magnetic resistance due to wear of the outer rotor.
  • the electric motor according to the twenty-third aspect of the present invention is characterized in that a predetermined surface treatment cache is formed on the inner peripheral surface of the outer peripheral rotor.
  • a predetermined surface treatment is applied to the inner peripheral surface of the outer peripheral rotor that contacts the contact surface of the inner peripheral permanent magnet, for example, the inner surface of the outer peripheral rotor.
  • the smoothness of the surface reduces the sliding resistance when the inner and outer rotors rotate relatively along the circumferential direction, reducing the energy consumption required for this rotation. be able to.
  • the outer peripheral rotor can be cured by hardening the inner peripheral surface of the outer peripheral rotor. It is possible to suppress the occurrence of problems such as an increase in magnetic resistance due to wear.
  • the abutting side surface of the inner peripheral permanent magnet is formed in a convex shape.
  • the inner peripheral side rotor and the outer peripheral side rotor are relatively moved along the circumferential direction by forming a convex surface on the contact side of the inner peripheral side permanent magnet.
  • the sliding resistance at the time of rotation can be reduced, and the energy consumption required for this rotation can be reduced.
  • the amount of interlinkage magnetic flux in which the field magnetic flux generated by the outer peripheral side permanent magnet links the stator winding is determined by the field magnetic flux generated by the inner peripheral side permanent magnet. It can be increased or decreased well, for example, in the field strong state, the torque constant of the motor
  • torque Z-phase current can be set to a relatively high value without reducing current loss during motor operation, or the output current of the inverter that controls the energization of the stator winding Without changing the maximum value, the maximum torque value output by the motor can be increased, and the maximum value of the operating efficiency of the motor can be increased.
  • the coercive force of the outer peripheral permanent magnet by the outer rotor can be improved, and the inner peripheral permanent magnet and the outer peripheral permanent magnet can be improved.
  • the field magnetic flux generated by the permanent magnets interlinking the stator windings can be efficiently increased or reduced by shortening the distance between the two.
  • the electric motor of the third aspect of the present invention it is possible to improve the coercivity of the outer peripheral permanent magnet by the outer rotor and the coercivity of the inner permanent magnet by the inner rotor.
  • the occurrence of a short circuit in the magnetic path between the magnetic poles of the inner peripheral side permanent magnet and the outer peripheral side permanent magnet that are not opposed to each other is further increased. Can be suppressed.
  • the grooves are arranged to face each other. It is possible to suppress the occurrence of a short circuit between the magnetic poles of the inner and outer peripheral permanent magnets that are not related to each other, and between the rotating magnetic field of the stator winding and each permanent magnet.
  • Each rotor is efficiently rotated by using both the magnet torque resulting from the attractive force or repulsive force generated in the rotor and the rotational torque resulting from the attractive force generated between the rotating magnetic field and the salient pole, that is, the reluctance torque. Can be made.
  • the reluctance torque can be generated by the iron core between the space portions adjacent in the circumferential direction between the outer peripheral side permanent magnets, and the reluctance torque is generated by these space portions. Can be generated efficiently.
  • the electric motor of the eighth aspect of the present invention by forming a space portion in the inner part of the iron core between the outer peripheral side permanent magnets, for example, the space portion is formed on the outer peripheral surface of the outer peripheral side rotor. Compared with the case of opening, the rigidity of the outer peripheral rotor can be improved.
  • the field by each permanent magnet interlinking the stator winding is shortened by shortening the distance between the inner peripheral side permanent magnet and the outer peripheral side permanent magnet. Magnetic flux can be increased or decreased efficiently.
  • the coercive force of the inner peripheral permanent magnet by the inner peripheral rotor can be improved, and the shape of the outer peripheral rotor is simplified. It can be done.
  • an inner peripheral side rotor and an outer peripheral side rotor can be simplified.
  • Each rotor can be efficiently rotated by using the rotational torque caused by the attractive force generated between the rotor and the salient pole portion, that is, the reluctance torque.
  • the electric motor of the thirteenth aspect of the present invention by reducing the distance between the inner peripheral side permanent magnet and the outer peripheral side permanent magnet, the field by each permanent magnet interlinking the stator windings. Magnetic flux can be increased or decreased efficiently.
  • the coercive force of the outer permanent magnet by the outer rotor and the coercive force of the inner permanent magnet by the inner rotor are improved. This is due to the magnet torque caused by the attractive force or repulsive force generated between the rotating magnetic field of the stator winding and each permanent magnet, and the attractive force generated between the rotating magnetic field and each salient pole part.
  • Each rotor can be efficiently rotated by using together with the rotation torque, that is, the reluctance torque.
  • the inner peripheral rotor and the outer peripheral rotor The inner peripheral side permanent magnet and the outer peripheral side permanent magnet can be appropriately held while suppressing the complication of the shape.
  • the electric motor of the sixteenth aspect of the present invention since it is a so-called outer rotor type electric motor or inner rotor type electric motor, the versatility of the electric motor can be improved.
  • the amount of magnetic flux is increased by increasing the size of the outer peripheral side permanent magnet of the outer peripheral side rotor that is disposed at a position where the stator force is also relatively separated.
  • the variable range of the induced voltage constant of the electric motor can be expanded.
  • the magnetoresistance is reduced by shortening the distance between the inner peripheral side permanent magnet and the outer peripheral side permanent magnet, and the induced voltage of the electric motor The variable range of the constant can be expanded.
  • the inner circumferential rotor and the outer circumferential rotor are relatively moved along the circumferential direction. It is possible to reduce the sliding resistance at the time of rotating, and to reduce the energy consumption required for this rotation.
  • the magnetic flux decreases due to wear of the inner peripheral side permanent magnet, and the magnetic resistance increases due to the increase in the distance between the inner peripheral side permanent magnet and the outer peripheral side permanent magnet. Can be suppressed.
  • the inner circumferential rotor and the outer circumferential rotor are aligned in the circumferential direction by, for example, smoothing of the inner circumferential surface of the outer circumferential rotor.
  • the sliding resistance at the time of relative rotation can be reduced, and the consumption of energy required for this rotation can be reduced.
  • there is a problem such as an increase in magnetic resistance due to an increase in the distance between the inner permanent magnet and the outer permanent magnet due to wear of the outer rotor. Can be suppressed.
  • the inner peripheral rotor and the outer rotor are arranged along the circumferential direction by forming the surface on the side where the inner peripheral permanent magnet abuts into a convex shape.
  • FIG. 1 is a cross-sectional view of an essential part showing an inner circumferential side rotor and an outer circumferential side rotor and a stator of an electric motor according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a configuration of an electric motor according to an embodiment of the present invention.
  • FIG. 3 is a velocity diagram of a planetary gear mechanism according to an embodiment of the present invention.
  • FIG. 4A is a diagram schematically showing a strong field state in which a permanent magnet of an inner circumferential rotor and a permanent magnet of an outer circumferential rotor according to an embodiment of the present invention are arranged with the same polarity.
  • FIG. 4B is a diagram schematically showing a field-weakening state in which a permanent magnet of an inner circumferential rotor and a permanent magnet of an outer circumferential rotor according to an embodiment of the present invention are arranged as counter electrodes.
  • FIG. 5 is a graph showing induced voltages in the strong field state shown in FIG. 4A and the weak field state shown in FIG. 4B.
  • FIG. 6A is a graph showing the relationship between the electric current and torque of the motor that change according to the induced voltage constant Ke according to one embodiment of the present invention.
  • FIG. 6B is a graph showing the relationship between the number of rotations of the motor and the field weakening loss that change according to the induced voltage constant Ke according to one embodiment of the present invention.
  • FIG. 7 A diagram showing an operable region with respect to the rotation speed and torque of an electric motor that changes according to an induced voltage constant Ke.
  • FIG. 8A is a graph showing the relationship between the number of rotations of the motor and the torque that change according to the induced voltage constant Ke according to one embodiment of the present invention.
  • FIG. 8B is a graph showing the relationship between the number of rotations of the motor and the output that change according to the induced voltage constant Ke according to one embodiment of the present invention.
  • FIG. 9A is a diagram showing an operable range and efficiency distribution with respect to the rotation speed and torque of the motor that change according to the induced voltage constant Ke in the embodiment.
  • FIG. 11 is a diagram schematically showing a configuration of an electric motor according to a first modification of the embodiment of the present invention.
  • FIG. 17 A sectional view of a substantially 1Z2 circle showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to a sixth modification of the embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of a substantially 1Z2 circle showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to a seventh modification of the embodiment of the present invention.
  • FIG. 19 A cross-sectional view of a substantially 1Z2 circle showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to an eighth modification of the embodiment of the present invention.
  • ⁇ 21 A sectional view of a substantially 1Z2 circle showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to a tenth modification of the embodiment of the present invention.
  • ⁇ 22 A sectional view of a substantially 1Z2 circle showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to an eleventh modification of the embodiment of the present invention.
  • ⁇ 23 A cross-sectional view of a substantially 1Z2 circle showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to an eleventh modification of the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a substantially 1Z2 circle showing a trochanter.
  • FIG. 25 is a cross-sectional view of a substantially 1Z2 circle showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to a thirteenth modification of the embodiment of the present invention.
  • FIG. 26 is an essential part cross-sectional view showing an inner circumferential rotor and an outer circumferential rotor of an electric motor according to a fourteenth modification of the embodiment of the present invention.
  • FIG. 27 is a diagram schematically showing a configuration of an electric motor according to a fourteenth modification of the embodiment of the present invention.
  • FIG. 28 is an essential part cross-sectional view showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to a fourteenth modification of the embodiment of the present invention.
  • FIG. 29 is an essential part cross-sectional view showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to a fourteenth modification of the embodiment of the present invention.
  • FIG. 30 is an essential part cross-sectional view showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to a fourteenth modification of the embodiment of the present invention.
  • FIG. 31 is an essential part cross-sectional view showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to a fifteenth modification of the embodiment of the present invention.
  • FIG. 32 is a cross-sectional view of a main part showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to a fifteenth modification of the embodiment of the present invention.
  • FIG. 33 is an essential part cross-sectional view showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to a fifteenth modification of the embodiment of the present invention.
  • FIG. 34 is a cross-sectional view of a principal part showing an inner circumferential side rotor and an outer circumferential side rotor of an electric motor according to a fifteenth modification of the embodiment of the present invention.
  • the electric motor 10 includes a substantially annular inner circumferential rotor 11 and outer circumferential rotation provided with permanent magnets 11a and 12a arranged along the circumferential direction.
  • a stator 13 having a multi-phase stator winding 13a that generates a rotating magnetic field for rotating the rotor 12, the inner rotor 11 and the outer rotor 12, and the inner rotor 11 and the outer rotor.
  • a brushless DC motor equipped with a planetary gear mechanism 14 connected to the rotor 12 and an actuator 15 for setting the relative phase between the inner rotor 11 and the outer rotor 12 by the planetary gear mechanism 14.
  • the output shaft P of the electric motor 10 is an input of a transmission (not shown). Connected to the force shaft, the driving force of the electric motor 10 is transmitted to driving wheels (not shown) of the vehicle via the transmission.
  • the electric motor 10 When the driving force is transmitted from the driving wheel side to the electric motor 10 during deceleration of the vehicle, the electric motor 10 functions as a generator to generate a so-called regenerative braking force, and the kinetic energy of the vehicle body is converted into electric energy (regenerative energy). As recovered. Further, for example, in a hybrid vehicle, the rotating shaft o of the electric motor 10 is connected to a crankshaft of an internal combustion engine (not shown), and the electric motor 10 generates power even when the output of the internal combustion engine is transmitted to the electric motor 10. It functions as a machine and generates power generation energy.
  • the inner circumferential rotor 11 and the outer circumferential rotor 12 are arranged so that their rotational axes are coaxial with the rotational axis O of the electric motor 10, and each of the substantially cylindrical shapes.
  • Rotor cores 21, 22 and a plurality of inner periphery side magnet mounting portions 23 provided at predetermined intervals in the outer periphery of the inner periphery side rotor core 21, and the outer periphery side rotor core 22, in the peripheral direction.
  • a plurality of inner peripheral side magnet mounting portions 23 provided at a predetermined interval.
  • a groove 21a extending in parallel with the rotation axis O is formed on the outer peripheral surface 21A of the inner rotor core 21 between the inner peripheral magnet mounting portions 23 adjacent in the circumferential direction.
  • a concave groove 22a extending in parallel with the rotation axis O is formed on the outer peripheral surface 22A of the outer rotor core 22 between the outer peripheral magnet mounting portions 24 adjacent in the circumferential direction.
  • Each magnet mounting portion 23 and 24 includes, for example, a pair of magnet mounting holes 23a and 24a penetrating parallel to the rotation axis O, and the pair of magnet mounting holes 23a via the center rib 23b, The pair of magnet mounting holes 24a are arranged so as to be adjacent to each other in the circumferential direction via the center rib 24b.
  • Each of the magnet mounting holes 23a and 24a is formed in a substantially rectangular shape having a cross-sectional force in a direction parallel to the rotation axis O.
  • the substantially circumferential direction is the longitudinal direction and the substantially radial direction is the short direction.
  • Each of the permanent magnets 11a and 12a has a substantially rectangular plate shape extending parallel to the rotation axis O.
  • the pair of inner peripheral side permanent magnets 11a mounted in the pair of magnet mounting holes 23a are magnetized in the thickness direction (that is, the radial direction of the rotors 11 and 12), and are magnetically coupled to each other. ⁇ direction is set to be the same direction.
  • a pair of magnets are mounted on the inner circumferential magnet mounting part 23 adjacent in the circumferential direction.
  • Each pair of inner peripheral side permanent magnets 11a attached to the hole 23a is set so that the magnetic field directions are different from each other.
  • a pair of inner peripheral side permanent magnets 11a whose outer peripheral side is the south pole are mounted on the inner peripheral side magnet mounting part 23, which is mounted with a pair of inner peripheral side permanent magnets 11a whose outer peripheral side is the north pole.
  • the inner peripheral side magnet mounting portion 23 thus made is adjacent in the circumferential direction via the concave groove 21a.
  • the pair of outer peripheral permanent magnets 12a mounted in the pair of magnet mounting holes 24a is magnetized in the thickness direction (that is, the radial direction of each of the rotors 11 and 12) and magnetized in the direction of each other. Are set in the same direction.
  • the pair of outer peripheral permanent magnets 12a and the outer peripheral permanent magnets 12a mounted in the pair of magnet mounting holes 24a with respect to the outer peripheral magnet mounting portions 24 adjacent in the circumferential direction are in the magnetic field direction. Are set in different directions.
  • the outer peripheral side magnet mounting portion 24 with a pair of outer peripheral side permanent magnets 12a having an N pole on the outer peripheral side is mounted on the outer peripheral side with a pair of outer peripheral side permanent magnets 12a having an S pole on the outer peripheral side.
  • each magnet mounting portion 23 of the inner circumferential rotor 11 and each magnet mounting portion 24 of the outer circumferential rotor 12 are further connected to each concave groove 21a of the inner circumferential rotor 11 and the outer circumferential rotation.
  • the concave grooves 22a of the child 12 are arranged so as to be able to face each other in the radial direction of the rotors 11 and 12.
  • the state of the electric motor 10 is changed between the inner peripheral side permanent magnet 11a and the outer peripheral side rotor 11 according to the relative positions of the inner peripheral side rotor 11 and the outer peripheral side rotor 12 around the rotation axis O.
  • the long side of the inner peripheral permanent magnet 11a and the long side of the outer peripheral permanent magnet 12a face each other in the cross section in the direction parallel to the rotation axis O. It is set.
  • stator 13 is formed in a substantially cylindrical shape facing the outer peripheral portion of the outer peripheral rotor 12, and is fixed to, for example, a housing (not shown) of a vehicle transmission.
  • the planetary gear mechanism 14 is disposed in a hollow portion on the inner peripheral side with respect to the inner peripheral rotor 11 and is coaxially and integrally formed with the outer peripheral rotor 12.
  • 1 ring gear (R1) 31, a second ring gear (R2) 32 formed coaxially and integrally with the inner rotor 11, and a first row of first gears that meshes with the first ring gear (R1) 31.
  • the first planetary carrier which is supported so as to be rotatable around and rotatable around the rotation axis O.
  • a second planetary carrier (C2) 37 fixed to the stator 13 and rotatably supported around is provided.
  • the planetary gear mechanism 14 is a single-pione type planetary gear mechanism including the first planetary gear train 33 and the second planetary gear train 34 of each single row.
  • the outer diameter of the inner rotor 11 is formed smaller than the inner diameter of the outer rotor 12, and the inner rotor 11 is more inner than the outer rotor 12. It is arranged in the hollow part on the side.
  • the outer diameters of the first ring gear (R1) 31 and the second ring gear (R2) 32 are formed smaller than the inner diameter of the inner circumferential rotor 11, and along the direction parallel to the rotation axis O.
  • the first ring gear (R 1) 31 and the second ring gear (R 2) 32 arranged coaxially so as to be adjacent to each other are arranged in a hollow portion on the inner peripheral side with respect to the inner peripheral rotor 11.
  • the first ring gear (R1) 31 arranged at a position shifted to one side in the direction parallel to the rotation axis O with respect to the arrangement position of the second ring gear (R2) 32 can be rotated by a bearing. And connected to a rotating shaft O that extends toward one side!
  • the first planetary carrier (C1) 36 is one of the first planetary gear trains 33 in the direction parallel to the rotation axis O with respect to the arrangement position of the first planetary gear train 33 meshing with the first ring gear (R1) 31.
  • the sun gear (S) 35 is disposed in a position displaced to the side, and is rotatably inserted into the hollow portion of the rotary shaft PS of the sun gear (S) 35 that is hollow, and is connected to a rotary shaft PC that extends toward the other side.
  • the second planetary carrier (C2) 37 is shifted to the other side in the direction parallel to the rotation axis O with respect to the arrangement position of the second planetary gear train 34 that meshes with the second ring gear (R2) 32. It is placed at the position.
  • the first ring gear (R 1) 31 and the second ring gear (R 2) 32 have substantially the same gear shape, and each of the plurality of components constituting the first planetary gear train 33.
  • the first planetary gear 33a and the plurality of second planetary gears 34a constituting the second planetary gear train 34 have substantially the same gear shape, and the rotation shaft PS of the sun gear (S) 35 is the same as that of the electric motor 10. It is arranged coaxially with the rotation axis O and is rotatably supported by a bearing.
  • the first planetary gear train 33 and the second planetary gear train 34 mesh with the sun gear (S) 35, which is an idle gear, so that the inner circumferential rotor 11 and the outer circumferential rotor 12 Are synchronized with each other.
  • the rotation axis PC of the first planetary carrier (C1) 36 is arranged coaxially with the rotation axis O of the electric motor 10 and is connected to the actuator 15, and the second planetary carrier (C2) 37 is a stator. It is fixed to 13.
  • the actuator 15 includes, for example, a hydraulic pump 15a that is controlled according to a control command in which an external control device equal force is input and converts fluid energy into rotational motion, and the like, and includes a first planetary carrier (C1 around the rotation axis O). ) Restricting the rotation of 36 (that is, holding the first planetary carrier (C1) 36 at a predetermined rotation position), or moving the first planetary carrier (C1) 36 to the rotation axis by the advance or retard operation Rotate by a predetermined amount in the forward or reverse direction around O.
  • the first planetary carrier (C1) 36 is rotated about the rotation axis O by the actuator 15, the inner peripheral rotor 11 and the outer peripheral rotation are performed regardless of whether the motor 10 is in operation or stopped.
  • the relative phase with child 12 changes.
  • the speed of the second planetary carrier (C2) 37 with respect to the rotation around the rotation axis O is the same as the rotation state of the sun gear (S) 35 shown in FIG. Zero.
  • the second ring gear (R2) 32 and the inner circumferential rotor 11 have, for example, a sun gear (S) 35 that rotates at an appropriate speed in the reverse rotation direction with respect to the second ring gear (R2) 32 ( S) Gear ratio of 35 (ie speed increase ratio) Rotate in the forward direction at a speed according to g2. It ’s hard to roll.
  • the speed of the first planetary carrier (C1) 36 with respect to the rotation around the rotation axis O is zero. Therefore, the first ring gear (Rl) 31 and the outer rotor 12 are, for example, a sun gear (S) 35 for the first ring gear (R1) 31 with respect to the sun gear (S) 35 that rotates at an appropriate speed in the reverse direction. )
  • the gear ratio of 35 (that is, the speed increasing ratio) rotates in the forward direction at a speed corresponding to gl.
  • the gear ratio gl and the gear ratio g2 are substantially equal (gl ⁇ g 2), the inner rotor 11 and the outer rotor 12 are synchronously rotated, and the inner rotor 11 and This means that the relative phase with the outer rotor 12 is maintained unchanged.
  • the speed of the first planetary carrier (C1) 36 with respect to the rotation around the rotation axis O is a value other than the opening. Therefore, an appropriate positive value or negative value with respect to the forward rotation direction or the reverse rotation direction is obtained.
  • the first ring gear (R1) 31 and the outer rotor 12 have, for example, a sun gear (S1) 35 for the first ring gear (R1) 31 that rotates at an appropriate speed in the reverse direction.
  • S) Gear ratio of 35 (that is, speed increase ratio) It will rotate in the forward direction at a speed faster, slower or slower than the speed according to gl.
  • the outer rotor 12 is accelerated or decelerated compared to the inner rotor 11, and the inner rotor The relative phase between 11 and the outer rotor 12 will change.
  • the actuator 15 has at least a mechanical ratio of the gear ratio (that is, the speed increasing ratio) gl of the sun gear (S) 35 to the first ring gear (R1) 31 and the number of pole pairs P of the electric motor 10.
  • the relative phase between the inner rotor 11 and the outer rotor 12 can be changed to the advance side or the retard side by at least 180 ° of the electrical angle, and the state of the motor 10 is
  • the magnetic poles of the same polarity of the inner peripheral side permanent magnet 1 la of the inner peripheral side rotor 11 and the outer peripheral side permanent magnet 12 a of the outer peripheral side rotor 12 are opposed to each other (that is, the inner peripheral side permanent magnet 11a and the outer peripheral side
  • the magnetic field of the opposite polarity with respect to the outer peripheral side permanent magnet 12a of the outer peripheral side rotor 12 is opposed to each other (that is, the inner peripheral side permanent magnet 11a and the outer peripheral side permanent magnet 12a are arranged with the same polarity). It is possible to set to an appropriate state.
  • FIG. 4B in the field weakening state in which the inner peripheral side permanent magnet 1 la of the inner peripheral side rotor 11 and the outer peripheral side permanent magnet 12a of the outer peripheral side rotor 12 are arranged as a counter electrode
  • the induced voltage constant Ke is changed by changing the state of the motor 10 between the strong field state and the weak field state. Will be.
  • This induced voltage constant Ke is, for example, the rotational speed ratio of the induced voltage induced at the winding end of the stator winding 13a by the rotation of the rotors 11 and 12, and further, the pole pair number p and the motor outer diameter
  • R the rotational speed ratio of the induced voltage induced at the winding end of the stator winding 13a by the rotation of the rotors 11 and 12, and further, the pole pair number p and the motor outer diameter
  • the inner peripheral side permanent magnet 11a of the inner peripheral side rotor 11 and the outer peripheral side permanent magnet of the outer peripheral side rotor 12 are made permanent.
  • the magnitude of the magnetic flux density B of the field magnetic flux due to the magnet 12a changes, and the induced voltage constant Ke is changed.
  • the torque of the electric motor 10 is proportional to the product of the induced voltage constant Ke and the current passed through the stator winding 13a (torque (Ke X current)).
  • the field weakening loss of the electric motor 10 is proportional to the product of the induced voltage constant Ke and the rotational speed (field weakening loss ⁇ (Ke X rotational speed)).
  • the permissible rotational speed is proportional to the inverse of the product of the induced voltage constant Ke and the rotational speed (allowable rotational speed (1Z (K e X rotational speed))).
  • the operable rotational speed is relatively decreased, but a relatively large torque can be output.
  • the motor 10 having a relatively small induced voltage constant Ke although the output torque is relatively low, the motor 10 can be operated up to a relatively high rotational speed, and the torque and the rotation are increased according to the induced voltage constant Ke.
  • the operable range for the number changes. For this reason, for example, as in the embodiment shown in FIG.
  • the induced voltage constant Ke changes in a decreasing trend as the rotational speed of the motor 10 increases (for example, A, B ( ⁇ A), C ( ⁇ B), the operable range for the torque and the rotational speed is expanded compared to the case where the induced voltage constant Ke is not changed (for example, the first to third comparative examples).
  • the output of the electric motor 10 is proportional to the value obtained by subtracting the field weakening loss and other losses from the product of the induced voltage constant Ke and the current passed through the stator winding 13a and the rotational speed. (Output (Ke X current X rotation speed-field weakening loss and other losses)).
  • Output Ke X current X rotation speed-field weakening loss and other losses
  • the motor 10 having a relatively small induced voltage constant Ke
  • the output in a relatively low rotational speed range decreases, but the motor can be operated up to a relatively high rotational speed and has a relatively high rotational speed.
  • the output at the point of time increases, and the operable range for the output and rotational speed changes according to the induced voltage constant Ke.
  • the induced voltage constant Ke changes so as to decrease as the number of revolutions of the motor 10 increases (for example, sequentially change to A, B ( ⁇ A), C ( ⁇ B)).
  • the operable range for the output and the rotational speed is expanded.
  • the efficiency of the motor 10 is proportional to the value obtained by dividing the input power to the stator winding 13a by subtracting the copper loss, field weakening loss, and other losses by the input power. (Efficiency ((input power copper loss-field weakening loss and other losses) (input power))).
  • the field weakening current is reduced and the field weakening loss is reduced by selecting a relatively small induced voltage constant Ke.
  • the induced voltage constant Ke is set so as to decrease in accordance with the increase in the rotation speed of the electric motor 10, thereby causing the induced voltage.
  • the pressure constant Ke is not changed (for example, the second comparative example shown in FIG. 9B)
  • the rotational speed and the operable range for the rotational speed are expanded, and the efficiency of the motor 10 is higher than the predetermined efficiency.
  • Region E expands and the highest achievable efficiency value increases.
  • the actuator 15 can release the restriction on the rotation of the first planetary carrier (C1) 36 around the rotation axis O. For example, when an abnormality of the electric motor 10 is detected, the actuator 15 The restriction on the rotation of the first planetary carrier (C1) 36 is released, and the rotation of the first planetary carrier (C1) 36 around the rotation axis O is allowed.
  • the first planetary carrier (C1) 36 can freely rotate around the rotation axis O.
  • the position of the motor 10 is changed so that the magnetic poles of different polarities of the inner peripheral side permanent magnet 11a of the inner peripheral side rotor 11 and the outer peripheral side permanent magnet 12a of the outer peripheral side rotor 12 are opposed to each other (that is, The inner peripheral side permanent magnet 11a and the outer peripheral side permanent magnet 12a change toward a strong field state in which the same polarity is provided.
  • the state of the electric motor 10 is permanently set on the inner peripheral side of the inner peripheral side rotor 11.
  • the weak field where the magnetic poles of the same polarity of the magnet 11a and the outer peripheral permanent magnet 12a of the outer rotor 12 are oppositely arranged (that is, the inner permanent magnet 11a and the outer permanent magnet 12a are opposite).
  • the first planetary carrier (C1) 36 is rotated around the rotation axis O so as to change toward the magnetic state.
  • the electric motor 10 according to the present embodiment has the above-described configuration. Next, a driving method of the electric motor 10 will be described with reference to the accompanying drawings.
  • step S01 shown in FIG. 10 it is determined whether or not an abnormality of the electric motor 10 is detected.
  • step S02 the restriction on the rotation of the first planetary carrier (C 1) 36 by the actuator 15 is released, and the free rotation of the first planetary carrier (C 1) 36 around the rotation axis O is allowed. Terminate the process.
  • step S03 for example, a relative phase (electric angle oc: edeg) between the inner circumferential rotor 11 and the outer circumferential rotor 12 detected by a rotation sensor or the like is acquired.
  • step S05 the first planetary carrier (C1) 36 is rotated on the rotational axis ⁇ ⁇ according to the mechanical angle / 3 and the gear ratio gl of the sun gear (S) 35 to the first ring gear (R1) 31.
  • step S06 the actuator 15 rotates the first planetary carrier (C 1) 36 about the rotation axis O by the rotation amount ⁇ , and the series of processes ends.
  • the inner peripheral rotor 11 and the outer peripheral rotor 12 are substantially rectangular plate-shaped permanent magnets 11a along the circumferential direction. 12a is arranged, and the permanent magnets 11a and 12a are set so that the long sides of the permanent magnets 11a and 12a can face each other along the radial direction of the rotors 11 and 12 in the cross section in the direction parallel to the rotation axis O.
  • the magnetic fluxes of the permanent magnets 11a and 12a from being radiated to the surrounding magnetic circuit (for example, the rotor cores 21 and 22). This suppresses the occurrence of iron loss.
  • the amount of interlinkage magnetic flux generated by the outer peripheral side permanent magnet 12a of the outer peripheral rotor 12 interlinking the stator winding 13a is reduced. It can be efficiently increased or decreased by the field magnetic flux generated by the inner peripheral side permanent magnet 1 la.
  • the torque constant (that is, torque Z-phase current) of the motor 10 can be set to a relatively high value without reducing the current loss during operation of the motor 10.
  • the maximum torque value output from the motor 10 can be increased without changing the maximum value of the output current of an inverter (not shown) that controls the energization of the stator winding 13a.
  • the plurality of first planetary gears 33a and the second planetary gears 33 constituting the first planetary gear train 33 are also included.
  • the plurality of second planetary gears 34a constituting the planetary gear train 34 can rotate around the planetary rotation axes PI and P2 and mesh with the sun gear (S) 35, which is an idle gear.
  • S sun gear
  • the first planetary carrier (C 1) 36 is restricted from rotating around the rotation axis O (that is, held at a predetermined rotation position).
  • the force required for rotational driving is the inner permanent magnet 1 la of the inner rotor 11 and the outer rotor 12 regardless of the number of rotations of the motor 10 and the magnitude of the torque.
  • the outer peripheral permanent magnets 12a need only be larger than the attractive force or repulsive force between the two magnets.For example, a force greater than the torque output by the motor 10, such as a brake actuator, is not required. ⁇ I can do it.
  • the actuator 15 can rotate the first planetary carrier (C1) 36 without requiring external power supply, thereby preventing the operating efficiency of the motor 10 from being reduced. it can.
  • a strong field state in which magnetic poles of different polarities are oppositely arranged that is, the inner peripheral side permanent magnet 1 la of the inner peripheral side rotor 11 and the outer peripheral side permanent magnet 12a of the outer peripheral side rotor 12 are arranged in the same polarity
  • the same polarity magnetic poles of the inner peripheral permanent magnet 11a of the inner rotor 11 and the outer permanent magnet 12a of the outer rotor 12 are opposed to each other (that is, the inner permanent magnet of the inner rotor 11 is permanent).
  • the magnet 1 la and the outer peripheral permanent magnet 12a of the outer peripheral rotor 12 can be appropriately shifted between the weak field states in which the permanent magnets 12a are arranged as counter electrodes.
  • the force can also continuously change the magnitude of the field magnetic flux interlinking the stator winding 13a, and the induced voltage constant Ke of the electric motor 10 can be continuously changed to an appropriate value. it can.
  • the operable speed and torque value of the motor 10 can be continuously changed.
  • the range of the rotational speed and torque that can be operated can be expanded.
  • the maximum value of the operating efficiency of the electric motor 10 can be increased, and the high efficiency region where the operating efficiency is equal to or higher than the predetermined efficiency can be expanded.
  • the state of the motor 10 is changed to the inner peripheral side.
  • the first planetary is set so that the same magnetic poles of the inner peripheral side permanent magnet 1 la of the rotor 11 and the outer peripheral side permanent magnet 12a of the outer rotor 12 change toward the field weakening state in which they are opposed to each other. Since the carrier (C1) 36 is rotated around the rotation axis O, it is possible to prevent, for example, an overvoltage state of a high-voltage device such as an inverter that controls energization of the stator winding 13a.
  • a concave groove 22 a extending parallel to the rotation axis O is provided on the outer peripheral surface 22 A of the outer rotor core 22 between the outer peripheral magnet mounting portions 24 adjacent in the circumferential direction. Suppresses occurrence of a short circuit between the magnetic poles of the inner peripheral side permanent magnet 11a of the inner peripheral side rotor 11 and the outer peripheral side permanent magnet 12a of the outer peripheral side rotor 12, which are not in a mutually opposed relationship. can do.
  • the planetary gear mechanism 14 is a single-pione type planetary gear mechanism.
  • the present invention is not limited to this, and for example, the first embodiment of the above-described embodiment shown in FIG.
  • the planetary gear mechanism 14 may be a double beon type planetary gear mechanism.
  • the difference between the electric motor 50 according to the first modified example and the electric motor 10 according to the above-described embodiment is that two rows of the first ring gear (R1) 31 and the sun gear (S) 35 are held together.
  • First planetary gear trains 51 and 52 are arranged, and two second planetary gear trains 53 and 54 are arranged between the second ring gear (R2) 32 and the sun gear (S) 35. Is a point
  • the gear train 53 meshes with the second ring gear (R2) 32, and the other second planetary gear train 54 meshes with the sun gear (S) 35.
  • the first planetary carrier (C1) 36 supports a plurality of first planetary gears 51a constituting one first planetary gear train 51 so as to be rotatable around each first planetary rotation axis Pla.
  • the plurality of first planetary gears 52a constituting the other first planetary gear train 52 are rotatably supported around each first planetary rotation axis Plb, and are further rotatable around the rotation axis O.
  • the second planetary carrier (C2) 37 supports a plurality of second planetary gears 53a constituting one second planetary gear train 53 so as to be rotatable around each second planetary rotation axis P2a and the other second planetary gear train 53.
  • a plurality of second planetary gears 54a constituting the two planetary gear train 54 are rotatably supported around each second planetary rotation axis P2b, and are further fixed to the stator 13.
  • the planetary gears 51a, 52a, 53a, 54a have substantially the same gear shape.
  • each of the first planetary gear trains 51, 52 and the second planetary gear trains 53, 54 is provided with, for example, a sun gear ( As in the rotation state of S) 35, the sun gear (S) 35, the inner circumferential rotor 11 and the outer circumferential rotor 12 rotate in the same direction.
  • the rotation directions of the inner circumferential rotor 11 and the outer circumferential rotor 12 and the sun gear (S) 35 can be set in the same direction. Even when the output shaft of the electric motor 10 is connected to the sun gear (S) 35 in addition to the inner peripheral rotor 11 or the outer peripheral rotor 12 when the motor 10 is mounted on a vehicle as a drive source, the transmission It is possible to prevent the power transmission mechanism such as from being complicated.
  • the rotation amount of the outer rotor 12 is smaller than the rotation amount of the first planetary carrier (C1) 36, the resolution when controlling the rotation amount of the outer rotor 12 is improved. be able to.
  • the first planetary carrier (C1) 36 can rotate around the rotation axis O, and the second planetary carrier (C2) 37 is fixed to the stator 13.
  • the second planetary carrier (C2) 37 can be rotated around the rotation axis O.
  • the first planetary carrier (CI) 36 may be fixed to the stator 13.
  • the actuator 15 is not limited to the force provided with the hydraulic pump 15a, and may be provided with, for example, an electric motor.
  • each inner peripheral side permanent magnet 11a is embedded in the inner peripheral side rotor core 21 of the inner peripheral side rotor 11, and each outer peripheral side permanent magnet 12a is The outer rotor 12 is embedded in the outer rotor core 22 of the outer rotor 12.
  • the inner circumferential rotor 11 is provided with a plurality of concave grooves 21a extending in parallel with the rotation axis O on the outer circumferential surface 21A of the inner circumferential rotor core 21 at predetermined intervals in the circumferential direction.
  • a single magnet mounting hole 23a that penetrates the inside of the inner circumferential rotor core 21 in parallel to the rotation axis O is located at a position shifted radially to the outer circumferential side.
  • a substantially rectangular plate-shaped inner peripheral permanent magnet 11a is mounted in each magnet mounting hole 23a.
  • the outer rotor 12 has a plurality of magnet mounting holes 24a penetrating the inside of the outer rotor core 22 in parallel with the rotation axis O at predetermined intervals in the circumferential direction.
  • the outer peripheral permanent magnet 12a having a substantially rectangular plate shape is mounted in each magnet mounting hole 24a provided at a position shifted in the radial direction toward the inner peripheral side. Further, between the magnet mounting holes 24a adjacent to each other in the circumferential direction, an opening is formed on the circumferential inner wall surface 24A of each magnet mounting hole 24a, and gradually approaches the outer peripheral surface 22A of the outer rotor core 22 so as to gradually approach each other.
  • Each magnetic flux barrier hole 25 extending in the opposite direction and penetrating the inside of the outer rotor core 22 in parallel with the rotation axis O is provided inside the outer rotor core 22.
  • an iron core portion 22b sandwiched from both sides in the circumferential direction by the magnetic flux barrier hole 25 having a relatively small permeability is formed between the outer circumferential permanent magnets 12a adjacent in the circumferential direction in the outer rotor core 22. Yes.
  • the planetary gear mechanism 14 rotates the inner peripheral side.
  • the long side of the inner peripheral magnet 1 la and the long side of the outer permanent magnet 12a are opposed to each other.
  • the distance between the inner peripheral side permanent magnet 11a and the outer peripheral side permanent magnet 12a is set to be relatively short, for example, the field magnetic flux generated by the outer peripheral side permanent magnet 12a causes the stator winding to be The amount of interlinkage magnetic flux interlinking can be efficiently increased or decreased by the field magnetic flux generated by the inner peripheral side permanent magnet 11a.
  • the torque constant (that is, the torque Z-phase current) of the electric motor 10 can be set to a relatively high value without reducing the current loss during the operation of the electric motor 10.
  • the maximum torque output by the motor 10 can be increased without changing the maximum value of the output current of the inverter that controls the energization of the stator windings. The value can be increased.
  • the inner circumferential rotor core 21 has inner grooves 11a that are relatively small in permeability between the inner circumferential permanent magnets 11a that are adjacent in the circumferential direction.
  • production of a magnetic circuit short circuit can be suppressed.
  • each inner peripheral permanent magnet 11a is embedded in the inner peripheral rotor core 21 of the inner rotor 11, and each outer permanent magnet 12a is The outer rotor 12 is embedded in the outer rotor core 22 of the outer rotor 12.
  • each magnet mounting hole 23a is fitted with a substantially rectangular plate-shaped inner circumferential side permanent magnet 11a.
  • a plurality of magnet mounting holes 24a penetrating the inside of the outer rotor core 22 in parallel with the rotation axis O are spaced at predetermined intervals in the circumferential direction at positions shifted radially toward the inner circumference.
  • Each magnet mounting hole 24a is provided with a substantially rectangular plate-shaped outer peripheral permanent magnet 12a.
  • the electric motor 10 According to the electric motor 10 according to the third modification, it is possible to improve the coercivity of the outer peripheral permanent magnet 12a by the outer rotor 12 and the coercivity of the inner permanent magnet 11a by the inner rotor 11. I'll do it.
  • each inner peripheral permanent magnet 11a is embedded in the inner peripheral rotor core 21 of the inner rotor 11, and each outer permanent magnet 12a is The outer rotor 12 is embedded in the outer rotor core 22 of the outer rotor 12.
  • the inner circumferential rotor 11 is provided with a plurality of concave grooves 21a extending in parallel with the rotation axis O on the outer circumferential surface 21A of the inner circumferential rotor core 21 at predetermined intervals in the circumferential direction. Further, between the adjacent concave grooves 21a in the circumferential direction, a single magnet mounting hole 23a penetrating the inside of the inner circumferential rotor core 21 in parallel with the rotation axis O is provided at a position shifted radially to the outer circumferential side. In addition, each magnet mounting hole 23a is mounted with a substantially rectangular plate-shaped inner peripheral side permanent magnet 11a.
  • the outer circumferential rotor 12 is provided with a plurality of concave grooves 22a extending in parallel with the rotation axis O on the outer circumferential surface 22A of the outer circumferential rotor core 22 at predetermined intervals in the circumferential direction. Further, between the adjacent concave grooves 22a in the circumferential direction, a position where a single magnet mounting hole 24a penetrating the inside of the outer rotor core 22 in parallel with the rotation axis O is displaced inward in the radial direction. Provided in Each magnet mounting hole 24a is mounted with a substantially rectangular plate-shaped outer peripheral permanent magnet 12a.
  • each inner peripheral permanent magnet 11a is embedded in the inner peripheral rotor core 21 of the inner rotor 11
  • each outer permanent magnet 12a is The outer rotor 12 is embedded in the outer rotor core 22 of the outer rotor 12.
  • the inner circumferential rotor 11 is provided with a plurality of concave grooves 21a extending in parallel with the rotation axis O on the outer circumferential surface 21A of the inner circumferential rotor core 21 at predetermined intervals in the circumferential direction. Further, between the adjacent concave grooves 21a in the circumferential direction, a single magnet mounting hole 23a penetrating the inside of the inner circumferential rotor core 21 in parallel with the rotation axis O is provided at a position shifted radially to the outer circumferential side. In addition, each magnet mounting hole 23a is mounted with a substantially rectangular plate-shaped inner peripheral side permanent magnet 11a.
  • the outer circumferential rotor 12 is provided with a plurality of pairs of concave grooves 22a extending in parallel to the rotation axis O on the outer circumferential surface 22A of the outer circumferential rotor core 22 at predetermined intervals in the circumferential direction. Furthermore, a single magnet mounting hole 24a penetrating the inside of the outer rotor core 22 parallel to the rotation axis O is displaced radially inward between two pairs of concave grooves 22a adjacent in the circumferential direction.
  • the outer peripheral permanent magnet 12a having a substantially rectangular plate shape is mounted in each magnet mounting hole 24a. Further, salient pole portions 22c sandwiched from both sides in the circumferential direction by the concave grooves 22a having relatively small magnetic permeability are formed between the concave grooves 22a paired in the outer rotor core 22.
  • each inner peripheral permanent magnet 11a is embedded in the inner peripheral rotor core 21 of the inner rotor 11, and each outer permanent magnet 12a is The outer rotor 12 is embedded in the outer rotor core 22 of the outer rotor 12.
  • the inner circumferential rotor 11 is provided with a plurality of concave grooves 21a extending in parallel with the rotation axis O on the outer circumferential surface 21A of the inner circumferential rotor core 21 at predetermined intervals in the circumferential direction. Further, between the adjacent concave grooves 21a in the circumferential direction, a single magnet mounting hole 23a penetrating the inside of the inner circumferential rotor core 21 in parallel with the rotation axis O is provided at a position shifted radially to the outer circumferential side. In addition, each magnet mounting hole 23a is mounted with a substantially rectangular plate-shaped inner peripheral side permanent magnet 11a.
  • the outer rotor 12 is provided with a plurality of concave grooves 22d extending in parallel with the rotation axis O on the inner peripheral surface 22B of the outer rotor core 22 at predetermined intervals in the circumferential direction. Furthermore, between the adjacent concave grooves 22d in the circumferential direction, a position where a single magnet mounting hole 24a penetrating the inside of the outer rotor core 22 in parallel with the rotation axis O is displaced inward in the radial direction. Each of the magnet mounting holes 24a is mounted with a substantially rectangular plate-shaped outer peripheral permanent magnet 12a.
  • the concave By arranging the groove 21a and the concave groove 22d to face each other, the space formed by the concave grooves 21a and 21d is arranged to face each other. It is possible to further suppress the occurrence of a short circuit between the magnetic poles of the outer peripheral side permanent magnet 12a.
  • each inner peripheral side permanent magnet 11a is embedded in the inner peripheral side rotor core 21 of the inner peripheral side rotor 11, and each outer peripheral side permanent magnet 12a is The outer rotor 12 is disposed on the inner peripheral surface 22B of the outer rotor core 22 of the outer rotor 12.
  • a plurality of magnet mounting holes 23a penetrating the inside of the inner circumferential rotor core 21 in parallel with the rotation axis O are provided at positions shifted in the radial direction toward the outer circumferential side at predetermined positions in the circumferential direction.
  • Each magnet mounting hole 23a is mounted with a substantially rectangular plate-shaped inner peripheral permanent magnet 11a.
  • the outer rotor 12 is provided with a plurality of ribs 22e extending in parallel with the rotation axis O on the inner peripheral surface 22B of the outer rotor core 22 at predetermined intervals in the circumferential direction.
  • a substantially rectangular plate-shaped outer peripheral permanent magnet 12a is mounted on the inner peripheral surface 22B of the outer peripheral rotor core 22 so as to be sandwiched from both sides in the circumferential direction by ribs 22e adjacent in the circumferential direction.
  • the coercive force of the inner peripheral permanent magnet 11a by the inner peripheral rotor 11 can be improved, and the shape of the outer peripheral rotor 12 is simplified. be able to. [0121]
  • the inner peripheral rotor 11 and the outer peripheral rotor 12 of the electric motor 10 according to the eighth modified example of the embodiment described above will be described.
  • each inner peripheral side permanent magnet 11a is embedded in the inner peripheral side rotor core 21 of the inner peripheral side rotor 11, and each outer peripheral side permanent magnet 12a is The outer rotor 12 is disposed on the outer peripheral surface 22A of the outer rotor core 22 of the outer rotor 12.
  • a plurality of magnet mounting holes 23a penetrating the inside of the inner circumferential rotor core 21 in parallel with the rotation axis O are provided at positions shifted in the radial direction toward the outer circumferential side at predetermined positions in the circumferential direction.
  • Each magnet mounting hole 23a is mounted with a substantially rectangular plate-shaped inner peripheral permanent magnet 11a.
  • a plurality of substantially rectangular plate-shaped outer circumferential permanent magnets 12a are arranged on the outer circumferential surface 22A of the outer circumferential rotor core 22 at predetermined intervals in the circumferential direction.
  • the outer peripheral side The substantially cylindrical outer peripheral side holding member 26 which contacts the outer peripheral surface of the permanent magnet 12a is provided.
  • Each outer peripheral permanent magnet 12a is fixed so as to be sandwiched from both sides in the radial direction by the outer peripheral surface 22A of the outer peripheral rotor core 22 and the inner peripheral surface of the outer peripheral holding member 26.
  • the coercive force of the inner peripheral side permanent magnet 11a by the inner peripheral side rotor 11 can be improved, and the shape of the outer peripheral side rotor 12 is simplified. be able to.
  • each inner peripheral side permanent magnet 11a is disposed on the outer peripheral surface 21A of the inner peripheral side rotor core 21 of the inner peripheral side rotor 11, and each outer peripheral side permanent magnet 11a.
  • the magnet 12 a is embedded in the outer rotor core 22 of the outer rotor 12.
  • the inner circumferential rotor 11 includes a plurality of substantially the same on the outer circumferential surface 21A of the inner circumferential rotor core 21.
  • a rectangular plate-shaped inner peripheral side permanent magnet 1 la is disposed at a predetermined interval in the circumferential direction, and a substantially cylindrical inner peripheral side holding member 27 that abuts on the outer peripheral surface of each inner peripheral side permanent magnet 11a is provided. ing.
  • Each inner peripheral permanent magnet 11a is fixed so as to be sandwiched from both sides in the radial direction by the outer peripheral surface 21A of the inner peripheral rotor core 21 and the inner peripheral surface of the inner peripheral holding member 27.
  • a plurality of magnet mounting holes 24a penetrating the inside of the outer peripheral rotor core 22 in parallel with the rotation axis O are positioned at positions shifted in the radial direction toward the outer peripheral side at predetermined positions in the circumferential direction.
  • Each magnet mounting hole 24a is provided with a substantially rectangular plate-shaped outer peripheral permanent magnet 12a.
  • the coercive force of the outer peripheral permanent magnet 12a by the outer rotor 12 can be improved, and the shape of the inner rotor 11 is simplified.
  • the distance between the inner peripheral side permanent magnet 11a and the outer peripheral side permanent magnet 12a can be shortened to efficiently increase or decrease the field magnetic flux generated by the permanent magnets 11a, 12a linking the stator windings. Can do.
  • a space portion having a relatively small magnetic permeability is formed between the inner peripheral side permanent magnets 11a adjacent in the circumferential direction, so that the inner peripheral side permanent magnets 11a and the outer peripheral side permanent magnets that are not opposed to each other are formed. It is possible to suppress the occurrence of a short circuit between the magnetic poles of 12a.
  • each inner peripheral side permanent magnet 11a is disposed on the outer peripheral surface 21A of the inner peripheral side rotor core 21 of the inner peripheral side rotor 11, and each outer peripheral side permanent magnet 11a.
  • the magnet 12 a is disposed on the outer peripheral surface 22 A of the outer peripheral rotor core 22 of the outer peripheral rotor 12.
  • the inner circumferential rotor 11 includes a plurality of substantially the same on the outer circumferential surface 21A of the inner circumferential rotor core 21.
  • a rectangular plate-shaped inner peripheral side permanent magnet 1 la is disposed at a predetermined interval in the circumferential direction, and a substantially cylindrical inner peripheral side holding member 27 that abuts on the outer peripheral surface of each inner peripheral side permanent magnet 11a is provided. ing.
  • Each inner peripheral permanent magnet 11a is fixed so as to be sandwiched from both sides in the radial direction by the outer peripheral surface 21A of the inner peripheral rotor core 21 and the inner peripheral surface of the inner peripheral holding member 27.
  • a plurality of substantially rectangular plate-shaped outer circumferential permanent magnets 12a are arranged on the outer circumferential surface 22A of the outer circumferential rotor core 22 at predetermined intervals in the circumferential direction.
  • the outer peripheral side The substantially cylindrical outer peripheral side holding member 26 which contacts the outer peripheral surface of the permanent magnet 12a is provided.
  • Each outer peripheral permanent magnet 12a is fixed so as to be sandwiched from both sides in the radial direction by the outer peripheral surface 22A of the outer peripheral rotor core 22 and the inner peripheral surface of the outer peripheral holding member 26.
  • the inner peripheral side permanent magnet 11a and the outer peripheral side permanent magnet 12a are suppressed while preventing the shapes of the inner peripheral rotor 11 and the outer peripheral rotor 12 from becoming complicated. Can be held appropriately.
  • a space portion having a relatively small permeability is formed between the inner peripheral side permanent magnets 11a adjacent in the circumferential direction, so that the inner peripheral side permanent magnet 1la and the outer peripheral side are not in a mutually opposed relationship. It is possible to suppress the occurrence of a magnetic path short circuit between the magnetic poles of the permanent magnet 12a.
  • each inner peripheral side permanent magnet 11a is disposed on the outer peripheral surface 21A of the inner peripheral side rotor core 21 of the inner peripheral side rotor 11, and each outer peripheral side permanent magnet 11a.
  • the magnet 12 a is disposed on the outer peripheral surface 22 A of the outer peripheral rotor core 22 of the outer peripheral rotor 12.
  • the inner circumferential rotor 11 includes a plurality of substantially the same on the outer circumferential surface 21A of the inner circumferential rotor core 21.
  • a rectangular plate-shaped inner peripheral side permanent magnet 1 la is disposed at a predetermined interval in the circumferential direction, and a substantially cylindrical inner peripheral side holding member 27 that abuts on the outer peripheral surface of each inner peripheral side permanent magnet 11a is provided. ing.
  • Each inner peripheral permanent magnet 11a is fixed so as to be sandwiched from both sides in the radial direction by the outer peripheral surface 21A of the inner peripheral rotor core 21 and the inner peripheral surface of the inner peripheral holding member 27.
  • the outer peripheral rotor 12 is provided with a plurality of outer peripheral salient pole portions 28 extending in parallel with the rotation axis O on the outer peripheral surface 22A of the outer peripheral rotor core 22 at predetermined intervals in the circumferential direction. It is. Then, a substantially rectangular plate-shaped outer peripheral permanent magnet 12a is mounted on the outer peripheral surface 22A of the outer peripheral rotor core 22 so as to be sandwiched from both sides in the peripheral direction by the outer peripheral salient poles 28 adjacent in the circumferential direction. Te!
  • Two magnet holding claws 28a projecting outward in the circumferential direction are formed at the outer peripheral side end of the outer peripheral salient pole portion 28, and the respective magnets projecting from the outer peripheral salient pole portion 28 adjacent in the circumferential direction are formed.
  • the stone holding claw portion 28a is in contact with the outer peripheral surface of the outer peripheral permanent magnet 12a mounted between the outer peripheral salient pole portions 28, and regulates that the outer peripheral permanent magnet 12a moves radially outward. It is controlled.
  • each magnetic flux barrier groove 28b extending radially inward is formed in the vicinity of both ends in the circumferential direction on the outer circumference of the outer salient pole portion 28.
  • Each of the rotors 11 and 12 can be efficiently rotated by using together with the rotational torque resulting from the attractive force generated between the salient pole portions 28, that is, the reluctance torque.
  • a space portion having a relatively small permeability is formed between the inner peripheral side permanent magnets 11a adjacent in the circumferential direction, so that the inner peripheral side permanent magnet 1la and the outer peripheral side are in a mutually opposed relationship. The occurrence of a short circuit in the magnetic path between the magnetic poles of the permanent magnet 12a can be suppressed.
  • the magnetic flux barrier groove 28b may be omitted.
  • each inner peripheral side permanent magnet 11a is disposed on the outer peripheral surface 21A of the inner peripheral side rotor core 21 of the inner peripheral side rotor 11, and each outer peripheral side permanent magnet 11a.
  • the magnet 12 a is disposed on the inner peripheral surface 22 B of the outer peripheral rotor core 22 of the outer peripheral rotor 12.
  • the inner circumferential rotor 11 has a plurality of inner circumferential salient pole portions 29 extending in parallel with the rotation axis O on the outer circumferential surface 21A of the inner circumferential rotor core 21 at predetermined intervals in the circumferential direction. It is provided.
  • a substantially rectangular plate-shaped inner peripheral permanent magnet 11a is placed on the outer peripheral surface 21A of the inner peripheral rotor core 21 so that both circumferential forces are sandwiched between the inner peripheral salient poles 29 adjacent in the circumferential direction. It is attached to!
  • Two magnet holding claws 29a projecting outward in the circumferential direction are formed at the outer circumferential end of the inner circumferential salient pole 29, and from the inner circumferential salient pole 29 adjacent in the circumferential direction.
  • the protruding magnet holding claws 29a abut against the outer peripheral surface of the inner peripheral permanent magnet 11a mounted between the inner peripheral salient pole portions 29, so that the inner peripheral permanent magnet 11a is radially outward. It is restricted to move toward.
  • the outer rotor 12 is provided with a plurality of salient pole portions 30 extending in parallel with the rotation axis O on the inner peripheral surface 22B of the outer rotor core 22 at predetermined intervals in the circumferential direction.
  • the outer peripheral permanent magnet 12a having a substantially rectangular plate shape is mounted on the inner peripheral surface 22B of the outer rotor core 22 so that both circumferential forces are sandwiched between the salient pole portions 30 adjacent in the circumferential direction. .
  • Two magnet holding claws 3 Oa projecting outward in the circumferential direction are formed at the inner circumferential end of the salient pole part 30, and the magnets projecting from the salient pole parts 30 adjacent in the circumferential direction.
  • the holding claw portion 30a abuts against the inner peripheral surface of the outer peripheral permanent magnet 12a mounted between the salient pole portions 30, and restricts the outer peripheral permanent magnet 12a from moving radially inward. ing.
  • the phase between the inner rotor 11 and the outer rotor 12 is controlled by the planetary gear mechanism 14.
  • the long side of the inner peripheral permanent magnet 1 la and the long side of the outer peripheral permanent magnet 12a face each other in the radial direction in the cross section in the direction parallel to the rotation axis o. Is set to
  • the permanent wires that interlink the stator windings by shortening the distance between the inner peripheral side permanent magnet 11a and the outer peripheral side permanent magnet 12a, the permanent wires that interlink the stator windings.
  • the field magnetic flux generated by the magnets 11a and 12a can be efficiently increased or decreased.
  • the magnet torque caused by the attractive force or repulsive force generated between the rotating magnetic field of the stator winding and each permanent magnet 11a, 12a, the rotating magnetic field, the inner circumferential salient pole portion 29 and the salient pole portion 30 The rotors 11 and 12 can be efficiently rotated by using together with the rotational torque resulting from the attraction force generated during this period, that is, the reluctance torque.
  • each inner peripheral side permanent magnet 11a is disposed on the outer peripheral surface 21A of the inner peripheral side rotor core 21 of the inner peripheral side rotor 11, and each outer peripheral side permanent magnet 11a.
  • the magnet 12 a is disposed on the inner peripheral surface 22 B of the outer peripheral rotor core 22 of the outer peripheral rotor 12.
  • a plurality of substantially rectangular plate-shaped inner circumferential permanent magnets 1 la are arranged on the outer circumferential surface 21A of the inner circumferential rotor core 21 at a predetermined interval in the circumferential direction.
  • a substantially cylindrical inner peripheral side holding member 27 is provided in contact with the outer peripheral surface of each inner peripheral side permanent magnet 11a.
  • Each inner peripheral permanent magnet 11a is fixed so as to be sandwiched from both sides in the radial direction by the outer peripheral surface 21A of the inner peripheral rotor core 21 and the inner peripheral surface of the inner peripheral holding member 27.
  • the outer rotor 12 is provided with a plurality of ribs 22e extending in parallel with the rotation axis O on the inner peripheral surface 22B of the outer rotor core 22 at predetermined intervals in the circumferential direction.
  • a substantially rectangular plate-shaped outer peripheral permanent magnet 12a is mounted on the inner peripheral surface 22B of the outer peripheral rotor core 22 so as to be sandwiched from both sides in the circumferential direction by ribs 22e adjacent in the circumferential direction.
  • the phase between the inner rotor 11 and the outer rotor 12 is controlled by the planetary gear mechanism 14.
  • the long side of the inner peripheral permanent magnet 1 la and the long side of the outer peripheral permanent magnet 12a face each other in the radial direction in the cross section in the direction parallel to the rotation axis o. Is set to
  • the distance between the inner peripheral side permanent magnet 11a and the outer peripheral side permanent magnet 12a is shortened, so that the permanent wires that interlink the stator windings.
  • the field magnetic flux generated by the magnets 11a and 12a can be efficiently increased or decreased.
  • a relative permeability force and a small space portion are formed between the inner circumferential side permanent magnets 11a adjacent in the circumferential direction, thereby opposing each other. It is possible to suppress the occurrence of a short circuit between the magnetic poles of the inner peripheral side permanent magnet 11a and the outer peripheral side permanent magnet 12a, which are not related to the arrangement.
  • the stator 13 is formed in a substantially cylindrical shape that is disposed opposite to the inner peripheral portion of the inner peripheral rotor 11.
  • Each inner peripheral permanent magnet 11a is embedded in the inner rotor core 21 of the inner rotor 11, and each outer permanent magnet 12a is embedded in the outer rotor core 22 of the outer rotor 12. It is.
  • the outer circumferential rotor 12 is provided with a plurality of concave grooves 22d extending in parallel to the rotation axis O on the inner circumferential surface 22B of the outer circumferential rotor core 22 at predetermined intervals in the circumferential direction. Furthermore, between the adjacent concave grooves 22d in the circumferential direction, a single magnet mounting hole 24a penetrating the inside of the outer rotor core 22 in parallel with the rotation axis O is provided at a position shifted radially inward. Each magnet mounting hole 24a is provided with a substantially rectangular plate-like outer peripheral permanent magnet 12a.
  • a mounting hole 61a penetrating in parallel with the rotation axis O is provided between the circumferentially adjacent concave grooves 22d in the outer peripheral portion of the outer peripheral rotor core 22, and the mounting hole 61a includes a mounting hole 61a.
  • a fastening member such as a rivet or a bolt that integrally connects the outer peripheral side end plate 61 and the outer peripheral rotor core 22 shown in FIG. 27 is attached.
  • each magnetic flux barrier hole 62 that penetrates the inside of the inner circumferential rotor core 21 in parallel to the rotation axis O is provided.
  • a region sandwiched from both sides in the circumferential direction by the magnetic flux barrier holes 62 having a relatively small permeability is formed between the inner peripheral permanent magnets 11 a adjacent in the circumferential direction.
  • a mounting hole 63a penetrating in parallel with the rotation axis O is provided.
  • the inner peripheral end plate 63 and the inner peripheral rotor core 21 shown in FIG. Fastening members (not shown) such as rivets and bolts to be connected to are attached.
  • the electric motor 10 includes a phase changing mechanism unit 70 connected to the inner circumferential rotor 11 and the outer circumferential rotor 12 instead of the planetary gear mechanism 14 in the above-described embodiment. And a hydraulic actuator 71 for setting a relative phase between the inner circumferential rotor 11 and the outer circumferential rotor 12 by the phase changing mechanism 70.
  • the phase change mechanism unit 70 is a cylindrical member that projects coaxially with the rotation axis O from the surface of the inner peripheral end plate 63 connected to the inner peripheral rotor core 21.
  • a shaft member 74 fixed to a vehicle transmission housing (not shown) or the like has an outer diameter smaller than that of the guide member 72, penetrates the outer peripheral end plate 61 coaxially with the rotation shaft O, and is mounted in a recess 73
  • the through hole 75 having a smaller inner diameter is mounted so as to be relatively rotatable and liquid tight.
  • a helical spline G1 is formed on the outer peripheral surface of the shaft member 74, and a helical spline G2 that meshes with the helical spline G1 is formed on the inner peripheral surface of the through hole 75.
  • the hydraulic actuator 71 Depending on the hydraulic pressure of the hydraulic oil supplied from the hydraulic chamber 76 to the hydraulic chamber 76, the outer peripheral rotor 12, which is a field control rotor, rotates along the rotation axis O (that is, The relative phase between the inner rotor 11 and the outer rotor 12 which are driven rotors that output the driving force of the electric motor 10 is changed. ing.
  • the outer peripheral side permanent magnet 11a and the outer peripheral side permanent magnet 12a are opposed to the outer peripheral side permanent magnet 11a.
  • the inner peripheral permanent magnet 1 la and the outer peripheral permanent magnet may be set so that the long side of the side permanent magnet 12a is longer than the long side of the inner peripheral permanent magnet 11a.
  • 12a is formed in a rectangular plate shape, and the long side of the outer peripheral side permanent magnet 12a is longer than the long side of the inner peripheral side permanent magnet 11a.
  • the inner peripheral side permanent magnet 11a is formed in a rectangular plate shape
  • the outer peripheral side permanent magnet 12a is formed in a plate shape curved along the circumferential direction of the outer peripheral side rotor core 22.
  • the long side along the circumferential direction of the permanent magnet 12a is formed longer than the long side of the inner peripheral side permanent magnet 11a.
  • a pair of outer peripheral side permanent magnets 12a is disposed opposite to each inner peripheral side permanent magnet 11a, and the sum of the long sides of the pair of outer peripheral side permanent magnets 12a is The inner permanent magnet is set to be longer than the long side of 1 la!
  • the versatility of the electric motor 10 can be improved by making the electric motor 10 an outer rotor type.
  • the field force is also set relatively far from the stator 13 by setting the long side of the outer permanent magnet 12a to be longer than the long side of the inner permanent magnet 1la.
  • the amount of magnetic flux can be increased by increasing the size of the outer peripheral permanent magnet 12a of the outer rotor 12 which is a rotator, and the variable range of the induced voltage constant of the electric motor 10 can be expanded.
  • each inner peripheral side permanent magnet 11a is disposed on the outer peripheral surface 21A of the inner peripheral side rotor core 21 of the inner peripheral side rotor 11.
  • the inner rotor 11 rotates on the outer peripheral surface 21A of the inner rotor core 21.
  • a plurality of inner peripheral salient pole portions 29 extending in parallel to the rotation axis O are provided at predetermined intervals in the circumferential direction.
  • a substantially rectangular plate-shaped inner peripheral permanent magnet 11a is placed on the outer peripheral surface 21A of the inner peripheral rotor core 21 so that both circumferential forces are sandwiched between the inner peripheral salient poles 29 adjacent in the circumferential direction. It is attached to.
  • the inner circumferential salient pole portion 29 is provided with a concave groove 29b extending in parallel with the rotation axis O.
  • the outer rotor 12 has a plurality of magnet mounting holes 24a penetrating the inside of the outer rotor core 22 in parallel with the rotation axis O at predetermined intervals in the circumferential direction.
  • the outer peripheral permanent magnet 12a having a substantially rectangular plate shape is mounted in each magnet mounting hole 24a provided at a position shifted in the radial direction toward the inner peripheral side. Further, between the magnet mounting holes 24a adjacent to each other in the circumferential direction, an opening is formed on the circumferential inner wall surface 24A of each magnet mounting hole 24a, and gradually approaches the outer peripheral surface 22A of the outer rotor core 22 so as to gradually approach each other.
  • Each magnetic flux barrier hole 25 extending in the opposite direction and penetrating the inside of the outer rotor core 22 in parallel with the rotation axis O is provided inside the outer rotor core 22.
  • an iron core portion 22b sandwiched from both sides in the circumferential direction by the magnetic flux barrier hole 25 having a relatively small permeability is formed between the outer circumferential permanent magnets 12a adjacent in the circumferential direction in the outer rotor core 22.
  • the iron core portion 22b is provided with a mounting hole 61a penetrating in parallel with the rotation axis O, and an outer peripheral side end plate (not shown) and the outer peripheral rotor core 22 are integrally connected to the mounting hole 61a.
  • Fastening members (not shown) such as rivets and bolts are attached!
  • the inner peripheral permanent magnet 11a is in contact with the inner peripheral surface 22B of the outer peripheral rotor core 22 of the outer peripheral rotor 12.
  • the magnetic resistance is reduced by reducing the distance between the inner peripheral side permanent magnet 11a and the outer peripheral side permanent magnet 12a, and the induced electric current of the electric motor 10 is reduced.
  • the variable range of the pressure constant can be expanded.
  • the contact surface of the inner peripheral permanent magnet 11a that contacts the inner peripheral surface 22B of the outer peripheral rotor core 22 of the outer rotor 12 is provided.
  • On the inner peripheral surface 22B of the outer peripheral rotor core 22 of the outer peripheral rotor 12 in contact with the coating layer 81 by predetermined surface treatment (for example, smoothing and hardening) or the inner peripheral permanent magnet 11a Cover layer by predetermined surface treatment (for example, smoothing and curing) 82 may be provided.
  • predetermined surface treatment for example, smoothing and hardening
  • predetermined surface treatment for example, smoothing and curing
  • the surface of the inner peripheral permanent magnet 11a that comes into contact with the inner peripheral surface 22B of the outer peripheral rotor core 22 of the outer peripheral rotor 12 is convex, and the inner periphery of the outer rotor core 22 is
  • the contact area between the surface 22B and the inner peripheral permanent magnet 11a may be set to be relatively small.
  • the present invention is suitable for use as a travel drive source and a generator mounted on a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 電動機(10)を、同軸に配置された内周側回転子(11)及び外周側回転子(12)と、少なくとも内周側回転子(11)および外周側回転子(12)の何れか一方を回転軸O周りに回動させる遊星歯車機構とにより構成した。遊星歯車機構による少なくとも内周側回転子(11)及び外周側回転子(12)の何れか一方の回動により、回転軸Oに平行な方向に対する断面において、内周側回転子(11)の略長方形板状の内周側永久磁石(11a)の長辺と、外周側回転子(12)の略長方形板状の外周側永久磁石(12a)の長辺とが対向するように配置した。

Description

明 細 書
電動機
技術分野
[0001] 本発明は、電動機に関する。
本願は、 2005年 12月 21日に、日本に出願された特願 2005— 367451に基づき 優先権を主張し、その内容をここに援用する。
背景技術
[0002] 従来、例えば電動機の回転軸の周囲に同心円状に設けた第 1および第 2回転子を 備え、電動機の回転速度に応じて、あるいは、固定子に発生する回転磁界の速度に 応じて第 1および第 2回転子の周方向の相対位置つまり位相差を制御する電動機が 知られている (例えば、特許文献 1参照)。
この電動機では、例えば電動機の回転速度に応じて第 1および第 2回転子の位相 差を制御する場合には、遠心力の作用により径方向に沿って変位する部材を介して 第 1および第 2回転子の周方向の相対位置を変更するようになっている。また、例え ば固定子に発生する回転磁界の速度に応じて第 1および第 2回転子の位相差を制 御する場合には、各回転子が慣性により回転速度を維持する状態で固定子卷線に 制御電流を通電して回転磁界速度を変更することによって、第 1および第 2回転子の 周方向の相対位置を変更するようになっている。
特許文献 1:特開 2002— 204541号公報
発明の開示
発明が解決しょうとする課題
[0003] ところで、上記従来技術の一例に係る電動機において、例えば電動機の回転速度 に応じて第 1および第 2回転子の位相差を制御する場合には、電動機の作動状態つ まり回転速度に応じた遠心力が作用する状態でのみ第 1および第 2回転子の位相差 を制御可能であり、電動機の停止状態を含む適宜のタイミングで位相差を制御する ことができないという問題が生じる。また、この電動機を駆動源として車両に搭載した 場合等のように、この電動機に外部からの振動が作用し易い状態においては、遠心 力の作用のみによって第 1および第 2回転子の位相差を適切に制御することが困難 であるという問題が生じる。し力も、この場合には、電動機に対する電源での電源電 圧の変動に拘わらずに位相差が制御されることから、例えば電源電圧と電動機の逆 起電圧との大小関係が逆転してしまうという不具合が生じる虞がある。
また、例えば固定子に発生する回転磁界の速度に応じて第 1および第 2回転子の 位相差を制御する場合には、回転磁界速度が変更されることから、電動機の制御処 理が複雑ィ匕してしまうという問題が生じる。
[0004] 本発明は上記事情に鑑みてなされたもので、電動機が複雑ィ匕することを抑制しつ つ、容易かつ適切に誘起電圧定数を可変とすることで、運転可能な回転数範囲およ びトルク範囲を拡大し、運転効率を向上させると共に高効率での運転可能範囲を拡 大することが可能な電動機を提供することを目的とする。
課題を解決するための手段
[0005] 上記課題を解決して係る目的を達成するために、本発明の第 1態様に係る電動機 は、内周側回転子と、前記内周側回転子の回転軸と同軸の回転軸を具備する外周 側回転子と、少なくとも前記内周側回転子および前記外周側回転子の何れか一方を 前記回転軸周りに回動させることによって前記内周側回転子と前記外周側回転子と の間の相対的な位相を変更可能な回動手段とを備え、前記内周側回転子は周方向 に沿って配置された略板状の内周側永久磁石を備え、前記外周側回転子は周方向 に沿って配置された略板状の外周側永久磁石を備え、前記内周側永久磁石および 前記外周側永久磁石は、前記回動手段による少なくとも前記内周側回転子および前 記外周側回転子の何れか一方の回動により、前記回転軸に平行な方向に対する断 面にお 、て、互いに対向可能な長辺を備えることを特徴として 、る。
[0006] 上記構成の電動機によれば、回転軸に平行な方向に対する断面において略長方 形状となる各永久磁石を具備する内周側回転子および外周側回転子に対し、回動 手段によって内周側回転子と外周側回転子との間の相対的な位相が変更された際 に内周側永久磁石の長辺と外周側永久磁石の長辺とが径方向に沿って対向するよ うに配置されることにより、例えば外周側永久磁石による界磁磁束が固定子卷線を鎖 交する鎖交磁束量を、内周側永久磁石による界磁磁束によって効率よく増大あるい は低減させることができる。そして、例えば界磁強め状態では、電動機のトルク定数( つまり、トルク Z相電流)を相対的に高い値に設定することができ、電動機運転時の 電流損失を低減すること無しに、または、固定子卷線への通電を制御するインバータ の出力電流の最大値を変更すること無しに、電動機が出力する最大トルク値を増大 させることができ、電動機の運転効率の最大値を増大させることができる。
[0007] さらに、本発明の第 2態様に係る電動機では、前記内周側永久磁石は前記内周側 回転子の鉄心の外周面上に配置され、前記外周側永久磁石は前記外周側回転子 の鉄心の内部に埋め込まれて 、ることを特徴として!/、る。
[0008] 上記構成の電動機によれば、外周側回転子による外周側永久磁石の保磁力を向 上させることができると共に、内周側永久磁石と外周側永久磁石との間の距離を短縮 して、固定子卷線を鎖交する各永久磁石による界磁磁束を効率よく増大あるいは低 減させることができる。
[0009] さらに、本発明の第 3態様に係る電動機では、前記内周側永久磁石は前記内周側 回転子の鉄心の内部に埋め込まれ、前記外周側永久磁石は前記外周側回転子の 鉄心の内部に埋め込まれて 、ることを特徴として 、る。
[0010] 上記構成の電動機によれば、外周側回転子による外周側永久磁石の保磁力およ び内周側回転子による内周側永久磁石の保磁力を向上させることができる。
[0011] さらに、本発明の第 4態様に係る電動機では、前記内周側回転子および前記外周 側回転子は、周方向で隣り合う前記内周側永久磁石間および周方向で隣り合う前記 外周側永久磁石間の各前記鉄心に設けられた空間部を備えることを特徴としている
[0012] 上記構成の電動機によれば、周方向で隣り合う各永久磁石間の鉄心に透磁率が 相対的に小さな空間部が設けられることにより、互いに対向配置の関係に無い内周 側永久磁石と外周側永久磁石との磁極同士間で磁路短絡が発生することを抑制す ることがでさる。
[0013] さらに、本発明の第 5態様に係る電動機では、前記空間部は、前記内周側回転子 の前記鉄心の外周面上に設けられた前記回転軸に平行な方向に伸びる内周側回 転子溝部と、前記外周側回転子の内周面上に設けられた前記回転軸に平行な方向 に伸びる外周側回転子溝部とを備えることを特徴としている。
[0014] 上記構成の電動機によれば、例えば回動手段によって内周側回転子と外周側回 転子との間の相対的な位相が変更された際に、内周側回転子溝部と外周側回転子 溝部とが対向配置されることにより、各溝部により形成される空間部が対向配置され ることになり、互いに対向配置の関係に無い内周側永久磁石と外周側永久磁石との 磁極同士間で磁路短絡が発生することを、より一層、抑制することができる。
[0015] さらに、本発明の第 6態様に係る電動機では、前記空間部は、前記内周側回転子 の前記鉄心の外周面上に設けられた前記回転軸に平行な方向に伸びる内周側回 転子溝部と、前記外周側回転子の周方向で隣り合う前記外周側永久磁石間の前記 鉄心の外周面上に設けられた前記回転軸に平行な方向に伸びる 1対の外周側回転 子溝部とを具備し、前記 1対の外周側回転子溝部により周方向の両側力 挟み込ま れる突極部とを備えることを特徴として 、る。
[0016] 上記構成の電動機によれば、各溝部によって互いに対向配置の関係に無い内周 側永久磁石と外周側永久磁石との磁極同士間で磁路短絡が発生することを抑制す ることができると共に、固定子卷線の回転磁界と各永久磁石との間に発生する吸引 力又は反発力に起因する磁石トルクと、回転磁界と突極部との間に発生する吸引力 に起因する回転トルク、つまりリラクタンストルクとを併用して各回転子を効率よく回転 させることがでさる。
[0017] さらに、本発明の第 7態様に係る電動機では、前記外周側永久磁石間に設けられ た前記空間部は、前記外周側永久磁石の周方向端部近傍から前記外周側回転子 の外周面に向かい伸びることを特徴としている。
[0018] 上記構成の電動機によれば、外周側永久磁石間において周方向で隣り合う空間 部間の鉄心によってリラクタンストルクを発生させることができ、これらの空間部によつ てリラクタンストルクを効率よく発生させることができる。
[0019] さらに、本発明の第 8態様に係る電動機では、前記空間部は、前記外周側永久磁 石間の前記鉄心の内部に設けられていることを特徴としている。
[0020] 上記構成の電動機によれば、外周側永久磁石間の鉄心の内部に空間部を形成す ることにより、例えば空間部が外周側回転子の鉄心の外周面上で開口する場合に比 ベて、外周側回転子の剛性を向上させることができる。
[0021] さらに、本発明の第 9態様に係る電動機では、前記内周側永久磁石は前記内周側 回転子の前記鉄心の径方向にぉ 、て外周側にずれた位置に配置され、前記外周側 永久磁石は前記外周側回転子の前記鉄心の径方向にぉ 、て内周側にずれた位置 に配置されて 、ることを特徴として 、る。
[0022] 上記構成の電動機によれば、内周側永久磁石と外周側永久磁石との間の距離を 短縮することにより、固定子卷線を鎖交する各永久磁石による界磁磁束を効率よく増 大あるいは低減させることができる。
[0023] さらに、本発明の第 10態様に係る電動機では、前記内周側永久磁石は前記内周 側回転子の鉄心の内部に埋め込まれ、前記外周側永久磁石は前記外周側回転子 の鉄心の外周面上に配置されて 、ることを特徴として 、る。
[0024] 上記構成の電動機によれば、内周側回転子による内周側永久磁石の保磁力を向 上させることができると共に、外周側回転子の形状を単純ィ匕することができる。
[0025] さらに、本発明の第 11態様に係る電動機では、前記内周側永久磁石は前記内周 側回転子の鉄心の外周面上に配置され、前記外周側永久磁石は前記外周側回転 子の鉄心の外周面上に配置されて 、ることを特徴として 、る。
[0026] 上記構成の電動機によれば、内周側回転子および外周側回転子の形状を単純ィ匕 することができる。
[0027] さらに、本発明の第 12態様に係る電動機は、周方向で隣り合う前記外周側永久磁 石間に前記鉄心の外周面上力 径方向外方に突出する突極部を備えることを特徴と している。
[0028] 上記構成の電動機によれば、固定子卷線の回転磁界と各永久磁石との間に発生 する吸引力又は反発力に起因する磁石トルクと、回転磁界と突極部との間に発生す る吸引力に起因する回転トルク、つまりリラクタンストルクとを併用して各回転子を効 率よく回転させることができる。
[0029] さらに、本発明の第 13態様に係る電動機では、前記内周側永久磁石は前記内周 側回転子の鉄心の外周面上に配置され、前記外周側永久磁石は前記外周側回転 子の鉄心の内周面上に配置されて 、ることを特徴として 、る。 [0030] 上記構成の電動機によれば、内周側永久磁石と外周側永久磁石との間の距離を 短縮することにより、固定子卷線を鎖交する各永久磁石による界磁磁束を効率よく増 大あるいは低減させることができる。
[0031] さらに、本発明の第 14態様に係る電動機は、周方向で隣り合う前記内周側永久磁 石間に前記鉄心の外周面上力 径方向外方に突出する内周側突極部と、周方向で 隣り合う前記外周側永久磁石間に前記鉄心の内周面上力 径方向内方に突出する 外周側突極部と、前記内周側突極部から略周方向に突出して前記内周側永久磁石 の外周面端部に当接する内周側永久磁石保持爪部および前記外周側突極部から 略周方向に突出して前記外周側永久磁石の内周面端部に当接する外周側永久磁 石保持爪部とを備えることを特徴として 、る。
[0032] 上記構成の電動機によれば、外周側回転子による外周側永久磁石の保磁力およ び内周側回転子による内周側永久磁石の保磁力を向上させつつ、固定子卷線の回 転磁界と各永久磁石との間に発生する吸引力又は反発力に起因する磁石トルクと、 回転磁界と各突極部との間に発生する吸引力に起因する回転トルク、つまりリラクタ ンストルクとを併用して各回転子を効率よく回転させることができる。
[0033] さらに、本発明の第 15態様に係る電動機は、少なくとも前記内周側回転子の鉄心 の外周面上に配置された前記内周側永久磁石または前記外周側回転子の鉄心の 外周面上に配置された前記外周側永久磁石を、前記鉄心の外周面とによって径方 向の両側から挟み込んで保持する略円環状の保持部材を備えることを特徴としてい る。
[0034] 上記構成の電動機によれば、内周側回転子および外周側回転子の形状が複雑化 することを抑制しつつ、内周側永久磁石および外周側永久磁石を適切に保持するこ とがでさる。
[0035] さらに、本発明の第 16態様に係る電動機では、前記内周側回転子および前記外 周側回転子の何れか一方は、固定子と対向するように配置され、該固定子が発生す る界磁により駆動される駆動回転子であり、何れか他方は、界磁制御用回転子であ ることを特徴としている。
[0036] 上記構成の電動機によれば、固定子は駆動回転子と対向するように配置され、この 駆動回転子は、内周側回転子または外周側回転子とされている。つまり、この電動機 は、 、わゆるアウターロータ型の電動機またはインナーロータ型の電動機とされて ヽ る。これにより、電動機の汎用性を向上させることができる。
[0037] さらに、本発明の第 17態様に係る電動機では、前記固定子は前記内周側回転子 の内周側に配置され、前記界磁制御用回転子である前記外周側回転子が具備する 前記外周側永久磁石は、前記内周側永久磁石よりも前記長辺が大きいことを特徴と している。
[0038] 上記構成の電動機によれば、この電動機は、固定子が内周側回転子の内周側に 配置された、いわゆるインナーロータ型の電動機とされ、固定子と対向する内周側回 転子は駆動回転子とされる。このインナーロータ型の電動機では、相対的に固定子 カゝら離れた位置に配置される外周側回転子の外周側永久磁石の大きさを増大させる ことによって磁束量を増大させ、電動機の誘起電圧定数の可変範囲を拡大させるこ とがでさる。
[0039] さらに、本発明の第 18態様に係る電動機では、前記内周側永久磁石は、前記外周 側回転子の内周面と当接して 、ることを特徴として!/、る。
[0040] 上記構成の電動機によれば、内周側永久磁石と外周側永久磁石との間の距離を 短縮することによって磁気抵抗を低減し、電動機の誘起電圧定数の可変範囲を拡大 させることがでさる。
[0041] さらに、本発明の第 19態様に係る電動機では、前記内周側永久磁石は、前記外周 側回転子の内周面と当接して 、ることを特徴として!/、る。
[0042] 上記構成の電動機によれば、内周側永久磁石と外周側永久磁石との間の距離を 短縮することによって磁気抵抗を低減し、電動機の誘起電圧定数の可変範囲を拡大 させることがでさる。
[0043] さらに、本発明の第 20態様に係る電動機は、前記内周側永久磁石の前記外周側 回転子との当接面に所定の表面処理カ卩ェがなされていることを特徴としている。
[0044] 上記構成の電動機によれば、外周側回転子の内周面と当接する内周側永久磁石 の当接面に所定の表面処理加工を施すことによって、例えば当接面の平滑ィ匕により 内周側回転子と外周側回転子とが周方向に沿って相対的に回動する際の摺動抵抗 を低減させ、この回動に要するエネルギーの消費を低減することができる。また、例え ば当接面の硬化処理によって、内周側永久磁石の摩耗による磁束の減少および内 周側永久磁石と外周側永久磁石との間の距離の増大に伴う磁気抵抗の増大等の不 具合の発生を抑制することができる。
[0045] さらに、本発明の第 21態様に係る電動機は、前記内周側永久磁石の前記外周側 回転子との当接面に所定の表面処理カ卩ェがなされていることを特徴としている。
[0046] 上記構成の電動機によれば、外周側回転子の内周面と当接する内周側永久磁石 の当接面に所定の表面処理加工を施すことによって、例えば当接面の平滑ィ匕により 内周側回転子と外周側回転子とが周方向に沿って相対的に回動する際の摺動抵抗 を低減させ、この回動に要するエネルギーの消費を低減することができる。また、例え ば当接面の硬化処理によって、内周側永久磁石の摩耗による磁束の減少および内 周側永久磁石と外周側永久磁石との間の距離の増大に伴う磁気抵抗の増大等の不 具合の発生を抑制することができる。
[0047] さらに、本発明の第 22態様に係る電動機は、前記外周側回転子の内周面に所定 の表面処理カ卩ェがなされて 、ることを特徴として 、る。
[0048] 上記構成の電動機によれば、内周側永久磁石の当接面と当接する外周側回転子 の内周面に所定の表面処理加ェを施すことによって、例えば外周側回転子の内周 面の平滑ィ匕により内周側回転子と外周側回転子とが周方向に沿って相対的に回動 する際の摺動抵抗を低減させ、この回動に要するエネルギーの消費を低減すること ができる。また、例えば外周側回転子の内周面の硬化処理によって、外周側回転子 の摩耗による磁気抵抗の増大等の不具合の発生を抑制することができる。
[0049] さらに、本発明の第 23態様に係る電動機は、前記外周側回転子の内周面に所定 の表面処理カ卩ェがなされて 、ることを特徴として 、る。
[0050] 上記構成の電動機によれば、内周側永久磁石の当接面と当接する外周側回転子 の内周面に所定の表面処理加ェを施すことによって、例えば外周側回転子の内周 面の平滑ィ匕により内周側回転子と外周側回転子とが周方向に沿って相対的に回動 する際の摺動抵抗を低減させ、この回動に要するエネルギーの消費を低減すること ができる。また、例えば外周側回転子の内周面の硬化処理によって、外周側回転子 の摩耗による磁気抵抗の増大等の不具合の発生を抑制することができる。
[0051] さらに、本発明の第 24態様に係る電動機では、前記内周側永久磁石の前記当接 する側の面は、凸形状に形成されて 、ることを特徴として 、る。
[0052] 上記構成の電動機によれば、内周側永久磁石の当接する側の面を凸形状とするこ とで、内周側回転子と外周側回転子とが周方向に沿って相対的に回動する際の摺 動抵抗を低減させ、この回動に要するエネルギーの消費を低減することができる。 発明の効果
[0053] 本発明の第 1態様に係る電動機によれば、外周側永久磁石による界磁磁束が固定 子卷線を鎖交する鎖交磁束量を、内周側永久磁石による界磁磁束によって効率よく 増大あるいは低減させることができ、例えば界磁強め状態では、電動機のトルク定数
(つまり、トルク Z相電流)を相対的に高い値に設定することができ、電動機運転時の 電流損失を低減すること無しに、または、固定子卷線への通電を制御するインバータ の出力電流の最大値を変更すること無しに、電動機が出力する最大トルク値を増大 させることができ、電動機の運転効率の最大値を増大させることができる。
[0054] さらに、本発明の第 2態様に係る電動機によれば、外周側回転子による外周側永 久磁石の保磁力を向上させることができると共に、内周側永久磁石と外周側永久磁 石との間の距離を短縮して、固定子卷線を鎖交する各永久磁石による界磁磁束を効 率よく増大ある 、は低減させることができる。
さらに、本発明の第 3態様に係る電動機によれば、外周側回転子による外周側永 久磁石の保磁力および内周側回転子による内周側永久磁石の保磁力を向上させる ことができる。
[0055] さらに、本発明の第 4態様に係る電動機によれば、互いに対向配置の関係に無い 内周側永久磁石と外周側永久磁石との磁極同士間で磁路短絡が発生することを抑 ff¾することができる。
さらに、本発明の第 5態様に係る電動機によれば、互いに対向配置の関係に無い 内周側永久磁石と外周側永久磁石との磁極同士間で磁路短絡が発生することを、よ り一層、抑制することができる。
[0056] さらに、本発明の第 6態様に係る電動機によれば、各溝部によって互いに対向配置 の関係に無い内周側永久磁石と外周側永久磁石との磁極同士間で磁路短絡が発 生することを抑制することができると共に、固定子卷線の回転磁界と各永久磁石との 間に発生する吸引力又は反発力に起因する磁石トルクと、回転磁界と突極部との間 に発生する吸引力に起因する回転トルク、つまりリラクタンストルクとを併用して各回 転子を効率よく回転させることができる。
さらに、本発明の第 7態様に係る電動機によれば、外周側永久磁石間において周 方向で隣り合う空間部間の鉄心によってリラクタンストルクを発生させることができ、こ れらの空間部によってリラクタンストルクを効率よく発生させることができる。
[0057] さらに、本発明の第 8態様に係る電動機によれば、外周側永久磁石間の鉄心の内 部に空間部を形成することにより、例えば空間部が外周側回転子の外周面上で開口 する場合に比べて、外周側回転子の剛性を向上させることができる。
さらに、本発明の第 9態様に係る電動機によれば、内周側永久磁石と外周側永久 磁石との間の距離を短縮することにより、固定子卷線を鎖交する各永久磁石による界 磁磁束を効率よく増大あるいは低減させることができる。
[0058] さらに、本発明の第 10態様に係る電動機によれば、内周側回転子による内周側永 久磁石の保磁力を向上させることができると共に、外周側回転子の形状を単純化す ることがでさる。
さらに、本発明の第 11態様に係る電動機によれば、内周側回転子および外周側回 転子の形状を単純ィ匕することができる。
[0059] さらに、本発明の第 12態様に係る電動機によれば、固定子卷線の回転磁界と各永 久磁石との間に発生する吸引力又は反発力に起因する磁石トルクと、回転磁界と突 極部との間に発生する吸引力に起因する回転トルク、つまりリラクタンストルクとを併 用して各回転子を効率よく回転させることができる。
さらに、本発明の第 13態様に係る電動機によれば、内周側永久磁石と外周側永久 磁石との間の距離を短縮することにより、固定子卷線を鎖交する各永久磁石による界 磁磁束を効率よく増大あるいは低減させることができる。
[0060] さらに、本発明の第 14態様に係る電動機によれば、外周側回転子による外周側永 久磁石の保磁力および内周側回転子による内周側永久磁石の保磁力を向上させつ つ、固定子卷線の回転磁界と各永久磁石との間に発生する吸引力又は反発力に起 因する磁石トルクと、回転磁界と各突極部との間に発生する吸引力に起因する回転ト ルク、つまりリラクタンストルクとを併用して各回転子を効率よく回転させることができる さらに、本発明の第 15態様に係る電動機によれば、内周側回転子および外周側回 転子の形状が複雑化することを抑制しつつ、内周側永久磁石および外周側永久磁 石を適切に保持することができる。
[0061] さらに、本発明の第 16態様に係る電動機によれば、いわゆるアウターロータ型の電 動機またはインナーロータ型の電動機とされることで、電動機の汎用性を向上させる ことができる。
さらに、本発明の第 17態様に係る電動機によれば、相対的に固定子力も離れた位 置に配置される外周側回転子の外周側永久磁石の大きさを増大させることによって 磁束量を増大させ、電動機の誘起電圧定数の可変範囲を拡大させることができる。 さらに、本発明の第 18態様および第 19態様に係る電動機によれば、内周側永久 磁石と外周側永久磁石との間の距離を短縮することによって磁気抵抗を低減し、電 動機の誘起電圧定数の可変範囲を拡大させることができる。
[0062] さらに、本発明の第 20態様および第 21態様に係る電動機によれば、例えば当接 面の平滑ィ匕により内周側回転子と外周側回転子とが周方向に沿って相対的に回動 する際の摺動抵抗を低減させ、この回動に要するエネルギーの消費を低減すること ができる。また、例えば当接面の硬化処理によって、内周側永久磁石の摩耗による 磁束の減少および内周側永久磁石と外周側永久磁石との間の距離の増大に伴う磁 気抵抗の増大等の不具合の発生を抑制することができる。
さらに、本発明の第 22態様および第 23態様に係る電動機によれば、例えば外周 側回転子の内周面の平滑ィヒにより内周側回転子と外周側回転子とが周方向に沿つ て相対的に回動する際の摺動抵抗を低減させ、この回動に要するエネルギーの消 費を低減することができる。また、例えば外周側回転子の内周面の硬化処理によって 、外周側回転子の摩耗による内周側永久磁石と外周側永久磁石との間の距離の増 大に伴う磁気抵抗の増大等の不具合の発生を抑制することができる。 さらに、本発明の第 24態様に係る電動機によれば、内周側永久磁石の当接する側 の面を凸形状とすることで、内周側回転子と外周側回転子とが周方向に沿って相対 的に回動する際の摺動抵抗を低減させ、この回動に要するエネルギーの消費を低減 することができる。
図面の簡単な説明
[図 1]本発明の一実施形態に係る電動機の内周側回転子および外周側回転子と固 定子とを示す要部断面図である。
[図 2]本発明の一実施形態に係る電動機の構成を模式的に示す図である。
[図 3]本発明の一実施形態に係る遊星歯車機構の速度線図である。
[図 4A]本発明の一実施形態に係る内周側回転子の永久磁石と外周側回転子の永 久磁石とが同極配置された強め界磁状態を模式的に示す図である。
[図 4B]本発明の一実施形態に係る内周側回転子の永久磁石と外周側回転子の永 久磁石とが対極配置された弱め界磁状態を模式的に示す図である。
[図 5]図 4Aに示す強め界磁状態と図 4Bに示す弱め界磁状態とにおける誘起電圧を 示すグラフ図である。
[図 6A]本発明の一実施形態に係る誘起電圧定数 Keに応じて変化する電動機の電 流とトルクとの関係を示すグラフ図である。
[図 6B]本発明の一実施形態に係る誘起電圧定数 Keに応じて変化する電動機の回 転数と界磁弱め損失との関係を示すグラフ図である。
[図 7]誘起電圧定数 Keに応じて変化する電動機の回転数とトルクとに対する運転可 能領域を示す図である。
[図 8A]本発明の一実施形態に係る誘起電圧定数 Keに応じて変化する電動機の回 転数とトルクとの関係を示すグラフ図である。
[図 8B]本発明の一実施形態に係る誘起電圧定数 Keに応じて変化する電動機の回 転数と出力との関係を示すグラフ図である。
[図 9A]実施例において誘起電圧定数 Keに応じて変化する電動機の回転数とトルク とに対する運転可能領域および効率の分布を示す図である。
[図 9B]第 2比較例において誘起電圧定数 Keに応じて変化する電動機の回転数とト ルクとに対する運転可能領域および効率の分布を示す図である。
圆 10]本発明の一実施形態に係る電動機の駆動方法を示すフローチャートである。 圆 11]本発明の実施形態の第 1変形例に係る電動機の構成を模式的に示す図であ る。
圆 12]本発明の実施形態の第 1変形例に係る遊星歯車機構の速度線図である。 圆 13]本発明の実施形態の第 2変形例に係る電動機の内周側回転子と外周側回転 子とを示す略 1Z2円の断面図である。
圆 14]本発明の実施形態の第 3変形例に係る電動機の内周側回転子と外周側回転 子とを示す略 1Z2円の断面図である。
圆 15]本発明の実施形態の第 4変形例に係る電動機の内周側回転子と外周側回転 子とを示す略 1Z2円の断面図である。
圆 16]本発明の実施形態の第 5変形例に係る電動機の内周側回転子と外周側回転 子とを示す略 1Z2円の断面図である。
圆 17]本発明の実施形態の第 6変形例に係る電動機の内周側回転子と外周側回転 子とを示す略 1Z2円の断面図である。
圆 18]本発明の実施形態の第 7変形例に係る電動機の内周側回転子と外周側回転 子とを示す略 1Z2円の断面図である。
圆 19]本発明の実施形態の第 8変形例に係る電動機の内周側回転子と外周側回転 子とを示す略 1Z2円の断面図である。
圆 20]本発明の実施形態の第 9変形例に係る電動機の内周側回転子と外周側回転 子とを示す略 1Z2円の断面図である。
圆 21]本発明の実施形態の第 10変形例に係る電動機の内周側回転子と外周側回 転子とを示す略 1Z2円の断面図である。
圆 22]本発明の実施形態の第 11変形例に係る電動機の内周側回転子と外周側回 転子とを示す略 1Z2円の断面図である。
圆 23]本発明の実施形態の第 11変形例に係る電動機の内周側回転子と外周側回 転子とを示す略 1Z2円の断面図である。
圆 24]本発明の実施形態の第 12変形例に係る電動機の内周側回転子と外周側回 転子とを示す略 1Z2円の断面図である。
[図 25]本発明の実施形態の第 13変形例に係る電動機の内周側回転子と外周側回 転子とを示す略 1Z2円の断面図である。
[図 26]本発明の実施形態の第 14変形例に係る電動機の内周側回転子と外周側回 転子とを示す要部断面図である。
[図 27]本発明の実施形態の第 14変形例に係る電動機の構成を模式的に示す図で ある。
[図 28]本発明の実施形態の第 14変形例に係る電動機の内周側回転子と外周側回 転子とを示す要部断面図である。
[図 29]本発明の実施形態の第 14変形例に係る電動機の内周側回転子と外周側回 転子とを示す要部断面図である。
[図 30]本発明の実施形態の第 14変形例に係る電動機の内周側回転子と外周側回 転子とを示す要部断面図である。
[図 31]本発明の実施形態の第 15変形例に係る電動機の内周側回転子と外周側回 転子とを示す要部断面図である。
[図 32]本発明の実施形態の第 15変形例に係る電動機の内周側回転子と外周側回 転子とを示す要部断面図である。
[図 33]本発明の実施形態の第 15変形例に係る電動機の内周側回転子と外周側回 転子とを示す要部断面図である。
[図 34]本発明の実施形態の第 15変形例に係る電動機の内周側回転子と外周側回 転子とを示す要部断面図である。
符号の説明
10 電動機
11 内周側回転子
11a 内周側永久磁石
12 外周側回転子
12a 外周側永久磁石
14 遊星歯車機構 (回動手段) 15 ァクチユエータ(回動手段)
21 内周側ロータ鉄心 (鉄心)
21a 凹溝 (空間部、内周側回転子溝部)
21A 外周面
22 外周側ロータ鉄心 (鉄心)
22a 凹溝 (空間部)
22c 突極部
22d 凹溝 (空間部、外周側回転子溝部)
22A 外周面
22B 内周面
25 磁束障壁用孔部 (空間部)
26 外周側保持部材 (保持部材)
27 内周側保持部材 (保持部材)
28 外周側突極部 (突極部)
29 内周側突極部(内周側突極部)
29a 磁石保持爪部(内周側永久磁石保持爪部)
30 突極部 (外周側突極部)
30a 磁石保持爪部 (外周側永久磁石保持爪部)
発明を実施するための最良の形態
以下、本発明の電動機の一実施形態について添付図面を参照しながら説明する。 本実施の形態による電動機 10は、例えば図 1に示すように、周方向に沿って配置さ れた各永久磁石 11a, 12aを具備する略円環状の各内周側回転子 11および外周側 回転子 12と、内周側回転子 11および外周側回転子 12を回転させる回転磁界を発 生する複数相の固定子卷線 13aを有する固定子 13と、内周側回転子 11および外周 側回転子 12に接続された遊星歯車機構 14と、遊星歯車機構 14により内周側回転 子 11と外周側回転子 12との間の相対的な位相を設定するァクチユエータ 15とを備 えたブラシレス DCモータであって、例えばハイブリッド車両や電動車両等の車両に 駆動源として搭載され、この電動機 10の出力軸 Pはトランスミッション(図示略)の入 力軸に接続され、電動機 10の駆動力がトランスミッションを介して車両の駆動輪 (図 示略)に伝達されるようになっている。
なお、車両の減速時に駆動輪側から電動機 10に駆動力が伝達されると、電動機 1 0は発電機として機能していわゆる回生制動力を発生し、車体の運動エネルギーを 電気エネルギー(回生エネルギー)として回収する。さらに、例えばハイブリッド車両 においては、この電動機 10の回転軸 oが内燃機関(図示略)のクランクシャフトに連 結されており、内燃機関の出力が電動機 10に伝達された場合にも電動機 10は発電 機として機能して発電エネルギーを発生する。
[0066] 内周側回転子 11および外周側回転子 12は、例えば図 1に示すように、互いの回転 軸が電動機 10の回転軸 Oと同軸となるように配置され、略円筒状の各ロータ鉄心 21 , 22と、内周側ロータ鉄心 21の外周部で周方向に所定間隔をおいて設けられた複 数の内周側磁石装着部 23および外周側ロータ鉄心 22の内部で周方向に所定間隔 をお 、て設けられた複数の内周側磁石装着部 23とを備えて 、る。
そして、周方向で隣り合う内周側磁石装着部 23間において内周側ロータ鉄心 21の 外周面 21A上には回転軸 Oに平行に伸びる凹溝 21aが形成されている。
また、周方向で隣り合う外周側磁石装着部 24間において外周側ロータ鉄心 22の 外周面 22A上には回転軸 Oに平行に伸びる凹溝 22aが形成されている。
[0067] 各磁石装着部 23および 24は、例えば回転軸 Oに平行に貫通する各 1対の磁石装 着孔 23aおよび 24aを備え、 1対の磁石装着孔 23aはセンターリブ 23bを介して、力 つ、 1対の磁石装着孔 24aはセンターリブ 24bを介して、周方向で隣り合うように配置 されている。
そして、各磁石装着孔 23a, 24aは回転軸 Oに平行な方向に対する断面力 略周 方向が長手方向かつ略径方向が短手方向の略長方形状に形成され、各磁石装着 孔 23a, 24aには回転軸 Oに平行に伸びる略長方形板状の各永久磁石 11a, 12aが 装着されている。
[0068] 1対の磁石装着孔 23aに装着される 1対の内周側永久磁石 11aは、厚さ方向(つま り各回転子 11, 12の径方向)に磁ィ匕され、互いに磁ィ匕方向が同方向となるように設 定される。そして、周方向で隣り合う内周側磁石装着部 23に対して、各 1対の磁石装 着孔 23aに装着される各 1対の内周側永久磁石 11aは互いに磁ィ匕方向が異方向と なるように設定される。すなわち外周側が N極とされた 1対の内周側永久磁石 11aが 装着された内周側磁石装着部 23には、外周側が S極とされた 1対の内周側永久磁 石 11aが装着された内周側磁石装着部 23が、凹溝 21aを介して周方向で隣接する ようになっている。
[0069] 同様にして、 1対の磁石装着孔 24aに装着される 1対の外周側永久磁石 12aは、厚 さ方向(つまり各回転子 11, 12の径方向)に磁化され、互いに磁化方向が同方向と なるように設定される。そして、周方向で隣り合う外周側磁石装着部 24に対して、各 1 対の磁石装着孔 24aに装着される各 1対の外周側永久磁石 12aおよび外周側永久 磁石 12aは互いに磁ィ匕方向が異方向となるように設定される。すなわち外周側が N 極とされた 1対の外周側永久磁石 12aが装着された外周側磁石装着部 24には、外 周側が S極とされた 1対の外周側永久磁石 12aが装着された外周側磁石装着部 24 力 凹溝 22aを介して周方向で隣接するようになっている。
[0070] そして、内周側回転子 11の各磁石装着部 23と外周側回転子 12の各磁石装着部 2 4とは、さらに、内周側回転子 11の各凹溝 21aと外周側回転子 12の各凹溝 22aとは 、各回転子 11, 12の径方向で互いに対向配置可能となるように配置されている。 これにより、内周側回転子 11と外周側回転子 12との回転軸 O周りの相対位置に応 じて、電動機 10の状態を、内周側回転子 11の内周側永久磁石 11aと外周側回転子 12の外周側永久磁石 12aとの同極の磁極同士が対向配置(つまり、内周側永久磁 石 11aと外周側永久磁石 12aとが対極配置)される弱め界磁状態から、内周側回転 子 11の内周側永久磁石 11aと外周側回転子 12の外周側永久磁石 12aとの異極の 磁極同士が対向配置 (つまり、内周側永久磁石 11aと外周側永久磁石 12aとが同極 配置)される強め界磁状態に亘る適宜の状態に設定可能とされている。
特に、弱め界磁状態および強め界磁状態においては、回転軸 Oに平行な方向に 対する断面において、内周側永久磁石 11aの長辺と外周側永久磁石 12aの長辺と が対向するように設定されて 、る。
[0071] また、固定子 13は、外周側回転子 12の外周部に対向配置される略円筒状に形成 され、例えば車両のトランスミッションのハウジング(図示略)等に固定されている。 [0072] 遊星歯車機構 14は、例えば図 2に示すように、内周側回転子 11よりも内周側の中 空部に配置され、外周側回転子 12と同軸かつ一体に形成された第 1リングギア (R1) 31と、内周側回転子 11と同軸かつ一体に形成された第 2リングギア (R2) 32と、第 1 リングギア (R1) 31に嚙み合う単列の第 1プラネタリギア列 33と、第 2リングギア (R2) 32に嚙み合う単列の第 2プラネタリギア列 34と、第 1プラネタリギア列 33および第 2プ ラネタリギア列 34に嚙み合うアイドルギアであるサンギア(S) 35と、第 1プラネタリギア 列 33または第 2プラネタリギア列 34の何れか一方、例えば第 1プラネタリギア列 33を 構成する複数の第 1プラネタリギア 33aを各第 1プラネタリ回転軸 P1周りに回転可能 に支持すると共に、回転軸 O周りに回動可能とされた第 1プラネタリキャリア (C1) 36 と、第 1プラネタリギア列 33または第 2プラネタリギア列 34の何れか他方、例えば第 2 プラネタリギア列 34を構成する複数の第 2プラネタリギア 34aを各第 2プラネタリ回転 軸 P2周りに回転可能に支持すると共に、固定子 13に固定された第 2プラネタリキヤリ ァ(C2) 37とを備えて構成されて 、る。
すなわち、この遊星歯車機構 14は、各単列の第 1プラネタリギア列 33および第 2プ ラネタリギア列 34を備えるシングルピ-オン式の遊星歯車機構である。
[0073] この遊星歯車機構 14では、内周側回転子 11の外径は、外周側回転子 12の内径 よりも小さく形成され、内周側回転子 11は外周側回転子 12よりも内周側の中空部に 配置されている。そして、第 1リングギア (R1) 31および第 2リングギア (R2) 32の各外 径は、内周側回転子 11の内径よりも小さく形成され、回転軸 Oに平行な方向に沿つ て隣り合うようにして同軸に配置された第 1リングギア (R1) 31および第 2リングギア (R 2) 32は内周側回転子 11よりも内周側の中空部に配置されている。
そして、第 2リングギア (R2) 32の配置位置に対して、回転軸 Oに平行な方向での 一方側にずれた位置に配置された第 1リングギア (R1) 31は、軸受けにより回転可能 に支持されると共に一方側に向か 、延びる回転軸 Oに接続されて!、る。
[0074] そして、第 1プラネタリキャリア (C1) 36は、第 1リングギア (R1) 31に嚙み合う第 1プ ラネタリギア列 33の配置位置に対して、回転軸 Oに平行な方向での一方側にずれた 位置に配置され、中空に形成されたサンギア(S) 35の回転軸 PSの中空部に回転可 能に挿通されると共に他方側に向かい延びる回転軸 PCに接続されている。 また、第 2プラネタリキャリア(C2) 37は、第 2リングギア (R2) 32に嚙み合う第 2ブラ ネタリギア列 34の配置位置に対して、回転軸 Oに平行な方向での他方側にずれた 位置に配置されている。
[0075] この遊星歯車機構 14では、第 1リングギア (R1) 31と第 2リングギア (R2) 32とは略 同等のギア形状とされ、かつ、第 1プラネタリギア列 33を構成する各複数の第 1ブラ ネタリギア 33aと、第 2プラネタリギア列 34を構成する各複数の第 2プラネタリギア 34a とは略同等のギア形状とされており、サンギア(S) 35の回転軸 PSは電動機 10の回 転軸 Oと同軸に配置されると共に軸受けにより回転可能に支持されている。これによ り、第 1プラネタリギア列 33と第 2プラネタリギア列 34とは、アイドルギアであるサンギ ァ(S) 35に嚙み合うことにより、内周側回転子 11と外周側回転子 12とを同期回転さ せるようになっている。
[0076] さらに、第 1プラネタリキャリア (C1) 36の回転軸 PCは電動機 10の回転軸 Oと同軸 に配置されると共にァクチユエータ 15に接続されており、第 2プラネタリキャリア (C2) 37は固定子 13に固定されている。
そして、ァクチユエータ 15は、例えば外部の制御装置等力も入力される制御指令に 応じて制御され、流体エネルギーを回転運動に変換する油圧ポンプ 15a等を備え、 回転軸 O周りの第 1プラネタリキャリア (C1) 36の回動を規制(つまり、所定回動位置 で第 1プラネタリキャリア (C1) 36を保持)したり、あるいは、進角動作または遅角動作 によって第 1プラネタリキャリア (C1) 36を回転軸 O周りの正転方向または逆転方向に 所定回動量だけ回動させる。これにより、ァクチユエータ 15によって第 1プラネタリキ ャリア(C1) 36が回転軸 O周りに回動させられると、電動機 10の運転状態あるいは停 止状態に拘わらずに、内周側回転子 11と外周側回転子 12との間の相対的な位相が 変化するようになっている。
[0077] 例えば図 3に示すサンギア(S) 35の回転状態のように、回転軸 O周りの回転に対す る第 2プラネタリキャリア (C2) 37の速度は、ァクチユエータ 15の作動状態に拘わらず にゼロである。このため、第 2リングギア (R2) 32および内周側回転子 11は、例えば 逆転方向に適宜の速度で回転するサンギア(S) 35に対して、第 2リングギア (R2) 32 に対するサンギア(S) 35のギア比(つまり、増速比) g2に応じた速度で正転方向に回 転すること〖こなる。
そして、ァクチユエータ 15の非作動状態においては、回転軸 O周りの回転に対する 第 1プラネタリキャリア(C1) 36の速度はゼロである。このため、第 1リングギア (Rl) 31 および外周側回転子 12は、例えば逆転方向に適宜の速度で回転するサンギア(S) 35に対して、第 1リングギア (R1) 31に対するサンギア(S) 35のギア比(つまり、増速 比) glに応じた速度で正転方向に回転することになる。ここで、ギア比 glとギア比 g2 とは略同等 (gl ^g2)であることから、内周側回転子 11と外周側回転子 12とは同期 回転となり、内周側回転子 11と外周側回転子 12との間の相対的な位相は変化せず に維持されること〖こなる。
[0078] 一方、ァクチユエータ 15の作動状態(つまり進角動作または遅角動作の実行状態) においては、回転軸 O周りの回転に対する第 1プラネタリキャリア(C1) 36の速度はゼ 口以外の値であって、正転方向または逆転方向に対する適宜の正値または負値とな る。このため、第 1リングギア (R1) 31および外周側回転子 12は、例えば逆転方向に 適宜の速度で回転するサンギア(S) 35に対して、第 1リングギア (R1) 31に対するサ ンギア(S) 35のギア比(つまり、増速比) glに応じた速度よりも速!、速度または遅!ヽ 速度で正転方向に回転することになる。ここで、ギア比 glとギア比 g2とは略同等 (gl g2)であることから、外周側回転子 12は内周側回転子 11に比べて増速または減 速され、内周側回転子 11と外周側回転子 12との間の相対的な位相が変化すること になる。
[0079] そして、ァクチユエータ 15は、第 1リングギア (R1) 31に対するサンギア(S) 35のギ ァ比(つまり、増速比) glと、電動機 10の極対数 Pとに対し、少なくとも、機械角 Θ (° ) = (180ZP) X glZ (1 +gl)だけ第 1プラネタリキャリア(C1) 36を回転軸 O周りの 正転方向または逆転方向に回動可能とされて 、る。
これにより、内周側回転子 11と外周側回転子 12との間の相対的な位相は、少なく とも電気角の 180° だけ進角側または遅角側に変化可能となり、電動機 10の状態は 、内周側回転子 11の内周側永久磁石 1 laと外周側回転子 12の外周側永久磁石 12 aとの同極の磁極同士が対向配置(つまり、内周側永久磁石 11aと外周側永久磁石 1 2aとが対極配置)される弱め界磁状態と、内周側回転子 11の内周側永久磁石 11aと 外周側回転子 12の外周側永久磁石 12aとの異極の磁極同士が対向配置(つまり、 内周側永久磁石 11aと外周側永久磁石 12aとが同極配置)される強め界磁状態との 間の適宜の状態に設定可能となる。
[0080] なお、例えば図 4Aに示すように内周側回転子 11の内周側永久磁石 1 laと外周側 回転子 12の外周側永久磁石 12aとが同極配置とされる強め界磁状態と、例えば図 4 Bに示すように内周側回転子 11の内周側永久磁石 1 laと外周側回転子 12の外周側 永久磁石 12aとが対極配置とされる弱め界磁状態とにおいては、例えば図 5に示す ように、誘起電圧の大きさが変化することから、電動機 10の状態を強め界磁状態と弱 め界磁状態との間で変化させることにより誘起電圧定数 Keが変更されることになる。 この誘起電圧定数 Keは、例えば各回転子 11, 12の回転により固定子卷線 13aの 卷線端に誘起される誘起電圧の回転数比であって、さらに、極対数 pと、モータ外径 Rと、モータ積厚 Lと、磁束密度 Bと、ターン数 Tとの積により、
Ke=8 X p XRX L X B XTX π
として記述可能である。これにより、電動機 10の状態を強め界磁状態と弱め界磁状 態との間で変化させることにより、内周側回転子 11の内周側永久磁石 11aと外周側 回転子 12の外周側永久磁石 12aとによる界磁磁束の磁束密度 Bの大きさが変化し、 誘起電圧定数 Keが変更されることになる。
[0081] ここで、例えば図 6Aに示すように、電動機 10のトルクは誘起電圧定数 Keと固定子 卷線 13aに通電される電流との積に比例(トルク (Ke X電流))する。
また、例えば図 6Bに示すように、電動機 10の界磁弱め損失は誘起電圧定数 Keと 回転数との積に比例 (界磁弱め損失 ^ (Ke X回転数) )することから、電動機 10の許 容回転数は誘起電圧定数 Keと回転数との積の逆数に比例 (許容回転数 (1Z (K e X回転数)))する。
[0082] つまり、例えば図 7に示すように、誘起電圧定数 Keが相対的に大きい電動機 10で は、運転可能な回転数は相対的に低下するものの、相対的に大きなトルクを出力可 能となり、一方、誘起電圧定数 Keが相対的に小さい電動機 10では、出力可能なトル クは相対的に低下するものの、相対的に高い回転数まで運転可能となり、誘起電圧 定数 Keに応じてトルクおよび回転数に対する運転可能領域が変化する。 このため、例えば図 8Aに示す実施例のように、電動機 10の回転数が増大すること に伴い誘起電圧定数 Keが低下傾向に変化 (例えば、順次、 A、 B (<A)、 C (< B) へと変化)するように設定することにより、誘起電圧定数 Keを変化させない場合 (例え ば、第 1〜第 3比較例)に比べて、トルクおよび回転数に対する運転可能領域が拡大 する。
[0083] また、電動機 10の出力は、誘起電圧定数 Keと固定子卷線 13aに通電される電流と 回転数との積力 界磁弱め損失および他の損失を減算して得た値に比例(出力 ( Ke X電流 X回転数ー界磁弱め損失 他の損失))する。つまり、例えば図 8Bに示 すように、誘起電圧定数 Keが相対的に大きい電動機 10では、運転可能な回転数は 相対的に低下するものの、相対的に低い回転数領域での出力が増大し、一方、誘起 電圧定数 Keが相対的に小さい電動機 10では、相対的に低い回転数領域での出力 が低下するものの、相対的に高い回転数まで運転可能になると共に相対的に高い回 転数での出力が増大し、誘起電圧定数 Keに応じて出力および回転数に対する運転 可能領域が変化する。このため、電動機 10の回転数が増大することに伴い誘起電圧 定数 Keが低下傾向に変化 (例えば、順次、 A、 B (<A)、 C (< B)へと変化)するよう に設定することにより、誘起電圧定数 Keを変化させない場合 (例えば、第 1〜第 3比 較例)に比べて、出力および回転数に対する運転可能領域が拡大する。
[0084] また、電動機 10の効率は、固定子卷線 13aに対する入力電力から銅損および界磁 弱め損失および他の損失を減算して得た値を入力電力で除算して得た値に比例 (効 率 ( (入力電力 銅損ー界磁弱め損失 他の損失) Ζ入力電力) )する。
このため、相対的に低い回転数領域から中回転数領域においては、相対的に大き な誘起電圧定数 Keを選択することにより、所望のトルクを出力させるために必要とさ れる電流が低減し、銅損が低減する。
そして、中回転数領域力も相対的に高い回転数領域においては、相対的に小さな 誘起電圧定数 Keを選択することにより、界磁弱め電流が低減し、界磁弱め損失が低 減する。
これにより、例えば図 9Aに示す実施例のように、電動機 10の回転数が増大するこ とに伴 、誘起電圧定数 Keが低下傾向に変化するように設定することにより、誘起電 圧定数 Keを変化させない場合 (例えば、図 9Bに示す第 2比較例)に比べて、回転数 および回転数に対する運転可能領域が拡大すると共に、電動機 10の効率が所定効 率以上となる高効率領域 Eが拡大し、さらに、到達可能な最高効率の値が増大する。
[0085] なお、ァクチユエータ 15は、回転軸 O周りの第 1プラネタリキャリア(C1) 36の回動 に対する規制を解除可能であって、例えば電動機 10の異常が検知された場合等に おいて、第 1プラネタリキャリア (C1) 36の回動に対する規制を解除し、第 1プラネタリ キャリア (C1) 36の回転軸 O周りの回転を許容する。
つまり、ァクチユエータ 15による第 1プラネタリキャリア(C1) 36の回動に対する規制 が解除されると、第 1プラネタリキャリア (C1) 36は回転軸 O周りに自由に回動可能と なる。そして、この状態では、内周側回転子 11の内周側永久磁石 11aと外周側回転 子 12の外周側永久磁石 12aとの同極の磁極同士の反発力、あるいは、内周側回転 子 11の内周側永久磁石 11aと外周側回転子 12の外周側永久磁石 12aとの異極の 磁極同士の吸引力によって、内周側回転子 11と外周側回転子 12との周方向での相 対位置が変化し、電動機 10の状態は、内周側回転子 11の内周側永久磁石 11aと外 周側回転子 12の外周側永久磁石 12aとの異極の磁極同士が対向配置(つまり、内 周側永久磁石 11aと外周側永久磁石 12aとが同極配置)される強め界磁状態へと向 かい変化する。
[0086] また、ァクチユエータ 15は、例えば外部の制御装置等から出力される弱め界磁制 御の実行指示を検知した場合に、電動機 10の状態が、内周側回転子 11の内周側 永久磁石 11aと外周側回転子 12の外周側永久磁石 12aとの同極の磁極同士が対 向配置(つまり、内周側永久磁石 11aと外周側永久磁石 12aとが対極配置)される弱 め界磁状態に向かい変化するようにして、第 1プラネタリキャリア (C1) 36を回転軸 O 周りに回動させる。
[0087] 本実施の形態による電動機 10は上記構成を備えており、次に、電動機 10の駆動 方法について添付図面を参照しながら説明する。
[0088] 先ず、例えば図 10に示すステップ S01においては、電動機 10の異常が検知され たカゝ否かを判定する。
この判定結果が「NO」の場合には、後述するステップ S03に進む。 一方、この判定結果が「YES」の場合には、ステップ S02に進む。
そして、ステップ S02においては、ァクチユエータ 15による第 1プラネタリキャリア(C 1) 36の回動に対する規制を解除し、第 1プラネタリキャリア (C1) 36の回転軸 O周り の自由な回転を許容し、一連の処理を終了する。
[0089] また、ステップ S03においては、例えば回転センサ等により検出される内周側回転 子 11と外周側回転子 12との間の相対的な位相(電気角 oc: edeg)を取得する。 次に、ステップ S04においては、取得した電気角 αを、電動機 10の極対数 ρに応じ て機械角 ι8 ( = α Ζρ)に変換する。
次に、ステップ S05においては、機械角 /3と、第 1リングギア (R1) 31に対するサン ギア(S) 35のギア比 glとに応じて、第 1プラネタリキャリア(C1) 36を回転軸 Ο周りに 回動させる際の回動量 γ ( = β X glZ ( l +gl) )を算出する。
そして、ステップ S06においては、ァクチユエータ 15により第 1プラネタリキャリア(C 1) 36を回転軸 O周りに回動量 γだけ回動させ、一連の処理を終了する。
[0090] 上述したように、本実施の形態による電動機 10によれば、先ず、内周側回転子 11 および外周側回転子 12には周方向に沿って略長方形板状の各永久磁石 11a, 12a が配置され、各永久磁石 11a, 12aは、回転軸 Oに平行な方向に対する断面におい て各回転子 11 , 12の径方向に沿って互いの長辺同士が対向配置可能となるように 設定されていることにより、各永久磁石 11a, 12aの磁束が周辺の磁気回路 (例えば 、各ロータ鉄心 21 , 22等)に放射されてしまうことを防止することができる。これにより 、鉄損の発生を抑制し、例えば外周側回転子 12の外周側永久磁石 12aによる界磁 磁束が固定子卷線 13aを鎖交する鎖交磁束量を、内周側回転子 11の内周側永久 磁石 1 laによる界磁磁束によって効率よく増大あるいは低減させることができる。そし て、界磁強め状態では、電動機 10のトルク定数 (つまり、トルク Z相電流)を相対的に 高 、値に設定することができ、電動機 10の運転時の電流損失を低減すること無しに 、または、固定子卷線 13aへの通電を制御するインバータ(図示略)の出力電流の最 大値を変更すること無しに、電動機 10が出力する最大トルク値を増大させることがで きる。
[0091] し力も、第 1プラネタリギア列 33を構成する複数の第 1プラネタリギア 33aおよび第 2 プラネタリギア列 34を構成する複数の第 2プラネタリギア 34aは、各プラネタリ回転軸 PI, P2周りに回転可能とされつつ、アイドルギアであるサンギア(S) 35に嚙み合うこ とにより、内周側回転子 11および外周側回転子 12の同期運転の実行状態あるいは 電動機 10の停止状態であっても内周側回転子 11と外周側回転子 12との間の相対 的な位相を容易に変更することができる。
[0092] また、サンギア(S) 35での摩擦を低減することができるため、第 1プラネタリキャリア( C 1) 36の回転軸 O周りの回動に対する規制(つまり、所定回動位置での保持)ある 、 は回動駆動に必要とされる力は、電動機 10の回転数やトルクの大きさに拘わらずに 、内周側回転子 11の内周側永久磁石 1 laと外周側回転子 12の外周側永久磁石 12 a同士の吸引力あるいは反発力よりも大きいだけでよぐ例えばブレーキアクチユエ一 タのように電動機 10が出力するトルクよりも大きな力を必要とせずに、効率よく位相を 帘 U御することができる。
し力も、ァクチユエータ 15は外部からの電力供給を必要とせずに第 1プラネタリキヤ リア (C1) 36を回動させることができ、電動機 10の運転効率が低下してしまうことを防 止することができる。
[0093] また、第 1プラネタリギア列 33を支持する第 1プラネタリキャリア (C1) 36が回転軸 O 周りに回動する際の所定回動量が、少なくとも機械角 Θ (° ) = (180/p) X g/ (1 +gl)に設定されることで、電動機 10の状態を、例えば内周側回転子 11の内周側 永久磁石 11aと外周側回転子 12の外周側永久磁石 12aとの異極の磁極同士が対 向配置(つまり内周側回転子 11の内周側永久磁石 1 laと外周側回転子 12の外周側 永久磁石 12aとが同極配置)される強め界磁状態と、内周側回転子 11の内周側永 久磁石 11aと外周側回転子 12の外周側永久磁石 12aとの同極の磁極同士が対向 配置(つまり内周側回転子 11の内周側永久磁石 1 laと外周側回転子 12の外周側永 久磁石 12aとが対極配置)される弱め界磁状態との間で適切に移行させることができ る。
[0094] し力も、固定子卷線 13aを鎖交する界磁磁束の大きさを連続的に変化させることが でき、電動機 10の誘起電圧定数 Keを適宜の値に連続的に変化させることができる。 これにより、電動機 10の運転可能な回転数およびトルクの値を連続的に変更するこ とができると共に、運転可能な回転数およびトルクの範囲を拡大させることができる。 さらに、電動機 10の運転効率の最大値を増大させ、運転効率が所定効率以上となる 高効率領域を拡大させることができる。
[0095] また、例えば電動機 10の回転数および電源電圧等の状態量に応じて弱め界磁制 御の実行指示が外部の制御装置等力も出力された場合に、電動機 10の状態が内周 側回転子 11の内周側永久磁石 1 laと外周側回転子 12の外周側永久磁石 12aとの 同極の磁極同士が対向配置される弱め界磁状態に向かい変化するようにして、第 1 プラネタリキャリア(C1) 36を回転軸 O周りに回動させることから、例えば固定子卷線 13aへの通電を制御するインバータ等の高電圧デバイスが過電圧状態となることを防 止することができる。
[0096] また、外周側回転子 12において、周方向で隣り合う外周側磁石装着部 24間の外 周側ロータ鉄心 22の外周面 22A上に回転軸 Oに平行に伸びる凹溝 22aを設けたこ とにより、互いに対向配置の関係に無い内周側回転子 11の内周側永久磁石 11aと 外周側回転子 12の外周側永久磁石 12aとの磁極同士間で磁路短絡が発生すること を抑制することができる。
[0097] なお、上述した実施の形態においては、遊星歯車機構 14はシングルピ-オン式の 遊星歯車機構であるとしたが、これに限定されず、例えば図 11に示す上述した実施 の形態の第 1変形例に係る電動機 50のように、遊星歯車機構 14はダブルビ-オン 式の遊星歯車機構であってもよ 、。
この第 1変形例に係る電動機 50において、上述した実施の形態に係る電動機 10と 異なる点は、第 1リングギア (R1) 31とサンギア(S) 35との間に互いに嚙み合う 2列の 第 1プラネタリギア列 51, 52が配置され、第 2リングギア (R2) 32とサンギア(S) 35と の間に互いに嚙み合う 2列の第 2プラネタリギア列 53, 54が配置されている点である
[0098] すなわち、互いに嚙み合う 2列の第 1プラネタリギア列 51, 52のうち、一方の第 1プ ラネタリギア列 51は第 1リングギア (R1) 31に嚙み合い、他方の第 1プラネタリギア列 52はサンギア(S) 35に嚙み合っている。
また、互いに嚙み合う 2列の第 2プラネタリギア列 53, 54のうち、一方の第 2ブラネタ リギア列 53は第 2リングギア (R2) 32に嚙み合い、他方の第 2プラネタリギア列 54は サンギア(S) 35に嚙み合っている。
[0099] そして、第 1プラネタリキャリア (C1) 36は、一方の第 1プラネタリギア列 51を構成す る複数の第 1プラネタリギア 51aを各第 1プラネタリ回転軸 Pla周りに回転可能に支持 すると共に、他方の第 1プラネタリギア列 52を構成する複数の第 1プラネタリギア 52a を各第 1プラネタリ回転軸 Plb周りに回転可能に支持し、さらに、回転軸 O周りに回動 可能とされている。
また、第 2プラネタリキャリア (C2) 37は、一方の第 2プラネタリギア列 53を構成する 複数の第 2プラネタリギア 53aを各第 2プラネタリ回転軸 P2a周りに回転可能に支持 すると共に、他方の第 2プラネタリギア列 54を構成する複数の第 2プラネタリギア 54a を各第 2プラネタリ回転軸 P2b周りに回転可能に支持し、さらに、固定子 13に固定さ れている。
そして、各プラネタリギア 51a, 52a, 53a, 54aは略同等のギア形状とされている。
[0100] そして、この第 1変形例に係る電動機 50では、各 2列の第 1プラネタリギア列 51, 5 2および第 2プラネタリギア列 53, 54を備えることにより、例えば図 12に示すサンギア (S) 35の回転状態のように、サンギア(S) 35と、内周側回転子 11および外周側回転 子 12とは、互いに同じ方向に回転することになる。
[0101] この第 1変形例に係る電動機 50によれば、内周側回転子 11および外周側回転子 12とサンギア(S) 35との回転方向を同一方向に設定することができ、例えば電動機 10を駆動源として車両に搭載した場合等において、内周側回転子 11または外周側 回転子 12に加えてサンギア(S) 35に電動機 10の出力軸を接続した場合であっても 、変速機等の動力伝達機構が複雑ィ匕してしまうことを防止することができる。
し力も、第 1プラネタリキャリア (C1) 36の回動量に比べて外周側回転子 12の回動 量が小さくなることから、外周側回転子 12の回動量を制御する際の分解能を向上さ せることができる。
[0102] なお、上述した実施の形態においては、第 1プラネタリキャリア(C1) 36を回転軸 O 周りに回動可能とし、第 2プラネタリキャリア (C2) 37を固定子 13に固定した力 これ に限定されず、例えば第 2プラネタリキャリア (C2) 37を回転軸 O周りに回動可能とし 、第 1プラネタリキャリア(CI) 36を固定子 13に固定してもよい。
[0103] なお、上述した実施の形態においては、ァクチユエータ 15は油圧ポンプ 15aを備え るとした力 これに限定されず、例えば電動モータ等を備えてもよい。
[0104] 以下に、上述した実施の形態の第 2変形例に係る電動機 10の内周側回転子 11お よび外周側回転子 12について説明する。
例えば図 13に示すように、この第 2変形例において、各内周側永久磁石 11aは内 周側回転子 11の内周側ロータ鉄心 21の内部に埋め込まれ、各外周側永久磁石 12 aは外周側回転子 12の外周側ロータ鉄心 22の内部に埋め込まれている。そして、内 周側回転子 11には内周側ロータ鉄心 21の外周面 21A上において回転軸 Oに平行 に伸びる複数の凹溝 21aが周方向に所定間隔をおいて設けられている。さらに、周 方向で隣り合う凹溝 21a間には、内周側ロータ鉄心 21の内部を回転軸 Oに平行に貫 通する単一の磁石装着孔 23aが径方向で外周側にずれた位置に設けられ、各磁石 装着孔 23aには略長方形板状の内周側永久磁石 11aが装着されている。
[0105] また、外周側回転子 12には、外周側ロータ鉄心 22の内部を回転軸 Oに平行に貫 通する複数の磁石装着孔 24aが周方向に所定間隔をお!/、た位置毎に、径方向で内 周側にずれた位置に設けられ、各磁石装着孔 24aには略長方形板状の外周側永久 磁石 12aが装着されている。さらに、周方向で隣り合う磁石装着孔 24a間には、互い の磁石装着孔 24aの周方向内壁面 24A上において開口し、互いに漸次近接するよ うにして外周側ロータ鉄心 22の外周面 22Aに向かい伸びると共に、外周側ロータ鉄 心 22の内部を回転軸 Oに平行に貫通する各磁束障壁用孔部 25が、外周側ロータ 鉄心 22の内部に設けられている。これにより、外周側ロータ鉄心 22において周方向 で隣り合う外周側永久磁石 12a間に、透磁率が相対的に小さな磁束障壁用孔部 25 によって周方向の両側から挟み込まれる鉄心部 22bが形成されている。
そして、遊星歯車機構 14によって内周側回転子 11と外周側回転子 12との間の相 対的な位相が変更された際に、回転軸 Oに平行な方向に対する断面において、内 周側永久磁石 1 laの長辺と外周側永久磁石 12aの長辺とが径方向に沿って対向す るように設定されている。
[0106] この第 2変形例に係る電動機 10によれば、遊星歯車機構 14によって内周側回転 子 11と外周側回転子 12との間の相対的な位相が変更された際に内周側永久磁石 1 laの長辺と外周側永久磁石 12aの長辺とが対向するように配置されると共に、内周 側永久磁石 11aと外周側永久磁石 12aとの間の距離が相対的に短くなるように設定 されていることにより、例えば外周側永久磁石 12aによる界磁磁束が固定子卷線を鎖 交する鎖交磁束量を、内周側永久磁石 11aによる界磁磁束によって効率よく増大あ るいは低減させることができる。そして、例えば界磁強め状態では、電動機 10のトル ク定数 (つまり、トルク Z相電流)を相対的に高い値に設定することができ、電動機 10 の運転時の電流損失を低減すること無しに、または、固定子卷線への通電を制御す るインバータの出力電流の最大値を変更すること無しに、電動機 10が出力する最大 トルク値を増大させることができ、電動機 10の運転効率の最大値を増大させることが できる。
[0107] さらに、内周側ロータ鉄心 21において周方向で隣り合う内周側永久磁石 11a間に 透磁率が相対的に小さな凹溝 21aを備えることにより、互いに対向配置の関係に無 い内周側永久磁石 11aと外周側永久磁石 12aとの磁極同士間(例えば、凹溝 21aを 跨ぐようにして配置される内周側永久磁石 1 laと外周側永久磁石 12aとの磁極同士 間等)で磁路短絡が発生することを抑制することができる。
さらに、外周側ロータ鉄心 22において周方向で隣り合う外周側永久磁石 12a間に 、透磁率が相対的に小さな磁束障壁用孔部 25によって周方向の両側から挟み込ま れる鉄心部 22bを備えることにより、固定子卷線の回転磁界と各永久磁石 11a, 12a との間に発生する吸引力又は反発力に起因する磁石トルクと、回転磁界と鉄心部 22 bとの間に発生する吸引力に起因する回転トルク、つまりリラクタンストルクとを併用し て各回転子 11, 12を効率よく回転させることができる。
[0108] 以下に、上述した実施の形態の第 3変形例に係る電動機 10の内周側回転子 11お よび外周側回転子 12について説明する。
例えば図 14に示すように、この第 3変形例において、各内周側永久磁石 11aは内 周側回転子 11の内周側ロータ鉄心 21の内部に埋め込まれ、各外周側永久磁石 12 aは外周側回転子 12の外周側ロータ鉄心 22の内部に埋め込まれている。
ここで、内周側ロータ鉄心 21の内部を回転軸 Oに平行に貫通する複数の磁石装着 孔 23aが周方向に所定間隔をおいた位置毎に、径方向で外周側にずれた位置に設 けられ、各磁石装着孔 23aには略長方形板状の内周側永久磁石 11aが装着されて いる。また、外周側ロータ鉄心 22の内部を回転軸 Oに平行に貫通する複数の磁石装 着孔 24aが周方向に所定間隔をお 、た位置毎に、径方向で内周側にずれた位置に 設けられ、各磁石装着孔 24aには略長方形板状の外周側永久磁石 12aが装着され ている。
[0109] そして、遊星歯車機構 14によって内周側回転子 11と外周側回転子 12との間の相 対的な位相が変更された際に、回転軸 Oに平行な方向に対する断面において、内 周側永久磁石 1 laの長辺と外周側永久磁石 12aの長辺とが径方向に沿って対向す るように設定されている。
この第 3変形例に係る電動機 10によれば、外周側回転子 12による外周側永久磁 石 12aの保磁力および内周側回転子 11による内周側永久磁石 11aの保磁力を向上 させることがでさる。
[0110] 以下に、上述した実施の形態の第 4変形例に係る電動機 10の内周側回転子 11お よび外周側回転子 12について説明する。
例えば図 15に示すように、この第 4変形例において、各内周側永久磁石 11aは内 周側回転子 11の内周側ロータ鉄心 21の内部に埋め込まれ、各外周側永久磁石 12 aは外周側回転子 12の外周側ロータ鉄心 22の内部に埋め込まれている。
ここで、内周側回転子 11には内周側ロータ鉄心 21の外周面 21 A上において回転 軸 Oに平行に伸びる複数の凹溝 21aが周方向に所定間隔をおいて設けられている。 さらに、周方向で隣り合う凹溝 21a間には、内周側ロータ鉄心 21の内部を回転軸 O に平行に貫通する単一の磁石装着孔 23aが径方向で外周側にずれた位置に設けら れ、各磁石装着孔 23aには略長方形板状の内周側永久磁石 11aが装着されている
[0111] また、外周側回転子 12には外周側ロータ鉄心 22の外周面 22A上において回転軸 Oに平行に伸びる複数の凹溝 22aが周方向に所定間隔をおいて設けられている。さ らに、周方向で隣り合う凹溝 22a間には、外周側ロータ鉄心 22の内部を回転軸 Oに 平行に貫通する単一の磁石装着孔 24aが径方向で内周側にずれた位置に設けられ 、各磁石装着孔 24aには略長方形板状の外周側永久磁石 12aが装着されている。 そして、遊星歯車機構 14によって内周側回転子 11と外周側回転子 12との間の相 対的な位相が変更された際に、回転軸 Oに平行な方向に対する断面において、内 周側永久磁石 1 laの長辺と外周側永久磁石 12aの長辺とが径方向に沿って対向す るように設定されている。
[0112] 以下に、上述した実施の形態の第 5変形例に係る電動機 10の内周側回転子 11お よび外周側回転子 12について説明する。
例えば図 16に示すように、この第 5変形例において、各内周側永久磁石 11aは内 周側回転子 11の内周側ロータ鉄心 21の内部に埋め込まれ、各外周側永久磁石 12 aは外周側回転子 12の外周側ロータ鉄心 22の内部に埋め込まれている。
ここで、内周側回転子 11には内周側ロータ鉄心 21の外周面 21 A上において回転 軸 Oに平行に伸びる複数の凹溝 21aが周方向に所定間隔をおいて設けられている。 さらに、周方向で隣り合う凹溝 21a間には、内周側ロータ鉄心 21の内部を回転軸 O に平行に貫通する単一の磁石装着孔 23aが径方向で外周側にずれた位置に設けら れ、各磁石装着孔 23aには略長方形板状の内周側永久磁石 11aが装着されている
[0113] また、外周側回転子 12には外周側ロータ鉄心 22の外周面 22A上において回転軸 Oに平行に伸びる複数対の凹溝 22aが周方向に所定間隔をおいて設けられている。 さらに、周方向で隣り合う 2対の凹溝 22a間には、外周側ロータ鉄心 22の内部を回転 軸 Oに平行に貫通する単一の磁石装着孔 24aが径方向で内周側にずれた位置に設 けられ、各磁石装着孔 24aには略長方形板状の外周側永久磁石 12aが装着されて いる。そして、外周側ロータ鉄心 22において対をなす凹溝 22a間には、透磁率が相 対的に小さな凹溝 22aによって周方向の両側から挟み込まれる突極部 22cが形成さ れている。
そして、遊星歯車機構 14によって内周側回転子 11と外周側回転子 12との間の相 対的な位相が変更された際に、回転軸 Oに平行な方向に対する断面において、内 周側永久磁石 1 laの長辺と外周側永久磁石 12aの長辺とが径方向に沿って対向す るように設定されている。 [0114] この第 5変形例に係る電動機 10によれば、外周側回転子 12による外周側永久磁 石 12aの保磁力および内周側回転子 11による内周側永久磁石 11aの保磁力を向上 させることができる。さらに、凹溝 21aによって互いに対向配置の関係に無い内周側 永久磁石 11aと外周側永久磁石 12aとの磁極同士間で磁路短絡が発生することを抑 制することができると共に、固定子卷線の回転磁界と各永久磁石 11a, 12aとの間に 発生する吸引力又は反発力に起因する磁石トルクと、回転磁界と突極部 22cとの間 に発生する吸引力に起因する回転トルク、つまりリラクタンストルクとを併用して各回 転子 11 , 12を効率よく回転させることができる。
[0115] 以下に、上述した実施の形態の第 6変形例に係る電動機 10の内周側回転子 11お よび外周側回転子 12について説明する。
例えば図 17に示すように、この第 6変形例において、各内周側永久磁石 11aは内 周側回転子 11の内周側ロータ鉄心 21の内部に埋め込まれ、各外周側永久磁石 12 aは外周側回転子 12の外周側ロータ鉄心 22の内部に埋め込まれている。
ここで、内周側回転子 11には内周側ロータ鉄心 21の外周面 21 A上において回転 軸 Oに平行に伸びる複数の凹溝 21aが周方向に所定間隔をおいて設けられている。 さらに、周方向で隣り合う凹溝 21a間には、内周側ロータ鉄心 21の内部を回転軸 O に平行に貫通する単一の磁石装着孔 23aが径方向で外周側にずれた位置に設けら れ、各磁石装着孔 23aには略長方形板状の内周側永久磁石 11aが装着されている
[0116] また、外周側回転子 12には外周側ロータ鉄心 22の内周面 22B上において回転軸 Oに平行に伸びる複数の凹溝 22dが周方向に所定間隔をおいて設けられている。さ らに、周方向で隣り合う凹溝 22d間には、外周側ロータ鉄心 22の内部を回転軸 Oに 平行に貫通する単一の磁石装着孔 24aが径方向で内周側にずれた位置に設けられ 、各磁石装着孔 24aには略長方形板状の外周側永久磁石 12aが装着されている。
[0117] そして、遊星歯車機構 14によって内周側回転子 11と外周側回転子 12との間の相 対的な位相が変更された際に、回転軸 Oに平行な方向に対する断面において、内 周側永久磁石 1 laの長辺と外周側永久磁石 12aの長辺とが径方向に沿って対向す ると共に、内周側回転子 11の凹溝 21aと、外周側回転子 12の凹溝 22dとが径方向 に沿って対向するように設定されて 、る。
[0118] この第 6変形例に係る電動機 10によれば、例えば遊星歯車機構 14によって内周 側回転子 11と外周側回転子 12との間の相対的な位相が変更された際に、凹溝 21a と凹溝 22dとが対向配置されることにより、各凹溝 21a, 21dにより形成される空間部 が対向配置されることになり、互いに対向配置の関係に無い内周側永久磁石 11aと 外周側永久磁石 12aとの磁極同士間で磁路短絡が発生することを、より一層、抑制 することができる。
[0119] 以下に、上述した実施の形態の第 7変形例に係る電動機 10の内周側回転子 11お よび外周側回転子 12について説明する。
例えば図 18に示すように、この第 7変形例において、各内周側永久磁石 11aは内 周側回転子 11の内周側ロータ鉄心 21の内部に埋め込まれ、各外周側永久磁石 12 aは外周側回転子 12の外周側ロータ鉄心 22の内周面 22B上に配置されている。 ここで、内周側ロータ鉄心 21の内部を回転軸 Oに平行に貫通する複数の磁石装着 孔 23aが周方向に所定間隔をおいた位置毎に、径方向で外周側にずれた位置に設 けられ、各磁石装着孔 23aには略長方形板状の内周側永久磁石 11aが装着されて いる。
[0120] また、外周側回転子 12には外周側ロータ鉄心 22の内周面 22B上において回転軸 Oに平行に伸びる複数のリブ 22eが周方向に所定間隔をおいて設けられている。そ して、周方向で隣り合うリブ 22eによって周方向の両側から挟み込まれるようにして略 長方形板状の外周側永久磁石 12aが外周側ロータ鉄心 22の内周面 22B上に装着 されている。
そして、遊星歯車機構 14によって内周側回転子 11と外周側回転子 12との間の相 対的な位相が変更された際に、回転軸 Oに平行な方向に対する断面において、内 周側永久磁石 1 laの長辺と外周側永久磁石 12aの長辺とが径方向に沿って対向す るように設定されている。
この第 7変形例に係る電動機 10によれば、内周側回転子 11による内周側永久磁 石 11aの保磁力を向上させることができると共に、外周側回転子 12の形状を単純ィ匕 することができる。 [0121] 以下に、上述した実施の形態の第 8変形例に係る電動機 10の内周側回転子 11お よび外周側回転子 12について説明する。
例えば図 19に示すように、この第 8変形例において、各内周側永久磁石 11aは内 周側回転子 11の内周側ロータ鉄心 21の内部に埋め込まれ、各外周側永久磁石 12 aは外周側回転子 12の外周側ロータ鉄心 22の外周面 22A上に配置されている。 ここで、内周側ロータ鉄心 21の内部を回転軸 Oに平行に貫通する複数の磁石装着 孔 23aが周方向に所定間隔をおいた位置毎に、径方向で外周側にずれた位置に設 けられ、各磁石装着孔 23aには略長方形板状の内周側永久磁石 11aが装着されて いる。
[0122] また、外周側回転子 12には、外周側ロータ鉄心 22の外周面 22A上に複数の略長 方形板状の外周側永久磁石 12aが周方向に所定間隔をおいて配置され、各外周側 永久磁石 12aの外周面に当接する略円筒状の外周側保持部材 26が備えられている 。そして、各外周側永久磁石 12aは、外周側ロータ鉄心 22の外周面 22Aと外周側保 持部材 26の内周面とによって、径方向の両側から挟み込まれるようにして固定され ている
そして、遊星歯車機構 14によって内周側回転子 11と外周側回転子 12との間の相 対的な位相が変更された際に、回転軸 Oに平行な方向に対する断面において、内 周側永久磁石 1 laの長辺と外周側永久磁石 12aの長辺とが径方向に沿って対向す るように設定されている。
この第 8変形例に係る電動機 10によれば、内周側回転子 11による内周側永久磁 石 11aの保磁力を向上させることができると共に、外周側回転子 12の形状を単純ィ匕 することができる。
[0123] 以下に、上述した実施の形態の第 9変形例に係る電動機 10の内周側回転子 11お よび外周側回転子 12について説明する。
例えば図 20に示すように、この第 9変形例において、各内周側永久磁石 11aは内 周側回転子 11の内周側ロータ鉄心 21の外周面 21 A上に配置され、各外周側永久 磁石 12aは外周側回転子 12の外周側ロータ鉄心 22の内部に埋め込まれている。 ここで、内周側回転子 11には、内周側ロータ鉄心 21の外周面 21A上に複数の略 長方形板状の内周側永久磁石 1 laが周方向に所定間隔をお 、て配置され、各内周 側永久磁石 11aの外周面に当接する略円筒状の内周側保持部材 27が備えられて いる。そして、各内周側永久磁石 11aは、内周側ロータ鉄心 21の外周面 21Aと内周 側保持部材 27の内周面とによって、径方向の両側から挟み込まれるようにして固定 されている。
[0124] また、外周側ロータ鉄心 22の内部を回転軸 Oに平行に貫通する複数の磁石装着 孔 24aが周方向に所定間隔をおいた位置毎に、径方向で外周側にずれた位置に設 けられ、各磁石装着孔 24aには略長方形板状の外周側永久磁石 12aが装着されて いる。
そして、遊星歯車機構 14によって内周側回転子 11と外周側回転子 12との間の相 対的な位相が変更された際に、回転軸 Oに平行な方向に対する断面において、内 周側永久磁石 1 laの長辺と外周側永久磁石 12aの長辺とが径方向に沿って対向す るように設定されている。
この第 9変形例に係る電動機 10によれば、外周側回転子 12による外周側永久磁 石 12aの保磁力を向上させることができると共に、内周側回転子 11の形状を単純ィ匕 しつつ、内周側永久磁石 11aと外周側永久磁石 12aとの間の距離を短縮して、固定 子卷線を鎖交する各永久磁石 11a, 12aによる界磁磁束を効率よく増大あるいは低 減させることができる。また、周方向で隣り合う内周側永久磁石 11a間に、相対的に 透磁率が小さな空間部が形成されることにより、互いに対向配置の関係に無い内周 側永久磁石 11aと外周側永久磁石 12aとの磁極同士間で磁路短絡が発生することを 抑帘 Uすることができる。
[0125] 以下に、上述した実施の形態の第 10変形例に係る電動機 10の内周側回転子 11 および外周側回転子 12について説明する。
例えば図 21に示すように、この第 10変形例において、各内周側永久磁石 11aは内 周側回転子 11の内周側ロータ鉄心 21の外周面 21 A上に配置され、各外周側永久 磁石 12aは外周側回転子 12の外周側ロータ鉄心 22の外周面 22A上に配置されて いる。
ここで、内周側回転子 11には、内周側ロータ鉄心 21の外周面 21A上に複数の略 長方形板状の内周側永久磁石 1 laが周方向に所定間隔をお 、て配置され、各内周 側永久磁石 11aの外周面に当接する略円筒状の内周側保持部材 27が備えられて いる。そして、各内周側永久磁石 11aは、内周側ロータ鉄心 21の外周面 21Aと内周 側保持部材 27の内周面とによって、径方向の両側から挟み込まれるようにして固定 されている。
[0126] また、外周側回転子 12には、外周側ロータ鉄心 22の外周面 22A上に複数の略長 方形板状の外周側永久磁石 12aが周方向に所定間隔をおいて配置され、各外周側 永久磁石 12aの外周面に当接する略円筒状の外周側保持部材 26が備えられている 。そして、各外周側永久磁石 12aは、外周側ロータ鉄心 22の外周面 22Aと外周側保 持部材 26の内周面とによって、径方向の両側から挟み込まれるようにして固定され ている
そして、遊星歯車機構 14によって内周側回転子 11と外周側回転子 12との間の相 対的な位相が変更された際に、回転軸 Oに平行な方向に対する断面において、内 周側永久磁石 1 laの長辺と外周側永久磁石 12aの長辺とが径方向に沿って対向す るように設定されている。
この第 10変形例に係る電動機 10によれば、内周側回転子 11および外周側回転 子 12の形状が複雑化することを抑制しつつ、内周側永久磁石 11aおよび外周側永 久磁石 12aを適切に保持することができる。また、周方向で隣り合う内周側永久磁石 11a間に、相対的に透磁率が小さな空間部が形成されることにより、互いに対向配置 の関係に無 、内周側永久磁石 1 laと外周側永久磁石 12aとの磁極同士間で磁路短 絡が発生することを抑制することができる。
[0127] 以下に、上述した実施の形態の第 11変形例に係る電動機 10の内周側回転子 11 および外周側回転子 12について説明する。
例えば図 22に示すように、この第 11変形例において、各内周側永久磁石 11aは内 周側回転子 11の内周側ロータ鉄心 21の外周面 21 A上に配置され、各外周側永久 磁石 12aは外周側回転子 12の外周側ロータ鉄心 22の外周面 22A上に配置されて いる。
ここで、内周側回転子 11には、内周側ロータ鉄心 21の外周面 21A上に複数の略 長方形板状の内周側永久磁石 1 laが周方向に所定間隔をお 、て配置され、各内周 側永久磁石 11aの外周面に当接する略円筒状の内周側保持部材 27が備えられて いる。そして、各内周側永久磁石 11aは、内周側ロータ鉄心 21の外周面 21Aと内周 側保持部材 27の内周面とによって、径方向の両側から挟み込まれるようにして固定 されている。
[0128] また、外周側回転子 12には、外周側ロータ鉄心 22の外周面 22A上において回転 軸 Oに平行に伸びる複数の外周側突極部 28が周方向に所定間隔をおいて設けら れている。そして、周方向で隣り合う外周側突極部 28によって周方向の両側から挟 み込まれるようにして略長方形板状の外周側永久磁石 12aが外周側ロータ鉄心 22 の外周面 22A上に装着されて!、る。
外周側突極部 28の外周側端部には周方向外方に向かい突出する 2つの磁石保 持爪部 28aが形成され、周方向で隣り合う外周側突極部 28から突出する互いの磁 石保持爪部 28aは、これらの外周側突極部 28間に装着された外周側永久磁石 12a の外周面に当接して、外周側永久磁石 12aが径方向外方に向かい移動することを規 制している。
[0129] さらに、外周側突極部 28の外周上の周方向両端部近傍には径方向内方に向かい 伸びる各磁束障壁用溝部 28bが形成されている。
そして、遊星歯車機構 14によって内周側回転子 11と外周側回転子 12との間の相 対的な位相が変更された際に、回転軸 Oに平行な方向に対する断面において、内 周側永久磁石 1 laの長辺と外周側永久磁石 12aの長辺とが径方向に沿って対向す るように設定されている。
この第 11変形例に係る電動機 10によれば、固定子卷線の回転磁界と各永久磁石 11a, 12aとの間に発生する吸引力又は反発力に起因する磁石トルクと、回転磁界と 外周側突極部 28との間に発生する吸引力に起因する回転トルク、つまりリラクタンス トルクとを併用して各回転子 11, 12を効率よく回転させることができる。また、周方向 で隣り合う内周側永久磁石 11a間に、相対的に透磁率が小さな空間部が形成される ことにより、互いに対向配置の関係に無 ヽ内周側永久磁石 1 laと外周側永久磁石 1 2aとの磁極同士間で磁路短絡が発生することを抑制することができる。 なお、この第 11変形例においては、例えば図 23に示すように、磁束障壁用溝部 28 bは省略されてもよい。
[0130] 以下に、上述した実施の形態の第 12変形例に係る電動機 10の内周側回転子 11 および外周側回転子 12について説明する。
例えば図 24に示すように、この第 12変形例において、各内周側永久磁石 11aは内 周側回転子 11の内周側ロータ鉄心 21の外周面 21 A上に配置され、各外周側永久 磁石 12aは外周側回転子 12の外周側ロータ鉄心 22の内周面 22B上に配置されて いる。
ここで、内周側回転子 11には、内周側ロータ鉄心 21の外周面 21A上において回 転軸 Oに平行に伸びる複数の内周側突極部 29が周方向に所定間隔をおいて設け られている。そして、周方向で隣り合う内周側突極部 29によって周方向の両側力も挟 み込まれるようにして略長方形板状の内周側永久磁石 11aが内周側ロータ鉄心 21 の外周面 21A上に装着されて!、る。
[0131] 内周側突極部 29の外周側端部には周方向外方に向かい突出する 2つの磁石保 持爪部 29aが形成され、周方向で隣り合う内周側突極部 29から突出する互いの磁 石保持爪部 29aは、これらの内周側突極部 29間に装着された内周側永久磁石 11a の外周面に当接して、内周側永久磁石 11aが径方向外方に向かい移動することを規 制している。
また、外周側回転子 12には、外周側ロータ鉄心 22の内周面 22B上において回転 軸 Oに平行に伸びる複数の突極部 30が周方向に所定間隔をおいて設けられている 。そして、周方向で隣り合う突極部 30によって周方向の両側力も挟み込まれるように して略長方形板状の外周側永久磁石 12aが外周側ロータ鉄心 22の内周面 22B上 に装着されている。
[0132] 突極部 30の内周側端部には周方向外方に向かい突出する 2つの磁石保持爪部 3 Oaが形成され、周方向で隣り合う突極部 30から突出する互いの磁石保持爪部 30a は、これらの突極部 30間に装着された外周側永久磁石 12aの内周面に当接して、外 周側永久磁石 12aが径方向内方に向かい移動することを規制している。
そして、遊星歯車機構 14によって内周側回転子 11と外周側回転子 12との間の相 対的な位相が変更された際に、回転軸 oに平行な方向に対する断面において、内 周側永久磁石 1 laの長辺と外周側永久磁石 12aの長辺とが径方向に沿って対向す るように設定されている。
[0133] この第 12変形例に係る電動機 10によれば、内周側永久磁石 11aと外周側永久磁 石 12aとの間の距離を短縮することにより、固定子卷線を鎖交する各永久磁石 11a, 12aによる界磁磁束を効率よく増大あるいは低減させることができる。また、固定子卷 線の回転磁界と各永久磁石 11a, 12aとの間に発生する吸引力又は反発力に起因 する磁石トルクと、回転磁界と内周側突極部 29および突極部 30との間に発生する吸 引力に起因する回転トルク、つまりリラクタンストルクとを併用して各回転子 11, 12を 効率よく回転させることができる。
[0134] 以下に、上述した実施の形態の第 13変形例に係る電動機 10の内周側回転子 11 および外周側回転子 12について説明する。
例えば図 25に示すように、この第 13変形例において、各内周側永久磁石 11aは内 周側回転子 11の内周側ロータ鉄心 21の外周面 21 A上に配置され、各外周側永久 磁石 12aは外周側回転子 12の外周側ロータ鉄心 22の内周面 22B上に配置されて いる。
ここで、内周側回転子 11には、内周側ロータ鉄心 21の外周面 21A上に複数の略 長方形板状の内周側永久磁石 1 laが周方向に所定間隔をお 、て配置され、各内周 側永久磁石 11aの外周面に当接する略円筒状の内周側保持部材 27が備えられて いる。そして、各内周側永久磁石 11aは、内周側ロータ鉄心 21の外周面 21Aと内周 側保持部材 27の内周面とによって、径方向の両側から挟み込まれるようにして固定 されている。
[0135] また、外周側回転子 12には外周側ロータ鉄心 22の内周面 22B上において回転軸 Oに平行に伸びる複数のリブ 22eが周方向に所定間隔をおいて設けられている。そ して、周方向で隣り合うリブ 22eによって周方向の両側から挟み込まれるようにして略 長方形板状の外周側永久磁石 12aが外周側ロータ鉄心 22の内周面 22B上に装着 されている。
そして、遊星歯車機構 14によって内周側回転子 11と外周側回転子 12との間の相 対的な位相が変更された際に、回転軸 oに平行な方向に対する断面において、内 周側永久磁石 1 laの長辺と外周側永久磁石 12aの長辺とが径方向に沿って対向す るように設定されている。
[0136] この第 13変形例に係る電動機 10によれば、内周側永久磁石 11aと外周側永久磁 石 12aとの間の距離を短縮することにより、固定子卷線を鎖交する各永久磁石 11a, 12aによる界磁磁束を効率よく増大あるいは低減させることができる。また、内周側回 転子 11の形状を単純化しつつ、周方向で隣り合う内周側永久磁石 11a間に、相対 的に透磁率力 、さな空間部が形成されることにより、互いに対向配置の関係に無い 内周側永久磁石 11aと外周側永久磁石 12aとの磁極同士間で磁路短絡が発生する ことを抑帘 Uすることができる。
[0137] 以下に、上述した実施の形態の第 14変形例に係る電動機 10について説明する。
例えば図 26に示すように、この第 14変形例において、固定子 13は、内周側回転 子 11の内周部に対向配置される略円筒状に形成されている。
各内周側永久磁石 11aは内周側回転子 11の内周側ロータ鉄心 21の内部に埋め 込まれ、各外周側永久磁石 12aは外周側回転子 12の外周側ロータ鉄心 22の内部 に埋め込まれている。
[0138] 外周側回転子 12には外周側ロータ鉄心 22の内周面 22B上において回転軸 Oに 平行に伸びる複数の凹溝 22dが周方向に所定間隔をお 、て設けられて 、る。さらに 、周方向で隣り合う凹溝 22d間には、外周側ロータ鉄心 22の内部を回転軸 Oに平行 に貫通する単一の磁石装着孔 24aが径方向で内周側にずれた位置に設けられ、各 磁石装着孔 24aには略長方形板状の外周側永久磁石 12aが装着されている。そし て、この外周側ロータ鉄心 22の外周部のうち、周方向で隣り合う凹溝 22d間には、回 転軸 Oに平行に貫通する装着孔 61aが設けられ、この装着孔 61aには、例えば図 27 に示す外周側端面板 61と外周側ロータ鉄心 22とを一体に接続するリベットやボルト 等の締結部材(図示略)が装着されるようになって!/、る。
[0139] 内周側回転子 11の内周側ロータ鉄心 21の内部において、周方向で隣り合う磁石 装着孔 23a間には、互!、の磁石装着孔 23aの周方向内壁面 23B上にお!、て開口し 、互いに漸次近接するようにして内周側ロータ鉄心 21の内周面 21Bに向かい伸びる と共に、内周側ロータ鉄心 21の内部を回転軸 Oに平行に貫通する各磁束障壁用孔 部 62が設けられている。そして、内周側ロータ鉄心 21において周方向で隣り合う内 周側永久磁石 11a間には、透磁率が相対的に小さな磁束障壁用孔部 62によって周 方向の両側から挟み込まれた領域が形成され、この領域には、回転軸 Oに平行に貫 通する装着孔 63aが設けられ、この装着孔 63aには、例えば図 27に示す内周側端 面板 63と内周側ロータ鉄心 21とを一体に接続するリベットやボルト等の締結部材(図 示略)が装着されるようになって 、る。
[0140] この第 14変形例において、電動機 10は、上述した実施の形態での遊星歯車機構 14の代わりに内周側回転子 11および外周側回転子 12に接続された位相変更機構 部 70と、位相変更機構部 70により内周側回転子 11と外周側回転子 12との間の相 対的な位相を設定する油圧ァクチユエータ 71とを備えている。
[0141] 位相変更機構部 70は、例えば図 27に示すように、内周側ロータ鉄心 21に接続さ れた内周側端面板 63の表面上から回転軸 Oと同軸に突出する筒状のガイド部材 72 と、外周側ロータ鉄心 22に接続された外周側端面板 61の表面上に設けられ、ガイド 部材 72が摺動可能かつ液密に装着される円環状の装着凹部 73と、油圧ァクチユエ ータ 71から供給される作動油の通路とされる中空の軸部材 74とを備えて構成されて いる。
例えば車両のトランスミッションのハウジング(図示略)等に固定された軸部材 74は ガイド部材 72よりも小さな外径を有し、外周側端面板 61を回転軸 Oと同軸に貫通す ると共に装着凹部 73よりも小さな内径を有する貫通孔 75に相対回転可能かつ液密 に装着されている。
[0142] これにより、内周側端面板 63およびガイド部材 72と、外周側端面板 61および軸部 材 74とによって形成された油圧室 76に、油圧ァクチユエータ 71から中空の軸部材 7 4の内部の流路を介して作動油が供給されるようになって!/、る。
そして、軸部材 74の外周面上にはへリカルスプライン G1が形成され、貫通孔 75の 内周面上にはへリカルスプライン G1と嚙み合うヘリカルスプライン G2が形成されてお り、油圧ァクチユエータ 71から油圧室 76に供給される作動油の油圧に応じて、界磁 制御用回転子とされる外周側回転子 12が回転軸 Oに沿って移動しながら回転 (つま り、螺旋運動)し、電動機 10の駆動力を出力する駆動回転子とされる内周側回転子 1 1と、外周側回転子 12との間の相対的な位相が変更されるようになっている。
[0143] なお、この第 14変形例においては、例えば図 28〜図 30に示すように、互いの長辺 同士が対向する内周側永久磁石 11aと外周側永久磁石 12aとに対して、外周側永 久磁石 12aの長辺が内周側永久磁石 11aの長辺よりも長くなるように設定してもよい 例えば図 28に示す電動機 10では、内周側永久磁石 1 laおよび外周側永久磁石 1 2aは長方形板状に形成され、外周側永久磁石 12aの長辺が内周側永久磁石 11aの 長辺よりも長く形成されて 、る。
また、例えば図 29に示す電動機 10では、内周側永久磁石 11aは長方形板状に、 外周側永久磁石 12aは外周側ロータ鉄心 22の周方向に沿って湾曲する板状に形成 され、外周側永久磁石 12aの周方向に沿った長辺が内周側永久磁石 11aの長辺より も長く形成されている。
また、例えば図 30に示す電動機 10では、各内周側永久磁石 11aに対して、 1対の 外周側永久磁石 12aが対向配置され、 1対の外周側永久磁石 12aの各長辺の和が 内周側永久磁石 1 laの長辺よりも長くなるように設定されて!、る。
[0144] この第 14変形例に係る電動機 10によれば、電動機 10をアウターロータ型とするこ とで、電動機 10の汎用性を向上させることができる。
し力も、外周側永久磁石 12aの長辺が内周側永久磁石 1 laの長辺よりも長くなるよ うに設定することで、相対的に固定子 13から離れた位置に配置される界磁制御用回 転子である外周側回転子 12の外周側永久磁石 12aの大きさを増大させることによつ て磁束量を増大させ、電動機 10の誘起電圧定数の可変範囲を拡大させることができ る。
[0145] 以下に、上述した実施の形態の第 15変形例に係る電動機 10の内周側回転子 11 および外周側回転子 12について説明する。
例えば図 31に示すように、この第 15変形例において、各内周側永久磁石 11aは内 周側回転子 11の内周側ロータ鉄心 21の外周面 21 A上に配置されている。
ここで、内周側回転子 11には、内周側ロータ鉄心 21の外周面 21A上において回 転軸 Oに平行に伸びる複数の内周側突極部 29が周方向に所定間隔をおいて設け られている。そして、周方向で隣り合う内周側突極部 29によって周方向の両側力も挟 み込まれるようにして略長方形板状の内周側永久磁石 11aが内周側ロータ鉄心 21 の外周面 21A上に装着されている。また、内周側突極部 29には、回転軸 Oに平行に 伸びる凹溝 29bが設けられている。
[0146] また、外周側回転子 12には、外周側ロータ鉄心 22の内部を回転軸 Oに平行に貫 通する複数の磁石装着孔 24aが周方向に所定間隔をお!/、た位置毎に、径方向で内 周側にずれた位置に設けられ、各磁石装着孔 24aには略長方形板状の外周側永久 磁石 12aが装着されている。さらに、周方向で隣り合う磁石装着孔 24a間には、互い の磁石装着孔 24aの周方向内壁面 24A上において開口し、互いに漸次近接するよ うにして外周側ロータ鉄心 22の外周面 22Aに向かい伸びると共に、外周側ロータ鉄 心 22の内部を回転軸 Oに平行に貫通する各磁束障壁用孔部 25が、外周側ロータ 鉄心 22の内部に設けられている。これにより、外周側ロータ鉄心 22において周方向 で隣り合う外周側永久磁石 12a間に、透磁率が相対的に小さな磁束障壁用孔部 25 によって周方向の両側から挟み込まれる鉄心部 22bが形成されている。この鉄心部 2 2bには、回転軸 Oに平行に貫通する装着孔 61aが設けられ、この装着孔 61aには、 外周側端面板(図示略)と外周側ロータ鉄心 22とを一体に接続するリベットやボルト 等の締結部材(図示略)が装着されるようになって!/、る。
そして、内周側永久磁石 11aは、外周側回転子 12の外周側ロータ鉄心 22の内周 面 22Bと当接している
[0147] この第 15変形例に係る電動機 10によれば、内周側永久磁石 11aと外周側永久磁 石 12aとの間の距離を短縮することによって磁気抵抗を低減し、電動機 10の誘起電 圧定数の可変範囲を拡大させることができる。
なお、この第 15変形例においては、例えば図 32および図 33に示すように、外周側 回転子 12の外周側ロータ鉄心 22の内周面 22Bと当接する内周側永久磁石 11aの 当接面上に所定の表面処理加工 (例えば、平滑化および硬化等)による被覆層 81、 または、内周側永久磁石 11aと当接する外周側回転子 12の外周側ロータ鉄心 22の 内周面 22B上に所定の表面処理加工 (例えば、平滑化および硬化等)による被覆層 82を設けてもよい。これにより、例えば外周側回転子 12の外周側ロータ鉄心 22の内 周面 22Bの平滑ィ匕により内周側回転子 11と外周側回転子 12とが周方向に沿って相 対的に回動する際の摺動抵抗を低減させ、この回動に要するエネルギーの消費を低 減することができる。また、例えば外周側回転子 12の外周側ロータ鉄心 22の内周面 22Bの硬化処理によって、外周側回転子 12の摩耗による磁気抵抗の増大等の不具 合の発生を抑制することができる
また、例えば図 34に示すように、外周側回転子 12の外周側ロータ鉄心 22の内周 面 22Bと当接する内周側永久磁石 11aの面を凸形状とし、外周側ロータ鉄心 22の内 周面 22Bと内周側永久磁石 11aとの接触領域が相対的に小さくなるように設定しても よい。これにより、内周側回転子 11と外周側回転子 12とが周方向に沿って相対的に 回動する際の摺動抵抗を低減させ、この回動に要するエネルギーの消費を低減する ことができる。
産業上の利用可能性
本発明は車両に搭載された走行駆動源および発電機として用いて好適である。

Claims

請求の範囲
[1] 内周側回転子と、前記内周側回転子の回転軸と同軸の回転軸を具備する外周側回 転子と、少なくとも前記内周側回転子および前記外周側回転子の何れか一方を前記 回転軸周りに回動させることによって前記内周側回転子と前記外周側回転子との間 の相対的な位相を変更可能な回動手段とを備え、
前記内周側回転子は周方向に沿って配置された略板状の内周側永久磁石を備え 前記外周側回転子は周方向に沿って配置された略板状の外周側永久磁石を備え 前記内周側永久磁石および前記外周側永久磁石は、前記回動手段による少なくと も前記内周側回転子および前記外周側回転子の何れか一方の回動により、前記回 転軸に平行な方向に対する断面において、互いに対向可能な長辺を備えることを特 徴とする電動機。
[2] 前記内周側永久磁石は前記内周側回転子の鉄心の外周面上に配置され、前記外 周側永久磁石は前記外周側回転子の鉄心の内部に埋め込まれていることを特徴と する請求項 1に記載の電動機。
[3] 前記内周側永久磁石は前記内周側回転子の鉄心の内部に埋め込まれ、前記外周 側永久磁石は前記外周側回転子の鉄心の内部に埋め込まれていることを特徴とす る請求項 1に記載の電動機。
[4] 前記内周側回転子および前記外周側回転子は、周方向で隣り合う前記内周側永久 磁石間および周方向で隣り合う前記外周側永久磁石間の各前記鉄心に設けられた 空間部を備えることを特徴とする請求項 3に記載の電動機。
[5] 前記空間部は、前記内周側回転子の前記鉄心の外周面上に設けられた前記回転 軸に平行な方向に伸びる内周側回転子溝部と、前記外周側回転子の内周面上に設 けられた前記回転軸に平行な方向に伸びる外周側回転子溝部とを備えることを特徴 とする請求項 4に記載の電動機。
[6] 前記空間部は、前記内周側回転子の前記鉄心の外周面上に設けられた前記回転 軸に平行な方向に伸びる内周側回転子溝部と、前記外周側回転子の周方向で隣り 合う前記外周側永久磁石間の前記鉄心の外周面上に設けられた前記回転軸に平 行な方向に伸びる 1対の外周側回転子溝部とを具備し、前記 1対の外周側回転子溝 部により周方向の両側から挟み込まれる突極部とを備えることを特徴とする請求項 4 に記載の電動機。
[7] 前記外周側永久磁石間に設けられた前記空間部は、前記外周側永久磁石の周方 向端部近傍力 前記外周側回転子の外周面に向かい伸びることを特徴とする請求 項 4に記載の電動機。
[8] 前記空間部は、前記外周側永久磁石間の前記鉄心の内部に設けられていることを 特徴とする請求項 7に記載の電動機。
[9] 前記内周側永久磁石は前記内周側回転子の前記鉄心の径方向にぉ 、て外周側に ずれた位置に配置され、前記外周側永久磁石は前記外周側回転子の前記鉄心の 径方向において内周側にずれた位置に配置されていることを特徴とする請求項 3に 記載の電動機。
[10] 前記内周側永久磁石は前記内周側回転子の鉄心の内部に埋め込まれ、前記外周 側永久磁石は前記外周側回転子の鉄心の外周面上に配置されていることを特徴と する請求項 1に記載の電動機。
[11] 前記内周側永久磁石は前記内周側回転子の鉄心の外周面上に配置され、前記外 周側永久磁石は前記外周側回転子の鉄心の外周面上に配置されていることを特徴 とする請求項 1に記載の電動機。
[12] 周方向で隣り合う前記外周側永久磁石間に前記鉄心の外周面上から径方向外方に 突出する突極部を備えることを特徴とする請求項 11に記載の電動機。
[13] 前記内周側永久磁石は前記内周側回転子の鉄心の外周面上に配置され、前記外 周側永久磁石は前記外周側回転子の鉄心の内周面上に配置されていることを特徴 とする請求項 1に記載の電動機。
[14] 周方向で隣り合う前記内周側永久磁石間に前記鉄心の外周面上から径方向外方に 突出する内周側突極部と、周方向で隣り合う前記外周側永久磁石間に前記鉄心の 内周面上力 径方向内方に突出する外周側突極部と、前記内周側突極部から略周 方向に突出して前記内周側永久磁石の外周面端部に当接する内周側永久磁石保 持爪部および前記外周側突極部から略周方向に突出して前記外周側永久磁石の 内周面端部に当接する外周側永久磁石保持爪部とを備えることを特徴とする請求項
13に記載の電動機。
[15] 少なくとも前記内周側回転子の鉄心の外周面上に配置された前記内周側永久磁石 または前記外周側回転子の鉄心の外周面上に配置された前記外周側永久磁石を、 前記鉄心の外周面とによって径方向の両側力 挟み込んで保持する略円環状の保 持部材を備えることを特徴とする請求項 1に記載の電動機。
[16] 前記内周側回転子および前記外周側回転子の何れか一方は、固定子と対向するよ うに配置され、該固定子が発生する界磁により駆動される駆動回転子であり、何れカゝ 他方は、界磁制御用回転子であることを特徴とする請求項 1に記載の電動機。
[17] 前記固定子は前記内周側回転子の内周側に配置され、前記界磁制御用回転子で ある前記外周側回転子が具備する前記外周側永久磁石は、前記内周側永久磁石よ りも前記長辺が大きいことを特徴とする請求項 16に記載の電動機。
[18] 前記内周側永久磁石は、前記外周側回転子の内周面と当接していることを特徴とす る請求項 2に記載の電動機。
[19] 前記内周側永久磁石は、前記外周側回転子の内周面と当接していることを特徴とす る請求項 11に記載の電動機。
[20] 前記内周側永久磁石の前記外周側回転子との当接面に所定の表面処理加工がな されていることを特徴とする請求項 18に記載の電動機。
[21] 前記内周側永久磁石の前記外周側回転子との当接面に所定の表面処理加工がな されて ヽることを特徴とする請求項 19に記載の電動機。
[22] 前記外周側回転子の内周面に所定の表面処理加工がなされていることを特徴とする 請求項 18に記載の電動機。
[23] 前記外周側回転子の内周面に所定の表面処理加工がなされていることを特徴とする 請求項 19に記載の電動機。
[24] 前記内周側永久磁石の前記当接する側の面は、凸形状に形成されていることを特 徴とする請求項 18から請求項 23の何れ力 1つに記載の電動機。
PCT/JP2006/320418 2005-12-21 2006-10-12 電動機 WO2007072622A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800480727A CN101341645B (zh) 2005-12-21 2006-10-12 电动机
EP06811706.8A EP1971013A4 (en) 2005-12-21 2006-10-12 Electric motor
JP2007551001A JPWO2007072622A1 (ja) 2005-12-21 2006-10-12 電動機
US12/158,533 US8339010B2 (en) 2005-12-21 2006-10-12 Dual rotor electric machine having a field-controlling rotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-367451 2005-12-21
JP2005367451 2005-12-21

Publications (1)

Publication Number Publication Date
WO2007072622A1 true WO2007072622A1 (ja) 2007-06-28

Family

ID=38188405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320418 WO2007072622A1 (ja) 2005-12-21 2006-10-12 電動機

Country Status (5)

Country Link
US (1) US8339010B2 (ja)
EP (1) EP1971013A4 (ja)
JP (1) JPWO2007072622A1 (ja)
CN (1) CN101341645B (ja)
WO (1) WO2007072622A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013934A1 (ja) * 2007-07-26 2009-01-29 Kura Laboratory Corporation 磁束分流制御回転電機システム
JP2009040118A (ja) * 2007-08-06 2009-02-26 Honda Motor Co Ltd ハイブリッド車両の制御装置
WO2009025110A1 (ja) * 2007-08-17 2009-02-26 Kura Laboratory Corporation 磁束分流制御回転電機システム
DE102008044954A1 (de) * 2008-08-29 2009-08-13 Siemens Aktiengesellschaft Dynamoelektrische Maschine mit einstellbarer Feldschwächung
WO2011030849A1 (ja) * 2009-09-11 2011-03-17 株式会社ジェイテクト 電動ポンプユニット
JP2013240146A (ja) * 2012-05-11 2013-11-28 Asmo Co Ltd ブラシレスモータ
WO2014196065A1 (ja) * 2013-06-06 2014-12-11 株式会社安川電機 過電圧保護装置及び過電圧保護システム
US9502931B2 (en) 2012-03-23 2016-11-22 Asmo Co., Ltd. Brushless motor
WO2020162516A1 (ja) * 2019-02-07 2020-08-13 パナソニックIpマネジメント株式会社 磁気ギアードモータ

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7804215B2 (en) * 2008-09-30 2010-09-28 General Electric Company Integrated cooling concept for magnetically geared machine
CN101860149B (zh) * 2010-04-21 2012-10-24 东南大学 带有转矩限幅的双转子电机
JP5722690B2 (ja) * 2011-04-19 2015-05-27 T.K Leverage株式会社 発電装置
TWI452803B (zh) * 2011-06-21 2014-09-11 Ind Tech Res Inst 電磁變速馬達
DE102012002347A1 (de) * 2011-12-24 2013-06-27 Robert Bosch Gmbh Elektrische Maschine für eine Windenergieanlage
US9425664B2 (en) 2012-05-09 2016-08-23 Thingap, Llc Composite stator for electromechanical power conversion
JP5796613B2 (ja) * 2012-12-07 2015-10-21 株式会社デンソー マルチギャップ型回転電機
US9482595B2 (en) 2014-02-05 2016-11-01 Sikorsky Aircraft Corporation Rotor state sensor system
GB2545627B (en) * 2015-10-16 2021-04-21 Yasa Ltd Axial flux machine arrangement
CN105827080B (zh) * 2016-05-25 2019-01-18 东南大学 一种磁场调制式聚磁双转子电机
US10016246B2 (en) * 2016-08-16 2018-07-10 Ethicon Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US9968412B2 (en) 2016-08-16 2018-05-15 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US9956050B2 (en) 2016-08-16 2018-05-01 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US11177727B2 (en) * 2016-10-31 2021-11-16 Guangdong Welling Motor Manufacturing Co., Ltd. Motor
US11476729B2 (en) * 2017-03-03 2022-10-18 Ge Renewable Technologies Salient pole machine with rotor having rotor rim with pole-rim interface and fixation points
FR3064837B1 (fr) * 2017-04-03 2020-01-17 Moving Magnet Technologies Rotor pour machine electrique a aimants permanents internes
JP2020096484A (ja) * 2018-12-14 2020-06-18 Tdk株式会社 永久磁石および回転電機
JP7331356B2 (ja) * 2018-12-14 2023-08-23 Tdk株式会社 永久磁石および回転電機
EP3993223A4 (en) * 2019-06-26 2022-08-31 Sony Group Corporation ENGINE AND ENGINE CONTROL DEVICE
WO2021000184A1 (zh) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 振动电机
US11289985B2 (en) * 2019-08-09 2022-03-29 Hamilton Sundstrand Corporation Dual stator machine with a rotor magnet set configured to minimize flux leakage
US11264850B2 (en) * 2019-09-05 2022-03-01 Nidec Motor Corporation Laminated rotor having deflecting magnet retaining prongs and support posts for the prongs
KR102696292B1 (ko) * 2020-01-08 2024-08-20 엘지마그나 이파워트레인 주식회사 회전 전기 기기의 스테이터
JP7251511B2 (ja) * 2020-04-06 2023-04-04 トヨタ自動車株式会社 リターダ付回転電機
US11641151B2 (en) * 2021-05-11 2023-05-02 Aac Microtech (Changzhou) Co., Ltd. Linear vibration motor with elastic members with brackets, foams and damping glue
CN113394942B (zh) * 2021-07-23 2023-06-20 朱沛然 磁通倍量发电机
CN116742890A (zh) * 2022-03-04 2023-09-12 通用汽车环球科技运作有限责任公司 包括行星齿轮组的集成轴向磁通电动机组件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270503A (ja) * 1999-03-17 2000-09-29 Fujitsu General Ltd 永久磁石電動機
JP2001069701A (ja) * 1999-08-30 2001-03-16 Mitsubishi Heavy Ind Ltd 磁石モータ
JP2002204541A (ja) 2000-11-01 2002-07-19 Shin Etsu Chem Co Ltd 永久磁石型回転電動機
JP2004072978A (ja) * 2002-08-09 2004-03-04 Equos Research Co Ltd 電動機
JP2005080344A (ja) * 2003-08-28 2005-03-24 Honda Motor Co Ltd 永久磁石式回転子
JP2005124281A (ja) * 2003-10-15 2005-05-12 Aichi Elec Co 永久磁石埋め込み型電動機
JP2005168127A (ja) * 2003-12-01 2005-06-23 Honda Motor Co Ltd 永久磁石式回転子
JP2005287262A (ja) * 2004-03-31 2005-10-13 Honda Motor Co Ltd ロータおよびモータ
JP2005304193A (ja) * 2004-04-13 2005-10-27 Honda Motor Co Ltd 永久磁石式回転子とその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2517137B1 (fr) * 1981-11-25 1985-11-15 Cibie Pierre Machine electrique tournante formant notamment variateur de vitesse ou convertisseur de couple
EP0143693A3 (en) * 1983-11-18 1985-07-10 FRANKLIN ELECTRIC Co., Inc. Rotor for electric motor
JPH0740335B2 (ja) * 1983-12-27 1995-05-01 日本碍子株式会社 磁気ヘッド用コアの製造方法
US4737674A (en) * 1986-10-17 1988-04-12 Shicoh Engineering Co., Ltd. Single phase brushless motor with a core
US4798985A (en) * 1987-02-17 1989-01-17 Anwar Chitavat Linear motor with air-lift bearing unloading
JPH04185246A (ja) * 1990-11-20 1992-07-02 Aisin Aw Co Ltd 回転界磁型モータ用ロータ
JP3279279B2 (ja) * 1998-06-30 2002-04-30 三菱電機株式会社 鉄心装置
US6563246B1 (en) * 1999-10-14 2003-05-13 Denso Corporation Rotary electric machine for electric vehicle
JP4269544B2 (ja) * 2000-09-14 2009-05-27 株式会社デンソー 複数ロータ型同期機
DE10053694A1 (de) * 2000-10-26 2002-05-16 Georgii Kobold August Heine Gm Vorrichtung zum Wandeln von elektrischer in mechanische Energie und/oder umgekehrt, insbesondere Drehstrom-Synchron-Motor, mit durch Klemmkrallen am Rotor festgelegten Permanentmagneten sowie Verfahren zur Herstellung einer solchen Vorrichtung
US20040174082A1 (en) * 2003-03-04 2004-09-09 Graham Gregory S. Multiple concentric coil motor
CN101663807B (zh) * 2007-04-23 2013-02-13 本田技研工业株式会社 旋转电机用转子
WO2009155467A2 (en) * 2008-06-18 2009-12-23 Duffey Christopher K Variable speed synchronous generator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270503A (ja) * 1999-03-17 2000-09-29 Fujitsu General Ltd 永久磁石電動機
JP2001069701A (ja) * 1999-08-30 2001-03-16 Mitsubishi Heavy Ind Ltd 磁石モータ
JP2002204541A (ja) 2000-11-01 2002-07-19 Shin Etsu Chem Co Ltd 永久磁石型回転電動機
JP2004072978A (ja) * 2002-08-09 2004-03-04 Equos Research Co Ltd 電動機
JP2005080344A (ja) * 2003-08-28 2005-03-24 Honda Motor Co Ltd 永久磁石式回転子
JP2005124281A (ja) * 2003-10-15 2005-05-12 Aichi Elec Co 永久磁石埋め込み型電動機
JP2005168127A (ja) * 2003-12-01 2005-06-23 Honda Motor Co Ltd 永久磁石式回転子
JP2005287262A (ja) * 2004-03-31 2005-10-13 Honda Motor Co Ltd ロータおよびモータ
JP2005304193A (ja) * 2004-04-13 2005-10-27 Honda Motor Co Ltd 永久磁石式回転子とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1971013A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013934A1 (ja) * 2007-07-26 2009-01-29 Kura Laboratory Corporation 磁束分流制御回転電機システム
KR101091444B1 (ko) 2007-07-26 2011-12-07 티 엔 지 테크놀로지즈 가부시키가이샤 자속분류제어 회전전기기기 시스템
JP2009040118A (ja) * 2007-08-06 2009-02-26 Honda Motor Co Ltd ハイブリッド車両の制御装置
KR101118337B1 (ko) 2007-08-17 2012-03-12 티 엔 지 테크놀로지즈 가부시키가이샤 자속분류(磁束分流) 제어 회전전기기기 시스템
WO2009025110A1 (ja) * 2007-08-17 2009-02-26 Kura Laboratory Corporation 磁束分流制御回転電機システム
CN101772880B (zh) * 2007-08-17 2012-07-04 有限公司日库技术研究所 磁通分流控制旋转电机系统
DE102008044954A1 (de) * 2008-08-29 2009-08-13 Siemens Aktiengesellschaft Dynamoelektrische Maschine mit einstellbarer Feldschwächung
WO2011030849A1 (ja) * 2009-09-11 2011-03-17 株式会社ジェイテクト 電動ポンプユニット
US9502931B2 (en) 2012-03-23 2016-11-22 Asmo Co., Ltd. Brushless motor
US9893576B2 (en) 2012-03-23 2018-02-13 Asmo Co., Ltd. Brushless motor with cog-shaped rotor core having poles with auxiliary magnets and shaft-fixing portions
US9966807B2 (en) 2012-03-23 2018-05-08 Asmo Co., Ltd. Brushless motor
JP2013240146A (ja) * 2012-05-11 2013-11-28 Asmo Co Ltd ブラシレスモータ
WO2014196065A1 (ja) * 2013-06-06 2014-12-11 株式会社安川電機 過電圧保護装置及び過電圧保護システム
WO2020162516A1 (ja) * 2019-02-07 2020-08-13 パナソニックIpマネジメント株式会社 磁気ギアードモータ
JPWO2020162516A1 (ja) * 2019-02-07 2020-08-13

Also Published As

Publication number Publication date
CN101341645B (zh) 2011-08-17
US8339010B2 (en) 2012-12-25
US20090096314A1 (en) 2009-04-16
EP1971013A1 (en) 2008-09-17
JPWO2007072622A1 (ja) 2009-05-28
CN101341645A (zh) 2009-01-07
EP1971013A4 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2007072622A1 (ja) 電動機
JP4260799B2 (ja) 電動機および電動機の駆動方法
JP4879982B2 (ja) モータおよびモータ制御装置
JP2008271640A (ja) アキシャルギャップ型モータ
US7548005B2 (en) Electric motor having improved relative phase control
JP5089066B2 (ja) 電動機
JP4762866B2 (ja) アキシャルギャップ型モータ
JP4890056B2 (ja) 電動機
JP4896546B2 (ja) 電動機を具備する車両
JP4213171B2 (ja) 電動機
JP5279989B2 (ja) 電動機
JP4823821B2 (ja) 永久磁石回転電動機
JP4808529B2 (ja) 電動機
JP2009254005A (ja) 電動機
JP5085875B2 (ja) 電動機
JP5638923B2 (ja) 永久磁石を用いた回転装置
JP5286588B2 (ja) 電動機
JP5037076B2 (ja) 電動機
JP4503543B2 (ja) 電動機
JP2007252169A (ja) 電動機
JP2007244062A (ja) 電動機
JP2007244041A (ja) 電動機
JP2009159797A (ja) 駆動力出力装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680048072.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007551001

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12158533

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006811706

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006811706

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12158533

Country of ref document: US