WO2007069613A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2007069613A1
WO2007069613A1 PCT/JP2006/324779 JP2006324779W WO2007069613A1 WO 2007069613 A1 WO2007069613 A1 WO 2007069613A1 JP 2006324779 W JP2006324779 W JP 2006324779W WO 2007069613 A1 WO2007069613 A1 WO 2007069613A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
polarizing plate
display device
crystal display
Prior art date
Application number
PCT/JP2006/324779
Other languages
English (en)
French (fr)
Inventor
Atsushi Suemasu
Norihisa Moriya
Original Assignee
Dai Nippon Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co., Ltd. filed Critical Dai Nippon Printing Co., Ltd.
Priority to US12/086,393 priority Critical patent/US7764339B2/en
Priority to CN2006800465623A priority patent/CN101326460B/zh
Publication of WO2007069613A1 publication Critical patent/WO2007069613A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133632Birefringent elements, e.g. for optical compensation with refractive index ellipsoid inclined relative to the LC-layer surface
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis

Definitions

  • the present invention relates to a liquid crystal display device in which a birefringence layer is formed.
  • Liquid crystal display devices have advantages such as being easy to reduce the thickness and weight, reducing power consumption, and preventing flicker from occurring.
  • LCDs liquid crystal display devices
  • light leakage or gradation reversal occurs, and in addition to the problem that the viewing angle is narrow, color unevenness occurs on the liquid crystal display screen. And had problems such as low contrast.
  • an optical element using a layer obtained by aligning liquid crystal molecules in a specific direction and fixing a triacetyl cellulose (TAC) film uniaxially or biaxially stretched film material is proposed. ! Speak.
  • TAC triacetyl cellulose
  • Patent Document 1 proposes a viewing angle compensation film having a nematic liquid crystal polymer force with a positive intrinsic refractive index value in which molecular chains are aligned in the normal direction of the film surface.
  • this viewing angle compensation film is formed by forming a vertical alignment film with a surface treatment agent of an alkyl silicone type fluoroalkyl silicone type on the surface of a glass substrate or the like, thereby producing a cell, and It is disclosed that a liquid crystal molecule is obtained by encapsulating liquid crystal molecules in a cell and photopolymerizing the liquid crystal molecules.
  • Patent Document 2 proposes a method of manufacturing a liquid crystal layer in which a liquid crystal compound is hometo-pick aligned by coating a polymerizable liquid crystal compound on a vertical alignment film formed on a substrate. Yes.
  • a long-chain alkyl dendrimer derivative is used as a forming agent for the vertical alignment film.
  • a film material provided with a liquid crystal layer with a homeotop pick orientation is obtained, and this film material can be used as an optical film such as a retardation film. It is disclosed.
  • Patent Document 3 a vertical alignment film is provided, and on the substrate, a monomer unit containing a liquid crystal fragment side chain and a monomer unit containing a non-liquid crystal fragment side chain are contained.
  • the side-chain type liquid crystal polymer is applied, and the liquid crystal polymer is brought into a liquid crystal state and homeo orientation is aligned, and then the orientation state is maintained and fixed and the home mouth orientation liquid crystal is maintained.
  • a method for producing a film has been proposed.
  • Patent Document 4 a vertical alignment film is provided, and a binder layer and then an anchor coat layer are formed on the substrate from the substrate side, and a side chain type liquid crystal polymer is applied to the anchor coat layer. Then, after home-to-mouth pick orientation is performed, a home-to-mouth pick-aligned liquid crystal film has been proposed that is fixed while maintaining the home-to-mouth pick orientation.
  • the side chain type liquid crystal polymer a polymer capable of forming a home-mouth pick alignment liquid crystal layer on a substrate not provided with a vertical alignment film is used.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-142531
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-174724
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-174725
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-121852
  • the viewing angle compensation film of Patent Document 1 a cell is manufactured using two substrates having an alignment film, liquid crystal molecules are enclosed in the empty cell, and the liquid crystal molecules are vertically aligned. It is obtained after a series of steps of photopolymerizing liquid crystal molecules while maintaining the state.
  • the viewing angle compensation film of Patent Document 1 has a problem that the production cost is remarkably increased, which is a force that is finally obtained through many manufacturing processes.
  • the visual compensation film is a film material, it must be fixed with an adhesive when used in a liquid crystal display device. This is a special adhesive used to increase the contrast of the liquid crystal screen of the liquid crystal display device. Must be selected.
  • Patent Document 2 it is necessary to use a special material called a long-chain alkyl-type dendrimer derivative in order to provide a homeotropically aligned liquid crystal layer by providing a vertical alignment film on a substrate. If this method is used to obtain a homeomorphic alignment liquid crystal layer, the production cost is reduced. There is a problem that it increases significantly.
  • the home-orientated pick-aligned liquid crystal film obtained by the method described in Patent Document 3 has side chains.
  • the home-orientated pick-aligned liquid crystal film obtained by the method described in Patent Document 4 has side chains.
  • the liquid crystal molecules are referred to as a polymerization reaction or the like.
  • the liquid crystal molecules are fixed and held in a home-to-mouth pick alignment state.
  • the orientation state becomes.
  • the home-to-mouth pick-aligned liquid crystal film has an optical axis that is inclined with respect to the thickness direction of the film surface, which causes light leakage during black display on the liquid crystal display screen.
  • the liquid crystal display screen can be prevented from leaking light so that black display can be achieved, and color unevenness can be achieved.
  • the present inventors completed the present invention by examining a liquid crystal display device that suppresses the occurrence and improves the contrast.
  • the present invention provides a liquid crystal display device capable of effectively suppressing light leakage even when the liquid crystal is fixed without being completely maintained in the homeotopic pick alignment state. With the goal.
  • the liquid crystal display device of the present invention includes a substrate facing the liquid crystal layer containing liquid crystal having a variable orientation state, and the first polarizing plate and the second polarizing plate sandwiched between the opposing substrates.
  • a birefringent layer is formed by polymerizing polymerizable liquid crystal between the first polarizing plate and the second polarizing plate.
  • the optical axis of the birefringent layer is inclined with respect to the thickness direction of the birefringent layer, and the optical axis of the birefringent layer is the first polarizing plate with respect to the thickness direction of the birefringent layer.
  • the second polarizing plate is inclined in the direction of the absorption axis.
  • the birefringence layer may be formed by polymerizing a polymerizable liquid crystal in a homeotropic orientation state.
  • the birefringent layer may be formed by three-dimensional cross-linking polymerization of a polymer liquid crystal having a rod-like molecular shape.
  • the liquid crystal display device of the present invention may be one in which the optical axis of the birefringent layer is uniformly inclined over the entire surface of the birefringent layer!
  • the birefringence layer may be laminated between the opposing substrates.
  • a colored layer may be formed on at least one of the opposing substrates, and a birefringence layer may be formed on the colored layer surface.
  • the colored layer includes colored pixels that are arranged in a stripe arrangement pattern and transmit light having a predetermined wavelength, and the first polarizing plate and the second polarizing plate are provided.
  • the direction of the absorption axis of any one of the polarizing plates may coincide with the longitudinal direction of the stripe-type colored pixel.
  • the different birefringence layer having an optical axis different from the birefringence layer having an inclined optical axis includes the birefringence layer having the inclined optical axis and the first polarization. It may be formed between the plates.
  • the birefringent layer having an inclined optical axis is formed between the substrate on which the colored layer is formed and the liquid crystal layer, and has the inclined optical axis.
  • a different birefringence layer having an optical axis different from that of the birefringence layer may be formed between the substrate on which the colored layer is formed and the first polarizing plate.
  • the different birefringence layer having an optical axis different from the birefringence layer having an inclined optical axis includes the birefringence layer having the inclined optical axis and the first polarization.
  • the optical axis of the different birefringence layer formed between the plates may be aligned with the direction of the absorption axis of the first polarizing plate or the second polarizing plate.
  • the different birefringence layer having an optical axis different from the birefringence layer having the tilted optical axis is formed by the birefringence layer having the tilted optical axis and the first polarization.
  • the optical axis of the different birefringence layer is between the absorption axis of the first polarizing plate or the second polarizing plate. The direction and orientation may be aligned.
  • the different birefringence layer may be configured to include a film material.
  • the optical axis of the birefringent layer is in the thickness direction. Since it is inclined in the absorption axis direction of the first polarizing plate or the second polarizing plate, the state of the polymerizable liquid crystal is incomplete in the birefringence layer formed by polymerization reaction of the polymerizable liquid crystal. Even in a homeotropic alignment state, it is possible to prevent light leakage in the thickness direction of the birefringence layer during black display, and to prevent a decrease in front contrast. It is also possible to do.
  • the birefringent layer is formed separately by polymerizing the polymerizable liquid crystal on the substrate surface, thereby using the adhesive or the like. It is possible to reduce the field reflection of the light accompanying the multilayering due to the presence of a layer such as an adhesive, and to further suppress the decrease in front contrast.
  • the liquid crystal display device can form the birefringent layer by three-dimensionally cross-linking the polymerizable liquid crystal, the structure of the birefringent layer can be further strengthened.
  • the birefringence layer may be formed by crosslinking polymerization of a thermotropic liquid crystal that can be polymerized by irradiation with ultraviolet rays.
  • the orientation of the liquid crystal to be formed is hardly affected by heat, and for example, it can be a liquid crystal display device that can be applied to an optical device that is used in an environment where the temperature tends to be relatively high, such as in a car. .
  • the molecules of the polymerizable liquid crystal form a uniformly tilted alignment state, that is, the optical axis of the birefringent layer is uniformly tilted over the entire surface.
  • the difference in position on the surface of the birefringence layer makes it difficult to make a difference in the ability to suppress light leakage in the thickness direction of the birefringence layer, and the light of the liquid crystal display device power is evenly distributed. Leakage can be suppressed.
  • the birefringence layer is laminated between the opposing substrates, whereby a polarizing plate or the like is disposed so as to sandwich the substrate when the liquid crystal display device is assembled.
  • a polarizing plate or the like is disposed so as to sandwich the substrate when the liquid crystal display device is assembled.
  • the risk that the polarizing plate collides with the birefringent layer is suppressed, and the risk that the birefringent layer is damaged is suppressed.
  • the liquid crystal display device of the present invention has a colored layer laminated on at least one of the opposing substrates, and a birefringent layer is laminated on the colored layer surface, such a liquid crystal display device is used.
  • the birefringence layer is laminated with an adhesive as a separate retardation film, etc. Therefore, it is possible to form a liquid crystal display device without forming a layer such as an adhesive between the colored layer and the birefringent layer. It is possible to reduce the number of interfaces between different members, such as the interface between and the interface between the colored layer and the birefringent layer.
  • the stripe type is adopted as the arrangement pattern of the colored pixels, and the absorption axis direction of the polarizing plate is aligned with the longitudinal direction of the colored pixels that are easily visually recognized. It is possible to reliably and easily match the tilt direction of the optical axis of the birefringent layer with the absorption axis of either the first polarizing plate or the second polarizing plate. An efficiently manufactured liquid crystal display device is obtained.
  • the different birefringence layer having an optical axis different from the birefringence layer having an inclined optical axis is formed by the birefringence layer having the inclined optical axis and the first polarization.
  • a different birefringence layer is formed as a so-called + A plate and a birefringence layer is formed as a so-called + C plate.
  • the optical compensation function for more efficiently reducing light leakage from the liquid crystal display device can be exhibited more effectively.
  • the birefringent layer having an inclined optical axis is formed between the substrate on which the colored layer is formed and the liquid crystal layer, and has an inclined optical axis. Since the different birefringence layer having an optical axis different from that of the birefringence layer is formed between the substrate on which the colored layer is formed and the first polarizing plate, the substrate on which the colored layer is formed and the liquid crystal layer A birefringence layer is formed between the substrate and the liquid crystal layer on which the colored layer is formed, and this is formed as a so-called + C plate. And light leakage from the liquid crystal display device can be reduced more efficiently.
  • the optical axis of the different birefringence layer is aligned with the direction of the absorption axis of the first polarizing plate or the second polarizing plate.
  • the optical compensation function for more effectively reducing the power light leakage can be exhibited more effectively.
  • the different birefringent layer is provided with a film material, so that it is easy to separately add and install the different birefringent layer as necessary. Become. Brief Description of Drawings
  • FIG. 1 is an exploded view for explaining the structure of a liquid crystal display layer device of the present invention.
  • FIG. 2A is an explanatory diagram for explaining the relationship between the absorption axis and the refractive index ellipsoid with the F direction force in FIG. 1 in the embodiment of the liquid crystal display device of the invention.
  • FIG. 2B is an explanatory view illustrating the relationship between the absorption axis and the refractive index ellipsoid viewed from the F direction in FIG. 1 in another embodiment of the liquid crystal display device of the present invention.
  • FIG. 3A is a schematic cross-sectional view for explaining the installation position of the birefringent layer.
  • FIG. 3B is a schematic cross-sectional view for explaining the installation position of the birefringent layer.
  • FIG. 3C is a schematic cross-sectional view for explaining the installation position of the birefringent layer.
  • FIG. 4A is a schematic cross-sectional view for explaining one example of a liquid crystal display device provided with a different birefringence layer.
  • FIG. 4B is a schematic cross-sectional view for explaining one example of a liquid crystal display device provided with a colored layer.
  • FIG. 5A is a schematic plan view illustrating a switching circuit in the liquid crystal display device of the present invention.
  • FIG. 5B is a schematic plan view illustrating another switching circuit in the liquid crystal display device of the present invention.
  • FIG. 6 is a diagram for explaining an arrangement relationship between a colored layer and a polarizing plate in a liquid crystal display device including the colored layer.
  • liquid crystal display device of the present invention (referred to as the liquid crystal display device of the first embodiment) will be described in detail.
  • FIG. 1 is a schematic explanatory view for explaining a liquid crystal display device of the present invention.
  • FIG. 2A is a schematic explanatory diagram for explaining the relationship between the direction of the absorption axis of the polarizing plate and the refractive index ellipsoid of the birefringent layer in the liquid crystal display device of the present invention when viewed in the F direction in FIG. .
  • the liquid crystal display device 1 includes a first substrate 3 and a second substrate 4 (hereinafter also simply referred to as a substrate) facing each other with a liquid crystal layer 2 (sometimes referred to as a driving liquid crystal layer) interposed therebetween. And the first polarizing plate 5 and the second polarizing plate 6 are disposed between the first substrate 3 and the second substrate 4 (on the outer surface of the substrate). A birefringent layer 7 is formed between the second polarizing plate 6 and the second polarizing plate 6.
  • the inner and outer surfaces are the inner and outer surfaces specified according to the inner / outer direction when the force is close to the liquid crystal layer 2 and the force is directed to the far side. Shall.
  • the first substrate 3 and the second substrate 4 are provided with a layer made of a light-transmitting base material, and even if the first substrate 3 and the second substrate 4 are constituted by a structure made of a single base material, a large number of base materials are stacked. Even a multi-layer structure may be formed by laminating a functional layer having a predetermined function on a layer made of a base material.
  • the functional layer may be formed on both surfaces of the substrate, or the functional layer may be formed on one surface of the substrate.
  • the light transmittance of the substrate can be appropriately selected.
  • the base material has a light shielding area or the like partially. It may be provided.
  • a plate-like body made of various materials in addition to a glass substrate (glass material) can be appropriately selected.
  • non-flexible members rigid materials
  • quartz glass borosilicate glass
  • synthetic quartz plate flexible members
  • flexible materials such as a resin film and a resin plate
  • a base material when using a base material for a liquid crystal display device, it is preferable that a base material is an alkali free glass.
  • the resin used for the substrate is specifically a polycarbonate polymer, polyarylate or polyethylene terephthalate.
  • Polycarbonate polymer such as (PET)
  • Polyimide polymers such as polyimide and polyamideimide
  • Polysulfone polymers such as polyimide and polyamideimide
  • Polysulfone polymers such as polyimide and polyamideimide
  • Polysulfone polymers such as polyimide and polyamideimide
  • Polysulfone polymers Polyethersulfone polymers
  • Polystyrene polymers Polyolefin polymers such as polyethylene and polypropylene
  • Thermoplastic polymers such as polyether ketone polymers, polyvinyl alcohol polymers, cellulose acetate polymers, polychlorinated butyl polymers, polymethylmethacrylate polymers, triacetyl cellulose (TAC) films, liquid crystal polymers, etc.
  • TAC triacetyl cellulose
  • a uniaxially stretched or biaxially stretched resin film made of a resin as described above may be used! /.
  • the resin film is preferably a film made of polyethylene terephthalate from the viewpoints of a wide range of stretch magnification and, further, availability.
  • the functional layer is a layer having a function of changing the state of light, and is a layer having a configuration different from that of the birefringence layer 7, and is composed of a colored layer and a cholesteric liquid crystal in which liquid crystal orientation is fixed.
  • Specific examples of the layer include a reflector that reflects light and a polarizing plate.
  • the functional layer may be provided not only on the entire surface of the substrate but also partially on the substrate surface.
  • the functional layer may be an alignment film such as a horizontal alignment film that horizontally aligns liquid crystal molecules constituting the liquid crystal layer 2 or a vertical alignment film that vertically aligns liquid crystal molecules.
  • polyimide polyamide
  • polybutyl alcohol polybutyl alcohol
  • the alignment film When polyimide is used as the alignment film, it must have a long-chain alkyl group. This means that the birefringence layer is formed when the birefringence layer is formed on the substrate by fixing liquid crystal molecules. Preferable, you can choose a wide range of layer thicknesses.
  • the alignment film is prepared by adjusting a film composition liquid constituting the alignment film, and applying the film composition liquid on the substrate surface by a method such as flexographic printing or spin coating to form a coating film. It can be formed by curing the film.
  • membrane composition liquids that include polyimide include SE-7511 and SE-1211 manufactured by Nissan Chemical, JALS-2021-R2 manufactured by JSR, QL and LX manufactured by Hitachi Chemical DuPont The Rixon liner and the series manufactured by Chisso Corporation can be specifically exemplified.
  • the alignment film preferably has a thickness in the range of about 0.01 to 1 ⁇ m. If the thickness of the alignment film is less than 0.01 m, it may be difficult to impart desired alignment to the liquid crystal contained in a layer such as a birefringence layer that is in contact with the alignment film. In addition, if the alignment film is thicker than 1 m, the alignment film itself may diffusely reflect light, which may greatly reduce the light transmittance of the liquid crystal display device.
  • the first polarizing plate 5 and the second polarizing plate 6 are formed by combining these polarizing plates 5 and 6 as shown in FIG. 1, FIG. 2A, and FIG. 2B.
  • the absorption axes Pl and P2 of the polarizing plates 5 and 6 are arranged so as to be orthogonal to each other.
  • the transmission axes of the polarizing plates 5 and 6 are formed perpendicularly to the absorption axes Pl and P2 on the polarizing plate surface, respectively. That is, the first polarizing plate 5 and the second polarizing plate 6 are arranged in a cross-coll.
  • the birefringence layer 7 is formed between the first substrate 3 and the liquid crystal layer 2.
  • the birefringent layer 7 is formed by superposing liquid crystal molecules having a slightly elongated molecular shape (sometimes referred to as polymerizable liquid crystal) in a homeotropic orientation in a polymerized state. It has a polymer structure formed by combining them. In this case, the polymer structure may be formed by crosslinking polymerized liquid crystal molecules to form a three-dimensional structure (crosslinked polymer structure).
  • any of monomers, oligomers, and polymers of polymerizable liquid crystal may be used, and these may be used in appropriate combination.
  • the degree of crosslinking of the liquid crystal molecules is preferably about 80 or more, more preferably about 90 or more.
  • the degree of cross-linking of the liquid crystal molecules is less than 80! /, And there is a possibility that the uniform orientation cannot be sufficiently maintained.
  • the birefringence layer 7 has a birefringence characteristic (birefringence characteristic) corresponding to the refractive index anisotropy of the liquid crystal molecules constituting the birefringence layer 7 and its orientation state.
  • the index characteristic is specified according to the state of the index ellipsoid A using the index ellipsoid A (Fig. 1).
  • the state of the refractive index ellipsoid A can be specified at each position on the birefringent layer 7 surface.
  • the state of the refractive index ellipsoid A representing the birefringence characteristics in the birefringent layer 7 is approximately the average of the states of the refractive ellipsoid A specified for each preselected position of the birefringent layer 7. It can be specified as a state.
  • a plurality of different positions on the birefringence layer surface are selected and set as positions (measurement positions) that are measurement targets of the refractive index ellipsoid state. It is specified by measuring and averaging the state of the refractive index ellipsoid A at the position.
  • the state of the refractive index ellipsoid A is shown by the shape of the refractive index ellipsoid A and the inclined state of the refractive index ellipsoid A.
  • the shape of the refractive index ellipsoid A is such that the z-axis (indicated by z in FIG. 1) is taken in the thickness direction of the birefringent layer 7 and the z-axis is normal.
  • it is specified as an ellipsoid corresponding to the value of the refractive index (indicated by nx, ny, and nz in FIG. 1) within that space.
  • the refractive indices nx, ny, and nz are assumed to be the birefringent layer when the optical axis force S of the liquid crystal molecules constituting the birefringent layer 7 is parallel (aligned) in the z- axis direction.
  • the X axis and the y axis are specified so as to overlap with the absorption axes Pl and P2 of the polarizing plates 5 and 6, respectively, when viewed from the z axis direction.
  • the tilt state of the refractive index ellipsoid A in the space is specified by the tilt state of the major axis a (indicating the optical axis), and the tilt state of the major axis a is the tilt angle ( ⁇ in Fig. 1). And azimuth (indicated by ⁇ in Figure 2B).
  • the inclination angle ⁇ is an angle formed by the major axis a of the refractive index ellipsoid A and the z axis.
  • the azimuth angle ⁇ is a direction force from the first polarizing plate 5 to the second polarizing plate 6 in the z-axis direction and the long axis a (in the F direction) when the value of the inclination angle ⁇ is other than zero.
  • the major axis a is changed to the X axis (first The rotation angle required to overlap the absorption axis PI) of the polarizing plate 1 of 1 shall be indicated.
  • the birefringent layer 7 is ideally configured such that the value of the inclination angle ⁇ of the refractive index ellipsoid A is 0 (zero), but the liquid crystal molecules are aligned in the thickness direction within the birefringent layer 7.
  • the birefringent layer 7 has a tilt angle ⁇ other than zero, and is inclined in the thickness direction. It has an optical axis inclined with respect to it.
  • the birefringent layer 7 has a major axis a (light) of the refractive index ellipsoid A when viewed in the thickness direction. (Axis) is oriented in the same direction (aligned) as one of the absorption axes Pl and P2 of the first polarizing plate 5 and the second polarizing plate 6 (Fig. 2A, Fig. 2). 2B).
  • the approximate value of the azimuth angle 0 of the major axis a in the refractive index ellipsoid A of the birefringent layer 7 is any of 0 °, 90 °, 180 °, and 270 °
  • the birefringence layer 7 corresponds to the birefringence characteristics, and can cause retardation with respect to light incident on the birefringence layer 7 (incident light).
  • Retardation is the optical path difference between ordinary light and extraordinary light that occurs with respect to the incident light.
  • the retardation size (retardation value) is birefringence ⁇ n when the ordinary light refractive index is no and the extraordinary refractive index ne. It is given as the product of (difference between no and ne) and d (film thickness of the birefringent layer 7).
  • the birefringence layer 7 when the birefringence characteristics are controlled by appropriately selecting the type of liquid crystal molecules, the degree of orientation of the liquid crystal molecules, the film thickness of the birefringence layer 7, etc., this is handled. Thus, the size of the retardation is controlled.
  • the size of the retardation can be measured using a commercially available measuring device such as RETS-1250VA (manufactured by Otsuka Electronics Co., Ltd.) or KOBRA-21 (manufactured by Oji Scientific Instruments).
  • the retardation is measured by irradiating the birefringent layer with incident light having a specific wavelength, and the measurement wavelength is preferably in the visible region (380 to 780 nm). It is more preferable to measure at the maximum around 550 nm.
  • the size of the retardation is Less than lnm is preferred O.lnm is more preferred Ideally zero It is preferable that
  • the film thickness of the birefringence layer 7 is appropriately selected within a range in which liquid crystal molecules can be homeotropically aligned, specifically within a range in which the retardation in the thickness direction is lnm or less. It is further preferable to select appropriately within the range where the preferred retardation is about O.lnm or less.
  • the birefringence layer 7 has substantially the same gradient state of the refractive index ellipsoid at different positions on the surface thereof, and has a small variation in the gradient state of the refractive index ellipsoid.
  • the variation in the inclination angle of the refractive index ellipsoid at each position is preferably within a range of about 2 °.
  • the liquid crystal display device may have some unevenness in light leakage when viewed from the direction other than the front direction (F direction) during black display. If the range of variation exceeds 2 °, there is a risk that such irregularities will be recognized by the naked eye.
  • the liquid crystal molecules contained in the birefringent layer 7 are strongly homeo-pick-aligned as long as they are close to the vertical alignment film. (Inclination angle ⁇ is almost 0).
  • the homeotropic pick alignment is weakened, so that the liquid crystal molecules at a position away from the vertical alignment film 7 are also strongly homeotropic picked.
  • the birefringent layer 7 has a uniform tilt angle of the liquid crystal molecules, and the liquid crystal molecules are uniformly homeotropically aligned.
  • the tilt angle of the liquid crystal molecules which are units constituting the crosslinked polymer structure, of the liquid crystal molecules closest to the interface with the vertical alignment film of the birefringence layer 7 It is preferable that the tilt angle and the tilt angle of the liquid crystal molecule located at the most distant position in the thickness direction of the birefringence layer with respect to the liquid crystal molecules are substantially equal. In this case, the tilt angle of each liquid crystal molecule in the birefringent layer 7 becomes approximately uniform in the thickness direction. In such a case, the birefringence layer 7 can easily make its birefringence characteristics uniform in the surface direction, and can easily suppress unevenness in the ability to suppress light leakage.
  • the birefringent layer 7 extends over the entire surface of the birefringent layer 7 where it is preferable that the tilt angles of the liquid crystal molecules in the birefringent layer 7 are equal to each other in the plane direction. Equal More preferably.
  • the state of the refractive index ellipsoid A is approximately the same at different positions on the surface of the birefringent layer 7, and the birefringence characteristics of the birefringent layer 7 are uniform in the plane direction. Yes. That is, the optical axis of the birefringent layer 7 is approximately uniform regardless of the position on the surface of the birefringent layer 7. As a result, unevenness in the ability to suppress light leakage according to the position on the surface of the birefringent layer 7 is more likely to occur.
  • the azimuth angle ⁇ of the optical axis of the birefringent layer A is approximately one of 0 °, 90 °, 180 °, and 270 °.
  • the azimuth angle of the optical axis of each liquid crystal molecule included in the birefringence layer 7 is approximately 0 °, 90 °, 180 °, 270 ° regardless of the position of the optical axis. If the value is one of the values (first case), the azimuth of the optical axis of the liquid crystal molecules is approximately 0 °, 90 °, 180 °, or 270 ° for liquid crystal molecules with different positions.
  • the azimuth angle ⁇ of the optical axis is
  • the birefringence layer 7 corresponds to the first case. Even those also corresponds to the second case ones, but is preferably one that corresponds to the first case! /,.
  • the dispersion force of the tilt state of the optical axis of the liquid crystal molecules is approximately 0 °, 90 °, 180 °, and 270 °, respectively.
  • the azimuth angle of the liquid crystal molecules is less than the above value. It is preferable that the variation width is within a range of 2 °.
  • the first case taking the case where the azimuth angle of the optical axis of the liquid crystal molecules is uniformly approximately 0 ° as an example, all of the liquid crystal molecules in the birefringence layer 7 are selected even if they are selected as many locations. In position!
  • the azimuth angle of the optical axis of the liquid crystal molecule is preferably in the range of 2 ° before and after 0 °. Further, in the second case, when the major axis a of the refractive index ellipsoid A of the birefringent layer 7 is oriented in the same direction as the absorption axis P1 of the first polarizing plate 5, the liquid crystal molecules The approximate value of the azimuth angle of the optical axis is either 0 ° or 180 °, and the major axis a of the refractive index ellipsoid A of the birefringent layer 7 is the absorption axis P2 of the second polarizing plate 6.
  • the approximate value of the azimuth of the optical axis of the liquid crystal molecule is 90 ° or 270 °. It is preferable that it exists in.
  • the liquid crystal component If the azimuth angle of the child is a combination of approximately 0 ° and 180 °, even if a large number of liquid crystal molecules exist in the birefringent layer 7 are selected, the optical axis of the liquid crystal molecules is selected at all the positions.
  • the azimuth angle is preferably in the range of 2 ° before and after 0 ° or in the range of 2 ° before and after 180 °.
  • the state of the optical axis of the birefringent layer 7 is approximately the average state of the optical axis specified for each position selected in advance on the surface of the birefringent layer 7 as described above. (Average value of values such as ⁇ and 0 that specify the state of the optical axis) can be defined, but the tilt state of the optical axis of the birefringent layer 7 at different positions on the surface of the birefringent layer 7 is substantially the same. In this case, the tilted state of the optical axis measured at one location on the surface of the birefringent layer 7 can indicate the tilted state of the optical axis of the birefringent layer 7.
  • the tilted state of the optical axis of the liquid crystal molecules at different positions in the birefringent layer 7 is averaged.
  • the state of inclination of the optical axis of the liquid crystal molecules of the birefringent layer 7 can be defined in these states.
  • the azimuth angle of the optical axis of the liquid crystal molecules contained in the birefringent layer 7 has two values of 0 °, 180 ° selected from 0 °, 90 °, 180 °, and 270 °.
  • the tilt state of the optical axis of the liquid crystal molecules of the birefringent layer 7 is specifically defined as a combination of 0 ° and 180 ° with respect to the azimuth angle. You can.
  • liquid crystal molecules constituting the birefringence layer 7 those having an unsaturated double bond in the molecular structure and capable of crosslinking in the liquid crystal state are used. Therefore, a polymerizable liquid crystal having an unsaturated double bond at the end of the molecule is used.
  • the liquid crystal molecules are preferably those having a birefringence ⁇ of about 0.03 to 0.20, more preferably about 0.05 to 0.15.
  • Specific examples of such liquid crystal molecules include compounds represented by the following formulas 1 to 11. From the viewpoint of heat resistance, those that can be three-dimensionally bridged are preferably those having two or more unsaturated double bonds at the end of the molecule.
  • the liquid crystal molecules constituting the birefringent layer 7 Multiple types of compounds represented by chemical formulas (Chemical Formula 1) to (Chemical Formula 11) may be selected. [0079] [Chemical 1]
  • the birefringence layer 7 is not limited to the case where the entire surface of the vertical alignment film is formed by polymerizing liquid crystal molecules, and the birefringence layer 7 is formed on the vertical alignment film using various printing methods or one photolithography method. It may be patterned and patterned.
  • the birefringent layer 7 is formed between the first polarizing plate 5 and the second polarizing plate 4, the first refractive index layer 7 as shown in FIG.
  • the birefringence layer 7 is not limited to the case where a laminate is formed between the substrate 3 and the liquid crystal layer 2, and the birefringence layer 7 is provided between the first substrate 3 and the first polarizing plate 5 or with the second substrate. It can also be laminated between the second polarizing plate 4 and the like.
  • the birefringence layer 7 may be formed between the opposing substrates (first substrate and second substrate). Specifically, the birefringence layer 7 may be formed between the first substrate 3 and the liquid crystal layer 2 or may be formed between the second substrate and the liquid crystal layer 2.
  • the birefringence layer 7 when the birefringence layer 7 is formed between the first substrate 3 and the liquid crystal layer 2 or between the second substrate 4 and the liquid crystal layer 2, the birefringence layer 7 can be prevented from being exposed to the outer surface of the first substrate, and it can be applied from the outside during the assembly process and use of the liquid crystal display device such as attaching the polarizing plates 5 and 6 to the substrates 3 and 4. It is possible to suppress the possibility that the birefringent layer is easily damaged even if force is applied.
  • the liquid crystal layer 2 is formed by sealing a liquid crystal between the first substrate 3 on which the birefringent layer 7 is laminated and the second substrate 4.
  • the liquid crystal sealed in the liquid crystal layer 2 is selected as appropriate, and specific examples include ZU-2293 (manufactured by Merck).
  • the liquid crystal constituting the liquid crystal layer 2 has an alignment state that is variable according to an electric field of an external force.
  • the liquid crystal display device can control the phase difference of light traveling in the liquid crystal layer.
  • the alignment films 50 and 51 may be formed between the substrates 3 and 4 and the liquid crystal layer 2 so as to be in contact with the interface of the liquid crystal layer 2.
  • These are a horizontal alignment film for horizontally aligning the liquid crystal of the liquid crystal layer 2 formed between the substrates 3 and 4, or a vertical alignment film for vertically aligning the liquid crystal. Whether the horizontal alignment film or the vertical alignment film is used as the alignment film can be appropriately selected.
  • a light irradiator 63 which includes a light guide plate 60 that guides light while diffusing in the surface direction of the plate 6, and a light reflector 61 that advances the light guided by the light guide plate 60 in the direction of the second substrate 4. ( Figure 4A).
  • the light that passes through the second substrate 4 and the liquid crystal layer 2 and vibrates perpendicularly to the absorption axis of the first polarizing plate 5 Can be made. Further, the light passes through the colored layer 10, and light having a predetermined wavelength is emitted by being directed toward the outside of the first polarizing plate 5.
  • the birefringence layer having a structure in which liquid crystal molecules are cross-linked and polymerized is provided on the substrate, so that a liquid crystal display device having relatively high heat resistance is reduced. It becomes possible to get under cost. In addition, it becomes possible to manufacture a liquid crystal display device without interposing a retardation control film manufactured separately for optical compensation, and the liquid crystal display device can be made thin. Adhesives such as adhesives that had to be applied when the phase difference control film material was interposed are no longer necessary, reducing the interfacial reflection caused by the presence of layers such as adhesives. The display characteristics of the liquid crystal display screen such as contrast can be further improved.
  • the thickness direction of the birefringent layer is z Assuming xyz Cartesian coordinates as the axis, if the tilt angle ⁇ of the refractive index ellipsoid A is zero, the refractive indices nx, ny, and nz of the refractive index ellipsoid A are the x-axis direction and y-axis direction, respectively.
  • the azimuth angle 0 is approximately 0 °, 90 °, 180 °, or 270 °. Takes the value of
  • the azimuth angle ⁇ is other than these values, as shown by the broken line in FIG. 2B, when viewed from the z-axis direction (from the arrow F direction in FIG. 1), the long axis a (optical axis) ) Does not overlap with absorption axis P1 or absorption axis P2.
  • the azimuth angle ⁇ is configured to take the above-described value, so that the risk of light leakage in the thickness direction of the birefringent layer 7 is suppressed. It is.
  • the liquid crystal display device of the present invention may have a plurality of birefringent layers.
  • the plurality of birefringence layers may be layers having different birefringence characteristics from each other.
  • the birefringence layer is the birefringence characteristic of the birefringence layer 7 in the first mode (+
  • the different birefringence layer has an optical axis different from that of the birefringence layer 7 having an inclined optical axis.
  • the different birefringence layer functioning as the so-called “+ A plate” described above is, for example, between the first polarizing plate 5 and the first substrate 3 or between the first substrate 3 and the birefringence index. It can be formed between the first polarizing plate and the birefringent layer 7 such as a position between the layer 7 and the like.
  • the so-called + A plate uses, for example, a resin material or a film material capable of horizontally aligning liquid crystals, and forms a coating film for forming a horizontal alignment film on the surface thereof.
  • the surface of the coating film for forming a horizontal alignment film is subjected to rubbing treatment or photo-alignment treatment to obtain a horizontal alignment film, and a solution in which liquid crystal is dissolved in a solvent is applied onto the horizontal alignment film to separate the liquid crystal. It can be obtained by homogenously orienting the child.
  • a horizontal alignment film is formed on the outer surface or inner surface of the first substrate 3 in the same manner as described above, and liquid crystal molecules are homogeneously aligned on the horizontal alignment film. It can be obtained by fixing.
  • the + A plate has an optical axis direction aligned with (or coincides with) the absorption axis direction of the first polarizing plate 5 or the second polarizing plate 6. It is arranged.
  • the liquid crystal display device When the liquid crystal display device is configured in this way, the light that has passed through the second polarizing plate, the second substrate, and the liquid crystal layer in this order passes through the + C plate and then passes through the + A plate and passes through the + A plate.
  • the optical compensation function that suppresses light leakage in the oblique direction with respect to the thickness of the liquid crystal display device can be exerted by the combined structure of the + C plate and the + A plate. And the viewing angle of the liquid crystal display device is expanded.
  • birefringent layers 7 and the different birefringent layers 31 are mutually connected.
  • the present invention is not limited to this, and the position between the first substrate 3 and the first polarizing plate 5 and the relationship between the first substrate 3 and the liquid crystal layer 2 are not limited thereto.
  • the birefringent layer 31 and the different birefringent layer 31 may be laminated so as to be laminated at positions such as between the liquid crystal layer 2 and the second polarizing plate 6. Good ( Figure 3B, Figure 3C).
  • a protective layer such as an insulating film such as an acrylic photosensitive resin is laminated on the surface of the birefringent layer 7. Also good.
  • the liquid crystal display device of the present invention can be manufactured as follows.
  • a base material for constituting the first substrate 3 on which the birefringent layer 7 is laminated a base material to which orientation is imparted is prepared in advance.
  • a base material a uniaxially stretched film, a biaxially stretched film, or the like that has been imparted with orientation itself, or that that has been irradiated with polarized light using a photo-alignment film is prepared.
  • the orientation of the liquid crystal is easier depending on the type of liquid crystal contained in the birefringence layer 7 formed on the surface of the base material and the orientation to be applied to the liquid crystal.
  • a process (orientation facilitating step) to be performed in advance may be performed in advance, and a product obtained as a result of the orientation facilitating step may be used.
  • a substrate that has been subjected to a treatment for forming an alignment film on the substrate to enable alignment of liquid crystal may be adjusted.
  • the alignment film formed on the substrate and having the alignment ability by selecting various composition liquids constituting the alignment film, the direction in which alignment can be performed is selected in a relatively wide range. There is an IJ point.
  • the treatment for forming the alignment film performed as the alignment facilitating step is performed by appropriately selecting conditions according to the type of liquid crystal contained in the birefringence layer 7 and the like. That is, for example, when the birefringence layer 7 is configured to be fixed with the liquid crystal contained therein in a homeopic orientation state, the alignment facilitating step is a process of forming a vertical alignment film. It is preferable to be selected and implemented.
  • the vertical alignment film is formed on the substrate surface as described below.
  • a film composition liquid containing polyimide is prepared using the above-described materials, and this is applied to the surface of a light-transmitting substrate by a method such as flexographic printing or spin coating to apply a coating for a vertical alignment film.
  • a coated film for a vertical alignment film is prepared, and the coating film for vertical alignment film is cured to obtain a base material (vertical alignment film forming base material) on which a vertical alignment film is formed.
  • the alignment film is formed on the substrate, if the surface of the alignment film has high water repellency or oil repellency, UV cleaning or plasma is performed in advance within a range in which the liquid crystal can be home-mouth pick-aligned. By interposing the treatment, the wettability of the alignment film surface can be increased in advance! /!
  • the birefringence layer 7 is converted into the base material through the following steps. Are laminated.
  • the liquid crystal constituting the birefringent layer 7 laminated on the substrate is dispersed in a solvent to prepare a birefringent layer composition liquid. And this birefringence layer composition liquid is apply
  • a coating method of the birefringence layer composition liquid a known coating method can be used throughout the coating film forming step. Specifically, spin coating, die coating, slit coating, and the like can be used.
  • the coating solution can be applied onto the substrate by various methods such as a coating method, a roll coating method, a gravure coating method, a slide coating method, and an immersion method, or a method in which these are appropriately combined.
  • an adhesive layer is provided on the base material and birefringence is further provided on the adhesive layer as described in JP-A-8-278491.
  • the rate layer composition solution can also be applied.
  • the weight ratio of the liquid crystal in the birefringence layer composition solution is 5 wt% to 50 wt%. If it exceeds 50% by weight, the film thickness distribution of the birefringent layer 7 may be increased, and if it is less than 5% by weight, coating unevenness may occur. In consideration of this, the weight ratio of the liquid crystal is preferably 5 to 50 parts by weight, more preferably 10 to 30 parts by weight.
  • the solvent is not particularly limited as long as it can dissolve the polymerizable liquid crystal.
  • An organic solvent can be appropriately selected.
  • the solvent used is 3-methoxybutyl acetate, diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate, Cyclohexanone and the like are preferably used.
  • the birefringent layer composition liquid may contain a polyimide having an alkyl group in the side chain in order to effectively homeotropically align liquid crystal molecules.
  • the blending ratio of the polyimide having an alkyl group in the side chain and the liquid crystal is 1Z7 to 1/3 by weight.
  • the compounding amount of polyimide in the birefringence layer composition liquid is the birefringence layer set.
  • the content is preferably 12.5 to 25% by weight, more preferably 15 to 22.5% by weight, based on the total amount of liquid crystals in the liquid composition.
  • the compounding power of the polyimide is less than 12.5% by weight, it may be difficult to obtain a birefringent composition with homeotropic orientation that is sufficiently uniform, and if it exceeds 25% by weight, the light transmittance decreases. There is a fear.
  • a photopolymerization initiator is added to the birefringence layer composition liquid.
  • a radical polymerizable initiator can be preferably used. Radical polymerizable initiators generate free radicals by energy such as ultraviolet rays.
  • benzyl also called bibenzoyl
  • benzoin isobutyl ether benzoin isopropyl ether
  • benzophenone benzoyl benzoic acid
  • benzoyl benzoic acid methyl ester benzoyl benzoic acid methyl ester.
  • a commercially available photopolymerization initiator can be appropriately used.
  • the photopolymerization initiator is preferably added in a range that does not significantly impair the liquid crystal regularity of the polymerizable liquid crystal.
  • the addition amount of the photopolymerization initiator is generally 0.01 to 10% by weight, preferably 0.1 to 7% by weight, and more preferably 0.5 to 5% by weight. You can do it.
  • a sensitizer can also be added to the birefringence layer composition liquid in a range that does not impair the object of the present invention, specifically 0.01 to 1 wt. % Is selected.
  • each of the photopolymerization initiator and the sensitizer may be used alone or in combination of two or more.
  • a surfactant is added to the birefringence layer composition liquid.
  • a surfactant is added to the birefringence layer composition liquid.
  • the surfactant is not particularly limited as long as it does not impair the liquid crystal expression of the polymerizable liquid crystal.
  • Nonionic surfactants such as polyoxyethylene alkylamines, fatty acid salts, alkyl sulfonate esters, alkyl benzene sulfonates, alkyl naphthalene sulfonates, alkyl sulfosuccinates, alkyl diphenyl ether disulfonates, alkyl phosphorus Acid salt, polyoxyethylene alkylsulfuric acid ester salt, naphthalenesulfonic acid formalin condensate, special polycarboxylic acid type polymer sur
  • the amount of the surfactant added is generally 0.01 to 1% by weight, preferably 0.05 to 0.5% by weight, and can be added to the fixed liquid crystal layer composition liquid.
  • the liquid crystal contained in the coating film is liquid crystal.
  • the liquid crystal is brought into a homeotropic orientation as shown below.
  • the heating means for the coating film is not particularly limited, and may be a means for placing in a heating atmosphere or a means for heating with infrared rays.
  • the liquid crystal can be subjected to home-to-mouth pick alignment by a method of drying the coating film under reduced pressure according to the liquid crystal contained in the coating film or the state of the coating film. This can also be realized by a method in which an electric field or a magnetic field is applied to the film from a predetermined direction.
  • the coating film When the liquid crystal is homeo-picted by drying the coating film under reduced pressure, the coating film can be brought into a supercooled state by reducing the pressure, and the liquid crystal in the coating film can be brought into home The coated film can be further cooled to room temperature while maintaining the tropic orientation. Then, until the liquid crystal is subjected to a cross-linking reaction, the state in which the liquid crystal is efficiently homeotropically picked can be prevented from being greatly disturbed.
  • the liquid crystal that has been home-orientated in the coating film is fixed by cross-linking reaction as shown below to form a birefringent layer 7 (referred to as a birefringent layer forming step).
  • This crosslinking reaction proceeds by irradiating (exposure) light having a photosensitive wavelength of liquid crystal to the coating film.
  • the wavelength of light applied to the coating film is appropriately selected according to the type of liquid crystal contained in the coating film.
  • the light applied to the coating film is not limited to monochromatic light, but may be light having a certain wavelength range including the photosensitive wavelength of the liquid crystal.
  • the amount of ionizing radiation that ionizing radiation is preferable from the magnitude of the excitation energy is appropriately selected according to the polymerizable liquid crystal to be used, but ultraviolet rays are used as the ionizing radiation.
  • the irradiation amount is generally adjusted so that the exposure amount of the liquid crystal phase planned site is about 10 to 1000 mjZcm 2 , and the wavelength is preferably about 200 to 450 nm. .
  • the liquid crystal contained in the coating film may be cured by irradiating the coating film with an electron beam of about 50 to 500 Gy.
  • the cross-linking reaction of the liquid crystal is preferably performed while the coating film is heated to a temperature 1 to 10 ° C lower than the temperature at which the liquid crystal transitions from the liquid crystal phase to the isotropic phase.
  • the temperature at which the crosslinking reaction is performed is more preferably 3 to 6 ° C. lower than the temperature at which the liquid crystal transitions from the liquid crystal phase to the isotropic phase.
  • the crosslinking reaction of the liquid crystal may be performed by irradiating the coating film with light having a photosensitive wavelength of the liquid crystal while heating the coating film to the liquid crystal phase temperature in an inert gas atmosphere. It will be done in the way (Method A and ⁇ ⁇ ).
  • the liquid crystal is cross-linked under an inert atmosphere, and the disorder of the alignment of liquid crystal molecules is further suppressed as compared with the case where the liquid crystal is bridged under an air atmosphere.
  • the crosslinking reaction of the liquid crystal is performed by irradiating the coating film with light having a photosensitive wavelength of the liquid crystal while heating the coating film to the liquid crystal phase temperature in an inert gas atmosphere or an air atmosphere. Partially proceed (referred to as partial crosslinking step), and after the partial crosslinking step, the coating film is cooled to a temperature (Tc) at which the liquid crystal becomes a crystalline phase. It may be carried out by a method (Method B and ⁇ ⁇ ) that is completed by irradiating to the cross-linking reaction.
  • Tc is a temperature at which the liquid crystal becomes a crystal phase in the coating film before the crosslinking reaction proceeds.
  • the crosslinking reaction proceeds to such an extent that the orientation of the liquid crystal contained in the coating film is maintained even when the coating film is cooled to the temperature Tc. Therefore, the degree of progress of the cross-linking reaction in the partial cross-linking step is appropriately selected according to the type of liquid crystal in the coating film, the film thickness of the coating film, and the like. The crosslinking reaction is preferably allowed to proceed until the cross-linking degree is 5-50.
  • Method B can be carried out in an inert gas atmosphere or in an air atmosphere.
  • performing in an air atmosphere can simplify equipment for carrying out the step of carrying out the crosslinking reaction,
  • the viewpoint power that can suppress the manufacturing cost of the liquid crystal display device is also preferred.
  • the birefringence layer forming step When the birefringence layer forming step is thus performed, the polymerizable liquid crystal in the coating film formed on the substrate is cross-linked and cured to form the birefringence layer 7, and the birefringence layer is formed. A first substrate 3 with a layer 7 is formed.
  • a base material constituting the second substrate 4 is prepared.
  • this base material the same material as that of the first substrate 3 may be used, or a different material may be used.
  • a liquid crystal layer is formed as follows.
  • the first substrate 3 and the second substrate 4 are arranged so as to face each other with a slight space therebetween, and a spacer (for example, a spherical spacer or a columnar shape) is formed in the gap between the first substrate 3 and the second substrate 4.
  • a spacer is arranged to fix the separation distance (cell gap) between the first substrate 3 and the second substrate 4.
  • a space section partitioned by the sealing material is formed between both the substrates (first substrate 3 and second substrate 4) using a sealing material (thermosetting resin). Then, by filling the space with a liquid crystal material, the liquid crystal is sealed and the liquid crystal layer 2 is formed.
  • the absorption axes Pl and P2 are orthogonal to each other so as to be orthogonal to each other.
  • the both substrates 3 and 4 are disposed.
  • both polarizing plates are arranged in a cross-coll.
  • the thickness direction of the birefringent layer 7 is aligned with the thickness direction of the liquid crystal layer 2, and both polarizing plates 5 and 6 are arranged in a cross-cord when viewed in the thickness direction of the birefringent layer 7.
  • the birefringence layer 7 has its birefringence characteristics.
  • the tilt angle ⁇ of the refractive index ellipsoid that designates is approximately 0 °, and the first polarizing plate and the second polarizing plate can be installed without considering the state of the refractive index ellipsoid of the birefringent layer. .
  • the birefringence layer forming step when the birefringence layer 7 is formed so that the tilt angle ⁇ of the refractive index ellipsoid specifying the birefringence characteristics is other than 0 °, In the polarizing plate 5 of 1 and the second polarizing plate 6, the approximate value of the azimuth angle ⁇ in the refractive index ellipsoid of the birefringence layer 7 is 0 °, 90 °, 180 °, or 270 °. Installed.
  • the refractive index ellipsoid of the birefringence layer 7 is viewed in the thickness direction of the birefringence layer 7, either the absorption axis P1 of the first polarizing plate 5 or the absorption axis P2 of the second polarizing plate 6
  • the first polarizing plate 5 and the second polarizing plate 6 are installed so that the same is aligned (overlapped) with the direction of the major axis a (optical axis) of the refractive index ellipsoid of the birefringent layer 7.
  • liquid crystal display device 1 of the present invention is manufactured.
  • the liquid crystal display device according to the first aspect of the present invention is provided on at least one of the opposing substrates.
  • the colored layer 8 may be formed (the second form).
  • FIG. 4B is a schematic view showing a cross-sectional structure in an example of the liquid crystal display device of the second mode.
  • the colored layer 10 is laminated as a functional layer on the base material 30 constituting one of the opposing substrates (for example, the first substrate 3), and has a birefringence index.
  • Layer 7 is further laminated on the colored layer 10 surface.
  • a different birefringence layer 31 is formed between the substrate on which the colored layer 10 is formed and the first polarizing plate 5.
  • the colored layer 10 includes a colored pixel portion 8 that transmits visible light in a predetermined wavelength region, and a light shielding portion 9 (black bear tritas or BM!).
  • the colored pixel section 8 is a colored pixel that transmits light in each wavelength band of red, green, and blue (referred to as a red colored pixel 8a, a green colored pixel 8b, and a blue colored pixel 8c, respectively).
  • a red colored pixel 8a, a green colored pixel 8b, and a blue colored pixel 8c are arranged on the substrate 30 in a predetermined pattern.
  • Various arrangement patterns such as a stripe type, a mosaic type, and a triangle type can be selected as the arrangement form of the red color pixel 8a, the blue color pixel 8b, and the green color pixel 8c constituting the color pixel unit 8.
  • the colored pixel portion 8 is formed by applying, for example, a photolithography method to a coating film of a colored material dispersion in which a colored material of a colored pixel is dispersed in a solvent for each colored pixel (8a, 8b, 8c) of each color. It is formed by patterning in a predetermined shape.
  • the colored pixel portion 8 is also formed by applying a coloring material dispersion liquid in a predetermined shape for each colored pixel (8a, 8b, 8c) with the help of a photolithography method. it can.
  • the light shielding unit 9 prevents overlapping of the colored pixels (8a, 8b, 8c) and fills a gap between the colored pixels to prevent light leakage (leakage light) from adjacent colored pixels. In addition, it suppresses optical deterioration of the active element when provided in an active matrix liquid crystal display device.
  • the light-shielding portion 9 defines the area corresponding to the position where the colored pixels are arranged on the surface of the base material 30 for each colored pixel (8a, 8b, 8c) in plan view. Formed as follows. The colored pixels (8a, 8b, 8c) of the respective colors are respectively divided by the light shielding unit 9. Depending on the formation position of the region on the surface of the material 30, it is arranged so as to cover the region in plan view.
  • the light shielding portion 9 can be formed by patterning a light shielding or light absorbing metal thin film such as a metal chromium thin film or a tungsten thin film on the surface of the base material 30 in a predetermined shape. Further, the light shielding part 9 can also be formed by printing an organic material such as black resin in a predetermined shape.
  • the colored pixels (red colored pixel 8a, blue colored pixel 8b, green colored pixel 8c) constituting the colored pixel portion 8 of the colored layer 10 are stripe-shaped.
  • the red colored pixels 8a, the blue colored pixels 8b, and the green colored pixels 8c are arranged in a straight line.
  • the direction of the absorption axis (Pl, P2) of either the first polarizing plate or the second polarizing plate is a striped colored pixel (8a, 8b).
  • the force in which the longitudinal direction of the stripe-type colored pixels (8 a, 8 b, 8 c) coincides with the absorption axis P 1 of the first polarizing plate is not limited to this, These may coincide with the absorption axis P2 of the second polarizing plate.
  • the present inventors have a plan view with respect to the longitudinal direction of the colored pixels. It has been found that there is a phenomenon in which the optical axis a of the birefringent layer 4 is directed in the perpendicular direction.
  • the liquid crystal display device 1 is an invention that has been completed by applying this phenomenon, and has the effect of becoming an efficiently manufacturable device.
  • the birefringence can be reliably and easily made efficient.
  • the tilt direction of the optical axis of the refractive index layer 4 can be made to coincide with the absorption axis of either the first polarizing plate or the second polarizing plate, and an efficiently manufactured liquid crystal display device is provided.
  • the switching circuit 20 may be provided on the first substrate 3 or the second substrate 4 (referred to as the third embodiment). ( Figure 5A, Figure 5B).
  • a pixel electrode and an electrode that forms an electric field in the liquid crystal layer opposite to the pixel electrode are not disposed on the same substrate surface (for example, TN (Twisted Nematic) mode, VA (Virtical Alignment) mode) (referred to as the first mode) and those on the same substrate (for example, IPS (In-Plane-Switching) mode) (the second mode and! /, U) I can list them.
  • TN Transmission Nematic
  • VA Virtual Alignment
  • IPS In-Plane-Switching
  • the pixel electrode constituting the electrode portion and the electrode (common electrode) opposed to the pixel electrode are not provided on the same substrate, and will be described (Fig. 5A).
  • the first mode switching circuit 20 is laminated on the substrate 30 corresponding to the pixel electrode 18 provided for each pixel, and is configured in a layered manner.
  • An element substrate as a functional layer is formed together with various elements such as connected signal lines and scanning lines.
  • the switching circuit 20 receives the supply of an electric signal from the scanning line 13, and controls the energization state of the signal line 12 and the electrode unit 11.
  • Specific examples of the switching circuit 20 include active elements such as three-terminal elements such as thin film transistors (TFTs) and two-terminal elements such as MIM (Metal Insulator Metal) diodes.
  • the switching circuit 20 When the switching circuit 20 is a thin film transistor, the switching circuit 20 includes a drain electrode 15 connected to each pixel electrode 18, a source electrode 16 that receives an electric signal from the signal line 12, and a drain electrode 15. A semiconductor that is interposed between the source electrodes 16 and connects the two electrodes is laminated on the base material, and a gate electrode 17 is laminated on the semiconductor via an insulating layer (not shown). Is formed. Note that the gate electrode is connected to the scanning line 13.
  • the electrode unit 11 has a pixel electrode 18, a common electrode (not shown), and a force that also has a force.
  • a transparent electrode such as an ITO (Indium Tin Oxide) electrode can be preferably used, and this can be formed by laying almost the entire region where each pixel is formed.
  • the electrode portion 11 can also be formed by laying a thin transparent electrode on the edge of each pixel region.
  • the switching circuit 20 in the second mode in which the pixel electrode and the common electrode constituting the electrode portion are provided on the same substrate will be described (Fig. 5B).
  • the element substrate on which the switching circuit 20 is formed is configured in the same manner as in the first mode except for the region in which the electrode portion 11 is formed in the same pixel region. For the region where 11 is formed, both a pixel electrode and a counter electrode are laminated on the same pixel region.
  • the common electrode 19 is provided to face the pixel electrode 18 connected to the drain electrode 15 on the same substrate surface.
  • the common electrode 19 is disposed so as to face the one pixel electrode 18 in two directions (in the example of FIG. 5B, the direction approaching and away from the signal line 12).
  • the electrode portion 11 is provided with a pixel electrode 18 and a common electrode 19 in a comb-teeth shape.
  • an insulating layer is provided in the region where the pixel electrode 18 and the common electrode 19 overlap so that the switching circuit 20 is not short-circuited! RU
  • the switching circuit 20 in the first mode or the second mode is provided on the first substrate 3 or the second substrate 4 to constitute the liquid crystal display device of the third embodiment, the liquid crystal display device is switched.
  • the liquid crystal display is controlled according to the energization state of the circuit.
  • a birefringence layer and an orientation film were sequentially laminated on a base material to produce a first substrate having a birefringence layer.
  • a solution of the vertical alignment film (JLS, JALS-2021-R2) is diluted twice with ⁇ -petit-mouth rataton to prepare an alignment film composition liquid.
  • the vertical alignment film forming base material For alignment film formation by applying the above-mentioned alignment film composition liquid on the surface of a glass substrate (7059 glass, manufactured by Corning Co., Ltd.) (size: 550 mm x 650 mm) as a base material to be the first substrate Coating film
  • the glass substrate on which the coating film for forming the alignment film is formed is baked at 180 ° C. for 1 hour to obtain a base material on which the vertical alignment film is formed (the vertical alignment film forming base material).
  • a solution obtained by diluting a vertically-aligned film solution (manufactured by JSR, JALS-2021-R2) 8 times with polyethylene glycol dimethyl ether is prepared.
  • polymerizable liquid crystal molecule As a polymerizable liquid crystal molecule (polymerizable liquid crystal) exhibiting a nematic liquid crystal phase, 20 parts by weight of a compound represented by the above chemical formula (II) (where X is a compound having a value of 6) and a photopolymerization initiator (Ciba-gigi)
  • a birefringent layer composition solution is prepared by mixing 0.8 part by weight (“Irgacure 907”, manufactured by one company), 59.2 parts by weight of black benzene as a solvent, and 20 parts by weight of a solution containing the above polyimide.
  • a substrate for forming a vertical alignment film is placed on a spin coater, and a birefringence layer composition is spin-coated on the vertical alignment film to form a coating film (referred to as a coating film for forming a birefringence layer).
  • a coating film for forming a birefringence layer produced by the birefringence layer forming coating film obtained at this time was cloudy.
  • a coater system (trade name: TR40000FJ, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was used for the production of the coating film by spin coating.
  • This coater system is composed of a birefringent layer composition on the surface of the substrate on which the vertical alignment film is formed. This is a system that integrally performs liquid bar coating, spin coating, and vacuum drying of a coating film for forming a birefringent layer.
  • the thickness of the produced coating film for forming a birefringent layer was about 1.5 / zm when dried. This film thickness was measured using a stylus type step gauge (manufactured by Sloan, product name “DEKTAK”).
  • the substrate for forming the vertical alignment film on which the coating film for forming the birefringent layer is formed is heated at 100 ° C for 3 minutes, and the liquid crystal molecules in the coating film for forming the birefringent layer are transferred to the liquid crystal phase. It was confirmed that the alignment state was formed. At this time, it was visually confirmed that the coating film for forming a birefringent layer was changed from a cloudy state to a transparent state.
  • the output is 20 mW / c.
  • a birefringent layer was formed by irradiating m 2 ultraviolet rays for 10 seconds to cause cross-linking polymerization reaction of the liquid crystal in the coating film for forming the birefringent layer to fix the orientation of the molecules of the liquid crystal.
  • the resulting base material on which the birefringent layer was formed was baked in an oven at 230 ° C. for 30 minutes to improve the adhesion between the birefringent layer and the base material.
  • Nx, ny, ⁇ which indicates the state of the refractive index ellipsoid that specifies the birefringence characteristic of the birefringent layer.
  • is
  • the refractive index (nx, ny, nz) indicating the shape of the refractive index ellipsoid of the birefringent layer is specified by determining the refractive index according to the molecules of the liquid crystal.
  • the inclination state of the refractive index ellipsoid of the birefringence layer is specified by determining the inclination angle ⁇ .
  • the value is different from the value, it is determined that the optical axis of the birefringent layer is inclined.
  • the inclination angle ⁇ with respect to the optical axis is determined by measuring the phase difference as shown below using a phase difference measuring machine.
  • phase difference The position where the phase difference is to be measured is selected in advance on the birefringent layer surface. This selected position is taken as the measurement point.
  • the phase difference of light (wavelength 589nm) in the 45 ° polar angle direction at this measurement point is measured in four different directions.
  • the polar angle for the position (K) in the space is 0 ° when K is on the z axis, and the z axis of the straight line connecting the origin and K Is defined as the angle of inclination with respect to.
  • the four different directions are two directions (direction XI, direction X2) facing each other across the origin in the X-axis direction, and two directions (directions) facing each other across the origin in the y-axis direction. It is defined as the position Yl and the bearing ⁇ 2).
  • Inclination angle ⁇ is the value of phase difference (azimuth XI, azimuth ⁇ 2, azimuth Yl, azimuth ⁇ 2) measured at the position of 45 ° polar angle for each of four azimuths (azimuth XI, ⁇ 2, Yl, ⁇ 2)
  • the phase difference value for is defined as a combination of ⁇ (XI), ⁇ ( ⁇ 2), ⁇ ( ⁇ 1), and ⁇ ( ⁇ 2).
  • the shape of the refractive index ellipsoid is specified, and the four different orientations described above are used. If the phase difference value is specified, the value of ( ⁇ n (XI) - ⁇ ( ⁇ 2)) and ( ⁇ n (Yl)- ⁇ ( ⁇ 2)) It is specified how much the optical axis is inclined toward the direction XI or azimuth 2 and how much the optical axis is inclined toward the azimuth Y1 or azimuth 2. From this, it can be specified how much the optical axis of the refractive index ellipsoid is inclined with respect to the ⁇ axis.
  • nx ny ⁇ nz
  • the measurement point is taken at the substantially central position (W) of the substrate with the birefringent layer formed thereon, and the inclination angle ⁇ of the refractive index ellipsoid at the position W is set to As a result of measurement, the value of the inclination angle ⁇ was approximately 1 °.
  • the tilt state (tilt state of the optical axis) of the refractive index ellipsoid at a plurality of different positions on the birefringence layer surface is measured, and the tilt state is measured.
  • the uniformity was evaluated.
  • a total of 35 measurement points consisting of 5 points x 7 points that are different from each other in a lattice pattern with a spacing of 100 mm on the surface of the birefringence layer Is selected, and the position of the center point of the 35 measurement points is matched with the position W.
  • the phase difference ( ⁇ ( ⁇ 1), ⁇ ( ⁇ 2), ⁇ ( ⁇ 1), ⁇ ( ⁇ 2)) is measured for each measurement point from four directions to calculate the standard deviation for the phase difference ⁇ ( ⁇ 1). Compare the phase difference value for each measurement point. [0197] As a result, the standard deviation of ⁇ (XI) was 0.29.
  • the optical axis at each measurement point of the birefringent layer corresponds to a case where the optical axis is approximately uniform and inclined in the same direction. It is shown that there is almost no variation in the tilt state of the optical axis at the measurement point.
  • the inclination angle of the refractive index ellipsoid at the approximate center position of the birefringence layer directly indicates the inclination angle of the optical axis of the birefringence layer.
  • the base material on which the birefringent layer obtained as described above was formed was cut into a size of 20 mm ⁇ 20 mm.
  • a horizontal alignment film was formed on the surface of the birefringent layer as shown below.
  • a horizontal alignment film composition liquid (AL1254 CFSR)) was applied on the base material surface on which the birefringence layer was formed by using flexographic printing (coating film for horizontal alignment film).
  • a horizontal alignment film was formed by baking the glass substrate on which the coating film for horizontal alignment film was formed in an oven at 230 ° C. for 1 hour.
  • the direction of the major axis (optical axis) of the refractive index ellipsoid that identifies the birefringence characteristics of the birefringence layer when viewed in the thickness direction of the birefringence layer with respect to the substrate on which the horizontal alignment film is formed The rubbing process was performed using a rubbing apparatus (RLYY-3 (manufactured by Iinuma Gauge Co., Ltd.)) so that the rubbing directions were parallel (aligned) to each other. Thus, a first substrate having a birefringence layer was obtained. It was.
  • a base material (glass substrate) of the same type as that used for forming the first substrate is prepared, used as a base material for forming the second substrate, and the second substrate is used. Produced.
  • a horizontal alignment film was prepared on the base material surface used for the second substrate through a process similar to the process of forming the horizontal alignment film on the surface of the birefringence layer of the first substrate. Further, on the horizontal alignment film provided on the second substrate substrate, a rubbing treatment is performed as in the first substrate. The second substrate was fabricated.
  • the first substrate provided with the birefringent layer and the second substrate were cut into a size of about 20 mm x 20 mm, and these were used to form a liquid crystal layer as shown below.
  • Sealer made of thermosetting resin (Mitsui Chemicals Co., Ltd .; trade name XN-5A) and spacer for seal part (Sekisui Chemical Co., Ltd .; Micropearl SP-2035) 0.4
  • a composition liquid (seal part composition liquid) is prepared by adding the weight%, and the seal part composition liquid is applied to the second substrate along the peripheral edge of the horizontal alignment film to apply the coating part (seal liquid coating part). )created.
  • the seal part composition liquid was not applied to a part of the peripheral edge of the horizontal alignment film, leaving a part (uncoated part).
  • the first substrate and the second substrate are arranged so that the surfaces subjected to the rubbing treatment face each other so that the directions in which the liquid crystals are aligned by the rubbing treatment are aligned, and the seal liquid coating portion of the second substrate is placed on the first substrate.
  • the first substrate and the second substrate were heated to 140 ° C. while pressing the first substrate and the second substrate at a pressure of 20 kPa Zcm 2 so as to maintain the contact state, and the sealing material was cured.
  • a device in which the first substrate and the second substrate are integrated together (referred to as a cell) was produced.
  • the obtained cell has a size of about 2 cm X about 2 cm and a cell gap of 3.5 m.
  • the first substrate and the second substrate are arranged to face each other with a slight space therebetween, and an opening is provided between the first substrate and the second substrate at the position of the non-application portion. A space portion partitioned by the seal portion is formed. Then, liquid crystal is injected into this space portion to form a liquid crystal layer (driving liquid crystal layer). In injecting the liquid crystal constituting the liquid crystal layer, an opening is used as a liquid crystal inlet.
  • a dispenser method may be used to inject liquid crystal, but a vacuum injection method is used here.
  • Formation of the liquid crystal layer by the vacuum injection method was performed as follows. In other words, the cell is placed with the liquid crystal injection port facing downward, without liquid crystal still in the container containing the liquid crystal. At this time, the liquid crystal injection port is not immersed in the liquid crystal. Next, this container is sealed, and the air in the container is evacuated to a state close to a vacuum. In that state, the liquid crystal inlet of the cell Soak in. Then, the pressure in the container is returned to normal pressure while the liquid crystal inlet is kept immersed in the liquid crystal. As a result, the liquid crystal is gradually injected into the panel by the pressure and the capillary management phenomenon, and the liquid crystal is filled in the cell space.
  • UV curing resin made by EHC; product name LCB-610
  • EHC product name LCB-610
  • its application position position where the liquid crystal injection port was formed
  • a retardation film (manufactured by JSR; trade name Arton) as “+ A plate” was attached to the outer surface of the first substrate of the cell on which the liquid crystal layer was formed. At this time, the direction of the optical axis of the retardation film is aligned with the direction of the optical axis of the birefringent layer when the birefringent layer is viewed in the thickness direction of the liquid crystal layer. As described above, the retardation film is attached to the outer surface of the first substrate.
  • a polarizing plate (manufactured by Sanritz Corp .; trade name: HLC2-5618) is pasted on the surface of the retardation film to the cell on which the retardation film is pasted (this polarizing plate is referred to as a first polarizing plate). Furthermore, a similar polarizing plate is also attached to the outer surface of the second substrate (this polarizing plate is referred to as a second polarizing plate). O These polarizing plates are viewed in the thickness direction of the birefringence layer. In such a case, the first polarizing plate and the second polarizing plate are arranged so that the absorption axis of the second polarizing plate is orthogonal to the cell.
  • the direction of the absorption axis of the first polarizing plate is aligned with the inclination direction of the optical axis of the birefringent layer when the birefringent layer is viewed in the thickness direction of the birefringent layer.
  • the polarizing plate 1 is stuck on the retardation film surface.
  • the state of light leakage when viewed from the thickness direction of the birefringent layer was measured by measuring the front luminance.
  • the front brightness was measured as follows.
  • the front luminance was measured using a luminance measurement system constructed with a luminance measuring device and a light irradiation unit that irradiates the liquid crystal display device with light.
  • the luminance measurement device measures the luminance based on the light sensor that detects the light emitted from the light irradiation unit that has passed through the liquid crystal display device and the signal detected by the light sensor. And a measuring unit.
  • Topcon's “BM-9” was used as a luminance measuring instrument for measuring luminance.
  • the front luminance was measured as follows.
  • the light irradiator is arranged at the outer side of the second polarizing plate of the liquid crystal display device, and is located at the position facing the thickness direction of the liquid crystal layer across the liquid crystal display device and at the outer side of the first polarizing plate.
  • An optical sensor was placed.
  • the light irradiation unit force also irradiates the liquid crystal display device with light having a wavelength of 550 °, and the light sensor passes through the first polarizing plate through the cell from the position outside the second polarizing plate.
  • the front luminance is measured by measuring the amount (luminance) of the detected light at the measuring unit.
  • the front luminance of the liquid crystal display device was 0.23 cd / m 2 .
  • a liquid crystal display device including a first substrate and a second substrate as shown in 4B was produced.
  • a pigment-dispersed photoresist was used as a coloring material dispersion for the black matrix (BM) and red (R), green (G), and blue (B) colored pixels.
  • a pigment-dispersed photoresist uses a pigment as a coloring material, adds beads to a dispersion composition (containing pigment, dispersant, and solvent), disperses for 3 hours with a disperser, and then removes the beads. And a clear resist composition (containing polymer, monomer, additive, initiator and solvent).
  • the obtained pigment-dispersed photoresist has a composition as shown below.
  • a paint shaker manufactured by Asada Tekko Co., Ltd. was used as the disperser.
  • the above-mentioned polymer 1 has the following components: benzyl methacrylate: styrene: acrylic acid: 2-hydroxyethyl methacrylate: 15.6: 37.0: 30. 5: 16.9 (molar ratio) for the polymer 100 mole 0/0, 2 methacryloyloxy Ruo key is in the shell chill iso Xia sulfonates those 16.9 mol% Tsukeka ⁇ , weight average molecular weight is 42500.
  • the BM photoresist prepared above is applied to a glass substrate by spin coating, pre-beta (pre-baked) at 90 ° C. for 3 minutes, and using a mask formed in a predetermined pattern. Exposure (lOOmjZcm 2 ), followed by spraying with 0.05% KOH aqueous solution for 60 seconds, followed by post-beta (baking) at 200 ° C for 30 minutes, with a thickness of 1.2 i um A base material on which BM was formed (BM-forming base material) was produced.
  • a red (R) face adjusted in advance to correspond to the position corresponding to the red colored pixel.
  • a material-dispersed photoresist is applied onto the BM-forming substrate by spin coating, pre-betated at 80 ° C for 3 minutes, and ultraviolet light is applied using a predetermined colored pattern photomask corresponding to each color pattern. Exposure (300 mjZcm 2 ). Furthermore, spray development using a 0.1% aqueous solution was performed for 60 seconds, followed by post-beta (baking) at 200 ° C for 60 minutes, and a film thickness of 2.6 ⁇ m at a predetermined position with respect to the BM pattern. A pattern of red (R) colored pixels was formed.
  • a first substrate was produced in the same manner as in Example 1 using the base material on which the colored layer thus obtained was formed.
  • front luminance was measured in the same manner as in Example 1.
  • the front luminance was 0.20 cd / m 2 .
  • a first substrate was produced in the same manner as in Example 2 except that a base material on which a colored layer having colored pixels of each color arranged in a stripe pattern was formed was used.
  • the birefringence layer was formed on the colored layer forming surface side of the substrate.
  • a liquid crystal display device was obtained in the same manner as in Example 1 except that the first substrate was used and the polarizing plate was disposed as follows.
  • a polarizing plate manufactured by Sanritsu Co., Ltd .; trade name HLC2-5618
  • a cell having a retardation film manufactured by JSR; trade name Arton
  • second polarizing plate a polarizing plate similar to this is also applied to the outer surface of the second substrate.
  • These polarizing plates are arranged so that the absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate are orthogonal to each other when viewed in the thickness direction of the birefringence layer. It is done.
  • the first polarizing plate was placed on the retardation film surface so that the absorption axis direction of the first polarizing plate coincided with the longitudinal direction of the striped colored pixels. Pasted.
  • the front luminance was 0.20 cd / m 2 .
  • Example 1 when viewed in the thickness direction of the liquid crystal layer, the absorption axis of the first polarizing plate is shifted by 45 ° with respect to the tilt direction of the optical axis of the refractive index ellipsoid of the birefringence layer.
  • a liquid crystal display device was obtained in which the first polarizing plate and the second polarizing plate were attached to the cell so that the absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate were orthogonal to each other.
  • front luminance was measured in the same manner as in Example 1.
  • the front luminance was 0.28 cd / m 2 .
  • a liquid crystal display device was obtained in the same manner as in Example 3 except that the first substrate obtained in Example 3 was used and the polarizing plate was arranged as follows. That is, in this comparative example, when viewed in the thickness direction of the liquid crystal layer, the absorption axis of the first polarizing plate is disposed at a position shifted by 45 ° with respect to the longitudinal direction of the stripe-type colored pixels, and the first The first polarizing plate and the second polarizing plate were attached to the cell so that the absorption axis of the first polarizing axis and the absorption axis of the second polarizing plate were orthogonal to each other.
  • the front luminance was 0.27 cd / m 2 .
  • Examples 2 and 3 and Comparative Examples 1 and 2 show that light leakage is suppressed in the liquid crystal display device of the present invention.
  • the liquid crystal display device of the present invention can effectively suppress light leakage even when the liquid crystal of the birefringent layer is fixed without maintaining the homeotopic pick alignment state completely. It will be something.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明は、液晶がホメオトロピック配向状態を完全には維持されずに固定されてしまった場合であっても、光漏れを効果的に抑制可能な液晶表示装置を提供することを目的とする。  配向状態の可変な液晶を含有する液晶層2を挟んで対向する基板(3、4)を備え、対向する基板を挟んで第1の偏光板5と第2の偏光板6を互いに吸収軸を直交させて配設している液晶表示装置1において、第1の偏光板5と第2の偏光板6との間には、複屈折率層7が、重合性液晶を重合させて形成され、且つ複屈折率層7の厚み方向に対して傾斜した光軸を有して形成されており、複屈折率層7の光軸は、複屈折率層7の厚み方向に対して、第1の偏光板5もしくは第2の偏光板6のいずれかの吸収軸の方向に傾斜している。

Description

明 細 書
液晶表示装置
技術分野
[0001] 本発明は、複屈折率層の形成された液晶表示装置に関する。
背景技術
[0002] 液晶表示装置 (LCD)は、薄型化や軽量化容易である点や、消費電力を低減できる 点、フリッカーを生じにくい点などといった利点があることから、テレビや医療機器など 様々な分野に用いられているが、その一方で、使用者が液晶表示画面を見る角度に よっては光漏れや階調反転現象を生じ、視野角が狭いという問題に加え、液晶表示 画面に色むらが発生したりコントラストが低下するなどの問題を抱えていた。
[0003] これらの問題を解決するべぐ液晶セルからの出射光や液晶セルへの入射光の状 態を制御する光学素子を設けた液晶表示装置が提案されている。
その場合、光学素子としては、トリァセチルセルロース(TAC)フィルムを 1軸延伸や 2軸延伸処理したフィルム材の他、液晶分子を特定方向に配向させて固定した層を 用いた光学素子が提案されて!ヽる。
[0004] 特許文献 1には、フィルム面の法線方向に分子鎖を配向させた固有屈折率値が正 のネマチック液晶ポリマー力もなる視角補償フィルムが提案されて 、る。特許文献 1 には、この視角補償フィルムは、ガラス基板などの表面にアルキルシリコーン系ゃフ ルォロアルキルシリコーン系の表面処理剤で垂直配向膜を形成し、これでセルを作 製して、そのセルに液晶分子を封入して液晶分子を光重合させて得られるものであ ることが開示されている。
[0005] 特許文献 2には、基板上に形成した垂直配向膜上に重合性液晶化合物を塗工す ることにより液晶化合物をホメオト口ピック配向させた液晶層を製造する方法が提案さ れている。この方法では、垂直配向膜の形成剤として長鎖アルキル型デンドリマー誘 導体が用いられている。また、特許文献 2には、この方法によれば、ホメオト口ピック配 向させた液晶層を備えたフィルム材が得られ、このフィルム材は位相差フィルムなど の光学フィルムとして使用可能であることが開示されている。 [0006] 特許文献 3には、垂直配向膜の設けられて 、な 、基板上に、液晶性フラグメント側 鎖を含有するモノマーユニットと非液晶性フラグメント側鎖を含有するモノマーュ-ッ トとを含有する側鎖型液晶ポリマーを塗工し、さらに当該液晶ポリマーを液晶状態に お!ヽてホメオト口ピック配向させた後、その配向状態を維持した状態で固定ィ匕してホメ オト口ピック配向液晶フィルムを製造する方法が提案されている。
[0007] 特許文献 4には、垂直配向膜の設けられて 、な 、基板に、基板側からバインダー 層、次いでアンカーコート層を形成し、アンカーコート層に、側鎖型液晶ポリマーを塗 ェしてホメオト口ピック配向させた後、ホメオト口ピック配向させた状態を維持したまま 固定ィ匕して、ホメオト口ピック配向液晶フィルムを製造する方法が提案されている。こ の方法では、側鎖型液晶ポリマーとしては、垂直配向膜の設けられていない基板上 でホメオト口ピック配向液晶層を形成し得るものが用いられる。
[0008] 特許文献 1 :特開平 5— 142531号公報
特許文献 2:特開 2002— 174724号公報
特許文献 3:特開 2002— 174725号公報
特許文献 4:特開 2003— 121852号公報
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、特許文献 1の視角補償フィルムは、配向膜を有する 2枚の基板を用 いてセルを作製し、この空セル内に液晶分子を封入し、液晶分子を垂直配向させ、 その状態を維持させつつ液晶分子同士を光重合するという一連の工程の後に得ら れる。このように、特許文献 1の視角補償フィルムは、多くの製造工程を経てようやく 得られるものである力 、生産コストが著しく増大するという問題がある。し力も、視覚 補償フィルムは、フィルム材なので液晶表示装置に用いる際には粘着剤を用いて固 着する必要があり、液晶表示装置の液晶画面のコントラストを高めるにはこの粘着剤 として特別のものを選定する必要がある。
[0010] 特許文献 2の方法では、基板上に垂直配向膜を設けてホメオト口ピック配向液晶層 を得るにあたり、長鎖アルキル型デンドリマー誘導体という特殊な材料を用いる必要 がある。すると、この方法によりホメオト口ピック配向液晶層を得る場合、生産コストが 著しく増大してしまうという問題がある。
[0011] 特許文献 3に記載された方法により得られるホメオト口ピック配向液晶フィルムは側 鎖
型液晶ポリマーからなり、ホメオト口ピック配向の状態で固定されていても昇温に伴つ て流動性が増し、熱により複屈折特性が容易に影響を受けてしまうことから、所望の 複屈折特性を維持することができる温度範囲が比較的狭い上、液晶ポリマーを固定 化した部分の液晶ポリマーの配向性が不均一化し易い。すると、この方法で得られる ホメオト口ピック配向液晶フィルムは、高い耐熱性が求められる液晶表示装置に用い ることが困難なものであり、この液晶フィルムを使用可能な液晶表示装置が限定され てしまう。また、この方法では、上記した特許文献 1に記載されている方法と同様の問 題を有している。
[0012] また、この方法によって得られたホメオト口ピック配向液晶フィルムを液晶表示装置 に用いる場合、このフィルムが高温環境下におかれな 、ようにすることが必要となる から、これを液晶表示装置の内部に配置することが難しい。このため、特許文献 3の 方法により得られるホメオト口ピック配向液晶フィルムでは、これを液晶セルに設置で きる位置が限定されてしまうという問題もある。
[0013] 特許文献 4に記載された方法により得られるホメオト口ピック配向液晶フィルムは側 鎖
型液晶ポリマーからなるので、この方法では、上記した特許文献 3に記載されている 方法と同様の問題を有している。また、この方法では、上記した特許文献 1に記載さ れて 、る方法と同様の問題を有して 、る。
[0014] また、液晶表示装置に、特許文献 1から 4に記載された方法により得られるホメオト 口ピック配向液晶フィルムを敷設して液晶画面の視野角を拡大しょうとすると、液晶表 示装置はこのようなフィルムを別体として新たに粘着材などを用いて貼付することが 必要となる。別体を追加する必要性が大きくなるほど、光を多少なりとも乱反射させる 部材が配置される虞が大きくなる。そうすると、液晶表示装置は、液晶表示画面の色 むらが大きなものとなったり、コントラストが低下したものとなってしまう虡も大きくなる。
[0015] さらに、こうしたホメオト口ピック配向液晶フィルムでは、液晶分子に重合反応等とい つた何らかの方法を施すことを用いて液晶分子をホメオト口ピック配向状態にて固定 保持させようとする。し力しながら、液晶をほぼ完全にホメオト口ピック配向させた状態 にして、液晶を固定する際にホメオト口ピック配向状態を維持することが難しぐ液晶 分子がホメオト口ピック配向状態に対して傾きを持った配向状態となってしまうという 問題がある。
このような場合、ホメオト口ピック配向液晶フィルムは、そのフィルム面の厚み方向に 対して傾斜した光軸を有するものとなり、液晶表示画面の黒表示時に光漏れを招来 してしまう。
[0016] そこで、液晶を完全にホメオト口ピック配向状態にした複屈折率層が形成されない 場合であっても、液晶表示画面の光漏れを防止して黒表示できるようにするとともに、 色むらの発生を抑え、コントラストの向上させる液晶表示装置を検討し、本発明を完 成するに到った。
[0017] 本発明は、液晶がホメオト口ピック配向状態を完全には維持されずに固定されてし まった場合であっても、光漏れを効果的に抑制可能な液晶表示装置を提供すること を目的とする。
課題を解決するための手段
[0018] 本発明の液晶表示装置は、配向状態の可変な液晶を含有する液晶層を挟んで対 向する基板を備え、対向する基板を挟んで第 1の偏光板と第 2の偏光板を互いに吸 収軸を直交させて配設している液晶表示装置において、第 1の偏光板と第 2の偏光 板との間には、複屈折率層が、重合性液晶を重合させて形成され、且つ複屈折率層 の厚み方向に対して傾斜した光軸を有して形成されており、複屈折率層の光軸は、 複屈折率層の厚み方向に対して、第 1の偏光板もしくは第 2の偏光板のいずれかの 吸収軸の方向に傾斜して ヽることを特徴とする。
[0019] 本発明の液晶表示装置では、複屈折率層が、重合性液晶をホメオト口ピック配向状 態にして重合させて形成されてもよい。また、複屈折率層は、分子形状が棒状の重 合性液晶を 3次元架橋重合させて形成されて ヽてもよ ヽ。
[0020] 本発明の液晶表示装置は、複屈折率層の光軸が複屈折率層全面に均一に傾斜し て!、るものであってもよ!/、。 [0021] 本発明の液晶表示装置では、複屈折率層が対向する基板の間に積層形成されて いてもよい。
[0022] 本発明の液晶表示装置において、対向する基板の少なくとも一方には、着色層が 形成されていてもよぐまた、複屈折率層が、着色層面上に形成されていてもよい。
[0023] 本発明の液晶表示装置では、着色層が、ストライプ型の配置パターンにて配置され て形成される所定波長の光を透過させる着色画素を備えており、第 1の偏光板と第 2 の偏光板のいずれかの吸収軸の方向がストライプ型の着色画素の長手方向に一致 していてもよい。
[0024] 本発明の液晶表示装置では、傾斜した光軸を有する複屈折率層とは異なる光軸を 有する異複屈折率層が、傾斜した光軸を有する複屈折率層と第 1の偏光板の間に形 成されていてもよい。
[0025] 本発明の液晶表示装置では、傾斜した光軸を有する複屈折率層が、着色層を形 成した基板と液晶層との間に形成されており、且つ、傾斜した光軸を有する複屈折率 層とは異なる光軸を有する異複屈折率層が、着色層を形成した基板と第 1の偏光板 の間に形成されて ヽてもよ 、。
[0026] 本発明の液晶表示装置では、傾斜した光軸を有する複屈折率層とは異なる光軸を 有する異複屈折率層が、傾斜した光軸を有する複屈折率層と第 1の偏光板の間に形 成されており、異複屈折率層の光軸は、第 1の偏光板もしくは第 2の偏光板の吸収軸 の方向と向きを揃えて 、てもよ 、。
[0027] 本発明の液晶表示装置では、傾斜した光軸を有する複屈折率層とは異なる光軸を 有する異複屈折率層が、傾斜した光軸を有する複屈折率層と第 1の偏光板の間にあ つて、着色層を形成した基板と液晶層との間に形成されており、且つ、異複屈折率層 の光軸は、第 1の偏光板もしくは第 2の偏光板の吸収軸の方向と向きを揃えていても よい。
[0028] 本発明の液晶表示装置によれば、異複屈折率層については、フィルム材を備えて 構成されるちのでもよい。
発明の効果
[0029] 本発明の液晶表示装置によれば、複屈折率層の光軸がその厚み方向に対して、 第 1の偏光板もしくは第 2の偏光板の吸収軸方向に傾斜しているので、重合性液晶 を重合反応させて形成される複屈折率層にお ヽて重合性液晶の状態が不完全なホ メォトロピック配向状態になってしまっている場合であっても、黒表示時に、複屈折率 層の厚み方向に対する光漏れを生じな 、ようにすることが可能となり、さらに正面コン トラストの低下を防止することも可能となる。
[0030] 本発明の液晶表示装置によれば、基板面上で重合性液晶を重合させて複屈折率 層を形成することにより、複屈折率層を別体で製造して接着剤などを用いて貼付け する必要がなくなり、接着剤などの層の存在によって多層化することに伴なう光の界 面反射を低減し、正面コントラストの低下をより抑制することができる。また、液晶表示 装置は、複屈折率層を、重合性液晶を 3次元的に架橋重合させることで形成すること ができるので、複屈折率層の構造をより強固にすることができる。さらに、本発明の液 晶表示装置によれば、複屈折率層は、紫外線の照射により重合可能なサーモトロピ ック型液晶を架橋重合して形成されてもよぐこの場合、複屈折率層を形成する液晶 の配向性は熱による影響を受け難くなり、例えば車内のように比較的高温になり易い 環境下で使用される光学機器に対しても適用可能な液晶表示装置となすことができ る。
[0031] 本発明の液晶表示装置によれば、重合性液晶の分子が均一に傾斜した配向状態 を形成していることにより、すなわち複屈折率層の光軸がその全面に亘つて均一に傾 斜して 、ることにより、複屈折率層面上の位置の違!、によって複屈折率層の厚み方 向への光漏れの抑制能に違いが生じにくくなり、むらなく液晶表示装置力 の光漏れ を抑制することができるようになる。
[0032] 本発明の液晶表示装置によれば、対向する基板の間に複屈折率層が積層形成さ れることにより、液晶表示装置の組み立ての際、基板を挟むように偏光板などを配設 する工程において、偏光板が複屈折率層に衝突する虞が抑えられ、複屈折率層が 損傷してしまう虞が抑制される。
[0033] 本発明の液晶表示装置が、対向する基板の少なくとも一方に着色層を積層し、そ の着色層面上に複屈折率層を積層形成しているような場合、このような液晶表示装 置によれば、複屈折率層は別体の位相差フィルムなどとして接着剤などで積層形成 させることを要せず、着色層と複屈折率層との間に接着剤などの層を形成することな く液晶表示装置を形成することが可能であるから、位相差フィルムと接着剤の層との 界面といった異なる部材間の界面数を減ずることができ、着色層と複屈折率層の間 を進行する光について界面反射が発生する虡を抑制することができる。
[0034] 本発明の液晶表示装置によれば、着色画素の配置パターンとしてストライプ型を採 用し、視覚での認識が容易な着色画素の長手方向に偏光板の吸収軸の方向を合わ せることで構成されることにより、確実に且つ簡易に効率よぐ複屈折率層の光軸の 傾斜方向を第 1の偏光板もしくは第 2の偏光板のいずれかの吸収軸に一致させること ができ、効率的に製造された液晶表示装置が得られる。
[0035] 本発明の液晶表示装置では、傾斜した光軸を有する複屈折率層とは異なる光軸を 有する異複屈折率層が、傾斜した光軸を有する複屈折率層と第 1の偏光板の間に形 成されていることで、例えば、異複屈折率層を所謂 +Aプレートとし、複屈折率層を所 謂 +Cプレートとするなど、異なる光学補償機能を発揮させる層構造を形成してもよ!ヽ こととなり、液晶表示装置からの光漏れをより効率よく低減するための光学補償機能 をより効果的に発揮させることができる。
[0036] 本発明の液晶表示装置では、傾斜した光軸を有する複屈折率層が、着色層を形 成した基板と液晶層との間に形成されており、且つ、傾斜した光軸を有する複屈折率 層とは異なる光軸を有する異複屈折率層が、着色層を形成した基板と第 1の偏光板 の間に形成されていることで、着色層の形成された基板と液晶層との間に複屈折率 層を形成し、これを所謂 +Aプレートとなし、着色層の形成された基板と液晶層との間 に複屈折率層を形成し、これを所謂 +Cプレートとすることができ、液晶表示装置から の光漏れをより効率よく低減することができる。
[0037] 本発明の液晶表示装置によれば、異複屈折率層の光軸が第 1の偏光板もしくは第 2の偏光板の吸収軸の方向と向きを揃えていることで、液晶表示装置力 の光漏れを より効率よく低減するための光学補償機能をより一層効果的に発揮させることができ る。
[0038] 本発明の液晶表示装置によれば、異複屈折率層がフィルム材を備えて構成される ことで、異複屈折率層を必要に応じて別途追加して設置することが容易になる。 図面の簡単な説明
[0039] [図 1]図 1は本発明の液晶表示層装置の構造を説明するための分解説明図である。
[図 2A]図 2Aは発明の液晶表示装置の実施例において図 1における F方向力もみた 吸収軸と屈折率楕円体の関係を説明する説明図である。
[図 2B]図 2Bは本発明の液晶表示装置の他の実施例において図 1における F方向か らみた吸収軸と屈折率楕円体の関係を説明する説明図である。
[図 3A]図 3Aは複屈折率層の設置位置を説明するための概略断面図である。
[図 3B]図 3Bは複屈折率層の設置位置を説明するための概略断面図である。
[図 3C]図 3Cは複屈折率層の設置位置を説明するための概略断面図である。
[図 4A]図 4Aは異複屈折率層を備えた液晶表示装置の実施例の一つを説明するた めの概略断面図である。
[図 4B]図 4Bは着色層を備えた液晶表示装置の実施例の一つを説明するための概 略断面図である。
[図 5A]図 5Aは本発明の液晶表示装置におけるスイッチング回路を説明する概略平 面図である。
[図 5B]図 5Bは本発明の液晶表示装置における他のスイッチング回路を説明する概 略平面図である。
[図 6]着色層を備えた液晶表示装置において、着色層と偏光板の配置関係を説明す るための図である。
符号の説明
[0040] 1 液晶表示装置
2 液晶層
3 第 1の基板
4 第 2の基板
5 第 1の偏光板
6 第 2の偏光板
7 複屈折率層 10 着色層
20 スイッチング回路
30 基材
31 異複屈折率層
発明を実施するための最良の形態
[0041] 本発明の液晶表示装置 (第 1の形態の液晶表示装置という)について、詳細に説明 する。
図 1は、本発明の液晶表示装置を説明するための概略説明図である。 図 2Aは、本発明の液晶表示装置における偏光板の吸収軸の方向と複屈折率層の 屈折率楕円体の図 1の F方向にみた場合の関係を説明するための概略説明図であ る。
なお、第 1の形態の液晶表示装置の実施例として、対向する基板の一方に複屈折 率層が形成されて 、る場合にっ 、て説明する。
[0042] 液晶表示装置 1は、液晶層 2 (駆動液晶層ということがある。)を挟んで対向する第 1 の基板 3および第 2の基板 4 (以下、単に基板ということがある。)を備えるとともに、第 1の基板 3および第 2の基板 4を挟み込んで (基板の外側面に)第 1の偏光板 5および 第 2の偏光板 6を配設しており、第 1の偏光板 5および第 2の偏光板 6との間に複屈折 率層 7を形成している。
なお、液晶表示装置において内側面や外側面は、液晶層 2に近い方力 遠い方に 向力つて内外方向とした場合において、その内外方向の定めに従って指定される内 側や外側の面であるものとする。
[0043] 第 1の基板 3や第 2の基板 4は、光透過性を有する基材からなる層を備え、基材単 層からなる構造で構成されても、基材を多数重ね合わせてなる多層構造で構成され ても、基材カゝらなる層に所定の機能を備えた機能層を積層して構成されてもよい。基 板には、基材の両面に機能層が形成されても、基材の片面に機能層が形成されても よい。
[0044] 基材の光透過率は、適宜選定可能である。また基材には、部分的に遮光領域等が 設けられてもよい。
[0045] 基材としては、ガラス基板 (ガラス材)の他、種々の材質からなる板状体を適宜選択 できる。具体的には、例えば石英ガラス、ホウケィ酸ガラス、合成石英板等の可撓性 のない部材 (リジット材)、榭脂フィルム、榭脂板等の可撓性を有する部材 (フレキシブ ル材)を用いることができる。
なお、基材を液晶表示装置に用いる場合には、基材は無アルカリガラスであること が好ましい。
[0046] 基材が榭脂フィルムや榭脂板等の榭脂を用いた部材である場合、基材に用いる榭 脂としては、具体的には、ポリカーボネート系高分子、ポリアリレートやポリエチレンテ レフタレート(PET)の如きポリエステル系高分子、ポリイミドゃポリアミドイミドなどのポリ イミド系高分子、ポリスルホン系高分子、ポリエーテルスルホン系高分子、ポリスチレ ン系高分子、ポリエチレンやポリプロピレンの如きポリオレフイン系高分子、ポリエーテ ルケトン系高分子、ポリビニルアルコール系高分子、酢酸セルロース系高分子、ポリ 塩化ビュル系高分子、ポリメチルメタタリレート系高分子等の熱可塑性ポリマー、トリア セチルセルロース(TAC)フィルム、液晶ポリマーなどを挙げることができる。
[0047] また、基材としては、上記したような榭脂からなる榭脂フィルムを 1軸延伸または 2軸 延伸したものが用いられてもよ!/、。
この場合、榭脂フィルムは、ポリエチレンテレフタレートからなるフィルムであると、延 伸倍率のレンジ幅が広い点、さらには入手のしゃすさ等の観点から好ましい。
[0048] 機能層は、光の状態を変化させる機能を有する層であって、複屈折率層 7とは構成 の異なる層であり、着色層、液晶の配向性の固定されたコレステリック液晶からなる層 、光を反射させる反射板、偏光板などが具体的に例示される。また、機能層は、基材 全面に設けられるのみならず、基材面に対して部分的に設けられていてもよい。
[0049] さらに、機能層は、液晶層 2を構成する液晶の分子を水平に配向させる水平配向 膜や、液晶の分子を垂直に配向させる垂直配向膜のような配向膜でもよい。
[0050] 配向膜としては、ポリイミド、ポリアミド、ポリビュルアルコール等が通常使用される。
なお、配向膜としてポリイミドを用いる場合は、長鎖アルキル基を有するものであるこ とが、液晶の分子を固定して複屈折率層を基板に形成しょうとする場合に複屈折率 層の厚みを広 、範囲で選択することができて好まし 、。
[0051] 配向膜は、これを構成する膜組成液を調整して、この膜組成液をフレキソ印刷やス ピンコート等の方法で基板面上に塗布して塗工膜を形成させ、さらにその塗工膜を 硬化させて形成できる。膜組成液としては、例えばポリイミドを含むものとしては、 日産 化学社製の SE— 7511や SE— 1211、 JSR社製の JALS— 2021— R2、 日立化成デュポン マイクロシステムズ株式会社製の QL及び LX等のシリーズ、あるいはチッソ株式会社 製のリクソンァライナー等を具体的に例示できる。
[0052] 配向膜は、その膜厚が 0.01〜1 μ m程度の範囲であることが好ましい。配向膜の膜 厚力 0.01 mよりも薄いと、配向膜に接する複屈折率層などの層中に含まれる液晶 に所望の配向を付与することが困難になる虞がある。また、配向膜の膜厚が 1 mより も厚 、と、この配向膜自体が光を乱反射させて液晶表示装置の光透過率が大きく低 下する虞がある。
[0053] 第 1の偏光板 5、第 2の偏光板 6 (単に、偏光板ということがある。)は、図 1や図 2A、 図 2Bに示すように、これらの偏光板 5、 6を複屈折率層 7の厚さ方向にみた場合(図 1 における矢印 F方向にみた場合)に偏光板 5、 6の吸収軸 Pl、 P2が互いに直交してい るように配置されている。この場合、偏光板 5、 6の透過軸は偏光板面上においてそ れぞれ吸収軸 Pl、 P2に垂直に交差して形成されている。すなわち第 1の偏光板 5と 第 2の偏光板 6とはクロス-コルに配置されて 、る。
[0054] 図 1において、複屈折率層 7は、第 1の基板 3と液晶層 2との間に形成されている。
[0055] 複屈折率層 7は、重合可能であってやや細長な分子形状の液晶(重合性液晶とい うことがある)分子を、ホメオト口ピック配向させた状態にしてこれら液晶分子同士を重 合させてなる高分子構造を備える。この場合、高分子構造は、重合性液晶の分子を 架橋重合させて 3次元構造 (架橋高分子構造)を形成して!/ヽてもよ!ヽ。
[0056] 重合性液晶としては、重合性液晶のモノマー、オリゴマー、ポリマーのいずれを用 いてもよぐこれらを適宜組合わせて用いてもよい。
[0057] 複屈折率層 7の架橋高分子構造においては、液晶分子の架橋度が 80以上程度で あることが好ましぐ 90以上程度であることがより好ましい。液晶分子の架橋度が 80よ り小さ!/、と、均一な配向性を十分に維持できな 、虞がある。 [0058] 複屈折率層 7は、これを構成する液晶分子の屈折率異方性とその配向状態に応じ た複屈折率特性 (複屈折特性)を有するが、複屈折率層 7の複屈折率特性は、屈折 率楕円体 Aを用いて、屈折率楕円体 Aの状態に応じて特定される(図 1)。
[0059] 屈折率楕円体 Aの状態は、複屈折率層 7面上の各位置において特定されうる。複 屈折率層 7における複屈折率特性を表す屈折率楕円体 Aの状態は、複屈折率層 7の 予め選択された各位置ごとに特定される屈折率楕円体 Aの状態のおよそ平均的な状 態として特定できる。
[0060] 例えば、屈折率楕円体 Aの平均的な状態は、複屈折率層面上の異なる位置を複数 選択して屈折率楕円体の状態の測定対象となる位置 (測定位置)とし、各測定位置 における屈折率楕円体 Aの状態を計測して平均することによって特定される。
[0061] ここで、この屈折率楕円体 Aの状態は、屈折率楕円体 Aの形状と、屈折率楕円体 Aの 傾斜状態にて示される。
[0062] 屈折率楕円体 Aの形状は、複屈折率層 7の厚み方向に z軸(図 1中において zで示 す)をとるとともに、 z軸を法線とするような平面上に X軸と y軸(図 1中においてそれぞ れ x、 yで示す)を互いに直角に交差し且つ z軸と交わるようにとることにより、 X軸と y軸 と z軸で指定される空間を考えた場合に、その空間内において、屈折率 (図 1中にお いて nx、 ny、 nzで示す)の値に応じた楕円体として特定される。屈折率 nx、 ny、 nzは 、複屈折率層 7を構成する液晶分子の光軸力 Sz軸方向に平行する(向きを揃える)場 合の複屈折率層を想定し、その想定された複屈折率層における X軸、 y軸、 z軸それ ぞれの方向の光の屈折率として指定される。なお、この空間において、 X軸と y軸は、 z軸方向からみた場合にそれぞれ偏光板 5、 6の吸収軸 Pl、 P2に重なる(方向を揃え ている)ように指定されている。
[0063] 上記空間内における屈折率楕円体 Aの傾斜状態は、その長軸 a (光軸を示す。)の 傾斜状態によって特定され、長軸 aの傾斜状態は、傾斜角(図 1において φで示す) と方位角(図 2Bにおいて Θで示す)で特定される。ここで、傾斜角 φは、屈折率楕円 体 Aの長軸 aと z軸のなす角度である。また、方位角 Θは、傾斜角 φの値がゼロ以外 である場合に、 z軸方向に第 1の偏光板 5から第 2の偏光板 6に向力 、 (F方向に)長 軸 aをみながら、 z軸のまわりを左回りに屈折率楕円体 Aを回転させて長軸 aを X軸 (第 1の偏光板 5の吸収軸 PI)に重ねるために必要な回転角度を示すものとする。
[0064] 複屈折率層 7は、屈折率楕円体 Aの傾斜角 φの値が 0 (ゼロ)であることが理想的で あるが、液晶の分子が複屈折率層 7内でその厚み方向(図 1にお 、て z軸方向)に対 して傾斜していることが多ぐこのような場合、複屈折率層 7は、その傾斜角 φがゼロ 以外の値となり、その厚み方向に対して傾斜した光軸を有することになる。
[0065] このように複屈折率層 7の傾斜角 φがゼロ以外の値である場合、複屈折率層 7は、 その厚み方向にみた場合、その屈折率楕円体 Aの長軸 a (光軸)を、第 1の偏光板 5と 第 2の偏光板 6の吸収軸 Pl、 P2のうちのいずれか一方の方向と同じ方向を向けて(方 向を揃えて)いる(図 2A、図 2B)。すなわち、複屈折率層 7の屈折率楕円体 Aにおけ る長軸 aの方位角 0のおおよその値が、 0° 、90° 、 180° 、 270° のいずれかである
[0066] 複屈折率層 7は、その複屈折率特性に対応し、複屈折率層 7に入射する光 (入射 光)に対してリタデーシヨンを生じさせうる。リタデーシヨンは、入射光に対して生じる常 光と異常光との光路差であり、リタデーシヨンの大きさ(リタデーシヨン値)は、常光の 屈折率 noと異常光の屈折率 neとすると、複屈折 Δ n (noと neとの差)と d (複屈折率層 7の膜厚)の積として与えられる。ここにおいて、 no、 neの値と上記 nx、 ny、 nzの値と の对 i関係 ίま、 no=nx=ny、 ne=nzでめ 。
したがって、複屈折率層 7では、液晶分子の種類、液晶分子の配向の程度、複屈 折率層 7の膜厚などを適宜選択して、複屈折率特性が制御されると、これに対応して リタデーシヨンの大きさが制御される。
[0067] リタデーシヨンの大きさは、 RETS-1250VA (大塚電子社製)や KOBRA— 21 (王子計 測機器社製)等の市販の測定装置を用いて測定できる。この場合、特定波長の入射 光を複屈折率層に照射してリタデーシヨンが測定されるが、その測定波長は、可視領 域 (380〜780nm)であることが好ましぐ特に、比視感度の最も大きい 550nm付近で 測定することがより好ましい。
[0068] 複屈折率層 7においては、より均一に液晶分子がホメオト口ピック配向した状態に近 づけられた複屈折率層 7を得ようとする観点からしてみると、リタデーシヨンの大きさは lnm以下であることが好ましぐ O.lnm以下であることがより好ましぐ理想的にはゼロ であることが好ましい。
[0069] 複屈折率層 7の膜厚は、液晶の分子をホメオト口ピック配向させることが可能な範囲 内、具体的には厚さ方向のリタデーシヨンが lnm以下となる範囲内で適宜選定する ことが好ましぐリタデーシヨンが O.lnm程度以下となる範囲内で適宜選定することが 更に好ましい。
[0070] 複屈折率層 7は、その表面上の互いに異なる位置における屈折率楕円体の傾斜状 態を略同じくし、屈折率楕円体の傾斜状態のばらつきが少ないことが好ましい。具体 的には、各位置における屈折率楕円体の傾斜角のばらつきは、 2° 程度の範囲内で あることが好ましい。このような場合、液晶表示装置は、黒表示時に正面方向(F方向 )以外から見た時には、多少光漏れにムラが出たり、黒表示以外でも光学補償にムラ が生じてしまうが、上記したばらつきの範囲が 2° を超えてしまう場合には、こうしたム ラが肉眼でも認識できるほどになってしまう虞がある。
[0071] 複屈折率層 7は、垂直配向膜上に形成される場合、複屈折率層 7に含まれる液晶 の分子は、垂直配向膜に近い位置にあれば、強くホメオト口ピック配向した状態 (傾 斜角 φの値がほぼ 0)となる。また、液晶の分子が垂直配向膜から離れた位置にある と、ホメオト口ピック配向が弱くなるため、垂直配向膜 7から離れた位置にある液晶の 分子についても強くホメオト口ピック配向した状態となれば、複屈折率層 7は、液晶分 子のチルト角が均一化したものとなり、均一に液晶分子がホメオト口ピック配向した状 態となる。
[0072] 複屈折率層 7では、架橋高分子構造を構成する単位である液晶分子のチルト角に ついて、複屈折率層 7の垂直配向膜との境界面に最も近い位置にある液晶分子のチ ルト角と、この液晶分子に対して複屈折率層の厚さ方向に最も離れた位置にある液 晶分子のチルト角とが略等しいことが好ましい。この場合、複屈折率層 7における液 晶分子各々のチルト角は、この厚さ方向におよそ均一になる。このような場合、複屈 折率層 7は、その複屈折率特性をその面方向に均一化させやすいものとなり、光漏 れの抑制能のむらを抑えやすいものとなる。
[0073] そして、複屈折率層 7は、複屈折率層 7における液晶分子のチルト角を、その面方 向に各々相等しく均一にしていることが好ましぐ複屈折率層 7全面に亘つて相等し いことがより好ましい。このような場合、屈折率楕円体 Aの状態が複屈折率層 7面上の 異なる位置においておおよそ同じ状態となり、複屈折率層 7の複屈折率特性は、そ の面方向に均一になっている。すなわち、複屈折率層 7の光軸は、複屈折率層 7面 上の位置のいかんにかかわらずおおよそ均一になっている。すると、複屈折率層 7面 上の位置に応じた光漏れの抑制能にむらがより生じに《なる。
[0074] また、複屈折率層 7では、上述のように複屈折率層 Aの光軸の方位角 Θがおおよそ 0° 、90° 、 180° 、 270° のいずれかの値であり、そのようになる場合としては、複屈 折率層 7に含まれる個々の液晶分子の光軸の方位角が、その存在位置によらずに一 様におおよそ 0° 、90° 、 180° 、 270° のいずれかの値である場合 (第 1のケース)と 、液晶分子の光軸の方位角が、存在位置の異なる液晶分子についておおよそ 0° 、 90° 、 180° 、 270° のいずれか互いに異なる値をとつている場合 (複屈折率層 7の液 晶分子のレベルにおいて方位角が部分的に異なっている場合)にあって、複屈折率 層 7全体として見ると光軸の方位角 Θが上記いずれかの値となっている場合 (第 2の ケース)と、を挙げることができ、複屈折率層 7は第 1のケースに相当するものでも第 2 のケースに相当するものでもよ 、が、第 1のケースに相当するものが好まし!/、。
[0075] さらに、上記第 1のケースと第 2のケースのいずれの場合についても、液晶分子の 光軸の傾斜状態のばらつき力 上記したおおよそ 0° 、90° 、 180° 、 270° のそれぞ れの値に対して少ないことが好ましぐ具体的に、液晶分子の方位角については、そ のばらつきの幅が 2° の範囲に収まっていることが好ましい。第 1のケースでは、液晶 分子の光軸の方位角が一様におおよそ 0° である場合を一例にとると、複屈折率層 7 の液晶分子の存在位置として多数箇所選んでも、その全ての位置にお!、て液晶分 子の光軸の方位角が 0° の前後 2° の範囲内にあることが好ましい。また、第 2のケー スでは、複屈折率層 7の屈折率楕円体 Aの長軸 aが第 1の偏光板 5の吸収軸 P1の方 向と同じ方向を向く場合には、液晶分子の光軸の方位角のおおよその値は、 0° もし くは 180° のいずれかとなり、また複屈折率層 7の屈折率楕円体 Aの長軸 aが第 2の偏 光板 6の吸収軸 P2の方向と同じ方向を向けている場合には、液晶分子の光軸の方位 角のおおよその値は、 90° もしくは 270° となる力 そうした方位角それぞれの値につ いて前後 2° の範囲内にあることが好ましい。例えば、第 2のケースにおいて、液晶分 子の方位角がおおよそ 0° と 180° の組み合わせとなっている場合には、複屈折率層 7の液晶分子の存在位置として多数選んでも、その全ての位置にお 、て液晶分子の 光軸の方位角が 0° の前後 2° の範囲内あるいは 180° の前後 2° の範囲内にあるこ とが好ましい。
[0076] なお、複屈折率層 7の光軸の状態は、上記したように複屈折率層 7面上に予め選ば れた各位置ごとに特定される光軸の状態のおよそ平均的な状態 (光軸の状態を特定 する φ、 0などの値の平均値)として定義できるが、複屈折率層 7面上の異なる位置 における複屈折率層 7の光軸の傾斜状態が略同様な状態となっている場合、複屈折 率層 7面上の 1箇所で計測した光軸の傾斜状態が複屈折率層 7の光軸の傾斜状態 を示しうる。
[0077] また、複屈折率層 7内の異なる位置における液晶分子の光軸の傾斜状態について も、その光軸の傾斜状態 (チルト角、方位角、屈折率で定まる光軸の状態)について 平均的な状態を定め、それらの状態にて複屈折率層 7の液晶分子の光軸の傾斜状 態が定義できる。具体的には、複屈折率層 7に含まれる液晶分子の光軸の方位角が 0° 、90° 、 180° 、 270° より選択された 0° 、 180° 2種類の値となっているような場 合を一例とすると、複屈折率層 7の液晶分子の光軸の傾斜状態は、方位角について は 0° と 180° とを組み合わせた状態にある、などとして具体的に定義することができ る。
[0078] 複屈折率層 7を構成する液晶分子としては、分子構造中に不飽和 2重結合を有し、 液晶状態で架橋可能なものが用いられる。したがって、重合性液晶としては分子の 末端に不飽和 2重結合を有するものが用いられる。
また、液晶分子としては、その複屈折 Δ ηが 0.03〜0.20程度であるものが好ましぐ 0.0 5〜0.15程度であるものが更に好ましい。このような液晶分子としては、下記式 1から 式 11で表される化合物を具体例に例示できる。耐熱性の点から好ましくは 3次元架 橋可能なものが良ぐ分子の末端に不飽和 2重結合を 2以上有するものが用いられる さらに、複屈折率層 7を構成する液晶分子としては、下記化学式 (化 1)から (化 11)に 表される化合物の複数種類が選択されても良い。 [0079] [化 1]
Figure imgf000019_0001
[0080] [化 2]
Figure imgf000019_0002
[0081] [化 3]
Figure imgf000019_0003
[0082] [ィ匕 4]
Figure imgf000019_0004
[0083] [化 5]
Figure imgf000019_0005
[0084] [化 6]
H2C = CHC02
Figure imgf000019_0006
[0085] [化 7]
Figure imgf000019_0007
[0086] [化 8]
Figure imgf000019_0008
[0087] [化 9]
Figure imgf000019_0009
[0088] [化 10]
Figure imgf000020_0001
(なお、 Xは、 4から 6の整数である。 )
[0090] 複屈折率層 7は、垂直配向膜上全面に亘つて液晶分子を重合させて形成されてい る場合に限定されず、各種印刷方法やフォトリソグラフィ一法を用いて垂直配向膜上 にパター-ングされてパターン形成されてもょ 、。
[0091] 本発明の液晶表示装置では、複屈折率層 7は、第 1の偏光板 5と第 2の偏光板 4と の間に形成されておれば、図 1に示すような第 1の基板 3と液晶層 2との間に積層形 成される場合に限定されず、複屈折率層 7は、第 1の基板 3と第 1の偏光板 5との間や 、第 2の基板と第 2の偏光板 4との間などにも積層形成可能である。
[0092] また、複屈折率層 7は、対向する基板 (第 1の基板と第 2の基板)の間に形成される としてもよい。具体的には、複屈折率層 7は、第 1の基板 3と液晶層 2との間に積層形 成される他、第 2の基板と液晶層 2との間に形成されてもよい。
[0093] 液晶表示装置において、第 1の基板 3と液晶層 2との間や第 2の基板 4と液晶層 2と の間の位置に複屈折率層 7を形成する場合、複屈折率層 7を第 1の基板の外面に露 出させないようにすることができ、偏光板 5、 6の基板 3、 4への貼付け等といった液晶 表示装置の組み立て工程の際や使用の際に外部から作用力を受けても複屈折率層 が容易に損傷してしまう虞を抑制できる。
[0094] 液晶層 2は、複屈折率層 7を積層した第 1の基板 3と、第 2の基板 4との間に液晶が 封入されて形成される。
[0095] 液晶層 2に封入される液晶は、適宜選択されるが、 ZU-2293(メルク社製)などを具 体的〖こ挙げることができる。
[0096] 液晶層 2を構成する液晶は、外部力 の電場に応じて配向状態が可変であり、これ により、液晶表示装置は液晶層を進行する光の位相差の制御が可能となる。
[0097] 基板 3、 4と液晶層 2との間には、図 4Aに示すように、配向膜 50、 51が液晶層 2の 界面と接するように形成されることがあるが、配向膜は、基板 3、 4の間に形成される 液晶層 2の液晶を、水平配向させるための水平配向膜、又は、前記の液晶を垂直配 向させるための垂直配向膜である。配向膜として水平配向膜及び垂直配向膜のどち らを用いるかは、適宜選択可能である。
[0098] この液晶表示装置には、たとえば、光を第 2の基板 4力 第 1の基板 3方向に向かう 方向に入射させるにあたり、光源 62と、光源 62から発せられた光を第 2の偏光板 6の 面方向に拡散させつつ導く導光板 60と、導光板 60で導かれた光を第 2の基板 4方 向に進行させる光反射板 61とを備えた光照射部 63が配設されていてもよい(図 4A) 。この場合光照射部 63から光が第 2の偏光板 6に入射すると、第 2の基板 4、液晶層 2を通過して第 1の偏光板 5の吸収軸に対して垂直に振動する光となすことができる。 そして、さらにその光が着色層 10を通過して所定の波長の光が第 1の偏光板 5の外 側に向力つて出射されるようになる。
[0099] 本発明の液晶表示装置は、液晶の分子を架橋重合させた構造を備えた複屈折率 層を基板に積層して設けているので、比較的高い耐熱性を有する液晶表示装置を 低コストの下に得ることが可能になる。また、光学補償を行なうために別体で製造され た位相差制御フィルムを介装させずに液晶表示装置を製造することが可能となり、液 晶表示装置を幅薄にすることができ、しかも、位相差制御フィルム材の介装時に塗布 する必要のあった接着剤などの粘着剤も不要となるので、接着剤などの層が存在し て多層化することに伴なう界面反射を低減することができるようになり、コントラストなど の液晶表示画面の表示特性を一層向上させることができる。
[0100] この液晶表示装置によれば、複屈折率層が液晶をホメオト口ピック配向させた状態 にして架橋重合ィ匕してなる構造を備えることから、この複屈折率層の厚み方向を z軸 にして xyz直交座標を想定したとき、屈折率楕円体 Aの傾斜角 φの値がゼロである 場合、屈折率楕円体 Aの屈折率 nx、 ny、 nzはそれぞれ x軸方向、 y軸方向、 z軸方 向に平行し、 X軸方向の屈折率 nxと y軸方向の屈折率 nyはほぼ同じ値になり、 z軸 方向の屈折率 nzは、屈折率 nx、 nyよりも大きくなるような状態にすることができる。 [0101] したがって、このような場合、複屈折率層 7を、屈折率が nz>nx=nyであるような複 屈折率特性を有する層、すなわちその厚さ方向(z軸方向)に光軸を有する層となす ことができるとともに 1軸性の複屈折率特性を有する層とすることができて、いわゆる「 + Cプレート」として機能させることができ、光のリタデーシヨンに対して光学補償する ことができる位相差制御機能を有する液晶表示装置として機能させることができる。
[0102] さらに、この液晶表示装置では、屈折率楕円体 Aの傾斜角 φの値がゼロ以外の値 をとる場合、方位角 0がおおよそ 0° 、90° 、 180° 、 270° のいずれかの値をとる。 ここで、方位角 Θがこれらの値以外であると、図 2Bにおいて破線にて示すように、 z 軸方向からみた場合(図 1における矢印 F方向からみた場合)に、長軸 a (光軸)が吸 収軸 P1や吸収軸 P2のいずれにも重ならない。すると、複屈折率層 7を通過する光に 位相差が与えられ、吸収軸 P1に垂直な (第 1の偏光板 5の透過軸に平行な)光の成 分が生じ、光漏れが生じてしまう。
これに対して、この液晶表示層装置では、方位角 Θが上記したような値をとるように 構成されているから、複屈折率層 7の厚み方向に対して光漏れを生じる虞が抑制さ れる。
[0103] したがって、この液晶表示装置では、より +Cプレートとしての機能を一層確実なも のとすることができる。
[0104] 本発明の液晶表示装置は、複屈折率層を複数形成しているものであってもよい。
[0105] この場合、複数の複屈折率層は、互いに複屈折率特性の異なる層であってもよい。
なお、以下、複屈折率層 7と複屈折率特性の異なる層を異複屈折率層ということがあ る。すなわち異複屈折率層は、第 1の形態における複屈折率層 7の複屈折率特性 (+
Cプレート)とは異なる複屈折率特性を有する層をなす。
[0106] この場合、異複屈折率層は、傾斜した光軸を有する複屈折率層 7と異なる光軸を有 している。
[0107] 具体的には、異複屈折率層は、上記した屈折率が nz=nxく nyあるいは nz=nyく nxであるような複屈折率特性を有する層、 V、わゆる「+Aプレート」として機能する層で あってもよぐまた、上記した屈折率が nz<nx=nyであるような複屈折率特性を有す る層、 、わゆる「- Cプレート」として機能する層であってもよ!/、。 [0108] なお、上記したいわゆる「+Aプレート」として機能する異複屈折率層は、例えば第 1 の偏光板 5と第 1の基板 3との間や、第 1の基板 3と複屈折率層 7との間の位置など、 第 1の偏光板と複屈折率層 7の間に形成させることができる。
[0109] 所謂 +Aプレートは、具体的には、例えば、液晶を水平配向させることが可能な榭脂 材料やフィルム材などを用いて、その表面上に水平配向膜形成用塗膜を形成し、水 平配向膜形成用塗膜の表面をラビング処理や光配向処理を施すことによって水平 配向膜を得て、液晶を溶媒に溶解させた溶液を水平配向膜上に塗工し、液晶の分 子をホモジ-ァス配向させて固定することにより得ることができる。
[0110] また、上記 +Aプレートは、第 1の基板 3の外側面もしくは内側面に、上記同様に、水 平配向膜を作製して、水平配向膜上に液晶の分子をホモジニァス配向させて固定す ることにより得ることがでさる。
[0111] なお、液晶表示装置において、このような +Aプレートは、その光軸の向きが第 1の 偏光板 5もしくは第 2の偏光板 6の吸収軸の向きと揃う(一致する)ように配置されてい る。
[0112] このように液晶表示装置を構成すると、第 2の偏光板、第 2の基板、液晶層の順に 通過した光が +Cプレートを通過した後 +Aプレートを通過して第 1の偏光板へと進行さ せることができ、そのような光の液晶表示装置の厚みに対して斜め方向への光漏れ を +Cプレートと +Aプレートの組合わせ構造により抑制させる光学補償機能を発揮可 能な液晶表示装置となり、液晶表示装置の視野角が拡大される。
[0113] また、光軸の異なる複屈折率層 (複屈折率層 7、異複屈折率層 31)が複数形成され ている場合、複屈折率層 7と異複屈折率層 31は、互いに当接して積層されていても よいが(図 3A)、これに限定されず、第 1の基板 3と第 1の偏光板 5との間の位置、第 1 の基板 3と液晶層 2との間の位置や、液晶層 2と第 2の偏光板 6との間の位置といった 位置に、複屈折率層 7と異なり異複屈折率層 31とも異なる層を介在させつつ積層形 成されてもよい(図 3B、図 3C)。
[0114] 複屈折率層 7には、その表面を保護するため、例えばアクリル系感光性榭脂等の 絶縁膜などの保護層(図示せず)が複屈折率層 7表面上に積層されてもよい。
[0115] 次に、本発明の液晶表示装置の製造方法について詳細に説明する。 本発明の液晶表示装置は、次に示すように製造できる。
[0116] まず複屈折率層 7を積層形成する第 1の基板 3を構成するための基材として、予め 、配向性を付与された基材を用意する。例えば、基材として、 1軸延伸フィルムや 2軸 延伸フィルムなどそれ自体配向性を付与されたものや、光配向膜を用いて偏光照射 されたものを用意する。
[0117] なお、基材としては、基材表面上に形成される複屈折率層 7に含まれる液晶の種類 や、液晶に付与しょうとする配向性に応じて、液晶の配向性をより容易にする処理( 配向容易化工程)を予め行っておき、この配向容易化工程の結果として得られたもの を用いてもよい。
[0118] 配向容易化工程の実施された基材として、基材に配向膜を形成する処理を行って 液晶の配向性を付与可能にしたものが調整されても良い。このように基材上に配向 膜が形成されて配向能を有するものによれば、配向膜を構成する組成液を様々に選 択することにより、配向可能な方向を比較的広範囲に選択することが可能であるとい ぅ禾 IJ点がある。
[0119] 配向容易化工程として行われる配向膜を形成する処理は、複屈折率層 7に含まれ る液晶の種類などに応じて適宜条件を選択され実施される。すなわち、たとえば、複 屈折率層 7がその中に含まれる液晶をホメオト口ピック配向状態にして固定されて構 成されて!/ヽる場合、配向容易化工程としては垂直配向膜を形成する処理が選択され て実施されることが好まし 、。
[0120] 垂直配向膜は、次に示すように基材面上に形成される。すなわち、上記したような 材料を用いてポリイミドを含む膜組成液を調整し、これを光透過性を有する基材の面 に、フレキソ印刷やスピンコートなどの方法で塗布して垂直配向膜用塗工膜を作製し 、さらにこの垂直配向膜用塗工膜を硬化させることにより、基材に垂直配向膜の形成 された基材 (垂直配向膜形成基材)を得る。
[0121] 基材に配向膜を形成する際において、配向膜表面の撥水性又は撥油性が高い場 合には、液晶をホメオト口ピック配向させることが可能な範囲内で予め UV洗浄やブラ ズマ処理を介在させることにより、配向膜表面の濡れ性を予め高めて!/、てもよ!/、。
[0122] このように基材が準備されると、次に示すような各工程を経て、複屈折率層 7が基材 に積層形成される。
まず、基材に積層する複屈折率層 7を構成する液晶を溶媒に分散させて複屈折率 層組成液を作製する。そして、この複屈折率層組成液を基材面に塗布して塗工膜を 形成する(塗工膜形成工程)。より具体的には、たとえば、基材として垂直配向膜形 成基材を準備し、さらに液晶分子とポリイミドを溶媒に溶解して複屈折率層組成液を 調整し、これを垂直配向膜形成基材の垂直配向膜面上に塗布して塗工膜を作製す る。
[0123] 塗工膜形成工程にぉ ヽて、複屈折率層組成液の塗布方法としては、公知の塗布 方法を用いることができ、具体的には、スピンコート法、ダイコーティング法、スリットコ 一ティング法、ロールコート法、グラビアコート法、スライドコート法、浸漬法等の各方 法や、これらを適宜組合わせた方法により、基材上に塗工液を塗布することができる 。なお、基材と塗工膜との密着性を上げるため、特開平 8— 278491号公報に記載さ れているように、基材上に接着層を設け、さらにその接着剤層上に複屈折率層組成 液を塗布することもできる。
[0124] 複屈折率層組成液における液晶の重量比は 5重量%〜50重量%である。 50重量 %よりも多くなると、複屈折率層 7の膜厚分布が大きくなる虞があり、 5重量%よりも少 なくなると塗布ムラが発生する虞がある。このことを考慮して、液晶の重量比は、 5重 量部から 50重量部であることが好ましぐ 10重量部〜 30重量部であることがより好まし い。
[0125] 溶媒としては、重合性液晶を溶解できるものであれば特に限定されるものではなぐ 有機溶媒を適宜選択できる。なお、基材上に複屈折率層組成液を塗布して塗工膜を 形成するにあたりスピンコート法を用いる場合は、溶媒として、酢酸 3—メトキシブチル 、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルァ セテート、シクロへキサノン等が好ましく使用される。
[0126] 複屈折率層組成液は、液晶の分子を効果的にホメオト口ピック配向させるために、 側鎖にアルキル基を有するポリイミドを配合しても良い。この場合、複屈折率層組成 液は、側鎖にアルキル基を有するポリイミドと液晶との配合比率が重量比で 1Z7から 1/3である。また、複屈折率層組成液におけるポリイミドの配合量は、複屈折率層組 成液中の液晶の総量に対して 12.5〜25重量%とすることが好ましぐ 15〜22.5重量% とすることが更に好ましい。ポリイミドの配合量力 12.5重量%より小さいと、十分均一 にホメオト口ピック配向した複屈折率組成物を得ることが困難になる虞があり、 25重量 %よりも大きいと、光の透過率が低下する虞がある。
[0127] 複屈折率層組成液には、光重合開始剤が添加されて 、ることが好ま 、。
[0128] 光重合開始剤としては、ラジカル重合性開始剤を好適に使用できる。ラジカル重合 性開始剤は、紫外線等のエネルギーによりフリーラジカルを発生するものであり、例 えば、ベンジル(ビベンゾィルともいう)、ベンゾインイソブチルエーテル、ベンゾインィ ソプロピルエーテル、ベンゾフエノン、ベンゾィル安息香酸、ベンゾィル安息香酸メチ ル、 4一べンゾィルー 4'ーメチルジフエ-ルサルファイド、ベンジルメチルケタール、 ジメチルァミノメチルベンゾエート、 2— n ブトキシェチル 4 ジメチルァミノべンゾ エート、 p ジメチルァミノ安息香酸イソァミル、 3, 3,一ジメチルー 4ーメトキシベンゾ フエノン、メチロベンゾィルフォーメート、 2—メチル 1— (4— (メチルチオ)フエ-ル) — 2 モルフォリノプロパン一 1 オン、 2 -ベンジル - 2-ジメチルァミノ 1— (4— モルフォリノフエ-ル)一ブタン一 1—オン、 1— (4—ドデシルフェ-ル) 2ヒドロキシ —2—メチルプロパン一 1—オン、 1—ヒドロキシシクロへキシルフェニルケトン、 2—ヒ ドロキシ一 2—メチル 1—フエ-ルプロパン一 1—オン、 1— (4—イソプロピルフエ- ル)ー2 ヒドロキシー2 メチルプロパンー1 オン、 2 クロ口チォキサントン、 2, 4 ジェチルチオキサントン、 2, 4 ジイソプロピルチォキサントン、 2, 4 ジメチルチ ォキサントン、イソプロピノレチォキサントン、 1 クロロー 4 プロポキシチォキサントン 等が挙げることができる。本発明においては、市販の光重合開始剤を適宜使用する こともできる。例えば、チバ 'スぺシャリティー'ケミカルズ社製の「ィルガキュア 184 (物 質名: 1 ヒドロキシシクロへキシルフエ-ルケトン)」、「ィルガキュア 369 (物質名: 2 —ベンジル一 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)一ブタン一 1—オン )」、「ィルガキュア 651 (物質名: 2, 2 ジメトキシ— 1, 2 ジフエ-ルェタン— 1—ォ ン)」、「ィルガキュア 907 (物質名: 2—メチルー 1一(4 (メチルチオ)フエ-ル) 2 —モルフォリノプロパン一 1—オン)」、「ダロキュア 1173 (物質名: 2 ヒドロキシ一 2— メチルー 1 フエ-ルプロパン 1 オン)」等のケトン系化合物や、 2, 2,—ビス(o— クロ口フエ-ル)—4, 5, 4,ーテトラフエ-ルー 1, 2,ビイミダゾール(黒金化成株式会 社製)等のビイミダゾール系化合物を用いてもょ 、。
[0129] 光重合開始剤は、重合性液晶の液晶規則性を大きく損なわない範囲で添加するこ とが好ましい。光重合開始剤の添加量としては、一般的には 0.01〜10重量%、好まし くは 0.1〜7重量%、より好ましくは、 0.5〜5重量%の範囲で複屈折率層組成液に添 カロすることがでさる。
[0130] なお、複屈折率層組成液には、光重合開始剤の他に増感剤を、本発明の目的が 損なわれない範囲で添加することもでき、具体的には 0.01〜1重量%の範囲内で選 択される。
[0131] また、光重合開始剤及び増感剤は、それぞれ、 1種類のみ用いられてもよいし、 2種 類以上が併用されてもよい。
[0132] 複屈折率層組成液には、界面活性剤が添加されて 、ることが好ま 、。複屈折率 層組成液は界面活性剤を添加されることにより、これを塗布して形成される塗工膜に ぉ 、て、空気界面での液晶の分子の配向性を制御できる。
界面活性剤としては、重合性液晶の液晶発現性を損なうものでなければ、特に限 定されることはない。例えば、ポリオキシエチレンアルキルエーテル、ポリオキシェチ レンアルキルァリルエーテル、ポリオキシエチレン誘導体、ポリオキシエチレン 'ポリオ キシプロピレンブロック重合体、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオ キシエチレンソルビトール脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリ ォキシエチレンアルキルアミン等の非イオン性界面活性剤、脂肪酸塩、アルキル硫 酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、 アルキルスルホコハク酸塩、アルキルジフヱ-ルエーテルジスルホン酸塩、アルキル リン酸塩、ポリオキシエチレンアルキル硫酸エステル塩、ナフタレンスルホン酸ホルマ リン縮合物、特殊ポリカルボン酸型高分子界面活性剤、ポリオキシエチレンアルキル リン酸エステル等の陰イオン性界面活性剤等が挙げられる。
界面活性剤の添カ卩量としては、一般的には 0.01〜1重量%、好ましくは 0.05〜0.5重 量%の範囲で固定液晶層組成液に添加することができる。
[0133] 塗工膜形成工程で基材上に塗工膜が形成されると、塗工膜に含まれる液晶を液晶 相にするとともに、例えば次に示すように液晶をホメオト口ピック配向の状態にする。
[0134] すなわち、塗工膜を加熱して、塗工膜の温度を、この塗工膜中の液晶が液晶相とな る温度 (液晶相温度)以上、この塗工膜中の液晶が等方相 (液体相)となる温度未満 にすることで、液晶をホメオト口ピック配向させる。このとき塗工膜の加熱手段は、特に 限定されず、加熱雰囲気下におく手段でもよいし、赤外線で加熱する手段でもよい。
[0135] なお、液晶をホメオト口ピック配向させる方法は、上記方法による他、塗工膜に含ま れる液晶やこの塗工膜の状態に応じ、塗工膜を減圧乾燥する方法によっても、塗工 膜に対して所定方向から電場や磁場を負荷する方法によっても実現可能である。
[0136] 塗工膜を減圧乾燥することによって、液晶をホメオト口ピック配向させる場合には、 減圧状態とすることで塗工膜を過冷却状態にすることでき、塗工膜中の液晶をホメォ トロピック配向させた状態を凡そ保持したままこの塗工膜を室温までさらに冷却できる 。すると、液晶を架橋反応させるまで、効率よく液晶をホメオト口ピック配向させた状態 がおおきく乱れな 、ようにすることができる。
[0137] 塗工膜中でホメオト口ピック配向した液晶は、次にしめすように架橋反応されて固定 され、複屈折率層 7が形成される (複屈折率層形成工程という)。
[0138] この架橋反応は、液晶の感光波長の光を塗工膜に照射 (露光)することで進行する 。このとき、塗工膜に照射する光の波長は、この塗工膜中に含まれている液晶の種類 に応じて適宜選択される。なお、塗工膜に照射する光は、単色光に限らず、液晶の 感光波長を含む一定の波長域を持った光であってもよ 、。
[0139] 露光に用いる光としては、励起エネルギーの大きさから電離放射線が好ましぐ電 離放射線の照射量は、使用する重合性液晶に応じて適宜選択されるが、電離放射 線として紫外線を使用する場合は、その照射量は、一般に、液晶相予定部位の露光 量が 10〜1000mjZcm2程度であるように調整されることが好ましぐまたその波長は、 200〜450nm程度が好ま U、。
[0140] なお、塗工膜に含まれる液晶を硬化させる方法としては、塗工膜に 50〜500Gy程 度の電子線を照射して硬化させる方法を用いてもょ 、。
[0141] 液晶の架橋反応は、液晶が液晶相から等方相へ相転移する温度よりも 1〜10°C低 い温度まで塗工膜を加熱しながら架橋反応を行なうことが好ましい。こうすることで、こ の架橋反応の際に液晶のホメオト口ピック配向の乱れを低減することができる。また、 この観点から、架橋反応を行なう温度は、液晶が液晶相から等方相へ相転移する温 度よりも 3〜6°C低い温度であることがより好ましい。
[0142] なお、液晶の架橋反応は、上記したような方法のほか、不活性ガス雰囲気中で、塗 工膜を液晶相温度にまで加熱しながら液晶の感光波長の光を塗工膜に照射する方 法 (方法 Aと ヽぅ)で実施されてもょ 、。
[0143] 方法 Aでは、不活性雰囲気下で液晶が架橋されており、空気雰囲気下で液晶が架 橋される場合に比べ、液晶分子の配向の乱れがより抑制される。
[0144] また、液晶の架橋反応は、不活性ガス雰囲気中または空気雰囲気中で、塗工膜を 液晶相温度まで加熱しながら液晶の感光波長の光を塗工膜に照射して架橋反応を 部分的に進行させ (部分的架橋工程という)、部分的架橋工程の後、液晶が結晶相と なる温度 (Tc)まで塗工膜を冷却し、この状態でさらに感光波長の光を塗工膜に照射 して架橋反応を進行させて完了させる方法 (方法 Bと ヽぅ)で実施されてもょ ヽ。なお 、上記した温度 Tcは、架橋反応を進行させる前の塗工膜において液晶が結晶相とな る温度である。
[0145] 部分的架橋工程では、温度 Tcまで塗工膜を冷却しても、その塗工膜中に含まれる 液晶の配向性が維持される程度に、架橋反応が進行している。したがって、部分的 架橋工程における架橋反応の進行の程度は、塗工膜中の液晶の種類や、その塗工 膜の膜厚などに応じて適宜選択されるが、おおよそ、部分的架橋工程では液晶の架 橋度が 5〜50となるまで架橋反応を進行させることが好ましい。
[0146] 方法 Bは、不活性ガス雰囲気下でも空気雰囲気下でも実施することができるが、空 気雰囲気下で行なうことが、架橋反応を行なう工程を実施するための設備を簡略ィ匕 でき、液晶表示装置の製造コストを抑制できる観点力も好まし 、。
[0147] こうして複屈折率層形成工程が行われると、基材上に形成された塗工膜中の重合 性液晶が架橋重合されて硬化され、複屈折率層 7が形成され、複屈折率層 7を備え た第 1の基板 3が形成される。
[0148] 次に、第 2の基板 4を構成する基材を準備する。この基材としては、第 1の基板 3と 同様なものが用いられても良ぐこれと異なるものが用いられても良い。 [0149] 複屈折率層 7を備えた第 1の基板 3、および、第 2の基板 4を用いて、次に示すよう に液晶層を形成する。
まず、互いにやや間隔をあけて第 1の基板 3と第 2の基板 4を対向配置するとともに 、第 1の基板 3と第 2の基板 4の間隙にスぺーサ(例えば球状スぺーサ又は柱状スぺ ーサ)を配して、第 1の基板 3と第 2の基板 4の離間間隔 (セルギャップ)を固定する。
[0150] つぎに、シール材 (熱硬化性榭脂)を用いて両基板 (第 1の基板 3と第 2の基板 4)の 間にシール材で区画化された空間部を形成する。そして、この空間部に液晶材料を 充填することにより、液晶の封入が行なわれ、液晶層 2が形成される。
[0151] さらに、第 1の偏光板 5と第 2の偏光板 6が、液晶層 2の厚み方向にみた場合に互い に吸収軸 Pl、 P2を直交させるように、それぞれ第 1の基板 3の外側面と第 2の基板 4 の外側面に、両基板 3、 4を挟むように配設される。このとき、両偏光板 (第 1の偏光板 5と第 2の偏光板 6)はクロス-コルに配置されている。また、複屈折率層 7の厚み方 向は液晶層 2の厚み方向に揃っており、両偏光板 5、 6は、複屈折率層 7の厚み方向 に見た場合もクロス-コルに配置されて 、る。
[0152] なお、複屈折率層形成工程にお!、て、液晶の分子がほぼ完全にホメオト口ピック配 向の状態にて固定される場合、複屈折率層 7は、その複屈折率特性を指定する屈折 率楕円体の傾斜角 φがほぼ 0° であり、第 1の偏光板と第 2の偏光板は、複屈折率層 の屈折率楕円体の状態を考慮することなく設置されうる。
[0153] 複屈折率層形成工程において、複屈折率層 7が、その複屈折率特性を指定する屈 折率楕円体の傾斜角 Φが 0° 以外であるように形成されている場合、第 1の偏光板 5 と第 2の偏光板 6は、複屈折率層 7の屈折率楕円体における方位角 Θのおおよその 値が、 0° 、90° 、 180° 、 270° のいずれかになるように設置される。すなわち、複屈 折率層 7の屈折率楕円体を複屈折率層 7の厚み方向にみた場合に、第 1の偏光板 5 の吸収軸 P1や第 2の偏光板 6の吸収軸 P2のいずれかが複屈折率層 7の屈折率楕円 体の長軸 a (光軸)の方向と揃う(重なる)ように、第 1の偏光板 5および第 2の偏光板 6 が設置される。
[0154] こうして、本発明の液晶表示装置 1が製造される。
[0155] 本発明における第 1の形態の液晶表示装置は、対向する基板の少なくとも一方に 着色層 8を形成して 、るものであってもよ 、(第 2の形態と 、う)。
図 4Bは、第 2の形態の液晶表示装置の実施例における断面構造を示す概略図で ある。
[0156] この液晶表示装置 1においては、対向する基板の一方 (例えば、第 1の基板 3)を構 成する基材 30上に機能層として着色層 10が積層形成されており、複屈折率層 7が 着色層 10面上に更に積層されている。そして、異複屈折率層 31が着色層 10の形成 された基板と第 1の偏光板 5との間に形成されている。
[0157] 着色層 10は、所定波長領域の可視光を透過する着色画素部 8と、遮光部 9 (ブラッ クマトリタスあるいは BMと!、うことがある)とからなる。
[0158] 着色画素部 8は、赤色、緑色、青色各々につ!/、て各色の波長帯の光を透過させる 着色画素(それぞれ赤色着色画素 8a、緑色着色画素 8b、及び青色着色画素 8cとい う)を所定のパターンで基材 30に配置して形成される。着色画素部 8を構成する赤色 着色画素 8a、青色着色画素 8b、緑色着色画素 8cの配置形態としては、ストライプ型 、モザイク型、トライアングル型等種々な配置パターンを選択することができる。
また、これらの着色画素(8a、 8b、 8c)に代えて、各色の補色の波長帯の光を透過 させる着色画素を用いることも可能である。
[0159] 着色画素部 8は、各色の着色画素(8a、 8b、 8c)毎に、着色画素の着色材料を溶 媒に分散させた着色材料分散液の塗膜を、例えばフォトリソグラフィ一法で、所定形 状にパター-ングすることで形成される。
[0160] なお、着色画素部 8は、フォトリソグラフィ一法のほ力、各色の着色画素(8a、 8b、 8 c)毎に、着色材料分散液を所定形状に塗布することによつても形成できる。
[0161] 遮光部 9は、着色画素(8a、 8b、 8c)同士の重なり合いを防止するとともに、着色画 素間の隙間を埋めて、近接する着色画素間からの光の漏れ (漏れ光)を抑制し、また 、アクティブマトリクス駆動方式の液晶表示装置にて設けられた場合におけるァクティ ブ素子の光劣化等を抑制する。
[0162] したがって、遮光部 9は、基材 30面上に着色画素の配置される位置に対応する領 域を、個々の着色画素(8a、 8b、 8c)ごとに平面視上区画ィ匕するように形成される。 そして、各色の着色画素(8a、 8b、 8c)は、それぞれ、遮光部 9により区画化された基 材 30面上の領域の形成位置に応じて、平面視上その領域を被覆するようにして配 置される。
[0163] 遮光部 9は、例えば、金属クロム薄膜やタングステン薄膜等、遮光性又は光吸収性 を有する金属薄膜を所定形状に基材 30面にパターニングすることにより、形成するこ とができる。また、遮光部 9は、黒色榭脂等の有機材料を所定形状に印刷することに より形成することも可能である。
[0164] このような着色層 10の形成された第 2の形態の液晶表示装置によれば、カラー表 示が可能となる。
[0165] 第 2の形態の液晶表示装置であって、着色層 10の着色画素部 8を構成する着色画 素(赤色着色画素 8a、青色着色画素 8b、緑色着色画素 8c)が、ストライプ型の配置 パターンにて配置されている場合にあっては、赤色着色画素 8a、青色着色画素 8b、 緑色着色画素 8cが直線状に配列されるが、このような液晶表示装置では、図 6に示 すように、第 1の偏光板と第 2の偏光板のいずれかの吸収軸 (Pl、 P2)の方向(図 6に おいて矢印 Pl、 P2で示す)がストライプ型の着色画素(8a、 8b、 8c)の長手方向(図 6 において矢印 Jで示す)に一致していることが好ましい。図 6の例では、液晶表示装置 1では、ストライプ型の着色画素(8a、 8b、 8c)の長手方向が第 1の偏光板の吸収軸 P 1に一致している力 これに限定されず、これらが第 2の偏光板の吸収軸 P2に一致し ていてもよい。
[0166] ここに本発明者らはストライプ型の着色画素を配置した着色画素部 8を備える着色 層 10の上に複屈折率層 4を形成すると、着色画素の長手方向に対して平面視上直 交する方向に複屈折率層 4の光軸 aを向けてしまう現象がみられることを見出した。そ して、この液晶表示装置 1は、この現象を応用することで完成された発明であり、効率 的に製造可能な装置となるという効果を奏するものである。すなわち、着色画素の配 置パターンとしてストライプ型を採用し、視覚での認識が容易な着色画素の長手方向 に偏光板の吸収軸の方向を合わせることで、確実に且つ簡易に効率よぐ複屈折率 層 4の光軸の傾斜方向を第 1の偏光板もしくは第 2の偏光板の 、ずれかの吸収軸に 一致させることができ、効率的に製造された液晶表示装置が提供される。
[0167] なお、ストライプ型の着色画素を配置した着色画素部 8を備える着色層 10の上に複 屈折率層 4を形成する場合に、着色画素の長手方向に対して直交する方向に複屈 折率層 4の光軸 aを向けやすい原因の詳細は不明である力 着色画素 8の形状や、 着色画素 8を作成する方法やその条件が要因となっているものと思料される。
[0168] 本発明における第 1の形態、第 2の形態の液晶表示装置では、第 1の基板 3もしく は第 2の基板 4にスイッチング回路 20が設けられてもよい (第 3の形態という)(図 5A、 図 5B)。
このスイッチング回路 20としては、画素電極とこれに対向して液晶層に電場を形成 させる電極とが同一の基板面上に配設されな 、もの(例えば TN (Twisted Nematic)モ ード、 VA (Virtical Alignment)モード)(第 1のモードという)や、これらが同一基板面上 に配設されるもの(例えば IPS (In-Plane-Switching)モード)(第 2のモードと!/、う)を挙 げることができる。
[0169] 電極部を構成する画素電極とこれに対向した電極 (共通電極)とが、同一基板上に 配設しな 、ものにっ 、て説明する(図 5A)。
[0170] 第 1のモードのスイッチング回路 20は、画素ごとにそれぞれ設けた画素電極 18に 対応して基板 30上に積層形成されて層状に構成されており、画素電極 18とこれに 電気的に接続された信号線や走査線等の各種素子とともに機能層としての素子基 板を形成している。
[0171] スイッチング回路 20は、走査線 13から電気信号の供給を受けて、信号線 12と電極 部 11の通電状態を制御する。スイッチング回路 20としては、薄膜トランジスタ (TFT ( Thin Film Transistor )という)等の 3端子型素子や MIM (Metal Insulator Metal)ダイォ ード等の 2端子型素子などのアクティブ素子が具体的に例示される。
[0172] スイッチング回路 20が薄膜トランジスタである場合、スイッチング回路 20は、各画素 電極 18に接続されたドレイン電極 15と、信号線 12から電気信号の供給を受けるソー ス電極 16と、ドレイン電極 15とソース電極 16の間に介在して両電極を接続させる半 導体とが基材上に積層され、さらに半導体に対して絶縁層(図示せず)を介して積層 されたゲート電極 17が積層されて形成されている。なお、ゲート電極は走査線 13に 接続している。
[0173] 電極部 11は画素電極 18と共通電極(図示せず)と力もなる力 この電極部 11として は、 ITO (Indium Tin Oxide)電極などの透明電極を好ましく用いることができ、これを 各画素を形成する領域ほぼ全面に敷設されることで形成できる。なお、電極部 11は 、各画素領域の端縁部に細長に透明電極を敷設しても形成することができる。
[0174] 次に、電極部を構成する画素電極と共通電極とが同一基板上に配設されている第 2のモードのスイッチング回路 20について説明する(図 5B)。このスイッチング回路 20 の形成された素子基板にお!、ては、同一の画素領域にお!、て電極部 11の形成され る領域以外は、上記第 1のモードと同様に構成され、電極部 11の形成される領域に つ!ヽては、同一画素領域上に画素電極とこれに対抗する電極の両者が積層形成さ れている。
[0175] すなわち、画素電極 18と共通電極 19とからなる電極部 11では、共通電極 19は、ド レイン電極 15に接続される画素電極 18と同一基板面上で対向するように設けられて おり、例えば、図 5Bに示すように 1つの画素電極 18に対して 2方向(図 5Bの例では 信号線 12に近づく方向と離れる方向)に共通電極 19が対面しているように配置され る。図 5Bにおいては、電極部 11は、櫛歯状に画素電極 18と共通電極 19が設けられ ている。なお、画素電極 18と共通電極 19とが重なり合う領域には絶縁層を設けてス イッチング回路 20がショートしな 、ように構成されて!、る。
[0176] 第 1のモードや第 2のモードのスイッチング回路 20を第 1の基板 3や第 2の基板 4に 設けて第 3の形態の液晶表示装置を構成すれば、その液晶表示装置はスイッチング 回路の通電状態に応じて液晶表示が制御されるものとなる。
実施例
[0177] 実施例 1.
次に示すように基材に複屈折率層や配向膜を順次積層して、複屈折率層を備えた 第 1の基板を作製した。
[0178] <垂直配向膜の作製 >
垂直配向膜の溶液 (JSR社製、 JALS-2021-R2)を γ -プチ口ラタトンで 2倍に希釈し て配向膜組成液を作製する。
第 1の基板となる基材としてのガラス基板 (コ一-ング社製、 7059ガラス)(寸法が 55 0mm X 650mm)の面上に、上記した配向膜組成液を塗布して配向膜形成用塗工膜を 作製し、配向膜形成用塗工膜の形成されたガラス基板を 180°Cで 1時間焼成して垂 直配向膜の形成された基材 (垂直配向膜形成基材と ヽぅ)を得る。
[0179] <複屈折率層形成用塗工膜の作製 >
ポリイミドを含む溶液として、垂直配向膜の溶液 (JSR社製、 JALS- 2021- R2)をジェ チレングリコールジメチルエーテルで 8倍希釈した溶液を調整する。
ネマチック液晶相を示す重合可能な液晶分子 (重合性液晶)として上記化学式 (ィ匕 11)に示される化合物(ただし Xの値が 6の化合物である) 20重量部と、光重合開始 剤(チバガイギ一社製、「ィルガキュア 907」)0.8重量部と、溶媒としてクロ口ベンゼン 5 9.2重量部と、上記ポリイミドを含む溶液 20重量部とを混合して、複屈折率層組成液を 作製する。
[0180] 垂直配向膜形成基材をスピンコーターに設置して、垂直配向膜上に複屈折率層組 成液をスピンコーティングして塗工膜 (複屈折率層形成用塗工膜という)を作製した。 このとき得られた複屈折率層形成用塗工膜は白濁していた。スピンコーティングによ る塗工膜の製作には、コーターシステム (東京応化工業社製、「商品名 TR40000FJ ) が用いられた。このコーターシステムは、垂直配向膜形成基材表面に対する複屈折 率層組成液のバーコート、スピンコーティング、および複屈折率層形成用塗工膜の 減圧乾燥を、一体化して実施するシステムである。
[0181] 作製された複屈折率層形成用塗工膜の膜厚は、乾燥時において約 1.5 /z mであつ た。なお、この膜厚は、触針式段差計 (Sloan社製、製品名「DEKTAK」)を用いて計測 された。
[0182] <液晶のホメオト口ピック配向状態の形成 >
複屈折率層形成用塗工膜の形成された垂直配向膜形成基材を、 100°Cで 3分間加 熱し、複屈折率層形成用塗工膜中の液晶の分子が液晶相に転移して配向状態を形 成していることを確認した。このとき、複屈折率層形成用塗工膜が白濁状態から透明 状態となったことが目視にて確認された。
[0183] <液晶の架橋重合反応 >
次に、空気雰囲気下で、透明状態の複屈折率層形成用塗工膜に、紫外線照射装 置 (ハリソン東芝ライティング社製、「商品名 TOSCURE751」)を用いて出力が 20mW/c m2の紫外線を 10秒間照射して、複屈折率層形成用塗工膜中の液晶を架橋重合反応 させて液晶の分子の配向性を固定することで、複屈折率層が形成された。これにより 得られた複屈折率層を形成した基材を、オーブンで 230°C、 30分間焼成し、複屈折 率層と基材との密着性を向上させた。
[0184] このようにして複屈折率層の形成された基材が得られる力 これについて、複屈折 率層の複屈折率特性を指定する屈折率楕円体の状態を示す nx、 ny、 ηζ、 φの値は
、次のように特定される。
[0185] 複屈折率層の屈折率楕円体の形状を示す屈折率 (nx、 ny、 nz)は、液晶の分子に 応じた屈折率が定められることで特定される。
[0186] 次に、複屈折率層の屈折率楕円体の傾斜状態は、傾斜角 φを定めることで特定さ れる。
まず、正面方向のリタデーシヨン量を位相差測定機を用いて計測することにより、屈 折率楕円体の長軸 (光軸)に傾斜が存在するか否かを判定する。すなわち、計測さ れたリタデーシヨン量が、上記した屈折率と複屈折率層の膜厚に基づき複屈折率層 の光軸に傾斜が存在しない場合 (傾斜角 φ =0の場合)に想定される値とは異なる値 である場合、複屈折率層の光軸が傾斜して 、ると判定する。
[0187] 複屈折率層の光軸に傾斜があると判定される場合、その光軸についての傾斜角 φ は、位相差測定機を用いて次に示すように位相差を計測して特定される。
[0188] 予め複屈折率層面上において位相差を計測しょうとする位置を選択する。この選 択された位置を測定点とする。この測定点における極角 45° 方向の光 (波長 589nm) の位相差を、互 ヽに異なる 4つの方位にっ 、て計測する。
[0189] ここに、極角と互いに異なる 4つの方位は次のように定義される。
すなわち、測定点を原点とし複屈折率層の厚み方向に z軸をとり、複屈折率層面上 に原点で交差し且つ互いに直交しあう X軸と y軸をとつて、 X軸と y軸と z軸とで形成さ れる空間を考えた場合に、空間内の位置 (K)についての極角は、 Kが z軸上にある場 合を 0° として、原点と Kを結ぶ直線の z軸に対する傾斜角度として定義される。
[0190] また、互いに異なる 4つの方位は、 X軸方向に互いに原点を挟んで向かい合う 2方 位 (方位 XI、方位 X2)および、 y軸方向に互いに原点を挟んで向かい合う 2方位 (方 位 Yl、方位 Υ2)として定義される。
[0191] 傾斜角 φは、 4つの方位(方位 XI、 Χ2、 Yl、 Υ2)についてそれぞれ極角 45° 方向 の位置で測定された位相差の値 (方位 XI、方位 Χ2、方位 Yl、方位 Υ2に対する位相 差の値を、それぞれ Δη (XI)、 Δη(Χ2)、 Δη(Υ1)、 Δη(Υ2)とする)の組合わせによ つて特定される。
[0192] 液晶の種類等に応じて屈折率楕円体の屈折率 (nx、 ny、 nz)は特定されるから、屈 折率楕円体の形状は特定されており、上記したような異なる 4方位にっ ヽて位相差の 値が特定されれば、 ( Δ n (XI) -Δη (Χ2) )および( Δ n (Yl) - Δ η (Υ2) )の値により、 屈折率楕円体につき、その光軸が、どの程度方位 XIあるいは方位 Χ2に向カゝつて傾 斜し、どの程度方位 Y1あるいは方位 Υ2に向力つて傾斜しているかが特定される。この ことから、屈折率楕円体の光軸が、 ζ軸に対してどの程度傾斜しているか特定できる。
[0193] 例えば、 nx=ny<nzであって、 ( Δη(Χ1)-Δη(Χ2)) = ε >0 (ゼロ)、且つ、 (Δη
(Yl) - Δ n (Y2) )の値が 0 (ゼロ)あるいは殆ど 0であるような場合、屈折率楕円体は、 方位 Χ2〖こ εの値に応じて傾斜し、方位 Y1と方位 Υ2のどちらにもほとんど傾斜してい ない状態として特定され、屈折率楕円体の傾斜角 φが特定される。
[0194] なお、複屈折率層の形成された基材につ!/、て、その基板の略中心位置 (W)に測定 点をとり、その位置 Wにおける屈折率楕円体の傾斜角 φを計測したところ、その傾斜 角 φの値は、おおよそ 1° であった。
[0195] また、複屈折率層の形成された基材について、複屈折率層面上の相異なる複数の 位置における屈折率楕円体の傾斜状態 (光軸の傾斜状態)を計測し、その傾斜状態 の均一性の評価を行った。
[0196] <傾斜状態の均一性の評価 >
まず複屈折率層の形成された基材において、複屈折率層面上、その面方向に 100 mm間隔の格子状にて互いに相異なる 5点 X 7点の総計 35点(35箇所)の測定点を選 ぶとともに、 35点の測定点のうち中心点の位置を位置 Wに一致させる。そして、各測 定点について 4方向から位相差(Δη(Χ1)、 Δη(Χ2)、 Δη(Υ1)、 Δη(Υ2))を測定し て、位相差 Δη(Χ1)についての標準偏差を算出し、及び各測定点について位相差 値の大小関係の比較する。 [0197] 結果、 Δ η (XI)の標準偏差は、 0.29であった。この場合、複屈折率層面上の相異な る位置における屈折率楕円体の状態や光軸の状態につき、その傾斜角のばらつき がおおよそ 0.4° の範囲に抑えられると予想される。
また、上記 35点の測定点全てにおいて、(Δ η (Χ1) - Δ η (Χ2) ) = ε >0 (ゼロ)、且 つ、( Δ n (Y1) - Δ η (Υ2) )の値が殆ど 0 (ゼロ)であった。
[0198] したがって、複屈折率層の形成された基材では、複屈折率層の各測定点における 光軸はおおよそ均一且つ同じ方向に傾斜した場合に相当しており、複屈折率層の 各測定点における光軸の傾斜状態に殆どばらつきがないことが示される。そして、こ の基材では、複屈折率層の略中心位置での屈折率楕円体の傾斜角がそのまま複屈 折率層の光軸の傾斜角を示すことになる。
[0199] <水平配向膜の作製 >
上記のようにして得られた複屈折率層を形成した基材を 20mm X 20mmの寸法に切 断し、これに対し、その複屈折率層表面上に、次に示すように水平配向膜を作製した まず、複屈折率層を形成した基材面上に水平配向膜組成液 (AL1254 CFSR社製) )をフレキソ印刷を用いて塗工して塗工膜 (水平配向膜用塗工膜)を形成し、その水 平配向膜用塗工膜の形成されたガラス基板を 230°Cのオーブンで 1時間焼成すること により、水平配向膜を形成した。
[0200] <ラビング処理〉
水平配向膜の形成された基材に対し、複屈折率層の厚さ方向にみた場合に複屈 折率層の複屈折率特性を特定する屈折率楕円体の長軸 (光軸)の方向にラビング方 向が平行する (揃う)ように、ラビング装置 (RLYY-3 (飯沼ゲージ社製 )を用いてラビ ング処理を行った。こうして、複屈折率層を備えた第 1の基板が得られた。
[0201] 次に、第 1の基板を形成する際に用いたのと同種の基材 (ガラス基板)を用意し、第 2の基板を形成するための基材として用い、第 2の基板を作製した。
[0202] まず、第 2の基板に用いる基材面上に、第 1の基板における複屈折率層表面上に 水平配向膜を作製した工程と同様の工程を通じて、水平配向膜を作製した。さらに、 第 2の基板用基材に設けられた水平配向膜上には、第 1の基板と同様に、ラビング処 理が施され、第 2の基板が作製された。
[0203] 複屈折率層を備えた第 1の基板と、第 2の基板を略 20mm X 20mmの大きさに切り出 し、これらを用 V、て次に示すように液晶層を作成した。
[0204] <液晶層の作製 >
熱硬化性榭脂からなるシール材 (三井ィ匕学株式会社製;商品名 XN-5A)に、シール 部用のスぺーサ- (積水化学工業株式会社製;ミクロパール SP-2035)を 0.4重量%含 ませることで組成液 (シール部組成液)を作製し、第 2の基板に対して水平配向膜周 縁に沿ってシール部組成液を塗布して塗工部(シール液塗工部)を作成した。なお、 シール液塗工部を作成する際、水平配向膜周縁の一部にシール部組成液の塗工さ れな 、部分 (非塗工部と 、う)を残してぉ 、た。
[0205] ラビング処理により液晶を配向づける方向が一致するように第 1の基板と第 2の基板 をラビング処理された面を対面させて配置し、第 2の基板のシール液塗工部を第 1の 基板に接触させ、この接触状態が維持されるように第 1の基板と第 2の基板を 20kPa Zcm2の圧力にてプレスしながら 140°Cに加熱してシール材を硬化させた。これにより 、第 1の基板と第 2の基板とを一体ィ匕したもの (セルという。)が、作製された。なお、こ の得られたセルは、大きさが約 2cm X約 2cm、セルギャップが 3.5 mである。
[0206] これにより、第 1の基板と第 2の基板とがやや間隔をおいて対面配置されるとともに、 第 1の基板と第 2の基板と間には、非塗布部の位置に開口部を形成しつつシール部 で区画化された空間部が形成される。そして、この空間部に、液晶を注入して液晶層 (駆動液晶層)が形成される。この液晶層を構成する液晶を注入するにあたり、液晶 注入口として開口部が使用される。
[0207] 液晶層を構成する液晶には、正の誘電率異方性を持つもの (メルク社製;商品名 ZL 1-2293; Δ η=0.132, λ =590nm)を用いた。また、液晶の注入にあたっては、ディスぺ ンサ一方式が用いられても良 、が、ここでは真空注入方式が用いられた。
[0208] 真空注入方式による液晶層の形成は、次に示すように行われた。すなわち、液晶の 入った容器の中に、まだ液晶が入ってな 、セルを液晶注入口を下向きにして配置す る。このとき、液晶注入口は液晶に浸されていない。次に、この容器を密封し、容器中 の空気を抜いて真空に近い状態にする。その状態で、セルの液晶注入口を液晶の 中に浸す。それから液晶注入口が液晶に浸す状態を維持したまま、容器の中の圧力 を常圧に戻す。これにより、圧力と毛細管理現象によって、液晶が液晶注入ロカ 徐 々にパネルの中に注入され、液晶がセルの空間部に充填される。
[0209] セルに液晶の充満がなされた後、液晶注入口に紫外線硬化榭脂(EHC社製;商品 名 LCB-610)を塗付け、その塗付け位置 (液晶注入口の形成された位置)に紫外線 を照射することでその位置の紫外線硬化榭脂を固定して空間部を封止した。
こうして、液晶層の形成されたセルが得られた。
[0210] <位相差フィルムと偏光板の配設>
「+Aプレート」としての位相差フィルム (JSR社製;商品名アートン)を、液晶層の形成 されたセルの第 1の基板外側面に貼付けた。このとき、位相差フィルムの光軸の方向 力 液晶層ゃ複屈折率層の厚み方向に複屈折率層をみた場合における複屈折率層 の光軸の向かう方向(光軸の傾斜方向)に揃うように、位相差フィルムは第 1の基板外 側面に貼付けられている。
[0211] そして、位相差フィルムを貼付けたセルに対し、位相差フィルム面上に偏光板 (サン リッツ社製;商品名 HLC2-5618)を貼付け (この偏光板を第 1の偏光板という。)、さら に、これと同様の偏光板を第 2の基板外側面にも貼付ける(この偏光板を第 2の偏光 板という。 ) oこれらの偏光板は、複屈折率層の厚み方向にみた場合に、第 1の偏光 板の吸収軸と第 2の偏光板の吸収軸とが直交しているように配置されてセルに貼付 けられる。そして、このとき、第 1の偏光板の吸収軸の方向が、複屈折率層の厚み方 向に複屈折率層をみた場合における複屈折率層の光軸の傾斜方向に揃うように、第 1の偏光板は位相差フィルム面上に貼付けられている。
[0212] こうして、セルの外側位置に偏光板が貼付けられ、液晶表示装置が得られた。
[0213] 得られた液晶表示装置について、正面輝度を測定することにより複屈折率層の厚 み方向からみた場合の光漏れの状態を計測した。なお、正面輝度は、次に示すよう に測定された。
[0214] <正面輝度の測定 >
正面輝度の測定は、輝度計測機と、液晶表示装置に光を照射する光照射部とで構 築された輝度計測系を用いて実施された。 [0215] 輝度計測系において、輝度計測器は、光照射部から発せられた光のうち液晶表示 装置を通過した光を検知する光センサと、光センサによる検知された信号に基づき輝 度を計測する計測部とを備えるものである。具体的には、輝度を測定する輝度計測 機として、トプコン社製「BM- 9」が使用された。
[0216] 輝度計測系を用い、正面輝度は次のように測定された。
まず、光照射部を、液晶表示装置の第 2の偏光板外側位置に配置し、液晶表示装 置を挟んで液晶層の厚さ方向に対面する位置であつて第 1の偏光板外側位置に光 センサを配置させた。
[0217] 光照射部力も波長 550應の光を液晶表示装置に向力つて照射し、第 2の偏光板外 側位置よりセル内を通過して第 1の偏光板を通過した光を光センサに検知させ、検知 された光の量 (輝度)を計測部にて計測することで、正面輝度が測定される。
このような測定の結果、この液晶表示装置の正面輝度は、 0.23cd/m2であった。
[0218] 実施例 2.
第 1の基板を構成する基材面上に次のように着色層を形成し、着色層面上に複屈 折率層を形成するように構成した他は、実施例 1と同様にして、図 4Bに示すような第 1の基板と第 2の基板を備えた液晶表示装置を作製した。
[0219] <着色層の作製 >
<着色層の形成に用 、る着色材料分散液の調整 >
ブラックマトリクス (BM)及び赤色 (R)、緑色 (G)、青色 (B)着色画素の着色材料分 散液として、顔料分散型フォトレジストを用いた。顔料分散型フォトレジストは、着色材 料として顔料を用い、分散液組成物 (顔料、分散剤及び溶剤を含有する)にビーズを 加え、分散機で 3時間分散させ、その後ビーズを取り除いた分散液とクリアレジスト組 成物(ポリマー、モノマー、添加剤、開始剤及び溶剤を含有する)とを混合することに より得られた。得られた顔料分散型フォトレジストは、下記に示すような組成である。尚 、分散機としては、ペイントシェーカー (浅田鉄工社製)を用いた。
[0220] (ブラックマトリクス用フォトレジスト)
'黒顔料 14. 0重量部
(大日精化工業 (株)製、 TMブラック # 9550) •分散剤 · · · · · 1. 2重量部
(ビックケミー(株)製、 Disperbykl 11)
'ポリマー 2. 8重量部
(昭和高分子 (株)製、 VR60)
'モノマー 3. 5重量部
(サートマ一 (株)製、 SR399)
,添加剤 0. 7重量部
(綜研ィ匕学 (株)製 L— 20)
•開始剤 1. 6重量部
(2 ベンジル一 2 ジメチルァミノ一 1— (4 モルフォリノフエ-ル)一ブタノン •開始剤 0. 3重量部
(4, 4'ージェチルァミノべンゾフエノン)
•開始剤 0. 1重量部
(2, 4 ジェチルチオキサントン)
'溶剤 75. 8重量部
(エチレングリコーノレモノブチノレエーテノレ)
(赤色 (R)着色画素用フォトレジスト)
•赤顔料 4. 8重量部
(C. I. PR254 (チバスべシャリティケミカルズ社製、クロモフタール DPP Red
) )
•黄顔料 1. 2重量部
(C. I. PY139 (BASF社製、ノリオトールイェロー D1819) )
•分散剤 3. 0重量部
(ゼネ力(株)製、ソルスノ ース 24000)
•モノマー 4. 0重量部
(サートマ一 (株)製、 SR399)
'ポリマー 1 5. 0重量部
•開始剤 1. 4重量部 (チバガイギ一社製、ィルガキュア 907)
'開始剤 0. 6重量部
(2, 2,一ビス(o クロ口フエ-ル) 4, 5, 4,, 5,ーテトラフエ ダゾーノレ)
'溶剤 80. 0重量部
(プロピレングリコールモノメチルエーテルアセテート)
[0222] (緑色 (G)着色画素用フォトレジスト)
'緑顔料 3. 7重量部
(C. I. PG7 (大日精ィ匕製、セイカファストグリーン 5316P) ) '黄顔料 2. 3重量部
(C. I. PY139 (BASF社製、ノリオトールイェロー D1819) ) '分散剤 3. 0重量部
(ゼネ力(株)製、ソルスノ ース 24000)
'モノマー 4. 0重量部
(サートマ一 (株)製、 SR399)
'ポリマー 1 5. 0重量部
'開始剤 1. 4重量部
(チバガイギ一社製、ィルガキュア 907)
'開始剤 0. 6重量部
(2, 2,一ビス(o クロ口フエ-ル) 4, 5, 4,, 5,ーテトラフエ ダゾーノレ)
'溶剤 80. 0重量部
(プロピレングリコールモノメチルエーテルアセテート)
[0223] (青色 (B)着色画素用フォトレジスト)
•青顔料 4. 6重量部
(C. I. PB15 : 6 (BASF社製、へリオゲンブルー: L6700F) ) •紫顔料 1. 4重量部
(C. I. PV23 (クラリアント社製、フォスタパーム RL— NF) ) '顔料誘導体 0. 6重量部
(ゼネ力(株)製、ソルスノース 12000)
'分散剤 2. 4重量部
(ゼネ力(株)製、ソルスノース 24000)
'モノマー 4. 0重量部
(サートマ一 (株)製、 SR399)
'ポリマー 1 5. 0重量部
'開始剤 1. 4重量部
(チバガイギ一社製、ィルガキュア 907)
'開始剤 0. 6重量部
(2, 2,一ビス(o—クロ口フエ-ル)一 4, 5, 4,, 5,一テトラフエ-ル一 1, 2,一ビイミ ダゾーノレ)
'溶剤 80. 0重量部
(プロピレングリコールモノメチルエーテルアセテート)
[0224] 尚、上記ポリマー 1は、ベンジルメタタリレート:スチレン:アクリル酸: 2—ヒドロキシェ チルメタタリレート = 15. 6 : 37. 0 : 30. 5 : 16. 9 (モル比)の共重合体 100モル0 /0に 対して、 2—メタクリロイルォキシェチルイソシァネートを 16. 9モル%付カ卩したもので あり、重量平均分子量は 42500である。
[0225] <着色層の形成 >
洗浄処理を施した基材としてのガラス基板 (コ一-ング社製、 7059ガラス)を用意し、 このガラス基板上面に、次に示すように各色ごとに着色材料分散液を塗布し、基材に 着色層を積層形成した。
まず、ガラス基板に、上述で調製した BM用フォトレジストをスピンコート法で塗布し 、 90°C、 3分間の条件でプリベータ(予備焼成)し、所定のパターンに形成されたマス クを用いて露光(lOOmjZcm2)し、続いて 0. 05%KOH水溶液を用いたスプレー現 像を 60秒行った後、 200°C、 30分間ポストベータ(焼成)し、厚さが 1. 2 iu mのBMを 形成した基材 (BM形成基材)を作製した。
[0226] 次に、予め赤色着色画素に対応する位置に対応するように調整した赤色 (R)の顔 料分散型フォトレジストを上記 BM形成基材上にスピンコート法で塗布し、 80°C、 3分 間の条件でプリベータし、各色パターンに応じた所定の着色パターン用フォトマスク を用いて、紫外線露光(300mjZcm2)した。さらに、 0. 1%ΚΟΗ水溶液を用いたス プレー現像を 60秒行った後、 200°C、 60分間ポストベータ(焼成)し、 BMパターンに 対して所定の位置に膜厚 2. 6 μ mの赤色 (R)着色画素のパターンを形成した。
[0227] 続、て、上記赤色 (R)着色画素のパターンの形成方法と同様の方法を用いて、緑 色 (G)着色画素、青色 (B)着色画素それぞれにっき、パターンを形成した。こうして 、ガラス基板上に、 BM、赤色着色画素、緑色着色画素、及び青色着色画素から構 成される着色層が形成された。
[0228] こうして得られた着色層を形成した基材を用い、実施例 1と同様にして第 1の基板を 作製した。
[0229] さらに、第 1の基板を用い、実施例 1と同様にして液晶表示装置を得た。
得られた液晶表示装置について、実施例 1と同様にして正面輝度を測定した。 正面輝度は、 0.20cd/m2であった。
[0230] 実施例 3
ストライプ型のパターンにて配置された各色の着色画素を備えた着色層を形成した 基材を用いたほかは、実施例 2と同様にして第 1の基板を作製した。なお、複屈折率 層は、基材の着色層形成面側に作成された。
[0231] さらに、第 1の基板を用い、偏光板の配設を次に示すように実施した以外は実施例 1と同様にして液晶表示装置を得た。
[0232] <偏光板の配設>
実施例 1と同様にして位相差フィルム (JSR社製;商品名アートン)を貼付けたセルに 対し、位相差フィルム面上に偏光板 (サンリヅッ社製;商品名 HLC2-5618)を貼付け( 第 1の偏光板)、さらに、これと同様の偏光板を第 2の基板外側面にも貼付ける (第 2 の偏光板)。これらの偏光板は、複屈折率層の厚み方向にみた場合に、第 1の偏光 板の吸収軸と第 2の偏光板の吸収軸とが直交しているように配置されてセルに貼付 けられる。ただし、本実施例においては、第 1の偏光板の吸収軸の方向が、ストライプ 型の着色画素の長手方向に一致するように、第 1の偏光板が位相差フィルム面上に 貼付けられた。
[0233] 得られた液晶表示装置について、実施例 1と同様にして正面輝度を測定した。
正面輝度は、 0.20cd/m2であった。
[0234] 比較例 1.
実施例 1において、液晶層の厚み方向にみた場合に、複屈折率層の屈折率楕円 体の光軸の傾斜方向に対して第 1の偏光板の吸収軸が 45° ずれた位置に配置され 、且つ、第 1の偏光板の吸収軸と第 2の偏光板の吸収軸とが直交するように、第 1の 偏光板と第 2の偏光板をセルに貼付けた液晶表示装置を得た。
得られた液晶表示装置について、実施例 1と同様にして正面輝度を測定した。 正面輝度は、 0.28cd/m2であった。
[0235] 比較例 2
実施例 3で得られた第 1の基板を用い、次のように偏光板の配設をしたほかは、実 施例 3と同様にして液晶表示装置を得た。すなわち、本比較例では、液晶層の厚み 方向にみた場合に、ストライプ型の着色画素の長手方向に対して第 1の偏光板の吸 収軸が 45° ずれた位置に配置され、且つ、第 1の偏光軸の吸収軸と第 2の偏光板の 吸収軸とが直交するように、第 1の偏光板と第 2の偏光板をセルに貼付けた。
[0236] 得られた液晶表示装置について、実施例 1と同様にして正面輝度を測定した。
正面輝度は、 0.27cd/m2であった。
[0237] このように、実施例 2、 3、比較例 1、 2より、本発明の液晶表示装置では、光漏れ が抑制されて 、ることが示される。
産業上の利用可能性
[0238] 本発明の液晶表示装置は、複屈折率層の液晶がホメオト口ピック配向状態を完全 には維持されずに固定されてしまった場合にあっても、光漏れを効果的に抑制可能 なものとなる。

Claims

請求の範囲
[1] 配向状態の可変な液晶を含有する液晶層を挟んで対向する基板を備え、対向する 基板を挟んで第 1の偏光板と第 2の偏光板を互いに吸収軸を直交させて配設してい る液晶表示装置において、
第 1の偏光板と第 2の偏光板との間には、複屈折率層が、重合性液晶を重合させて 形成され、且つ複屈折率層の厚み方向に対して傾斜した光軸を有して形成されてお り、
複屈折率層の光軸は、複屈折率層の厚み方向に対して、第 1の偏光板もしくは第 2 の偏光板の 、ずれかの吸収軸の方向に傾斜して 、ることを特徴とする液晶表示装置
[2] 複屈折率層は、重合性液晶をホメオト口ピック配向状態にして重合させて形成され る請求項 1記載の液晶表示装置。
[3] 複屈折率層は、分子形状が棒状の重合性液晶を 3次元架橋重合させて形成され て 、る請求項 1に記載の液晶表示装置。
[4] 複屈折率層の光軸は、複屈折率層全面に均一に傾斜している請求項 1に記載の 液晶表示装置。
[5] 複屈折率層は、対向する基板の間に積層形成されている請求項 1に記載の液晶表 示装置。
[6] 対向する基板の少なくとも一方には、着色層が形成されている請求項 1に記載の液 晶表示装置。
[7] 複屈折率層が、着色層面上に形成されている請求項 6記載の液晶表示装置。
[8] 着色層は、ストライプ型の配置パターンにて配置されて形成される所定波長の光を 透過させる着色画素を備えており、第 1の偏光板と第 2の偏光板のいずれかの吸収 軸の方向がストライプ型の着色画素の長手方向に一致している、請求項 7記載の液 晶表示装置。
[9] 傾斜した光軸を有する複屈折率層とは異なる光軸を有する異複屈折率層が、傾斜 した光軸を有する複屈折率層と第 1の偏光板の間に形成されている請求項 1に記載 の液晶表示装置。
[10] 傾斜した光軸を有する複屈折率層が、着色層を形成した基板と液晶層との間に形 成されており、且つ、傾斜した光軸を有する複屈折率層とは異なる光軸を有する異複 屈折率層が、着色層を形成した基板と第 1の偏光板の間に形成されている請求請 6 に記載の液晶表示装置。
[11] 傾斜した光軸を有する複屈折率層とは異なる光軸を有する異複屈折率層が、傾斜 した光軸を有する複屈折率層と第 1の偏光板の間に形成されており、異複屈折率層 の光軸は、第 1の偏光板もしくは第 2の偏光板の吸収軸の方向と向きを揃えている請 求項 1に記載の液晶表示装置。
[12] 傾斜した光軸を有する複屈折率層とは異なる光軸を有する異複屈折率層が、傾斜 した光軸を有する複屈折率層と第 1の偏光板の間にあって、着色層を形成した基板 と液晶層との間に形成されており、且つ、異複屈折率層の光軸は、第 1の偏光板もし くは第 2の偏光板の吸収軸の方向と向きを揃えている請求請 6に記載の液晶表示装 置。
[13] 異複屈折率層は、フィルム材を備える請求項 9に記載の液晶表示装置。
PCT/JP2006/324779 2005-12-14 2006-12-12 液晶表示装置 WO2007069613A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/086,393 US7764339B2 (en) 2005-12-14 2006-12-12 Liquid crystal display device
CN2006800465623A CN101326460B (zh) 2005-12-14 2006-12-12 液晶显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005360256 2005-12-14
JP2005-360256 2005-12-14

Publications (1)

Publication Number Publication Date
WO2007069613A1 true WO2007069613A1 (ja) 2007-06-21

Family

ID=38162921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324779 WO2007069613A1 (ja) 2005-12-14 2006-12-12 液晶表示装置

Country Status (4)

Country Link
US (1) US7764339B2 (ja)
KR (1) KR20080086451A (ja)
CN (1) CN101326460B (ja)
WO (1) WO2007069613A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054728B2 (en) 2014-12-01 2018-08-21 Samsung Electronics Co., Ltd. Composition for optical film and films and display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102009821B1 (ko) * 2013-01-28 2019-08-12 엘지디스플레이 주식회사 편광판과 그 제조 방법 및 이를 포함하는 액정표시장치
GB201508520D0 (en) * 2015-05-18 2015-07-01 Structo Pte Ltd Liquid crystal display assembly
EP3499299B1 (en) * 2017-12-12 2023-06-07 Morrow N.V. Optical device
KR20210079272A (ko) * 2018-10-26 2021-06-29 도요보 가부시키가이샤 액정 화합물 배향층 전사용 배향 필름

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101515A (ja) * 1995-10-06 1997-04-15 Sharp Corp 液晶表示装置
JP2005003750A (ja) * 2003-06-10 2005-01-06 Dainippon Printing Co Ltd 柱状体を有する位相差制御板
JP2005275322A (ja) * 2004-03-26 2005-10-06 Dainippon Printing Co Ltd カラーフィルタ基板、液晶ディスプレイ用基材、及び液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142531A (ja) 1991-11-18 1993-06-11 Hitachi Cable Ltd 視角補償フイルムとその製造方法
JP3788734B2 (ja) 2000-12-06 2006-06-21 日東電工株式会社 ホメオトロピック配向液晶フィルムの製造方法およびホメオトロピック配向液晶フィルム
JP2002174724A (ja) 2000-12-06 2002-06-21 Nitto Denko Corp ホメオトロピック配向液晶層の製造方法、垂直配向膜形成剤およびホメオトロピック配向液晶フィルムの製造方法
JP2003121852A (ja) 2001-10-18 2003-04-23 Nitto Denko Corp ホメオトロピック配向液晶フィルムの製造方法、ホメオトロピック配向液晶フィルムおよび光学フィルム
JP4329983B2 (ja) * 2003-02-05 2009-09-09 大日本印刷株式会社 液晶ディスプレイ
TWI243938B (en) * 2003-02-25 2005-11-21 Toshiba Matsushita Display Tec Liquid crystal display element of semi-transmission type
JP4641162B2 (ja) * 2004-09-08 2011-03-02 大日本印刷株式会社 位相差層付カラーフィルタおよび液晶表示素子
US7602462B2 (en) * 2005-02-25 2009-10-13 Nitto Denko Corporation Polarizing element, liquid crystal panel, liquid crystal television, and liquid crystal display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101515A (ja) * 1995-10-06 1997-04-15 Sharp Corp 液晶表示装置
JP2005003750A (ja) * 2003-06-10 2005-01-06 Dainippon Printing Co Ltd 柱状体を有する位相差制御板
JP2005275322A (ja) * 2004-03-26 2005-10-06 Dainippon Printing Co Ltd カラーフィルタ基板、液晶ディスプレイ用基材、及び液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054728B2 (en) 2014-12-01 2018-08-21 Samsung Electronics Co., Ltd. Composition for optical film and films and display device

Also Published As

Publication number Publication date
KR20080086451A (ko) 2008-09-25
US7764339B2 (en) 2010-07-27
CN101326460B (zh) 2010-10-13
US20090109376A1 (en) 2009-04-30
CN101326460A (zh) 2008-12-17

Similar Documents

Publication Publication Date Title
US7514126B2 (en) Optical element obtained by homeotropically orienting liquid crystal molecule, member for liquid crystal display device using the same, and liquid crystal display device
JP4975415B2 (ja) 透過型液晶表示装置
US8066905B2 (en) Optical element obtained by homeotropically orienting liquid crystal molecule, member for liquid crystal display device using the same, and liquid crystal display device
JP4228004B2 (ja) 透過型液晶表示装置
JP2004240102A (ja) 位相差制御機能を有する液晶ディスプレイ用基板及びそれを用いた液晶ディスプレイ
JP4627484B2 (ja) 光学素子の製造方法、および、液晶表示装置
JP4455051B2 (ja) 光学素子及びその製造方法、並びに液晶配向用基板及び液晶表示装置
WO2007069613A1 (ja) 液晶表示装置
US7582336B2 (en) Method of producing optical element and apparatus for producing optical element
JP4386718B2 (ja) 光学素子及びその製造方法、並びに液晶配向用基板及び液晶表示装置
JP2009244356A (ja) 光学素子、および、該光学素子を備えた半透過半反射型液晶表示装置
JP5263467B2 (ja) 液晶表示装置
US20060222974A1 (en) Optical element with homeotropically aligned liquid crystal molecules, and a liquid crystal display using the optical element
JP7333414B2 (ja) 画像表示装置、車両用情報表示システムおよび光学フィルム
JP4627449B2 (ja) 垂直配向膜上に液晶分子をホメオトロピック配向させた光学素子およびこれを用いた液晶表示装置用基材ならびに液晶表示装置
JP4900585B2 (ja) 光学素子、光学素子の製造方法、および液晶表示装置
JP2008242001A (ja) 位相差制御機能を有する光学部材、半透過半反射型用液晶装置及び位相差制御機能を有する光学部材の製造方法
US11988918B1 (en) Optical element and display device
KR102634252B1 (ko) 편광판
KR101960656B1 (ko) 편광판 및 이를 포함하는 액정표시장치
JP2008299290A (ja) 液晶表示装置
JP2024077954A (ja) 光学素子及び表示装置
JP2009151267A (ja) 光学素子、上記光学素子を備える液晶セル、及び上記光学素子の製造方法
JP2005164869A (ja) 光学素子及びその製造方法、並びに液晶配向用基板及び液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046562.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087014061

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12086393

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06834534

Country of ref document: EP

Kind code of ref document: A1