WO2007069732A1 - 熱硬化性樹脂組成物 - Google Patents
熱硬化性樹脂組成物 Download PDFInfo
- Publication number
- WO2007069732A1 WO2007069732A1 PCT/JP2006/325073 JP2006325073W WO2007069732A1 WO 2007069732 A1 WO2007069732 A1 WO 2007069732A1 JP 2006325073 W JP2006325073 W JP 2006325073W WO 2007069732 A1 WO2007069732 A1 WO 2007069732A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- hydroxyl groups
- group
- resin composition
- thermosetting resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/34—Carboxylic acids; Esters thereof with monohydroxyl compounds
- C08G18/343—Polycarboxylic acids having at least three carboxylic acid groups
- C08G18/345—Polycarboxylic acids having at least three carboxylic acid groups having three carboxylic acid groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/34—Carboxylic acids; Esters thereof with monohydroxyl compounds
- C08G18/343—Polycarboxylic acids having at least three carboxylic acid groups
- C08G18/346—Polycarboxylic acids having at least three carboxylic acid groups having four carboxylic acid groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/54—Polycondensates of aldehydes
- C08G18/542—Polycondensates of aldehydes with phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6204—Polymers of olefins
- C08G18/6208—Hydrogenated polymers of conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/721—Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
- C08G18/724—Combination of aromatic polyisocyanates with (cyclo)aliphatic polyisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/73—Polyisocyanates or polyisothiocyanates acyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/751—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
- C08G18/752—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
- C08G18/753—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
- C08G18/755—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7607—Compounds of C08G18/7614 and of C08G18/7657
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7614—Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
- C08G18/7621—Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/792—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/0622—Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
- C08G73/0638—Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1035—Preparatory processes from tetracarboxylic acids or derivatives and diisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1042—Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1046—Polyimides containing oxygen in the form of ether bonds in the main chain
- C08G73/1053—Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1085—Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/14—Polyamide-imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C09D179/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
- H05K3/4673—Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
- H05K3/4676—Single layer compositions
Definitions
- the present invention provides a cured product having excellent heat resistance, electrical characteristics, and flexibility, and excellent storage stability before curing, and various heat resistant coating materials and electrical insulating materials such as printed wiring boards.
- the present invention relates to a thermosetting resin composition that can be preferably used in the fields of interlayer insulating materials, build-up materials, semiconductor insulating materials, heat-resistant adhesives, and the like.
- Heat-resistant coating materials such as interlayer insulation materials for printed wiring boards, build-up materials, semiconductor insulation materials, heat-resistant adhesives, etc.
- electrical properties such as low dielectric constant and low dielectric loss tangent, and flexibility
- improvements in the storage stability of the resin composition before curing In particular, in electronic equipment such as computers, transmission characteristics such as signal transmission delay and crosstalk of the printed circuit board become a problem with high-speed and high-frequency signals.
- a material having a low dielectric constant of the obtained cured product is required for the resin composition used for the printed circuit board.
- a resin composition containing an epoxy resin is often used as a resin composition from which a cured product having excellent heat resistance can be obtained.
- the resin composition include an epoxy resin having a weight average molecular weight of less than 35,000, a polyfunctional phenol resin, a high molecular weight epoxy resin having a weight average molecular weight of 35,000 or more, a curing accelerator, and a reducing agent.
- an epoxy resin composition comprising a urea compound is disclosed (for example, see Patent Document 1).
- heat resistance and electrical properties are disclosed. , Dimensional stability is not satisfactory.
- resin compositions containing polyimide resin are often used.
- the resin composition include a thermosetting polyimide resin composition containing, for example, a polyimide resin having a carboxyl group and a linear hydrocarbon structure having a number average molecular weight of 300 to 6,000, and an epoxy resin.
- object is known (for example, see Patent Document 2.) 0 Mr.
- the cured product of the thermosetting polyimide resin composition described in Patent Document 2 is inferior in dimensional stability, which is not sufficient in heat resistance.
- Patent Document 1 Japanese Patent Application Laid-Open No. 5-295090
- Patent Document 2 Japanese Patent Laid-Open No. 2003-292575
- An object of the present invention is to provide a thermosetting resin composition in which a cured product having excellent heat resistance, electrical characteristics, and flexibility is obtained, and storage stability before curing is also excellent. .
- a cured product of a resin composition containing a polyurethane resin having a structural residue of a phenolic compound and a urethane bond formed by a reaction of a phenolic hydroxyl group and an isocyanate group, and an epoxy resin Is excellent in heat resistance, electrical properties and flexibility.
- a resin composition comprising a polyimide resin having a structural residue of a phenolic compound, a urethane bond formed by a reaction of a phenolic hydroxyl group and an isocyanate group, and an epoxy resin
- the cured product obtained by using is superior in heat resistance to the cured product obtained by using the resin composition containing the polyurethane resin.
- the resin composition is also excellent in storage stability.
- the present invention has been completed based on the above findings.
- the present invention contains a polyurethane resin (A) having a structure represented by the following general formula (1) and Z or the following general formula (2), and an epoxy resin (B):
- a thermosetting rosin composition characterized by the above is provided.
- the present invention also includes a polyimide resin (C) having a structure represented by the following general formula (1) and Z or the following general formula (2), and an epoxy resin (B).
- a thermosetting resin composition characterized by the above is provided.
- X represents a phenolic compound having two or more phenolic hydroxyl groups in one molecule, and also represents a residue obtained by removing two phenolic hydroxyl groups.
- thermosetting resin composition containing the polyurethane resin of the present invention and the thermosetting resin composition containing the polyimide resin provide a cured product having excellent heat resistance, electrical properties, and flexibility. it can. Moreover, it is a thermosetting resin composition which is also excellent in storage stability. Therefore, the thermosetting resin composition of the present invention can be suitably used for a heat-resistant coating material or an electrical insulating material.
- the polyurethane resin (A) used in the present invention has an isocyanate group and a phenolic hydroxyl group as a polyurethane bond, as represented by the following general formula (1) and Z or the following general formula (2). It has a connected structure.
- a polyurethane resin that is soluble in an organic solvent is particularly easy to handle.
- X represents a phenolic compound having two or more phenolic hydroxyl groups in one molecule, and also represents a residue obtained by removing two phenolic hydroxyl groups.
- Examples of the polyurethane resin having a structure represented by the general formula (1) include a polyurethane resin having a structure represented by the following general formula (3).
- Rx 1 and Rx 2 may be the same or different polyisocyanate compounds.
- Power is a residue obtained by removing two isocyanate groups.
- X represents two or more phenols in one molecule. This is a residue obtained by removing two phenolic hydroxyl groups from a phenolic compound having a hydroxylic hydroxyl group.
- Examples of the polyurethane resin having the structure represented by the general formula (2) include a polyurethane resin having a structure represented by the following general formula (4).
- Rx 1 represents a residue obtained by removing two isocyanate groups from a polyisocyanate compound.
- X represents a phenolic compound having two or more phenolic hydroxyl groups in one molecule. Indicates a residue excluding a phenolic hydroxyl group.
- Rx 1 and Rx 2 may be the same or different from each other.
- Examples of X in the general formula (1) ⁇ '(4) include the following structures.
- R 1 is a single bond or a divalent linking group
- R 2 may be the same or different and represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms.
- R 1 is a direct bond or a divalent linking group
- R 2 represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, which may be the same or different. (The total of is more than 1)
- R 3 represents a hydrogen atom or an alkyl group having 18 carbon atoms] or a structure represented by the following general formula (8).
- X in the general formulas (1) and (2) is represented by the general formulas (5), (6), (7), and (9).
- the structures represented by the general formulas (5) and (6) are more preferable.
- the polyurethane resin used in the present invention has a structure that imparts flexibility to the cured product as described later.
- the general formula (1 ) Or X in the general formula (2) preferably has a structure represented by the general formula (6).
- R 1 in the structure represented by the general formula (5) or the general formula (6) is, for example, a direct bond; a carbo ol group, a sulpho group, a methylene group, an isopropylidene group, a hexa Furuoroisopu port Piriden group, Okiso group, dimethylsilylene group, a fluorene - 9 Jiiru group, and Torishi black [5.2.1.0 2 '8] decane - divalent linking group such as a Jiiru group.
- R 2 examples include a hydrogen atom, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, hexadecyl group, And an alkyl group having 1 to 18 carbon atoms such as a stearyl group.
- the alkyl group having 1 to 18 carbon atoms as R 3 in the structure represented by the general formula (7) include, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
- the carbonyl group is represented by the following structural formula (la)
- the sulfonyl group is represented by the following structural formula (lb)
- the methylene group is represented by the following structural formula (lc)
- the isopropylidene group is represented by The following structural formula (ld)
- hexafluoroisopropylidene group is the following structural formula (le)
- oxo group is the following structural formula (lf)
- dimethylsilylene group is the following structural formula (lg)
- fluorene 9 diyl group is the following structural formula (lh)
- R 1 in the general formula (5) the structure represented by the direct bond, the general formula (lb), the general formula (lc), and the general formula (Id) is soluble and compatible.
- a thermosetting polyurethane resin composition excellent in heat resistance is obtained, and the synthesis for obtaining the polyurethane resin (A) is also preferred.
- R 2 a hydrogen atom and a methyl group are preferable.
- R 1 in the general formula (6) the structure represented by the general formula (li) is preferable because a thermosetting polyurethane resin composition having excellent heat resistance can be obtained.
- the structure represented by the general formula (li) is represented as the following general formula (11).
- the polyurethane resin (A) used in the present invention has a structure represented by the general formula (1) and Z Alternatively, it is sufficient if it has a structure represented by the general formula (2), but polyurethane polyurethane having a structure represented by the general formula (1) and a structure represented by the general formula (2) is used. Then, it is more preferable because a thermosetting resin composition having good curability can be obtained.
- X in the structure represented by the general formula (1) and the structure represented by the general formula (2) may be the same or different.
- Examples of the polyurethane resin having the structure represented by the general formula (6) include a polyurethane resin having the following structure.
- Rx represents a residue obtained by removing two isocyanate groups from a polyisocyanate compound which may be the same or different.
- a and b is an integer of 1 to 10, and the enclosed nuclear units are connected randomly.
- polyurethane resin having the structure represented by the general formula (1) and the structure represented by the general formula (2) as the polyurethane resin (A) include, for example, the following general formula ( Examples thereof include a polyurethane resin having a structure represented by 12).
- Rx represents a residue obtained by removing two isocyanate groups from a polyisocyanate compound.
- X represents a phenolic compound having two or more phenolic hydroxyl groups in one molecule. Force Indicates a residue excluding two phenolic hydroxyl groups.
- m is an integer from 0 to 100.
- Rx 1 and Rx 2 are difunctional diisocyanate compounds.
- the residue is the residue obtained by removing two isocyanate groups
- the polyurethane resin has a linear structure as represented by the general formula (12).
- Rx 1 and Rx 2 are trifunctional or higher polyisocyanate compound powers except for two isocyanate groups, they are polyurethane resins having a branched structure.
- the terminal hydroxyl group in the general formula (2) is a phenolic hydroxyl group, and this phenolic hydroxyl group has one hydroxyl group of a polyfunctional phenolic compound linked to the resin skeleton through a urethane bond.
- the remaining phenolic hydroxyl groups other than The polyhydric phenolic hydroxyl group-containing compound used for obtaining the structure represented by the general formula (2) is preferably a bifunctional phenolic compound LV, but other than the bifunctional phenolic compound, it is more than trifunctional. These polyphenolic compounds may be used in combination to leave a plurality of phenolic hydroxyl groups at the ends.
- the urethane resin (A) used in the present invention has a urethane bond composed of a phenolic hydroxyl group and an isocyanate group, as represented by the general formula (1) and Z or the general formula (2).
- a low-molecular monophenol compound such as phenol or talesol may be used as a blocking agent for the isocyanate group.
- a blocking agent dissociates in the curing reaction of the coating film or molded product, and causes bubbles to be generated as volatile components, which is not preferable.
- a phenolic hydroxyl group is introduced using a polyphenolic compound having a valence of 2 or more, it does not volatilize and remains in the system even when dissociated from the resin under high temperature conditions during curing. For this reason, the polyurethane resin (A) is more cured by positively crosslinking with the epoxy resin.
- the isocyanate group reacts with the alcoholic hydroxyl group produced by the reaction of this phenolic hydroxyl group with the epoxy group, and further undergoes a urethane reaction to build a new cross-linked structure of the molecule and block the hydroxyl group that is disadvantageous for dielectric properties. Conceivable.
- the present inventors believe that the generated urethane bond forms a new network with the rosin skeleton, thereby exhibiting good heat resistance or mechanical properties.
- the polyurethane resin (A) used in the present invention is a polyurethane resin having a structure represented by the general formula (2), it has a phenolic hydroxyl group at the terminal. The group also reacts with the epoxy resin and contributes to curing.
- thermosetting resin composition of the present invention the polyurethane resin having a structure represented by the following general formula (13) is used, whereby the elongation is large. A cured product having excellent flexibility can be obtained. Therefore, for example, among the polyurethane resin (A), a thermosetting resin composition containing a polyurethane resin having a structure represented by the following general formula (13) is a resin for insulating layers for flexible substrates. It can be preferably used as a composition.
- ⁇ represents a residue obtained by removing two hydroxyl groups from a polyol-based compound having at least two alcoholic hydroxyl groups in one molecule.
- Residue structure obtained by removing two hydroxyl groups in a polyaryl compound having at least two alcoholic hydroxyl groups represented by ⁇ in the general formula (13)
- Residues obtained by removing two hydroxyl groups from a polyolefin polyol having at least two alcoholic hydroxyl groups in one molecule, and two hydroxyl groups removed from a polyether polyol having at least two alcoholic hydroxyl groups in one molecule
- Residue a residue obtained by removing two hydroxyl groups from a polycarbonate polyol having at least two alcoholic hydroxyl groups in one molecule, a polyester polyol having at least two alcoholic hydroxyl groups in one molecule.
- Two hydroxyl groups are removed from polysiloxane polyols that have at least two alcoholic hydroxyl groups per molecule
- the following residues can be preferably listed. Further, one or more residue structures selected from these residue structures and ⁇ ⁇ or copolycondensates.
- the wrinkles include a polysiloxane having at least two alcoholic hydroxyl groups in one molecule when it is desired to improve the dielectric properties in addition to the flexibility of the coating film.
- a residue obtained by removing two hydroxyl groups from an olefin polyol is preferred.
- physical properties and water resistance In order to improve the degradability, a residue obtained by removing two hydroxyl groups from a polycarbonate polyol having at least two alcoholic hydroxyl groups in one molecule is preferable.
- the number average molecular weight force S300 5,000 force S is preferable, because the elongation of the cured product is large and the force S can retain flexibility. 500 3,000 force S more preferred.
- the glass transition temperature (Tg) of Y in the general formula (13) is preferably 0 ° C. or less, more preferably 0 to 150 ° C.
- Examples of the polyurethane resin having the structure represented by the general formula (1) and Z or the general formula (2) and the general formula (13) include, for example, a structure represented by the following general formula (14) Polyurethane resin having the following.
- R and R may be the same or different.
- the residue structure obtained by removing two isocyanate groups from the product is shown.
- Z represents a residue (X) obtained by removing two phenolic hydroxyl groups from a phenolic compound having two or more phenolic hydroxyl groups in one molecule or at least two alcoholic hydroxyl groups in one molecule.
- a residue (Y) is obtained by removing two hydroxyl groups from a polyol compound having at least one of the repeating units represented by C has a Y structure.
- C is an integer from 1 to 100.
- the polyurethane resin having the structure represented by the general formula (13) includes the structure represented by the general formula (1) and Z or the general formula (2) and the general formula (13).
- the structure represented by the general formula (1), the structure represented by the general formula (2), and the structure represented by the general formula (13) are preferable.
- the polyurethane resin having is preferable because it can provide a cured product having excellent heat resistance and curability.
- X in the structure represented by the general formula (1) and the structure represented by the general formula (2) may be the same or different.
- the polyurethane resin (A) used in the present invention is branched in the structure represented by the following general formula (15).
- Polyurethane resin is preferred because it has better compatibility with other resin components, improved solvent solubility and good heat resistance of the resulting cured coating film.
- R 5 represents a residue structure obtained by removing the isocyanate group from the diisocyanate compound.
- R 5 in the general formula (15) include an aromatic residue structure, an aliphatic group, and the like. Examples thereof include a residual structure of the system and a residue structure such as an alicyclic system. Among them, those having 4 to 13 carbon atoms can be preferably used.
- the structure of R 5 is preferably a combination of two or more structures for preventing crystallization and improving the solubility.
- aromatic residue structures and aliphatic residues are preferably used in combination with alicyclic residue structures.
- the polyurethane resin branched in the structure represented by the general formula (15) can be obtained, for example, by synthesis using an isocyanurate type polyisocyanate compound as a raw material.
- the polyurethane resin (A) used in the present invention is obtained by, for example, reacting a polyphenolic compound (al) having two or more phenolic hydroxyl groups with a polyisocyanate compound (a2). This can be easily obtained. Specifically, a flask equipped with a stirrer, a thermometer and a condenser is charged with polyphenolic compound (al) and polyisocyanate compound (a2). Then, the temperature is raised and reacted. Force capable of raising the temperature in the range of 50 ° C to 250 ° C It is preferable to carry out at a temperature of 70 ° C to 180 ° C in terms of reaction rate and prevention of side reactions. In order to prevent the dissociation of the urethane bond, it is more preferable to carry out the reaction at 70 to 140 ° C. The reaction time is usually 1 to 20 hours.
- Examples of the polyphenolic compound (al) having two or more phenolic hydroxyl groups include hydroquinone, biphenol, tetramethylbiphenol, ethylidene bisphenol, bisphenol A, bis.
- Phenolic F Bisphenol S, Cyclohexylidenebisphenol (Bisphenol Z), Dimethylbutylidenebisphenol, 4,4, One (1-Methyl) (Lutilidene) bis [2,6 dimethylphenol], 4,4,1 (1 1-phenylidene) bisphenol, 5,5,1 (1-methylethylidene) bis [1,1, -biphenyl-2ol ], Naphthalenediol, dicyclopentagen-modified bisphenol, 9, 10 dihydro-9-oxa 10 phosphaphenanthrene 10-oxide and a reaction product of hydroquinone, and the like.
- a trihydric or higher functional phenol compound such as a novolac resin of an alkylphenol such as phenol novolak resin, cresol novolac resin and nourphenol novolac resin can also be used.
- polyphenol compound (al) it is preferable to use a polyphenol compound containing two phenolic hydroxyl groups, that is, a bifunctional polyphenol compound.
- a polyphenol compound containing two phenolic hydroxyl groups that is, a bifunctional polyphenol compound.
- bisphenol compounds such as bisphenol A, bisphenol F, and bisphenol S are more preferred.
- polyisocyanate compound (a2) used in the present invention for example, an aromatic polyisocyanate compound, an aliphatic polyisocyanate compound, and the like can be used.
- aromatic polyisocyanate compound examples include p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylene diisocyanate, m-xylene diisocyanate, 2, 4 Tolylene diisocyanate, 2, 6 Tolylene diisocyanate, 4, 4 '— Diphenylmethane diisocyanate, 3, 3' — Dimethyldiphenol- 4,4 '— Diisocyanate, 3, 3' —Jetyldiphenyl-4,4′-diisocyanate, m-xylylene diisocyanate, p-xylene diisocyanate, 1,3 bis ( ⁇ , a-dimethylisocyanatomethyl) benzene, tetramethylxylylene diisocyanate Aromatic diesters such as sulfonate, diphenylene terephthalate-4,4'-diisocyanate, and naphthalene
- Examples of the aliphatic polyisocyanate compound include hexamethylene diisocyanate, lysine diisocyanate, trimethylhexamethylene methylene diisocyanate, and isophorone diisocyanate. 4,4′-dicyclohexylenomethane diisocyanate, hydrogenated xylene diisocyanate, norbornylene diisocyanate, and the like.
- polyisocyanate compound (a2) an isocyanate prepolymer obtained by reacting the polyisocyanate compound (a2) with various polyol components in advance with excess isocyanate groups. It can be used or used together.
- the polyurethane resin (A) used in the thermosetting polyurethane resin composition of the present invention has a branched structure, thereby improving solvent solubility and compatibility with other resin components such as a curing agent. Therefore, it is more preferable.
- a polyisocyanate compound (a2) having a polyisocyanate ring having an isocyanurate ring, which is an isocyanurate such as the diisocyanate compound, for example is used as the polyisocyanate compound (a2). It is preferable to use a natei compound alone or a mixture of such a polyisocyanate compound and the diisocyanate compound.
- the trifunctional or higher polyisocyanate compound having an isocyanurate ring is, for example, one or more diisocyanate compounds such as a quaternary ammonium salt. Obtained by isocyanurate in the presence or absence of isocyanurate catalyst, which is a mixture of isocyanurates such as trimer, pentamer, and heptamer Etc. Specific examples of the isocyanurate form of the polyisocyanate compound include isophorone diisocyanate isocyanurate type polyisocyanate, hexamethylene diisocyanate isocyanurate type polyisocyanate, and hydrogenated cisocyanate.
- Isocyanurate type polyisocyanate of diisocyanate isocyanurate type polyisocyanate such as isocyanurate type polyisocyanate of norbornane diisocyanate, An isocyanurate type polyisocyanate of tolylene diisocyanate, an isocyanurate type polyisocyanate of xylene diisocyanate, an isocyanurate type polyisocyanate of naphthalene diisocyanate, and the like.
- the polyisocyanate compound (a2) is used in combination with a diisocyanate compound and a tri- or more functional diisocyanate compound having an isocyanurate ring, the diisocyanate compound is used.
- An aromatic diisocyanate as a product an isocyanurate type polyisocyanate of an aliphatic diisocyanate as a tri- or higher functional diisocyanate compound having an isocyanurate ring, and an isocyanurate type polyisocyanate of Z or alicyclic diisocyanate; It is preferred to use a mixture containing
- thermosetting polyurethane resin composition having excellent solubility can be obtained, and a cured coating film having good electrical characteristics can be obtained.
- the polyisocyanate compound (a2) is a polyisocyanate compound other than the above, for example, the diisocyanate compound, the buret body of the diisocyanate, and the adduct. body
- the polyisocyanate compound (a2) used in the present invention provides a thermosetting polyurethane resin composition having good solvent solubility, so that two or more polyisocyanate compounds can be obtained. It is preferable to use a compound in combination. In addition, since the cured coating film having excellent heat resistance is obtained, it is preferable to use the above-mentioned isochanurate body together. When isocyanurate is used in combination, it is preferable to set it to 70% by weight or less of the total amount of polyisocyanate compound (a2) in order to prevent high molecular weight and gelling of the resin.
- the polyphenol compound (a2) is mixed with the polyphenol compound (a2).
- Reacts In order to leave the terminal as a phenolic hydroxyl group, the number of moles of phenolic hydroxyl group in the polyphenol compound (al) is larger than the number of moles of isocyanate group in the polyisocyanate compound (a2). It is preferable to make it react on the conditions which become.
- the ratio of the number of moles of phenolic hydroxyl groups to the number of moles of isocyanate groups is preferably in the range of 1 to 10, more preferably in the range of 1.05 to 7.
- the reaction is carried out with isocyanate groups. It is preferable to carry out until almost all have reacted. Further, an alcohol or phenol compound may be added to the slightly remaining isocyanate group for reaction.
- the polyurethane resin further having the structure represented by the general formula (13) is, for example, the polyphenol compound (al) having two or more phenolic hydroxyl groups and the polyol. It can be easily obtained by a production method in which the isocyanate compound (a2) and the polyol compound (a3) are reacted.
- Examples of the polyol compound (a3) include polyolefin polyol, polyether polyol, polycarbonate polyol, polyester polyol, polysiloxane polyol and the like.
- the Polio-Louis compound (a3) may be used alone or in combination of two or more.
- polyol-based compound (a3) polyols having two or more kinds of copolycondensation structures such as the above-mentioned polyolefin polyol, polyether polyol, polycarbonate polyol, polyester polyol, and polysiloxane polyol are also used. May be used.
- polyolefin polyol examples include a polyol compound having a polyolefin structure or a polygen structure. Specific examples include polyethylene polyol, polypropylene polyol, polybutadiene polyol, hydrogenated polybutadiene polyol, polyisoprene polyol, and hydrogenated polyisoprene polyol. Of these, polybutadiene polyol and Z or hydrogenated polybutadiene polyol are preferred. Hydrogenated polybutadiene polyol is more preferred, and polyolefin diol is particularly preferred! /.
- the number average molecular weight of the aliphatic structure portion of the polyolefin polyol is 300-6.
- polyether polyol examples include alkylene ether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and polybutylene glycol, and copolymers of these polyalkylene polyols. They can be used alone or in combination of two or more.
- polycarbonate polyol examples include propylene diol, butanediol, pentanediol, hexanediol, methylpentanediol, and cyclohexane.
- Examples thereof include polycarbonate polyols obtained from alkylene oxide addition diols such as A and bisphenol F and S, and copolymers thereof.
- polyester polyol examples include an esterified product of an alkylene diol and a polyvalent carboxylic acid, a transesterification product of an alkyl ester of a polyvalent carboxylic acid, and an ⁇ -force prolatatone-based polylatatone polyol.
- examples include polylatathone polyol.
- polysiloxane polyol examples include dimethylpolysiloxane polyol and methylphenol polysiloxane polyol.
- the polyol-based compound (a3) used in the present invention particularly when it is desired to improve the dielectric properties, the polyolefin polyol and the polysiloxane polyol are improved in physical properties and hydrolytic resistance.
- polycarbonate polyol is preferable.
- polio complex compound (a3) used in the present invention it is easy to synthesize a poly oligo complex compound having 1.5 to 4 hydroxyl groups. Polyol compounds, that is, diol compounds are more preferred.
- diol compounds one or more kinds of polyols selected from the group consisting of polyolefin diol, polyether diol, polycarbonate diol, polyester diol, and polysiloxane diol are more preferable.
- polyol compound (a3) a polyol compound having a number average molecular weight of 300 to 5,000 is preferable because a coating film having sufficient elongation and strength can be obtained.
- the number average molecular weight is more preferable than 500-3,000 power! / ⁇ .
- the Tg of the polyol compound (a3) is preferably 0 ° C. or less, more preferably 0 to ⁇ 150 ° C. from the viewpoint of designing the cured product with high elongation and flexibility.
- the polyisocyanate compound (a2) is added to the polyisocyanate compound (a2).
- the polyphenol compound (al) and the polyol compound (a3) each react.
- the number of moles of phenolic hydroxyl group in the phenolic compound (al) (m (al) mole) and the alcoholic hydroxyl group in the polyol compound (a3) It is preferable to carry out the reaction under the condition that the total molar amount with the number of moles of m (a2) is larger than the number of moles of isocyanate group (m (a2) mole) in the polyisocyanate compound (a2). ,.
- ⁇ m (al) + m (a3) ⁇ Zm (a2) is in the range of 1 to 10, more preferably in the range of 1.1 to 7. It is.
- m (al) and m (a3) are present at 5% by weight or more of the total weight of m (al) and m (a3)! /, More preferably 10% or more And more preferred to be.
- the organic solvent may be introduced after it has been present in the system or after the reaction.
- the proportion of the organic solvent in the system is 80% by weight or less of the reaction system, but preferably 10 to 70% by weight.
- a compound containing an isocyanate group is used as a raw material component. Therefore, an aprotic polar organic solvent which does not have an active proton such as a hydroxyl group amino group is preferred.
- aprotic polar organic solvent for example, polar organic solvents such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, and ⁇ -petit-mouth rataton are used. Can do.
- polar organic solvents such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, and ⁇ -petit-mouth rataton are used. Can do.
- ether solvents, ester solvents, ketone solvents, petroleum solvents and the like may be used as long as they are soluble.
- Various solvents may be mixed and used.
- Examples of powerful ether solvents include ethylene glycol dimethyl ether, ethylene glycol diethylene ether, ethylene glycol dialkyl ethers such as ethylene glycol dibutinole ethere; diethylene glycol dimethyl ether, and ethylene glycol jetino.
- Polyethylene glycol dialkyl ethers such as polyethylene, diethylene glycol dibutinoyl ether, triethylene glycol dimethyl ether, triethylene glycol jetyl ether, triethylene glycol dibutyl ether; ethylene glycol monomethyl thioenoate acetate, ethylene glycol monoethanol Ethylene glycol, ethylene glycol acetate, ethylene glycol monobutyl ether acetate, etc.
- Alkyl ether acetates diethylene glycol monomethyl ether acetate, diethylene glycol monobutyl E chill ether acetate, diethylene glycidyl Polyethylene glycol monoalkyl ether acetates such as cornoremonobutinoreethenoleacetate, triethyleneglycololemonomethinoleetenoreacetate, triethyleneglycolmonoethyletheracetate, triethyleneglycolmonobutyletheracetate;
- Propylene glycol dialkyl ethers such as propylene glycol dimethyl ether, propylene glycol jetyl ether, and propylene glycol dibutyl ether; dipropylene glycol dimethyl ether, dipropylene glycol jetyl ether, dipropylene glycol dibutynol ether, tripropylene Polypropylene glycol dialkyl ethers such as glycol dimethinole ter, tripropylene glycol jetyl ether, tripropylene glycolo-resiyl ether; propylene glycol monomethylenoate acetate acetate, propylene glycol monomethenoate etherate acetate , Propylene glycol monoethanolate such as propylene glycol monobutino oleate acetate Kill ether acetates; dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethanoloate acetate, dipropylene glycol monobutyl ether;
- ester solvent examples include ethyl acetate and butyl acetate.
- ketone solvent examples include acetone, methyl ethyl ketone, and cyclohexanone.
- the weight average molecular weight of the polyurethane resin (A) used in the present invention is such that a thermosetting resin composition having good solvent solubility and a cured coating film having various physical properties can be obtained.
- Power 800-50,000 power preferred ⁇ , 1,000-20,000 power ⁇ more preferred! / ⁇ .
- the weight average molecular weight of the resin such as polyurethane resin (A) and polyimide resin (C) used in the present invention was measured by gel permeation chromatograph and converted into polystyrene under the following conditions. Asked.
- HLC-8220GPC manufactured by Tosoh Corporation
- the phenolic hydroxyl group equivalent of the polyurethane resin (A) used in the present invention is preferably 400 to 50,000.
- the polyimide resin (C) in the thermosetting resin composition used in the present invention is an isocyanate as a urethane bond as represented by the general formula (1) and Z or the general formula (2). It has a structure in which a group and a phenolic hydroxyl group are linked.
- a polyimide resin that dissolves in an organic solvent is easy to handle and is preferable.
- Examples of the polyimide resin (C) having the structure represented by the general formula (1) include a polyimide resin having a structure represented by the general formula (3).
- Examples of the polyimide resin (C) having the structure represented by the general formula (2) include a polyimide resin having a structure represented by the general formula (4).
- Rx and Rx in the general formula (3) and the general formula (4) may be the same or different. Also good.
- Examples of the general formula (1) and Z or the general formula (2) of the polyimide resin (C) used in the present invention include, for example, the general formulas (5), (6), (7) , (9), and (10).
- the general formula (7) for example the polyurethane ⁇ (A) R 2 and R 3 are exemplified.
- the polyimide resin (C) used in the present invention includes the group consisting of the general formulas (5), (6), (7) and (9) as X in the general formulas (1) and (2).
- a polyimide resin having one or more selected structures can provide a curable resin composition that provides a cured product having excellent heat resistance.
- the structure represented by is more preferable.
- the polyimide resin (C) used in the present invention has a structure that imparts flexibility to the cured product as described later.
- the structure represented by general formula (2) is preferable.
- R 1 in the structure represented by the general formula (5) or the general formula (6) is a single bond or a divalent linking group.
- the divalent linking group include the structural formula (la), the structural formula (lb), the structural formula (lc), the structural formula (Id), the structural formula (le), and the structural formula (lf ), The structural formula (lg), the structural formula (lh), and the structural formula (10 etc.).
- R 1 in the structure represented by the general formula (5) or the general formula (6) is the general formula (lb) or the general formula
- thermosetting resin composition having a structure represented by the general formula (Id) that is excellent in solubility and compatibility, and the synthesis for obtaining polyimide resin (C) is also shaky.
- R 2 a hydrogen atom and a methyl group are preferable.
- R 1 in the general formula (6) the structure represented by the general formula (11) is preferable because a thermosetting polyimide resin composition having excellent heat resistance is obtained.
- the polyimide resin (C) used in the present invention may have the structure represented by the general formula (1) and the structure represented by Z or the general formula (2).
- a polyimide resin having the structure represented by the general formula (2) is preferable because a thermosetting resin composition having good curability can be obtained.
- X in the structure represented by the general formula (1) and the structure represented by the general formula (2) may be the same or different and may be different.
- Examples of the polyimide resin having the structure represented by the general formula (6) include a polyimide resin having the following structure.
- R may be the same or different, and is the same as described above.
- Rx represents a residue obtained by removing two isocyanate groups from a polyisocyanate compound.
- each of s and t is an integer of 1 to 10, and each unit of s and t linked together is randomly connected.
- R represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms.
- R is a hydrogen atom or a structure represented by the following general formula (6-4).
- u is an integer from 1 to: L00.
- R is a direct bond or a divalent linking group, and R may be the same or different.
- R 1 In general formula (6-5), R 1, R, R, R, and R are the same as above. R is below
- R 1 and R 2 are the same as above.
- W is an integer from 0 to 8.
- tetracarboxylic dianhydride is synthesized during the synthesis of polyimide resin.
- the site showing an imide bond has a structure represented by the following general formula (6-7).
- the following general formula (6-8) or It has a structure represented by the general formula (6-9).
- General formula The structures represented by (6-7), general formula (6-8), and general formula (6-9) may be used alone or in combination.
- R represents a residue structure obtained by removing an acid anhydride group from a tetracarboxylic acid anhydride.
- R is a bird
- Carboxylic anhydride power Residue structure excluding acid anhydride group and carboxyl group Specific examples of the polyimide resin having the structure represented by the general formula (1) and the structure represented by the general formula (2) as the polyimide resin (C) include, for example, the general formula (12— Examples thereof include a polyimide resin having a structure represented by 1). -(12-1)
- a in the general formula (12-1) is selected from the group consisting of structural strengths represented by the general formula (1), general formula (6-7), general formula (6-8), and (6-9).
- the force that is the structure is not all the general formula (1).
- N is 1 to L00.
- Rx 1 and Rx 2 are difunctional diisocyanate compounds. Residue from which two isocyanate groups are removed In this case, a polyimide resin having a linear structure as represented by the general formula (12) is obtained.
- the polyimide resin (C) having the structure represented by the general formula (2) has a phenolic hydroxyl group at the terminal and can be cured by reacting with the epoxy resin (B) described later. Is possible.
- a cured product of a general phenolic compound and an epoxy resin has a glass transition temperature (Tg) limited in terms of heat resistance, dielectric properties, mechanical properties, linear expansion, etc., but the general formula (2) Since the polyimide resin having the structure represented by the formula has an imide structure in the resin resin skeleton, it is possible to obtain a cured product having high performance that cannot be obtained by conventional techniques.
- the polyimide resin (C) has a urethane bond structure composed of a phenolic hydroxyl group and an isocyanate group as represented by the general formula (1) and Z or the general formula (2).
- the urethane bond between a phenolic hydroxyl group and an isocyanate group has a low dissociation temperature, it may be used as a blocking agent for a strong isocyanate group such as a low-molecular monophenol compound such as phenol or talesol.
- a blocking agent is not preferable because it dissociates in the curing reaction of the coating film or molded product to become a volatile component, and bubbles are generated.
- a phenolic hydroxyl group is introduced using a polyphenol compound having a valence of 2 or more, it does not volatilize even when dissociated from the resin under a high temperature condition at the time of curing.
- C) cures more actively by crosslinking reaction with epoxy resin.
- the isocyanate group further undergoes urethanation with the hydroxyl group generated by the phenol-epoxy reaction to build a new cross-linked structure of the molecule.
- This is thought to block hydroxyl groups that are disadvantageous for dielectric properties.
- the present inventors consider that the urethane bond that is formed forms a network that links the rigid imide structure that is the skeleton of the resin and exhibits good heat resistance or mechanical properties.
- thermosetting resin composition of the present invention As the polyimide resin (C) used in the thermosetting resin composition of the present invention, the above general formula By using the polyimide resin having the structure represented by (13), a cured product having a high elongation and excellent flexibility can be obtained. Therefore, for example, among the polyimide resin (C), a thermosetting resin composition containing a polyimide resin having a structure represented by the general formula (13) is used for an insulating layer for a flexible substrate. It can be preferably used as a rosin composition.
- Y in the general formula (13) is 2 from a polyolefin polyol having at least two alcoholic hydroxyl groups in one molecule. It is preferably a residue except for one hydroxyl group. In order to improve physical properties and hydrolysis resistance, a residue obtained by removing two hydroxyl groups from a polycarbonate polyol having at least two alcoholic hydroxyl groups in one molecule is preferable.
- the number average molecular weight is 300 to 5,000 force S, because the cured product has a high degree of elongation and the ability to retain flexibility. 500 to 3,000 is more preferable.
- the glass transition temperature (Tg) of Y in the general formula (13) is preferably 0 ° C. or less, more preferably 0 to ⁇ 150 ° C.
- the polyimide resin having the structure represented by the general formula (1) and Z or the general formula (2) and the general formula (13) is represented by the general formula (141), for example.
- Examples thereof include polyimide resin having a structure. -(14-1)
- ⁇ is the structure selected from the general formula (1), (6-7), (6-8), (6-9) and the structural force represented by the general formula (13). However, it always has at least one structure selected from the group consisting of general formulas (6-7), (6-8) and (6-9) and a structure represented by general formula (13).
- M is 1 to L00.
- the polyimide resin having the structure represented by the general formula (1) and the structure represented by the general formula (2) is curable. It is more preferable because a cured product having excellent heat resistance can be obtained.
- X in the structure represented by the general formula (1) and the structure represented by the general formula (2) may be the same or different.
- the polyimide resin (C) used in the present invention the polyimide resin branched in the structure represented by the general formula (15) is compatible with other resin components and has solvent solubility. It is preferable because of the improved heat resistance of the resulting cured coating film.
- the polyimide resin (C) used in the present invention is a polyimide resin having an imide bond represented by the following general formula (16), the following general formula (17-1) or the following general formula (17-2). Preferred.
- R represents a residue structure obtained by removing an acid anhydride group from a tetracarboxylic acid anhydride.
- R represents tricarboxylic acid anhydride
- the R is a residue obtained by removing the acid anhydride group of the tetracarboxylic acid anhydride.
- Such a structure includes the following structures.
- R is a tricarboxylic acid anhydride to an acid anhydride group and a carboxyl group.
- Examples of the polyimide resin having the structure represented by the general formula (16) include a polyimide resin having a structure represented by the following general formula (18).
- R represents a residue obtained by removing two isocyanate groups from a polyisocyanate compound which may be the same or different.
- R is from tetracarboxylic anhydride
- polyimide resin having the structure represented by the general formula (17-1) for example, the polyimide resin having the structure represented by the following general formula (191) or general formula (192) Etc.
- Rx and Z or Rx correspond to R in the general formula (15).
- the polyimide resin (B) used in the present invention the polyimide resin branched in the structure represented by the general formula (15) is compatible with other resin components and has solvent solubility. It is preferable because of the improved heat resistance of the resulting cured coating film.
- R 5 in the general formula (15) examples include an aromatic residue structure, an aliphatic residue structure, an alicyclic residue structure, and the like. Among them, those having 4 to 13 carbon atoms can be preferably used.
- the structure of R 5 is preferably a combination of two or more structures from the viewpoint of preventing crystallization and improving solubility. In particular, the combined use of an aromatic residue structure and an aliphatic or alicyclic residue structure is preferred.
- the polyimide resin (C) used in the present invention includes, for example, a polyphenol compound (al) having two or more phenolic hydroxyl groups, a polyisocyanate bab compound (a2), and an acid anhydride. It can be easily obtained by a production method in which (a4) is reacted.
- the polyphenol compound (al) having two or more phenolic hydroxyl groups for example, a compound used for the preparation of the polyurethane resin (A) can be used.
- the polyphenolic compound (al) used in the preparation of the polyimide resin (C) used in the present invention is a polyphenol compound containing two phenolic hydroxyl groups, that is, a bifunctional polyphenol compound.
- bisphenol compounds such as bisphenol A, bisphenol F, and bisphenol S are preferred.
- polyphenol compounds other than polyphenol compounds containing two phenolic hydroxyl groups are trifunctional or higher polyphenol compounds, for example, alkyl phenols such as phenol novolac, cresol novolak, norphenol novolak. Novolac can also be used as Zylok type polyphenol alcohol.
- monofunctional phenolic compounds such as phenol and talesol can also be used within the range not impairing the effects of the present invention.
- polyisocyanate compound (a2) for example, compounds used for the preparation of the polyurethane resin (A) can be used.
- the polyimide resin (C) used in the present invention has a branched structure because the solubility in the solvent and the compatibility with other resin components such as a curing agent are improved.
- a branching method include polyisocyanate compound (a2), for example, a polyisocyanate compound having an isocyanurate ring, which is an isocyanurate such as the diisocyanate compound, or such a polyisocyanate compound. It is preferable to use a mixture of an isocyanate compound and the diisocyanate compound.
- Examples of the polyisocyanate compound having an isocyanurate ring include a compound that can be used for the preparation of the polyurethane resin (A).
- the diisocyanate compound (a2) when a diisocyanate compound and a diisocyanate compound having an isocyanurate ring are used in combination, the diisocyanate compound is Aromatic diisocyanates and isocyanurate polyisocyanates of aliphatic diisocyanates as isocyanurate polyisocyanates and Z or cycloaliphatic diisocyanates It is preferable to use a mixture containing the isocyanurate type polyisocyanate
- thermosetting resin composition having excellent solubility when an aliphatic diisocyanate compound is used as the polyisocyanate compound (a2). It is more preferable because a cured coating film with good electrical properties can be obtained.
- the polyisocyanate compound (a2) used in preparing the polyimide resin (C) used in the present invention provides a thermosetting resin composition having good solvent solubility. Two or more polyisocyanate compounds are preferably used in combination.
- the isocyanurate in combination, the amount used is preferably 70% by weight or less of the total amount of polyisocyanate compound (a2) in order to prevent high molecular weight and gel of the resin.
- Examples of the acid anhydride (a4) include an acid anhydride having one acid anhydride group and an acid anhydride having two acid anhydride groups.
- Examples of the acid anhydride having one acid anhydride group include aromatic tricarboxylic acid anhydrides such as trimellitic anhydride and naphthalene-1,2,4 tricarboxylic acid anhydride.
- Examples of the acid anhydride having two acid anhydride groups include pyromellitic dianhydride, benzophenone 3, 3 ', 4, 4'-tetracarboxylic dianhydride, diphenol ether-3, 3 ', 4, 4'-tetracarboxylic dianhydride, benzene 1, 2, 3, 4-tetracarboxylic dianhydride, biferroe 3, 3', 4, 4'-tetracarboxylic dianhydride, biphenol 2 , 2 ', 3, 3' —tetracarboxylic dianhydride, naphthalene 2, 3, 6, 7-tetracarboxylic dianhydride, naphthalene 1, 2, 4, 5-tetracarboxylic dianhydride, naphthalene 1, 4, 5, 8—tetracarboxylic dianhydride, decahydronaphthalene 1, 4, 5, 8— tetracarboxylic dianhydride, 4, 8 dimethyl 1, 2, 3, 5, 6,
- acid anhydrides (a4) pyromellitic dianhydride, benzophenone 3, 3 ', 4, 4'-tetracarboxylic dianhydride, diphenyl ether 3, 3', 4, 4 '— Tetracarboxylic dianhydride, biphenyl 3,3 ', 4,4'-tetracarboxylic dianhydride, biphenyl 2,2', 3,3 '—tetracarboxylic dianhydride, and ethylene glycol bis Anhydro trimellitate is preferred.
- acid anhydride (a4) one or more of these may be used. Also, aromatic tricarboxylic acid anhydride or aromatic tetracarboxylic acid anhydride may be mixed with aromatic tetracarboxylic acid dianhydride!
- the polyimide resin (C) used in the thermosetting resin composition of the present invention is a polyphenolic compound (al) having two or more phenolic hydroxyl groups, It can be obtained by a production method in which a polyisocyanate compound (a2) and an acid anhydride (a4) are reacted.
- the polyisocyanate compound (a2) reacts with the polyphenol compound (al) and the acid anhydride (a4).
- the number of moles of phenolic hydroxyl group in the polyphenol compound (al) and the acid are preferably reacted under conditions that are greater than the number of moles.
- the polyimide resin used in the present invention can be produced by a one-stage reaction or by a reaction having two or more stages.
- a reaction vessel When manufacturing in a one-stage reaction, for example, a reaction vessel is charged with raw materials such as polyphenolic compound (al), polyisocyanate compound (a2), and acid anhydride (a4). The reaction is allowed to proceed while decarboxylation by stirring and raising the temperature.
- raw materials such as polyphenolic compound (al), polyisocyanate compound (a2), and acid anhydride (a4).
- the reaction is allowed to proceed while decarboxylation by stirring and raising the temperature.
- the isocyanate group (a4) is charged in the presence of the polyisocyanate compound (a2), and the isocyanate group and polyphenol remaining during or after the reaction. It can be produced by reacting the phenolic hydroxyl group of the compound (al). In addition, the polyphenolate compound (al) and the polyisocyanate compound (a2) are charged, and the reaction is carried out by charging the acid anhydride (a4) during or after the reaction. Monkey.
- an acid anhydride (a4) may be charged in the presence of a polyphenolic compound (al) and the isocyanate group remaining after the reaction may react with the acid anhydride (a4). good.
- the reaction temperature can be in the range of 50 ° C to 250 ° C, and is preferably performed at a temperature of 70 ° C to 180 ° C from the viewpoint of reaction rate and prevention of side reactions.
- reaction is performed until the isocyanate group has almost completely reacted. It is preferable because the stability of fat is improved. Also, alcohol or phenol compound may be added to react with the slightly remaining isocyanate group.
- the polyimide resin further having the structure represented by the general formula (13) is, for example, a polyphenol compound having two or more phenolic hydroxyl groups. It can be easily obtained by reacting (al), the polyisocyanate baboon compound (a2), the acid anhydride (a4), and the polyol compound (a3). Specific examples include the following methods.
- the acid anhydride (a4) was charged in the presence of the polyisocyanate compound (a2) (mixed) and after the imidization reaction or after the imidization reaction, A method of performing a urethanization reaction by reacting a phenolic hydroxyl group of a phenolic compound (al) and an alcoholic hydroxyl group of a polyol compound (a3).
- a polyisocyanate is added during or after the reaction by mixing (mixing) the acid anhydride (a4) in the presence of the polyphenol compound (al) and Z or polyol compound (a3).
- the reaction temperature when the polyphenol compound (al), polyisocyanate compound (a2), polyol compound (a3) and acid anhydride (a4) having two or more phenolic hydroxyl groups are reacted is 50.
- the reaction can be carried out in the range of ° C to 250 ° C, and the reaction force and side reaction prevention are preferably carried out at a temperature of 70 ° C to 180 ° C.
- the polyphenol compound (al), polyisocyanate compound (a2), polyol compound (a3), acid anhydride (a4) having two or more phenolic hydroxyl groups are used.
- the reaction is preferably carried out so that
- the reaction is preferably performed until almost all of the isocyanate groups have reacted, since the resulting polyimide resin has good stability. Further, an alcohol, a phenol compound, an oxime compound, or the like may be added to the slightly remaining isocyanate group to cause a reaction.
- an organic solvent In the method for producing polyimide resin, it is preferable to use an organic solvent because a uniform reaction can proceed.
- an organic solvent the organic solvent etc. which can be used for manufacture of the said polyurethane resin are mentioned, for example.
- the organic solvent may be preliminarily present in the system before the reaction or may be introduced in the middle. In order to maintain an appropriate reaction rate in this reaction, the proportion of the organic solvent in the system is 80% by weight or less of the reaction system, but preferably 10 to 70% by weight.
- the weight average molecular weight of the polyimide resin (C) used in the present invention is such that a thermosetting resin composition with good solvent solubility can be obtained and a cured coating film having various physical properties can be obtained. From 800 to 50,000 power preferred ⁇ , 1,000 to 20,000 power ⁇ more preferred! / ⁇ .
- the phenolic hydroxyl group equivalent of the polyimide resin (C) used in the present invention is preferably 400 to 10,000.
- the epoxy resin (B) used in the present invention preferably has two or more epoxy groups in the molecule.
- epoxy resins include bisphenol A type epoxy resins.
- Bisphenol type epoxy resin such as bisphenol S type epoxy resin, bisphenol F type epoxy resin
- novolak type epoxy resin such as phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol type novolak Epoxies of various dicyclopentagen-modified phenolic resins obtained by reacting dicyclopentagen with various phenols; 2, 2 ', 6, 6' — Biphenyls such as epoxides of tetramethylbiphenol Type epoxy resin
- epoxy resin having naphthalene skeleton aromatic epoxy resin such as epoxy resin having fluorene skeleton; hydrogenated products of these aromatic epoxy resins; neopentyl glycol diglycidyl ether 1, 6-hexane diol diglycidyl ether and other aliphatic epoxies 3,4-Epoxycyclo
- the blending amount of the polyurethane resin (A) and the epoxy resin (B) is as a weight ratio of the resin.
- (A) Z (B) can be used in a ratio of 1Z100 to 50Z1, more preferably 1Z10 to 20Z1.
- the blended amount of the polyimide resin (C) and the epoxy resin (B) can be used in a ratio of (C) / (B) from 1Z100 to 50Z1 as the weight ratio of the resin. More preferably, the 1Z10 force is also 20Z1.
- thermosetting resin composition of the present invention may further contain a compound that reacts with the phenolic hydroxyl group of the polyurethane resin (A) or the polyimide resin (C).
- Specific examples include epoxy compounds other than the epoxy resin (B), isocyanate compounds, silicates, and alkoxysilane compounds.
- the isocyanate compound examples include aromatic isocyanate compounds, aliphatic isocyanate compounds, and alicyclic isocyanate compounds.
- a polyisocyanate compound having two or more isocyanate groups in one molecule is preferable.
- a block isocyanate compound can be used.
- the thermosetting resin composition of the present invention includes polyester resin, polyimide resin, phenoxy resin, PPS resin, PPE resin, polyarylene resin, and other binder resins, phenol resin, melamine resin.
- Alkoxysilane curing agents such as polybasic acid anhydrides, cyanate compounds or reactive compounds, melamine, dicyandiamide, guanamine and derivatives thereof, imidazoles, amines, phenols having one hydroxyl group, It is also possible to add curing catalysts and curing accelerators such as organic phosphines, phospho-yuum salts, quaternary ammonium-yuum salts, photothion thione catalysts, fillers and other additives.
- curing catalysts and curing accelerators such as organic phosphines, phospho-yuum salts, quaternary ammonium-yuum salts, photothion thione catalysts, fillers and other additives.
- a urethane catalyst is preferably used in combination.
- powerful urethane catalysts include 1,8-diazabicyclo [5, 4, 0] undecene-7 (hereinafter DBU) and organic salt compounds thereof, dialkyls such as triethylenediamine, dibutyltin diacetate, dibutyltin dilaurate, and the like.
- dialkyls such as triethylenediamine, dibutyltin diacetate, dibutyltin dilaurate, and the like.
- examples include tin alkyl esters and bismuth carboxylates.
- thermosetting resin composition of the present invention is not particularly limited, but various components may be mixed mechanically or mixed by heat melting, or diluted with a solvent to obtain a resin. May be mixed.
- thermosetting resin composition of the present invention may further contain various fillers, organic pigments, inorganic pigments, extender pigments, antifungal agents, and the like as required. These may be used alone or in combination of two or more.
- Examples of the filler include barium sulfate, barium titanate, silicon oxide powder, finely divided silicon oxide, silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, and hydroxide. Almunum, mica, etc. are listed.
- organic pigment examples include azo pigments; copper phthalocyanine pigments such as phthalocyanine 'blue and phthalocyanine' green, and quinacridone pigments.
- Examples of the inorganic pigment include chromates such as chrome lead, zinc chromate and molybdate 'orange; ferrocyan salts such as bitumen, titanium oxide, zinc white, bengara, iron oxide; chromium carbide green and the like.
- Phosphate aluminum powder, zinc powder, brass powder, magnesium powder, iron powder, copper powder, nickel powder such as nickel powder; carbon black etc. It is.
- any of other coloring, antifungal and extender pigments can be used. These can be used alone or in combination of two or more.
- thermosetting resin composition of the present invention is usually applied to a textile substrate such as an organic or inorganic metal film substrate such as glass cloth or polyaramid cloth, for purposes such as casting, impregnation and coating. It is applied in the manner.
- the curing temperature is 80 to 300 ° C, and the curing time is 20 minutes to 5 hours.
- a flask equipped with a stirrer, a thermometer and a condenser is charged with 20 Og of gamma petit-mouth ratatone, 121 g (0.5 mol) of ⁇ (tetramethylbiphenol), and 69.6 g (0.4 mol) of TDI. While stirring, paying attention to heat generation, the temperature was raised to 90 ° C, and the reaction was carried out at this temperature for 7 hours. After the reaction, the inside of the system becomes a clear orange liquid, and it is adjusted with ⁇ -buty mouth rataton so that the non-volatile content is 40%, and the viscosity at 25 ° C is 6.2Pa's polyurethane A solution of rosin (A-2) was obtained.
- the inside of the system was a colorless and clear liquid, and a solution of polyurethane resin (A-5) having a non-volatile content of 50% and a viscosity at 25 ° C. of 5.2 Pa-s was obtained.
- a flask equipped with a stirrer, thermometer and condenser was charged with 1188 g of ⁇ -petit-mouthed rataton and phenol novolac rosin (softening point 90 ° C phenolic hydroxyl group equivalent 103 gZeq) 61 8 g (6 mol as phenolic hydroxyl group). And heated to 80 ° C and dissolved. Next, 174 g (1 mol) of TDI was charged in portions over 1 hour, the temperature was raised to 90 ° C., and the reaction was further continued for 7 hours. After the reaction, a clear deep yellow liquid was obtained, and a polyurethane resin solution (A-7) having a nonvolatile content of 40% and a viscosity Pa 's was obtained.
- the obtained polyurethane resin (A-7) solution was coated on a KBr plate, and the infrared absorption spectrum of the sample in which the solvent component was volatilized was measured. As a result, the characteristic absorption of the isocyanate group was 22 70cm _1 Completely disappeared. As a result, the isocyanate group forms a urethane bond with the phenolic hydroxyl group in the phenol novolac resin and has a phenolic hydroxyl group of the phenol novolac resin in the skeleton, and some of the phenolic hydroxyl groups are modified by the urethane bond. It is concluded that the resulting polyurethane resin was obtained.
- the amount of carbon dioxide generated was 15.4 g (0.35 mol), which was monitored by the change in the weight charged to the flask. From this, the total amount of acid anhydride groups of TMEG is converted to 0.35 mol (87.5%) force S imide bond out of 0.4 mol, and the total amount of isocyanate groups of TDI and HDI-N 44 It is concluded that 0.55 moles (63.6%) of the moles are converted to imide bonds and the remaining isocyanate groups form urethane bonds with BPF and are linked to the resin.
- Isocyanate group content 23 5%, isocyanurate ring-containing triisocyanate content 63.3%) 10.7 g (0.06 mol as isocyanate group), polycarbonate diol obtained from HGPD-C (l, 6-hexanediol and pentanediol: (Hydroxyl equivalent 57.6KOH-mg / g) 77.92g (0.04mol as the amount of hydroxyl group) was added, and heated to 140 ° C with stirring while being careful of heat generation. Reacted. The reaction proceeded with foaming, and the system became a clear brown liquid. A polyimide resin (C-6) solution (resin content 48.6%) having a viscosity of 40 Pa's at 25 ° C was obtained.
- the amount of carbon dioxide generated was 8.8 g (0.2 mol), which was monitored by the change in the weight of the flask. From this, the total amount of acid anhydride groups, carboxyl groups and TMEG acid anhydride groups of TMAN has been converted to amide bonds and amide bonds, and the total amount of isocyanate groups of MDI and HDI-N is 0.34 mol. Of these, 0.2 mol (47.1%) is converted to imide bonds and amide bonds, and the remaining isocyanate groups form urethane bonds with BP and HGPD-C and are linked to the resin. It is concluded.
- the amount of carbon dioxide generated was 8.8 g (0.2 mol), which was monitored by the change in the weight of the flask.
- the total amount of 0.2 mol of TMEG's acid anhydride groups has been converted to imide bonds
- the total amount of 0.4 mol of TDI isocyanate groups 0.2 mol (50%) has been converted to imide bonds. It is concluded that the remaining isocyanate groups are linked to the resin by forming urethane bonds with BPF and HPB.
- Nourphenol phenol novolac resin solution (hydroxyl equivalent 288g / eq non-volatile content 79.5% mineral spirits solution 4.26 functional) 63.5 g (phenolic hydroxyl group amount 2.13 mol) and TMEG102.5 g (0.25 mol) was added and heated for 2 hours to 150 ° C and reacted. Next, 87.0 g (0.5 monole) of TDI and 100.0 g (0.4 mol) of MDI were charged, the temperature was raised to 150 ° C., and the reaction was further continued for 5 hours. After the reaction, a clear dark brown liquid was obtained, and a polyimide resin solution (C-8) having a nonvolatile content of 59% and a viscosity of 25 Pa's was obtained.
- C-8 polyimide resin solution having a nonvolatile content of 59% and a viscosity of 25 Pa's was obtained.
- the obtained polyimide resin (B-8) solution was coated on a KBr plate, and the infrared absorption spectrum of the sample in which the solvent component was volatilized was measured. As a result, it was found that the characteristic absorption of the isocyanate group was 2270 cm. _1 have disappeared completely, the absorption of the imide ring was observed at 725 cm _1 and 1780 cm _1 and 1720 cm _1. The absorption of the urethane bond at 1540cm _1. The amount of carbon dioxide generated with the progress of imidization and amidation was 22 g (0.5 mol), as monitored by the change in the weight charged to the flask.
- thermosetting resin composition 1 of the present invention was prepared with the formulation shown in Table 1.
- the electric properties, heat resistance, dimensional stability, and dimensional stability of the thermosetting resin composition 1 of the cured coating film of the obtained thermosetting resin composition 1 were evaluated according to the following methods. The results are shown in Table 4.
- the electrical properties were evaluated by measuring the dielectric constant ( ⁇ ) and dielectric loss (Tan ⁇ ) of the coating.
- the thermosetting resin composition 1 was coated on a tinplate so that the film thickness after curing was 80 m, dried for 20 minutes in a 70 ° C dryer, and then cured at 200 ° C for 1 hour. After cooling, the measurement sample from which the cured coating film was peeled off was measured using a 4291B manufactured by Agilent Technologies, with a frequency of 100 MHz and a measurement atmosphere temperature of 23 degrees, and a dielectric constant ( ⁇ ) And dielectric loss (Tan ⁇ ) were measured.
- the heat resistance was evaluated by measuring the glass transition point (Tg) of the cured coating film.
- the dimensional stability was evaluated by measuring the linear expansion coefficient.
- thermosetting resin composition 1 was coated on a tin plate so that the film thickness after curing was 50 m, dried for 20 minutes in a 70 ° C dryer, then cured at 200 ° C for 1 hour and cooled. Then, the peeled cured coating film was cut into a width of 5 mm and a length of 30 mm, and used as a measurement sample.
- TMA-SS6000 Thermal analysis system manufactured by Seiko Electronics Co., Ltd.
- the temperature was measured by the TMA (Thermal Mechanical Analysis) method at a temperature rate of 10 ° CZ and a load of 30 mN.
- TMA Thermal Mechanical Analysis
- the inflection point was also determined for the temperature-dimension change curve force in TMA measurement, and the temperature was defined as Tg.
- Higher Tg means better heat resistance.
- the linear expansion coefficient was obtained from the sample length displacement in the temperature range 50 60 ° C and 110 120 ° C. The smaller the linear expansion coefficient, the better the dimensional stability.
- thermosetting polyurethane resin composition 1 was stored in a sealed glass bottle and the state after one week was observed at 40 ° C. Visual evaluation was made according to the following criteria.
- ⁇ A tailing or a high-viscosity product having no aggregate or precipitate.
- thermosetting resin composition 29 and comparative control thermosetting resin compositions ⁇ to ⁇ were prepared in the same manner as in Example 1 except that the compositions shown in Tables 1 to 3 were used. Using this, various evaluations were performed in the same manner as in Example 1, and the results are shown in Tables 4 and 5.
- thermosetting resin composition 10 of the present invention was prepared with the formulation shown in Table 6. Compatibility of cured coating film of the obtained thermosetting resin composition 10, coating film forming property, heat resistance, mechanical properties, electrical properties, dimensional stability and storage stability of thermosetting resin composition 10 was evaluated according to the following method. The results are shown in Table 8.
- thermosetting resin composition 10 The compatible state when thermosetting resin composition 10 was prepared and the state of the coating film after coating thermosetting polyimide resin composition 1 after preparation on a glass plate and drying at 120 ° C.
- the evaluation criteria were as follows.
- thermosetting resin composition In the preparation of the thermosetting resin composition 10, it becomes uniform easily by stirring, and no foreign matter or the like is observed on the coating surface.
- thermosetting resin composition 10 In the preparation of the thermosetting resin composition 10, it becomes uniform by stirring, and no foreign matter or the like is seen on the coating surface.
- thermosetting resin composition 10 In the preparation of the thermosetting resin composition 10, it does not dissolve uniformly, and the surface of the coating film can be confirmed as having repelling, foreign matter and insoluble matter.
- thermosetting resin composition 10 is 30 ⁇ m.
- a test piece obtained by coating at 1 ter and dried at 110 ° C for 30 minutes was allowed to stand at room temperature for 24 hours, and the appearance of the coating film was evaluated according to the following evaluation criteria.
- Heat resistance is evaluated by measuring the glass transition point (Tg) of the cured coating.
- thermosetting resin composition 10 was coated on a tinplate so that the film thickness after curing was 50 m, dried in a 70 ° C dryer for 30 minutes, and then cured at 200 ° C for 1 hour each.
- the cured coating film was prepared and cooled to room temperature, and then the cured coating film was cut out from the coated plate to obtain a sample for Tg measurement.
- Measuring instrument RSA-II, a viscoelasticity measuring device manufactured by Rheometrik
- thermosetting resin composition 10 was coated on a tin plate so that the film thickness after curing was 50 m.
- the coated plate is then dried for 20 minutes in a 70 ° C dryer and then at 200 ° C for 1 hour. Cured to form a cured coating film. After cooling to room temperature, the cured coating film was cut out to a predetermined size, and the substrate force was also isolated and used as a measurement sample.
- Measuring instrument Tensilon manufactured by Toyo Baldwin
- the electrical properties were evaluated by measuring the dielectric constant ( ⁇ ) and dielectric loss (Tan ⁇ ) of the coating.
- Thermosetting polyimide resin composition 1 was coated on a tinplate substrate so that the film thickness after curing was 100 m, dried for 20 minutes in a 70 ° C dryer, and then cured at 200 ° C for 1 hour. After cooling, measure the dielectric constant ( ⁇ ) and dielectric loss (Tan ⁇ ) using a 429 1B made by Agilent Technologies, using a 429 1B made by Agilent Technologies, after cutting off the peeled cured coating. did.
- the dimensional stability was evaluated by measuring the linear expansion coefficient of the coating film.
- Thermosetting polyimide resin composition 1 was coated on a tin plate so that the film thickness after curing was 50 / zm, dried for 20 minutes in a 70 ° C dryer, and then cured at 200 ° C for 1 hour. After cooling, the peeled cured coating film was cut into a width of 5 mm and a length of 30 mm to obtain a measurement sample.
- thermosetting polyimide resin composition 1 20 ml was sealed in a 25 ml glass container. In this state, the state after standing for 1 week at room temperature was observed.
- thermosetting resin compositions 11 to 14 and comparative thermosetting resin compositions ⁇ to ⁇ were prepared in the same manner as in Example 10 except that the compositions shown in Tables 6 and 7 were added. Using this, various evaluations were performed in the same manner as in Example 10, and the results are shown in Tables 8 and 9.
- thermosetting resin compositions 15 to 19 of the present invention were prepared with the formulation shown in Table 10. Compatibility of cured coatings of the obtained thermosetting resin compositions 15 to 19, film-forming properties, heat resistance, mechanical properties, electrical properties, dimensional stability and thermosetting resin compositions 10
- the storage stability of ⁇ 19 was evaluated according to the following method. The results are shown in Table 11.
- Laminate copper so that the film thickness after curing thermosetting polyimide resin composition 1 is
- the coated glass epoxy substrate was coated, dried in a 70 ° C dryer for 30 minutes, then cured at 170 ° C for 1 hour, and then cooled to room temperature to form a cured coating film.
- the cured coating was immersed in a 260 ° C molten solder bath for 30 seconds and cooled to room temperature. This solder bath dipping operation was performed 3 times in total! The appearance of the cured film was evaluated based on the following evaluation criteria:
- ⁇ Abnormalities such as swelling and peeling are slightly observed in the coating film.
- N680 Cresolol novolac-type epoxy resin, epoxy equivalent 214 Softening point 81 ° C
- EP2050 Solid bisphenol A type epoxy resin, epoxy equivalent 640
- DBTA Dibutinoretin acetate
- HP4032 Naphthalene type epoxy resin, epoxy equivalent 150
- TD2131 Novolac phenol resin, hydroxyl group equivalent 103, softening point 80 ° C
- the cured coating film having the thermosetting resin composition strength of the examples shows a very high Tg and can be said to be a material that can exhibit heat resistance even at high temperatures. Furthermore, while having such a high Tg, the dielectric constant and dielectric loss tangent are low and the dielectric properties are good.
- the cured coating film made of the thermosetting resin composition of Comparative Example has a higher dielectric constant and dielectric loss tangent than the cured coating film made of the thermosetting resin composition of the present invention. Tg is also low.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Polyurethanes Or Polyureas (AREA)
- Epoxy Resins (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
明 細 書
熱硬化性樹脂組成物
技術分野
[0001] 本発明は、耐熱性、電気特性、および柔軟性に優れる硬化物が得られ、また、硬化 前の保存安定性も優れ、各種耐熱性コーティング材料や電気絶縁材料、例えばプリ ント配線基板の層間絶縁材料、ビルドアップ材料、半導体の絶縁材料、耐熱性接着 剤等の分野に好ましく用いることができる熱硬化性榭脂組成物に関する。
背景技術
[0002] 耐熱性コーティング材料、電気絶縁材料、例えばプリント配線基板の層間絶縁材料 、ビルドアップ材料、半導体の絶縁材料、耐熱性接着剤等の電気電子産業分野に用 Vヽられる榭脂組成物の硬化物の耐熱性、低誘電率や低誘電正接などの電気特性、 柔軟性に加え、硬化前の榭脂組成物の保存安定性等の向上が要望されている。特 にコンピュータ一等の電子機器では、信号の高速ィ匕ゃ高周波数ィ匕に伴いプリント基 板の信号の伝達遅延やクロストークの発生等の伝達特性が問題となって 、る。また、 プリント基板に使用される榭脂組成物については得られる硬化物の誘電率の低い材 料が求められている。
[0003] 耐熱性に優れる硬化物が得られる榭脂組成物としては、例えば、エポキシ榭脂を含 有する榭脂組成物が多く用いられている。該榭脂組成物としては、例えば、重量平 均分子量 35, 000未満のエポキシ榭脂、多官能フエノール榭脂、重量平均分子量 3 5, 000以上の高分子量エポキシ榭脂、硬化促進剤、還元剤及び尿素化合物を配合 してなるエポキシ榭脂組成物が開示されている(例えば、特許文献 1参照。 ) oしかし ながら、該エポキシ榭脂組成物を用いて得られる硬化物でも耐熱性、電気特性、寸 法安定性が満足できるものではな 、。
[0004] また、他の榭脂組成物として、例えば、ポリイミド榭脂を含有する榭脂組成物も多く 用いられている。該榭脂組成物としては、例えば、カルボキシル基と数平均分子量 3 00〜6, 000の線状炭化水素構造とを有するポリイミド榭脂と、エポキシ榭脂とを含有 する熱硬化性ポリイミド榭脂組成物が知られている(例えば、特許文献 2参照。 )0し
力しながら、該特許文献 2に記載された熱硬化性ポリイミド榭脂組成物の硬化物でも 耐熱性も十分ではなぐ寸法安定性にも劣る。
[0005] 特許文献 1 :特開平 5— 295090号公報
特許文献 2:特開 2003 - 292575号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明の課題は、耐熱性、電気特性、および柔軟性に優れる硬化物が得られ、ま た、硬化前の保存安定性も優れる熱硬化性榭脂組成物を提供することにある。 課題を解決するための手段
[0007] 本発明者は、鋭意検討を重ねた結果、下記の知見を見出した。
( 1)フエノール系化合物の構造残基と、フ ノール性水酸基およびイソシァネート基 の反応にて生成されるウレタン結合とを有するポリウレタン榭脂と、エポキシ榭脂とを 含有する榭脂組成物の硬化物は、耐熱性、電気特性、柔軟性に優れる。
[0008] (2)フエノール系化合物の構造残基と、フ ノール性水酸基およびイソシァネート基 の反応にて生成されるウレタン結合とを有するポリイミド榭脂と、エポキシ榭脂とを含 有する榭脂組成物を用いて得られる硬化物は、前記ポリウレタン榭脂を含有する榭 脂組成物を用いて得られる硬化物以上に耐熱性に優れる。
[0009] (3)前記榭脂組成物は保存安定性にも優れる。
本発明は上記の知見を基に完成したものである。
[0010] 即ち、本発明は、下記一般式(1)および Zまたは下記一般式 (2)で表される構造を 有するポリウレタン榭脂 (A)と、エポキシ榭脂 (B)とを含有することを特徴とする熱硬 化性榭脂組成物を提供するものである。
π Η -— ( ·,、
[0013] また、本発明は、下記一般式(1)および Zまたは下記一般式 (2)で表される構造を 有するポリイミド榭脂 (C)と、エポキシ榭脂 (B)とを含有することを特徴とする熱硬化 性榭脂組成物を提供するものである。
[0014] [化 3]
0 o
II II
— N \〇 ~ X― 0 、N—
H H .._( 1 )
[0015] [化 4]
0
II
H0\ 入
X― O NH— —- ( 2 )
(式中、 Xは 1分子中に 2個以上のフ ノール性水酸基を有するフ ノール系化合物 力も 2個のフエノール性水酸基を除いた残基を示す。 )
発明の効果
[0016] 本発明のポリウレタン榭脂を含有する熱硬化性榭脂組成物やポリイミド榭脂を含有 する熱硬化性榭脂組成物は、耐熱性、電気特性、および柔軟性に優れる硬化物を 提供できる。また保存安定性も優れる熱硬化性榭脂組成物である。従って、本発明 の熱硬化性榭脂組成物は耐熱性コ一ティング材料や電気絶縁材料に好適に使用で きる。
発明を実施するための最良の形態
[0017] 本発明で用いるポリウレタン榭脂 (A)は、下記一般式(1)および Zまたは下記一般 式(2)で表されるように、ポリウレタン結合としてイソシァネート基とフエノール性水酸 基とが連結した構造を有する。ポリウレタン榭脂 (A)としては、なかでも有機溶剤に溶 解するポリウレタン榭脂が取り扱 ヽ易 、ことから好ま 、。
(式中、 Xは 1分子中に 2個以上のフ ノール性水酸基を有するフ ノール系化合物 力も 2個のフエノール性水酸基を除いた残基を示す。 )
[0020] 前記一般式(1)で表される構造を有するポリウレタン榭脂としては、例えば、下記一 般式 (3)で表される構造を有するポリウレタン榭脂等が挙げられる。
H H (
(上記式中 Rx1および Rx2は同一でも異なっていても良ぐポリイソシァネートイ匕合物 力 二つのイソシァネート基を除いた残基を示す。 Xは 1分子中に 2個以上のフエノー ル性水酸基を有するフ ノール系化合物から 2個のフ ノール性水酸基を除いた残 基を示す。 )
[0022] また、前記一般式(2)で表される構造を有するポリウレタン榭脂としては、例えば、 下記一般式 (4)で表される構造を有するポリウレタン榭脂等が挙げられる。
[0023] [化 8]
〇
X― Ο' 、ΝΗ— Rx1— -— ( 4 )
(上記式中 Rx1はポリイソシァネートイ匕合物から二つのイソシァネート基を除いた残基 を示す。 Xは 1分子中に 2個以上のフエノール性水酸基を有するフエノール系化合物 力も 2個のフエノール性水酸基を除いた残基を示す。 )
[0024] 前記一般式(3)及び一般式 (4)中の Rx1や Rx2はそれぞれ同一でも良 、し異なつ ていても良い。
[0025] ここで、上記一般式(3)において Rx1および Zまたは Rx2が後述する一般式(15)の R5に該当すると、一般式(15)に一般式(1)が結合した構造を有した分岐状ポリウレ タン榭脂となる。上記一般式 (4)において Rx1が後述する一般式(15)の R5に該当す ると、一般式(15)に一般式 (2)が結合した構造を有した分岐状ポリウレタン榭脂とな
る。
[0026] 前記一般式(1) · '一般式 (4)中の Xとしては、例えば、下記構造等が挙げられる。
[0027] [化 9]
(式中 R1は、単結合あるいは 2価の連結基であり、 R2は同一でも異なっていても良ぐ 水素原子または炭素原子数 1〜18のアルキル基を示す。 )
[0028] [化 10]
(式中 R1は、直接結合あるいは 2価の連結基であり、 R2は同一でも異なっていても良 ぐ水素原子または炭素原子数 1〜18のアルキル基を示す。 aと bと cとの合計は 1以 上である。)
(式中 R3は、水素原子または炭素原子数] '18のアルキル基または下記一般式(8) で示される構造を示す。 )
[0030] [化 12]
■( 8;
[0033] 本発明で用いるポリウレタン榭脂 (A)としては、一般式(1)及び(2)の Xが、前記一 般式 (5)、(6)、(7)、および (9)の群から選ばれる一種以上の構造を有するポリウレ タン樹脂が、耐熱性に優れる硬化物を提供できるため好ましぐ中でも、一般式 (5) および一般式 (6)で表される構造がより好ま 、。特に本発明で用いるポリウレタン榭 脂が後述するように硬化物に柔軟性を付与する構造を有する、例えば、後述する一 般式 (13)等の構造を有するポリウレタン榭脂の場合、一般式 (1)や一般式 (2)中の Xは、一般式 (6)で示される構造を有することが好ま 、。
[0034] 前記一般式(5)や一般式 (6)で示される構造中の R1としては、例えば、直接結合; カルボ-ル基、スルホ-ル基、メチレン基、イソプロピリデン基、へキサフルォロイソプ 口ピリデン基、ォキソ基、ジメチルシリレン基、フルオレン— 9—ジィル基、およびトリシ クロ [5.2.1.02'8]デカン—ジィル基等の 2価の連結基等が挙げられる。 R2としては、例 えば、水素原子、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシ ル基、ォクチル基、ノニル基、デシル基、ゥンデシル基、ドデシル基、へキサデシル基 、およびステアリル基等の炭素原子数 1〜18のアルキル基等が挙げられる。また、一 般式(7)で示される構造中の R3としての炭素原子数 1〜18のアルキル基としては、 例えば、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシル基、オタ チル基、ノニル基、デシル基、ゥンデシル基、ドデシル基、へキサデシル基、およびス テアリル基等が挙げられる。
[0035] 尚、本発明にお 、て、カルボ二ル基は下記構造式 (la)、スルホ二ル基は下記構造 式 (lb)、メチレン基は下記構造式 (lc)、イソプロピリデン基は下記構造式 (ld)、へキ サフルォロイソプロピリデン基は下記構造式 (le)、ォキソ基は下記構造式 (lf)、ジメチ ルシリレン基は下記構造式 (lg)、フルオレン 9 ジィル基は下記構造式 (lh)、そし てトリシクロ [5.2.1.02'8]デカン—ジィル基は下記構造式(li)で表される。これらは、ビ フエノール、テトラメチルビフエノール、ビスフエノーノレ A、ビスフエノーノレ F、ビスフエノ 一ル3、ナフタレンジオール、およびジシクロペンタジェン変性ビスフエノール等の残
基である。 (なお、図中の *は結合部位を表す。)また、ポリフ ノールイ匕合物、例え ば、フエノールノボラック榭脂ゃクレゾ一ルノボラック榭脂、ナフトールとアルキルフエ ノールとホルムアルデヒド縮合物とから合成されるポリフエノール榭脂等から 2つの水 酸基を除!ヽた構造残基等でもよ!ヽ。
[0036] [化 15]
[0037] 前記一般式(5)中の R1の中でも、直接結合、前記一般式(lb)、一般式(lc)、およ び一般式(Id)で示される構造が溶解性、相溶性に優れる熱硬化性ポリウレタン榭脂 組成物が得られ、また、ポリウレタン榭脂 (A)を得る際の合成もしゃすいことから好ま しい。また、前記 R2の中でも、水素原子およびメチル基が好ましい。また、前記一般 式 (6)中の R1の中でも前記一般式(li)で示される構造が耐熱性に優れる熱硬化性 ポリウレタン榭脂組成物が得られることから好ましい。尚、前記一般式(li)で示される 構造は以下、下記に示す一般式(11)として表す。
[0038] [化 16]
、、 ^、、ノ --( 11 )
[0039] 本発明で用いるポリウレタン榭脂 (A)は、前記一般式(1)で表される構造および Z
または一般式 (2)で表される構造を有すれば良!、が、中でも前記一般式(1)で表さ れる構造および一般式 (2)で表される構造を有するポリウレタン榭脂を使用すると、 硬化性が良好な熱硬化性榭脂組成物が得られることからより好ましい。ここで、前記 一般式(1)で示される構造及び前記一般式 (2)で示される構造中の Xは同一でも良 いし異なっていても良い。
[0040] また、前記一般式 (6)で表される構造を有するポリウレタン榭脂としては、例えば、 以下の構造を有するポリウレタン榭脂が挙げられる。
[0041] [化 17]
[0042] Rxは、同一であっても異なっていても良ぐポリイソシァネート化合物から二つのィ ソシァネート基を除いた残基を示す。 aおよび bは、それぞれ 1〜10の整数であり、お のおの括られた核単位は、ランダムにつながつている。
そして l) aが 1の場合は、一般式 (2)の末端にポリフエノール構造が存在する形態と なり、 2) aが 2の場合は、一般式(1)の分子主鎖中にポリフエノール構造が存在する 形態となり、 3) aが 3以上の場合は、ポリウレタン榭脂の構造が分岐の形態となる。更 に aが 1、 2および 3以上の形態が分子内に同時に存在して 、ても良 、。
[0043] ポリウレタン榭脂 (A)として前記一般式(1)で表される構造と一般式 (2)で表される 構造とを有するポリウレタン榭脂の具体例としては、例えば、下記一般式(12)で表さ れる構造を有するポリウレタン榭脂等を挙げることができる。
(上記式中 Rxはポリイソシァネートイ匕合物から 2つのイソシァネート基を除いた残基 を示す。 Xは 1分子中に 2個以上のフエノール性水酸基を有するフエノール系化合物
力 2個のフ ノール性水酸基を除いた残基を示す。 mは 0〜 100の整数である。 ) [0045] ポリウレタン榭脂 (A)の中でも、前記一般式(3)及び一般式 (4)で示されるポリウレ タン樹脂で、 Rx1および Rx2が 2官能のジイソシァネートイ匕合物から 2つのイソシァネ 一ト基を除いた残基である場合は、前記一般式(12)で示される様な線状の構造を 有するポリウレタン榭脂となる。また、 Rx1および Rx2が 3官能以上のポリイソシァネー ト化合物力も 2つのイソシァネート基を除 、た残基である場合は、分岐状の構造を有 するポリウレタン榭脂となる。
[0046] 前記一般式(2)中の末端の水酸基はフ ノール性水酸基であり、このフ ノール性 水酸基は、多官能フ ノール化合物の 1個の水酸基がウレタン結合で榭脂骨格に連 結した以外の残りのフエノール性水酸基である。一般式(2)で示される構造を得る際 に用いる多価のフエノール性水酸基含有ィ匕合物は、 2官能フエノールイ匕合物が好ま LV、が、 2官能フエノールイ匕合物以外に 3官能以上のポリフエノールイ匕合物を使用あ ¾ ヽは併用し、末端に複数のフエノール性水酸基を残存させても良!、。
[0047] 本発明で用いるウレタン榭脂 (A)は、一般式(1)および Zまたは一般式 (2)で示さ れる様に、フエノール性水酸基とイソシァネート基とからなるウレタン結合を有する。一 般に、フエノール性水酸基とイソシァネート基とによるウレタン結合は、高温下で解離 する為、フエノールやタレゾール等の低分子モノフエノール化合物などをイソシァネー ト基のブロック剤として使用することがある。し力しながらこうしたブロック剤は塗膜や 成型物の硬化反応において解離し、揮発成分として気泡ゃボイドの発生原因となり、 好ましいものではない。
本発明では、 2価以上のポリフエノールイ匕合物を用いてフエノール性水酸基の導入 を行うため、硬化時の高温状況下で樹脂から解離しても揮発せず系内に残存する。 その為、ポリウレタン榭脂 (A)は積極的にエポキシ榭脂と架橋反応してより硬化する 。また、イソシァネート基は、このフエノール性水酸基とエポキシ基との反応により生成 するアルコール性水酸基とさらにウレタンィ匕反応を行 、、分子の新たな架橋構造を 構築し、誘電特性に不利な水酸基をブロックすると考えられる。つまり、生成するウレ タン結合が榭脂骨格と新たなネットワークを形成し、これにより良好な耐熱性あるいは 機械物性を発現すると本発明者らは考えている。
[0048] また、本発明で用いるポリウレタン榭脂 (A)が、前記一般式 (2)で表される構造を有 するポリウレタン榭脂である場合、末端にフエノール性水酸基を有するが、この水酸 基もエポキシ榭脂と反応して硬化に寄与する。
[0049] 本発明の熱硬化性榭脂組成物に用いるポリウレタン榭脂 (A)としては、更に下記一 般式(13)で示される構造を有するポリウレタン榭脂を用いることにより、伸度が大きく 、柔軟性に優れる硬化物が得られる。その為、例えば、ポリウレタン榭脂 (A)の中でも 、下記一般式(13)で示される構造を有するポリウレタン榭脂を含有する熱硬化性榭 脂組成物はフレキシブル基板用の絶縁層用の榭脂組成物として好ましく用いること ができる。
[0050] [化 19] —— Ν
(式中、 Υは 1分子中に少なくとも 2個のアルコール性水酸基を有するポリオ一ルイ匕合 物から 2つの水酸基を除いた残基を示す。 )
[0051] 前記一般式(13)中の Υで示される少なくとも 2個のアルコール性水酸基を有するポ リオ一ルイ匕合物力も 2つの水酸基を除いた残基 (残基構造)としては、例えば、 1分子 中に少なくとも 2個のアルコール性水酸基を有するポリオレフインポリオールから 2つ の水酸基を除いた残基、 1分子中に少なくとも 2個のアルコール性水酸基を有するポ リエーテルポリオールから 2つの水酸基を除いた残基、 1分子中に少なくとも 2個のァ ルコール性水酸基を有するポリカーボネートポリオールから 2つの水酸基を除いた残 基、 1分子中に少なくとも 2個のアルコール性水酸基を有するポリエステルポリオール 力 2つの水酸基を除いた残基および 1分子中に少なくとも 2個のアルコール性水酸 基を有するポリシロキサンポリオールから 2つの水酸基を除いた残基等を好ましく挙 げることができる。さらにこれらの残基構造から選ばれる 1種以上の残基構造及び Ζ 又は共重縮合体としてもょ ヽ。
[0052] なお、前記一般式(13)中の Υとしては、塗膜の柔軟性に加えて特に誘電特性等を 向上させたい場合は、 1分子中に少なくとも 2個のアルコール性水酸基を有するポリ ォレフィンポリオールから 2つの水酸基を除いた残基が好ましい。また、物性と耐加水
分解性とを向上させたい場合は、 1分子中に少なくとも 2個のアルコール性水酸基を 有するポリカーボネートポリオールから 2つの水酸基を除 、た残基が好まし 、。
[0053] 前記一般式(13)中の Yとしては、硬化物の伸度が大きぐ且つ、柔軟性を保有させ ること力 Sできること力ら、数平均分子量力 S300 5, 000力 S好ましく、 500 3, 000力 S より好ましい。また、一般式(13)中の Yのガラス転移温度 (Tg)としては 0°C以下が好 ましぐ 0 ― 150°Cがより好ましい。
[0054] 前記一般式(1)および Zまたは一般式(2)、および一般式(13)で表される構造を 有するポリウレタン榭脂としては、例えば、下記一般式(14)で表される構造を有する ポリウレタン榭脂等が挙げられる。
〔上記式中 R と R とは、同一であっても異なっていても良ぐポリイソシァネートイ匕合
XI X2
物から二つのイソシァネート基を除いた残基構造を示す。 Zは、 1分子中に 2個以上 のフ ノール性水酸基を有するフ ノール系化合物から 2個のフ ノール性水酸基を 除 、た残基 (X)または 1分子中に少なくとも 2個のアルコール性水酸基を有するポリ オール化合物から 2つの水酸基を除 、た残基 (Y)であるが、 Cで示される繰り返しの 単位において少なくとも一つは、 Yの構造である。 Cは、 1から 100の整数である。〕 [0056] 前記一般式(13)で表される構造を有するポリウレタン榭脂としては、前記一般式( 1)および Zまたは一般式 (2)で表される構造および一般式(13)で表される構造を 有すれば良いが、中でも前記一般式(1)で表される構造、一般式 (2)で表される構 造、および一般式(13)で表される構造をすベて有するポリウレタン榭脂が、耐熱性と 硬化性とに優れる硬化物をていきょうできるため好ましい。ここで、前記一般式(1)で 示される構造及び前記一般式(2)で示される構造中の Xは同一でも良いし異なって いても良い。
[0057] 本発明で用いるポリウレタン榭脂 (A)は下記一般式(15)で示される構造にて分岐
しているポリウレタン榭脂が、他の榭脂成分との相溶性、溶剤溶解性の向上や得られ る硬化塗膜の耐熱性が良好なことから好まし 、。
[化 21]
(式中 R5はジイソシァネート化合物からイソシァネート基を除 、た残基構造を示す。 ) [0059] 前記一般式(15)中の R5としては、例えば、芳香族系の残基構造、脂肪属系の残 基構造、および脂環族系等の残基構造等が挙げられる。中でも、炭素原子数が 4か ら 13のものを好ましく使用することができる。 R5の構造は、結晶化の防止や溶解性向 上の面力も 2種以上の構造を併用したほうが好ましい。特に芳香族系の残基構造と 脂肪族ある!ヽは脂環族の残基構造との併用が好ま ヽ。
[0060] 前記一般式(15)で示される構造にて分岐しているポリウレタン榭脂は、例えば、原 料としてイソシァヌレート型ポリイソシァネートイ匕合物を用いて合成することにより得ら れる。
[0061] 本発明で用いるポリウレタン榭脂 (A)は、例えば、 2個以上のフエノール性水酸基を 有するポリフエノールイ匕合物(al)とポリイソシァネートイ匕合物(a2)とを反応させること により容易に得ることができる。具体的には、攪拌装置、温度計及びコンデンサーを 付けたフラスコにポリフエノールイ匕合物(al)とポリイソシァネートイ匕合物(a2)とを仕込 み、攪拌を行いながら発熱に注意して昇温し、反応させる。 50°Cから 250°Cの範囲 で昇温させることができる力 反応速度と副反応防止との面から 70°Cから 180°Cの温 度で行うことが好ましい。また、ウレタン結合の解離を防ぐ為に 70〜140°Cで反応を 行うことが更に好ましい。反応する際の時間としては、通常 1〜20時間である。
[0062] 前記 2個以上のフエノール性水酸基を有するポリフエノールイ匕合物(al)としては、 例えば、ハイドロキノン、ビフエノール、テトラメチルビフエノール、ェチリデンビスフエノ ール、ビスフエノール A、ビスフエノール F、ビスフエノール S、シクロへキシリデンビス フエノール(ビスフエノール Z)、ジメチルブチリデンビスフエノール、 4,4,一(1ーメチ
ルェチリデン)ビス〔2, 6 ジメチルフエノール〕、 4,4, 一 (1一フエ-ルェチリデン)ビ スフエノール、 5, 5,一(1ーメチルェチリデン)ビス〔1, 1,ービフエ-ルー 2 オール〕 、ナフタレンジオール、ジシクロペンタジェン変性ビスフエノール、 9, 10 ジヒドロー 9—ォキサ 10 フォスファフェナンスレン一 10—オキサイドとハイドロキノンとの反 応生成物等が挙げられる。
ポリフエノール化合物(al)として、フエノールノボラック榭脂、クレゾ一ルノボラック榭 脂及びノユルフェノールノボラック榭脂等のアルキルフエノールのノボラック榭脂等の 3官能以上のフエノールイヒ合物も使用可能である。
ポリフエノール化合物(al)としては 2個のフエノール性水酸基を含有するポリフエノ ール化合物、つまり 2官能のポリフエノールイ匕合物を使用することが好ましい。中でも 、ビスフエノール A、ビスフエノール F、およびビスフエノール S等のビスフエノール系化 合物がより好ましい。
[0063] また、難燃性や耐熱性に優れる硬化物が得られることから、ポリウレタン榭脂 (A)を 得る際に、ナフタレンジオールや 9, 10 ジヒドロー 9 ォキサ 10 フォスファフェ ナンスレン一 10—オキサイドとハイドロキノンとの反応生成物を使用することが好まし い。
[0064] 尚、本発明の効果を損なわな!/、範囲で一部、フエノールやタレゾール等の一官能 性のフエノール化合物を併用しても良 、。
[0065] 本発明で用いるポリイソシァネートイ匕合物(a2)としては、例えば、芳香族ポリイソシ ァネートイ匕合物、および脂肪族ポリイソシァネートイ匕合物等が使用可能である。
[0066] 前記芳香族ポリイソシァネートイ匕合物としては、例えば、 p—フエ-レンジイソシァネ ート、 m—フエ二レンジイソシァネート、 p キシレンジイソシァネート、 m—キシレンジ イソシァネート、 2, 4 トリレンジイソシァネート、 2, 6 トリレンジイソシァネート、 4, 4 ' —ジフエ-ルメタンジイソシァネート、 3, 3' —ジメチルジフエ-ルー 4, 4' —ジィ ソシァネート、 3, 3' —ジェチルジフエ-ルー 4, 4' ージイソシァネート、 m—キシレ ンジイソシァネート、 p キシレンジイソシァネート、 1,3 ビス( α , aージメチルイソ シアナ一トメチル)ベンゼン、テトラメチルキシリレンジイソシァネート、ジフエ二レンェ 一テル—4, 4' ージイソシァネート、およびナフタレンジイソシァネート等の芳香族ジ
イソシァネートイ匕合物等が挙げられる。
[0067] 前記脂肪族ポリイソシァネートイ匕合物としては、例えば、へキサメチレンジイソシァネ ート、リジンジイソシァネート、トリメチルへキサメチレンメチレンジイソシァネート、イソ ホロンジイソシァネート、 4, 4' ージシクロへキシノレメタンジイソシァネート、水素添加 キシレンジイソシァネート、およびノルボヌレンジイソシァネート等が挙げられる。
[0068] また前記ポリイソシァネートイ匕合物(a2)として、前記ポリイソシァネートイ匕合物(a2) と各種ポリオール成分とをイソシァネート基過剰で予め反応させたイソシァネートプレ ポリマーを使用または併用することも可能である。
[0069] 本発明の熱硬化性ポリウレタン榭脂組成物に用いるポリウレタン榭脂 (A)は、分岐 構造をとることにより、溶剤溶解性や硬化剤等その他の榭脂成分との相溶性が向上 するためより好ましい。かかる分岐の手法としては、ポリイソシァネートイ匕合物(a2)とし て、例えば、前記ジイソシァネートイ匕合物等のイソシァヌレート体であるイソシァヌレー ト環を有する 3官能以上のポリイソシァネートイ匕合物の単独、あるいはこうしたポリイソ シァネートイ匕合物と前記ジイソシァネートイ匕合物との混合物を使用することが好まし い。
[0070] 前記イソシァヌレート環を有する 3官能以上のポリイソシァネートイ匕合物は、例えば 、 1種または 2種以上のジイソシァネートイ匕合物を第 4級アンモ-ゥム塩等のイソシァ ヌレートイ匕触媒の存在下あるいは非存在下において、イソシァヌレートイ匕することによ り得られるものであって、 3量体、 5量体、および 7量体等のイソシァヌレートの混合物 力 なるもの等が挙げられる。前記ポリイソシァネートイ匕合物のイソシァヌレート体の 具体例としては、イソホロンジイソシァネートのイソシァヌレート型ポリイソシァネート、 へキサメチレンジイソシァネートのイソシァヌレート型ポリイソシァネート、水素添加キ シレンジイソシァネートのイソシァヌレート型ポリイソシァネート、ノルボルナンジィソシ ァネートのイソシァヌレート型ポリイソシァネート等脂肪族系ポリイソシァネート類ゃジ フエ-ルメタンジイソシァネートのイソシァヌレート型ポリイソシァネート、トリレンジイソ シァネートのイソシァヌレート型ポリイソシァネート、キシレンジイソシァネートのイソシ ァヌレート型ポリイソシァネート、およびナフタレンジイソシァネートのイソシァヌレート 型ポリイソシァネート等が挙げられる。
[0071] ポリイソシァネート化合物(a2)として、ジイソシァネートイ匕合物とイソシァヌレート環 を有する 3官能以上のジイソシァネートイ匕合物と併用する場合、ジイソシァネートイ匕合 物としての芳香族ジイソシァネートと、前記イソシァヌレート環を有する 3官能以上の ジイソシァネートイ匕合物としての脂肪族ジイソシァネートのイソシヌレート型ポリイソシ ァネートおよび Zまたは脂環式ジイソシァネートのイソシヌレート型ポリイソシァネート とを含有する混合物を用いるのが好まし 、。
[0072] 前記ポリイソシァネートイ匕合物(a2)として脂肪族ジイソシァネートイ匕合物を用いると
、溶解性に優れる熱硬化性ポリウレタン榭脂組成物が得られ、且つ、電気特性が良 好な硬化塗膜が得られることからより好ま 、。
[0073] 更に、ポリイソシァネートイ匕合物(a2)は、前記以外のポリイソシァネートイ匕合物、例 えば、前記ジイソシァネートイ匕合物や前記ジイソシァネートのビュレット体、ァダクト体
、アロハネート体、あるいはポリメチレンポリフエ-ルポリイソシァネート(クルード MDI
)等と併用しても良い。
[0074] 本発明で用いるポリイソシァネートイ匕合物(a2)は、溶剤溶解性が良好な熱硬化性 ポリウレタン榭脂組成物が得られることから、 2種以上のポリイソシァネートイ匕合物を併 用することが好ましい。加えて耐熱性に優れる硬化塗膜が得られることから上述のィ ソシァヌレート体を併用することが好ましい。イソシァヌレート体を併用する場合は、全 ポリイソシァネートイ匕合物 (a2)量の 70重量%以下に設定することが榭脂の高分子量 化やゲルィ匕を防ぐ意味で好ま ヽ。
[0075] ポリフエノール化合物(al)とポリイソシァネートイ匕合物(a2)との反応に際しては、ポ リイソシァネートイ匕合物(a2)に対してポリフエノールイ匕合物(al)が反応する。末端を フエノール性水酸基として残存させる為には、ポリフ ノール化合物(al)中のフエノ ール性水酸基のモル数がポリイソシァネートイ匕合物(a2)中のイソシァネート基のモ ル数より大きくなる条件で反応させることが好ましい。合成上の安定性や硬化物の各 種性能を考慮すると、上記フエノール性水酸基のモル数とイソシァネート基のモル数 との比〔(al)中のフエノール性水酸基のモル数 Z (a2)中のイソシァネート基のモル 数〕が 1から 10の範囲が好ましぐより好ましくは 1. 05から 7の範囲である。
[0076] 得られるポリウレタン榭脂の安定性が良好となることから、反応はイソシァネート基が
ほぼ全て反応するまで行った方が好ましい。また、若干残存するイソシァネート基に 対して、アルコールやフエノールイ匕合物を添カ卩し反応させても良い。
[0077] ところで、前記一般式(13)で表される構造を更に有するポリウレタン榭脂は、例え ば、前記 2個以上のフエノール性水酸基を有するポリフエノールイ匕合物(al)と前記ポ リイソシァネートイ匕合物 (a2)とポリオール化合物 (a3)とを反応させる製造方法により 容易に得ることができる。
[0078] 前記ポリオール化合物(a3)としては、例えば、ポリオレフインポリオール、ポリエー テルポリオール、ポリカーボネートポリオール、ポリエステルポリオール、ポリシロキサ ンポリオール等が挙げられる。ポリオ一ルイ匕合物(a3)は単独あるいは 2種以上を併 用しても良い。また、ポリオ一ルイ匕合物(a3)としては、前記ポリオレフインポリオール、 ポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリオール、およ びポリシロキサンポリオール等の 2種以上の共重縮合構造を有するポリオール類も使 用しても良い。
[0079] 前記ポリオレフインポリオールとしては、例えば、ポリオレフイン構造やポリジェン構 造を有するポリオール化合物等が挙げられる。具体的には、例えば、ポリエチレン系 ポリオール、ポリプロピレン系ポリオール、ポリブタジエンポリオール、水素添加ポリブ タジエンポリオール、ポリイソプレンポリオール、および水素添加ポリイソプレンポリオ ール等が挙げられる。なかでもポリブタジエンポリオールおよび Zまたは水素添加ポ リブタジエンポリオールが好ましぐさらにそのなかでも水素添加ポリブタジエンポリオ ールがより好ましく、ポリオレフインジオールが特に好まし!/、。
また、前記ポリオレフインポリオールの脂肪族構造部分の数平均分子量は 300〜6
, 000の範囲が好ましい。
[0080] 前記ポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピ レングリコール、ポリテトラメチレングリコール、ポリブチレンダリコール等のアルキレン エーテルポリオールやこれらポリアルキレンポリオールの共重合体が挙げられる。ま た、単独で用いても 2種類以上併用しても良い。
[0081] 前記ポリカーボネートポリオールとしては、例えば、プロピレンジオール、ブタンジォ ール、ペンタンジオール、へキサンジオール、メチルペンタンジオール、シクロへキサ
ンジメタノール等から得られるポリアルキレンカーボネートポリオールやビスフエノール
Aやビスフエノール F, S等のアルキレンオキサイド付加ジオール等から得られるポリ カーボネートポリオールやこれらの共重合体等が挙げられる。
[0082] 前記ポリエステルポリオールとしては、例えば、アルキレンジオールと、多価カルボ ン酸とのエステル化物、多価カルボン酸のアルキルエステルとのエステル交換反応 物、および ε力プロラタトン系ポリラタトンポリオール等のポリラタトンポリオール等が挙 げられる。
[0083] 前記ポリシロキサンポリオールとしては、例えば、ジメチルポリシロキサンポリオール やメチルフエ-ルポリシロキサンポリオール等が挙げられる。
[0084] 本発明で用いるポリオ一ルイ匕合物(a3)としては、特に誘電特性等を向上させたい 場合は、ポリオレフインポリオールやポリシロキサンポリオールが好ましぐ物性と耐加 水分解性とを向上させたい場合は、ポリカーボネートポリオールが好ましい。
[0085] 本発明で用いるポリオ一ルイ匕合物(a3)としては、水酸基を 1. 5〜4個有するポリオ 一ルイ匕合物が合成しやすいので好ましぐそのなかでも水酸基を 2個有するポリオ一 ル化合物、つまりジオール化合物がより好ましい。
[0086] 前記ジオール化合物の中でも、ポリオレフインジオール、ポリエーテルジオール、ポ リカーボネートジオール、ポリエステルジオール、およびポリシロキサンジオールから なる群力 選ばれる 1種以上のポリオ一ルイ匕合物がより好ましい。
[0087] また、前記ポリオール化合物(a3)としては、十分な伸度が得られ、且つ、強度も強 い塗膜が得られることから、数平均分子量 300〜5, 000のポリオール化合物が好ま しく、数平均分子量 500〜3, 000力より好まし!/ヽ。
ポリオール化合物(a3)の Tgは、 0°C以下であることが硬化物の伸度や柔軟性を高 く設計できる点で好ましぐ 0〜― 150°Cがより好ましい。
[0088] 本発明で用いるポリウレタン榭脂 (A)として前記一般式(13)で表される構造を更に 有するポリウレタン榭脂を調製する際には、ポリイソシァネートイ匕合物 (a2)に対してポ リフエノール化合物(al)とポリオール化合物(a3)とがおのおの反応する。末端をフエ ノール性水酸基として残存させる為には、ポリフ ノール化合物(al)中のフ ノール 性水酸基のモル数 (m (al)モル)とポリオール化合物(a3)中のアルコール性水酸基
のモル数(m (a3)モル)との合計モル量が、ポリイソシァネート化合物(a2)中のイソシ ァネート基のモル数 (m (a2)モル)より大きくなる条件で反応させることが好ま 、。合 成上の安定性や硬化物の各種性能を考慮すると、 {m (al) +m (a3) }Zm (a2)が 1 から 10の範囲であり、より好ましくは 1. 1から 7の範囲である。また m (al)と m (a3)と の合計の重量に対して m (al)および m (a3)はおのおの 5重量%以上存在して!/、る ことがより好ましぐ 10%以上存在して 、ることがより好まし 、。
[0089] 本発明で用いるウレタン榭脂 (A)の製造方法において、有機溶剤を使用すると均 一な反応を進行できるため好ましい。ここで有機溶剤は、系中にあら力じめ存在させ てから反応を行っても、途中で導入してもよい。また、適切な反応速度を維持するた めには、系中の有機溶剤の割合は、反応系の 80重量%以下であるが好ましぐ 10 〜70重量%であることがより好ましい。力かる有機溶剤としては、原料成分としてイソ シァネート基を含有する化合物を使用するため、水酸基ゃァミノ基等の活性プロトン を有しな 、非プロトン性極性有機溶剤が好まし 、。
[0090] 前記非プロトン性極性有機溶剤としては、例えば、ジメチルホルムアミド、ジメチルァ セトアミド、 N—メチルー 2—ピロリドン、ジメチルスルフォキシド、スルホラン、および γ —プチ口ラタトンなどの極性有機溶媒を使用することができる。また、上記溶媒以外に 、溶解可能であれば、エーテル系溶剤、エステル系溶剤、ケトン系溶剤、および石油 系溶剤等を使用しても良い。また、各種溶剤を混合して使用しても良い。
[0091] 力かるエーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、ェ チレングリコールジェチノレエ一テル、エチレングリコールジブチノレエーテノレ等のェチ レングリコールジアルキルエーテル類;ジエチレングリコールジメチルエーテル、ジェ チレングリコールジェチノレエ一テル、ジエチレングリコールジブチノレエ一テル、トリエ チレングリコールジメチルエーテル、トリエチレングリコールジェチルエーテル、トリエ チレングリコールジブチルエーテル等のポリエチレングリコールジアルキルエーテル 類;エチレングリコーノレモノメチノレエーテノレアセテート、エチレングリコーノレモノェチノレ エーテノレアセテート、エチレングリコールモノブチルエーテルアセテート等のエチレン グリコールモノアルキルエーテルアセテート類;ジエチレングリコールモノメチルエー テルアセテート、ジエチレングリコールモノェチルエーテルアセテート、ジエチレングリ
コーノレモノブチノレエーテノレアセテート、トリエチレングリコーノレモノメチノレエーテノレア セテート、トリエチレングリコールモノェチルエーテルアセテート、トリエチレングリコー ルモノブチルエーテルアセテート等のポリエチレングリコールモノアルキルエーテル アセテート類;
[0092] プロピレングリコールジメチルエーテル、プロピレングリコールジェチルエーテル、プ ロピレングリコールジブチルエーテル等のプロピレングリコールジアルキルエーテル 類;ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジェチルエー テル、ジプロピレングリコールジブチノレエ一テル、トリプロピレングリコールジメチノレエ 一テル、トリプロピレングリコールジェチルエーテル、トリプロピレングリコーノレジブチ ルエーテル等のポリプロピレングリコールジアルキルエーテル類;プロピレングリコー ノレモノメチノレエーテノレアセテート、プロピレングリコーノレモノェチノレエーテノレアセテー ト、プロピレングリコーノレモノブチノレエーテノレアセテート等のプロピレングリコーノレモノ アルキルエーテルアセテート類;ジプロピレングリコールモノメチルエーテルァセテ一 ト、ジプロピレングリコーノレモノェチノレエーテノレアセテート、ジプロピレングリコーノレモ ノブチルエーテルアセテート、トリプロピレングリコールモノメチルエーテルアセテート 、トリプロピレングリコーノレモノェチノレエーテノレアセテート、トリプロピレングリコーノレモ ノブチルエーテルアセテート等のポリプロピレングリコールモノアルキルエーテルァセ テート類;低分子のエチレン プロピレン共重合体等の共重合ポリエーテルグリコー ルのジアルキルエーテル類;共重合ポリエーテルグリコールのモノアセテートモノアル キルエーテル類;共重合ポリエーテルグリコールのアルキルエステル類;および共重 合ポリエーテルグリコールのモノアルキルエステルモノアルキルエーテル類等が挙げ られる。
[0093] エステル系溶剤としては、例えば、酢酸ェチルおよび酢酸ブチル等が挙げられる。
ケトン系溶剤としては、アセトン、メチルェチルケトン、およびシクロへキサノン等が 挙げられる。
また、石油系溶剤としては、トルエン、キシレンやその他高沸点の芳香族溶剤等や 、へキサン、シクロへキサン等の脂肪族および脂環族溶剤を使用することも可能であ る。
[0094] 本発明で用いるポリウレタン榭脂 (A)の重量平均分子量は、溶剤溶解性が良好な 熱硬化性榭脂組成物が得られ、且つ、種々の物性に優れる硬化塗膜が得られること 力ら、 800〜50, 000力好まし <、 1, 000〜20, 000力 ^より好まし!/ヽ。
[0095] 尚、本発明で用いるポリウレタン榭脂 (A)およびポリイミド榭脂 (C)等の樹脂の重量 平均分子量の測定は、ゲルパーミエーシヨンクロマトグラフを用い、下記の条件でポリ スチレン換算により求めた。
測定装置 ; 東ソー株式会社製 HLC-8220GPC
カラム ; 東ソー株式会社製ガードカラム SUPER HZ— H
+東ソー株式会社製 TSKgel SUPER HZm— mを 4本
検出器 ; RI (示差屈折計)
データ処理:東ソー株式会社製 GPC-8020
測定条件: カラム温度 40°C
溶媒 テトラヒドロフラン
流速 0. 35ml/ min
標準 ;ポリスチレン
試料 ;榭脂固形分換算で 0. 2重量%のテトラヒドロフラン溶液をマイクロフィル ターでろ過したもの(100ml)
[0096] 本発明で用いるポリウレタン榭脂(A)のフ ノール性水酸基当量は、 400〜50, 00 0が好ましい。
[0097] 本発明で用いる熱硬化性榭脂組成物中のポリイミド榭脂 (C)は、前記一般式(1)お よび Zまたは前記一般式(2)で表されるようにウレタン結合としてイソシァネート基と フエノール性水酸基とが連結した構造を有する。ポリイミド榭脂 (C)としては、なかでも 有機溶剤に溶解するポリイミド榭脂が取り扱 、易 、ことから好ま 、。
[0098] 前記一般式(1)で表される構造を有するポリイミド榭脂(C)としては、例えば、前記 一般式 (3)で表される構造を有するポリイミド榭脂等が挙げられる。
[0099] また、前記一般式(2)で表される構造を有するポリイミド榭脂(C)としては、例えば、 前記一般式 (4)で表される構造を有するポリイミド榭脂等が挙げられる。
[0100] 前記一般式(3)及び一般式 (4)中の Rxおよび Rxは同一でも良いし異なっていて
も良い。
[0101] ここで、前記一般式(3)において R および
xl Zまたは R が前記一般式(15)の に
x2
該当すると、一般式 (15)に一般式 (1)が結合した構造を有した分岐状ポリイミド榭脂 となる。上記一般式 (4)において R が前記一般式(15)の R5に該当すると、一般式(
xl
15)に一般式 (2)が結合した構造を有した分岐状ポリイミド榭脂となる。
[0102] 本発明で用いるポリイミド榭脂 (C)が有する一般式(1)および Zまたは一般式 (2) 中の Xとしては、例えば、前記一般式(5)、(6)、(7)、(9)、および(10)で表される構 造等が挙げられる。ここで、一般式(5)中の R1及び R2、一般式(7)中の R3としては、 例えば前記ポリウレタン榭脂 (A)
R2及び R3等が挙げられる。
[0103] 本発明で用いるポリイミド榭脂(C)としては、一般式(1)及び(2)の Xとして前記一 般式 (5)、(6)、(7)及び (9)からなる群力 選ばれる一種以上の構造を有するポリイ ミド榭脂が耐熱性に優れる硬化物が得られる硬化性榭脂組成物が得られることから 好ましぐ中でも、一般式 (5)および一般式 (6)で表される構造がより好ましい。特に 本発明で用いるポリイミド榭脂 (C)が後述するように硬化物に柔軟性を付与する構造 を有する、例えば、前記一般式(13)等の構造を有するポリイミド榭脂の場合、一般式 (1)や一般式 (2)中の Xとしては、一般式 (6)で示される構造が好ましい。
[0104] 前記したとおり一般式(5)や一般式 (6)で表される構造中の R1は単結合あるいは 2 価の連結基である。 2価の連結基としては、例えば、前記構造式(la)、前記構造式( lb)、前記構造式 (lc)、前記構造式 (Id)、前記構造式 (le)、前記構造式 (lf)、前記構 造式 (lg)、前記構造式 (lh)、および前記構造式 (10等が挙げられる。
[0105] 一般式 (5)や一般式 (6)で表される構造中の R1としては前記一般式(lb)、一般式
(lc)、および一般式(Id)で示される構造が溶解性、相溶性に優れる熱硬化性榭脂 組成物が得られ、また、ポリイミド榭脂 (C)を得る際の合成もしゃすいことから好ましい 。また、前記 R2の中でも、水素原子およびメチル基が好ましい。また、前記一般式 (6 )中の R1の中でも前記一般式(11)で示される構造が耐熱性に優れる熱硬化性ポリイ ミド榭脂組成物が得られることから好まし 、。
[0106] 本発明で用いるポリイミド榭脂 (C)としては、前記一般式(1)で表される構造および Zまたは一般式 (2)で表される構造を有すれば良!、が、中でも前記一般式( 1)で表
される構造および一般式 (2)で表される構造を有するポリイミド榭脂が硬化性が良好 な熱硬化性榭脂組成物が得られることから好ましい。ここで、前記一般式(1)で示さ れる構造及び前記一般式(2)で示される構造中の Xは同一でも良 ヽし異なって!/ヽて も良い。
[0107] 前記一般式 (6)で表される構造を有するポリイミド榭脂としては、例えば、以下の構 造を有するポリイミド榭脂が挙げられる。
[0108] [化 22]
[0109] Rは、同一であっても異なっていても良く、上記と同じである。 Rxは、ポリイソシァ ネートイ匕合物から二つのイソシァネート基を除いた残基を示す。 R
9はテトラカルボン 酸無水物から酸無水物基を除いた残基構造を示す。 sおよび tは、それぞれ 1〜10の 整数であり、おのおの括られた sおよび tの各単位は、ランダムにつながつている。そ して l) sが 1の場合は、一般式(2)に該当する末端にポリフエノール構造が存在する 形態となり、 2) sが 2の場合は、一般式(1)に該当する分子主鎖中にポリフエノール構 造が存在する形態となり、そして 3) sが 3以上の場合は、ポリイミド榭脂の構造が分岐 の形態となる。更に sが上記 1, 2および 3以上の形態が分子内に同時に存在してい ても良い。
[0110] 前記一般式 (6— 2)において、 sが 1の場合の代表的な構造として、例えば以下一 般式 (6— 3)に示される構造を例示できる。
[0111] [化 23]
6
示す。 Rは、水素原子または下記一般式 (6—4)で示される構造であり、 Rは、一般
7 8 式(6—4)で示される構造である。 uは、 1〜: L00の整数である。
(式中 Rは、直接結合あるいは 2価の連結基であり、 Rは同一でも異なっていても良
1 2
ぐ水素原子または炭素原子数 1〜18のアルキル基を示す。 Vは 0〜8の整数である
[0114] 前記一般式 (6— 2)において、 sが 2の場合の代表的な構造として、例えば以下一 般式 (6— 5)に示される構造を例示できる。
[0115] [化 25]
--… ( 6-5 )
[0116] 一般式(6— 5)において R 、 R、 R、 R、および Rは上記と同じである。 R は、下
XI 6 7 8 9 10 記一般式 (6— 6)で表される構造を有する。
[0118] 一般式(6— 6)において R1および R2は上記と同じである。 Wは 0〜8の整数である
[0119] また、一般式(6— 2)、 (6- 3) , (6-4) , (6— 5)、および(6— 6)において、ポリイ ミド榭脂合成時にテトラカルボン酸二無水物を使用した場合には、イミド結合を示す 部位は下記一般式 (6— 7)で表される構造を有し、トリカルボン酸無水物を使用した 場合は、下記一般式 (6— 8)または一般式 (6— 9)で表される構造を有する。一般式
(6— 7)、一般式 (6— 8)および一般式 (6— 9)で表される構造は、おのおの単独でも 混在していても良い。
[0120] [化 27]
0 o
― N'ヽ Rく: N―
0 O -…- ( 6-7 )
[0121] [化 28]
[0123] Rはテトラカルボン酸無水物から酸無水物基を除いた残基構造を示す。 R はトリ
9 11 カルボン酸無水物力 酸無水物基とカルボキシル基とを除いた残基構造を示す。 ポリイミド榭脂 (C)として前記一般式 (1)で表される構造と一般式 (2)で表される構 造とを有するポリイミド榭脂の具体例としては、例えば、前記一般式(12— 1)で表さ れる構造を有するポリイミド榭脂等を挙げることができる。 --(12-1)
一般式(12—1)にお!/、て X、 Rx3は上記と同じである。一般式( 12— 1)中の Aは一 般式(1)、一般式 (6— 7)、一般式 (6— 8)及び (6— 9)で示される構造力 なる群か ら選ばれる構造である力 全て一般式(1)であることはない。また、 nは 1〜: L00である 前記一般式 (3)及び一般式 (4)で示される構造を有するポリイミド榭脂中で Rx1お よび Rx2が 2官能のジイソシァネートイ匕合物から 2つのイソシァネート基を除いた残基
である場合は、前記一般式(12)で示される様な線状の構造を有するポリイミド榭脂と なる。また、 Rx1および Rx2が 3官能以上の多官能のイソシァネートイ匕合物から 2つの イソシァネート基を除 、た残基である構造をとる場合は、分岐状の構造を有するポリ イミド榭脂となる。
[0125] 前記一般式 (2)で表される構造を有するポリイミド榭脂 (C)は末端にフ ノール性 水酸基を有しており、後述するエポキシ榭脂 (B)と反応し硬化することが可能である。 一般のフエノールイ匕合物とエポキシ榭脂との硬化物では、ガラス転移温度 (Tg)ゃ耐 熱性、誘電特性、機械物性、および線膨張等の面で限界があるが、前記一般式 (2) で表される構造を有するポリイミド榭脂は榭脂骨格にイミド構造を有しているために従 来の技術では得られな ヽ高 、性能を有する硬化物を得ることが可能である。
[0126] 更に、ポリイミド榭脂 (C)は一般式(1)および Zまたは一般式 (2)で示される様にフ ェノール性水酸基とイソシァネート基とからなるウレタン結合の構造を有する。一般に 、フエノール性水酸基とイソシァネート基とによるウレタン結合は解離温度が低、為、 フエノールやタレゾール等の低分子モノフエノール化合物など力 イソシァネート基の ブロック剤として使用されることがある。し力しながらこうしたブロック剤は、塗膜や成型 物の硬化反応において解離して揮発成分となり、気泡ゃボイドを発生させるため好ま しいものではない。本発明では、 2価以上のポリフエノール化合物を用いてフエノール 性水酸基の導入を行うので、硬化時の高温状況下で樹脂から解離しても揮発せず 系内に残存する為、ポリイミド榭脂(C)は積極的にエポキシ榭脂との架橋反応してよ り硬化する。さらにイソシァネート基は、このフエノールーエポキシ間の反応により生 成する水酸基とさらにウレタン化反応を行い、分子の新たな架橋構造の構築を行う。 これにより、誘電特性に不利な水酸基をブロックすると考えられる。つまり、生成する ウレタン結合により、榭脂骨格である剛直なイミド構造を結びつけるネットワークが形 成され良好な耐熱性あるいは機械物性を発現すると本発明者らは考えている。
[0127] また、本発明で用いるポリイミド榭脂 (C)として前記一般式 (2)で表される構造を有 するポリイミド榭脂を使用した場合、末端のフエノール性水酸基もエポキシ榭脂と反 応し硬化する。
[0128] 本発明の熱硬化性榭脂組成物に用いるポリイミド榭脂 (C)として、更に前記一般式
(13)で示される構造を有するポリイミド榭脂を用いることにより、伸度が大きぐ柔軟 性に優れる硬化物が得られる。その為、例えば、ポリイミド榭脂(C)の中でも、前記一 般式( 13)で示される構造を有するポリイミド榭脂を含有する熱硬化性榭脂組成物は 、フレキシブル基板用の絶縁層用の榭脂組成物として好ましく用いることができる。
[0129] 塗膜の柔軟性に加えて特に誘電特性等を向上させたい場合は、前記一般式 (13) 中の Yは 1分子中に少なくとも 2個のアルコール性水酸基を有するポリオレフインポリ オールから 2つの水酸基を除 、た残基であることが好ま 、。物性と耐加水分解性と を向上させたい場合は、 1分子中に少なくとも 2個のアルコール性水酸基を有するポ リカーボネートポリオールから 2つの水酸基を除 、た残基が好まし 、。
[0130] 前記一般式(13)中の Yとしては、硬化物の伸度が大きぐ且つ、柔軟性を保有させ ること力 Sできること力ら、その数平均分子量は 300〜5, 000力 S好ましく、 500〜3, 00 0がより好ましい。また、一般式(13)中の Yのガラス転移温度 (Tg)としては 0°C以下 が好ましぐ 0〜― 150°Cがより好ましい。
[0131] 前記一般式(1)および Zまたは一般式 (2)、および一般式(13)で表される構造を 有するポリイミド榭脂としては、例えば、前記一般式(14 1)で表される構造を有す るポリイミド榭脂等が挙げられる。 --(14-1)
一般式(14 1)において Βは一般式(1)、 (6— 7)、(6— 8)、 (6— 9)及び一般式 ( 13)で示される構造力 なる群力 選ばれる構造であるが、必ず一般式 (6— 7)、 (6 -8) , (6- 9)からなる群から選ばれる一種以上の構造と一般式( 13)で示される構 造を有する。また、 mは 1〜: L00である。
[0132] 本発明で用いるポリイミド榭脂 (C)としては、前記一般式(1)および Zまたは一般式
(2)で表される構造を有すれば良!、が、中でも前記一般式(1)で表される構造と一 般式 (2)で表される構造とを有するポリイミド榭脂が硬化性、耐熱性に優れる硬化物 が得られることからより好まし 、。
また、前記一般式(13)で表される構造を有するポリイミド榭脂の場合、前記一般式 (1)および Zまたは一般式 (2)で表される構造および一般式(13)で表される構造を
有すれば良いが、中でも前記一般式(1)で表される構造、一般式 (2)で表される構 造、および一般式(13)で表される構造をすベて有するポリイミド榭脂が柔軟性に優 れながら耐熱性に優れる硬化物が得られることからより好ましい。ここで、前記一般式 (1)で示される構造及び前記一般式(2)で示される構造中の Xは同一でも良いし異 なっていても良い。
[0133] 本発明で用いるポリイミド榭脂 (C)としては、前記一般式(15)で示される構造にて 分岐しているポリイミド榭脂が、他の榭脂成分との相溶性、溶剤溶解性の向上や得ら れる硬化塗膜の耐熱性が良好なことから好まし 、。
[0134] また、本発明で用いるポリイミド榭脂 (C)は下記一般式(16)、下記一般式(17— 1) または下記一般式(17— 2)で示されるイミド結合を有するポリイミド榭脂が好ま 、。
[0135] [化 30]
[0136] [化 31]
[0137] 一般式(16)式中の Rはテトラカルボン酸無水物から酸無水物基を除いた残基構
9
造を示す。一般式(17— 1)および(17— 2)中の R はトリカルボン酸無水物から酸無
11
水物基とカルボキシル基とを除!ヽた残基構造を示す。
[0138] 上述したとおり、前記 Rは、テトラカルボン酸無水物の酸無水物基を除いた残基で
9
ある。こうした構造としては、例えば以下の構造が例示される。
[0140] 上述したとおり、前記 R は、トリカルボン酸無水物から酸無水物基とカルボキシル
11
基を除いた残基構造である。こうした構造としては、例えば以下の構造が例示される
[0141] [化 33]
[0142] 前記一般式(16)で表される構造を有するポリイミド樹脂としては、例えば、下記- 般式(18)で表される構造を有するポリイミド樹脂等が挙げられる。
[0143] [化 34]
1および Rx
2は同一でも異なっていても良ぐポリイソシァネートイ匕合物 から二つのイソシァネート基を除いた残基を示す。 Rはテトラカルボン酸無水物から
9
酸無水物基を除いた残基構造を示す。 )
[0144] 上記一般式(18)において Rxおよび xが前記一般式(15)の Rに該当
1 Zまたは R
2 5 すると、一般式 (15)に一般式 (18)が結合した構造を有した分岐状ポリイミド榭脂と なる。
[0145] 前記一般式(17— 1)で表される構造を有するポリイミド榭脂としては、例えば、下記 一般式( 19 1)、一般式( 19 2)で表される構造を有するポリイミド榭脂等が挙げら れる。
[0146]
(式中 Rx Rx及び R は上記と同じである。)
1、 2 11
[0147] 上記一般式(19)において Rxおよび Zまたは Rxが前記一般式(15)の Rに該当
1 2 5 すると、一般式 (15)に一般式 (19)が結合した構造を有した分岐状ポリイミド榭脂と なる。
[0148] 本発明で用いるポリイミド榭脂 (B)としては、前記一般式(15)で示される構造にて 分岐しているポリイミド榭脂が、他の榭脂成分との相溶性、溶剤溶解性の向上や得ら れる硬化塗膜の耐熱性が良好なことから好まし 、。
[0149] 前記一般式 (15)中の R5としては、例えば、芳香族系の残基構造、脂肪属系の残 基構造、脂環族系等の残基構造等が挙げられる。中でも、炭素原子数が 4から 13の ものを好ましく使用することができる。 R5の構造は、結晶化の防止や溶解性向上の面 から 2種以上の構造を併用したほうが好ましい。特に芳香族系の残基構造と脂肪族 あるいは脂環族の残基構造との併用が好まし 、。
[0150] 本発明で用いるポリイミド榭脂(C)は、例えば、 2個以上のフエノール性水酸基を有 するポリフエノール化合物(al)と、ポリイソシァネートイヒ合物(a2)と、酸無水物(a4)と を反応させる製造方法により容易に得ることができる。
[0151] 前記 2個以上のフエノール性水酸基を有するポリフエノールイ匕合物(al)としては、 例えば、前記ポリウレタン榭脂 (A)の調製に用いる化合物等を用いることができる。 尚、本発明で用いるポリイミド榭脂 (C)の調製に用いるポリフエノールイ匕合物 (al)とし て 2個のフエノール性水酸基を含有するポリフエノール化合物、つまり 2官能のポリフ ェノール化合物を使用する場合、例えば、ビスフエノール A、ビスフエノール F、および ビスフエノール S等のビスフエノール系化合物が好ましい。
また、 2個のフエノール性水酸基を含有するポリフエノールイ匕合物以外のポリフエノ ール化合物として 3官能以上のポリフエノール化合物、例えば、フエノールノボラック やクレゾ一ルノボラック、ノ-ルフエノールノボラック等のアルキルフエノールノボラック ゃザィロック型ポリフ ノール榭脂等も使用できる。更に、フ ノールやタレゾール等 の一官能性のフ ノールイ匕合物も本発明の効果を損なわない範囲で使用できる。
[0152] 前記ポリイソシァネートイ匕合物(a2)としては、例えば、前記ポリウレタン榭脂 (A)の 調製に用いる化合物等を用いることができる。
[0153] 本発明に用いるポリイミド榭脂 (C)が分岐構造をとると、溶剤溶解性や硬化剤等そ の他の榭脂成分との相溶性が向上するためより好ましい。かかる分岐の手法としては 、ポリイソシァネートイ匕合物(a2)として、例えば、前記ジイソシァネート化合物等のィ ソシァヌレート体であるイソシァヌレート環を有するポリイソシァネートイ匕合物の単独、 あるいはこうしたポリイソシァネートイ匕合物と前記ジイソシァネートイ匕合物との混合物を 使用することが好ましい。
[0154] 前記イソシァヌレート環を有するポリイソシァネートイ匕合物は、例えば、前記ポリウレ タン榭脂 (A)の調製に用いることができる化合物等を用いることが挙げられる。
[0155] ポリイソシァネート化合物(a2)として、ジイソシァネートイ匕合物とイソシァヌレート環 を有するジイソシァネートイ匕合物とを併用する場合、ジイソシァネートイ匕合物としての 芳香族ジイソシァネートと、イソシァヌレート型ポリイソシァネートとしての脂肪族ジイソ シァネートのイソシァヌレート型ポリイソシァネートおよび Zまたは脂環式ジイソシァネ
ートのイソシァヌレート型ポリイソシァネートとを含有する混合物を用いるのが好ましい
[0156] 本発明で用いるポリイミド榭脂 (C)を調製する際に、前記ポリイソシァネートイ匕合物( a2)として脂肪族ジイソシァネート化合物を用いると、溶解性に優れる熱硬化性榭脂 組成物が得られ、且つ、電気特性が良好な硬化塗膜が得られることからより好ましい
[0157] 本発明で用いるポリイミド榭脂 (C)を調製する際に用いるポリイソシァネートイ匕合物( a2)は、溶剤溶解性が良好な熱硬化性榭脂組成物が得られることから、 2種以上のポ リイソシァネートイ匕合物を併用することが好ましい。
[0158] さらには、耐熱性に優れる硬化塗膜が得られることから、前記イソシァヌレート体を 併用することが好ましい。イソシァヌレート体を併用する場合、その使用量は、全ポリ イソシァネートイ匕合物 (a2)量の 70重量%以下に設定することが榭脂の高分子量ィ匕 やゲルィ匕を防ぐ意味で好まし ヽ。
[0159] 前記酸無水物(a4)としては、例えば、 1個の酸無水物基を有する酸無水物や 2個 の酸無水物基を有する酸無水物等が挙げられる。前記 1個の酸無水物基を有する酸 無水物としては、例えば、無水トリメリット酸、ナフタレン— 1, 2, 4 トリカルボン酸無 水物等の芳香族トリカルボン酸無水物等が挙げられる。
[0160] 前記 2個の酸無水物基を有する酸無水物としては、例えば、ピロメリット酸二無水物 、ベンゾフエノン 3, 3' , 4, 4' ーテトラカルボン酸二無水物、ジフエ-ルエーテル - 3, 3' , 4, 4' ーテトラカルボン酸二無水物、ベンゼン 1, 2, 3, 4ーテトラカル ボン酸二無水物、ビフエ-ルー 3, 3' , 4, 4' ーテトラカルボン酸二無水物、ビフエ 二ルー 2, 2' , 3, 3' —テトラカルボン酸二無水物、ナフタレン 2, 3, 6, 7—テトラ カルボン酸二無水物、ナフタレン 1, 2, 4, 5—テトラカルボン酸二無水物、ナフタ レン 1, 4, 5, 8—テトラカルボン酸二無水物、デカヒドロナフタレン 1, 4, 5, 8— テトラカルボン酸二無水物、 4, 8 ジメチルー 1, 2, 3, 5, 6, 7 へキサヒドロナフタ レン一 1, 2, 5, 6—テトラカルボン酸二無水物、 2, 6 ジクロロナフタレン一 1 , 4, 5 , 8—テトラカルボン酸二無水物、 2, 7 ジクロロナフタレン 1, 4, 5, 8—テトラカル ボン酸二無水物、 2, 3, 6, 7—テトラクロロナフタレン 1, 4, 5, 8—テトラカルボン
酸二無水物、フエナントレン 1, 3, 9, 10—テトラカルボン酸二無水物、ベリレン 3, 4, 9, 10—テトラカルボン酸二無水物、ビス(2, 3 ジカルボキシフエ-ル)メタン 二無水物、ビス(3, 4 ジカルボキシフエ-ル)メタン二無水物、 1, 1 ビス(2, 3— ジカルボキシフエ-ル)エタンニ無水物、 1, 1 ビス(3, 4 ジカルボキシフエ-ル) エタンニ無水物、 2, 2 ビス(2, 3 ジカルボキシフエ-ル)プロパン二無水物、 2, 3 ビス(3, 4—ジカルボキシフエ-ル)プロパン二無水物、ビス(3, 4—ジカルボキシ フエ-ル)スルホン二無水物、ビス(3, 4—ジカルボキシフエ-ル)エーテル二無水物
[0161] エチレングリコールビスアンヒドロトリメリテート、プロピレングリコールビスアンヒドロトリ メリテート、ブタンジオールビスアンヒドロトリメリテート、へキサメチレングリコールビス アンヒドロトリメリテート、ポリエチレングリコールビスアンヒドロトリメリテート、ポリプロピ レンレングリコールビスアンヒドロトリメリテートやその他アルキレングリコールビスアンヒ ドロキシトリメリテート等が挙げられる。
[0162] 前記酸無水物(a4)のなかでも、ピロメリット酸二無水物、ベンゾフヱノン 3, 3' , 4, 4' ーテトラカルボン酸二無水物、ジフエ-ルエーテル 3, 3' , 4, 4' —テトラ カルボン酸二無水物、ビフエ-ルー 3, 3' , 4, 4' ーテトラカルボン酸二無水物、ビ フエ-ルー 2, 2' , 3, 3' —テトラカルボン酸二無水物、およびエチレングリコール ビスアンヒドロトリメリテートが好まし 、。
[0163] 酸無水物(a4)としては、これらの 1種又は 2種以上を用いることが可能である。また 、芳香族テトラカルボン酸二酸無水物に芳香族トリカルボン酸無水物や芳香族テトラ カルボン酸一酸無水物を混合して使用してもよ!、。
[0164] 先に説明したように、本発明の熱硬化性榭脂組成物に用いるポリイミド榭脂 (C)は 、 2個以上のフエノール性水酸基を有するポリフエノールイ匕合物(al)と、ポリイソシァ ネート化合物 (a2)と、酸無水物 (a4)とを反応させる製造方法により得ることができる
[0165] 上記ポリイミド榭脂の製造方法では、ポリイソシァネートイ匕合物(a2)に対してポリフ ノール化合物(al)と酸無水物(a4)とが反応する。末端をフ ノール性水酸基とし て残存させる為に、ポリフエノール化合物(al)中のフエノール性水酸基のモル数と酸
無水物(a4)中の酸無水物基のモル数との合計モル数力 ポリイソシァネート化合物 (a2)中のイソシァネート基のモル数より大きくなる条件で反応させることが好ましい。 合成上の安定性や硬化物の各種性能の面で、〔{ (al)中のフエノール性水酸基のモ ル数 + (a4)中の酸無水物基のモル数 }Z(a2)中のイソシァネート基のモル数〕が、 1から 10の範囲が好ましぐより好ましくは 1. 1から 7の範囲である。またポリフエノー ル化合物(al)の重量と酸無水物(a4)の重量との合計重量に対して(al)および (a4 )はおのおの 5%以上存在していることが好ましぐさらに 10%以上存在していること 力 り好ましい。
[0166] 本発明で用いるポリイミド榭脂は 1段反応で製造を行っても、 2段以上の反応工程 を有する反応で製造を行っても良 ヽ。
1段反応で製造を行う場合は、例えば、反応容器にポリフエノールイ匕合物(al)とポ リイソシァネートイ匕合物 (a2)と酸無水物 (a4)等との原料を仕込み、攪拌を行 、なが ら昇温することで脱炭酸させながら反応を進行させる。
2段以上の反応工程を有する反応で製造を行う場合は、例えば、ポリイソシァネート 化合物(a2)存在下に酸無水物(a4)を仕込んで反応中あるいは反応後に残存する イソシァネート基とポリフエノール化合物(al)のフエノール性水酸基とを反応させるこ とで製造が可能である。また、ポリフエノールイ匕合物(al)とポリイソシァネートイ匕合物( a2)とを仕込んで、反応中あるいは反応後、酸無水物(a4)を仕込むことにより反応を 行うことちでさる。
[0167] 更には、ポリフ ノールイ匕合物(al)存在下に酸無水物(a4)を仕込んで反応中ある いは反応後に残存するイソシァネート基と酸無水物(a4)とを反応させても良い。
[0168] 反応温度としては、 50°Cから 250°Cの範囲で行うことが可能であり、反応速度と副 反応防止の面から 70°Cから 180°Cの温度で行うことが好ましい。
[0169] 本発明で用いるポリイミド榭脂の製造方法では前記 2個以上のフエノール性水酸基 を有するポリフ ノールイ匕合物(al)と、ポリイソシァネートイ匕合物(a2)と、酸無水物(a 4)とを、 (al) , (a2)および (a4)の合計重量に対してそれぞれ 5〜50重量%、 20〜 70重量%、および 20〜70重量%となるように用いて反応させるのが好ましい。
[0170] 反応は、イソシァネート基がほぼ全て反応するまで行った方が得られるポリイミド榭
脂の安定性が良好となることから好ましい。また、若干残存するイソシァネート基に対 して、アルコールやフエノール化合物を添加し反応させても良 、。
[0171] ところで、ポリイミド榭脂 (C)のなかでも、前記一般式(13)で表される構造を更に有 するポリイミド榭脂は、例えば、前記 2個以上のフエノール性水酸基を有するポリフエ ノール化合物(al)と、前記ポリイソシァネートイヒ合物(a2)と、、酸無水物(a4)と、さら にはポリオール化合物(a3)とを反応させる方法により容易に得ることができる。具体 的には、例えば、以下の方法等が挙げられる。
[0172] 1.ポリイソシァネートイ匕合物(a2)存在下に酸無水物(a4)を仕込んで (混合して)ィ ミドィ匕反応中あるいはイミド化反応後に、残存するイソシァネート基とポリフエノールイ匕 合物(al)のフ ノール性水酸基とポリオール化合物(a3)のアルコール性水酸基とを 反応させて、ウレタン化反応を行う方法
[0173] 2.ポリフエノール化合物(al)とポリオール化合物(a3)とポリイソシァネートイ匕合物( a2)とを仕込んでウレタンィ匕反応中あるいはウレタンィ匕反応後、残存するイソシァネー ト基と酸無水物 (a4)の酸無水物基とを反応させてイミド化反応を行う方法
[0174] 3.ポリフエノール化合物(al)および Zまたはポリオ一ルイ匕合物(a3)存在下に酸 無水物(a4)を仕込んで (混合して)、反応中あるいは反応後にポリイソシァネートイ匕 合物(a2)を添加してウレタンィ匕反応とイミド化反応を行う方法。
[0175] 4.ポリイソシァネートイ匕合物(a2)とポリオール化合物(a3)とを仕込んで (混合して) ウレタン化反応を行って、ポリフエノール化合物(al)を添加し更にウレタンィ匕反応さ せた後、更に酸無水物(a4)を添加し残存するイソシァネート基と酸無水物基とのイミ ド化反応を行う方法。
[0176] 5.ポリイソシァネートイ匕合物(a2)とポリオール化合物(a3)とを仕込んで (混合して) ウレタン化反応を行った後、ポリフエノール化合物(al)と酸無水物(a4)を添加し残 存するイソシァネート基と酸無水物基とのイミドィ匕反応及びポリイソシァネートイ匕合物( a2)とポリフエノール化合物(al)とのウレタン化反応を行う方法。
[0177] 6.ポリイソシァネートイ匕合物(a2)とポリオール化合物(a3)とを仕込んで (混合して) ウレタン化反応を行った後、酸無水物(a4)を添加し、イソシァネート基と酸無水物基 とのイミド化反応を行 ヽ、更にポリフエノール化合物(al)を添加し反応させる方法。
[0178] 前記製造方法の中でも 6.の方法が末端にポリフ ノールイ匕合物が存在する可能 性が高ぐエポキシ榭脂との硬化性を向上させることができることから好ましい。
[0179] 2個以上のフエノール性水酸基を有するポリフエノール化合物(al)とポリイソシァネ ート化合物(a2)とポリオール化合物(a3)と酸無水物(a4)とを反応させる際の反応温 度は 50°Cから 250°Cの範囲で行うことが可能であり、反応速度と副反応防止との面 力も 70°Cから 180°Cの温度で行うことが好ましい。
[0180] 上記製造方法では前記 2個以上のフエノール性水酸基を有するポリフエノールイ匕 合物(al)とポリイソシァネートイ匕合物(a2)とポリオール化合物(a3)と酸無水物(a4) とを、 (al) , (a2)、 (a3)及び (a4)の合計重量に対してそれぞれ 5〜50重量%、 10 〜70重量%、 10〜70重量%、および 10〜70重量%となるように用いて反応させる のが好ましい。
[0181] 反応は、イソシァネート基がほぼ全て反応するまで行った方が得られるポリイミド榭 脂の安定性が良好となることから好ましい。また、若干残存するイソシァネート基に対 して、アルコール、フエノール化合物、およびォキシム化合物等を添カ卩し反応させて も良い。
[0182] 前記ポリイミド榭脂の製造方法では、有機溶剤を使用すると、均一な反応を進行で きるため好ましい。有機溶剤としては、例えば、前記ポリウレタン榭脂の製造に用いる ことができる有機溶剤等が挙げられる。有機溶剤は、系中にあらかじめ存在させてか ら反応を行っても、途中で導入してもよい。また、この反応に際して適切な反応速度 を維持するために系中の有機溶剤の割合は、反応系の 80重量%以下であるが好ま しぐ 10〜70重量%であることがより好ましい。
[0183] 本発明で用いるポリイミド榭脂 (C)の重量平均分子量は、溶剤溶解性が良好な熱 硬化性榭脂組成物が得られ、且つ、種々の物性に優れる硬化塗膜が得られることか ら、 800〜50, 000力好まし <、 1, 000〜20, 000力 ^より好まし!/ヽ。
[0184] 本発明で用いるポリイミド榭脂(C)のフ ノール性水酸基当量は、 400〜10, 000 が好ましい。
[0185] 本発明で用いるエポキシ榭脂(B)は分子内に 2個以上のエポキシ基を有しているこ とが好ましい。こうしたエポキシ榭脂としては、例えば、ビスフエノール A型エポキシ榭
脂、ビスフエノール S型エポキシ榭脂、ビスフエノール F型エポキシ榭脂等のビスフエ ノール型エポキシ榭脂;フエノールノボラックエポキシ榭脂、クレゾ一ルノボラック型ェ ポキシ榭脂、ビスフエノール型ノボラック等のノボラック型エポキシ榭脂;ジシクロペン タジェンと各種フエノール類と反応させて得られる各種ジシクロペンタジェン変性フエ ノール榭脂のエポキシ化物; 2, 2' , 6, 6' —テトラメチルビフエノールのエポキシ化 物等のビフエニル型エポキシ榭脂;ナフタレン骨格を有するエポキシ榭脂;フルォレ ン骨格を有するエポキシ榭脂等の芳香族系エポキシ榭脂ゃこれら芳香族系エポキシ 榭脂の水素添カ卩物;ネオペンチルグリコールジグリシジルエーテル、 1, 6—へキサン ジオールジグリシジルエーテル等の脂肪族エポキシ榭脂; 3, 4—エポキシシクロへキ シルメチルー 3, 4—エポキシシクロへキサンカルボキシレート、ビス一(3, 4—ェポキ ヒシクロへキシル)アジペート等の脂環式エポキシ榭脂;トリグリシジルイソシァヌレート 等のごときへテロ環含有エポキシ榭脂等が挙げられる。中でも、芳香族系エポキシ榭 脂が、硬化塗膜の機会物性に優れる熱硬化性ポリウレタン榭脂組成物が得られるこ とから好ましい。
[0186] 前記ポリウレタン榭脂 (A)とエポキシ榭脂 (B)との配合量は、榭脂分の重量比として
(A)Z(B)が 1Z100から 50Z1の割合で使用することができ、さらに好ましくは、 1 Z10から 20Z1である。
また、前記ポリイミド榭脂 (C)とエポキシ榭脂 (B)との配合量は、榭脂分の重量比と して (C) / (B)が 1Z100から 50Z1の割合で使用することができ、さらに好ましくは 、 1Z10力も 20Z1である。
[0187] 本発明の熱硬化性榭脂組成物には、更に、前記ポリウレタン榭脂 (A)やポリイミド 榭脂 (C)が有するフ ノール性水酸基と反応する化合物を添加することができる。具 体的には、例えば、前記エポキシ榭脂(B)以外のエポキシィ匕合物、イソシァネートイ匕 合物、シリケート、およびアルコキシシラン化合物等が挙げられる。
[0188] 前記イソシァネートイ匕合物としては、例えば、芳香族系のイソシァネートイ匕合物、脂 肪族系のイソシァネートイ匕合物および脂環族系のイソシァネートイ匕合物等が使用で きる。好ましくは、 1分子中に 2個以上のイソシァネート基を有するポリイソシァネート 化合物が好ましい。また、ブロックイソシァネートイ匕合物も使用可能である。
[0189] 更に本発明の熱硬化性榭脂組成物にはポリエステル、ポリイミド榭脂、フエノキシ榭 脂、 PPS榭脂、 PPE榭脂、ポリアリレーン榭脂等のバインダー榭脂、フエノール榭脂 、メラミン榭脂、アルコキシシラン系硬化剤、多塩基酸無水物、シァネート化合物等の 硬化剤あるいは反応性ィ匕合物やメラミン、ジシアンジアミド、グアナミンやその誘導体 、イミダゾール類、アミン類、水酸基を 1個有するフエノール類、有機フォスフィン類、 ホスホ-ユウム塩類、 4級アンモ-ユウム塩類、光力チオン触媒等の硬化触媒や硬化 促進剤、さらにフィラー、その他添加剤等添加することも可能である。
[0190] また、上記硬化促進剤として、ウレタンィ匕触媒の併用が好ましい。力かるウレタンィ匕 触媒としては、例えば、 1, 8—ジァザビシクロ [5, 4, 0]ゥンデセン- 7 (以下 DBU)や その有機塩化合物、トリエチレンジァミン、ジブチルチンジアセテート、ジブチルチン ジラウレート等のジアルキル錫のアルキルエステル類、ビスマスのカルボキシレート等 挙げられる。
[0191] 本発明の熱硬化性榭脂組成物の調製法には、特に限定はないが各種成分を機械 的に混合しても、熱溶融により混合しても、溶剤に希釈してカゝら混合しても良い。
[0192] また、本発明の熱硬化性榭脂組成物は、更に必要に応じて、種々の充填材、有機 顔料、無機顔料、体質顔料、防鲭剤等を添加することができる。これらは単独でも 2 種以上を併用してもよい。
[0193] 前記充填材としては、例えば、硫酸バリウム、チタン酸バリウム、酸化けい素酸粉、 微粒状酸化けい素、シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸 化アルミニウム、水酸ィ匕アルムニゥム、雲母等が挙げられる。
[0194] 前記有機顔料としては、ァゾ顔料;フタロシアニン 'ブルー、フタロシアニン 'グリーン の如き銅フタロシアニン系顔料、キナクリドン系顔料等が挙げられる。
[0195] 前記無機顔料としては、例えば、黄鉛、ジンククロメート、モリブデート'オレンジの如 きクロム酸塩;紺青の如きフエロシアンィ匕物、酸化チタン、亜鉛華、ベンガラ、酸化鉄; 炭化クロムグリーンの如き金属酸ィ匕物、カドミウムイェロー、カドミウムレッド;硫ィ匕水銀 の如き金属硫化物、セレン化物;硫酸鉛の如き硫酸塩;群青の如き珪酸塩;炭酸塩、 コバルト.バイオレッド;マンガン紫の如き燐酸塩;アルミニウム粉、亜鉛末、真鍮粉、 マグネシウム粉、鉄粉、銅粉、ニッケル粉の如き金属粉;カーボンブラック等が挙げら
れる。
[0196] また、その他の着色、防鲭、体質顔料のいずれも使用することができる。これらは単 独でも 2種以上を併用してもよ ヽ。
[0197] 本発明の熱硬化性榭脂組成物は、有機系、無機 金属系のフィルム状基材ゃガラ スクロス、ポリアラミドクロス等の織物基材に通常、キャスト法、含浸、塗装等目的の方 法で塗工施行される。硬化温度は 80〜300°Cで、硬化時間は 20分間〜 5時間であ る。
実施例
[0198] 次に、本発明を実施例および比較例によりさらに具体的に説明する。以下におい て、部および「%」は特に断りのない限り、すべて「重量%」である。
[0199] 合成例 1〔ポリウレタン榭脂 (A)の製造〕
攪拌装置、温度計およびコンデンサーを付けたフラスコに、 γ プチ口ラタトン 57 gと、 BPF (ビスフエノール F) 80. 8g (0. 4モル)と、 TDI (トリレンジイソシァネート) 52 . 2g (0. 3モル)とを仕込み、攪拌を行いながら発熱に注意して 80°Cに昇温し、この 温度で 5時間反応させた。反応後、 γ—プチ口ラ外ンにて榭脂固形分濃度を 60% に調整し、 25°Cでの粘度が 180Pa' sの無色透明なポリウレタン榭脂 (A— 1)の溶液 を得た。
[0200] 得られたポリウレタン榭脂 (A— 1)の溶液を KBr板に塗装し、溶剤を揮発させた試 料の赤外線吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 227 Ocm_1が完全に消滅していた。これによりイソシァネート基は、 BPFの水酸基と共に ウレタン結合を形成し、 BPFの水酸基を除いた残基を骨格中に有し、且つ、末端が B PFの水酸基となっているポリウレタン榭脂が得られたと結論される。
[0201] 合成例 2 (同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、 γ プチ口ラタトン 20 Ogと、 ΤΜΒΡ (テトラメチルビフエノール) 121g (0. 5モル)と、 TDI 69. 6g (0. 4 モル)とを仕込み、攪拌を行いながら発熱に注意して 90°Cに昇温し、この温度で 7時 間反応させた。反応後系内はクリアなオレンジ色の液体となり、ここに不揮発分が 40 %になるように γ—ブチ口ラタトンで調整し、 25°Cでの粘度が 6. 2Pa' sのポリウレタン
榭脂 (A— 2)の溶液を得た。
[0202] 得られたポリウレタン榭脂 (A— 2)の溶液を KBr板に塗装し、溶剤を揮発させた試 料の赤外線吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 227 Ocm_1が完全に消滅していた。これによりイソシァネート基は、 TMBPの水酸基と共 にウレタン結合を形成し、 TMBPの水酸基を除いた残基を骨格中に有し、且つ、末 端が TMBPの水酸基となっているポリウレタン榭脂が得られたと結論される。
[0203] 合成例 3 (同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、 γ —プチ口ラタトン 20 Ogと、 BP (ビフエノーノレ) 93g (0. 5モノレ)と、 TDI 69. 6g (0. 4モノレ)を仕込み、携 拌を行いながら発熱に注意して 90°Cに昇温し、この温度で 7時間反応させた。反応 後系内はやや濁りのある無色の液体となり、ここに不揮発分が 38%になるように γ— ブチロラタトンで調整し、 25°Cでの粘度が 2. 8Pa' sのポリウレタン榭脂 (A— 3)の溶 液を得た。
[0204] 得られたポリウレタン榭脂 (A— 3)の溶液を KBr板に塗装し、溶剤を揮発させた試 料の赤外線吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 227 Ocm_1が完全に消滅して 、た。これによりイソシァネート基は BPの水酸基と共にウレ タン結合を形成し、 BPの水酸基を除いた残基を骨格中に有し、且つ、末端が BPの 水酸基となっているポリウレタン榭脂が得られたと結論される。
[0205] 合成例 4 (同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、 γ —プチ口ラタトン 20 Ogと、 HCA-HQ (9,10-ジヒドロ- 9-ォキサ -10-フォスファフェナンスレン- 10-ォキサ イドとキノンとの反応物:三光株式会社製) 162g (0. 5モル)と、 MDI (ジフエ-ルメタ ンジイソシァネート) 100g (0. 4モル)とを仕込み、攪拌を行いながら発熱に注意して 90°Cに昇温し、この温度で 7時間反応させた。反応後系内はクリアな茶色の液体とな り、ここに不揮発分力 0%になるように γ—プチ口ラタトンで調整し、 25°Cでの粘度 力 2Pa' sのポリウレタン榭脂 (A— 4)の溶液を得た。
[0206] 得られたポリウレタン榭脂 (A— 4)の溶液を KBr板に塗装し、溶剤を揮発させた試 料の赤外線吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 227
Ocm_1が完全に消滅して!/、た。これによりイソシァネート基は HCA— HQの水酸基と 共にウレタン結合を形成し、 HCA— HQの水酸基を除いた残基を骨格中に有し、且 つ、末端が HCA— HQの水酸基となっているポリウレタン榭脂が得られたと結論され る。
[0207] 合成例 5 (同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、 γ プチ口ラタトン 29 5gと、 BPS (ビスフエノーノレ S) 175g (0. 7モル) IPDI— N (イソホロンジイソシァネ ートのイソシァヌレート化 3量体; NCO% = 18. 03%) 69. 9g (イソシァネート基とし て 0. 3モル)と、 MDI (ジフエ-ルメタンジイソシァネート) 50g (0. 2モル)とを仕込 み、攪拌を行いながら発熱に注意して 90°Cに昇温し、この温度で 7時間反応させた。 反応後系内は無色クリアな液体で、不揮発分が 50%で、 25°Cでの粘度が 5. 2Pa- s のポリウレタン榭脂 (A— 5)の溶液を得た。
[0208] 得られたポリウレタン榭脂 (A— 5)の溶液を KBr板に塗装し、溶剤を揮発させた試 料の赤外線吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 227 Ocm_1が完全に消滅して 、た。これによりイソシァネート基は BPSの水酸基と共にゥ レタン結合を形成し、 BPSの水酸基を除いた残基を骨格中に有し、且つ、末端が BP Sの水酸基となっているポリウレタン榭脂が得られたと結論される。
[0209] 合成例 6 (同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、 γ プチ口ラタトン 26 5. 2gと、 1 6ND (1, 6ジヒドロキシナフタレン) 64g (0. 4モノレ)と、 TMBP 96. 8 g (0. 4モル)と、 TDI 104. 4g (0. 6モル)とを仕込み、攪拌を行いながら発熱に注 意して 90°Cに昇温し、この温度で 7時間反応させた。反応後系内はクリアな濃い茶 色の液体となり、ここに不揮発分力 0%になるように γ—プチ口ラタトンで調整し、 25 °Cでの粘度が 2. 6Pa' sのポリウレタン榭脂 (A— 6)の溶液を得た。
[0210] 得られたポリウレタン榭脂 (A— 6)の溶液を KBr板に塗装し、溶剤を揮発させた試 料の赤外線吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 227 Ocm_1が完全に消滅していた。これによりイソシァネート基は 1— 6ND及び TMBPの 水酸基と共にウレタン結合を形成し、 1 6ND及び TMBPの水酸基を除 ヽた残基を
骨格中に有し、且つ、末端が 1 6NDの水酸基および Zまたは TMBPの水酸基と なっているポリウレタン榭脂が得られたと結論される。
[0211] 合成例 7 (同上)
攪拌装置、温度計及びコンデンサーをつけたフラスコに、 γ—プチ口ラタトン 1188 gとフエノールノボラック榭脂(軟化点 90°C フエノール性水酸基当量 103gZeq) 61 8g (フエノール性水酸基として 6モル)とを仕込んで、 80°Cに昇温、溶解させた。つい で TDI 174g (1モル)を 1時間かけて分割で仕込んで 90°Cに昇温してさらに 7時間 反応を行った。反応後はクリアな濃い黄色の液体となり、不揮発分 40%で粘度 Pa' s のポリウレタン榭脂の溶液 (A- 7)を得た。
[0212] 得られたポリウレタン榭脂 (A— 7)の溶液を KBr板に塗装し、溶剤成分を揮発させ た試料の赤外吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 22 70cm_1が完全に消滅していた。これによりイソシァネート基は、フエノールノボラック 榭脂中のフエノール性水酸基と共にウレタン結合を形成し骨格中にフエノールノボラ ック榭脂のフエノール性水酸基を有し、一部のフエノール性水酸基がウレタン結合で 変性されたポリウレタン榭脂が得られたと結論される。
[0213] 合成例 8 (同上)
攪拌装置、温度計及びコンデンサーをつけたフラスコに、 γ プチ口ラタトン 50. 6 gと、ソルべッソ 150(芳香族炭化水素系溶剤) 101. 2gと、ノユルフェノールノボラック 榭脂溶液 (水酸基当量 288gZeq 不揮発分 79. 5%のミネラルスピリッツ溶液 4. 26官能) 85. 9g (フエノール性水酸基量として 0. 298モル)と、ポリブタジエンジォー ノレ(分子量 3550) 124. 3g (0. 035モノレ)とを仕込んで、 80°Cに昇温、溶解させた。 ついで MDI 17. 5g (0. 07モル)を 1時間かけて分割で仕込んで 80°Cにて 7時間 反応を行った。反応後はクリアな濃い黄色の液体となり、不揮発分 54%で粘度 4Pa' sのポリウレタン榭脂の溶液 (A— 8)を得た。
[0214] 得られたポリウレタン榭脂 (A— 8)の溶液を KBr板に塗装し、溶剤成分を揮発させ た試料の赤外吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 22 70cm_1が完全に消滅していた。これによりイソシァネート基は、ノ-ルフエノールノボ ラック榭脂中のフエノール性水酸基と共にウレタン結合を形成し骨格中にノユルフェ
ノールノボラック榭脂のフエノール性水酸基を有し、一部のフエノール性水酸基がゥ レタン結合で変性されたポリウレタン榭脂が得られたと結論される。
[0215] 合成例 9〔ポリイミド榭脂 (C)の製造〕
攪拌装置、温度計およびコンデンサーを付けたフラスコに、 DMAC (ジメチルァセト アミド) 140gと、 TMEG (エチレングリコールビスアンヒドロトリメリテート) 98. 4g (0. 2 4モノレ)と、 BPS (ビスフエノーノレ S) 40g (0. 16モノレ)と、 MDI (ジフエ-ノレメタンジイソ シァネート) 40g (0. 16モノレ)と、 HDI (へキサメチレンジイソシァネート) 26. 9g (0. 1 6モル)とを仕込み、攪拌を行いながら発熱に注意して 80°Cに昇温し、この温度で 1 時間かけて溶解、反応させ、更に 2時間かけて 120°Cまで昇温した後、この温度で 1 時間反応させた。反応は炭酸ガスの発泡とともに進行し、系内は茶色の液体となった 。 DMACにて榭脂固形分濃度を 55%に調整し、 25°Cでの粘度が lOOPa' sのポリイ ミド榭脂 (C— 1)の溶液を得た。
[0216] 得られたポリイミド榭脂 (C— 1)の溶液を KBr板に塗装し、溶剤を揮発させた試料の 赤外線吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 2270cm _ 1が完全に消滅し、 725cm_1と 1780cm_1と 1720cm_1とにイミド環の特性吸収が 確認された。また炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、 21. 1 g (0. 48モル)であった。これより TMEGの酸無水物基の全量 0. 48モルの全量がィ ミド結合に変換していて、残りのイソシァネート基は、 BPSとウレタン結合を形成して 榭脂に連結されていると結論される。
[0217] 合成例 10 (同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、 DMAC 156. 8gと、 T MEG 65. 6g (0. 16モノレ)と、 BP (ビフエノーノレ) 29. 8g (0. 16モノレ)と、 MDI 40 g (0. 16モル)と、 1, 6—へキサンジイソシァネートから誘導されるイソシァヌレート環 を有するポリイソシァネート(以下、 HDI— Nと略記する。イソシァネート基含有率 23. 5%、イソシァヌレート環含有トリイソシァネート含有率 63. 3%) 21. 4g (イソシァネー ト基として 0. 12モル)とを仕込み、攪拌を行いながら発熱に注意して 100°Cに昇温し 、この温度で 7時間反応させた。反応は発泡とともに進行し、系内はクリアな茶色の液 体となった。 25°Cでの粘度が 15Pa · sのポリイミド榭脂(C - 2)の溶液を得た。
[0218] 得られたポリイミド榭脂 (C— 2)の溶液を KBr板に塗装し、溶剤を揮発させた試料の 赤外線吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 2270cm _ 1が完全に消滅し、 725cm_1と 1780cm_1と 1720cm_1とにイミド環の特性吸収が 確認された。また、 1690cm_1と 1460cm_1とにイソシァヌレート環の特性吸収が確 f*i¾ れ 。
[0219] 炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、 12. 3g (0. 28モル) であった。これより TMEGの酸無水物基の全量 0. 32モルの内、 0. 28モル(87. 5 %)がイミド結合に変換していて、さらに MDIと HDI— Nとのイソシァネート基全量 0. 44モルの内、 0. 28モル(63. 6%)がイミド結合に変換され、残りのイソシァネート基 は BPとウレタン結合を形成して榭脂に連結されていると結論される。
[0220] 合成例 11 (同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、 γ —プチ口ラタトン 18 4gと、 TMEG 82. Og (0. 2モル)と、 BPF (ビフエノール F) 40. 4g (0. 2モル)と、 T DI (トリレンジイソシァネート) 34. 8g (0. 2モル)と、 1, 6—へキサンジイソシァネー トから誘導されるイソシァヌレート環を有するポリイソシァネート(以下、 HDI— Nと略 記する。イソシァネート基含有率 23. 5%、イソシァヌレート環含有トリイソシァネート 含有率 63. 3%) 26. 8g (イソシァネート基として 0. 15モル)とを仕込み、攪拌を行い ながら発熱に注意して 120°Cに昇温し、この温度で 7時間反応させた。反応は発泡と ともに進行し、系内はクリアな茶色の液体となった。 25°Cでの粘度が 7Pa' sのポリイミ ド榭脂 (C- 3)の溶液を得た。
[0221] 得られたポリイミド榭脂 (C— 3)の溶液を KBr板に塗装し、溶剤を揮発させた試料の 赤外線吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 2270cm _ 1が完全に消滅し、 725cm_1と 1780cm_1と 1720cm_1とにイミド環の特性吸収が 確認された。また、 1690cm_1と 1460cm_1とにイソシァヌレート環の特性吸収が確 f*i¾ れ 。
[0222] 炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、 15. 4g (0. 35モル) であった。これより TMEGの酸無水物基の全量 0. 4モルの内、 0. 35モル(87. 5%) 力 Sイミド結合に変換していて、さらに TDIと HDI— Nとのイソシァネート基全量 0. 44
モルの内、 0. 55モル(63. 6%)がイミド結合に変換され、残りのイソシァネート基は BPFとウレタン結合を形成し榭脂に連結されていると結論される。
[0223] 合成例 12 (同上)
攪拌装置、温度計及びコンデンサーをつけたフラスコに、 γ—プチ口ラタトン 536. lgと、フエノールノボラック榭脂(軟化点 90°C フエノール性水酸基当量 103gZeq 平均官能基数 6. 7) 61. 8g (フエノール性水酸基として 6モル)と、 TMEG (ェチレ ングリコールビスアンヒドロトリメリテート) 164. Ogと、 TMAN (無水トリメリット酸) 76. 8 g (0. 4モル)とを仕込んで、 1時間かけて 90°Cに昇温、溶解させた。ついで TDI 87 . 0g (0. 5モノレ)と MDI 100. 0g (0. 4モノレ)とを仕込んで 150。Cに昇温してさらに 7 時間反応を行った。反応後はクリアな濃い黄色の液体となり、ここに不揮発分 40%で 粘度 75Pa' sのポリイミドアミド榭脂の溶液 (C-4)を得た。
[0224] 得られたポリイミドアミド榭脂 (C— 4)の溶液を KBr板に塗装し、溶剤成分を揮発さ せた試料の赤外吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 2270cm_1力完全に消滅して! /、て、 725cm_ 1と 1780cm_ 1と 1720cm_1とにイミド 環の吸収が確認された。また 1670cm_1にアミド結合の吸収が確認された。また 154 Ocm_1にウレタン結合の吸収が確認された。また、イミド化、アミドィ匕の進行に伴う炭 酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、 70. 4g (l. 6モル)であつ た。これによりイソシァネート基全量 1. 8モルの内、 1. 6モル(88. 9%)分がイミド結 合あるいはアミド結合に変換され、残りのイソシァネート基はフエノールノボラック榭脂 中のフエノール性水酸基と共にウレタン結合を形成し、これにより骨格中にフエノール ノボラック榭脂のフエノール性水酸基を有し、一部のフエノール性水酸基がウレタン結 合で変性されたポリウレタンイミドアミド榭脂が得られたと結論される。
[0225] 合成例 13 (同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、 y—プチ口ラタトン 203 . 5gと、 TMEG (エチレングリコールビスアンヒドロトリメリテート) 57. 4g (0. 14モル) と、 BPF (ビスフエノール F) 28. 28g (0. 14モル)と、 TDI (トルエンジイソシァネート) 48. 72g (0. 28モル)と、 HGMPD— C (l, 6—へキサンジオールとメチルペンタン ジオールから得られるポリカーボネートジオール:水酸基当量 = 113. 7KOH— mg
/g) 69. 08g (水酸基量として 0. 14モル)とを仕込み、攪拌を行いながら発熱に注 意して 80°Cに昇温し、この温度で 1時間かけて溶解、反応させ、更に 2時間かけて 1 20°Cまで昇温した後、この温度で 4時間反応させた。反応は炭酸ガスの発泡とともに 進行し、系内は黒茶色の液体となった。 25°Cでの粘度が 15Pa' sのポリイミド榭脂(C 5)の溶液 (榭脂分 48. 4%)を得た。
[0226] 得られたポリイミド榭脂 (C— 5)の溶液を KBr板に塗装し、溶剤を揮発させた試料の 赤外線吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 2270cm _ 1が完全に消滅し、 725cm_1と 1780cm_1と 1720cm_1とにイミド環の特性吸収が 確認された。また炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、 12. 3 2g (0. 28モル)であった。これより TMEGの酸無水物基の全量 0. 28モル(0. 14モ ルの TMEGは、 0. 14モルの酸無水物基を有する)の全量がイミド結合に変換してい て、残りのイソシァネート基は、 BPFと HGMPD— Cとのウレタン結合にて榭脂に連 結されていると結論される。
[0227] 合成例 14 (同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、 DMAC (ジメチルァセト アミド) 161. 42gと、 TMAN (無水トリメリット酸) 19. 2g (0. 1モル)と、 BP (ビフエ ノーノレ) 18. 6g (0. 10モノレ)と、 MDI 35g (0. 14モノレ)と、 1, 6 へキサンジイソシ ァネートから誘導されるイソシァヌレート環を有するポリイソシァネート(以下、 HDI— Nと略記する。イソシァネート基含有率 23. 5%、イソシァヌレート環含有トリイソシァ ネート含有率 63. 3%) 10. 7g (イソシァネート基として 0. 06モル)と、 HGPD— C (l , 6—へキサンジオールとペンタンジオールから得られるポリカーボネートジオール: 水酸基当量 = 57. 6KOH-mg/g) 77. 92g (水酸基量として 0. 04モル)とを仕込 み、攪拌を行いながら発熱に注意して 140°Cに昇温し、この温度で 5時間反応させた 。反応は発泡とともに進行し、系内はクリアな茶色の液体となった。 25°Cでの粘度が 40Pa' sのポリイミド榭脂(C— 6)の溶液 (榭脂分 48. 6%)を得た。
[0228] 得られたポリイミド榭脂 (C— 6)の溶液を KBr板に塗装し、溶剤を揮発させた試料の 赤外線吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 2270cm _ 1が完全に消滅し、 725cm_1と 1780cm_1と 1720cm_1とにイミド環の特性吸収が
確認された。また、 1690cm_1と 1460cm_1とにイソシァヌレート環の特性吸収が確 f*i¾ れ 。
[0229] 炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、 8. 8g (0. 2モル)であ つた。これより TMANの酸無水物基とカルボキシル基と TMEGの酸無水物基との全 量力 ミド結合とアミド結合とに変換していて、さらに MDIと HDI— Nとのイソシァネー ト基全量 0. 34モルの内、 0. 2モル (47. 1%)がイミド結合およびアミド結合に変換さ れ、残りのイソシァネート基は、 BP及び HGPD— Cとウレタン結合を形成し榭脂に連 結されていると結論される。
[0230] 合成例 15 (同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、 γ —プチ口ラタトン 10 2. 7gと、ソルべッソ 150 (芳香族炭化水素系溶剤) 102. 7gと、 BPF 20. 2g (0. 1 モル)と、 TDIを 34. 8g (0. 2モル)と、 HPB (水添ポリブタジエンジオール:水酸基 当量 = 51. 3KOH-mg/g) 109. 4g (0. 05モル)とを仕込み、攪拌を行いながら 発熱に注意して 80°Cに昇温し、この温度で 2時間反応させた。ついで TMEGを 41g (0. 1モル)添加し 140°Cまで 1時間で昇温させ反応を行った。反応は発泡とともに進 行し、系内はやや濁った黒茶色の液体となった。 25°Cでの粘度が 27Pa' sのポリイミ ド榭脂 (C― 7)の溶液 (榭脂分 48. 9%)を得た。
[0231] 得られたポリイミド榭脂 (C— 7)の溶液を KBr板に塗装し、溶剤を揮発させた試料の 赤外線吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 2270cm _ 1が完全に消滅し、 725cm_1と 1780cm_1と 1720cm_1とにイミド環の特性吸収が 確認された。
[0232] 炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、 8. 8g (0. 2モル)であ つた。これより TMEGの酸無水物基の全量 0. 2モルが全量イミド結合に変換してい て、さらに TDIのイソシァネート基全量 0. 4モルの内、 0. 2モル(50%)がイミド結合 に変換され、残りのイソシァネート基は、 BPF及び HPBとウレタン結合を形成し榭脂 に連結されて ヽると結論される。
[0233] 合成例 16 (同上)
攪拌装置、温度計及びコンデンサーをつけたフラスコに、 γ—プチ口ラタトン 517.
3gと、ソルべッソ 150391. 3gと IPDI (イソホロンジイソシァネート) 222g (lモル)と、 HPB〔水添ポリブタジエンジオール(分子量 1514)〕757. lg (0. 5モル)とを仕込ん で 50°Cで 2時間反応を行った。っ 、でノユルフェノールノボラック榭脂溶液 (水酸基 当量 288g/eq 不揮発分 79. 5%のミネラルスピリッツ溶液 4. 26官能) 613. 5g (フエノール性水酸基量として 2. 13モル)と、 TMEG102. 5g (0. 25モル)とを仕込 んで、 2時間力けて 150°Cに昇温、反応させた。ついで TDI 87. 0g (0. 5モノレ)と、 MDI 100. 0g (0. 4モル)とを仕込んで 150°Cに昇温してさらに 5時間反応を行つ た。反応後はクリアな濃い茶色の液体となり、不揮発分 59%で粘度 25Pa' sのポリ イミド榭脂溶液 (C - 8)を得た。
[0234] 得られたポリイミド榭脂 (B— 8)の溶液を KBr板に塗装し、溶剤成分を揮発させた試 料の赤外吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 2270c m_1が完全に消滅していて、 725cm_1と 1780cm_1と 1720cm_1とにイミド環の吸収 が確認された。また 1540cm_1にウレタン結合の吸収が確認された。また、イミド化、 アミド化の進行に伴う炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、 22 g (0. 5モル)であった。これによりイソシァネート基全量 2モルの内、 0. 5モル(25%) 分力 ミド結合に変換され、残りのイソシァネート基は HPBの水酸基と NPN榭脂中 のフエノール性水酸基と共にウレタン結合を形成し、これにより榭脂にフエノールノボ ラック榭脂のフエノール性水酸基を有し、一部のフエノール性水酸基がウレタン結合 で変性されたポリウレタンイミド榭脂が得られたと結論される。
[0235] 合成例 17〔比較対照用ポリイミド榭脂 (C)の製造
攪拌装置、温度計およびコンデンサーを付けた 20リットルのフラスコに、ジエチレン グリコールモノェチルエーテルアセテート 4951gと、 IPDI— N2760g (イソホロンジィ ソシァネートのイソシァヌレートイ匕合物、イソシァネート基含有率 18. 26%、イソシァ ネート基として 12モル)と、ポリテール HA〔三菱ィ匕学 (株)製の両末端に水酸基を有す る水素添加液状ポリブタジエン、数平均分子量 2, 100、水酸基価 51. 2mgKOH/ g〕 219 lg (水酸基として 2モル)とを仕込み、攪拌を行いながら発熱に注意して 80°C に昇温した後、 3時間反応を行った。次いで、さらにジエチレングリコールモノェチル エーテルアセテート 1536gと、卜リメリツ卜酸無水物 1536g(8モル)とを仕込み、 160°C
まで昇温した後、 4時間反応させた。反応は発泡とともに進行した。系内は薄茶色の クリアな液体となり、ポリイミド榭脂 ( —1)の溶液 (榭脂分 47. 1%)を得た。
[0236] 得られたポリイミド榭脂( 1)の溶液を用いた以外は合成例 1と同様にして赤外 線吸収スペクトルを測定した結果、イソシァネート基の特性吸収である 2270cm_1が 完全に消滅し、 725cm_ 1と 1780cm_1と 1720cm_1とにイミド環の特' 14吸収、 1690 cm—1と 1460cm_1とにイソシァヌレート環の特性吸収、そして 1550cm_1にウレタン 結合の特性吸収が確認された。また、ポリイミド榭脂の酸価は 79 (榭脂固形分換算) で、イソシァヌレート環の濃度は 0. 66mmolZg (榭脂固形分換算)であった。
[0237] 実施例 1
第 1表に示す配合にて本発明の熱硬化性榭脂組成物 1を調製した。得られた熱硬 化性榭脂組成物 1の硬化塗膜の電気特性、耐熱性、寸法安定性、及び熱硬化性榭 脂組成物 1の寸法安定性を下記方法に従って評価した。その結果を第 4表に示す。
[0238] (1)電気特性の評価
電気特性は塗膜の誘電率( ε )と誘電損失 (Tan δ )とを測定することにより評価し た。熱硬化性榭脂組成物 1を硬化後の膜厚が 80 mになるようにブリキ基板上に塗 装し、 70°Cの乾燥機で 20分間乾燥した後、 200°Cで 1時間硬化させ冷却した後、剥 離した硬化塗膜を切り出した測定用試料を、アジレントテクノロジ一社製 4291Bを用 いて、周波数は 100MHzの条件で、測定雰囲気の温度は 23度の条件で誘電率( ε )と誘電損失 (Tan δ )とを測定した。
[0239] (2)耐熱性の評価及び寸法安定性の評価
耐熱性の評価は硬化塗膜のガラス転移点 (Tg)を測定することにより行った。寸法 安定性の評価は線膨張係数を測定することにより行った。
く試験用試験片の作製〉
熱硬化性榭脂組成物 1を硬化後の膜厚が 50 mになるようにブリキ基板上に塗装 し、 70°Cの乾燥機で 20分間乾燥した後、 200°Cで 1時間硬化させ冷却した後、剥離 した硬化塗膜を幅 5mm、長さ 30mmに切り出し、測定用試料とした。
[0240] く Tg測定方法〉
セイコー電子 (株)製熱分析システム TMA— SS6000を用いて、試料長 10mm、昇
温速度 10°CZ分、荷重 30mNの条件で TMA(Thermal Mechanical Analysis )法により測定した。なお、 Tgは、 TMA測定での温度-寸法変化曲線力もその変極 点を求め、その温度を Tgとした。 Tgが高いほど耐熱性に優れることを表す。線膨張 係数は温度域 50 60°C、及び 110 120°Cでの試料長の変位より求めた。線膨張 係数が小さいほど寸法安定性に優れることを示す。
尚、第 4表及び第 5表において温度域 50 60°Cにおける線膨張係数の測定結果 を「線膨張係数 1」と、温度域 110 120°Cにおける線膨張係数の測定結果を「線膨 張係数 2」と略記する。線膨張係数の単位は PPM(cmZcmZ°C) X 106である。
[0241] (3)保存安定性 (熱硬化性榭脂組成物 1の保存安定性)
熱硬化性ポリウレタン榭脂組成物 1を密栓したガラスビンに保存し、 40°Cで 1週間 後の状態を観察した。目視にて下記基準に従って評価した。
〇:凝集物、沈殿物がなぐ且つ、高粘度化せずに流動性があるもの。
△:凝集物、沈殿物がなないもののテーリングまたは高粘度化が起こったもの。
X:ゲル化がおこったもの。
[0242] 実施例 2 9及び比較例 1 5
第 1表〜第 3表に示す配合で配合した以外は実施例 1と同様にして熱硬化性榭脂 組成物 2 9及び比較対照用熱硬化性榭脂組成物 Γ〜^を調製した。これを用い て実施例 1と同様に各種評価を行い、その結果を第 4表及び第 5表に示す。
[0243] [表 1]
C.0SZC/900Zdf/X3d 09 ZC.690/.00Z OAV
9 1 4
^脂組成物 9 1 " 2 " リ ' 1 '
Ί. i 3. 44 . : :1 01
f
'j -.、 T a η I) 3, 7 25. 9 22. 5 1 0. 2
特 100)
!
性
r Ά 1132 ] 132 93
練 *張係 & 1 。 7o 78 69 I
張 ¾ ¾ 2 78 164 w: 149
o
一 ; -■ ろ - .をお
[0248] 実施例 10
第 6表に示す配合にて本発明の熱硬化性榭脂組成物 10を調製した。得られた熱 硬化性榭脂組成物 10の硬化塗膜の相溶性、塗膜造膜性、耐熱性、機械物性、電気 特性、寸法安定性及び熱硬化性榭脂組成物 10の保存安定性を下記方法に従って 評価した。その結果を第 8表に示す。
[0249] (1)相溶性の評価
熱硬化性榭脂組成物 10を調製した際の相溶状態と、調製後の熱硬化性ポリイミド 榭脂組成物 1をガラス板に塗装し、 120°Cで乾燥した後の塗膜の状態を、下記の評 価基準で評価した。
評価基準
◎:熱硬化性榭脂組成物 10の調製において攪拌により容易に均一となり、塗膜面 にも異物等が見られない。
〇:熱硬化性榭脂組成物 10の調製において攪拌により均一となり、塗膜面にも異 物等が見られない。
△:熱硬化性榭脂組成物 10の調製において攪拌により均一になりにくぐ塗膜面に もやや異物等が見られる。
X:熱硬化性榭脂組成物 10の調製において均一に溶解せず、塗膜面は、はじき、 異物、不溶解物が確認できる。
[0250] (2)塗膜造膜性の評価
熱硬化性榭脂組成物 10を乾燥後の膜厚が 30 μ mになるようにブリキ板にアプリケ
一ターにて塗布後、 110°Cで 30分間乾燥させて得た試験片を、室温にて 24時間放 置し、塗膜外観を以下の評価基準で評価した。
評価基準
〇:塗膜にクラック等の異常は見られな 、。
△:塗膜に若干クラックが見られる。
X:塗膜全面にクラックが発生した。
[0251] (3)耐熱性の評価
耐熱性の評価は硬化塗膜のガラス転移点 (Tg)を測定することにより行った く試験用試験片の作製〉
熱硬化性榭脂組成物 10を硬化後の膜厚が 50 mになるようにブリキ基板上に塗 装し、 70°Cの乾燥機で 30分間乾燥した後、 200°Cでそれぞれ 1時間硬化させて、硬 化塗膜を作成し、室温まで冷却した後、硬化塗膜を塗装板から切り出し、 Tg測定用 試料とした。
[0252] く Tg測定方法〉
前記 Tg測定用試料を用い、下記の条件で動的粘弾性を測定し、得られたスぺタト ルの Tan δの最大の温度を Tgとした。 Tgの値が高いほど耐熱性に優れる塗膜であ ることを表す。
測定機器:レオメトツリク社製粘弾性測定装置 RSA— II
治具:引張試験用治具
チャック間: 20mm
測定温度: 25〜300°C
測定周波数: 1Hz
昇温速度: 3°CZmin
[0253] (4)機械物性の評価
機械物性は塗膜の弓 I張試験を行うことにより評価した。
く試験片の作製〉
熱硬化性榭脂組成物 10を硬化後の膜厚が 50 mになるようにブリキ基板上に塗 装した。次いで、この塗装板を 70°Cの乾燥機で 20分間乾燥した後、 200°Cで 1時間
硬化させて硬化塗膜を作成した。室温まで冷却した後、硬化塗膜を所定の大きさ〖こ 切り出し、基板力も単離して測定用試料とした。
[0254] く引張試験測定方法〉
測定用試料を 5枚作成し、下記の条件で引張試験を行い、破断強度と破断伸度を 求めた。破断強度と破断伸度の値が高いほど機械物性に優れる塗膜であることを表 す。
測定機器:東洋ボールドウィン社製テンシロン
サンプル形状: 10mm X 70mm
チャック間: 20mm
弓 I 速度: 10mm/ min
測定雰囲気: 22°C、 45%RH
[0255] (5)電気特性の評価
電気特性は塗膜の誘電率( ε )と誘電損失 (Tan δ )とを測定することにより評価し た。
熱硬化性ポリイミド榭脂組成物 1を硬化後の膜厚が 100 mになるようにブリキ基板 上に塗装し、 70°Cの乾燥機で 20分間乾燥した後、 200°Cで 1時間硬化させ冷却し た後、剥離した硬化塗膜を切り出した測定用試料を、アジレントテクノロジ一社製 429 1Bを用いて、周波数は 500MHzの条件で誘電率( ε )と誘電損失 (Tan δ )とを測定 した。
[0256] (6)寸法安定性
寸法安定性は塗膜の線膨張係数を測定することにより評価した。
く試験用試験片の作製〉
熱硬化性ポリイミド榭脂組成物 1を硬化後の膜厚が 50 /z mになるようにブリキ基板 上に塗装し、 70°Cの乾燥機で 20分間乾燥した後、 200°Cで 1時間硬化させ冷却し た後、剥離した硬化塗膜を幅 5mm、長さ 30mmに切り出し、測定用試料とした。
[0257] く線膨張係数測定方法〉
セイコー電子 (株)製熱分析システム TMA— SS6000を用いて、試料長 10mm、昇 温速度 10°CZ分、荷重 49mNの条件で TMA(Thermal Mechanical Analysis
)法により測定した。なお、線膨張係数に使用した温度域は 40〜50°Cでの試料長の 変位より求めた。線膨張係数が小さいほど寸法安定性に優れることを示す。単位は P PM (cm/cm/°C) X 106である。
[0258] (7)保存安定性 (熱硬化性ポリイミド榭脂組成物 1の保存安定性)
熱硬化性ポリイミド榭脂組成物 1を 25mlのガラス容器に 20ml入れて密封した。この 状態で室温で 1週間放置した後の状態を観察した。
[0259] 実施例 11〜14及び比較例 6〜8
第 6表及び第 7表に示す配合で配合した以外は実施例 10と同様にして熱硬化性 榭脂組成物 11〜 14及び比較対照用熱硬化性榭脂組成物^〜^を調製した。これ を用いて実施例 10と同様に各種評価を行い、その結果を第 8表及び第 9表に示す。
[0260] [表 6]
¾ 6
[0261] [表 7]
[0262] [表 8]
¾ 8 ii
[0263] [表 9]
9 k
[0264] 実施例 15〜実施例 19
第 10表に示す配合にて本発明の熱硬化性榭脂組成物 15〜19を調製した。得ら れた熱硬化性榭脂組成物 15〜 19の硬化塗膜の相溶性、塗膜造膜性、耐熱性、機 械物性、電気特性、寸法安定性及び熱硬化性榭脂組成物 10〜19の保存安定性を 下記方法に従って評価した。その結果を第 11表に示す。
[0265] (1)相溶性の評価
実施例 10と同様にして行った。
[0266] (2)塗膜造膜性の評価
実施例 10と同様にして行った。
[0267] (3)耐熱性の評価
く試験片の作製〉
熱硬化性ポリイミド榭脂組成物 1を硬化後の膜厚が になるように銅泊がラミ
ネートされたガラスエポキシ基板上に塗装し、 70°Cの乾燥機で 30分間乾燥した後、 170°Cでそれぞれ 1時間硬化させた後、室温まで冷却し硬化塗膜を作成した。
[0268] く耐熱性試験方法〉
硬化塗膜を 260°Cの溶融ハンダ浴に 30秒浸漬し、室温に冷却した。このハンダ浴 の浸漬操作を合計 3回行!ヽ、硬化塗膜の外観につ!、て以下の評価基準で評価した
〇:塗膜に外観異常は見られな ヽ。
△:塗膜にフクレ、はがれ等異常が若干見られる。
X:塗膜全面にフクレ、はがれ等異常が見られる。
[0269] (4)機械物性の評価
実施例 10と同様にして行った。
(9)保存安定性
実施例 10と同様にして行った。
[0270] [表 10]
¾ 1 0
[0271] [表 11]
3; 1 1 Ά
. H
1 5 1 6 I 7 1 8 1 2 ϋ
1 5 1 6 1 7 1 8 1 2 0
)
性
*械物件 250 235 220 50 260 230
ヒ ヒ ¾:化 ¾i化 i化
なし i なし なし なし
[0272] 表の脚注
N680 :クレゾ一ルノボラック型エポキシ榭脂、エポキシ当量 214 軟化点 81°C
EP2050 :固形ビスフエノール A型エポキシ榭脂、エポキシ当量 640
DBTL:ジブチノレチンジラウレート
2E4MZ: 2 ェチル 4 メチル イミダゾール
DBTA:ジブチノレチンアセテート
HP4032:ナフタレン型エポキシ榭脂、エポキシ当量 150
TD2131 :ノボラック型フエノール榭脂、水酸基当量 103、軟化点 80°C
TPP:トリフエ-ルフォスフィン
CNR:オルソクレゾールノボラック型榭脂 融点 90°C 水酸基当量 = 105 BPF :ビスフエノール F
[0273] 表の結果力も明らかなように、実施例の熱硬化性榭脂組成物力もなる硬化塗膜は、 非常に高い Tgを示しており、高温においても耐熱性を発揮できる材料と言える。さら に、こうした高 Tgを有しながら、誘電率と誘電正接とが低く誘電特性が良好である
[0274] 一方、比較例の熱硬化性榭脂組成物からなる硬化塗膜は、本発明の熱硬化性榭 脂組成物からなる硬化塗膜に比較して、誘電率と誘電正接とが高ぐ Tgも低い。
Claims
請求の範囲
下記一般式(1)および Zまたは下記一般式 (2)で表される構造を有するポリウレタン 榭脂 (A)と、エポキシ榭脂 (B)とを含有することを特徴とする熱硬化性榭脂組成物。
[化 37]
(式中、 Xは 1分子中に 2個以上のフ ノール性水酸基を有するフ ノール系化合物 から 2個のフエノール性水酸基を除いた残基を示す。 )
前記一般式(1)および Zまたは一般式 (2)中の Xが一般式 (5)、一般式 (7)および 一般式(9)で示される構造の群から選ばれる一種以上の構造である請求項 1記載の 熱硬化性榭脂組成物。
(式中 R1は、直接結合あるいは 2価の連結基であり、 R2は同一でも異なっていても良 ぐ水素原子または炭素原子数 1〜18のアルキル基を示す。 )
(式中 R3は、水素原子または炭素原子数 1〜18のアルキル基または下記一般式 (8) で示される構造を示す。 )
[化 41]
前記一般式(1)および Zまたは一般式 (2)中の Xが一般式 (6)で示される構造であ る請求項 1記載の熱硬化性榭脂組成物。
(式中 R1は、直接結合あるいは 2価の連結基であり、 R2は同一でも異なっていても良 ぐ水素原子または炭素原子数 1〜18のアルキル基を示す。 aと bと cとの合計は 1以 上である。)
前記一般式 (6)中の R1がメチレン基および Zまたは下記一般式(11)で示される構 造である請求項 3記載の熱硬化性榭脂組成物。
[化 43]
前記ポリウレタン榭脂 (A)が下記構造(15)にて分岐している請求項 1記載の熱硬 化性榭脂組成物。
[化 44]
一 R5 、 R
II
0 ■—■ ( 15 )
(式中 R5はジイソシァネート化合物からイソシァネート基を除 、た残基構造を示す。 ) [6] 前記ポリウレタン榭脂 (A)が更に下記一般式(13)で示される構造を有するポリウレタ ン榭脂である請求項 1記載の熱硬化性榭脂組成物。
[化 45]
0 0
II II
\ ZC\
—— N 、0 ~ Y— O —
H h —― ( 13 )
(式中、 Yは 1分子中に少なくとも 2個のアルコール性水酸基を有するポリオ一ルイ匕合 物から 2つの水酸基を除いた残基を示す。 )
[7] 前記一般式(13)で表される構造が、該構造中の Υとして数平均分子量が 300〜5, 000であるポリオ一ルイ匕合物から 2つの水酸基を除いた残基を有する構造である請 求項 6記載の熱硬化性榭脂組成物。
[8] 前記一般式(13)で表される構造が、該構造中の Υとしてガラス転移温度が 150〜 0°Cである残基を有する構造である請求項 6記載の熱硬化性榭脂組成物。
[9] 前記一般式(13)中の Yが 1分子中に少なくとも 2個のアルコール性水酸基を有する ポリオレフインポリオールから 2つの水酸基を除いた残基、 1分子中に少なくとも 2個の アルコール性水酸基を有するポリエーテルポリオールから 2つの水酸基を除いた残 基、 1分子中に少なくとも 2個のアルコール性水酸基を有するポリカーボネートポリオ ールから 2つの水酸基を除いた残基、 1分子中に少なくとも 2個のアルコール性水酸 基を有するポリエステルポリオールから 2つの水酸基を除いた残基および 1分子中に 少なくとも 2個のアルコール性水酸基を有するポリシロキサンポリオールから 2つの水 酸基を除いた残基からなる群から選ばれる 1種以上の残基である請求項 6記載の熱 硬化性榭脂組成物。
[10] 前記エポキシ榭脂(B)が芳香族系エポキシ榭脂である請求項 1〜9の 、ずれか 1項
記載の熱硬化性榭脂組成物。
[11] 硬化触媒を含有する請求項 1〜9のいずれか 1項記載の熱硬化性榭脂組成物。
[12] 更に、ウレタン化触媒を含有する請求項 1〜9のいずれか 1項記載の熱硬化性榭脂 組成物。
[13] 下記一般式(1)および Zまたは下記一般式 (2)で表される構造を有するポリイミド榭 脂 (C)と、エポキシ榭脂 (B)とを含有することを特徴とする熱硬化性榭脂組成物。
[化 47]
HO、
、X—— C "ΝΗ
(式中、 Xは 1分子中に 2個以上のフ ノール性水酸基を有するフ ノール系化合物 力も 2個のフエノール性水酸基を除いた残基を示す。 )
[14] 前記ポリイミド榭脂 (C)が、下記一般式(16)で表される構造単位および Ζまたは一 般式(17)で表される構造を含有するポリイミド榭脂である請求項 13記載の熱硬化性 榭脂組成物。
[化 48]
(式中 Rはテトラカルボン酸無水物力 酸無水物基を除いた残基構造を示し、 R は
9 11 トリカルボン酸無水物から酸無水物基とカルボキシル基とを除いた残基構造を示す。
前記一般式(1)および Zまたは一般式 (2)中の Xが一般式 (5)、一般式 (7)および 一般式(9)で示される構造の群力 選ばれる一種以上の構造である請求項 13記載 の熱硬化性榭脂組成物。
(式中 R1は、直接結合あるいは 2価の連結基であり、 R2は同一でも異なっていても良 ぐ水素原子または炭素原子数 1〜16のアルキル基を示す。 )
(式中 R3は、水素原子または炭素原子数 1〜16のアルキル基または下記一般式 (8) で示される構造を示す。 )
[化 53]
前記一般式(1)および Zまたは一般式 (2)中の Xが一般式 (6)で示される構造であ る請求項 13記載の熱硬化性榭脂組成物。
(式中 R1は、直接結合あるいは 2価の連結基であり、 R2は同一でも異なっていても良 ぐ水素原子または炭素原子数 1〜18のアルキル基を示す。 aと bと cとの合計は 1以 上である。)
前記一般式 (6)中の R1がメチレン基および Zまたは下記一般式(11)で示される構 造である請求項 16記載の熱硬化性榭脂組成物。
前記ポリイミド榭脂 (C)が下記一般式(15)で示される構造にて分岐しているポリィ ド榭脂である請求項 13記載の熱硬化性榭脂組成物。
[化 56]
一 R5 Nゝ 、 R
(式中 R5はジイソシァネート化合物からイソシァネート基を除 、た残基構造を示す。 ) [19] 前記ポリイミド榭脂 (C)が更に下記一般式(13)で示される構造を有するポリイミド榭 脂である請求項 13記載の熱硬化性榭脂組成物。
π Η —- ( -13 )
(式中、 Υは 1分子中に少なくとも 2個のアルコール性水酸基を有するポリオ一ルイ匕合 物から 2つの水酸基を除いた残基を示す。 )
[20] 前記一般式(13)で表される構造が、該構造中の Υとして数平均分子量が 300〜5,
000であるポリオ一ルイ匕合物から 2つの水酸基を除いた残基を有する構造である請 求項 19記載の熱硬化性榭脂組成物。
[21] 前記一般式(13)で表される構造が、該構造中の Yとしてガラス転移温度が 150〜 0°Cである残基を有する構造である請求項 19記載の熱硬化性榭脂組成物。
[22] 前記一般式(13)中の Yが 1分子中に少なくとも 2個のアルコール性水酸基を有する ポリオレフインポリオールから 2つの水酸基を除いた残基、 1分子中に少なくとも 2個の アルコール性水酸基を有するポリエーテルポリオールから 2つの水酸基を除いた残 基、 1分子中に少なくとも 2個のアルコール性水酸基を有するポリカーボネートポリオ ールから 2つの水酸基を除いた残基、 1分子中に少なくとも 2個のアルコール性水酸 基を有するポリエステルポリオールから 2つの水酸基を除いた残基および 1分子中に 少なくとも 2個のアルコール性水酸基を有するポリシロキサンポリオールから 2つの水 酸基を除いた残基力 なる群力 選ばれる 1種以上の残基である請求項 19記載の 熱硬化性榭脂組成物。
[23] 前記エポキシ榭脂(B)が芳香族系エポキシ榭脂である請求項 13〜22の 、ずれか 1 項記載の熱硬化性榭脂組成物。
[24] 硬化触媒を含有する請求項 13〜22の ヽずれか 1項記載の熱硬化性榭脂組成物。
[25] 更に、ウレタン化触媒を含有する請求項 13〜22のいずれか 1項記載の熱硬化性榭 脂組成物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006800526788A CN101370847B (zh) | 2005-12-15 | 2006-12-15 | 热固性树脂组合物 |
US12/097,011 US8168729B2 (en) | 2005-12-15 | 2006-12-15 | Thermosetting resin composition |
KR1020087015026A KR101321458B1 (ko) | 2005-12-15 | 2006-12-15 | 열경화성 수지 조성물 |
EP06842841.6A EP1964869A4 (en) | 2005-12-15 | 2006-12-15 | THERMOSETTING RESIN COMPOSITION |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005361691 | 2005-12-15 | ||
JP2005-361691 | 2005-12-15 | ||
JP2006009823 | 2006-01-18 | ||
JP2006-009823 | 2006-01-18 | ||
JP2006070715 | 2006-03-15 | ||
JP2006-070715 | 2006-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007069732A1 true WO2007069732A1 (ja) | 2007-06-21 |
Family
ID=38163034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/325073 WO2007069732A1 (ja) | 2005-12-15 | 2006-12-15 | 熱硬化性樹脂組成物 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8168729B2 (ja) |
EP (2) | EP2805977B1 (ja) |
JP (1) | JP5516640B2 (ja) |
KR (1) | KR101321458B1 (ja) |
CN (1) | CN101370847B (ja) |
TW (1) | TWI443120B (ja) |
WO (1) | WO2007069732A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008007591A (ja) * | 2006-06-28 | 2008-01-17 | Dainippon Ink & Chem Inc | 多層プリント配線板用硬化性樹脂組成物、熱硬化性接着フィルム及び多層プリント基板 |
WO2008153208A1 (ja) * | 2007-06-14 | 2008-12-18 | Ajinomoto Co., Inc. | 多層プリント配線板の層間絶縁用樹脂組成物 |
JP2013100419A (ja) * | 2011-11-09 | 2013-05-23 | Dic Corp | 熱硬化性樹脂組成物およびプリント配線板用層間接着フィルム |
WO2018193957A1 (ja) * | 2017-04-21 | 2018-10-25 | Dic株式会社 | ウレタン変性ポリイソシアネート化合物、2液硬化型ウレタン系接着剤用硬化剤、接着剤及び太陽電池のバックシート |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5579603B2 (ja) * | 2008-07-22 | 2014-08-27 | 株式会社カネカ | 新規なポリイミド前駆体組成物及びその利用 |
TWI428390B (zh) | 2011-10-21 | 2014-03-01 | Ind Tech Res Inst | 低介電樹脂配方、預聚合物、組成物及其複合材料與低介電樹脂預聚合物溶液的製備方法 |
KR20140089564A (ko) * | 2011-11-16 | 2014-07-15 | 바스프 에스이 | 중합체성 재료, 및 그 제조 및 용도 |
CN104471011B (zh) * | 2012-07-20 | 2016-08-24 | Dic株式会社 | 热密封剂、使用该热密封剂的层叠体及太阳能电池模块 |
WO2015008560A1 (ja) * | 2013-07-19 | 2015-01-22 | Dic株式会社 | フェノール性水酸基含有化合物、感光性組成物、レジスト用組成物、レジスト塗膜、硬化性組成物、レジスト下層膜用組成物、及びレジスト下層膜 |
US9589318B2 (en) | 2014-08-25 | 2017-03-07 | Ge Aviation Systems Llc | Method and system for generating airport surface map graphics in aircraft cockpit displays |
WO2016046293A1 (en) * | 2014-09-26 | 2016-03-31 | Covestro Deutschland Ag | Colorless, transparent and heat resistant polyurethane films and methods for manufacturing the same |
JP6566417B2 (ja) * | 2015-06-18 | 2019-08-28 | 日東電工株式会社 | 光導波路形成用感光性エポキシ樹脂組成物および光導波路形成用感光性フィルム、ならびにそれを用いた光導波路、光・電気伝送用混載フレキシブルプリント配線板 |
CN108129658B (zh) * | 2017-12-25 | 2020-11-03 | 无锡创彩光学材料有限公司 | 应用在3d打印行业的超支化结构的聚酰亚胺树脂及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08301967A (ja) * | 1995-04-28 | 1996-11-19 | Nippon Steel Chem Co Ltd | 新規重合物及びその製造方法並びにエポキシ樹脂組成物 |
JP2001316469A (ja) * | 2000-05-01 | 2001-11-13 | Dainippon Ink & Chem Inc | カルボキシル基含有アミドイミド樹脂及び/又はカルボキシル基含有イミド樹脂 |
JP2003238807A (ja) * | 2002-02-20 | 2003-08-27 | Hitachi Chem Co Ltd | 難燃性耐熱性樹脂組成物、これを用いた接着フィルム及び接着剤付きポリイミドフィルム |
JP2003292575A (ja) * | 2002-01-31 | 2003-10-15 | Dainippon Ink & Chem Inc | 熱硬化性ポリイミド樹脂組成物、ポリイミド樹脂の製造方法およびポリイミド樹脂 |
JP2006117922A (ja) * | 2004-09-21 | 2006-05-11 | Showa Denko Kk | ウレタン樹脂を用いた熱硬化性樹脂組成物 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE596036A (ja) * | 1959-10-15 | |||
US3442974A (en) * | 1965-05-17 | 1969-05-06 | Dow Chemical Co | Thermosettable epoxides containing isocyanate blocked with phenol-formaldehyde novolacs |
US3491060A (en) * | 1967-07-11 | 1970-01-20 | Bayer Ag | Polyimidocarbonic esters and their preparation |
US3869428A (en) * | 1969-05-14 | 1975-03-04 | Schweizerische Isolawerke | Enamel composition for the manufacture of solderable enameled wires |
US3948824A (en) * | 1972-09-08 | 1976-04-06 | Ashland Oil, Inc. | Cellular polymeric masses |
CH602999A5 (ja) * | 1973-09-13 | 1978-08-15 | Schweizerische Isolawerke | |
US4208477A (en) * | 1977-12-26 | 1980-06-17 | Asahi Kasei Kogyo Kabushiki Kaisha | Heat resistant photoresist composition and process for preparing the same |
US4293658A (en) * | 1980-05-12 | 1981-10-06 | Abbott Laboratories | Process for rigid foams of improved friability |
US4423201A (en) * | 1982-10-29 | 1983-12-27 | Celanese Corporation | Co-reactive urethane surfactants and stable aqueous epoxy dispersions |
JPS62174228A (ja) * | 1985-10-18 | 1987-07-31 | Nippon Ester Co Ltd | コポリエステル |
EP0307666A1 (de) * | 1987-08-26 | 1989-03-22 | Ciba-Geigy Ag | Phenol-terminierte Polyurethane oder Polyharnstoffe und Epoxidharze enthaltend diese Verbindungen |
US5254659A (en) * | 1990-03-27 | 1993-10-19 | Hitachi, Ltd. | Insulating coating composition, solderable insulated wires, production process of the insulated wires and flyback transformers using the insulated wires |
JPH05295090A (ja) | 1992-04-15 | 1993-11-09 | Hitachi Chem Co Ltd | エポキシ樹脂組成物 |
US5310850A (en) * | 1992-10-26 | 1994-05-10 | Industrial Technology Research Institute | Heat resistant poly(urethane amideimide) composition and method for preparing the same |
US5514747A (en) * | 1993-09-27 | 1996-05-07 | Industrial Technology Research Institute | Polyamide-imide-modified polyurethane insulation enamel composition |
TW574263B (en) * | 2001-06-28 | 2004-02-01 | Dainippon Ink & Chemicals | Active energy ray-curable polyimide resin composition |
KR100930937B1 (ko) | 2002-01-31 | 2009-12-10 | 디아이씨 가부시끼가이샤 | 열경화성 폴리이미드 수지 조성물 및 폴리이미드 수지의제조 방법 |
US6737163B2 (en) * | 2002-05-31 | 2004-05-18 | Ppg Industries Ohio, Inc. | Low-cure powder coatings and methods for using the same |
JP4474961B2 (ja) * | 2004-03-19 | 2010-06-09 | 日立化成工業株式会社 | ポリアミドイミド及びこれを含む樹脂組成物 |
CN101023112B (zh) | 2004-09-21 | 2010-11-24 | 昭和电工株式会社 | 热固性聚氨酯树脂组合物 |
-
2006
- 2006-12-13 TW TW095146610A patent/TWI443120B/zh active
- 2006-12-15 US US12/097,011 patent/US8168729B2/en active Active
- 2006-12-15 WO PCT/JP2006/325073 patent/WO2007069732A1/ja active Application Filing
- 2006-12-15 CN CN2006800526788A patent/CN101370847B/zh not_active Expired - Fee Related
- 2006-12-15 EP EP14178287.0A patent/EP2805977B1/en active Active
- 2006-12-15 KR KR1020087015026A patent/KR101321458B1/ko active IP Right Grant
- 2006-12-15 EP EP06842841.6A patent/EP1964869A4/en not_active Withdrawn
-
2012
- 2012-04-25 JP JP2012099828A patent/JP5516640B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08301967A (ja) * | 1995-04-28 | 1996-11-19 | Nippon Steel Chem Co Ltd | 新規重合物及びその製造方法並びにエポキシ樹脂組成物 |
JP2001316469A (ja) * | 2000-05-01 | 2001-11-13 | Dainippon Ink & Chem Inc | カルボキシル基含有アミドイミド樹脂及び/又はカルボキシル基含有イミド樹脂 |
JP2003292575A (ja) * | 2002-01-31 | 2003-10-15 | Dainippon Ink & Chem Inc | 熱硬化性ポリイミド樹脂組成物、ポリイミド樹脂の製造方法およびポリイミド樹脂 |
JP2003238807A (ja) * | 2002-02-20 | 2003-08-27 | Hitachi Chem Co Ltd | 難燃性耐熱性樹脂組成物、これを用いた接着フィルム及び接着剤付きポリイミドフィルム |
JP2006117922A (ja) * | 2004-09-21 | 2006-05-11 | Showa Denko Kk | ウレタン樹脂を用いた熱硬化性樹脂組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1964869A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008007591A (ja) * | 2006-06-28 | 2008-01-17 | Dainippon Ink & Chem Inc | 多層プリント配線板用硬化性樹脂組成物、熱硬化性接着フィルム及び多層プリント基板 |
WO2008153208A1 (ja) * | 2007-06-14 | 2008-12-18 | Ajinomoto Co., Inc. | 多層プリント配線板の層間絶縁用樹脂組成物 |
JP2013100419A (ja) * | 2011-11-09 | 2013-05-23 | Dic Corp | 熱硬化性樹脂組成物およびプリント配線板用層間接着フィルム |
WO2018193957A1 (ja) * | 2017-04-21 | 2018-10-25 | Dic株式会社 | ウレタン変性ポリイソシアネート化合物、2液硬化型ウレタン系接着剤用硬化剤、接着剤及び太陽電池のバックシート |
Also Published As
Publication number | Publication date |
---|---|
EP1964869A4 (en) | 2013-06-05 |
EP2805977A2 (en) | 2014-11-26 |
CN101370847B (zh) | 2011-03-16 |
JP2012162736A (ja) | 2012-08-30 |
US20090192273A1 (en) | 2009-07-30 |
JP5516640B2 (ja) | 2014-06-11 |
EP2805977B1 (en) | 2015-09-30 |
US8168729B2 (en) | 2012-05-01 |
KR101321458B1 (ko) | 2013-10-25 |
TWI443120B (zh) | 2014-07-01 |
EP2805977A3 (en) | 2015-01-07 |
EP1964869A1 (en) | 2008-09-03 |
CN101370847A (zh) | 2009-02-18 |
TW200732366A (en) | 2007-09-01 |
KR20080075196A (ko) | 2008-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007069732A1 (ja) | 熱硬化性樹脂組成物 | |
TWI299048B (en) | Thermosetting polymide resin composition, process for producing polymide resin and polymide resin | |
JP5040284B2 (ja) | 熱硬化性樹脂組成物 | |
WO2010137548A1 (ja) | 熱硬化性樹脂組成物およびその硬化物 | |
JP2003292575A (ja) | 熱硬化性ポリイミド樹脂組成物、ポリイミド樹脂の製造方法およびポリイミド樹脂 | |
JP5104411B2 (ja) | 熱硬化性ポリウレタン樹脂組成物 | |
JP5408473B2 (ja) | 熱硬化性ポリイミド樹脂組成物 | |
JP4552104B2 (ja) | 熱硬化性ポリイミド樹脂組成物、ポリイミド樹脂の製造方法およびポリイミド樹脂 | |
JP5092484B2 (ja) | 熱硬化性ポリイミド樹脂組成物 | |
JP5158400B2 (ja) | ポリイミド樹脂の製造方法 | |
JP5130795B2 (ja) | 熱硬化性ポリイミド樹脂組成物 | |
JP5119757B2 (ja) | ポリイミド樹脂組成物 | |
JP5119754B2 (ja) | 熱硬化性ポリイミド樹脂組成物 | |
JP5012819B2 (ja) | ポリイミド樹脂組成物 | |
JP5303860B2 (ja) | 熱硬化性ポリイミド樹脂組成物 | |
JP4379676B2 (ja) | 熱硬化性ポリイミド樹脂組成物、ポリイミド樹脂の製造方法およびポリイミド樹脂 | |
JP4355837B2 (ja) | 熱硬化性ポリイミド樹脂組成物、ポリイミド樹脂の製造方法及びポリイミド樹脂 | |
JP4998642B2 (ja) | ポリイミド樹脂の製造方法 | |
JPWO2010098296A1 (ja) | ポリイミド樹脂、ポリイミド樹脂の製造方法、ポリイミド樹脂組成物及びその硬化物 | |
JP5358892B2 (ja) | 熱硬化性ポリウレタン樹脂組成物 | |
JP5233329B2 (ja) | 熱硬化性ポリイミド樹脂組成物 | |
JP4355838B2 (ja) | 熱硬化性ポリイミド樹脂組成物、ポリイミド樹脂の製造方法およびポリイミド樹脂 | |
JP4356338B2 (ja) | 熱硬化性ポリイミド樹脂組成物及びポリイミド樹脂組成物の製造方法 | |
JP2004250584A (ja) | ポリイミド樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 12097011 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087015026 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006842841 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200680052678.8 Country of ref document: CN |