WO2007066728A1 - リチウムイオンキャパシタ - Google Patents

リチウムイオンキャパシタ Download PDF

Info

Publication number
WO2007066728A1
WO2007066728A1 PCT/JP2006/324462 JP2006324462W WO2007066728A1 WO 2007066728 A1 WO2007066728 A1 WO 2007066728A1 JP 2006324462 W JP2006324462 W JP 2006324462W WO 2007066728 A1 WO2007066728 A1 WO 2007066728A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
electrode
amount
ion
Prior art date
Application number
PCT/JP2006/324462
Other languages
English (en)
French (fr)
Inventor
Kohei Matsui
Atsuro Shirakami
Nobuo Ando
Shinichi Tasaki
Risa Miyagawa
Osamu Hatozaki
Yukinori Hato
Original Assignee
Fuji Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo Kabushiki Kaisha filed Critical Fuji Jukogyo Kabushiki Kaisha
Priority to US12/090,461 priority Critical patent/US8203826B2/en
Priority to EP06834217.9A priority patent/EP1959464B1/en
Priority to CN2006800461675A priority patent/CN101326601B/zh
Priority to KR1020087013787A priority patent/KR101086572B1/ko
Publication of WO2007066728A1 publication Critical patent/WO2007066728A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • an electric device called an "idca", which combines the theory of a thirium secondary battery electric multilayer car, has been attracting attention as an electric device that can be used for applications that require high energy and high output.
  • an organic decomposing catalyst that can significantly increase the degree of onion by lowering the negative electrode position by supporting (and sometimes below) titanium as a desorbable elemental material by a suitable method. (For example, patent).
  • the negative electrode material reversibly bears thium and that the negative electrode material or negative electrode or the positive electrode positively contacts with the metal material that is placed facing the positive electrode and that the organic material is converted into the organic material. (For example, patent 2).
  • the conventional lithium ion it is possible to greatly improve the negative electrode's negative ion by using the electrode current collector with holes penetrating the front and back, but it is not completely satisfactory.
  • the cell temperature decreases from 3 to 6 at an ambient temperature of 6 C to 8 lower than the initial amount over a period of 2 hours, leading to a reduction in life.
  • the thionium ion comprises a positive electrode, a negative electrode, and a non-depleted solution of a thium salt as an electrolyte.
  • thorium ions are added to the negative electrode and / or the positive electrode so that the position becomes 2 ⁇ O () lower.
  • the electrode and / or the negative electrode are provided with a hole penetrating each, and the thion ion is selectively contacted with the negative electrode thion ion source. It may be negative.
  • the amount of per unit of titanium ion is 3 or more compared to the negative electrode and the positive electrode quality, and the quality amount is larger than the negative electrode quality. You can.
  • FIG. 12 is a plan view of a square-titanium ion carrier according to a typical implementation of Ming.
  • FIG. 2 is a plan view of a titanium ion carrier according to another exemplary embodiment of Ming.
  • the positive electrode, the negative electrode 2 and the negative electrode 2 are laminated on each other via the electrode 3 to form the electrode 6, or the electrode 6 is formed so that the part of the electrode 6 becomes the negative electrode 2.
  • the metal titanium 4 as a source of the titanium ion is arranged so as to face the negative electrode 2, and these are housed in the exterior 5.
  • the removed part is connected to the positive electrode by the take-out part 9, and the 2 and the metal titanium 4 are connected to the negative electrode 2 by the take-out part 8 and the take-out part, respectively.
  • the negative electrode 2 is provided on the (in the left side of), but it is possible to take out these elements separately, for example, on the side of.
  • Electrolyte (dissolving) capable of moving thion ions is injected into the cell thus constructed and left in this state for a predetermined time (for example). Since this is short-circuited with the metal chromium 4 negative electrode 2, it is possible to generate negative ions in the negative electrode 2. It should be noted that is the pole on the side where the current flows out during discharging and the current flows in during charging, and is the side where the current flows in during discharging and the current flows out during charging. Means the pole of.
  • the positive electrode 2 (the number of layers is 4) and the negative electrode 3 (the number of layers is 6)
  • the electrode 6 is housed in the exterior 5 (in the horizontal direction), but
  • the case 6 can also be accommodated in the exterior 5.
  • the metal titanium 4 which is the source of the thion ions to be placed on the electrode 6 in the cell 0019 is one in which the metal titanium collector 4a is pressure-bonded and integrated. Physically, cut the metal foil that was crimped onto the current collector along with the electrode 6 and place the cut metal foil with the metal foil outside facing the electrode 6.
  • the positive electrode and 2 that make up the 002t6 are respectively formed as a positive electrode and (in the figure, and and 2 respectively) on the surface of the electrode current collector a and the negative electrode current collector 2a as shown in I like it.
  • Electrode current collector a Negative electrode current collector 2a consists of a material with holes penetrating through the front and back.By using negative electrode current collector 2a and positive electrode current collector a as described above, metal titanium 4 is shown in Even when placed at electrode 6's part, it is possible for thallium ions to move to each 2's of tin 6's as they freely move through each of the tin's 4's.
  • 002 22 is another typical implementation of Ming, a type of thion
  • the strip-shaped negative electrode 2 is formed with the tab 3 interposed therebetween, preferably the portion is the tab 3, and the side thereof is the negative electrode 2 to form a columnar tub 7.
  • the positive electrode is formed as a positive electrode on the side of the pole-shaped current collector a
  • the negative electrode 2 is formed on the side of the pole-shaped current collector 2a as a negative electrode.
  • a metal lithi foil is pressure-bonded to the surface of 4a.
  • the positive electrode current collector a and the negative electrode current collector 2a are formed by the same type as described above, and the metal placed in the cell is formed by short-circuiting the titanium 4 with the negative electrode 2.
  • the metal titanium can be arranged in the same manner by using a cylindrical column formed by forming the positive electrode and the negative electrode into a circular shape with the anode interposed therebetween.
  • C of 002 has a positive electrode made of a material capable of reversing thium ion or on, a negative electrode made of a material capable of reversing thium ion, and has a non-potassium salt as an electrolyte. And, in the case of bright C, the position after shorting the positive and negative electrodes is 2 ⁇ ().
  • the same (mainly activated carbon) is usually used for the positive and negative electrodes.
  • ON forms an electric superposition layer on the positive electrode surface and the positive electrode rises
  • thione forms an electric superposition layer on one surface and the potential is increased.
  • ON is emitted from the positive electrode and thione is emitted from the negative electrode, and the potential drops, rises, and returns to 3.
  • the organic degrading carrier that uses carbon materials for both the positive and negative electrodes also has a positive and a negative 3 after shorting the positive and negative electrodes.
  • the positive electrode uses a reversible activity of thium ion or ON
  • Negative electrode Use a reversible activity for thion ion, and after short-circuiting the positive electrode and the negative electrode, apply the thion ion to the negative electrode and / or the positive electrode so that the positive electrode position becomes 2.
  • thium ion means to supply the thion ion from the positive electrode and the source of the thium ion of, for example, thium outside.
  • the positive and negative positions after short-circuiting the positive and negative electrodes are not limited to just after the thium ion is charged, but after the charging, discharging, and charging are repeated. In the case of a short circuit, etc., the position of the short circuit is 2 or below due to misalignment.
  • the position after the short circuit between the positive electrode and the negative electrode is 2 .. Therefore, the activated carbon material usually has a position of 3 after it, and when activated carbon is used for both the positive electrode and the negative electrode, the deviation position is about 3, so even if a short circuit occurs, the positive electrode will not be 3 is there.
  • the same is true for a loose lead that uses activated carbon for the positive electrode and a raw material used for a lithium ion secondary battery for the negative electrode. Is 3 regardless of the positive electrode.
  • the negative electrode level shifts to the maximum when charging, it is possible to increase the charging voltage, which means that the battery has a good degree of negativity.
  • the pressure is determined so that electrolysis does not occur due to the rise of the positive electrode potential of the charging voltage. Therefore, if the positive electrode potential is set as the upper limit, the charging voltage can be increased as the negative electrode potential decreases.
  • the positive electrode position is about 3 in the short circuit
  • the discharge is up to 3 and the degree of positive electrode and the amount of positive electrode cannot be fully utilized.
  • the initial electric efficiency is often low, and there are some unremovable thium ions in the discharge. This is because it is consumed in the electrolytic solution on the negative electrode surface,
  • the electric efficiency of the positive electrode becomes lower than the electric efficiency of the positive electrode, and if the short circuit is made after repeating the electricity, it will become higher than that of the positive electrode 3, and the utilization will be further reduced.
  • the positive electrode when the positive electrode is capable of discharging from 4 to 2 ⁇ , but if it cannot be from 4 to 3 ⁇ , it will not be used in half, and it will be a pressure but not a quantity. It is necessary to improve the amount of the positive electrode in order to increase the energy not only in the net but also in the net. If the number of 003 is lower than 3 ⁇ , the amount of usage will increase and the amount can be increased. 2.
  • the negative electrode In order to reach the lower limit, it is preferable to charge the negative electrode from a source of a thium ion such as thium, instead of just the energy generated by the electric charge of the cell. Since thion ions are supplied from outside the negative electrode, the positive electrode, negative electrode, and metallic tin are in equilibrium when short-circuited, so both the positive electrode and negative electrode positions are 3 or lower, and the equilibrium level decreases as the amount of metallic tin increases. Become.
  • the positive position after shorting the positive electrode and negative electrode is 2.
  • the lower position means that the positive and / or negative electrodes are supplied with thium ions from and outside of C as described above. That is.
  • the negative electrode and the positive electrode of thium ions or both, for example, when activated carbon is used for the positive electrode, the amount of thium ions increases.
  • the positive electrode position becomes low and irreversibly consumes thium ions.
  • the amount of potassium decreases, so that there is no problem with the amount of thium ions supplied to the negative and positive electrodes. I need your help.
  • the negative and negative electrodes are lowered because the thimium ions made into the positive electrode and / or the negative electrode by the contact with the negative electrode thium ion supply source are supplied () by charging.
  • the amount is small because the amount of the thion ions supplied to the positive electrode and / or the negative electrode is small.
  • the higher the supply of thium ions the higher the positive and negative voltage after short-circuiting the positive and negative electrodes, and the better the energy.
  • 2 / below is preferable, and to obtain a higher leek degree / below is preferable.
  • the low level after short-circuiting the negative electrode means, in other words, that the amount of thium ions supplied by the cell is large, and the amount of negative electrode increases and the amount of negative electrode decreases. As a result, the positive electrode amount becomes large and the positive electrode amount becomes large, so that a high degree of energy can be obtained.
  • the positive electrode position falls below ⁇ , it will be difficult to determine the positive electrode position due to problems such as gas generation and irreversible consumption of thium ions, depending on the quality of the positive electrode. If the positive electrode position becomes too low, the amount of the negative electrode is excessive, and conversely, the amount will decrease. Therefore, in general, the positive electrode is on the upper surface, and the positive electrode is on the upper surface.
  • the cell is the power of the cell (Arad), and the cell is the value obtained by dividing the volume of the cell by the total weight of the positive and negative electrodes filled in the cell.
  • that of the positive electrode is the amount of the positive electrode divided by the amount of the positive electrode filled in the cell, and the unit is the negative electrode.
  • the negative electrode is the negative electrode in which the amount of the negative electrode is filled in the cell.
  • the value is divided by the quantity, and the unit is.
  • the discharge voltage of It is the product of the amount of C and C), but since C is the amount of load when the flow between flows, it is decided to show it in the calculation. And () at the beginning of discharge and
  • the negative electrode is the product of the amount of the negative electrode () at the beginning of discharge and the position of the discharge, and the unit is C or.
  • C XW One W One
  • C XW One W One
  • the amount (of C) can be obtained by (of W) and (of C), or both, but the amount of thiium ion in the negative electrode is usually because there is a limit such as the totality of ce and the limit of the amount of thiium ion in the negative electrode. It is preferable to prioritize the size of the negative electrode (of W). On top of that, the amount of thium ions is increased within a range that does not hinder the increase of C. However, is not limited to this, and can be determined so that (CW) (C XW) becomes 5 or higher. For example, the little one When a negative electrode material with a larger amount of thium ion is obtained, even if the negative electrode is small (C XW) (
  • (C XW) (C XW) C XW
  • C XW C XW
  • C XW C XW
  • the amount of negative electrode material is 3 or more of the amount of positive electrode material, and the amount is negative electrode.
  • a static amount of 3 or more for the positive electrode can be secured, and the amount can be made larger than the negative electrode amount. This makes it easier than conventional multilayer
  • the quantity of is obtained. Furthermore, when using an electrode having a larger amount than that of the positive electrode, it is possible to reduce the amount of the negative electrode without changing the amount of the negative electrode. You can increase the quantity and quantity. In order to obtain a large amount, it is preferable that the amount is large with respect to the amount of the positive electrode and the negative electrode, and it is further preferable that the amount is ⁇ f ⁇ times. ⁇ If f, the ratio with the conventional multilayer carrier becomes small, and if it exceeds twice, the amount may be smaller than with the conventional multilayer carrier, and the difference between the positive electrode and the negative electrode becomes too large. Below, we will explain the main elements that make up the clear titanium ion.
  • the materials generally proposed for applications such as organic decomposing ponds can be used.
  • positive electrode current collectors aluminum, stainless steel, and negative electrode current collectors can be used. It is possible to appropriately use a stencil, a sack, and the like, and a net-shaped one can be used.
  • those having holes penetrating through the front and back are preferable, and examples thereof include kiss metal, lenticing metal, metal, foam, or ashing. It is possible to set the collector current.
  • the electrode current collector used for clarity is usually ⁇ 79, preferably 2 ⁇ 6.
  • the quality is not particularly limited as long as it is capable of reversing the thion ion.
  • an acene system in which the number of elementary atoms (denoted by C) is 5 to 5 is used.
  • Is. Po which is OO49 P S, is a mixture of a substance and an aldehyde.
  • the product for example, so-called nono, zo, quino and the like can be preferably used.
  • the above-mentioned po for example, a porosity obtained by substituting an oxygen-group-free oxygen compound, for example, quinine, ton, ann, etc., in the part of the above-mentioned hydrogen-containing compound.
  • an oxygen-group-free oxygen compound for example, quinine, ton, ann, etc.
  • a run or a replacement port which is suitable for running.
  • P S is used as an insoluble substance, and it can be produced, for example, by the following method. That is, by heating the above-mentioned po in an atmosphere (including the sky) to an appropriate degree of 4 to 8 C, C obtains O of 5 to 5 and preferably of 35 to You can
  • the structure has a moderately developed structure, It is suitable as the quality of the thion ion electric device because it has the following properties and can stabilize the thion ion.
  • the diameter is not limited, but it is usually in the range of 3 to.
  • the size of the pores is not particularly limited, but it is usually .about .., and preferably .about.5.
  • the negative electrode is formed on the negative electrode current collector from the negative electrode of the above-mentioned elemental material or PS, but a known method can be used without being specified.
  • the negative electrode powder, the inda and, if necessary, the powder are dispersed in an aqueous system or an organic solution to form a slurry, and the slurry is spread as described above, or the slurry described above is formed into a dough and collected. You can do it.
  • a mud-based indapo such as S
  • a compound such as tin and povidene
  • a thermoplastic resin such as poppin, potin, and point are used. be able to.
  • the dose of inda varies depending on the type of negative electrode and the electrode, but it is ⁇ 2, preferably 2 ⁇ for the negative electrode.
  • examples of the materials used as needed include acetylene rack, graphite, and metal powder.
  • the dose of the material depends on the air conduction and the electrode of the negative electrode, but it is appropriate to add 2 to 4 to the negative electrode.
  • the quality of the negative electrode is designed with a balance between the positive electrode and the positive electrode so as to secure the negative electrode. However, considering the negative electrode, the negative electrode, the battery life, and the industrial productivity, In terms of current collection, it is usually 5 ⁇ , preferably 2 ⁇ 8.
  • the positive electrode contains a lithium ion or, for example, a positive electrode material capable of reversing on of tetra-bottom.
  • the quality is not particularly limited as long as it is capable of reversing the thion ion or on, and for example, it has an acene structure in which C is O ⁇ 5 to ⁇ 5 in the treatment of carbon, a molecule, and po.
  • Examples include sen series conductors (PS).
  • the method for forming a positive electrode in the positive electrode current collector using the above material is substantially the same as that for the negative electrode described above, and thus detailed description thereof is omitted.
  • the electrolyte used for C of 006 use an electrolyte that can transfer thium ions. It is preferable that such an electrolyte be in a normal state and can be impregnated into the electrolyte.
  • a putot that can form a lysate is preferably used. These include, for example, tin, carbon, plum, meth, carbon, cabo, chimeth, v, kutong, aceto, tokitan, tetradran, orchid, tin, suth. Horan etc. are mentioned. Furthermore, it is also possible to use a mixture of more than one of these species.
  • any electrolyte can be used as long as it can transfer thium ions and does not cause electrolysis even at a high level and can stably exist.
  • electrolytes include CO
  • a tin salt such as SO 2) 2 (C 3 SO 2) 2 can be preferably used.
  • the above-mentioned denaturation and mixing in a sufficiently dehydrated state are used for electrolysis, but in order to reduce the internal resistance of electrolysis due to denaturation during electrolysis, it is preferable that it is above, 5 It is more preferable to stay within the range of 5 to.
  • the setter electrolysis or electroconductivity having permanent pores with respect to the electrode can be used.
  • Examples of the quality of this data include ces (), potin, poppy and the like, and known ones can be used. Of these, the process () is superior in terms of durability and economy.
  • the above-mentioned cloth is preferable.
  • the length is not limited, but normally 2-5 x is preferred.
  • the metal lithium foil used as a source for supplying lithium ion to the negative electrode and / or the positive electrode contains thium ion, such as metal lithium gold, and contains at least thium ion. It is made of substances that can. It is preferable to dispose an amount of metal-thium foil capable of producing a predetermined amount of thion ions in the negative electrode and / or the positive electrode inside such as. In addition, as mentioned above, it is necessary to use the conductive foil
  • the quality of the outer package is not particularly limited, and generally, batteries or
  • metals such as iron and aluminium, plastic materials, or a laminate of these materials.
  • shape of the package is not particularly limited, it is anim type that uses a net with a molecular material such as aluminum and poppy for its small size and light weight, such as the case. External device is preferred. Explain the details by physical implementation.
  • a positive electrode current collector was formed by coating a non-carbon material on the surface of an Aluminium kiss metal (manufactured by the present metal industry formula company) and drying it. The body's (Mito Mi no) was 52, which was mostly paid.
  • the positive electrode was molded by using the electrode slurry on the positive electrode current collecting surface with a tap, and after vacuum drying, the positive electrode body (surface, both surfaces, and positive electrode current collecting) was 824.
  • ⁇ 5c X2 Oc size was cut out and evaluated.
  • As a counter electrode ⁇ A 5c X2 Oc size 2thickness tin was used as a counter, and a 5thickness tin cloth was used as a terminal to form a cell.
  • titanium was used as the metal.
  • the solution with P dissolved in each time was used for the panel carbon.
  • An electric current was used to discharge 6 minutes of the thion ions against the amount of the negative electrode, and then discharge up to • 5. It was 3 when the amount of poles was calculated from the release during the period of 2 from the latter pole.
  • ⁇ 5c X2 Oc size was cut out and evaluated.
  • As a counter electrode ⁇ A 5c X2 Oc size 2thickness tin was used as a counter, and a 5thickness tin cloth was used as a terminal to form a cell.
  • titanium was used as the metal.
  • the solution with P dissolved in each time was used for the panel carbon. It was charged to an electric current of 3.6 and then discharged to an interval of 2.5. The amount of pole difference was calculated from the release time between 3.6 and 2.5.
  • the timbre was charged with the flow of 2 until the pressure became 3.8, and the electricity of 3/8 was charged for 3 times. Then, it was discharged in the flow of 2 until it reached the level of 2.2. The initial amount and the degree of onion were evaluated from this 3 82 2 cycle. For durability, we evaluated the electrostatic capacity and the holding ratio by performing the steps 3 and 6 at the ambient temperature of 6 C, and the above cycle after 2 minutes. The results are shown in the table.
  • the positive electrode has a high degree of energy by putting a thion ion on the positive electrode and / or the positive electrode so that the positive position when the negative electrode is short-circuited is 2.
  • the capacity retention was 869, which was a good value even after two hours at high temperature.
  • the value of C XW C XW is 7.7, therefore, by setting the value of (C XW) (C XW) to 5 or more, both durability and high level of consistency can be obtained. It was
  • the total (of surface area and negative electrode current collection) was 84 2.
  • the positive electrode face, both sides, and cathode current collection
  • the amount of positive electrode 2 was calculated by the same method.
  • Timquia was evaluated by a similar method. The results are shown in Table 2.
  • the amount of the positive electrode 3 was calculated by the same method.
  • Timquia was evaluated by a similar method. The results are shown in Table 3.
  • the amount of each negative electrode 3 was calculated by the same method as the negative electrode except that 75 minutes of the amount of thium ion was used.
  • Timquia was evaluated by a similar method. The results are shown in Table 4.
  • the positive electrode has a high level of energy when the negative electrode is short-circuited so that the positive position is 2.
  • the positive electrode body (of surface, both surfaces, and positive electrode current collection) of 2 4 was obtained.
  • the amount of each negative electrode 4 was calculated by the same method as the negative electrode except that the amount of thium ions was used for the amount 62.
  • the amount of the positive electrode 4 was obtained by the same method, and it was 4.
  • Timquia was evaluated by a similar method. The results are shown in Table 5.
  • the positive electrode when the negative electrode is short-circuited has a positive position of 2 or lower.
  • the two-year retention rate is 947, which shows excellent durability.
  • C X W C X W
  • C XW C X W
  • the amount of the negative electrode 5 was calculated by the same method, and was 3
  • the amount of the positive electrode 5 was obtained by the same method, and it was 4.
  • Timquia was evaluated by a similar method. The results are shown in Table 6.
  • the positive electrode when the negative electrode is short-circuited has a positive position of 2 or lower.
  • the amount of the positive electrode 6 was calculated by the same method.
  • the position of the short-circuited electrode was measured and found to be g2 and below 2.
  • Timquia was evaluated by a similar method. The results are shown in Table 7.
  • the holding ratio for the two years was 695, which was significantly lower than the implementation rate.
  • Tium Since the positive ion of Tium has a long life, it is extremely effective as a power source or auxiliary power source for electric vehicles and electric vehicles. Further, it can be suitably used as a power source for driving an electric bicycle, an electric wheelchair, etc., a power source for a power source for solar power generation such as wind power generation, or as a power source for household appliances.

Abstract

 正極、負極、及び、電解液としてリチウム塩の非プロトン性有機溶媒電解質溶液を備えたリチウムイオンキャパシタにおいて、正極活物質は、リチウムイオン及び/又はアニオンを可逆的にドープ可能な物質である。負極活物質は、リチウムイオンを可逆的にドープ可能な物質である。正極と負極を短絡させた後の正極電位が2.0V以下になるように負極及び/又は正極に対してリチウムイオンが予めドープされる。正極単位重量当たりの静電容量C+(F/g)、正極活物質重量W+(g)、負極単位重量当たりの静電容量C-(F/g)、負極活物質重量W-(g)としたとき、(C-×W-)/(C+×W+)の値が5以上である。

Description

細 書
チウムイオ
術分野
0001 、 ネ ギ 度、出力 度が高 、 量で長寿命の チウム ンキ ャ に関する。
0002 年、高 ネ ギ 度、高出力 性を必要とする用途に対応する 電装置とし て、 チウム 次電池 電気 重層キャ の 理を組み合わ た、 イ ッドキャ 呼ばれる 電装置が注目されて る。その として、 チウム を 、脱離し得る 素材料に、 的方法で チウム を 、担 ( 下、 こともある)さ て、負極 位を下げることにより ネ ギ 度を大幅に大き できる有機 解質キャ が提案されて る( えば、特許 )。
0003 この種の有 解質キャ では、高性能が期待されるものの、負極に
を さ る場合に、極めて長時間を要することや 体に チウム を 一に担 さ ることに問題を有し、特に電極を した キャ 数枚の 極を積層した キャ の 大型の セ では、実用化は 困難とされて た。
0004 このよ 問題の 決方法として、正極集電 および 極集電 がそれぞれ
に貫通する孔を備え、負極 質が チウム を可逆 に担 能であり、負 極ある は正極 対向して配置された金属 チウムとの 的接触により チウム が される有機 解質キャ が提案されて る( えば、特許 2 )。
0005 解質キャ にお ては、電極集電 に表裏 を貫通する孔を設け ることにより、 チウム が電極集電 断されることな 電極の を移動 できるため、積層 数の セ 成の 電装置にお ても、 通じて、 金属 チウム 配置された負極だけでな チウム ら離れて配置された 極にも チウムイオンを電気 的に さ ることが可能となる。
0006 1 8 7 48 ( 2 2 38 ~47 )
2 W 3 3395
0007 来の チウムイオン にお ては、このよ 表裏 を貫通する孔を設け た電極集電 の 用により、負極 の チウムイオンの 大幅に改善でき るが、セ 命にお て 分に満足できるものではな た。 えば、 型的な チ ウムイオン では、 囲気温度6 Cでセ 3・ 6 を 、2 間 経過 の 、初期 量の 8 下に低下し、セ 命の 縮を招 て る。
明の
0008 、このよ 問題を解消するもので、 ネ ギ 度、出力 度が高 、 量の チウムイオン の 寿命 を図ることを目的とする。
0009 題を解決するため、 らは、従来の チウムイオン では、セ 量を重視し、負極の さ して るため、セ の り返しの 用と ともに の 量が低下し、所望の 能が得られな なるではな と考えた。 そこで、 チウムイオン の 負極の 比及び あたりの
変えて両極の ランスの を図ることによ て、セ の 持率が 向上できることを見出し、 明を完成さ るに至 た。
( ) 明の または 上の によれば、 チウムイオン は、正極 、負極、 、電解 として チウム塩の非プ ト 解質 液を備える。
、 チウムイオン 又は オンを可逆 能な 質で ある。 、 チウムイオンを可逆 能な 質である。 負 極を短絡さ た後の正 位が2・O ( ) 下になるよ に負極及び 又 は正極に対して チウムイオンが される。 たりの
C ( )、正極 W ( )、負極 たりの C ( 、
W ( )としたとき、 (C X
一 W一) (C XW )の値が5 上である。 (2)また、上記( )の チウムイオン にお て、 (C XW ) (C XW )
十 の値が 上であ てもよ 。 (3)また、上記( )または(2)の チウムイオン にお て、前記 極及び 又は負極が、それぞれ を貫通する孔を有する を備えており、負極 チ ウムイオン 給源との 的接触によ て チウムイオンが負極に されて もよ 。
(4)また、上記( )~(3)の ずれ の チウムイオン にお て、負極 、正極 質に比 て、単位 たりの 量が3 以上を有し、 質の 量が負極 質の 量よりも大き てもよ 。
0010 明の または 上の によれば、上記したよ に チウムイオン
の 負極の 比及び あたりの 適正 、負極の 量を正極の 量の5 以上にすることによ て、セ の 量の 時的な減 少を小さ できるので、セ の 寿命 を図ることができる。
0011 その他の特 および 、実施 の および ク ムより明白である。
0012 明の 型的実施 に係る角 チウムイオンキャ の 面図であ る。
2 明の他の典型的実施 に係る チウムイオンキャ の 面 図である。
号の
0013
a 極集電
2
2a 極集電
3 タ
4 チウム( チウムイオン 給源)
4a チウム 集電
5
6 ット
7 ット 8 9 出し部 2
明を実施するための 良の
0014 次に、 明の チウムイオン の 型的実施 を図面に基 て説明 するが、 はこれに限定されな 。 は 明に係わる チウムイオン
( 下、 Cまたは こともある の 表的な一 である セ の 面 図を示す。
0015 にお て は、 に示すよ に正極 、負極2を タ3を介して 互 に積層して電極 ット6を形成し、その まし は電極 ット6の 部が負極2となるよ に形成し、 ット6の えば 部に チウムイオン 給源として金属 チウム4を上記 、負極2に対向して配置し、これらを外装 5内に収容して構成される。 された は取出し部9によ て正極 接続され、また 2および金属 チウム4はそれぞれ 出し部8および 出し部 によ て負極 2に接続されて る。なお、 では正極
負極 2を の ( では左側)に設けて るが、これら 子の えられ、例えば の 側に分けて取り出してもよ 。 0016 このよ に構成されたセ 内に チウムイオンを移動 能な電解 ( 解質)を注入 して 、この 態で所定時間( えば ) 置する。この 、金属 チウム4 負極2とが短絡されて るので、負極2に チウムイオンを することができ る。なお、 明にお て、 とは放電の際に電流が流出し、充電の際に電流 が流入する側の極、 とは放電の際に電流が流入し、充電の際に電流が流出 する側の極を意味する。
0017 明にお て、 とは、 入、担 、吸着または 意味し、 チウムイオン 又は オンが 質に入る現象を言 。
0018 では、正極2 ( 層の数は4 )と、負極3 ( 層の数は6 )の
5層によ て を構成して るが、セ に組み込まれる正極、負極の 、セ の 類や に配置する金属 チウムの 数などによ て められる。したが 、特定されな が セ では通常 ~2 度が好ま 。また、 では 電極 ット6を外装 5に ( 平方向)に収容して るが、電極
ット6は外装 5に 向に収容することもできる。
0019 セ にお て、電極 ット6に対し 置する チウムイオン 給源である 金属 チウム4は、金属 チウム 集電 4aとが圧着され一体化されて るものが 好まし 使用できる。 体的には、集電 に圧着された金属 チウム箔を電極 ッ 6に合わ て切断し、切断された金属リチ 箔をその を外側にして 電極 ット6に対向さ て配置する。
0020 ット6を構成する正極 および 2は、 に示すよ にそれぞ れ 極集電 a 負極集電 2aの 面に正極 および (図 にはこの および をそれぞれ および 2として して る)として 成されるのが好ま 。 極集電 a 負極集電 2aは、表 裏 を貫通する孔が設けられた 材 らなり、このよ に負極集電 2a 正極集 電 aを にすることによ て、金属 チウム4が例えば に示す 電極 ット6の 部に配置されて ても、 チウムイオンが チウム4 ら の 通 て自由に各 を移動するために、電極 ット6のす ての 2に チウムイオンを できる。
0021 なお、 はしな が積層タイプの ィ ム セ では、外装 器が変わるだけで セ 上記した セ 実質同じである。
0022 2は、 明の他の典型的実施 である タイプの チウムイオン
の 面図である。なお、上記 セ 同じ部 には、同一の 号を けて説明す る。 では、帯状の 負極2を タ3を介在さ て 、好まし は 部を タ3、その 側を負極2にして 柱状の ット7を 形成し、 ット7の えば に金属 チウム4を配置し を構成し て る。 2にお て、正極 は 状の 極集電 aの 側に正極 として 、負極2は 状の 極集電 2aの 側に負極 としてそれぞれ形成されて る。 リチ 4としては、 の 4aの 面に金属リチ 箔が圧着さ れて るものが好ま 。 0023 セ 造にお て、正極集電 a 負極集電 2aは前記した タイプの 同じよ に によ て 成されており、前記 チウム4を負極2 短絡 さ ることによ て、セ に配置した金属 チウム4 ら チウムイオンが
の を通 て移動し、電極 7の 2に所定量の チウムイオンが されるよ にな て る。
0024 なお、 はしな が金属 チウムを電極 ット7の に設け、 チウム イオンを電極 ット7の 側 ら中心部に向 て移動さ て さ ても よ し、ある は電極 ット7の 心部と外周 の 方に配置して チウムイオ ンを電極 ット7の 側と外側の 方 ら できるよ にしてもよ 。また、 正極 負極を タを介して円形状に してなる円柱状の ッ ト しても同様にして金属 チウムを配置できる。
0025 明の Cは、 チウムイオン 又は オンを可逆 能な 質 らなる正極 、 チウムイオンを可逆 能な 質 らなる負極を備え、電 解 として チウム塩の非プ ト を有して る。そして、 明の Cでは正極 負極を短絡さ た後の正 位が2・ ( ) 下を有 して る。
0026 来の 重層キヤ では、通常、正極 負極に同 (主に活性炭) をほぼ て る。この の 立て時には 3 の 位を有しており 、キヤ を充電することにより、正極 面には オンが電気 重層を形成して 正極 上昇し、一方 面には チオンが電気 重層を形成して電位が降 下する。逆に、放電 には正極 ら オンが、負極 らは チオンがそれぞれ 中に放出されて電位はそれぞれ下降、上昇し、 3 戻 て る。このよ に 通常の 素材料は 3 の 位を有して るため、正極、負極ともに炭素材料を用 た有機 解質キヤ は、正極 負極を短絡さ た後の正 および は ずれも 3 となる。
0027 これに対し、 明の Cでは上記したよ に正極 負極を短絡した後の 正 2・ O ( 、以下 下である。すなわち、 明では正極に チウムイオン 又は オンを可逆 能な活 質を用 、また負極 に チウムイオンを可逆 能な活 質を用 、正極 負極を短絡さ た後 に正極 位が2・ 下になるよ に、負極及び 又は正極に チウムイオンを さ て る。 チウムイオンを さ るとは、正極及び 外の え ば チウムの チウムイオン 給源 ら チウムイオンを供給し、 さ ると ことである。
0028 なお、 明で、正極 負極を短絡さ た後の正 位が2・ 下とは 、 (
) チウムイオンによる 、キヤ の 極端子と負極端子を導線で直 接結合さ た状態で 2 間以上 置した後に短絡を解除し、 ・ 5~ ・ 5 間内に 定した正極 位、 ( ) 験機にて 2 間以上 けて まで さ た後に、 ・ 5~ ・ 5 間内に 定した正極 位、の( )または( )の2 の ず れ の 法で められる正極の 位が2・ 下の 合を 。
0029 また、 明にお て、正極 負極とを短絡さ た後の正 位が2・ 下と のは、 チウムイオンが されたすぐ だけに限られるものではな 、充電 、 放電 ある は 電を繰り返した後に短絡した場合など、 ずれ の 態で短 絡 の 位が2・ 下となることである。
0030 明にお て、正極 負極とを短絡さ た後の正 位が2・ 下になると ことに関し、以下に詳細に説明する。 のよ に活性炭 素材は通常3 後 の 位を有しており、正極、負極ともに活性炭を用 て を組んだ場合、 ずれの 位も約3 となるため、短絡しても正極 は わらず 3 である。また、正極に 活性炭、負極に チウムイオン 次電池にて使用されて る 素の よ 素材を用 た、 わゆる イ ッド の 合も同様であり、 ずれ の 位も約3 となるため、短絡しても正極 は わらず 3 である。 負極 の ランスにもよるが、充電すると負極 位が まで推移するので、充電 電圧を高 することが可能となるため 、 ネ ギ 度を有した と なる。 般的に充電電圧の 正極 位の 昇による電解 の 解が起こらな 圧に決められるので、正極 位を上限にした場合、負極 位が低下する分、充 電電圧を高めることが可能となる。
0031 し しながら、短絡 に正極 位が約3 となる上述の イ ッド では、 極の 位を例えば4・ とした場合、放電 の 3・ までであり、 正極の ・ 度と正極の 量を充分利用できて な 。更に、負極に チウムイオンを ( )、 ( )した場合、初期の 電効率が低 場合が多 、放電 に脱離できな チウムイオンが存在して ることが知られて る 。これは、負極 面にて電解 の 解に消費される場合や、炭素材の
トラップされる等の説明がなされて るが、この 合正極の 電効率に比 極の 電効率が低 なり、 電を繰り返した後に を短絡さ ると正極 3 よりも高 なり、さらに利用 低下する。すなわち、正極は4・ ら2・ まで 放電 能であるところ、4・ ら3・ までし えな 場合、利用 として半分 し 用して な こととなり、 圧にはなるが 量にはならな のである。 イ ッド を 、 ネ ギ 度だけでな 、 そして更に ネ ギ 度を高めるためには、正極の 量を向上さ ることが必要である。 0032 の 位が3・ よりも低下すればそれだけ利用 量が増え、 量に することができる。 2・ 下になるためには、セ の 電により される気だけ でな 、別途 チウムなどの チウムイオン 給源 ら負極に チウムイオンを充 電することが好まし 。 負極 外 ら チウムイオンが供給されるので、短絡さ た時には、正極、負極、金属 チウムが平衡 位になるため、正極 位、負極 位 ともに3・ 下になり、金属 チウムの量が多 なるほどに平衡 低 なる。
、正極 が変われば 位も変わるので、短絡 の 位が2・ 下 になるよ に、負極 、正極 の 性を鑑みて負極に さ る チウムイオン量の 調整が必要である。
0033 明の Cにお て、正極 負極を短絡さ た後の正 位が2・ 下にな ると ことは、上記したよ に Cの および 外 ら正極及び 又は負 極に チウムイオンが供給されて ると ことである。 チウムイオンの 負極 正極の 方ある は両方 ずれでもよ が、例えば正極に活性炭を用 た場合、 チウムイオンの 量が多 なる。この 合、正極 位が低 なり、 チウムイオンを 不可逆 に消費してしま 。この 果、セ の 量が低下するなどの 具合が生じる 場合があるので、負極 正極に供給する チウムイオンの量は不具合が生じな よ 御が必要である。 ずれの 合でも、 極及び 又は負極 チウムイ オン 給源との 的接触によ て正極及び 又は負極に された チウ ムイオンは充電により 供給( )されるので、負極 低下する。
0034 また、正極 負極を短絡さ た後の正 位が2・ よりも高 場合は、正極及び 又は負極に供給された チウムイオンの量が少な ため の ネ ギ 小さ 。 チウムイオンの 給量が多 なるほどに正極 負極を短絡さ た後の正 低 なり ネ ギ 向上する。 ネ ギ 度を得るには2・ 下が好まし 、更に高 ネ ギ 度を得るには ・ 下が好まし 。
負極を短絡さ た後の正 位が低 なると ことは、言 換えると、セ の 電に より 供給される チウムイオンの量が多 なると ことであり、負極の 量 が増大するとともに負極の 量が小さ なり、結果的に正極の 量が 大き な て の および 量が大き なり、高 ネ ギ 度が得られ るのである。
0035 し しながら、正極 位が ・ を下回ると、正極 質にもよるが、ガス 生や、 チウムイオンを不可逆に消費してしま 等の不具合が生じるため、正極 位の 定 が困難となる。また、正極 位が低 なりすぎる場合は負極 量が過剰と ことであ り、逆に ネ ギ 低下する。したが て、一般的には正極 ・ 上であり、好まし は ・ 3 上である。
0036 なお、 明にお て静電 量、容量は次のよ に定義する。セ の とは 、セ の カ の きを示し ( ァラッド)、セ の たりの とは の 量をセ 内に充填して る正極 負極 量の 計重量にて割 た値であり、単位は 、正極の とは正極の カ の きを示し ( ァラッド)、正極の たりの とは 正極の 量をセ 内に充填して る正極 量にて割 た値であり、単位 は 、負極の とは負極の カ の きを示し 、負極の たりの とは負極の 量をセ 内に充填して る負極
量にて割 た値であり、単位は である。
0037 更に、セ とは の 放電 圧の 、すなわち電圧 の 量の積であり C ン)であるが、 Cは 間に の 流が流れたときの 荷量であるので、 明にお ては 算して 示すること とした。 とは放電 始時の 位と放電 の 位の (
) 正極の 量の積であり、単位はCまたは 、同時に負極 と は放電 始時の 位と放電 の 位の ( ) 負極 の 量の積であり、単位はCまたは である。これらセ 正極 量、負 極 とは一致する。
0038 、上記 Cにお て正極 たりの C ( )、正極
W ( )、負極 たりの C ( )、負極 W ( )としたとき、 (C XW ) (C XW )の値が5 上、好まし は 上であるこ 一 一 一
とを特徴とする。 (C XW ) (C XW )を5 上にすることによ て、すなわち の 量を正極の 量の5 以上にすることによ て の 持率を 向上さ ることが可能となり、セ の 久性、長寿命 が得られる。 (C XW ) (C W )が5 では、セ の り返し使用によ てC が低下したときのセ 量の が増大し 持率が低下するためにセ 命が短命となる。 0039 明における Cの 寿命 、使用する正極 および 質を考 慮して、正極 量、負極 量、負極に チウムイオン 、な どを、 (C X
一 W一) (C XW )が5 上となるよ に適正 することによ て得られる 。 体的には、選択された正極 および 質にお て、負極の 正極の 対して大き する、 まり 質量を増大さ ること(W の )によ て得られる。また、負極に チウムイオン量を多 して負極
りの 量を大き すること(C の )によ て得られる。このよ に(W の )および(C の )の または両方によ て得られるが、負極に チウムイオンの量は、セ の 全性、負極 質の チウムイオンの 量の限界 などの 約があるため、通常は負極の 大き して(W の )を図るのを優 先するのが好ま 。その上で チウムイオン量を支障が生じな 範囲で増大さ てC の 大を図る。し し、 はこれに限定されな で、 (C W ) (C XW )が5 上になるよ 合的に決めることができる。 えば、少な 一 一 チウムイオン量でより大きな あたりの 量が得られる負極 質を 用 た場合、負極の 小さ ても(C XW ) (
一 C XW )を5 上にすること 一
ができる。 極の 大き して(W の )、 (C XW ) (C XW )
一 一 を5 上にした場合、セ の り返し使用とともに負極 りの C が低下して も、W が 設定さ
一 大き れて るため、十分な負極 量を確保できる。また、C一を 大き 設定した場合も同様にC が減少した後でも十分な負極 量が確保できる 。 て、セ の 量の (C XW (C XW が5
一 一 満の 合に て小さ できる。
0040 明の Cでは、 (C XW ) (C XW )の値が大き ほど の 久
一 性は 上するが、W を増大さ て(C XW ) (
一 C XW )の値を大き た場合、負 一 し 極 の 大き なると 量の を得るのが困難となる。 (C XW ) (C XW )の 限定されな が、セ の 量の 保と長寿命 ランスさ る上で 、使用する負極 質の あたりの 量に応じて(C XW ) (C X W )はある 以下であるのが好まし 。 えば、単位 あたりの 量が ( )の 質と あたりの 量が ( )の 質を 用 る場合、 (C XW ) (C XW )の 用的な としては、 量で高 圧の Cを確保しやす する面 ら、2 下が好まし 。ただし、より大きな あたり の 量を持 質を用 た場合はこの りではな 。
0041 また、 明の Cでは、負極 質の たりの 量が正極 質 の たりの 量の3 以上を有し、 量が負極
量よりも大き ことが好まし 。 極の 使用する正極 質によ て 実質的に決められる。したが て、この 極の 量を考慮して負極
チウムイオンの量を適切に制御することにより、正極 たりの 量の3 以上の静 量を確保し、 量を負極 量よりも大 きすることができる。これにより、従来の 重層キヤ よりも
量の が得られる。さらに、正極の たりの 量よりも大き たりの 量を持 極を用 る場合には、負極の を変え ずに負極 量を減らすことが可能となるため、正極 質の が多 な の および 量を大き できる。 量な を得るためには、正極 負極 量に対して大き とが好ま が、 ・ f ~ 倍である ことが更に好ま 。 ・ f であれば 来の 重層キヤ との が小さ なり、 倍を超えると逆に従来の 重層キヤ より 量が小さ なる 場合もあり、また正極 負極の 差が大き なり過ぎるのでセ 成上 まし な 0042 下に、 明の チウムイオン を構成する主要素に て 明す る。 明の 極集電 および 極集電 としては、一般に有機 解質 池などの 用途で提案されて る の 質を用 ることができ、正極集電 にはア ウム 、ステン ス 、負極集電 にはステン ス 、 、 ッケ 等をそれぞれ 適に 用 ることができ、 、ネット 状のものを用 ることができる。特に負極 及び 又は正極に チウイオンを さ るためには、表裏 を貫通する孔を 備えたものが好まし 、例えば キス ンドメタ 、 ンチングメタ 、金属 、発泡 、ある は チングにより 付与した 挙げることができる。 極 集電 の 、 、その 定できる。
0043 更に好まし は、電極を形成する前に、 極集電 の 、脱落しに 料を用 て少な とも一部を閉塞 、その上に正極および 極を形成する ことにより、電極の 産性を向上さ るとともに、電極の 落による の 頼 性 下の 題を解決し、更には、集電 を含む 極の さを薄 して、 ネ ギ 度、高出力 度を実現できる。
0044 極集電 の の 、 、後述する電解 中の チウムイオンが電極 集電 断されることな 電極の を移動できるよ に、また、上記 料によ て しやす よ に 定することができる。
0045 この 極集電 の 、 ( 重量 ) ( け
) 比を百分率に 算して得られるものと定義する。 明に用 る電極集電 の 、通常、 ~79 、好まし は2 ~6 である。 極集電 の
、セ の 造や生産性を考慮し、上述の 囲で 定することが望ま 。 0046 質としては、 チウムイオンを可逆 できるものであれば特に 限定されず、例えば 、 、 ポ の 処理 であ て 素原子 素原子の 子数 ( C 記す)が ・ 5 ~ ・ 5である アセン系 造を有する アセン系 導体(P S)等を挙げることができる。 中でもP Sは 量が得られる点でより好ま 。 えば C ・ 2 度のP S に4 の チウムイオンを ( )さ た後に放電さ ると
上の静 量が得られ、また、5 上の チウムイオンを ( )さ た後に放電さ ると75 上の静 量が得られる。このこと ら、P Sが 非常に大きな 量を持 ことがわ る。
0047 明の 形態にお て、P Sのよ ァス 造を有する 質を 負極に用 た場合、 さ る チウムイオン量を増加さ るほど電位が低下する ので、得られる 電装置の ( 電電圧)が高 なり、また、放電における電圧の
( )が低 なるため、求められる 電装置の 圧に応 じて、 チウムイオン量は活 質の チウムイオンド プ 力の 囲内にて 定 することが望ま 。
0048 また、P Sは ァス 造を有すること ら、 チウムイオンの ・
対して ・ 縮 構造変 がな ためサイク 性に優れ、また チウム イオンの ・ 対して等 的な分子構造( )であるため、急速 電、急速 電にも優れた特性を有すること ら負極 質として好適である。 0049 P Sの である ポ とは、 物とア デ ヒド類との 合物である。 物としては、例えば ノ 、ク ゾ 、キ ノ 等の如 、 わゆる ノ 類を好適に用 ることができる。 えば、下記
0050
Figure imgf000016_0001
こで、 および はそれぞれ 立に、 、 または2である で表される チ ・ビス ノ 類であることができ、ある は ・ビ 類、ヒド タ ン類であることもできる。これらの中でも、実用的には ノ 類、特に ノ が 好適である。
0051 また、上記 ポ としては、上記の ノ 酸基を有する 素化合物の 部に、 ノ 酸基を有さな 素化 合物、例えばキ ン、ト ン、ア ン等で 換した ポ 、 例えば ノ キ ン ホ ムア デヒドとの 合物を用 ることもできる。更に 、 ラ ン、 換した ポ を用 ることもでき、 ラン 好 適である。
0052 明にお てP Sは不溶 として使用され、 例 えば ポ ら次のよ にして製造することもできる。すなわち、 上記 ポ を、 , 囲気 ( 空も含む)中で4 ~8 Cの 当な 度まで に加熱することにより、 CがO・ 5~ ・ 5、好まし は ・ 35~ ・ の を得ることができる。
0053 し し、不溶 の はこれに限定されることな 、例えば、 3
24 24 に記載されて る方法で、上記 Cを有し、 6
上の 法による 面積を有する不溶 を得ることもできる。
0054 明に用 る不溶 、X (C )によれば、メイン・ピ クの
2 で表して24。 下に存在し、また メイン・ピ クの他に 。
4 ~46 の間 に ドな他 ピ クが存在して る。すなわち、上記 、
造が適度に発達した アセン系 造を有し、 ァス を有し、 チウムイオンを安定に することができること ら、 チウムイオン 電装 置 の 質として好適する。
0055 明にお て負極 、細孔 上で細孔 ・
上 するものが好まし 、その 径の 限定されな が、通常は3~ の 囲である。また、細孔 の 囲に ても特に限定されな が、通常 ・ ~ ・ であり、好まし は ・ 5~ ・ である。
0056 明にお て負極は、上記の 素材料やP S等の負 末 ら負極集 電 上に形成されるが、その 特定されず 知の 法が使用できる。 体的に は、負極 末、 インダ および 要に応じて 末を水系または有機 に分散さ てスラ とし、 スラ を前記 布する 、または上 記スラ を ト状に成形 、これを集電 付けることによ て 成でき る。ここで使用される インダ としては、例えばS 等の ム系 インダ ポ 、 チ ン、ポ ビ デン等の合 ッ 脂、ポ プ ピ ン、ポ チ ン、ポ アク ト等の熱可塑性 脂を用 ることができる。 インダ の 用量 は、負極 質の 類や電極 により異なるが、負極 質に対して ~2 、好まし は2~ である。
0057 また、必要に応じて使用される 料としては、アセチ ン ラック、グラ ァイ ト、金属粉末 が挙げられる。 料の 用量は負極 質の 気伝導 、電 極 により異なるが、負極 質に対して2~4 合で加えるのが適 当である。なお、負極 質の さは、セ の ネ ギ 度を確保できるよ に正 極 質との さの ランスで設計されるが、セ の 度と ネ ギ 度、セ 命、工業的 産性 考慮すると、集電 の 面で通常、 5~ 、好ま し は2 ~8 である。
0058 明の Cにお て、正極は、 チウムイオン 又は、例えばテトラ オ ボ トの オンを可逆 できる正極 質を含有する。
質としては、 チウムイオン 又は オンを可逆 できるものであ れば特には限定されず、例えば 性炭、 分子、 ポ の 処理 であ て CがO・ 5~ ・ 5 である アセン系 造を有する セン系 導体(P S)等を挙げることができる。
0059 なお、上記 質を用 て正極集電 に正極を形成する方法は、前記した負 極の 合と実質的に同じであるので、詳細な説明は省略する。
0060 明の Cに用 る電解質としては、 チウムイオンを移送 能な電解質を用 る。このよ な電解質は、通常 状であ て タに含浸できるものが好ま 。 この 解質の としては、 プ トン 解質 液を形成できる プ ト 好まし 使用できる。この プ としては、例えば チ ンカ ボネ ト、プ ピ ンカ ボネ ト、 メチ カ ボネ ト、 カ ボ 、 チ メチ カ ボネ ト、 v クトン、アセ ト 、 トキ タン 、テトラ ド ラン、 ラン、 チ ン、ス ホラン等が挙げられる。更に、こ れら プ トン の 種以上を混合した を用 ることもできる。
0061 また、 る 溶解さ る電解質としては、 チウムイオンを移送 能で高 でも電気分解を起こさず、 チウムイオンが安定に存在できるものであれば 用でき る。このよ な電解質としては、例えば C O
Figure imgf000018_0001
SO 2) 2 (C 3SO2) 2等の チウム塩を好適に用 ることができる。
0062 記の 解質および 、充分に脱水された状態で混合して電解 とするが、 電解 中の 解質の 、電解 による内部 抗を小さ するため な とも ・ 上とすることが好まし 、 ・ 5~ ・ 5 の 囲内とすることが更に好 ま 。
0063 また、セ タとしては、電解 ある は電極 に対して 久性のある 気孔を有する電気伝導 のな 用 ることができる。この タの 質としては、セ ス( )、ポ チ ン、ポ プ ピ などの 挙げられ、 既知のものが使用できる。これらの中でセ ス( )が 久性と経済性の点で優 れて る。そして、使用形態としては前記したよ に または の 布が好まし 。 タの さは限定されな が、通常は2 ~5 x 度が好ま 。 0064 また、負極及び 又は正極に チウムイオンを さ るための チウムイオ 給源として使用される金属リチ 箔は、金属リチ ム ア ウム 金のよ に、少な とも チウム 素を含有し、 チウムイオンを供給することの できる物質によ て 成される。 等の内部には、負極及び 又は正極に 所定量の チウムイオンを できる金属 チウム箔の量を配置するのが好まし 。 また、 チウム箔に一体 される としては、前記したよ に導電
が好まし 、具体的にはステン スメッ 等の金 チウム 反応しな 金属 を用 ることが好まし 。
0065 明にお て外装 器の 質は特に限定されず、一般に電池または
に用 られて る、例えば鉄、ア ウム等の金 料、プラスチック 料、ある はそれらを積層した 使用できる。また、外装 器の 状も特に限定さ れな が、キヤ 等の小型 、軽量化の 点 らは、ア ウム ナイ ン、ポ プ ピ などの 分子 料との ネ ト イ ムを用 た イ ム型の外 器 が好まし 。 体的な実施 により 細を説明する。
1
0066 ( の )
・ 5 の ノ ット に入れ、窒素 囲気 Cまで5 C 間の 度で、更に C 間の 度で8 Cまで し て 処理し、P Sを合成した。 して得られたP S板をボ で粉砕すること により、平均 が約4 のP S を得た。このP S C比は ・ であ た。次に、上記P S 92 、アセチ ン ラック 6 、アク 系 インダ 5 、力 メチ セ ス3 、水2 とな る 成にて 合することによりスラ を得た。 32 ( 57 )の キス ンドメタ ( 本金属工業 式会社製) らなる負極集電 の 面に上記ス ラ を タ に テイングして負極 を成形 、真空 燥後、全 体の ( 面の さと負極集電 さの )が78 の を得 た。
0067 ( の )
面積2 の 性炭 92 、アセチ ン ラック 6 、アク 系 インダ 7 、力 メチ セ ス4 、水2 となる 成にて 合することによりスラ を得た。 38 ( 47 ア ウム製 キス ンドメタ ( 本金属工業 式会社製)の 面に非 系のカ ボン系 料を タ に テイング 、乾燥することにより が形成された正極 集電 を得た。 体の ( みと みの )は52 であり はほぼ 料により された。 極のスラ を タ にて 極集電 の 面に テイングして正極 を成形 、真空 燥後、正極 体の ( 面の さと両面の さと正極 集電 さの が 824 の を得た。
0068 ( の たりの )
を ・ 5c X2 Oc サイズに切り出し、評価 とした。この 対極として ・ 5c X2 Oc サイズ、厚さ2 の チウムを厚さ5 のポ チ ン製 布を タとして介して組み合わ セ を組んだ。
として金属 チウムを用 た。 としては、プ ピ ンカ ボネ トに、 の 度に P を 解した 液を用 た。 電電流 にて負極 量に対 して6 分の チウムイオンを 、その に ・ 5 まで放電を 行 た。 後の 極の 位 ら ・ 2 する間の放 間より 極の たりの 量を求めたとこ 3 であ た。
0069 ( の たりの )
を ・ 5c X2 Oc サイズに切り出し、評価 とした。この 対極として ・ 5c X2 Oc サイズ、厚さ2 の チウムを厚さ5 のポ チ ン製 布を タとして介して組み合わ セ を組んだ。
として金属 チウムを用 た。 としては、プ ピ ンカ ボネ トに、 の 度に P を 解した 液を用 た。 電電流 に 3・ 6 まで充電しその 電を 、 間の 、 に 2・ 5 まで放電を行 た。 3・ 6 ~2・ 5 間の放 間より 極の たりの 量を求めたとこ 4 であ た。
0070 (セ の )
を2・4c 3 8c に5 カ ト 、負極 を2・ 5c 3 gc に6 カ ト 、 された正極 負極 を タを介して積層 、 5 Cで 2 した 後、最上部と最下部に タを配置さ て4辺をテ プ めして電極 ッ トを得た。 量に対して6 分の金 チウムを厚さ2 の ラスに圧着したものを負極 対向するよ に電極 ットの 部に 置 した。 (6 ) 金属 チウム箔を圧着した ラスとはそれぞれ 接し、接触さ て 電極 ットを得た。 ットの 極集電 の (5 ) に、 分に ラント ィ を した 3 、長さ5 、厚さ ・ のア ウム製 極端子を重ねて 音波 接した。 様に負極集電 の (6 )に、 分に ラント ィ を した 3 、長さ 5 、厚さ ・ の ッケ 製 極端子を重ねて 音波 接し、 6 、 3 、深さ3 に りした外装 ィ と深 りして な 外装 ィ 枚 の間に設置した。
0071 ネ ト ィ の 他の2辺を熱 した後、電解 として チ ンカ ボネ ト、ジ カ ボネ トおよびプ ピ ンカ ボネ トを体積 3 4 とした 、 ・ 2 の 度に P を 解した 液を真空 さ 、その 、残り 辺を減圧 にて 、真空 〒 ことにより ィ ム キヤ を3セ 立てた。
0072 また、正極 の 重量(5 )、負極 の 重量(6 ) らそれぞれの 量を 算出したところ、正極 ・ 3 、負極 ・ 25 であ た。 て、正極 たりの C ( )、正極 W ( )、負極 たりの C ( )、負極 W ( )とした時、 (C XW )
一 一 一 (C XW の値は7・ 7とな た。
0073 セ の )
セ み立て後 4 間放置 を分解したところ、金属 チウムは完全に無 な て たこと ら、負極 質の たりに 3 の 量を得る ための チウムイオンが されたと判断した。その 、 の 負極を 短絡さ 位を測定したところ、 ・ 8 であり、 2・ 下であ た。
0074 た ィ ム キヤ を、2 の 流でセ 圧が3・ 8 になる まで充電し、その 3・ 8 の 圧を印 する 電を3 行 た。 で、2 の 流でセ 2・ 2 になるまで放電した。この3・ 8 2・ 2 サイク ら初期 量、 ネ ギ 度を評価した。その 、 久性 価のた め、 囲気温度6 Cでセ 3・ 6 を 、 2 間経過 に上記のサイク を行 、静電 量、静電 持率を評価した。 果を表 に示す。
0075
Figure imgf000022_0001
0076 負極を短絡さ た時の正 位が2・ 下になるよ 極及び 又は正 極に チウムイオンを さ ることにより、高 ネ ギ 度を有した が得られた。 方、高温 2 間経過 にお ても容量 持 率は86 9 良好な値を示した。 のC XW C XW の値は7・ 7であ 、従 て、 (C XW ) (C XW )の値を5 上とすることで な 久性と 一 一 高 ネ ギ 度を併 持 が得られた。
2
0077 ( 2の )
同様の 法で、全体の ( 面の さと負極集電 さの )が84 の 2を得た。
( 2の )
面積 の 性炭 末を用 る以外は正極 同様の 法で、正 極 体の ( 面の さと両面の さと正極集電 さの )が2254 の 2を得た。
( 2の たりの )
同様の 法で負極2の たりの 量を求めたとこ 3 であ た。
( 2の たりの )
同様の 法で正極2の たりの 量を求めたとこ 8 であ た。
(セ 2の )
2、負極2を用 る以外は 同様の 法で3セ 立てた。また、正極2 の 重量(5 )、負極2の 重量(6 ) らそれぞれの 量を算出したところ 、正極 ・4 、負極 ・ 7 であ た。 て、正極
たりの C ( )、正極 W ( )、負極 たり の C ( )、負極 W ( )とした時、 (C XW ) (C X
一 一 一 W )の値は ・ 9とな た。
(セ 2の )
セ み立て後 4 間放置 を分解したところ、金属 チウムは完全に無 な て たこと ら、負極 質の たりに 3 の 量を得る ための チウムイオンが されたと判断した。その 、 の 負極を 短絡さ 位を測定したところ、 ・ 83 であり、 2・ 下であ た。
た ィ ム キヤ を 同様の 法で評価した。 果を表2に示 す。
0078 2 エネルギ 2000 持率 ( ) ( h L の ( )
(
2 0 4 0 0079 負極を短絡さ た時の正 位が2・ 下になるよ 極及び 又は正 極に チウムイオンを さ ることにより、単位 たりの 量が低 質を用 た場合でも、高 ネ ギ 度を有した が得られた。 方、高温 2 間経過 にお ても容量 持率は9 2 実施 より良好な値を示した。 2の(C XW ) (C XW )の値は ・ 9であり 一 一
C XW C XW の値を 上とすることでより良好な 久性と高 ネ ギ ー
度を併 持 が得られた。 て 久性を重視した場合(C XW ) (C XW )の値を 上とするのがより好適である。 3 0080 ( 3の )
面積22 の 性炭 末を用 る以外は正極 同様の 法で、正 極 体の ( 面の さと両面の さと正極集電 さの )が 8 4 の 3を得た。
( 3の たりの )
同様の 法で正極3の たりの 量を求めたとこ 6 であ た。
(セ 3の )
3を用 る以外は 同様の 法で3セ 立てた。また、正極3の 重量 (5 )、負極 の 重量(6 ) らそれぞれの 量を算出したところ、正極 ・ 3 、負極 ・ 25 であ た。 て、正極 た りの C ( )、正極 W ( )、負極 たりの
C ( )、負極 W ( )とした時、 (C XW ) (C XW ) 一 一 一 の値は6 ・ 8とな た。
(セ 3の )
セ み立て後 4 間放置 を分解したところ、金属 チウムは完全に無 な て たこと ら、負極 質の たりに 3 の 量を得る ための チウムイオンが されたと判断した。
その 、 の 負極を短絡さ 極の 位を測定したところ、 ・ 8 であ り、 2・ 下であ た。
た ィ ム キヤ を 同様の 法で評価した。 果を表3に示 す。
0081 エネルギー 2000 持率 ( ) ( h L) の
( )
4 8 3 85 負極を短絡さ た時の正 位が2・ 下になるよ 極及び 又は正 極に チウムイオンを さ ることにより、高 ネ ギ 度を有した
が得られた。 3では単位 たりの 量が大きな正極 質を用 て るため実施 より高 ネ ギ 度を有して る。 方、高温
2 間経過 にお ても容量 持率は85 5 良好な値を示した。
3の(C XW ) (C XW )の値は6・ 8であ た。 て、 量な
一 一 正極 質を た場合でも(C XW ) (C XW )の値を5 上とすることで な 久性と 一 一
ネ ギ 度を併 持 が得られた。
4
( 3の )
同様の 法で、全体の ( 面の さと負極集電 さの )が66 の 3を得た。
( 3の たりの )
量に対して75 分の チウムイオンを する以外は負 極 同様の 法で負極3の たりの 量を求めたとこ 26 であ た。
(セ 4の )
3を用 、負極 量に対して75 分の金 チウムを配置する 以外は 同様の 法で3セ 立てた。
また、正極 の 重量(5 )、負極3の 重量(6 ) らそれぞれの 量を 算出したところ、正極 ・ 3 、負極 ・ 2 であ た。
て、正極 たりの C )、正極 W )、負極 たりの C ( )、負極 W ( )とした時、 (C XW )
一 一 一 (C XW )の値は 2・4とな た。
(セ 4の )
セ み立て後 4 間放置 を分解したところ、金属 チウムは完全に無 な て たこと ら、負極 質の たりに26 の 量を得る ための チウムイオンが予備 されたと判断した。 その 、 の 負極を短絡さ 極の 位を測定したところ、 ・ 7 であり 、 2・ 下であ た。
た ィ ム キヤ を 同様の 法で評価した。 果を表4に示 す。
0084 ネルギー 20 0 持率 (「) ( h L) の ( )
( )
4 38 5 35 90 4 0085 負極を短絡さ た時の正 位が2・ 下になるよ 極及び 又は正 極に チウムイオンを さ ることにより、高 ネ ギ 度を有した
が得られた。 4では さ た チウムイオンの量が多 、単位 たりの 量が大きな負極を用 て るため実施 より高 ネ ギ 度を有して る。 方、高温 2 間経過 にお ても容量 持率 は9 4 実施 より良好な値を示した。 4の(C XW ) (C XW )の 2・4であ た。 て、 量な負極を用 た場合でも(C XW ) (C X W )の値を 上とすることでより良好な 久性と高 ネ ギ 度を併 持 が得られた。
5 0086 ( 4の )
ラン の 料である ア を6 Cで24 間保持することによ り 脂を硬 さ 、黒色 脂を得た。 られた黒色 脂を に入れ、 窒素 囲気 にて 2 Cまで3 間で 、その 度にて2 間保持した。
り出した試料をボ にて することにより、平均 が約8 の , 末を得た。この , C比は ・ 8 であ た。
次に、この , を用 る以外は負極 同様の 法で、全体の ( 面の さと負極集電 さの )が63 の 4を得た。 ( 4の )
同様の 法で、正極 体の ( 面の さと両面の さと正極集電 さの )が2 4 の 4を得た。
( 4の たりの )
量に対して 分の チウムイオンを する以外は負 極 同様の 法で負極4の たりの 量を求めたとこ 62 であ た。
( 4の たりの )
同様の 法で正極4の たりの 量を求めたとこ 4 であ た。
0087 (セ 5の )
4、負極4を用 、負極 量に対して 分の金 チウムを 配置する以外は 同様の 法で3セ 立てた。
また、正極4の 重量(5 )、負極4の 重量(6 ) らそれぞれの 量を 算出したところ、正極 ・ 35 、負極 ・ 8 であ た。 て、正極 たりの C ( )、正極 W ( )、負極 たりの C ( )、負極 W ( )とした時、 (C XW )
一 一 一 (C XW )の ・ 8とな た。
(セ 5の )
セ み立て後 4 間放置 を分解したところ、金属 チウムは完全に無 な て たこと ら、負極 質の たりに62 の 量を得る ための チウムイオンが されたと判断した。
その 、 の 負極を短絡さ 位を測定したところ、 ・ 85 であり、 2・ 下であ た。
た ィ ム キヤ を 同様の 法で評価した。 果を表5に示 す。
0088 5 ネルギー 2 保持率
(「 ( h L) の
5 47 0 44 5 94 7 0089 負極を短絡さ た時の正 位が2・ 下になるよ 極及び 又は正 極に チウムイオンを さ ることにより、高 ネ ギ 度を有した
が得られた。 5では負極 たりの C を大き すること で(C XW ) (C XW )の値を22・ 8 大きな値に設定して る。そのため(C W ) (C XW )の値を 上としながら正極 大き 設定でき、結果、 一
の より 量、高 ネ ギ 度の が得られた。また、高温
2 間経過 の 持率は94 7 非常に優れた 久性を示 して る。 て、より大きな たりの 量を持 極を用 て(C X W ) (C XW )の値を 上とすることで、より良好な 久性と非常に高 ネ ギ 度を併 持 が得られた。 0090 ( 5の )
同様の 法で、全体の ( 面の さと負極集電 さの )が の 5を得た。
( 5の )
同様の 法で、正極 体の ( 面の さと両面の さと正極集電 さの )が22 の 5を得た。
( 5の たりの
同様の 法で負極5の たりの 量を求めたとこ 3 であ た。
( 5の たりの )
同様の 法で正極5の たりの 量を求めたとこ 4 であ た。
(セ 6の ) 5、負極5を用 る以外は 同様の 法で3セ 立てた。 また、正極5の 重量(5 )、負極5の 重量(6 ) らそれぞれの 量を 算出したところ、正極 ・4 、負極 ・ 3 であ た。 て、正極 たりの C ( )、正極 W ( )、負極 たりの C ( )、負極 W ( )とした時、 (C XW )
一 一 一 (C XW )の値は3とな た。
(セ 6の
セ み立て後 4 間放置 を分解したところ、金属 チウムは完全に無 な て たこと ら、負極 質の たりに 3 の 量を得る ための チウムイオンが されたと判断した。
その 、 の 負極を短絡さ 位を測定したところ、 ・ g であり、2 O 下であ た。
た ィ ム キヤ を 同様の 法で評価した。 果を表6に示 す。
0091 ネルギー 0 持率 ( ) h L) の ( )
(
42 3 15 8 32 0 5 7 0092 負極を短絡さ た時の正 位が2・ 下になるよ 極及び 又は正 極に チウムイオンを さ ることにより、高 ネ ギ 度を有した
が得られた。 方、比較 の(C XW ) (C XW )の値は3であるが、 一 一 高 2 間経過 の 持率は75 7 であり、実施 に 比 幅に低下した。
て、 久性を重視した場合、 (C XW ) (C XW )の値は5 上とするの 好ま 。
2
0093 ( 6の ) 同様の 法で、全体の ( 面の さと負極集電 さの )が4 の 6を得た。
( 6の )
面積22 の 性炭 末を用 る以外は正極 同様の 法で、正 極 体の ( 面の さと両面の さと正極集電 さの )が225 の 6を得た。
( 6の たりの
同様の 法で負極6の たりの 量を求めたとこ 3 であ た。
( 6の たりの )
同様の 法で正極6の たりの 量を求めたとこ 6 であ た。
0094 (セ 7の )
6、負極6を用 る以外は 同様の 法で3セ 立てた。 また、正極6の 重量(5 )、負極6の 重量(6 ) らそれぞれの 量を 算出したところ、正極 ・4 、負極 ・ であ た。
て、正極 たりの C ( )、正極 W ( )、負極 たりの C ( )、負極 W ( )とした時、 (C XW )
一 一 一 (C XW の値は2とな た。
(セ 7の )
セ み立て後 4 間放置 を分解したところ、金属 チウムは完全に無 な て たこと ら、負極 質の たりに 3 の 量を得る ための チウムイオンが されたと判断した。
その 、 の 負極を短絡さ 極の 位を測定したところ、 ・ g2 であ り、 2・ 下であ た。
た ィ ム キヤ を 同様の 法で評価した。 果を表7に示 す。
0095 7 エネルギー 持率
(「) ( h L) の ( )
(「)
2 42 9 6 3 29 8 69 5 0096 負極を短絡さ た時の正 位が2・ 下になるよ 極及び 又は正 極に チウムイオンを さ ることにより、高 ネ ギ 度を有した
が得られた。 2では比較 より たりの 量が大きな正 極 質を用 ており、また、正極 質の が多 ためより大きな ネ ギ 度を有して る。 方、比較 2の(C XW ) (C XW )の値は2であるが、 一 一
2 間経過 の 持率は69 5 であり、実施 に比 幅に低下した。
て、 量な正極 質を用 た場合にお ても、 久性を重視した場合、 ( C XW ) (C XW )の値は5 上とするのが好ま 。
0097 明を詳細にまた特定の 様を参照して説明したが、 明の 神と 囲 を逸脱することな 変更や 正を加えることができることは当業者にと て明ら である。
0098 出願は、2005 12 8 出願の 本特許 ( 2005 355409)に基 も のであり、その はここに参照として取り込まれる。
上の利用 性
0099 明の チウムイオン は 寿命であるので、電気自動車、 イ ッド 気自動車などの 動用または補助 電源として極めて有効である。 また、電動自転車、電動車椅子などの 動用 電源、ソ ラ ネ ギ 風力発 電などの ネ ギ の 電装置、ある は家庭用 具の 電源などとして 好適に用 ることができる。

Claims

求の
、負極、 、電解 として チウム塩の非プ トン 解質 液を 備えた チウムイオン であ て、
正極 質が チウムイオン 又は オンを可逆 能な 質で あり、
負極 質が チウムイオンを可逆 能な 質であり、
正極 負極を短絡さ た後の正 位が2・ ( ) 下になるよ に負極 及び 又は正極に対して チウムイオンが されており、 、
正極 たりの C ( )、正極 W ( )、負極 重量 たりの C ( )、負極 W ( )としたとき、 (C XW )
一 一 一 (C XW )の値が5 上であることを特徴とする チウムイオン 。
2 (C X
一 W一) (C XW )の値が 上である、
に記載の チウムイオン 。
3 極及び 又は負極が、それぞれ を貫通する孔を有する を備 えており、
負極 チウムイオン 給源との 的接触によ て チウムイオンが負極に されて る、
請求 又は2に記載の チウムイオン 。
4 、正極 質に比 て、単位 たりの 量が3 以上を有 し、
量が負極 量よりも大き
~3の ずれ に記載の チウムイオン 。
PCT/JP2006/324462 2005-12-08 2006-12-07 リチウムイオンキャパシタ WO2007066728A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/090,461 US8203826B2 (en) 2005-12-08 2006-12-07 Lithium ion capacitor
EP06834217.9A EP1959464B1 (en) 2005-12-08 2006-12-07 Lithium ion capacitor
CN2006800461675A CN101326601B (zh) 2005-12-08 2006-12-07 锂离子电容器
KR1020087013787A KR101086572B1 (ko) 2005-12-08 2006-12-07 리튬이온 커패시터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-355409 2005-12-08
JP2005355409A JP4813168B2 (ja) 2005-12-08 2005-12-08 リチウムイオンキャパシタ

Publications (1)

Publication Number Publication Date
WO2007066728A1 true WO2007066728A1 (ja) 2007-06-14

Family

ID=38122873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324462 WO2007066728A1 (ja) 2005-12-08 2006-12-07 リチウムイオンキャパシタ

Country Status (6)

Country Link
US (1) US8203826B2 (ja)
EP (1) EP1959464B1 (ja)
JP (1) JP4813168B2 (ja)
KR (1) KR101086572B1 (ja)
CN (1) CN101326601B (ja)
WO (1) WO2007066728A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120293914A1 (en) * 2009-12-28 2012-11-22 Jm Energy Corporation Accumulator device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200302A (ja) * 2008-02-22 2009-09-03 Fuji Heavy Ind Ltd 蓄電デバイスの製造方法および蓄電デバイス
JP5266844B2 (ja) * 2008-03-31 2013-08-21 日本ケミコン株式会社 電気二重層キャパシタ用電極及びその製造方法
US8102642B2 (en) * 2010-08-06 2012-01-24 International Battery, Inc. Large format ultracapacitors and method of assembly
KR101139426B1 (ko) 2010-09-28 2012-04-27 한국에너지기술연구원 리튬 이온 커패시터
JP5730321B2 (ja) * 2010-10-19 2015-06-10 Jmエナジー株式会社 リチウムイオンキャパシタ
KR101394743B1 (ko) * 2012-05-16 2014-05-16 한국에너지기술연구원 리튬이온 커패시터 및 그 제조방법
DE112013003366T5 (de) * 2012-07-04 2015-03-26 Sumitomo Electric Industries, Ltd. Lithium-Ionen-Kondensator
KR101452311B1 (ko) * 2012-10-31 2014-10-21 킴스테크날리지 주식회사 전기화학셀
US10319536B1 (en) * 2012-11-19 2019-06-11 Prakash Achrekar High-capacity electrical energy storage device
US9520243B2 (en) * 2014-02-17 2016-12-13 Korea Institute Of Energy Research Method of manufacturing flexible thin-film typer super-capacitor device using a hot-melt adhesive film, and super-capacitor device manufactured by the method
CN105161309B (zh) * 2015-09-16 2017-11-14 中国科学院电工研究所 锂离子混合型电容器
EP3850696A4 (en) * 2018-09-11 2022-05-18 Walsh, Kevin Michael DIAPHRAGM ELECTRODE ARRANGEMENTS FOR ION CONCENTRATION GRADIENT DEVICES

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107048A (ja) 1994-08-12 1996-04-23 Asahi Glass Co Ltd 電気二重層キャパシタ
JP3024024B2 (ja) 1992-06-26 2000-03-21 シーケーディ株式会社 冷凍式ドライア
WO2003003395A1 (fr) * 2001-06-29 2003-01-09 Kanebo, Limited Condensateur a electrolyte organique
WO2005031773A1 (ja) * 2003-09-30 2005-04-07 Fuji Jukogyo Kabushiki Kaisha 有機電解質キャパシタ
WO2006112067A1 (ja) * 2005-03-31 2006-10-26 Fuji Jukogyo Kabushiki Kaisha リチウムイオンキャパシタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3403856B2 (ja) * 1995-03-17 2003-05-06 カネボウ株式会社 有機電解質電池
JP3800799B2 (ja) * 1998-04-10 2006-07-26 三菱化学株式会社 電気二重層キャパシター
JP4535334B2 (ja) 2003-03-31 2010-09-01 富士重工業株式会社 有機電解質キャパシタ
US7548409B2 (en) * 2004-03-31 2009-06-16 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor using a mesopore carbon material as a negative electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3024024B2 (ja) 1992-06-26 2000-03-21 シーケーディ株式会社 冷凍式ドライア
JPH08107048A (ja) 1994-08-12 1996-04-23 Asahi Glass Co Ltd 電気二重層キャパシタ
WO2003003395A1 (fr) * 2001-06-29 2003-01-09 Kanebo, Limited Condensateur a electrolyte organique
WO2005031773A1 (ja) * 2003-09-30 2005-04-07 Fuji Jukogyo Kabushiki Kaisha 有機電解質キャパシタ
WO2006112067A1 (ja) * 2005-03-31 2006-10-26 Fuji Jukogyo Kabushiki Kaisha リチウムイオンキャパシタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1959464A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120293914A1 (en) * 2009-12-28 2012-11-22 Jm Energy Corporation Accumulator device
US9030804B2 (en) * 2009-12-28 2015-05-12 Jm Energy Corporation Accumulator device

Also Published As

Publication number Publication date
EP1959464A1 (en) 2008-08-20
KR101086572B1 (ko) 2011-11-23
CN101326601B (zh) 2012-03-21
JP2007158273A (ja) 2007-06-21
US8203826B2 (en) 2012-06-19
US20090161296A1 (en) 2009-06-25
JP4813168B2 (ja) 2011-11-09
CN101326601A (zh) 2008-12-17
EP1959464A4 (en) 2013-06-26
KR20080072712A (ko) 2008-08-06
EP1959464B1 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
WO2007066728A1 (ja) リチウムイオンキャパシタ
CN110676420B (zh) 一种锂离子电池的补锂隔膜
JP5085651B2 (ja) キャパシタ−バッテリー構造のハイブリッド型電極アセンブリー
KR101664244B1 (ko) 전극의 표면에 패턴을 형성하는 방법, 이 방법을 이용해 제조된 전극 및 이 전극을 포함하는 이차전지
JP2017522725A5 (ja)
CN105470564A (zh) 一种固体电解质膜及其制备方法和锂离子电池
US20150180039A1 (en) Sustainable Current Collectors for Lithium Batteries
US9385539B2 (en) Surface-mediated cell-powered portable computing devices and methods of operating same
KR20150027085A (ko) 리튬 이온 커패시터
EP3014642A1 (en) Robust porous electrodes for energy storage devices
Peng et al. Hierarchically nitrogen-doped mesoporous carbon nanospheres with dual ion adsorption capability for superior rate and ultra-stable zinc ion hybrid supercapacitors
JP2003242964A (ja) 非水電解質二次電池
KR20080023376A (ko) 우수한 펄스 방전 특성의 전극조립체
KR20180113417A (ko) 리튬 이차전지의 제조방법
US9324995B2 (en) Apparatus and associated methods
EP3614463A1 (en) Electrode structure of electrochemical energy storage device and manufacturing method thereof
JP2012019187A (ja) リチウムイオンキャパシタの製造方法及びこれにより製造されたリチウムイオンキャパシタ
CN207504101U (zh) 一种石墨烯方形锂离子电池
CN105633353A (zh) 一种高倍率锂离子电池正极极片的制备方法
JP2005228712A (ja) 蓄電デバイス
EP3089244B1 (en) Aluminium-manganese oxide electrochemical cell
KR102467809B1 (ko) 리튬이온 커패시터
CN215896452U (zh) 铜箔及锂离子电池
JP2014175243A (ja) ナトリウム二次電池
US20230282799A1 (en) Flexible and printable paper-based al ion batteries

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046167.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12090461

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006834217

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087013787

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE