JP5358892B2 - 熱硬化性ポリウレタン樹脂組成物 - Google Patents

熱硬化性ポリウレタン樹脂組成物 Download PDF

Info

Publication number
JP5358892B2
JP5358892B2 JP2007078902A JP2007078902A JP5358892B2 JP 5358892 B2 JP5358892 B2 JP 5358892B2 JP 2007078902 A JP2007078902 A JP 2007078902A JP 2007078902 A JP2007078902 A JP 2007078902A JP 5358892 B2 JP5358892 B2 JP 5358892B2
Authority
JP
Japan
Prior art keywords
group
polyurethane resin
resin
resin composition
hydroxyl groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007078902A
Other languages
English (en)
Other versions
JP2008239682A (ja
Inventor
栄寿 一ノ瀬
英之 石田
晃一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2007078902A priority Critical patent/JP5358892B2/ja
Publication of JP2008239682A publication Critical patent/JP2008239682A/ja
Application granted granted Critical
Publication of JP5358892B2 publication Critical patent/JP5358892B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyethers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、耐熱性、電気特性、および柔軟性に優れる硬化物が得られ、また、硬化前の保存安定性も優れ、各種耐熱性コーティング材料や電気絶縁材料、例えばプリント配線基板の層間絶縁材料、ビルドアップ材料、半導体の絶縁材料、耐熱性接着剤等の分野に好ましく用いることができる熱硬化性ポリウレタン樹脂組成物に関する。
耐熱性コーティング材料、電気絶縁材料、例えばプリント配線基板の層間絶縁材料、ビルドアップ材料、半導体の絶縁材料、耐熱性接着剤等の電気電子産業分野に用いられる樹脂組成物の硬化物の耐熱性、低誘電率や低誘電正接などの電気特性、柔軟性に加え、硬化前の樹脂組成物の保存安定性等の向上が要望されている。特にコンピューター等の電子機器では、信号の高速化や高周波数化に伴いプリント基板の信号の伝達遅延やクロストークの発生等の伝達特性が問題となっている。また、プリント基板に使用される樹脂組成物については得られる硬化物の誘電率の低い材料が求められている。
耐熱性に優れる硬化物が得られる樹脂組成物としては、例えば、エポキシ樹脂を含有する樹脂組成物が多く用いられている。該樹脂組成物としては、例えば、重量平均分子量35,000未満のエポキシ樹脂、多官能フェノール樹脂、重量平均分子量35,000以上の高分子量エポキシ樹脂、硬化促進剤、還元剤及び尿素化合物を配合してなるエポキシ樹脂組成物が開示されている(例えば、特許文献1参照。)。しかしながら、該エポキシ樹脂組成物を用いて得られる硬化物でも耐熱性、電気特性、寸法安定性が満足できるものではない。
また、他の樹脂組成物として、例えば、ポリイミド樹脂を含有する樹脂組成物も多く用いられている。該樹脂組成物としては、例えば、カルボキシル基と数平均分子量300〜6,000の線状炭化水素構造とを有するポリイミド樹脂と、エポキシ樹脂とを含有する熱硬化性ポリイミド樹脂組成物が知られている(例えば、特許文献2参照。)。しかしながら、該特許文献2に記載された熱硬化性ポリイミド樹脂組成物の硬化物でも耐熱性も十分ではなく、寸法安定性にも劣る。
特開平5−295090号公報 特開2003−292575号公報
本発明の課題は、耐熱性、電気特性、および柔軟性に優れる硬化物が得られ、また、硬化前の保存安定性も優れる熱硬化性ポリウレタン樹脂組成物を提供することにある。
本発明者は、鋭意検討を重ねた結果、下記の知見を見出した。
(1)フェノール系化合物の構造残基と、フェノール性水酸基およびイソシアネート基の反応にて生成されるウレタン結合とを有するポリウレタン樹脂と、エポキシ樹脂と、水酸基の水素原子がアシル基で置換された構造を有するフェノキシ樹脂とを含有する樹脂組成物の硬化物は、耐熱性、柔軟性に優れ、また、低誘電率、低誘電正接という優れた電気特性も有する。
(2)前記樹脂組成物は保存安定性にも優れる。
本発明は上記の知見を基に完成したものである。
即ち、本発明は、下記一般式(1)および/または下記一般式(2)で表される構造を有するポリウレタン樹脂(A)と、エポキシ樹脂(B)と、水酸基の水素原子がアシル基で置換された構造を有するフェノキシ樹脂(C)とを含有し、前記フェノキシ樹脂(C)がビスフェノールS骨格およびナフタレン骨格を含有するフェノキシ樹脂であり、前記ポリウレタン樹脂(A)とエポキシ樹脂(B)との配合量が、樹脂分の重量比として(A)/(B)が1/100から50/1の割合であり、前記フェノキシ樹脂(C)の配合量が、前記ポリウレタン樹脂(A)と前記エポキシ樹脂(B)との合計〔(A)+(B)〕に対して重量比で〔(A)+(B)〕/(C)=5/95〜95/5であることを特徴とする熱硬化性ポリウレタン樹脂組成物を提供するものである。
Figure 0005358892
Figure 0005358892
(式中、Xは1分子中に2個以上のフェノール性水酸基を有するフェノール系化合物から2個のフェノール性水酸基を除いた残基を示す。)
本発明の熱硬化性ポリウレタン樹脂組成物は、耐熱性、柔軟性に優れる硬化物を提供できる。また、該硬化物は低誘電率、低誘電正接という優れた電気特性も有する。更に保存安定性も優れる熱硬化性ポリウレタン樹脂組成物である。従って、各種耐熱性コーティング材料や電気絶縁材料、例えばプリント配線基板の層間絶縁材料、ビルドアップ材料、半導体の絶縁材料、耐熱性接着剤等の分野に好ましく用いることができる。更に、接着フィルム、プリプレグ多層プリント配線基板及び樹脂付銅箔の分野にも好ましく用いることができる。
本発明で用いるポリウレタン樹脂(A)は、下記一般式(1)および/または下記一般式(2)で表されるように、ポリウレタン結合としてイソシアネート基とフェノール性水酸基とが連結した構造を有する。ポリウレタン樹脂(A)としては、なかでも有機溶剤に溶解するポリウレタン樹脂が取り扱い易いことから好ましい。
Figure 0005358892
Figure 0005358892
(式中、Xは1分子中に2個以上のフェノール性水酸基を有するフェノール系化合物から2個のフェノール性水酸基を除いた残基を示す。)
前記一般式(1)で表される構造を有するポリウレタン樹脂としては、例えば、下記一般式(3)で表される構造を有するポリウレタン樹脂等が挙げられる。
Figure 0005358892
(上記式中RxおよびRxは同一でも異なっていても良く、ポリイソシアネート化合物から二つのイソシアネート基を除いた残基を示す。Xは1分子中に2個以上のフェノール性水酸基を有するフェノール系化合物から2個のフェノール性水酸基を除いた残基を示す。)
また、前記一般式(2)で表される構造を有するポリウレタン樹脂としては、例えば、下記一般式(4)で表される構造を有するポリウレタン樹脂等が挙げられる。
Figure 0005358892
(上記式中Rxはポリイソシアネート化合物から二つのイソシアネート基を除いた残基を示す。Xは1分子中に2個以上のフェノール性水酸基を有するフェノール系化合物から2個のフェノール性水酸基を除いた残基を示す。)
前記一般式(3)及び一般式(4)中のRxやRxはそれぞれ同一でも良いし異なっていても良い。
ここで、上記一般式(3)においてRxおよび/またはRxが後述する一般式(15)のRに該当すると、一般式(15)に一般式(1)が結合した構造を有した分岐状ポリウレタン樹脂となる。上記一般式(4)においてRxが後述する一般式(15)のR5に該当すると、一般式(15)に一般式(2)が結合した構造を有した分岐状ポリウレタン樹脂となる。
前記一般式(1)〜一般式(4)中のXとしては、例えば、下記構造等が挙げられる。
Figure 0005358892
(式中Rは、単結合あるいは2価の連結基であり、Rは同一でも異なっていても良く、水素原子または炭素原子数1〜18のアルキル基を示す。)
Figure 0005358892
(式中Rは、直接結合あるいは2価の連結基であり、Rは同一でも異なっていても良く、水素原子または炭素原子数1〜18のアルキル基を示す。aとbとcとの合計は1以上である。)
Figure 0005358892
(式中Rは、水素原子または炭素原子数1〜18のアルキル基または下記一般式(8)で示される構造を示す。)
Figure 0005358892
Figure 0005358892
Figure 0005358892
本発明で用いるポリウレタン樹脂(A)としては、一般式(1)及び(2)のXが、前記一般式(5)、(6)、(7)、および(9)の群から選ばれる一種以上の構造を有するポリウレタン樹脂が、耐熱性に優れる硬化物を提供できるため好ましく、中でも、一般式(5)および一般式(6)で表される構造がより好ましい。特に本発明で用いるポリウレタン樹脂が後述するように硬化物に柔軟性を付与する構造を有する、例えば、後述する一般式(13)等の構造を有するポリウレタン樹脂の場合、一般式(1)や一般式(2)中のXは、一般式(6)で示される構造を有することが好ましい。
前記一般式(5)や一般式(6)で示される構造中のRとしては、例えば、直接結合;カルボニル基、スルホニル基、メチレン基、イソプロピリデン基、ヘキサフルオロイソプロピリデン基、オキソ基、ジメチルシリレン基、フルオレン−9−ジイル基、およびトリシクロ[5.2.1.02,8]デカン−ジイル基等の2価の連結基等が挙げられる。Rとしては、例えば、水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ヘキサデシル基、およびステアリル基等の炭素原子数1〜18のアルキル基等が挙げられる。また、一般式(7)で示される構造中のRとしての炭素原子数1〜18のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ヘキサデシル基、およびステアリル基等が挙げられる。
尚、本発明において、カルボニル基は下記構造式(1a)、スルホニル基は下記構造式(1b)、メチレン基は下記構造式(1c)、イソプロピリデン基は下記構造式(1d)、ヘキサフルオロイソプロピリデン基は下記構造式(1e)、オキソ基は下記構造式(1f)、ジメチルシリレン基は下記構造式(1g)、フルオレン−9−ジイル基は下記構造式(1h)、そしてトリシクロ[5.2.1.02,8]デカン−ジイル基は下記構造式(1i)で表される。これらは、ビフェノール、テトラメチルビフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールS、ナフタレンジオール、およびジシクロペンタジエン変性ビスフェノール等の残基である。(なお、図中の*は結合部位を表す。)また、ポリフェノール化合物、例えば、フェノールノボラック樹脂やクレゾールノボラック樹脂、ナフトールとアルキルフェノールとホルムアルデヒド縮合物とから合成されるポリフェノール樹脂等から2つの水酸基を除いた構造残基等でもよい。
Figure 0005358892
前記一般式(5)中のRの中でも、直接結合、前記一般式(1b)、一般式(1c)、および一般式(1d)で示される構造が溶解性、相溶性に優れる熱硬化性ポリウレタン樹脂組成物が得られ、また、ポリウレタン樹脂(A)を得る際の合成もしやすいことから好ましい。また、前記Rの中でも、水素原子およびメチル基が好ましい。また、前記一般式(6)中のRの中でも前記一般式(1i)で示される構造が耐熱性に優れる熱硬化性ポリウレタン樹脂組成物が得られることから好ましい。尚、前記一般式(1i)で示される構造は以下、下記に示す一般式(11)として表す。
Figure 0005358892
本発明で用いるポリウレタン樹脂(A)は、前記一般式(1)で表される構造および/または一般式(2)で表される構造を有すれば良いが、中でも前記一般式(1)で表される構造および一般式(2)で表される構造を有するポリウレタン樹脂を使用すると、硬化性が良好な熱硬化性ポリウレタン樹脂組成物が得られることからより好ましい。ここで、前記一般式(1)で示される構造及び前記一般式(2)で示される構造中のXは同一でも良いし異なっていても良い。
また、前記一般式(6)で表される構造を有するポリウレタン樹脂としては、例えば、以下の構造を有するポリウレタン樹脂が挙げられる。
Figure 0005358892
Rxは、同一であっても異なっていても良く、ポリイソシアネート化合物から二つのイソシアネート基を除いた残基を示す。aおよびbは、それぞれ1〜10の整数であり、おのおの括られた核単位は、ランダムにつながっている。
そして1)aが1の場合は、一般式(2)の末端にポリフェノール構造が存在する形態となり、2)aが2の場合は、一般式(1)の分子主鎖中にポリフェノール構造が存在する形態となり、3)aが3以上の場合は、ポリウレタン樹脂の構造が分岐の形態となる。更にaが1、2および3以上の形態が分子内に同時に存在していても良い。
ポリウレタン樹脂(A)として前記一般式(1)で表される構造と一般式(2)で表される構造とを有するポリウレタン樹脂の具体例としては、例えば、下記一般式(12)で表される構造を有するポリウレタン樹脂等を挙げることができる。
Figure 0005358892
(上記式中Rxはポリイソシアネート化合物から2つのイソシアネート基を除いた残基を示す。Xは1分子中に2個以上のフェノール性水酸基を有するフェノール系化合物から2個のフェノール性水酸基を除いた残基を示す。mは0〜100の整数である。)
ポリウレタン樹脂(A)の中でも、前記一般式(3)及び一般式(4)で示されるポリウレタン樹脂で、RxおよびRxが2官能のジイソシアネート化合物から2つのイソシアネート基を除いた残基である場合は、前記一般式(12)で示される様な線状の構造を有するポリウレタン樹脂となる。また、RxおよびRxが3官能以上のポリイソシアネート化合物から2つのイソシアネート基を除いた残基である場合は、分岐状の構造を有するポリウレタン樹脂となる。
前記一般式(2)中の末端の水酸基はフェノール性水酸基であり、このフェノール性水酸基は、多官能フェノール化合物の1個の水酸基がウレタン結合で樹脂骨格に連結した以外の残りのフェノール性水酸基である。一般式(2)で示される構造を得る際に用いる多価のフェノール性水酸基含有化合物は、2官能フェノール化合物が好ましいが、2官能フェノール化合物以外に3官能以上のポリフェノール化合物を使用あるいは併用し、末端に複数のフェノール性水酸基を残存させても良い。
本発明で用いるウレタン樹脂(A)は、一般式(1)および/または一般式(2)で示される様に、フェノール性水酸基とイソシアネート基とからなるウレタン結合を有する。一般に、フェノール性水酸基とイソシアネート基とによるウレタン結合は、高温下で解離する為、フェノールやクレゾール等の低分子モノフェノール化合物などをイソシアネート基のブロック剤として使用することがある。しかしながらこうしたブロック剤は塗膜や成型物の硬化反応において解離し、揮発成分として気泡やボイドの発生原因となり、好ましいものではない。
本発明では、2価以上のポリフェノール化合物を用いてフェノール性水酸基の導入を行うため、硬化時の高温状況下で樹脂から解離しても揮発せず系内に残存する。その為、ポリウレタン樹脂(A)は積極的にエポキシ樹脂(B)と架橋反応してより硬化する。また、イソシアネート基は、このフェノール性水酸基とエポキシ基との反応により生成するアルコール性水酸基とさらにウレタン化反応を行い、分子の新たな架橋構造を構築し、誘電特性に不利な水酸基をブロックすると考えられる。つまり、生成するウレタン結合が樹脂骨格と新たなネットワークを形成し、これにより良好な耐熱性あるいは機械物性を発現すると本発明者らは考えている。
更に、本発明の熱硬化性ポリウレタン樹脂組成物は、フェノキシ樹脂(C)を含有している。本発明では、このフェノキシ樹脂(C)バインダー成分としてポリウレタン樹脂(A)とエポキシ樹脂(B)との反応により得られた架橋構造に組み込まれた硬化形態をとる。これにより良好な耐熱性と強靭な機械物性とを発現する。
また、本発明で用いるポリウレタン樹脂(A)が、前記一般式(2)で表される構造を有するポリウレタン樹脂である場合、末端にフェノール性水酸基を有するが、この水酸基もエポキシ樹脂と反応して硬化に寄与する。
本発明の熱硬化性ポリウレタン樹脂組成物に用いるポリウレタン樹脂(A)としては、更に下記一般式(13)で示される構造を有するポリウレタン樹脂を用いることにより、伸度が大きく、柔軟性に優れる硬化物が得られる。その為、例えば、ポリウレタン樹脂(A)の中でも、下記一般式(13)で示される構造を有するポリウレタン樹脂を含有する熱硬化性ポリウレタン樹脂組成物はフレキシブル基板用の絶縁層用の樹脂組成物として好ましく用いることができる。
Figure 0005358892
(式中、Yは1分子中に少なくとも2個のアルコール性水酸基を有するポリオール化合物から2つの水酸基を除いた残基を示す。)
前記一般式(13)中のYで示される少なくとも2個のアルコール性水酸基を有するポリオール化合物から2つの水酸基を除いた残基(残基構造)としては、例えば、1分子中に少なくとも2個のアルコール性水酸基を有するポリオレフィンポリオールから2つの水酸基を除いた残基、1分子中に少なくとも2個のアルコール性水酸基を有するポリエーテルポリオールから2つの水酸基を除いた残基、1分子中に少なくとも2個のアルコール性水酸基を有するポリカーボネートポリオールから2つの水酸基を除いた残基、1分子中に少なくとも2個のアルコール性水酸基を有するポリエステルポリオールから2つの水酸基を除いた残基および1分子中に少なくとも2個のアルコール性水酸基を有するポリシロキサンポリオールから2つの水酸基を除いた残基等を好ましく挙げることができる。さらにこれらの残基構造から選ばれる1種以上の残基構造及び/又は共重縮合体としてもよい。
なお、前記一般式(13)中のYとしては、塗膜の柔軟性に加えて特に誘電特性等を向上させたい場合は、1分子中に少なくとも2個のアルコール性水酸基を有するポリオレフィンポリオールから2つの水酸基を除いた残基が好ましい。また、物性と耐加水分解性とを向上させたい場合は、1分子中に少なくとも2個のアルコール性水酸基を有するポリカーボネートポリオールから2つの水酸基を除いた残基が好ましい。
前記一般式(13)中のYとしては、硬化物の伸度が大きく、且つ、柔軟性を保有させることができることから、数平均分子量が300〜5,000が好ましく、500〜3,000がより好ましい。また、一般式(13)中のYのガラス転移温度(Tg)としては0℃以下が好ましく、0〜−150℃がより好ましい。
前記一般式(1)および/または一般式(2)、および一般式(13)で表される構造を有するポリウレタン樹脂としては、例えば、下記一般式(14)で表される構造を有するポリウレタン樹脂等が挙げられる。
Figure 0005358892
〔上記式中RxとRxとは、同一であっても異なっていても良く、ポリイソシアネート化合物から二つのイソシアネート基を除いた残基構造を示す。Zは、1分子中に2個以上のフェノール性水酸基を有するフェノール系化合物から2個のフェノール性水酸基を除いた残基(X)または1分子中に少なくとも2個のアルコール性水酸基を有するポリオール化合物から2つの水酸基を除いた残基(Y)であるが、Cで示される繰り返しの単位において少なくとも一つは、Yの構造である。Cは、1から100の整数である。〕
前記一般式(13)で表される構造を有するポリウレタン樹脂としては、前記一般式(1)および/または一般式(2)で表される構造および一般式(13)で表される構造を有すれば良いが、中でも前記一般式(1)で表される構造、一般式(2)で表される構造、および一般式(13)で表される構造をすべて有するポリウレタン樹脂が、耐熱性と硬化性とに優れる硬化物を提供できるため好ましい。ここで、前記一般式(1)で示される構造及び前記一般式(2)で示される構造中のXは同一でも良いし異なっていても良い。
本発明で用いるポリウレタン樹脂(A)は下記一般式(15)で示される構造にて分岐しているポリウレタン樹脂が、他の樹脂成分との相溶性、溶剤溶解性の向上や得られる硬化塗膜の耐熱性が良好なことから好ましい。
Figure 0005358892
(式中Rはジイソシアネート化合物からイソシアネート基を除いた残基構造を示す。)
前記一般式(15)中のR5としては、例えば、芳香族系の残基構造、脂肪属系の残基構造、および脂環族系等の残基構造等が挙げられる。中でも、炭素原子数が4から13のものを好ましく使用することができる。Rの構造は、結晶化の防止や溶解性向上の面から2種以上の構造を併用したほうが好ましい。特に芳香族系の残基構造と脂肪族あるいは脂環族の残基構造との併用が好ましい。
前記一般式(15)で示される構造にて分岐しているポリウレタン樹脂は、例えば、原料としてイソシアヌレート型ポリイソシアネート化合物を用いて合成することにより得られる。
本発明で用いるポリウレタン樹脂(A)は、例えば、2個以上のフェノール性水酸基を有するポリフェノール化合物(a1)とポリイソシアネート化合物(a2)とを反応させることにより容易に得ることができる。具体的には、攪拌装置、温度計及びコンデンサーを付けたフラスコにポリフェノール化合物(a1)とポリイソシアネート化合物(a2)とを仕込み、攪拌を行いながら発熱に注意して昇温し、反応させる。50℃から250℃の範囲で昇温させることができるが、反応速度と副反応防止との面から70℃から180℃の温度で行うことが好ましい。また、ウレタン結合の解離を防ぐ為に70〜140℃で反応を行うことが更に好ましい。反応する際の時間としては、通常1〜20時間である。
前記2個以上のフェノール性水酸基を有するポリフェノール化合物(a1)としては、例えば、ハイドロキノン、ビフェノール、テトラメチルビフェノール、エチリデンビスフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールS、シクロヘキシリデンビスフェノール(ビスフェノールZ)、ジメチルブチリデンビスフェノール、4,4’−(1−メチルエチリデン)ビス〔2,6−ジメチルフェノール〕、4,4’−(1−フェニルエチリデン)ビスフェノール、5,5’−(1−メチルエチリデン)ビス〔1,1’−ビフェニル−2−オール〕、ナフタレンジオール、ジシクロペンタジエン変性ビスフェノール、9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイドとハイドロキノンとの反応生成物等が挙げられる。
ポリフェノール化合物(a1)として、フェノールノボラック樹脂、クレゾールノボラック樹脂及びノニルフェノールノボラック樹脂等のアルキルフェノールのノボラック樹脂等の3官能以上のフェノール化合物も使用可能である。
ポリフェノール化合物(a1)としては2個のフェノール性水酸基を含有するポリフェノール化合物、つまり2官能のポリフェノール化合物を使用することが好ましい。中でも、ビスフェノールA、ビスフェノールF、およびビスフェノールS等のビスフェノール系化合物がより好ましい。
また、難燃性や耐熱性に優れる硬化物が得られることから、ポリウレタン樹脂(A)を得る際に、ナフタレンジオールや9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイドとハイドロキノンとの反応生成物を使用することが好ましい。
尚、本発明の効果を損なわない範囲で一部、フェノールやクレゾール等の一官能性のフェノール化合物を併用しても良い。
本発明で用いるポリイソシアネート化合物(a2)としては、例えば、芳香族ポリイソシアネート化合物、および脂肪族ポリイソシアネート化合物等が使用可能である。
前記芳香族ポリイソシアネート化合物としては、例えば、p−フェニレンジイソシアネート、m−フェニレンジイソシアネート、p−キシレンジイソシアネート、m−キシレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネート、3,3′−ジメチルジフェニル−4,4′−ジイソシアネート、3,3′−ジエチルジフェニル−4,4′−ジイソシアネート、m−キシレンジイソシアネート、p−キシレンジイソシアネート、1,3−ビス(α,α−ジメチルイソシアナートメチル)ベンゼン、テトラメチルキシリレンジイソシアネート、ジフェニレンエーテル−4,4′−ジイソシアネート、およびナフタレンジイソシアネート等の芳香族ジイソシアネート化合物等が挙げられる。
前記脂肪族ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンメチレンジイソシアネート、イソホロンジイソシアネート、4,4′−ジシクロヘキシルメタンジイソシアネート、水素添加キシレンジイソシアネート、およびノルボヌレンジイソシアネート等が挙げられる。
また前記ポリイソシアネート化合物(a2)として、前記ポリイソシアネート化合物(a2)と各種ポリオール成分とをイソシアネート基過剰で予め反応させたイソシアネートプレポリマーを使用または併用することも可能である。
本発明の熱硬化性ポリウレタン樹脂組成物に用いるポリウレタン樹脂(A)は、分岐構造をとることにより、溶剤溶解性や硬化剤等その他の樹脂成分との相溶性が向上するためより好ましい。かかる分岐の手法としては、ポリイソシアネート化合物(a2)として、例えば、前記ジイソシアネート化合物等のイソシアヌレート体であるイソシアヌレート環を有する3官能以上のポリイソシアネート化合物の単独、あるいはこうしたポリイソシアネート化合物と前記ジイソシアネート化合物との混合物を使用することが好ましい。
前記イソシアヌレート環を有する3官能以上のポリイソシアネート化合物は、例えば、1種または2種以上のジイソシアネート化合物を第4級アンモニウム塩等のイソシアヌレート化触媒の存在下あるいは非存在下において、イソシアヌレート化することにより得られるものであって、3量体、5量体、および7量体等のイソシアヌレートの混合物からなるもの等が挙げられる。前記ポリイソシアネート化合物のイソシアヌレート体の具体例としては、イソホロンジイソシアネートのイソシアヌレート型ポリイソシアネート、ヘキサメチレンジイソシアネートのイソシアヌレート型ポリイソシアネート、水素添加キシレンジイソシアネートのイソシアヌレート型ポリイソシアネート、ノルボルナンジイソシアネートのイソシアヌレート型ポリイソシアネート等脂肪族系ポリイソシアネート類やジフェニルメタンジイソシアネートのイソシアヌレート型ポリイソシアネート、トリレンジイソシアネートのイソシアヌレート型ポリイソシアネート、キシレンジイソシアネートのイソシアヌレート型ポリイソシアネート、およびナフタレンジイソシアネートのイソシアヌレート型ポリイソシアネート等が挙げられる。
ポリイソシアネート化合物(a2)として、ジイソシアネート化合物とイソシアヌレート環を有する3官能以上のジイソシアネート化合物と併用する場合、ジイソシアネート化合物としての芳香族ジイソシアネートと、前記イソシアヌレート環を有する3官能以上のジイソシアネート化合物としての脂肪族ジイソシアネートのイソシヌレート型ポリイソシアネートおよび/または脂環式ジイソシアネートのイソシヌレート型ポリイソシアネートとを含有する混合物を用いるのが好ましい。
前記ポリイソシアネート化合物(a2)として脂肪族ジイソシアネート化合物を用いると、溶解性に優れる熱硬化性ポリウレタン樹脂組成物が得られ、且つ、電気特性が良好な硬化塗膜が得られることからより好ましい。
更に、ポリイソシアネート化合物(a2)は、前記以外のポリイソシアネート化合物、例えば、前記ジイソシアネート化合物や前記ジイソシアネートのビュレット体、アダクト体、アロハネート体、あるいはポリメチレンポリフェニルポリイソシアネート(クルードMDI)等と併用しても良い。
本発明で用いるポリイソシアネート化合物(a2)は、溶剤溶解性が良好な熱硬化性ポリウレタン樹脂組成物が得られることから、2種以上のポリイソシアネート化合物を併用することが好ましい。加えて耐熱性に優れる硬化塗膜が得られることから上述のイソシアヌレート体を併用することが好ましい。イソシアヌレート体を併用する場合は、全ポリイソシアネート化合物(a2)量の70重量%以下に設定することが樹脂の高分子量化やゲル化を防ぐ意味で好ましい。
ポリフェノール化合物(a1)とポリイソシアネート化合物(a2)との反応に際しては、ポリイソシアネート化合物(a2)に対してポリフェノール化合物(a1)が反応する。末端をフェノール性水酸基として残存させる為には、ポリフェノール化合物(a1)中のフェノール性水酸基のモル数がポリイソシアネート化合物(a2)中のイソシアネート基のモル数より大きくなる条件で反応させることが好ましい。合成上の安定性や硬化物の各種性能を考慮すると、上記フェノール性水酸基のモル数とイソシアネート基のモル数との比〔(a1)中のフェノール性水酸基のモル数/(a2)中のイソシアネート基のモル数〕が1から10の範囲が好ましく、より好ましくは1.05から7の範囲である。
得られるポリウレタン樹脂の安定性が良好となることから、反応はイソシアネート基がほぼ全て反応するまで行った方が好ましい。また、若干残存するイソシアネート基に対して、アルコールやフェノール化合物を添加し反応させても良い。
ところで、前記一般式(13)で表される構造を更に有するポリウレタン樹脂は、例えば、前記2個以上のフェノール性水酸基を有するポリフェノール化合物(a1)と前記ポリイソシアネート化合物(a2)とポリオール化合物(a3)とを反応させる製造方法により容易に得ることができる。
前記ポリオール化合物(a3)としては、例えば、ポリオレフィンポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリオール、ポリシロキサンポリオール等が挙げられる。ポリオール化合物(a3)は単独あるいは2種以上を併用しても良い。また、ポリオール化合物(a3)としては、前記ポリオレフィンポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリオール、およびポリシロキサンポリオール等の2種以上の共重縮合構造を有するポリオール類も使用しても良い。
前記ポリオレフィンポリオールとしては、例えば、ポリオレフィン構造やポリジエン構造を有するポリオール化合物等が挙げられる。具体的には、例えば、ポリエチレン系ポリオール、ポリプロピレン系ポリオール、ポリブタジエンポリオール、水素添加ポリブタジエンポリオール、ポリイソプレンポリオール、および水素添加ポリイソプレンポリオール等が挙げられる。なかでもポリブタジエンポリオールおよび/または水素添加ポリブタジエンポリオールが好ましく、さらにそのなかでも水素添加ポリブタジエンポリオールがより好ましく、ポリオレフィンジオールが特に好ましい。また、前記ポリオレフィンポリオールの脂肪族構造部分の数平均分子量は300〜6,000の範囲が好ましい。
前記ポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリブチレングリコール等のアルキレンエーテルポリオールやこれらポリアルキレンポリオールの共重合体が挙げられる。また、単独で用いても2種類以上併用しても良い。
前記ポリカーボネートポリオールとしては、例えば、プロピレンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、メチルペンタンジオール、シクロヘキサンジメタノール等から得られるポリアルキレンカーボネートポリオールやビスフェノールAやビスフェノールF,S等のアルキレンオキサイド付加ジオール等から得られるポリカーボネートポリオールやこれらの共重合体等が挙げられる。
前記ポリエステルポリオールとしては、例えば、アルキレンジオールと、多価カルボン酸とのエステル化物、多価カルボン酸のアルキルエステルとのエステル交換反応物、およびεカプロラクトン系ポリラクトンポリオール等のポリラクトンポリオール等が挙げられる。
前記ポリシロキサンポリオールとしては、例えば、ジメチルポリシロキサンポリオールやメチルフェニルポリシロキサンポリオール等が挙げられる。
本発明で用いるポリオール化合物(a3)としては、特に誘電特性等を向上させたい場合は、ポリオレフィンポリオールやポリシロキサンポリオールが好ましく、物性と耐加水分解性とを向上させたい場合は、ポリカーボネートポリオールが好ましい。
本発明で用いるポリオール化合物(a3)としては、水酸基を1.5〜4個有するポリオール化合物が合成しやすいので好ましく、そのなかでも水酸基を2個有するポリオール化合物、つまりジオール化合物がより好ましい。
前記ジオール化合物の中でも、ポリオレフィンジオール、ポリエーテルジオール、ポリカーボネートジオール、ポリエステルジオール、およびポリシロキサンジオールからなる群から選ばれる1種以上のポリオール化合物がより好ましい。
また、前記ポリオール化合物(a3)としては、十分な伸度が得られ、且つ、強度も強い塗膜が得られることから、数平均分子量300〜5,000のポリオール化合物が好ましく、数平均分子量500〜3,000がより好ましい。
ポリオール化合物(a3)のTgは、0℃以下であることが硬化物の伸度や柔軟性を高く設計できる点で好ましく、0〜−150℃がより好ましい。
本発明で用いるポリウレタン樹脂(A)として前記一般式(13)で表される構造を更に有するポリウレタン樹脂を調製する際には、ポリイソシアネート化合物(a2)に対してポリフェノール化合物(a1)とポリオール化合物(a3)とがおのおの反応する。末端をフェノール性水酸基として残存させる為には、ポリフェノール化合物(a1)中のフェノール性水酸基のモル数(m(a1)モル)とポリオール化合物(a3)中のアルコール性水酸基のモル数(m(a3)モル)との合計モル量が、ポリイソシアネート化合物(a2)中のイソシアネート基のモル数(m(a2)モル)より大きくなる条件で反応させることが好ましい。合成上の安定性や硬化物の各種性能を考慮すると、{m(a1)+m(a3)}/m(a2)が1から10の範囲であり、より好ましくは1.1から7の範囲である。またm(a1)とm(a3)との合計の重量に対してm(a1)およびm(a3)はおのおの5重量%以上存在していることがより好ましく、10%以上存在していることがより好ましい。
本発明で用いるウレタン樹脂(A)の製造方法において、有機溶剤を使用すると均一な反応を進行できるため好ましい。ここで有機溶剤は、系中にあらかじめ存在させてから反応を行っても、途中で導入してもよい。また、適切な反応速度を維持するためには、系中の有機溶剤の割合は、反応系の80重量%以下であるが好ましく、10〜70重量%であることがより好ましい。かかる有機溶剤としては、原料成分としてイソシアネート基を含有する化合物を使用するため、水酸基やアミノ基等の活性プロトンを有しない非プロトン性極性有機溶剤が好ましい。
前記非プロトン性極性有機溶剤としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルフォキシド、スルホラン、およびγ−ブチロラクトンなどの極性有機溶媒を使用することができる。また、上記溶媒以外に、溶解可能であれば、エーテル系溶剤、エステル系溶剤、ケトン系溶剤、および石油系溶剤等を使用しても良い。また、各種溶剤を混合して使用しても良い。
かかるエーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエチレングリコールジアルキルエーテル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールジブチルエーテル等のポリエチレングリコールジアルキルエーテル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、トリエチレングリコールモノブチルエーテルアセテート等のポリエチレングリコールモノアルキルエーテルアセテート類;
プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル等のプロピレングリコールジアルキルエーテル類;ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールジブチルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールジブチルエーテル等のポリプロピレングリコールジアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、トリプロピレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノエチルエーテルアセテート、トリプロピレングリコールモノブチルエーテルアセテート等のポリプロピレングリコールモノアルキルエーテルアセテート類;低分子のエチレン−プロピレン共重合体等の共重合ポリエーテルグリコールのジアルキルエーテル類;共重合ポリエーテルグリコールのモノアセテートモノアルキルエーテル類;共重合ポリエーテルグリコールのアルキルエステル類;および共重合ポリエーテルグリコールのモノアルキルエステルモノアルキルエーテル類等が挙げられる。
エステル系溶剤としては、例えば、酢酸エチルおよび酢酸ブチル等が挙げられる。ケトン系溶剤としては、アセトン、メチルエチルケトン、およびシクロヘキサノン等が挙げられる。また、石油系溶剤としては、トルエン、キシレンやその他高沸点の芳香族溶剤等や、ヘキサン、シクロヘキサン等の脂肪族および脂環族溶剤を使用することも可能である。
本発明で用いるポリウレタン樹脂(A)の重量平均分子量は、溶剤溶解性が良好な熱硬化性ポリウレタン樹脂組成物が得られ、且つ、種々の物性に優れる硬化塗膜が得られることから、800〜50,000が好ましく、1,000〜20,000がより好ましい。
尚、本発明で用いるポリウレタン樹脂(A)等の樹脂の重量平均分子量の測定は、ゲルパーミエーションクロマトグラフを用い、下記の条件でポリスチレン換算により求めた。
測定装置 ; 東ソー株式会社製 HLC−8220GPC
カラム ; 東ソー株式会社製ガードカラムSUPER HZ−H
+東ソー株式会社製 TSKgel SUPER HZm−mを4本
検出器 ; RI(示差屈折計)
データ処理:東ソー株式会社製 GPC−8020
測定条件: カラム温度 40℃
溶媒 テトラヒドロフラン
流速 0.35ml/min
標準 ;ポリスチレン
試料 ;樹脂固形分換算で0.2重量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100ml)
本発明で用いるポリウレタン樹脂(A)のフェノール性水酸基当量は、400〜50,000が好ましい。
本発明で用いるエポキシ樹脂(B)は分子内に2個以上のエポキシ基を有していることが好ましい。こうしたエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラックエポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノール型ノボラック等のノボラック型エポキシ樹脂;ジシクロペンタジエンと各種フェノール類と反応させて得られる各種ジシクロペンタジエン変性フェノール樹脂のエポキシ化物;2,2′,6,6′−テトラメチルビフェノールのエポキシ化物等のビフェニル型エポキシ樹脂;ナフタレン骨格を有するエポキシ樹脂;フルオレン骨格を有するエポキシ樹脂等の芳香族系エポキシ樹脂やこれら芳香族系エポキシ樹脂の水素添加物;ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル等の脂肪族エポキシ樹脂;3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、ビス−(3,4−エポキヒシクロヘキシル)アジペート等の脂環式エポキシ樹脂;トリグリシジルイソシアヌレート等のごときヘテロ環含有エポキシ樹脂等が挙げられる。中でも、芳香族系エポキシ樹脂が、硬化塗膜の機械物性に優れる熱硬化性ポリウレタン樹脂組成物が得られることから好ましく、中でもノボラック型エポキシ樹脂がより好ましい。
前記ポリウレタン樹脂(A)とエポキシ樹脂(B)との配合量は、樹脂分の重量比として(A)/(B)が1/100から50/1の割合で使用することができ、さらに好ましくは、1/10から20/1である。
本発明で用いるフェノキシ樹脂(C)は、水酸基含有フェノキシ樹脂の水酸基中の水素原子がアシル基で置換された構造を有する。このような構造を有することにより低誘電率、低誘電正接、耐熱性に優れる硬化物が得られる。また、フェノキシ樹脂(C)は結晶化しにくく低極性となり樹脂との相溶性や溶剤溶解性が良好なため取り扱い易いという特徴も有する。
本発明で用いるフェノキシ樹脂(C)は通常エポキシ基を有しておらず熱可塑性であるが、エポキシ基を有するものでも本発明で用いることができる。また、フェノキシ樹脂(C)はポリヒドロキシポリエーテル構造を有する樹脂とも言える。
本発明で用いるフェノキシ樹脂(C)は、重量平均分子量(Mw)が5,000〜200,000のフェノキシ樹脂が好ましく、重量平均分子量(Mw)は10,000〜10,0000がより好ましい。このようなフェノキシ樹脂を用いる事によりポリウレタン樹脂(A)やエポキシ樹脂(B)との相溶性が低下しにくく、均一な樹脂組成物となり易い為、耐熱性、柔軟性に優れる硬化物が得られる。また、硬化物は低誘電率、低誘電正接となる。更に、硬化前の保存安定性も優れる。
本発明で用いるフェノキシ樹脂(C)としては、フェノキシ樹脂(C)が有する水酸基中の水素原子がアシル基に置換された割合としては1モル%〜100モル%が、誘電率や誘電正接が低い硬化物が得られる熱硬化性ウレタン樹脂組成物が得られることから好ましく、10〜100モル%がより好ましく、50〜100モル%のフェノキシ樹脂がより好ましい。また、フェノキシ樹脂(C)を調製する際のエステル化の効率が良好なことから70〜95モル%が好ましい。
フェノキシ樹脂(C)が有する水酸基中の水素原子がアシル基に置換された構造としては、例えば、水酸基を1価の酸でエステル化した活性水素を有さない構造、水酸基を多塩基酸等でエステル化したカルボン酸を有する構造、水酸基をラクトン等でエステル化した水酸基を有する構造等が挙げられる。なかでも前記水酸基を1価の酸でエステル化した活性水素を有さない構造(極性基を有さない構造)を有するものが、誘電特性や樹脂との相溶性や溶解性、非結晶性、製造のし易さの理由から好ましい。
フェノキシ樹脂(C)が有する水酸基の水素原子と置換されるアシル基としては、炭素原子数1〜20の炭化水素基を有するアシル基が好ましい。従って、フェノキシ樹脂(C)が有する水酸基の水素原子と置換されるアシル基としては、炭素原子数1〜20の炭化水素基を有し、且つ、活性水素を有さないアシル基がより好ましい。
前記アシル基が有する炭素原子数1〜20の炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、i−ブチル基、t−ブチル基、ビニル基、ベンジル基、ナフチル基、フェネチル基等が挙げられる。中でも炭素原子数1〜6の炭化水素基を有するアシル基がより好ましく、メチル基、ベンジル基が更に好ましく、メチル基が更に好ましい。
本発明で用いるフェノキシ樹脂(C)は、例えば、水酸基を含有し、且つ、該水酸基がエステル化していないフェノキシ樹脂〔以下、これをフェノキシ樹脂(c)と略記する〕をエステル化することにより得ることができる。フェノキシ樹脂(c)は、例えば、以下の方法により調製することができる。
1.エピハロヒドリンと2官能フェノールとをアルカリ存在下で反応させて製造する方法(以下、第1法と略記する)。
2.2官能エポキシ樹脂と2官能フェノールとを触媒存在下で反応させて製造する方法(以下、第2法と略記する)。
本発明で用いるフェノキシ樹脂(C)の調製に用いるフェノキシ樹脂(c)は、前記第1法、第2法のどちらで得られるものでも構わないが、前記第2法で得られるフェノキシ樹脂(2官能エポキシ樹脂と2官能フェノール化合物とを反応させて得られたフェノキシ樹脂)は、フェノキシ樹脂(c)の中でも2種以上の異なる性質の有する構造単位を繰り返して配置した骨格を有するフェノキシ樹脂を容易に製造することができることから好ましい。
前記第1法及び第2法で用いる2官能フェノールとしては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールフルオレン等のビスフェノール類;4,4’−ビフェノール、3,3’,5,5’−テトラメチル−4,4’−ビフェノール等のビフェノール類;カテコール、レゾルシン、ハイドロキノン等の単環2官能フェノール類;ビスフェノールアセトフェノン、ジヒドロキシビフェニルエーテル、ジヒドロキシビフェニルチオエーテル、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、1,1−ビ−2−ナフトール等が挙げられる。
前記第1法及び第2法で用いる2官能フェノールは、アルキル基、アリール基、エーテル基、エステル基など悪影響のない置換基で置換されていてもよい。これらの2官能フェノールは複数種を併用して使用することも出来る。
前記第1法で用いるエピハロヒドリンとしては、例えば、エピクロルヒドリンやエピブロモヒドリン等が挙げられる。エピハロヒドリンは複数種を併用して使用することも出来る。
前記第2法で用いる2官能エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;4,4’−ビフェノールのジグリシジルエーテル、3,3’,5,5’−テトラメチル−4、4’−ビフェノールのジグリシジルエーテル等のビフェノール型エポキシ樹脂;カテコール、レゾルシン、ハイドロキノンなどの単環2官能フェノールのジグリシジルエーテル;ビスフェノールフルオレンのジグリシジルエーテル、ビスフェノールアセトフェノンのジグリシジルエーテル、ジヒドロキシビフェニルエーテル、ジヒドロキシビフェニルチオエーテルのジグリシジルエーテル等のエポキシ樹脂;シクロヘキサンジメタノール、1,6−ヘキサン、ネオペンチルグリコール等の2官能アルコールのジグリシジルエーテル等のエポキシ樹脂;フタル酸、イソフタル酸、テトラハイドロフタル酸、ヘキサハイドロフタル酸等の2価カルボン酸のジグリシジルエステル等のエポキシ樹脂;1,4−ジヒドロキシナフタレンのジグリシジルエーテル、1,5−ジヒドロキシナフタレンのジグリシジルエーテル、1,6−ジヒドロキシナフタレンのジグリシジルエーテル、2,6−ジヒドロキシナフタレンのジグリシジルエーテル、2,7−ジヒドロキシナフタレンのジグリシジルエーテル、1,1−ビ−2−ナフトールのジグリシジルエーテル等が挙げられる。
本発明で用いるフェノキシ樹脂(C)としては、ビスフェノールS骨格またはナフタレン骨格を含有するフェノキシ樹脂が、ガラス転移点(Tg)が高くなり、その結果として耐熱性に優れる硬化物が得られる組成物となることから好ましく、ビスフェノールS骨格およびナフタレン骨格を含有するフェノキシ樹脂がより好ましい。フェノキシ樹脂(C)としてビスフェノールS骨格を含有するフェノキシ樹脂は、例えば、フェノキシ樹脂(c)としてビスフェノールS骨格を含有するフェノキシ樹脂をエステル化することにより得ることができる。ビスフェノールS骨格を含有するフェノキシ樹脂は、例えば、以下の方法により調製することができる。
3.エピハロヒドリンとビスフェノールS骨格を有する2官能フェノールとをアルカリ存在下で反応させて製造する方法(以下、第1−1法と略記する)。
4.2官能エポキシ樹脂と2官能フェノールとを反応させる際に、2官能エポキシ樹脂と2官能フェノールのうち少なくとも一方がビスフェノールS骨格を有するような化合物を用いる条件にて反応させる方法(以下、第2−1法と略記する)。
本発明で用いるビスフェノールS骨格を含有するフェノキシ樹脂は、前記第1−1法、第2−1法のどちらで得られるものでも構わないが、前記第2−1法で得られるフェノキシ樹脂は、2種以上の異なる性質の有する構造単位を繰り返して配置した骨格を有するフェノキシ樹脂を容易に製造することができることから好ましい。
ビスフェノールS骨格を有する2官能エポキシ樹脂としては、例えば、ビスフェノールS型エポキシ樹脂等が挙げられる。ビスフェノールS骨格を有する2官能フェノールとしては、例えば、ビスフェノールS等が挙げられる。
フェノキシ樹脂(C)としてナフタレン骨格を含有するフェノキシ樹脂は、例えば、フェノキシ樹脂(c)としてナフタレン骨格を含有するフェノキシ樹脂をエステル化することにより得ることができる。ナフタレン骨格を含有するフェノキシ樹脂は、例えば、以下の方法により調製することができる。
5.エピハロヒドリンとナフタレン骨格を有する2官能フェノールとをアルカリ存在下で反応させて製造する方法(以下、第1−2法と略記する)。
6.2官能エポキシ樹脂と2官能フェノールとを反応させる際に、2官能エポキシ樹脂と2官能フェノールのうち少なくとも一方がナフタレン骨格を有するような化合物を用いる条件にて反応させる方法(以下、第2−2法と略記する)。
本発明で用いるナフタレン骨格を含有するフェノキシ樹脂は、前記第1−2法、第2−2法のどちらで得られるものでも構わないが、前記第2−2法で得られるフェノキシ樹脂は、2種以上の異なる性質の有する構造単位を繰り返して配置した骨格を有するフェノキシ樹脂を容易に製造することができることから好ましい。
ナフタレン骨格を有する2官能フェノールとしては、例えば、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、1,1−ビ−2−ナフトール等が挙げられる。
前記ナフタレン骨格を有する2官能エポキシ樹脂としては、例えば、1,4−ジヒドロキシナフタレンのジグリシジルエーテル、1,5−ジヒドロキシナフタレンのジグリシジルエーテル、1,6−ジヒドロキシナフタレンのジグリシジルエーテル、2,6−ジヒドロキシナフタレンのジグリシジルエーテル、2,7−ジヒドロキシナフタレンのジグリシジルエーテル、1,1−ビ−2−ナフトールのジグリシジルエーテル等が挙げられる。
フェノキシ樹脂(C)としてビスフェノールS骨格およびナフタレン骨格を含有するフェノキシ樹脂は、例えば、フェノキシ樹脂(c)としてビスフェノールS骨格およびナフタレン骨格を含有するフェノキシ樹脂をエステル化することにより得ることができる。ビスフェノールS骨格およびナフタレン骨格を含有するフェノキシ樹脂は、例えば、以下の方法により調製することができる。
7.エピハロヒドリンとビスフェノールS骨格を含有する2官能フェノールとナフタレン骨格を含有する2官能フェノールとをアルカリ存在下で反応させて製造する方法(以下、第1−3法と略記する)。
8.2官能エポキシ樹脂と2官能フェノールとを反応させる際に、得られるフェノキシ樹脂がビスフェノールS骨格及びナフタレン骨格とを含有するように2官能エポキシ樹脂と2官能フェノールとを選択使用する(以下、第2−3法と略記する)。
本発明で用いるビスフェノールS骨格及びナフタレン骨格を含有するフェノキシ樹脂は、前記第1−3法、第2−3法のどちらで得られるものでも構わないが、前記第2−3法で得られるフェノキシ樹脂は、2種以上の異なる性質の有する構造単位を繰り返して配置した骨格を有するフェノキシ樹脂を容易に製造することができることから好ましい。
本願発明で用いるフェノキシ樹脂(C)としては、ビスフェノールS骨格またはナフタレン骨格並びにビフェニル骨格を含有するフェノキシ樹脂がガラス転移点(Tg)が高くなり、その結果として耐熱性に優れる硬化物が得られる組成物となることから好ましく、ビスフェノール骨格、ナフタレン骨格及びビフェニル骨格を含有するフェノキシ樹脂がより好ましい。
フェノキシ樹脂(C)としてビスフェノールS骨格およびビフェニル骨格を含有するフェノキシ樹脂は、例えば、フェノキシ樹脂(c)としてビスフェノールS骨格およびビフェニル骨格を含有するフェノキシ樹脂をエステル化することにより得ることができる。ビスフェノールS骨格およびビフェニル骨格を含有するフェノキシ樹脂は、例えば、以下の方法により調製することができる。
9.エピハロヒドリンとビフェニル骨格を含有する2官能フェノールとビスフェノールS骨格を含有する2官能フェノールとをアルカリ存在下で反応させて製造する方法(以下、第1−4法と略記する)。
10.2官能エポキシ樹脂と2官能フェノールとを反応させる際に、得られるフェノキシ樹脂がビスフェノールS骨格及びビフェニル骨格とを含有するように2官能エポキシ樹脂と2官能フェノールとを選択使用する(以下、第2−4法と略記する)。
本発明で用いるビスフェノールS骨格及びビフェニル骨格を含有するフェノキシ樹脂は、前記第1−4法、第2−4法のどちらで得られるものでも構わないが、前記第2−3法で得られるフェノキシ樹脂は、2種以上の異なる性質の有する構造単位を繰り返して配置した骨格を有するフェノキシ樹脂を容易に製造することができることから好ましい。
第1−4法や第2−4法で用いるビフェニル骨格を含有する2官能フェノールとしては、例えば、4,4’−ビフェノール、3,3’,5,5’−テトラメチル−4,4’−ビフェノール等のビフェノール類等が挙げられる。また、第2−3法で用いるビフェノール骨格を含有する2官能エポキシ樹脂としては、例えば、4,4’−ビフェノールのジグリシジルエーテル、3,3’,5,5’−テトラメチル−4、4’−ビフェノールのジグリシジルエーテル等のビフェノール型エポキシ樹脂等が挙げられる。
フェノキシ樹脂(C)としてナフタレン骨格およびビフェニル骨格を含有するフェノキシ樹脂は、例えば、フェノキシ樹脂(c)としてナフタレン骨格およびビフェニル骨格を含有するフェノキシ樹脂をエステル化することにより得ることができる。ナフタレン骨格およびビフェニル骨格を含有するフェノキシ樹脂は、例えば、以下の方法により調製することができる。
11.エピハロヒドリンとビフェニル骨格を含有する2官能フェノールとナフタレン骨格を有する2官能フェノールとをアルカリ存在下で反応させて製造する方法(以下、第1−5法と略記する)。
12.2官能エポキシ樹脂と2官能フェノールとを反応させる際に、得られるフェノキシ樹脂がビフェニル骨格及びナフタレン骨格とを含有するように2官能エポキシ樹脂と2官能フェノールとを選択使用する方法(以下、第2−5法と略記する)。
本発明で用いるナフタレン骨格及びビフェニル骨格を含有するフェノキシ樹脂は、前記第1−4法、第2−4法のどちらで得られるものでも構わないが、前記第2−4法で得られるフェノキシ樹脂は、2種以上の異なる性質の有する構造単位を繰り返して配置した骨格を有するフェノキシ樹脂を容易に製造することができることから好ましい。
フェノキシ樹脂(C)としてビスフェノールS骨格、ナフタレン骨格およびビフェニル骨格を含有するフェノキシ樹脂は、例えば、フェノキシ樹脂(c)としてビスフェノールS骨格、ナフタレン骨格およびビフェニル骨格を含有するフェノキシ樹脂をエステル化することにより得ることができる。ビスフェノールS骨格、ナフタレン骨格およびビフェニル骨格を含有するフェノキシ樹脂は、例えば、以下の方法により調製することができる。
13.エピハロヒドリンとビスフェノールSとナフタレン骨格を有する2官能フェノールとビフェニル骨格を有する2官能フェノールとをアルカリ存在下で反応させて製造する方法(以下、第1−6法と略記する)。
14.2官能エポキシ樹脂と2官能フェノールとを反応させる際に、得られるフェノキシ樹脂がビスフェノールS骨格、ナフタレン骨格及びビフェニル骨格とを含有するように2官能エポキシ樹脂と2官能フェノールとを選択使用する方法(以下、第2−6法と略記する)。
本発明で用いるビスフェノールS骨格、ナフタレン骨格及びビフェノール骨格を含有するフェノキシ樹脂は、前記第1−6法、第2−6法のどちらで得られるものでも構わないが、前記第2−6法で得られるフェノキシ樹脂は、2種以上の異なる性質の有する構造単位を繰り返して配置した骨格を有するフェノキシ樹脂を容易に製造することができることから好ましい。
前記第2法、第2−1法〜第2−6法におけるフェノキシ樹脂の合成条件としては、二官能エポキシ樹脂と二官能フェノ−ルの配合当量比は、エポキシ基/フェノ−ル性水酸基=1:0.9〜1.1であることが、得られるフェノキシ樹脂が直鎖状に高分子量化し、副反応による架橋が起こりにくく、溶媒に溶解しやすいフェノキシ樹脂が得られることから好ましく、1:0.95〜1:1.05が更に好ましい。
また、前記第2法、第2−1法〜第2−6法においては通常合成触媒を用いる。このような合成触媒としては、エポキシ基とフェノール性水酸基のエーテル化反応を促進させるような触媒能を持つ化合物であれば特に制限はなく、例えば、アルカリ金属化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩、環状アミン類、イミダゾール類等が挙げられる。
前記前記第2法、第2−1法〜第2−6法におけるフェノキシ樹脂の重合反応温度は、通常窒素雰囲気下で触媒が分解しない程度の温度範囲で行う。反応温度は高分子量化反応が良好に進み、且つ、副反応が起こりにくいことから60〜200℃が好ましく、100〜170℃がより好ましく、120〜160℃が更に好ましい。また、アセトンやメチルエチルケトンのような低沸点溶剤を使用する場合には、オートクレーブを使用して高圧下で反応を行うことで反応温度を確保することも出来る。
本発明で用いるフェノキシ樹脂(C)として、ナフタレン骨格とビフェニル骨格を含有するフェノキシ樹脂を用いる場合、2官能エポキシ樹脂と2官能フェノール化合物とを、該2官能エポキシ樹脂と2官能フェノール化合物の少なくとも1種がナフタレン骨格を含有するような組合せで反応させて得られたものが好ましい。ここで用いる2官能エポキシ樹脂としては、中でも、3,3’,5,5’−テトラメチルビフェノール骨格を含むエポキシ樹脂で、2官能フェノール化合物としてはナフタレン骨格を含むフェノール化合物がより好ましい。
本発明で用いるフェノキシ樹脂(C)は、例えば、前記フェノキシ樹脂(c)中の水酸基をエステル化することにより得られる。エステル化は直接エステル化するだけでなくエステル交換等の方法を用いても良い。
前記エステル化に用いる酸成分としては、例えば、酢酸、プロピオン酸、酪酸、イソ酪酸、ペンタン酸、オクタン酸、カプリル酸、ラウリン酸、ステアリン酸、オレイン酸、安息香酸、t−ブチル安息香酸、ヘキサヒドロ安息香酸、フェノキシ酢酸、アクリル酸、メタクリル酸等の有機酸;有機酸の酸無水物;有機酸のハロゲン化物;有機酸のエステル化物等を用いることが出来る。
前記有機酸の酸無水物としては、例えば、無水酢酸、安息香酸無水物、フェノキシ酢酸無水物、エステル化物としては、酢酸メチル、酢酸エチル、酢酸ブチル、安息香酸メチル、安息香酸エチル等が挙げられる。
前記有機酸のハロゲン化物としては、例えば、酢酸クロライド、安息香酸クロライド、フェノキシ酢酸クロライド等が挙げられる。
前記エステル化に用いる化合物としては酢酸クロライド、安息香酸クロライド、フェノキシ酢酸クロライド等の有機酸のハロゲン化物や無水酢酸、安息香酸無水物、フェノキシ酢酸無水物などの酸ハロゲン化物や有機酸の酸無水物が好ましく、エステル化の後水洗が不要で、電材用途で嫌われるハロゲンの混入を避ける意味で無水酢酸や安息香酸無水物などの酸無水物が更に好ましい。
フェノキシ樹脂(c)が有する水酸基のエステル化に使用する前記有機酸;有機酸の酸無水物;有機酸のハロゲン化物;有機酸のエステル化物等の酸成分とフェノキシ樹脂(c)とを反応させる際の仕込み割合は、目的のエステル化比率と同様の仕込比率でも良いし、反応性が低い場合には水酸基に対し過剰に前記酸成分を仕込み、目的のエステル化率まで反応させた後、未反応の酸成分を除去しても良い。
酸成分により直接エステル化する場合、例えばパラトルエンスルホン酸、リン酸等の酸触媒;テトライソプロピルチタネート、テトラブチルチタネート、ジブチル錫オキサイド、ジオクチル錫オキサイド、塩化亜鉛等の金属触媒等の種々のエステル化触媒を用い脱水しながら行うことが出来る。通常、窒素雰囲気下で100〜250℃で行うのが好ましく、より好ましくは130〜230℃である。
エステル化に酸ハロゲン化物や酸無水物を使用する場合、生じた酸を除去するには、塩基性化合物を使用し中和後に塩を濾過する方法、塩基性化合物を使用し中和後水洗する方法、中和せずに水洗する方法、蒸留や吸着などで除去する方法のいずれの方法を用いても良く、併用しても構わない。合成溶剤よりも低沸点の酸を除く場合には、蒸留し除くことが好ましい。
フェノキシ樹脂(c)をエステル交換によりエステル化する場合は、通常窒素雰囲気下で、例えばジブチル錫オキシドやジオクチル錫オキシド、スタノキサン触媒、テトライソプロピルチタネート、テトラブチルチタネート、酢酸鉛、酢酸亜鉛、三酸化アンチモン等の有機金属触媒や塩酸、硫酸、リン酸、スルホン酸等の酸触媒、水酸化リチウム、水酸化ナトリウム等の塩基性触媒など公知のエステル化触媒を用いて脱アルコールしながら行うことが望ましい。
また、フェノキシ樹脂(c)の合成と水酸基をエステル化とを同時に行っても良い、つまり前記製法2において、2官能エポキシ樹脂に予め酸無水物や酸クロライドなどで活性エステル化したフェノール化合物を反応させ、フェノキシ化と同時にエステル化する方法を用いても全く問題ない。
前記ポリウレタン樹脂(A)とエポキシ樹脂(B)との配合量は、樹脂分の重量比として(A)/(B)が1/100から50/1の割合で使用することができ、さらに好ましくは、1/10から20/1である。
また、本発明の熱硬化性ポリウレタン樹脂組成物においてフェノキシ樹脂(C)の配合量は、ポリウレタン樹脂(A)とエポキシ樹脂(B)との合計〔(A)+(B)〕に対して重量比で〔(A)+(B)〕/(C)=5/95〜95/5が好ましい。より好ましくは〔(A)+(B)〕/(C)=10/90〜90/10であり、更に好ましくは〔(A)+(B)〕/(C)=15/85〜85/15である。
本発明の熱硬化性ポリウレタン樹脂組成物には、更に、前記ポリウレタン樹脂(A)が有するフェノール性水酸基と反応する化合物を添加することができる。具体的には、例えば、前記エポキシ樹脂(B)以外のエポキシ化合物、イソシアネート化合物、シリケート、およびアルコキシシラン化合物等が挙げられる。
前記イソシアネート化合物としては、例えば、芳香族系のイソシアネート化合物、脂肪族系のイソシアネート化合物および脂環族系のイソシアネート化合物等が使用できる。好ましくは、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物が好ましい。また、ブロックイソシアネート化合物も使用可能である。
更に本発明の熱硬化性ポリウレタン樹脂組成物にはポリエステル、ポリイミド樹脂、フェノキシ樹脂、PPS樹脂、PPE樹脂、ポリアリレーン樹脂等のバインダー樹脂、フェノール樹脂、メラミン樹脂、アルコキシシラン系硬化剤、多塩基酸無水物、シアネート化合物等の硬化剤あるいは反応性化合物やメラミン、ジシアンジアミド、グアナミンやその誘導体、イミダゾール類、アミン類、水酸基を1個有するフェノール類、有機フォスフィン類、ホスホニュウム塩類、4級アンモニュウム塩類、光カチオン触媒等の硬化触媒や硬化促進剤、さらにフィラー、その他添加剤等添加することも可能である。
また、上記硬化促進剤として、ウレタン化触媒の併用が好ましい。かかるウレタン化触媒としては、例えば、1,8−ジアザビシクロ[5,4,0]ウンデセン‐7(以下DBU)やその有機塩化合物、トリエチレンジアミン、ジブチルチンジアセテート、ジブチルチンジラウレート等のジアルキル錫のアルキルエステル類、ビスマスのカルボキシレート等挙げられる。
本発明の熱硬化性ポリウレタン樹脂組成物の調製法には、特に限定はないが各種成分を機械的に混合しても、熱溶融により混合しても、溶剤に希釈してから混合しても良い。
また、本発明の熱硬化性ポリウレタン樹脂組成物は、更に必要に応じて、種々の充填材、有機顔料、無機顔料、体質顔料、防錆剤等を添加することができる。これらは単独でも2種以上を併用してもよい。
前記充填材としては、例えば、硫酸バリウム、チタン酸バリウム、酸化けい素酸粉、微粒状酸化けい素、シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルムニウム、雲母等が挙げられる。
前記有機顔料としては、アゾ顔料;フタロシアニン・ブルー、フタロシアニン・グリーンの如き銅フタロシアニン系顔料、キナクリドン系顔料等が挙げられる。
前記無機顔料としては、例えば、黄鉛、ジンククロメート、モリブデート・オレンジの如きクロム酸塩;紺青の如きフェロシアン化物、酸化チタン、亜鉛華、ベンガラ、酸化鉄;炭化クロムグリーンの如き金属酸化物、カドミウムイエロー、カドミウムレッド;硫化水銀の如き金属硫化物、セレン化物;硫酸鉛の如き硫酸塩;群青の如き珪酸塩;炭酸塩、コバルト・バイオレッド;マンガン紫の如き燐酸塩;アルミニウム粉、亜鉛末、真鍮粉、マグネシウム粉、鉄粉、銅粉、ニッケル粉の如き金属粉;カーボンブラック等が挙げられる。
また、その他の着色、防錆、体質顔料のいずれも使用することができる。これらは単独でも2種以上を併用してもよい。
本発明の熱硬化性ポリウレタン樹脂組成物は、有機系、無機−金属系のフィルム状基材やガラスクロス、ポリアラミドクロス等の織物基材に通常、キャスト法、含浸、塗装等目的の方法で塗工施行される。硬化温度は80〜300℃で、硬化時間は20分間〜5時間である。
本発明の熱硬化性ポリウレタン樹脂組成物を用いることにより接着フィルム、プリプレグ、多層プリント配線板、積層板等を製造することができる。
前記接着フィルムは、例えば、支持ベースフィルムを支持体とし、その表面に所定の有機溶剤に本発明の熱硬化性ポリウレタン樹脂組成物を溶解した樹脂ワニスを塗布後、加熱及び/又は熱風吹き付けにより溶剤を乾燥させて薄膜となすことによりを作製することができる。
支持ベースフィルムとしては、ポリエチレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリカーボネート、ポリイミド、さらには離型紙や銅箔、アルミニウム箔の如き金属箔などが挙げられる。なお、支持ベースフィルムにはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
有機溶剤としては、通常溶剤、例えばアセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルセロソルブ等のセロソルブ類、カルビトール、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素の他、ジメチルホルムアミド、ジメチルアセトアミドなど、単独又は2種以上組み合わせて使用することができる。
具体的には、10〜200μm厚の支持ベースフィルムに、本発明の熱硬化性ポリウレタン樹脂組成物層の厚みがラミネートする内層回路板の導体厚以上で、10〜150μmの範囲であり、樹脂層の他の面に1〜40μm厚の支持フィルムの如き保護フィルムをさらに積層し、ロール状に巻きとって貯蔵される。
前記プリプレグは、例えば、本発明の熱硬化性ポリウレタン樹脂組成物を繊維からなるシート状補強基材にホットメルト法又はソルベント法により塗工、含浸させ、加熱、半硬化させることにより作製することができる。繊維からなるシート状補強基材としては、ガラスクロスやアラミド繊維など、公知慣用のプリプレグ用繊維を使用できる。ホットメルト法では、無溶剤の樹脂を使用し、樹脂と剥離性の良い塗工紙に一旦コーティングしそれをラミネートしたり、ダイコーターにより直接塗工する方法などが知られている。また、ソルベント法は、接着フィルム同様、有機溶剤に本発明の熱硬化性ポリウレタン樹脂組成物を溶媒に溶解した樹脂ワニスにシート状補強基材を浸漬、含浸させ、その後乾燥させてプリプレグを得る方法である。
前記多層プリント配線板は、例えば、本発明の熱硬化性ポリウレタン樹脂組成物の層硬化物の粗化された面にメッキ導体層が形成され、他面はパターン加工された内層回路基板に密着して積層されている多層プリント配線板が挙げられる。この本発明の熱硬化性ポリウレタン樹脂組成物を用いた多層プリント配線板の製造法について説明する。本発明の熱硬化性ポリウレタン樹脂組成物をパターン加工された内層回路基板に塗工し、有機溶剤を含有している場合には乾燥した後、加熱硬化させる。なお、内層回路基板としては、ガラスエポキシや金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等を使用することができ、回路表面は予め粗化処理されてあってもよい。乾燥条件は70〜130℃で5〜40分、加熱硬化の条件は130〜180℃で15〜90分の範囲であるのが好ましい。加熱硬化後、必要に応じて所定のスルーホール、ビアホール部等にドリル及び/又はレーザー、プラズマにより穴開けを行う。次いで、過マンガン酸塩、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤で粗化処理し、接着剤層表面に凸凹のアンカーが形成される。さらに、無電解及び/又は電解メッキにより導体層を形成するが、このとき導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成してもよい。このように導体層が形成された後、150〜180℃で20〜60分アニール処理することにより、残留している未反応のエポキシ樹脂が硬化し導体層のピール強度をさらに向上させることもできる。
本発明の熱硬化性ポリウレタン樹脂組成物を用いて得られた接着フィルムを用いて多層プリント配線板を製造するには、例えば、まず、パターン加工された内層回路基板に該接着フィルムをラミネートする。ラミネートは、保護フィルムが存在している場合には保護フィルムを除去後、接着剤の性能を有する本発明の熱硬化性ポリウレタン樹脂組成物の薄膜を加圧、加熱しながら貼り合わせる。ラミネート条件は、フィルム及び内層回路基板を必要によりプレヒートし、圧着温度が70〜130℃、圧着圧力が1〜11Kg/cmであって、減圧下で積層するのが好ましい。また、ラミネートはバッチ式であってもロールでの連続式であってもよい。ラミネート後、室温付近に冷却してから支持フィルムを剥離し、内層回路基板上に本発明の熱硬化性ポリウレタン樹脂組成物を転写した後、加熱硬化させる。また、離型処理の施された支持フィルムを使用した場合には、加熱硬化させた後に支持フィルムを剥離してもよい。その後、上記の方法同様、酸化剤により該フィルム表面を粗化、導体層をメッキにより形成して多層プリント配線板を製造することができる。
一方、本発明の熱硬化性ポリウレタン樹脂組成物からなるプリプレグを用いて多層プリント配線板の製造するには、例えば、パターン加工された内層回路基板に該プリプレグを1枚あるいは必要により数枚重ね、離型フィルムを介して金属プレートを挟み加圧、加熱条件下、積層プレスする。圧力条件は5〜40Kgf/cm、温度条件は120〜180℃で20〜100分の範囲で成型するのが好ましい。また前記のラミネート方式によっても製造可能である。その後、上記の方法同様、酸化剤により該プリプレグ表面を粗化、導体層をメッキにより形成して多層プリント配線板を製造することができる。製造された多層プリント配線板は内層回路基板がパターン加工された内層回路を同方向に2層以上有する場合には該内層回路間に本発明の熱硬化性ポリウレタン樹脂組成物の硬化物である絶縁層を有していることになる。本発明で言うパターン加工された内層回路基板は多層プリント配線板に対する相対的な呼称である。例えば、基板両面に回路を形成しさらにその両回路表面に本発明の熱硬化性ポリウレタン樹脂組成物の硬化した薄膜を絶縁層として各々形成した後、さらにその両表面に各々回路を形成すると4層プリント配線板が形成できる。この場合の内層回路基板とは基板上に形成された両面に回路形成されたプリント配線板を言いう。さらに、この4層プリント配線板の両表面にさらに絶縁層を介して各々1層の回路を追加形成すれば6層プリント配線板ができる。この場合の内層回路基板とは前述の4層プリント配線板を言うことになる。
本発明の熱硬化性ポリウレタン樹脂組成物を用いて得られる積層板としては、例えば、本発明の熱硬化性ポリウレタン樹脂組成物を両面銅張積層板の銅箔をエッチアウトした面もしくはアンクラッド板の少なくとも片方の面に塗工、加熱硬化して得られた積層板、前記接着フィルムを両面銅張積層板の銅箔をエッチアウトした面もしくはアンクラッド板の少なくとも片方の面に、加圧、加熱条件下でラミネートし、必要により支持ベースフィルムを剥離、加熱硬化して得られた積層板、前記プリプレグを両面銅張積層板の銅箔をエッチアウトした面もしくはアンクラッド板の少なくとも片方の面に、加圧、加熱条件下で積層して得られた積層板、プリプレグを加圧、加熱条件下で積層して得られた積層板等が挙げられる。以下に積層板の製造方法を述べる。
本発明の熱硬化性ポリウレタン樹脂組成物を両面銅張積層板の銅箔をエッチアウトした面もしくはアンクラッド板の少なくとも片方の面に、塗工、加熱硬化させることにより積層板を得ることができる。上記アンクラッド板は、銅張積層板製造時に、銅箔の代わりに離型フィルム等を使用にする事により得られる。このようにして得られた積層板は、過マンガン酸塩、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤で粗化処理を行うことにより、積層板表面に凸凹のアンカーが形成され、さらに無電解及び/又は電解メッキにより、積層板表面に直接導体層を形成することができる。
また、本発明の熱硬化性ポリウレタン樹脂組成物からなる接着フィルムを両面銅張積層板の銅箔をエッチアウトした面もしくはアンクラッド板の少なくとも片方の面に、ラミネート、加熱硬化させることにより積層板を得ることができる。このようにして得られた積層板は、過マンガン酸塩、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤で粗化処理を行うことにより、積層板表面に凸凹のアンカーが形成され、さらに無電解及び/又は電解メッキにより、積層板表面に直接導体層を形成することができる。
また、本発明の熱硬化性ポリウレタン樹脂組成物からなるプリプレグを所定の枚数を重ねるか、または両面銅張積層板の銅箔をエッチアウトした面もしくはアンクラッド板の少なくとも片方の面に載せ、離型フィルムを介して金属プレートを挟み加圧、加熱条件下、積層プレスすることにより積層板を得ることができる。このようにして得られた積層板は、過マンガン酸塩、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤で粗化処理を行うことにより、積層板表面に凸凹のアンカーが形成され、さらに無電解及び/又は電解メッキにより、積層板表面に直接導体層を形成することができる。
次に、本発明を実施例および比較例によりさらに具体的に説明する。以下において、部および「%」は特に断りのない限り、すべて「重量%」である。
合成例1〔ポリウレタン樹脂(A)の製造〕
攪拌装置、温度計およびコンデンサーを付けたフラスコに、γ−ブチロラクトン 57gと、BPF(ビスフェノールF)80.8g(0.4モル)と、TDI(トリレンジイソシアネート)52.2g(0.3モル)とを仕込み、攪拌を行いながら発熱に注意して80℃に昇温し、この温度で5時間反応させた。反応後、γ−ブチロラクトンにて樹脂固形分濃度を60%に調整し、25℃での粘度が180Pa・sの無色透明なポリウレタン樹脂(A−1)の溶液を得た。
得られたポリウレタン樹脂(A−1)の溶液をKBr板に塗装し、溶剤を揮発させた試料の赤外線吸収スペクトルを測定した結果、イソシアネート基の特性吸収である2270cm−1が完全に消滅していた。これによりイソシアネート基は、BPFの水酸基と共にウレタン結合を形成し、BPFの水酸基を除いた残基を骨格中に有し、且つ、末端がBPFの水酸基となっているポリウレタン樹脂が得られたと結論される。
合成例2(同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、γ−ブチロラクトン 200gと、TMBP(テトラメチルビフェノール) 121g(0.5モル)と、TDI 69.6g(0.4モル)とを仕込み、攪拌を行いながら発熱に注意して90℃に昇温し、この温度で7時間反応させた。反応後系内はクリアなオレンジ色の液体となり、ここに不揮発分が40%になるようにγ−ブチロラクトンで調整し、25℃での粘度が6.2Pa・sのポリウレタン樹脂(A−2)の溶液を得た。
得られたポリウレタン樹脂(A−2)の溶液をKBr板に塗装し、溶剤を揮発させた試料の赤外線吸収スペクトルを測定した結果、イソシアネート基の特性吸収である2270cm−1が完全に消滅していた。これによりイソシアネート基は、TMBPの水酸基と共にウレタン結合を形成し、TMBPの水酸基を除いた残基を骨格中に有し、且つ、末端がTMBPの水酸基となっているポリウレタン樹脂が得られたと結論される。
合成例3(同上)
攪拌装置、温度計及びコンデンサーをつけたフラスコに、γ−ブチロラクトン50.6gと、ソルベッソ150(芳香族炭化水素系溶剤)101.2gと、ノニルフェノールノボラック樹脂溶液(水酸基当量 288g/eq 不揮発分79.5%のミネラルスピリッツ溶液 4.26官能)85.9g(フェノール性水酸基量として0.298モル)と、ポリブタジエンジオール(分子量3550)124.3g(0.035モル)とを仕込んで、80℃に昇温、溶解させた。ついでMDI 17.5g(0.07モル)を1時間かけて分割で仕込んで80℃にて7時間反応を行った。反応後はクリアな濃い黄色の液体となり、不揮発分54%で粘度4Pa・sのポリウレタン樹脂の溶液(A−3)を得た。
得られたポリウレタン樹脂(A−3)の溶液をKBr板に塗装し、溶剤成分を揮発させた試料の赤外吸収スペクトルを測定した結果、イソシアネート基の特性吸収である2270cm−1が完全に消滅していた。これによりイソシアネート基は、ノニルフェノールノボラック樹脂中のフェノール性水酸基と共にウレタン結合を形成し骨格中にノニルフェノールノボラック樹脂のフェノール性水酸基を有し、一部のフェノール性水酸基がウレタン結合で変性されたポリウレタン樹脂が得られたと結論される。
合成例4〔水酸基の水素原子がアシル基で置換された構造を有するフェノキシ樹脂(C)の合成〕
攪拌装置、温度計およびコンデンサーを付けたフラスコに、EPICLON850〔大日本インキ化学工業(株)製のビスフェノールA型エポキシ樹脂、エポキシ当量188g/eq〕188g(0.5モル)とビスフェノールS 125g(0.5モル)とシクロヘキサノン730.3gとを仕込み、窒素を吹き込み攪拌しながら発熱に注意して80℃に昇温し、反応触媒としてトリフェニルホスフィン3.1gを投入し更に1時間かけて150℃まで昇温した後、ソリッド換算のエポキシ当量が1万になるまで150℃で3時間反応させた。この反応により、ビスフェノールA骨格とビスフェノールS骨格を有するフェノキシ樹脂を得た(不揮発分30%)。
得られたビスフェノールS系フェノキシ樹脂のゲルパーミエーションクロマトグラフィー(GPC)による重量平均分子量(Mw)は42000であり、原料のエポキシ樹脂、フェノール化合物の比率が2%以下となり、赤外線吸収スペクトルを測定すると915cm−1付近のエポキシ基の特性吸収が減少し、エポキシとフェノールの反応により生じた2級水酸基のブロードな特性吸収(3450cm−1)が確認されたことにより、2級の水酸基を有するフェノキシ樹脂が得られたと結論される。
攪拌装置、温度計および蒸留装置を付けたフラスコに、上記のフェノキシ樹脂の溶液全量と、該フェノキシ樹脂が有する水酸基の50%をアセチル化する量の無水酢酸51gとを仕込み℃120℃、2時間反応させた後、遊離の酢酸を除く為、130〜160℃の間で適宜上昇させながら加温しシクロヘキサノンと共に酢酸を除去し始め、シクロヘキサノンを追加しながら脱酢酸を行った。最終的に酸価2.7、不揮発分30%、粘度3.5Pa・sのアセチル化フェノキシ樹脂溶液(C−1)を得た。
得られたフェノキシ樹脂のGPCを測定すると樹脂の重量平均分子量(Mw)が56000であり、2級水酸基のブロードな特性吸収(3450cm−1)が減少したことから2級の水酸基がアセチル化したフェノキシ樹脂が得られたと結論される。
合成例5(同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、エピクロンHP4032D(大日本インキ化学工業株式会社製のナフタレン型エポキシ樹脂)100g(0.355モル)とジヒドロキシナフタレン55.6g(0.348モル)とシクロヘキサノン233.4gとを仕込み、窒素を吹き込み攪拌しながら発熱に注意して80℃に昇温し、反応触媒としてトリフェニルホスフィン1.55gを投入し更に1時間かけて150℃まで昇温した後、ソリッド換算のエポキシ当量が1万になるまで150℃で3時間反応させた。この反応により、2級の水酸基を有するナフタレン/ナフタレン系フェノキシ樹脂を含有する樹脂溶液を得た(不揮発分40%)。
得られたナフタレン系フェノキシ樹脂のGPCによる重量平均分子量(Mw)は36000であり、原料のエポキシ樹脂、フェノール化合物の比率が2%以下となり、赤外線吸収スペクトルを測定すると915cm−1付近のエポキシ基の特性吸収が減少し、エポキシとフェノールの反応により生じた2級水酸基のブロードな特性吸収(3450cm−1)が確認されたことにより、2級の水酸基を有するフェノキシ樹脂が得られたと結論される。
攪拌装置、温度計および蒸留装置を付けたフラスコに、上記のフェノキシ樹脂の溶液全量と、該フェノキシ樹脂が有する水酸基の80%をアセチル化する量の無水酢酸56.8gとを仕込み℃120℃、2時間反応させた後、遊離の酢酸を除く為、130〜160℃の間で適宜上昇させながら加温しシクロヘキサノンと共に酢酸を除去し始め、シクロヘキサノンを追加しながら脱酢酸を行った。最終的に酸価1.9、不揮発分30%、粘度3.3Pa・sのアセチル化フェノキシ樹脂溶液(C−2)を得た。
得られたフェノキシ樹脂のGPCを測定すると樹脂の重量平均分子量(Mw)が42000であり、2級水酸基のブロードな特性吸収(3450cm−1)が減少したことから2級の水酸基がアセチル化したフェノキシ樹脂が得られたと結論される。
合成例6(同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、エピコートYX4000H(ジャパンエポキシレジン株式会社製の3,3’,5,5’−テトラメチルビフェニル型エポキシ樹脂)100g(0.259モル)とジヒドロキシナフタレン40.6g(0.254モル)とシクロヘキサノン210.9gとを仕込み、窒素を吹き込み攪拌しながら発熱に注意して80℃に昇温し、反応触媒としてトリフェニルホスフィン1.41gを投入し更に1時間かけて150℃まで昇温した後、150℃で6時間反応させた。この反応により、2級の水酸基を有する3,3’,5,5’−テトラメチルビフェニル/ナフタレン系フェノキシ樹脂を含有する樹脂溶液を得た(不揮発分40%)。
得られたビフェニル/ナフタレン系フェノキシ樹脂のGPCによる重量平均分子量(Mw)は44000であり、原料のエポキシ樹脂、フェノール化合物の比率が2%以下となり、赤外線吸収スペクトルを測定すると915cm−1付近のエポキシ基の特性吸収が減少し、エポキシとフェノールの反応により生じた2級水酸基のブロードな特性吸収(3450cm−1)が確認されたことにより、2級の水酸基を有するフェノキシ樹脂が得られたと結論される。
攪拌装置、温度計および蒸留装置を付けたフラスコに、上記のフェノキシ樹脂の溶液全量と、該フェノキシ樹脂が有する水酸基の90%をアセチル化する量の無水酢酸46.6gとを仕込み℃120℃、2時間反応させた後、遊離の酢酸を除く為、130〜160℃の間で適宜上昇させながら加温しシクロヘキサノンと共に酢酸を除去し始め、シクロヘキサノンを追加しながらフラスコ内の酸価が5以下になるように脱酢酸を行った。最終的に酸価2.9、不揮発分30%、粘度3.8Pa・sのアセチル化フェノキシ樹脂溶液(C−3)を得た。
得られたフェノキシ樹脂のGPCを測定すると樹脂の重量平均分子量(Mw)が52000であり、2級水酸基のブロードな特性吸収(3450cm−1)が減少したことから2級の水酸基がアセチル化したフェノキシ樹脂が得られたと結論される。
合成例7(同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、ナフタレンエポキシ樹脂としてエピクロンHP4032D 100g(0.355モル)とビスフェノールS 88.7g(0.355モル)とをシクロヘキサノン 283.1gを仕込み、窒素を吹き込み攪拌しながら発熱に注意して80℃に昇温し、反応触媒としてトリフェニルホスフィン1.89gを投入し更に1時間かけて150℃まで昇温した後、150℃で8時間反応させた。この反応により、2級の水酸基を有するナフタレン/ビスフェノールS系フェノキシ樹脂を含有する樹脂溶液を得た(不揮発分40%)。
得られたナフタレン/ビスフェノールS系フェノキシ樹脂のGPCによる重量平均分子量(Mw)は18000であり、原料のエポキシ樹脂、フェノール化合物の比率が2%以下となり、赤外線吸収スペクトルを測定すると915cm−1付近のエポキシ基の特性吸収が減少し、エポキシとフェノールの反応により生じた2級水酸基のブロードな特性吸収(3450cm−1)が確認されたことにより、2級の水酸基を有するフェノキシ樹脂が得られたと結論される。
攪拌装置、温度計および蒸留装置を付けたフラスコに、上記のフェノキシ樹脂の溶液全量と、該フェノキシ樹脂が有する水酸基の95%をアセチル化する量の無水酢酸68.8gとを仕込み℃120℃、2時間反応させた後、遊離の酢酸を除く為、130〜160℃の間で適宜上昇させながら加温しシクロヘキサノンと共に酢酸を除去し始め、シクロヘキサノンを追加しながらフラスコ内の酸価が5以下になるように脱酢酸を行った。最終的に酸価2.9、不揮発分30%、粘度2.6Pa・sのアセチル化フェノキシ樹脂溶液(C−4)を得た。
得られたフェノキシ樹脂のGPCを測定すると樹脂の重量平均分子量(Mw)が22000であり、2級水酸基のブロードな特性吸収(3450cm−1)が減少したことから2級の水酸基がアセチル化したフェノキシ樹脂が得られたと結論される。
合成例8(同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、エピコートYX4000H(ジャパンエポキシレジン株式会社製の3,3’,5,5’−テトラメチルビフェニル型エポキシ樹脂)193g(0.5モル)とビスフェノールS 125g(0.5モル)とシクロヘキサノン742gとを仕込み、窒素を吹き込み攪拌しながら発熱に注意して80℃に昇温し、反応触媒としてトリフェニルホスフィン3.18gを投入し更に1時間かけて150℃まで昇温した後、150℃で6時間反応させた。この反応により、3,3’,5,5’−テトラメチルビフェニル/ビスフェノールS系フェノキシ樹脂を含有する樹脂溶液を得た(不揮発分30%)。
得られたテトラメチルビフェニル/ビスフェノールS系フェノキシ樹脂のGPCによる重量平均分子量(Mw)は45000であり、原料のエポキシ樹脂、フェノール化合物の比率が2%以下となり、赤外線吸収スペクトルを測定すると915cm−1付近のエポキシ基の特性吸収が減少し、エポキシとフェノールの反応により生じた2級水酸基のブロードな特性吸収(3450cm−1)が確認されたことにより、2級の水酸基を有するフェノキシ樹脂が得られたと結論される。
攪拌装置、温度計および蒸留装置を付けたフラスコに、上記のフェノキシ樹脂の溶液全量と、該フェノキシ樹脂が有する水酸基の90%をアセチル化する量の無水酢酸91.8gとを仕込み℃120℃、2時間反応させた後、遊離の酢酸を除く為、130〜160℃の間で適宜上昇させながら加温しシクロヘキサノンと共に酢酸を除去し始め、シクロヘキサノンを追加しながらフラスコ内の酸価が5以下になるように脱酢酸を行った。最終的に酸価2.1、不揮発分30%、粘度3.8Pa・sのアセチル化フェノキシ樹脂溶液(C−5)を得た。
得られたフェノキシ樹脂のGPCを測定すると樹脂の重量平均分子量(Mw)が58000であり、2級水酸基のブロードな特性吸収(3450cm−1)が減少したことから2級の水酸基がアセチル化したフェノキシ樹脂が得られたと結論される。
合成例9(同上)
攪拌装置、温度計およびコンデンサーを付けたフラスコに、エピコートYX4000H(ジャパンエポキシレジン株式会社製の3,3’,5,5’−テトラメチルビフェニル型エポキシ樹脂)100g(0.259モル)とビスフェノールS 39.7g(0.159モル)、ジヒドロキシナフタレン16g(0.1モル)とシクロヘキサノン364gとを仕込み、窒素を吹き込み攪拌しながら発熱に注意して80℃に昇温し、反応触媒としてトリフェニルホスフィン1.5gを投入し更に1時間かけて150℃まで昇温した後、150℃で6時間反応させた。この反応により、3,3’,5,5’−テトラメチルビフェニル/ビスフェノールS/ナフタレン系フェノキシ樹脂を含有する樹脂溶液を得た(不揮発分30%)。
得られたテトラメチルビフェニル/ビスフェノールS/ナフタレン系フェノキシ樹脂のGPCによる重量平均分子量(Mw)は38000であり、原料のエポキシ樹脂、フェノール化合物の比率が2%以下となり、赤外線吸収スペクトルを測定すると915cm−1付近のエポキシ基の特性吸収が減少し、エポキシとフェノールの反応により生じた2級水酸基のブロードな特性吸収(3450cm−1)が確認されたことにより、2級の水酸基を有するフェノキシ樹脂が得られたと結論される。
攪拌装置、温度計および蒸留装置を付けたフラスコに、上記のフェノキシ樹脂の溶液全量と、該フェノキシ樹脂が有する水酸基の95%をアセチル化する量の無水酢酸50.2gとを仕込み℃120℃、2時間反応させた後、遊離の酢酸を除く為、130〜160℃の間で適宜上昇させながら加温しシクロヘキサノンと共に酢酸を除去し始め、シクロヘキサノンを追加しながらフラスコ内の酸価が5以下になるように脱酢酸を行った。最終的に酸価2.3、不揮発分30%、粘度2.7Pa・sのアセチル化フェノキシ樹脂溶液(C−)を得た。
得られたフェノキシ樹脂のGPCを測定すると樹脂の重量平均分子量(Mw)が50000であり、2級水酸基のブロードな特性吸収(3450cm−1)が減少したことから2級の水酸基がアセチル化したフェノキシ樹脂が得られたと結論される。
実施例1
第1表に示す配合にて本発明の熱硬化性ポリウレタン樹脂組成物1を調製した。得られた熱硬化性ポリウレタン樹脂組成物1の硬化塗膜の電気特性、耐熱性、寸法安定性、及び熱硬化性ポリウレタン樹脂組成物1の寸法安定性を下記方法に従って評価した。その結果を第4表に示す。
(1)電気特性の評価
電気特性は塗膜の誘電率(ε)と誘電損失(Tanδ)とを測定することにより評価した。熱硬化性樹脂組成物1を硬化後の膜厚が80μmになるようにブリキ基板上に塗装し、70℃の乾燥機で20分間乾燥した後、200℃で1時間硬化させ冷却した後、剥離した硬化塗膜を切り出した測定用試料を、アジレントテクノロジー社製4291Bを用いて、周波数は100MHzの条件で、測定雰囲気の温度は23度の条件で誘電率(ε)と誘電損失(Tanδ)とを測定した。
(2)耐熱性の評価及び寸法安定性の評価
耐熱性の評価は硬化塗膜のガラス転移点(Tg)を測定することにより行った。寸法安定性の評価は線膨張係数を測定することにより行った。
<試験用試験片の作製>
熱硬化性樹脂組成物1を硬化後の膜厚が50μmになるようにブリキ基板上に塗装し、70℃の乾燥機で20分間乾燥した後、200℃で1時間硬化させ冷却した後、剥離した硬化塗膜を幅5mm、長さ30mmに切り出し、測定用試料とした。
<Tg測定方法>
セイコー電子(株)製熱分析システムTMA−SS6000を用いて、試料長10mm、昇温速度10℃/分、荷重30mNの条件でTMA(Thermal Mechanical Analysis)法により測定した。なお、Tgは、TMA測定での温度−寸法変化曲線からその変極点を求め、その温度をTgとした。TTgが高いほど耐熱性に優れることを表す。線膨張係数は温度域50〜60℃、及び110〜120℃での試料長の変位より求めた。線膨張係数が小さいほど寸法安定性に優れることを示す。
尚、第5表〜第8表において温度域50〜60℃における線膨張係数の測定結果を「線膨張係数1」と、温度域110〜120℃における線膨張係数の測定結果を「線膨張係数2」と略記する。線膨張係数の単位はPPM(cm/cm/℃)×10である。
(3)保存安定性(熱硬化性樹脂組成物1の保存安定性)
熱硬化性ポリウレタン樹脂組成物1を密栓したガラスビンに保存し、40℃で1週間後の状態を観察した。目視にて下記基準に従って評価した。
○:凝集物、沈殿物がなく、且つ、高粘度化せずに流動性があるもの。
△:凝集物、沈殿物がなないもののテーリングまたは高粘度化が起こったもの。
×:ゲル化がおこったもの。
実施例2〜15及び比較例1〜5
第1表〜第4表に示す配合で配合した以外は実施例1と同様にして熱硬化性樹脂組成物2〜12及び比較対照用熱硬化性樹脂組成物1´〜5´を調製した。これを用いて実施例1と同様に各種評価を行い、その結果を第5表〜第8表に示す。但し、実施例1〜3、実施例5、実施例7〜9、及び実施例11は、参考例である。
実施例13〜15
第3表に示す配合で配合した以外は実施例1と同様にして熱硬化性ポリウレタン樹脂組成物13〜15を調製した。得られた熱硬化性ポリウレタン樹脂組成物の硬化塗膜の相溶性、塗膜造膜性、耐熱性、機械物性及び熱硬化性ポリウレタン樹脂組成物の保存安定性を下記方法に従って評価した。その結果を第7表に示す。但し、実施例13〜15は、参考例である。
(1)相溶性の評価
熱硬化性ポリウレタン樹脂組成物を調製した際の相溶状態と、調製後の熱硬化性ポリウレタン樹脂組成物をガラス板に塗装し、120℃で乾燥した後の塗膜の状態を、下記の評価基準で評価した。
評価基準
○:熱硬化性ポリウレタン樹脂組成物の調製において攪拌により均一となり、塗膜面にも異物等が見られない。
△:熱硬化性ポリウレタン樹脂組成物の調製において攪拌により均一になりにくく、塗膜面にもやや異物等が見られる。
×:熱硬化性ポリウレタン樹脂組成物の調製において均一に溶解せず、塗膜面は、はじき、異物、不溶解物が確認できる。
(2)塗膜造膜性の評価
熱硬化性ポリウレタン樹脂組成物10を乾燥後の膜厚が30μmになるようにブリキ板にアプリケーターにて塗布後、110℃で30分間乾燥させて得た試験片を、室温にて24時間放置し、塗膜外観を以下の評価基準で評価した。
評価基準
○:塗膜にクラック等の異常は見られない。
△:塗膜に若干クラックが見られる。
×:塗膜全面にクラックが発生した。
(3)耐熱性の評価
<試験片の作成>
熱硬化性ポリウレタン樹脂組成物を硬化後の膜厚が50μmになるように銅箔がラミネートされたガラスエポキシ基板上に塗装し、70℃の乾燥機で30分間乾燥した後、170℃で1時間硬化させた後、室温まで冷却し、硬化塗膜を作成した。
<耐熱性試験方法>
硬化塗膜を260℃のハンダ浴に30秒浸漬し、室温に冷却した。このハンダ浴の浸漬操作を合計3回行い、硬化塗膜の外観について以下の評価基準で評価した。
○:塗膜に外観以上は見られない。
△:塗膜にフクレ、はがれ等以上が若干見られる。
×:塗膜全体にフクレ、はがれ等異常が見られる。
(4)機械物性の評価
機械物性は塗膜の引張試験を行うことにより評価した。
<試験片の作製>
熱硬化性樹脂組成物10を硬化後の膜厚が50μmになるようにブリキ基板上に塗装した。次いで、この塗装板を70℃の乾燥機で20分間乾燥した後、200℃で1時間硬化させて硬化塗膜を作成した。室温まで冷却した後、硬化塗膜を所定の大きさに切り出し、基板から単離して測定用試料とした。
<引張試験測定方法>
測定用試料を5枚作成し、下記の条件で引張試験を行い、破断強度と破断伸度を求めた。破断強度と破断伸度の値が高いほど機械物性に優れる塗膜であることを表す。
測定機器:東洋ボールドウィン社製テンシロン
サンプル形状:10mm×70mm
チャック間:20mm
引張速度:10mm/min
測定雰囲気:22℃、45%RH
(5)熱硬化性ポリウレタン樹脂組成物の保存安定性
実施例1と同様にして行った。
Figure 0005358892
Figure 0005358892
Figure 0005358892
Figure 0005358892
Figure 0005358892
Figure 0005358892
Figure 0005358892
Figure 0005358892
表の脚注
N680:クレゾールノボラック型エポキシ樹脂、エポキシ当量214 軟化点81℃
EP2050:固形ビスフェノールA型エポキシ樹脂、エポキシ当量640
DBTL:ジブチルチンジラウレート
2E4MZ:2−エチル−4−メチル−イミダゾール
DBTA:ジブチルチンアセテート
CNR:オルソクレゾールノボラック型樹脂 融点 90℃ 水酸基当量=105
BPF:ビスフェノールF

Claims (15)

  1. 下記一般式(1)および/または下記一般式(2)で表される構造を有するポリウレタン樹脂(A)と、エポキシ樹脂(B)と、水酸基の水素原子がアシル基で置換された構造を有するフェノキシ樹脂(C)とを含有し、
    前記フェノキシ樹脂(C)がビスフェノールS骨格およびナフタレン骨格を含有するフェノキシ樹脂であり、
    前記ポリウレタン樹脂(A)とエポキシ樹脂(B)との配合量が、樹脂分の重量比として(A)/(B)が1/100から50/1の割合であり、
    前記フェノキシ樹脂(C)の配合量が、前記ポリウレタン樹脂(A)と前記エポキシ樹脂(B)との合計〔(A)+(B)〕に対して重量比で〔(A)+(B)〕/(C)=5/95〜95/5であることを特徴とする熱硬化性ポリウレタン樹脂組成物。
    Figure 0005358892
    Figure 0005358892
    (式中、Xは1分子中に2個以上のフェノール性水酸基を有するフェノール系化合物から2個のフェノール性水酸基を除いた残基を示す。)
  2. 記一般式(1)および/または一般式(2)中のXが一般式(5)構造である請求項1記載の熱硬化性ポリウレタン樹脂組成物。
    Figure 0005358892
    (式中Rは、直接結合、カルボニル基、スルホニル基、メチレン基、イソプロピリデン基、ヘキサフルオロイソプロピリデン基、オキソ基、ジメチルシリレン基、フルオレン−9−ジイル基、またはトリシクロ[5.2.1.02,8]デカン−ジイル基であり、Rは同一でも異なっていても良く、水素原子または炭素原子数1〜18のアルキル基を示す。)
  3. 前記ポリウレタン樹脂(A)が更に下記一般式(13)で示される構造を有するポリウレタン樹脂である請求項記載の熱硬化性ポリウレタン樹脂組成物。
    Figure 0005358892
    (式中、Yは1分子中に少なくとも2個のアルコール性水酸基を有するポリオール化合物から2つの水酸基を除いた残基を示す。)
  4. 前記一般式(13)で表される構造が、該構造中のYとして数平均分子量が300〜5,000であるポリオール化合物から2つの水酸基を除いた残基を有する構造である請求項記載の熱硬化性ポリウレタン樹脂組成物。
  5. 前記一般式(13)で表される構造が、該構造中のYとしてガラス転移温度が−150〜0℃である残基を有する構造である請求項記載の熱硬化性ポリウレタン樹脂組成物。
  6. 前記一般式(13)中のYが1分子中に少なくとも2個のアルコール性水酸基を有するポリオレフィンポリオールから2つの水酸基を除いた残基、1分子中に少なくとも2個のアルコール性水酸基を有するポリエーテルポリオールから2つの水酸基を除いた残基、1分子中に少なくとも2個のアルコール性水酸基を有するポリカーボネートポリオールから2つの水酸基を除いた残基、1分子中に少なくとも2個のアルコール性水酸基を有するポリエステルポリオールから2つの水酸基を除いた残基および1分子中に少なくとも2個のアルコール性水酸基を有するポリシロキサンポリオールから2つの水酸基を除いた残基からなる群から選ばれる1種以上の残基である請求項記載の熱硬化性ポリウレタン樹脂組成物。
  7. 前記エポキシ樹脂(B)が芳香族系エポキシ樹脂である請求項1記載の熱硬化性ポリウレタン樹脂組成物。
  8. 前記芳香族系エポキシ樹脂がノボラック型エポキシ樹脂である請求項記載の熱硬化性ポリウレタン樹脂組成物。
  9. 前記フェノキシ樹脂(C)が、水酸基の水素原子がアシル基で置換された割合が10〜100モル%のフェノキシ樹脂である請求項1記載の熱硬化性ポリウレタン樹脂組成物。
  10. 前記アシル基が炭素原子数1〜20の炭化水素基を有するものである請求項1記載の熱硬化性ポリウレタン樹脂組成物。
  11. 前記炭化水素基がメチル基である請求項10記載の熱硬化性ポリウレタン樹脂組成物。
  12. 前記フェノキシ樹脂(C)が更にビフェニル骨格を含有するフェノキシ樹脂である請求項記載の熱硬化性ポリウレタン樹脂組成物。
  13. 前記フェノキシ樹脂(C)が重量平均分子量5,000〜200,000のフェノキシ樹脂である請求項記載のポリウレタン樹脂組成物。
  14. 硬化触媒を含有する請求項1〜13のいずれか1項記載の熱硬化性ポリウレタン樹脂組成物。
  15. 更に、ウレタン化触媒を含有する請求項1〜13のいずれか1項記載の熱硬化性ポリウレタン樹脂組成物。
JP2007078902A 2007-03-26 2007-03-26 熱硬化性ポリウレタン樹脂組成物 Active JP5358892B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078902A JP5358892B2 (ja) 2007-03-26 2007-03-26 熱硬化性ポリウレタン樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078902A JP5358892B2 (ja) 2007-03-26 2007-03-26 熱硬化性ポリウレタン樹脂組成物

Publications (2)

Publication Number Publication Date
JP2008239682A JP2008239682A (ja) 2008-10-09
JP5358892B2 true JP5358892B2 (ja) 2013-12-04

Family

ID=39911416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078902A Active JP5358892B2 (ja) 2007-03-26 2007-03-26 熱硬化性ポリウレタン樹脂組成物

Country Status (1)

Country Link
JP (1) JP5358892B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662858B2 (ja) * 2011-03-29 2015-02-04 積水化学工業株式会社 Bステージフィルム及び多層基板
JP6620457B2 (ja) * 2015-08-11 2019-12-18 味の素株式会社 樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397623A (ja) * 1986-10-14 1988-04-28 Mitsubishi Kasei Corp エポキシ樹脂組成物
JPH08301967A (ja) * 1995-04-28 1996-11-19 Nippon Steel Chem Co Ltd 新規重合物及びその製造方法並びにエポキシ樹脂組成物
TW200602427A (en) * 2004-03-30 2006-01-16 Taiyo Ink Mfg Co Ltd Thermosetting resin composition and multilayered printed wiring board comprising the same
JP5040284B2 (ja) * 2005-12-15 2012-10-03 Dic株式会社 熱硬化性樹脂組成物

Also Published As

Publication number Publication date
JP2008239682A (ja) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5092492B2 (ja) 熱硬化性ポリイミド樹脂組成物
TWI614306B (zh) 聚胺酯樹脂組成物與利用此樹脂組成物之接著劑組成物、疊層體及印刷電路板
CN110268030B (zh) 含有羧酸基的聚酯系粘合剂组合物
JP5104411B2 (ja) 熱硬化性ポリウレタン樹脂組成物
JP5516640B2 (ja) 熱硬化性樹脂組成物
TW200914537A (en) Resin composition for interlayer insulation of multilayer printed wiring board
TWI827786B (zh) 含有二聚物二醇共聚聚醯亞胺胺甲酸酯樹脂之黏接劑組成物
JP5040284B2 (ja) 熱硬化性樹脂組成物
TW202144454A (zh) 聚酯、薄膜、黏接劑組成物、黏接片、疊層體、以及印刷配線板
JP5092484B2 (ja) 熱硬化性ポリイミド樹脂組成物
WO2005006826A1 (ja) 多層プリント配線板用熱硬化性樹脂組成物、熱硬化性接着フィルム及びそれらを用いて作製された多層プリント基板
JP5326188B2 (ja) 樹脂組成物、フェノキシ樹脂、塗料組成物、接着剤組成物、接着フィルム、プリプレグ、多層プリント配線基板及び樹脂付銅箔
JP5092491B2 (ja) 熱硬化性ポリイミド樹脂組成物
JP5692476B1 (ja) カルボキシル基含有ポリエステル及びそれを含む熱硬化性樹脂組成物
TW202146514A (zh) 聚酯、薄膜、黏接劑組成物、黏接片、疊層體、以及印刷配線板
JP5358892B2 (ja) 熱硬化性ポリウレタン樹脂組成物
JP5130795B2 (ja) 熱硬化性ポリイミド樹脂組成物
WO2021079670A1 (ja) フレキシブルプリント配線板用接着剤組成物、フレキシブルプリント配線板用接着剤及びフレキシブルプリント配線板
JP4872125B2 (ja) 多層プリント配線板用硬化性樹脂組成物、熱硬化性接着フィルム及び多層プリント基板
CN110036054B (zh) 含羧酸基的高分子化合物以及含有其的粘合剂组合物
JP5119757B2 (ja) ポリイミド樹脂組成物
JP5019098B2 (ja) 多層プリント配線板用硬化性樹脂組成物、熱硬化性接着フィルム及び多層プリント基板
JP5119754B2 (ja) 熱硬化性ポリイミド樹脂組成物
JP5303860B2 (ja) 熱硬化性ポリイミド樹脂組成物
WO2010098296A1 (ja) ポリイミド樹脂、ポリイミド樹脂の製造方法、ポリイミド樹脂組成物及びその硬化物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5358892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250