WO2007066660A1 - 不定形耐火物の吹付け施工方法とそれに使用する吹付け材料 - Google Patents

不定形耐火物の吹付け施工方法とそれに使用する吹付け材料 Download PDF

Info

Publication number
WO2007066660A1
WO2007066660A1 PCT/JP2006/324268 JP2006324268W WO2007066660A1 WO 2007066660 A1 WO2007066660 A1 WO 2007066660A1 JP 2006324268 W JP2006324268 W JP 2006324268W WO 2007066660 A1 WO2007066660 A1 WO 2007066660A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
construction
spraying
less
sprayed
Prior art date
Application number
PCT/JP2006/324268
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Mizuma
Hiroki Ohata
Original Assignee
Krosakiharima Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosakiharima Corporation filed Critical Krosakiharima Corporation
Publication of WO2007066660A1 publication Critical patent/WO2007066660A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1431Arrangements for supplying particulate material comprising means for supplying an additional liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31423Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations in the circumferential direction only and covering the whole circumference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/02Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions without using driven mechanical means effecting the mixing
    • B28C5/026Mixing guns or nozzles; Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/02Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions without using driven mechanical means effecting the mixing
    • B28C5/06Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions without using driven mechanical means effecting the mixing the mixing being effected by the action of a fluid
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/12Condensation polymers of aldehydes or ketones
    • C04B26/122Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • C04B28/105Magnesium oxide or magnesium carbonate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • C04B35/0435Refractories from grain sized mixtures containing refractory metal compounds other than chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/1015Refractories from grain sized mixtures containing refractory metal compounds other than those covered by C04B35/103 - C04B35/106
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • F27D1/1636Repairing linings by projecting or spraying refractory materials on the lining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Definitions

  • the dry type which is basically a dry type, is the tip of the nose to the material to be air-fed. Since the material is applied in a state where the water content is not sufficiently mixed, it tends to occur frequently during spraying, resulting in uneven spraying, and also has a good adhesion rate, adhesiveness and corrosion resistance. .
  • Patent 3 discloses an attachment method in which water is added at two points, that is, the pipe of the spray material and the attachment nose. Then, it is described that water is sprayed as a spare into the spray material.
  • this method is less effective than the case of adding only water with only the spray nose, and it is considered to be effective in stopping the adhesion in the material. The result is difficult to do. For this reason, it was not possible to perform construction with low water content compared to the conventional method.
  • Patent No. 4 the amount of construction air is added to the air-borne irregular shape that can be poured through the warning before the blowing nose, and then the blowing nose portion is added to perform the blowing work. 2 Laws are disclosed.
  • this method describes that if the applied pressure is applied with high pressure, the spray material and water can be combined in a short time by the use of the force. As a result, it is said that cleaning is troublesome if there are problems with the existing formula method and dry method of construction due to environmental damage caused by wound, and if the spraying is complicated.
  • Patent 6 there is a construction method in which water is poured into the attachment material that is sent inside the material from two locations, and the water under the water injector is injected together with compressed air.
  • a fixed method According to this method, by pouring water under normal pressure, the adhesive material can be unified with low water content, and the result is that no construction is required.
  • the amount of air for injecting the fine water particles becomes too large, resulting in a large amount of wounds. It was found that there was a problem that it could not be obtained.
  • the construction since the construction is injected as a water stream into the interior, the construction can easily reach the center, and the stream collides with the center to generate fine water.
  • the fine-grained water generated at the core spreads throughout the material.
  • the water stream collides with the adhering material that moves in the material, and when it gives fruit, fine water is generated.
  • the greater the number of streams the higher the degree of contact with the spray material and the higher the effect, resulting in higher wetness of the spray material. Therefore, it is set to 3 or more, preferably 5 or more, and more preferably 8 or more. In No. 3, the generation of fine-grained water due to the collision of water flow is insufficient, and the number of fruits is also small.
  • the diameter of fine water generated in this way should be lower. Obviously, water with a lower average diameter should be generated when water is injected without supplying the spray material and supplying only the air of the material. In this case, the spray material was sent, and it is estimated that the water below is generated not only by the collision of the water flow but also by the collision between the material and the construction. In this way, since water is generated in the material, the specific area of the water is large, and it is possible to use a single spray material as compared with the conventional water addition method. Higher results can be obtained in a short time even for the end of the adhesive material that moves in. Especially, one of the results is larger than that of fine raw material powder. As a result, low-moisture construction can be obtained. In addition, since it is not compressed and blown with the fine particles, the amount of In most cases, problems such as the ground will not occur.
  • this water should have a lower average diameter, preferably 7 lower, and more preferably 5-5. This can be determined by the Doppler method.
  • the average diameter of the water is larger, the specific area of the water is smaller and the adhering materials are unified, and the water content depends on the location of the adhering material. As a result, the amount of work will increase in order to have good work and be used as a mounting material.
  • the water is injected so as to form three or more water streams in the material, which is almost the center of the material, but it is also possible to provide the material path at multiple points.
  • water injectors may be provided in the upper and lower five enclosures along the material direction, more preferably in the upper three and lower enclosures. According to this water dispenser, a large amount of water can be added with the water dispenser when a large amount of spray material is transported at high speed. In addition, it is possible to prolong the area of the fine water particles generated by the collision, and the wetness of the material to be sent becomes higher.
  • the 002 flow is more likely to generate more water due to the collision between the water flow or the water flow and the attachment material, and it can be mixed with low water content. Moreover, the result of the attachment material is also larger. For this reason, 7 s (s) is preferred, more preferred is on s, and even more preferred is on 5 s. Flow 7 Then, fine water is obtained and mixed with low water content.
  • the term "clarity" is a value calculated from the area of a single water supply hole for water in the water injector. Sufficient water can be obtained by setting the speed of the water flow to 5 s below. If it exceeds 5 s, the water pressure will be high, and the water injector and piping will be expensive and expensive, but the result of low water content is small. In addition, the water flow rate will be correspondingly increased when the material supply rate is high, so that more water is likely to be generated.
  • the water hole of the water injector should be 4 above and 2 below and the water pressure should be below 4 a 5 a. If the diameter of the water hole is ⁇ 4, the sprayed material will be easily clogged, and if it exceeds 2, the diameter of the water flow will be too large and the fine water will be large. The more preferable inner diameter of the water hole is 6 upper 5 lower. On the other hand, at a water pressure of 4 a, the water flow speed becomes slow and good water is obtained, resulting in a decrease in the water flow. A more preferred range of pressure is below 6 a 3 a.
  • the required amount can be added by selecting it.
  • the material is provided with an upstream water tank and a downstream water tank, and water is injected from two places.
  • the water tanks can be watered by the above-mentioned different methods. It is also possible to add a pre-existing dispersant or binder to the water poured from this water tank. If the dispersant is clarified in advance, it will dissolve in water more quickly than when it is initially mixed with the dispersant, resulting in a lower water content. And when the water bottle and the double water bottle are raised, the fruits in transit are further increased. More preferred is 7 Above, even more above.
  • Kenji Hashimoto Showa 535, Industrial Technology Center, which is a state in which the body and the body state are further subdivided. It means that the feeling you see is in the state of Sasa because it is continuous. Physically, it is a step just before the slur, and when you grasp an object with your hand, it solidifies, but it is in a state where you can unravel again.
  • Additives containing normal dispersants have little or no water added initially, with some added water, but at times there is some water that can be drastically slurried. Aiming at the water just before this intensification, with the Ming water vessel. This is also the area where the test is almost spread out.
  • the amount of water differs depending on the fire raw material used, the type of binder, the dispersant or the binder used, the particle size, and the range of this value of water can be used as a guide. If the water content is too low or too high, the value will spread, but it is in the meantime.
  • the particle size is 75 or less, it is originally in the form of small twins, but in the case of pouring water with a bright water dispenser, the raw material has these twins. It is considered that it will be moistened by water when it is held. Of these two, there may be more than 75 raw materials at the core. And, in the case of Ming, since water is injected under the condition that the average diameter is under m and extremely small water is generated, the water content for the two children is less than the value of the slurry, or even the value of the slurry is a natural value. it is conceivable that. For this reason, even if the two children are united during the transmission, it is thought that it will not be a slurrage.
  • the mixing performance is excellent with low water content, and it is possible to use the minimum required amount with the water dip. Therefore, it is possible to obtain excellent work with extremely little water compared to the conventional attachment method. Furthermore, within the material, this does not cause the glued material to be in a slurred state and can therefore be clogged in the middle, thus making it possible to lengthen the material, for example a long distance above 3 can be sent. Becomes It does not take time because it may be deposited inside.
  • the amount of spray material is too small to keep the spray material in one position during transportation.
  • the amount of water added in the water dip will be increased to that extent, and the brazing material will be sprayed in a sufficiently crossed state, and the quality of construction will deteriorate.
  • it exceeds 5 a large amount of water will be present in the admixture mixed during the sending, so that the phenomenon that is adhered to the inside of the material occurs.
  • the water dip in front of the tip nose.
  • the distance between materials can be reduced, and the result in the tip nose can be obtained.
  • "Before the nose with a tip” means the area upstream from the surface of the nose with a tip.
  • the result is further improved. This may occur when the material wetted by water from the water dispenser is sent through the material, especially when the material is long, and the material and the fine powder are separated from each other. Mixing is provided to restore this. This makes it possible to obtain smooth construction.
  • a general mixer such as a static mixer can be provided, but a joint pipe with a narrowed inner diameter is more preferable. It is more preferable because it has a simple structure when squeezed and there is no glue.
  • the d of the joint pipe is 5 g of the material.
  • both conventional attachment materials and attachment materials can be used without problems.
  • conventional adhesives there is no need for a mixer to do so, and since there is no need to clean the work after the work, it is a construction method that is even more excellent in work. It is possible to obtain a construction with water content in the same class as the conventional method.
  • the conventional adhesive when the conventional adhesive is applied, it is possible to obtain a construction with lower water content.
  • the material for gnaire, the material for converter gnea carbon, the material for carbonyl carbon, the material for analytic material, the material for analytic material. can be used. At this time, it is also possible to use it as a construction in which the water is used as a dispersant.
  • the spray material is silicon with a particle size of 7 and 5 to 3 anamorphic, it can be processed with low water content.
  • Silicon which constitutes the anamorphic fixed form, is a raw material that is difficult to get into water, and this is the reason why the analytic fixed form and construction are not familiar.
  • fine water is sandwiched between the silicon weaves by performing the construction at the average level.
  • the particle size x the particle size of the lower part of the fire powder to be 5 to 3, the silica powder will confine fine water to the amorphous stock.
  • this difficulty in working with silicon carbide is alleviated by the inclusion of the silicon multi-layered water and the inclusion of the water in the stock by the silica powder. As a result, mixing is promoted until reaching the amorphous spray nozzle where water is added,
  • the spraying material is an alumina fixed form mainly composed of the granules 3 to 3 and the balance of the main constituent is the anana, the effect of further improving the usability is obtained.
  • the fixed form mainly composed of the granules 3 to 3 and the balance of the main constituent is the anana
  • the gnure which occupies the part of the construction is erased in response to the construction, and the weaving causes the deterioration of the construction.
  • the irregular shape does not need to be constructed for a long time, and the amount of construction can be increased. As a result, it is possible to suppress the amount of dust in the annignite fixed shape and improve the spraying rate.
  • an irregularly shaped weave is produced depending on the amount of construction.
  • the size of the weave of the weave is larger than that of the weave in the regular form of the weave, and the formation of the weeds in response to the use of the weave is promoted during spraying. In addition to this, it has the effect of giving strength by the bond formation together with the spine slurry.
  • the number of inadequately spine-grown guns increases, resulting in thick slurry and reduced usability due to structural sponges.
  • the spraying materials can be roughly divided into cold heating materials and hot bonding materials by the degree of construction.
  • the shavings are used for new linings or major repairs, and are carried out at room temperature below 6 C, and the hydration progresses during the working lifetime to form a bonded fabric.
  • the hot-melting material is used for the purpose of small-scale repairs during operation, the work that does not cool the work is a work at a high temperature of 6 C or more.
  • the subsequent generation of the binder and the condensation of the binder causes rapid formation of the binder fabric.
  • a binder such as ananacement, a gnea cement, or a cement or a silica-based binder, a dispersant, and a fiber are added to the fire raw material powder.
  • the fire ingredient 75 has 25 to 6 of the following ingredients.
  • auxiliary materials of the above-mentioned raw materials of more than 7 O which are 25 to 7, it is possible to obtain a construction that cannot mix with low water content. It is thought that the material after passing through the water vessel according to Ming's law is dispersed and united at the two positions of the powder, as described above. These two particles contain a dispersant and a mixture, but the amount of them is mixed with other refractory raw material powder in the manufacturing process, so the frequency of contact with each other is extremely high. For this reason, it is considered that most of the dispersants and mixtures do not expire, and that they exist. As a result, the propellant dissolves in water and spreads widely over the course of the material being delivered. What? Therefore, the water does not increase because the food does not collect. For this reason, it is not necessary to add and separately at the tip, and it is not necessary to do any complicated work of processing or materials. Very low water content can be obtained.
  • the wetness is very high because the water is added under the condition that the water is generated under the construction. Therefore, in order to effectively add the construction while suppressing the dispersion of the dispersant and the mixture.
  • fine powders with a small area are effective, and it is important to lance with raw materials of more than 7 O. That is, it is preferable that the range of the above 75 or more raw materials is in the range of 25 to 7 and more preferable in the range of 3 to 6 because more construction can be obtained. ⁇ For 25, there is a large proportion, and ⁇ For more than 7, it tends to adhere to the material.
  • this attachment material if added to this attachment material, the effect is that the internal material of the material adheres. It is presumed that this is not due to the fact that the addition of fibers causes the material being transported to form a lump of air, which is more easily transported by air and adheres to the surface inside the material. . On the other hand, it is also a construction measure, so it is also effective as a drying measure.
  • Even more preferable cold-heating material has a particle size of more than 5 to 2 to 45, a particle size of more than 7 to 4 and 75 lower to 25 to 6, and a lower raw material of more than 75 O.
  • To the fire raw material add an cement, a cement, a cement or a cement as a binder to ⁇ 7, urgent ⁇ 5 ⁇ 5, and a dispersant ⁇ ⁇ ⁇ 5, ⁇ 5 ⁇ ⁇ 5. It is a mixture formed by mixing.
  • the degree of construction was 6 C or lower, but the preferred material to be applied at a temperature of 6 C or higher is fire, powder, grease, carbon, or silica.
  • Formulated by adding a binder Therefore, there are ⁇ 45 materials under the fire raw material7, and if it is over this, it is ⁇ 25 ⁇ ⁇ 7. Further, if necessary, can be added.
  • the range of more than 7 raw materials is within the range of 25 to 7 and the range of 3 to 6 is more preferable because the construction can be obtained. ⁇ For 25, there is a large amount of orientation, and ⁇ For more than 7, it tends to adhere to the material.
  • 005 is more preferable in heat-bonding materials, particle size of more than 5 is 2 to 45, particle size of more than 75 is 2 to 45, 7 is less than 45, and if less than 75 O of raw material, 3 It is a mixture consisting of ⁇ 7 or more of fat, phosphorus or silica as a binder for the fire raw material.
  • any fire raw material used for can be used.
  • the large particle size of the fire raw material powder exceeds 5, the content under 5 of the fire raw material powder will be 9 or higher because it will be easy to separate and seg during the water injection by the water dispenser and the result will be reduced.
  • 3 lower for raw materials for fire and 9 upper is 3 lower.
  • the open eye For example, the bottom of 3 means that the opening of the sieve passes through the sieve of 3.
  • ana-cement As an admixture for the adhering material, it is possible to use ana-cement, gnea-cement, nitrous or siliceous, but ana-cement is more preferable because of its strength.
  • thermosetting, grease, resin or silica can be used as a material for the bonding material.
  • the powder can also be used as long as it is commonly used in an amorphous form. It also has the effect of adding a fixed mobility.
  • Examples of the body include sodium trixtaline, soxamethaline soda, utralylin soda, acidic sodium xanthametan, borax soda, sodium carbonate, pometan salts, etc.
  • Examples of the body of 006 are silica salts such as sodium and calcium, ammonium salts such as ammonium, ammonium and ammonium, sodium carbonate, potassium carbonate, sodium hydrogen carbonate. Salts such as um, salts such as sodium, potassium, and magnesium, C “O ⁇ 2C” O ⁇ , C "O
  • Examples include magnesium, potassium acid, potassium hydroxide, and salts of calcium.
  • the material used for the brightening it is preferable to use the misalignment of ansoda or slaked lime because it is excellent in construction.
  • slaked lime, activated granules, or the end of acid salts are preferred for use as the glazing material in terms of excellent construction performance.
  • N N, N, P, P, P, P, P, P, P, carbon.
  • the water flow injected into 006 2 is processed under the condition that it is below average, low moisture results can be obtained, which allows the construction to be performed without rattling and the life of the furnace to be improved. In addition, it does not require special mixing such as a mixer, and even if it is clogged, it reduces the work load and reduces the cleaning work, making it a very good construction method.
  • Addition material is 5 to 3 ana.
  • the familiarity with the construction is better than the conventional method, and the addition in the material is sufficient for the spraying material and the construction, which suppresses the adhesion as well as the adhesion. . And the construction will be improved.
  • the adhesive material is an alumina fixed form mainly consisting of 3 to 3 and the rest is mainly made of anana
  • the anodized form is also qualitative due to the progress of construction control and formation. The effect of erosion is fully exerted, and the sprayability is greatly improved.
  • a mixture of a fire raw material powder and a binder such as ananacement, a cement, a cement, or a silica, a dispersant, and a fiber is added.
  • composition that is made by adding a curable fat, a binder or a binder as a binder to the fire raw material powder.
  • a material composed of .25 to .7 which is a raw material containing more than u 2 O
  • the life of the furnace is improved.
  • At 006 indicates a pressurized material supply containing the spray material 2.
  • any type of Tecta gun, dogan, Nogami cement gun, etc. can be used as long as it can be quantified by being used for atypical attachment.
  • the spray material is stably supplied, so that the spray material can be unified and the effect can be obtained.
  • the spray material 2 in this material supply is adjusted by the air supplied into the material supply, and is fed from the material supply to the tip by the Teder 3 which is driven by the ta provided at the lower end. It will be supplied to the host 5 that has been placed up to the attachment Noz 4.
  • Air is supplied to host 5 through 6 of table 3 and spraying material 2 from the material supply is sprayed onto target 9 from mounting tip 4 of host 5.
  • This hoss 5 is equipped with a water tank 7 after the material supply and a water tank 8 before the tip nozzle 4.
  • the water tank 7 2 The water tank 8 generates water in the host 5 and injects water to the air-borne spraying material on the second floor to spray it.
  • 007 4-2 is due to the cut surface of the water injector along host 5.
  • the water container 7 and the double water container 8 shown in can have the same structure.
  • the water bottle 7 (8) consists of 2 and 2 provided at its part.
  • the water dispenser 7 (8) is fixed between the hoses 5 by means of a bot that does not penetrate the water injector.
  • the attachment material is air-transmitted in the host 5 in the direction of the mark in the figure.
  • a continuous 3 is formed in the circumferential direction so that the force of the pressurized water becomes unity.
  • the water injection hole 4 inclined to the material is formed in this 3.
  • This water hole 4 is indicated by an arrow in the direction of the host 5 as shown in 2. It is formed so that it forms an angle of 3 to 7 with the row direction.
  • the water holes have an inner diameter of 8 and a slant angle of 45 degrees, and are equidistantly spaced along the circumference.
  • the water movement shown by the dotted line in 007 72 is a schematic view of a state in which a transparent cylinder was connected to the side of the water injector for experiment, and no pressurized material was introduced and only pressurized water was supplied. It is. Water from the water hole 4 emerges as a water stream, which bulges into the center and becomes fine particles that flow almost in parallel to form. In this state, when the material is supplied, the heart of the collision becomes somewhat unclear, but it forms. In the case of Ming, it is assumed that the water below will be generated when this air is supplied. In order to reduce the size of the fine water in this state, it is sufficient to set the slant angle, the number of the water injection holes, and the speed and pressure of the water flow discharged from the water injection holes.
  • This joint pipe 6 is a cylinder with bulges on both sides.
  • This merging pipe can be installed on one or both sides after the water dip. If this joint pipe is placed after the water dip, the result will be higher and the following will be obtained.
  • the attachments shown in 079 are processed as follows.
  • the air in the host 5 is sent by the air from 6.
  • the pressurized water is supplied to the inlet 5 of the water container 7 2 water container 8 to inject water into the air-borne attachment material.
  • the water flow injected from the water vessel becomes water by colliding with other water or spray material in the host 5. This water mixes the spray material together.
  • the separation distance between the water tank 7 and the water tank 8 shown in (4) is not particularly limited, but it is preferable that the water tank 7 and the water tank 8 are separated to some extent from the viewpoint of mixing. It is preferable to have a space above. In other words, the water tank can be installed without any restrictions as long as it is between the water tank and the water supply. In addition, water bottles and water bottles are more preferable, and more preferable.
  • the water tank 8 can be installed near the tip of the nose 4 or in front of it. If it is too far from the end of the attachment nose, the attachment tip of the hoss will be easily clogged. Even if the host is not particularly limited, it can be used as long as it is between and.
  • the measurement position is 3 from the water hole of the water injector.
  • OCS trade name OCS of S Company, USA was used. The test was carried out by directly placing (4, 4, length 4) in a horizontally spaced position and using C to adjust the quality after drying.
  • Kasa 249 248 245 242 22 229 Hook hole () 252 247 251 258 291 2 5 (MPa 4/5 445 4440 020 295 30 01 () is for refractory raw material. In fact, it is in the area of Ming, and the construction with low water content can be obtained.
  • the results of the attachment test performed by the method will be explained.
  • the water vessel has 2 positions from the end of the tip nose, the 2 water vessels has 7 positions from the end of the tip nose, and the length of the tip nose is 5. Also, care about the spray material
  • pressure is ⁇ 27 Pa
  • water tank flow is 9 ⁇ 5 to s
  • water injection hole is ⁇ 6
  • number of water injection holes is 4, inclination angle of water injection hole is 5, and 2 water tank flow is 9 ⁇ 5 to s, 8 for water injection holes, 8 for water injection holes, 5 for water injection holes, 5 for water injection holes, 35 for water injection devices, and 9 to 2 Pa for water pressure supplied to each water device.
  • the water pressure was changed and adjusted according to the spraying situation. At this time, in Example 5, the spraying material of fine water was not sprayed and only the air of the spraying material was supplied.
  • the measurement position is It is 3 from the water hole of the vessel.
  • the measurement was performed with water generated only from the water vessel of the measurement target.
  • the test was carried out by directly placing (4, 6 and length 4) in a horizontally spaced position and using C to adjust the quality after drying. In the tests, blast furnace slurries were used in 2 and 55 X4, and 65 C X4 for converter slurries in 3 and 4 were compared. According to S.25.
  • Figure 2 shows an example of a cold-heating material.
  • Figure 3 shows an example of a hot-melting material, in which the effect of fine particles on a particle with a particle size of 7 was investigated, and the effect on the fine powder in an ignition-bonding material using a fire raw material with the balance being ana. The results are shown. The mixture and the urgent one were used, and the mixture was mixed with the fire raw material powder in a uniform manner. In the case of materials with a particle size of 754 and below, 3 to 2 are within the light area of the raw material with a particle size of more than 75 O below, and construction with low water content was obtained. In contrast, comparison 7 is 75 below.
  • the mixture used was a mixture of fire powder and powder mixed in a uniform manner.
  • 2 to 28 are for raw materials with a particle size of less than 7 and below 754 O
  • the water dispenser 7 (8) is fixed between the hoses 5 by means of a boat that does not penetrate the water injector, and has water injecting 7a and 7b having the same structure. Of 7a and 7b
  • Each of them consists of a b and 2a 2 b provided in that part.
  • the attachment material is air-transmitted in the host 5 in the direction of the mark in the figure.
  • a continuous 3a 3b is formed in the circumferential direction so that the force of the pressurized water becomes unity.
  • the water injection holes 4a and 4b inclined toward the material are formed in these 3a and 3b. As shown in 2, the water holes 4a and 4b are formed so as to be inclined toward the direction of the host 5 so as to form 3 to 7 with the row direction indicated by the arrow. Each of these water holes has an angle of 8 and a bevel of 45 degrees, and there are a total of 2 holes at equal intervals along the circumference.
  • Water holes in the river alternate with water holes in the upstream.
  • the water movement shown by the dotted line in 00934 is a schematic view of a state in which a transparent tube was connected to the side of the water injector for experiment, and no pressurized material was introduced, and only pressurized water was supplied. It is.
  • the water from the water holes 4a and 4b becomes a water flow, and it bulges at the center and becomes fine particles, respectively, and flows in almost parallel to form C.
  • the heart of the collision becomes somewhat unclear, but is formed.
  • Ming it is assumed that the water below will be generated while this air is being supplied.
  • this water dispenser As a double water dispenser, more water can be added to the water dispenser even when a large amount of spray material is transported at high speed. In addition, since the area of the fine water particles generated by the collision can be prolonged, it is sent. The wetness of the material is higher.
  • the attachment using this water dispenser is performed as follows. First of all, as in the conventional attachment method,
  • the air in the host 5 is sent by the air from 6.
  • the pressurized water is supplied to the inlets 5a and 5b of the water container 7 2 and the water container 8 to inject water into the air-borne attachment material.
  • the water flow injected from the water dispenser is caused by collision with other water or spray material in the hose 5. This water mixes the spray material together.
  • 00975 shows the results of a sticking test conducted on the ground material prepared as a fire raw material powder and on the mounting material using resin 4 as a binder.
  • the number of water injection holes shown in 5 corresponds to the number of water injection parts explained in 4. That is, it represents the number of water flow points of the water injection hole. In addition, the water injection holes are around.
  • the spraying material of fine water is not the spraying material of the spraying material.
  • the 0100 attachment test was placed directly in the horizontal position (4 6, length 4) The quality after drying with C was adjusted.
  • Example 29 to Example 32 are the holes and rows of water injection holes and the flow of water, but they are within the area surrounded by Ming, and construction with low water content was obtained.
  • No. 5 is clear because the water flow velocity is small and the average diameter of the water exceeds, and a larger amount of spraying work is required compared to the implementation, which is much less than the implementation. It is a construction.
  • No. 6 has a water injection hole of 2 and is more than normal O of fine water. For this reason, a large amount of spraying work is required compared to the actual implementation, and as a result, the construction is more frequent than the actual implementation.
  • 0 0 3 Shows the device structure for implementing the fixed method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

 水分と吹付け材料との混練効果を高め、低水分で緻密な施工体を得ることができ、しかも作業性に優れた不定形耐火物の吹付け施工方法を提供する。材料搬送管5において上流側に1次注水器7と下流側に2次注水器8とを設けて2ヶ所から吹付け材料に施工水を注水し、1次注水器7からは全施工水の10~50質量%の施工水を注水し、2次注水器8からは施工に必要な残りの施工水を注水して吹付ける場合において、少なくとも1次注水器7から材料搬送管5内へ施工水を注水する際に、材料搬送方向に対して30~70度傾斜し、材料搬送管5内のほぼ中心で衝突する3本以上の水流を形成するように材料搬送管5内に注水し、平均粒径100μm以下の微粒化水を発生させる。

Description

不定形耐火物の吹付け施工方法とそれに使用する吹付け材料 技術分野
[0001] 本発明は、高炉、樋、混銑車、転炉、取鍋、 2次精鍊炉、タンディッシュ、セメント口 一タリーキルン、廃棄物溶融炉、焼却炉、あるいは非鉄金属容器等の各種金属容器 ゃ窯炉の築炉または補修に際しての不定形耐火物の吹付け施工方法とそれに使用 する吹付け材料に関する。
背景技術
[0002] 不定形耐火物の吹付け施工方法は湿式施工方法と乾式施工方法とに大別できる
[0003] 湿式施工方法は施工水を予め材料へ添加して混練しスラリー状とした吹付け材料 ( 不定形耐火物)を圧送して先端ノズル部にぉ ヽて急結剤等を添加して吹付ける工法 である。他方、乾式施工方法は吹付け材料 (不定形耐火物)を乾燥状態で空気搬送 し、先端のノズル部で施工水を注水して吹付ける工法である。
[0004] 湿式施工方法は乾式施工方法に比べて付着性に優れた緻密質の耐火物の吹付 け施工体を形成することができ、施工に際しての発塵量が少な 、等の効果がある。 反面、吹付けに際して混練装置やスラリー圧送装置が必要で、その上、装置の構造 が複雑で高価であり、また、吹付け作業後はスラリー状になった吹付け材料が混練 装置や材料搬送管内に付着し、その洗浄作業に手間取るという欠点がある。
[0005] これに対して、乾式施工方法は、基本的には乾燥状態で空気搬送される吹付け材 料に先端ノズル部で、施工水を注水するのみであるので、吹付け装置は簡単で作業 性に優れて 、るが、吹付け材料には水分が十分に混合されな 、状態での吹付けで あるため、吹付けに際して、粉塵が多く発生し、吹付け施工体の耐火物組織も不均 一となる傾向があり、付着率、接着強度及び耐食性も劣ったものとなる。湿式施工方 法と比較すると混練効果が低く水分使用量が多いため緻密な施工体が得られにくい という欠点もある。
[0006] 通常、先端ノズル部で施工水を注水するには、ノズルの外周面に設けた複数の貫 通孔力 ノズル中心あるいはその前方に向力つて加圧水を注水することが一般的で ある(特許文献 1)。この注水される水は、材料搬送管内で材料を湿潤させるために 分散させ霧状にした方が良 、と考えられて 、る。
[0007] 例えば、特許文献 2では、マテリアルホースに連通する管体に直径方向に開けられ た水噴出口に水を圧送し、管体内に霧状水を噴出させてカーテンウォールを形成し 、この管体に吹付け材料 (耐火原料)をマテリアルホース力 圧送して霧状水と吹付 け材料とを圧送空気を利用して管体内で混合する方法が記載されている。そして水 噴出口の開口端の直径を 0. Olmm〜: Lmmとし、 30〜50kgZcm2の水圧を掛ける と水は霧状になって、カーテンウォールを形成することも記載されて 、る。
[0008] し力しながら、この方法では先端ノズル部で水が霧状として供給されるため、実際に は吹付け材料を圧送する空気の流れに逆らって吹付け材料の中心部まで均一に湿 潤することは難しく十分な混練効果が得られにくい問題がある。また、吹付け材料の 搬送量が例えば 70kgZmin等のように多くなつた場合には、多量の水を添加する必 要が出てくるが、霧状の水では多量の水の添カ卩が難しい。さらに、添加水分を増やそ うとすると大きな水滴状態で噴霧しなければならず、混練状態が悪くなる。
[0009] また、混練効果を高めるために、複数個所から注水する方法やノズルを長くしてノ ズル内での混練効果を狙ったものも過去提案されて ヽるが、期待する程低水分で混 練することができず、またいずれの場合にも人がノズルを持って作業するには重くなり すぎる問題があった。
[0010] そこで、吹付け施工方法において水と吹付け材料との混練効果を向上させるため に、吹付け材料を搬送する材料搬送管の搬送経路内で注水して材料搬送管内での 吹付け材料同士あるいは吹付け材料と材料搬送管内面との衝突による混練効果を 狙った施工方法が過去検討されて!ヽる。
[0011] 例えば、特許文献 3には、吹付け材料搬送用の圧縮エアーの配管と吹付けノズル の 2ケ所で水を添加する吹付け施工方法が開示されている。そして、吹付け材料搬 送用の圧縮エアー中には予備混練として水を噴霧することが記載されている。このよ うに水をエアー中に均一に分散させて添加することで、混練不足を解消し短!、ノズル の使用を可能とし、局部的な水分の不均一に起因する材料搬送管内の材料付着を 防止することができると記載されている。確かにこの方法では、水のみを吹付けノズル のみで添加する場合と比較すると発塵が少なくなり、材料搬送管内の材料付着の防 止には効果があると考えられる力 単に噴霧しただけでは、吹付け材料を均一に湿 潤することが難しく良好な混練効果が得られない。このため、従来の乾式施工方法と 比較して低水分で緻密な施工をすることができな力つた。
[0012] また、特許文献 4には、空気搬送された不定形耐火組成物に吹付けノズル手前で ウォーターリングを通して流し込み軟度の作業性が得られる施工水分量と圧搾空気 を添加し、さらに吹付けノズル部で凝集剤又は保形性付与剤を添加して吹付け施工 する 2段階注水方法が開示されている。そして、この方法においては、施工水分を高 圧の圧搾空気を用いて添加すれば、その強力な攪拌作用によって吹付け材料と水と の均一混合が短時間でできることが記載されている。その結果、リバウンドロスによる 環境悪化や水分増加による施工体の品質劣化等の従来の乾式法や半乾式施工法 が有する問題点や、吹付け装置が複雑になるとか、掃除が面倒であるとか、残剤廃 棄量が多 、等の従来の湿式法が有する問題点が解決されると記載されて 、る。
[0013] し力しながら、この特許文献 4の方法では、施工に必要な全ての水分を添加するた めには多量の高圧圧搾空気が必要となり、ウォーターリング力 高圧の圧搾空気を多 量に吹き込むと、吹付け材料が均一に混練されにくくなり、し力も脈動を起こすことが ある。このため緻密な施工体が得られ難い問題がある。
[0014] さらに、特許文献 5には、耐火材料骨材、耐火性粉末、結合剤、分散剤及び急結 剤を含む吹付け材料を粉末の状態で気流にのせて材料搬送管内に送り込み、材料 搬送管の途中で施工水を全量注水し、その後も気流 (空気)搬送し、吹付けノズルを 通じて吹付ける吹付け施工方法が開示されている。そして、材料搬送管の途中で施 ェ水を全量注水して湿潤状態になった後でも不定形耐火物は材料搬送管に付着す るような粘性にはならず、従来の湿式吹付け施工方法と同程度の添加水分量と施工 体の品質が得られるとされている。
[0015] し力しながら、この方法でテストを行ったところ、単に材料搬送管の途中で施工水を 全量注水しただけでは、粉末材料とくに吹付け材料中の超微粉原料に対する水のな じみが悪ぐ混練状態が不十分となり、リバウンドロスと発塵が多く作業性に劣ったも のとなり、安定した品質の吹付け施工体が得られなくなるという欠点があることが分か つた o
[0016] そのため、作業性を満足させるためには、どうしても水分量を増すことになり、場所 により水分量のバラツキが生じ、水分が多すぎる部位は高気孔率になり、逆に少なす ぎる部位にぉ 、ては結合不十分となり、 V、ずれの部位も所定の耐用性が得られなく なる問題がある。また、先端のノズル孔カも離れた位置力も水分を添加すると急結剤 の溶解によって材料が凝集し始めるため添加水分量が増え、しかも材料搬送管の洗 浄という煩雑な作業が増える問題がある。
[0017] また、この特許文献 5にはプレモイストとして水分を添加することも開示されているが 、これは発塵防止効果を目的としたものであり、この程度の水分を添加しただけでは 予備混練効果が得られな ヽ。
[0018] そこで、上記課題を解決するために本発明者等は、特許文献 6において、材料搬 送管内を搬送される吹付け材料に 2ケ所から注水する施工方法であって、注水器か ら平均粒径 100 μ m以下の微粒ィ匕水を圧縮空気とともに注水する不定形耐火物の 吹付け施工方法を提案した。この方法によれば、水を平気粒径 100 m以下の微粒 化水として注水することで、低水分で吹付け材料を均一に湿潤化できるため、緻密な 施工体が得られるという作用効果が得られる。しかしながら、例えば 70kgZmin程度 の吹付け材料供給速度で一度に大量の吹付け施工をしょうとすると、微粒ィ匕水を吹 き込むための圧縮空気の量が多くなりすぎるために、リバウンドロス等が多くなりしか も緻密な施工体が得られに《なる問題があることがわ力つた。
特許文献 1:特公昭 59— 4194号公報
特許文献 2:特開昭 62— 129166号公報
特許文献 3:特開昭 63 - 31562号公報
特許文献 4:特開平 10— 316478号公報
特許文献 5:特開 2002— 220288号公報
特許文献 6: WO 2005Z 121676 A 1
発明の開示
発明が解決しょうとする課題 [0019] 本発明の課題は、水分と吹付け材料との混練効果を高め、低水分で緻密な施工体 を得ることができ、しかも作業性に優れた吹付け施工方法とそれに使用する吹付け材 料を提供することにある。
課題を解決するための手段
[0020] 本発明は、材料搬送管内を搬送される吹付け材料に対して注水器カゝら施工水を注 水して吹付ける不定形耐火物の吹付け施工方法であって、材料搬送管内へ注水器 から施工水を注水する際に、材料搬送方向に対して 30〜70度傾斜し、材料搬送管 内のほぼ中心で衝突する 3本以上の水流を形成するように材料搬送管内に注水し、 平均粒径 100 μ m以下の微粒ィ匕水を発生させることを特徴とするものである。
[0021] 本発明では、施工水を水流として材料搬送管内に注水するために、施工水が中心 部まで到達しやすぐ中心部で水流どうしが衝突して微粒ィ匕水が発生する。中心部 で発生した微粒ィ匕水は材料搬送管内に均一に広がる。また、水流は材料搬送管内 を移動する吹付け材料とも衝突して攪拌効果を与え同時に微粒ィ匕水が発生する。水 流の数は多い程、吹付け材料との接触頻度が高くなり、しかも攪拌効果も高まるため 吹付け材料に対する湿潤効果が高まる。このため 3本以上とし、好ましくは 5本以上、 より好ましくは 8本以上である。 3本未満では、水流どうしの衝突による微粒ィ匕水の発 生が不足し、しかも攪拌効果も少なくなる。
[0022] このようにして発生させる微粒ィ匕水はその平均粒径が 100 m以下となるようにす る。本発明において、平均粒径が 100 m以下の微粒ィ匕水は、吹付け材料を供給 せず材料の搬送用空気のみを供給した状態で施工水を注水した時に、発生して 、 れば良い。実際の吹付け施工においては、吹付け材料が搬送されており、水流どうし の衝突にカ卩えて材料と施工水との衝突によっても、 100 m以下の微粒ィ匕水が発生 していると推定する。このように、材料搬送管内で微粒化水が発生するので、水の比 表面積が大きくなり、従来の水の添加方法と比較して格段に吹付け材料を均一に湿 潤させることができるため、材料搬送管内を高速で移動する吹付け材料の粉末に対 しても短時間でより高い混練効果が得られる。特に微細な原料粉末に対するより均一 な湿潤化の効果が大きい。その結果、低水分で緻密な施工体が得られる。また、微 粒ィ匕水と共に圧縮空気は吹き込まな 、ので、吹付け量が多くなつても圧縮空気量の 増大に伴うリバウンドロス等の問題が発生することもない。
[0023] この微粒ィ匕水は、上述のとおり平均粒径が 100 μ m以下となるようにし、好ましくは 70 μ m以下、さらに好ましくは 5〜50 μ mとなるようにする。この平均粒径はレーザー ドップラー法によって測定することができる。微粒ィ匕水の平均粒径が 100 mより大き な場合には、水の比表面積が小さくなり吹付け材料が均一に湿潤されにくくなり、混 練された吹付け材料の場所による水分量にバラツキが発生してくる。その結果、良好 な作業性を持つ吹付け材料とするためには施工水分が増えてしまう。
[0024] 本発明においては、材料搬送管内のほぼ中心で衝突する 3本以上の水流を形成 するように注水するが、材料搬送経路において複数の場所に衝突点を設けることも できる。そして、本発明において、注水器は、水流どうしの衝突点を、材料搬送方向 に沿った 10mm以上 500mm以下の範囲内、より好ましくは 10mm以上 300mm以 下の範囲内に 2ケ所以上設けたものとすることもできる。この注水器によれば、吹付け 材料を高速で大量に搬送する場合には、 1つの注水器で多くの水を添加することが できる。また、衝突によって発生する微粒化水の発生領域を材料搬送方向に長く取 ることでき、搬送される材料に対する湿潤効果がより高くなる。水流どうしの衝突点間 の距離が 10mm未満では材料搬送管内の狭い範囲に微粒ィ匕水が集中的に発生す るため、微粒ィ匕水どうしの接触により二次粒子が生成し、微粒ィ匕水の平均粒径が 10 0 mを超える状況となり、均一湿潤効果が十分に発揮されないことがある。一方、 5 00mmを超えると、吹付け材料をスラリー状態にする条件で使用する場合にお!ヽて は材料への湿潤効果が低下してくる。
[0025] 水流どうしの衝突点を 2ケ所以上とするためには、注水器において同一円周上に 3 個以上の注水孔を配置し、この注水孔を離して 2列以上設ければよい。また、同一円 周上であっても、注水孔の傾斜角度を変えることでも水流どうしの衝突点を 2ケ所以 上とすることができる。
[0026] 水流の流速は速い方力 水流どうしの衝突あるいは水流と吹付け材料との衝突によ つてより小さな微粒ィ匕水を発生しやすくなり、低水分で混練することができる。また吹 付け材料の攪拌効果もより大きくなる。このため水流の流速は、 7mZs以上 (s :秒)が 好ましぐより好ましくは lOmZs以上、さらに好ましくは 15mZs以上である。水流が 7 mZs未満では、微細な微粒ィ匕水が得られに《低水分で混練しに《なる。ここで、 本発明で言う水流の流速とは、注水器への水の単位時間当たりの供給量と注水孔の 内孔断面積とから計算される値である。なお、水流の流速の上限は 50mZs以下とす ることで十分細かい微粒ィ匕水が得られる。 50mZsを超えると水圧が高くなり注水器 や配管が高耐圧仕様となり高価になる割には、低水分ィ匕の効果が小さく実用的でな い。また、水流の速さは材料供給の速度が速い場合には対応して速くすることで、よ り小さな微粒化水が発生しやすくなる。
[0027] また、本発明においては注水器の注水孔の内径は 0. 4mm以上 2mm以下、水圧 は 0. 4Mpa以上 5Mpa以下とすることが好ましい。注水孔の内径が 0. 4mm未満で は吹付け材料が詰まりやすくなり、 2mmを超えると水流の直径が大きくなりすぎて微 粒ィ匕水が大きくなりやすく均一な混練効果が得られに《なる。注水孔のより好ましい 内径は、 0. 6mm以上 1. 5mm以下である。一方、水圧は 0. 4Mpa未満では、水流 の流速が遅くなり良好な微粒ィ匕水が得られにくく混練効果が低下し、 5Mpaを超える と水分過多になり易くなる。水圧のより好ましい範囲は、 0. 6Mpa以上 3Mpa以下で ある。
[0028] 注水する施工水として水蒸気を使用することもできる。高温の水蒸気を加圧して注 水することで、材料搬送管内で冷却されて非常に細かい微粒ィ匕水を発生させること ができる。この場合、例えば平均粒径が 100 m以下の微粒ィ匕水を発生させることが できるので、搬送中により混練効果が高まる。そして水蒸気の温度、圧力、及び流速 を選定することで必要な施工水分量を添加することができる。
[0029] 本発明にお 、ては、材料搬送管にお!、て上流側に 1次注水器と下流側に 2次注水 器とを設けて 2ケ所カも注水し、 1次注水器からは全施工水の 10〜50質量%の施工 水を注水し、 2次注水器力 施工に必要な残りの施工水を注水するに際して、少なく とも 1次注水器力も前記のうちいずれかの方法で注水することができる。また、この 1 次注水器から注水する水にはあら力じめ分散剤あるいは結合剤を添加しておくことも できる。あらかじめ分散剤を溶解しておけば、分散剤を粉末として最初から混合する 場合と比較して水に早く溶解するので、より低水分化となる。そして 1次注水器と 2次 注水器との距離は lm以上離すと搬送中の湿潤効果がより高まる。より好ましくは 7m 以上、さらに好ましくは 10m以上である。
[0030] この 1次注水器による吹付け材料の混練状態は、粉体、水及び空気のそれぞれが 連続した状態すなわち Funicular域を目指している。この Funicular域とは、「混練 技術」、橋本健次著、昭和 53年 10月 5日、産業技術センター発行に記載されており 、粉体、液体及び気体の混練状態をさらに細かく分類した一つの状態であり、粉体に 対して液体が十分コーティングされた状態である力 気体が連続しているため、見た 感じはバサバサの状態にあることを意味する。具体的には、スラリーになる一歩手前 の段階であり混練物を手で握ると固まるが、直ぐにまたほぐれるような状態である。通 常分散剤を含む吹付け材料は、水を少しずつ添加しながら混練してゆくと最初の内 は水を添加してもほとんど変化がないが、あるとき急激に軟ィ匕しスラリーになる水分添 加量がある。本発明の 1次注水器での施工水の添加量は、この急激に軟化する直前 の水分添加量を目標としている。この状態は、フロー試験でも混練物がほとんど広が らない状態つまり 100〜: L 10mmの範囲でもある。本発明においては、使用する耐火 原料、急結剤、分散剤あるいは結合剤の種類、粒度及び添加量等によって 1次注水 量が異なるが、水分添加量の目安はこのフロー値の範囲も目安とすることができる。 つまり水分が少なすぎても多すぎてもフロー値は広がる力 その中間の状態である。 フロー値 ίお IS— R2521に準拠して測定する。
[0031] さらにミクロ的には、粒径 75 m以下の原料粒子はもともと粉末状態ではいくつか の原料粒子が集まった小さな 2次粒子の形になっているが、本発明の 1次注水器で 注水する場合では原料粒子がこの 2次粒子の形を保持した状態で微粒ィ匕水によって 湿潤された状態になると考えられる。この 2次粒子の中には粒径 75 mより大きな原 料粒子が核として存在することもある。そして本発明では、平均粒径が 100 /z m以下 と極めて小さな微粒ィ匕水が発生する条件で注水するため、 1つの 2次粒子に対する 水分量がスラリーになる量より少ない値、あるいはスラリーになっても高粘性な値にな つていると考えられる。このため搬送中に 2次粒子どうしが合体しても、スラリーにはな りにくいと考えている。そして材料の搬送中において、 2次粒子同士、 2次粒子と 75 μ m超の粒子、あるいは 2次粒子と材料搬送管内面等の衝突によってさらに混練効 果が加わると考える。 [0032] その結果、低水分で混練効果が優れた混練物となり、 2次注水器で必要最小限の 水分量で施工可能となる。したがって、従来の乾式吹付け施工法と比較して極めて 少ない水分添加量で作業性に優れた混練物が得られることになる。さら〖こ、材料搬 送管内では、このため吹付け材料力スラリー状態にならないため、途中で詰まったり することがないので、材料搬送管を長くすることができ、例えば、 30m以上の長い距 離を搬送することも可能となる。しカゝも材料搬送管内に付着堆積することもないので 洗浄の手間が掛からない。
[0033] 一方、平均粒径が 100 μ mよりも大きな微粒ィ匕水ではこの 2次粒子を湿潤化したと きに、一つの 2次粒子に対する水分量が多すぎて 2次粒子をスラリー化してしまう頻 度が高くなると考えられる。前述のように、ほんの少しの水分含有率の差によってスラ リー化 (解こう)が生じる。したがって、搬送中に水分が過剰な 2次粒子と水分が適量 の 2次粒子とが衝突した場合にはスラリーが合体成長する。その結果、搬送材料中に は局部的にスラリーが生成してしまうことになる。そして吹付け材料は不均一な混合 物となり混練効果が低下し、しかもスラリーは材料搬送管内に付着することになると推 定される。
[0034] 1次注水器による水分の添加量が、吹付けに必要な水分量の 10質量%未満の場 合には、吹付け材料に対して水分量が少ないため、搬送中に吹付け材料を均一な 湿潤状態にすることができない。その結果、 2次注水器での添加水分量をその分だ け増やすことになり、十分な混練状態にない吹付け材が吹付けられ、施工体の品質 が低下する。また、 50質量%を超えると、搬送中に混練された吹付け材料中に水分 が多量に存在するようになるため、混練物が材料搬送管内に付着する現象が発生す る。
[0035] さらに、この均一に湿潤し混練された吹付け材料に対して 2次注水器力 残りの施 ェ水を添加するが、より好ましくは平均粒径 100 m以下の微粒ィ匕水を発生させるよ うにする。平均粒径 100 /z m以下の微粒ィ匕水とすることで、前述のように搬送中の吹 付け材料に対して、より均一に湿潤することができるので高い混練効果が得られる。 このため、従来の乾式施工方法と比較してよりもはるかに少な!/、水分量で高!、混練 効果が得られ、これによつてリバウンドロスが少なく付着率の高 、緻密な施工体を得 ることがでさる。
[0036] また、 2次注水器は、先端吹付けノズルの直前に設けることが好ま 、。直前に設け ることで材料搬送管の洗浄の手間を低減し、しカゝも先端吹付けノズル内での混練効 果が得られる。なお、吹付けノズルの直前とは、必ずしも吹付けノズルと注水器を別 々に設置することではなぐ吹付けノズル自体に 2次注水器を取り付けても良いし、吹 付けノズルと一体ィ匕したものでも構わない。つまり先端吹付けノズルの直前とは、先 端吹付けノズルの先端面力 上流側に 0. 3m以上 5m以下の範囲を意味する。
[0037] また、この 2次注水器から、急結剤を水に添加して注水することもできる。急結剤を 水に添加して入れることで、急結剤が湿潤した吹付け材料中へより早く拡散すること ができ、反応性が高まり付着率が向上する。
[0038] 本発明にお ヽては材料搬送管の 2次注水器の上流側近くに混合器を設けるとより 混練効果が向上する。これは、 1次注水器からの注水によって湿潤された吹付け材 料が材料搬送管内を搬送されるときに、特に材料搬送管が長い場合には粗粒原料と 微粉部とが分離しセダレが発生することがある。このセグレをもとに戻すために、混合 器を設ける。この混合器によってバラツキのない緻密な施工体が得られる。混合器と しては、スタティックミキサー等の一般的な混合器を設けることができるが、より好まし くは内径を絞った混合管である。内径を絞るという簡単な構造であり、材料の詰りが 無いことからより好ましい。混合管の内径 dは材料搬送管の内径 Dに対して、 0. 5D 以上 0. 9D未満が好ましい。
[0039] 本発明の施工方法に適用できる吹付け材料としては、従来の湿式吹付け材ゃ乾式 吹付け材のどちらでも問題なく使用することができる。従来の湿式吹付け材を使用し た場合には、混練するためのミキサーが不要でしかも作業後に材料搬送管を洗浄す る手間も要することがないので格段に作業性に優れる施工方法となる。しかも従来の 湿式施工方法と同等クラスの添加水分で緻密な施工体が得られる。また従来の乾式 吹付け材を適用した場合には、より低水分で緻密な施工体を得ることができる。例え ば、鉄鋼業においては、取鍋や転炉用のマグネシア材質吹付け材、転炉用のマグネ シァ 力ルシア材質吹付け材ゃマグネシア カーボン質吹付け材、樋用のアルミナ 炭化ケィ素材質吹付け材、及び取鍋用のアルミナ マグネシア材質吹付け材等を 使用することができる。このとき、あらかじめ水に急結剤や分散剤等を溶解した施工 水を微粒ィ匕水として使用することも可能である。
[0040] なかでも吹付け材料力 粒径 75 μ m以下の炭化ケィ素を 5〜30質量%含むアルミ ナ—炭化ケィ素質不定形耐火物である場合には、低水分で施工することができる。 アルミナ 炭化ケィ素質不定形耐火物を構成する炭化ケィ素は、多孔質でしかも水 に濡れ難い原料であり、これがアルミナ 炭化ケィ素質不定形耐火物と施工水との 馴じみの悪さの原因である。本発明では施工水を、平均粒径 100 m以下の微粒ィ匕 水とすることにより、炭化ケィ素の多孔質組織に微粒ィ匕水が挟入する。また、耐火原 料粉末に占める粒径 75 μ m以下の炭化ケィ素微粉の割合を 5〜30質量%としたこと で、この炭化ケィ素微粉が不定形耐火物のマトリックスに微粒ィ匕水を封じ込める。す なわち、本発明によれば、この炭化ケィ素の多孔質組織への微粒ィ匕水の挟入と、炭 化ケィ素微粉によるマトリックスへの微粒ィ匕水の封じ込めによって、炭化ケィ素に対 する施工水の濡れ難さが緩和される。その結果、 1次注水箇所で微粒ィ匕水が添加さ れた不定形耐火物は吹付けノズルに到達するまでの間の混和が促進され、均一且 つ緻密な施工体組織を得ることができる。
[0041] さらに吹付け材料が、マグネシア微粉を 1〜30質量%含み、残部がアルミナを主体 とするアルミナ マグネシア質不定形耐火物である場合には、より耐用性を向上させ る効果がある。一般的にアルミナ マグネシア質不定形耐火物にお 、て耐火物原料 糸且成の一部を占めるマグネシアは、施工水分との反応で消化し、耐火物組織をぜぃ 弱化させて施工体の強度低下の原因となる。本発明では前述したように不定形耐火 物が施工水分と長時間の接触がないこと、さらに施工水量の低減ィ匕が可能となって、 アルミナ マグネシア質不定形耐火物におけるマグネシアの消化が抑制され、吹付 け施工体の強度が向上する。また、施工水量の低減化によって不定形耐火物の施 ェ体組織が緻密化する。この組織の緻密化は、アルミナ—マグネシア質不定形耐火 物におけるアルミナ粒子とマグネシア粒子との接触面積を大きくし、吹付け施工体使 用時の高温下においてアルミナとマグネシアとの反応によるスピネル生成が促進され る。このスピネルの生成は、スピネル自身の耐スラグ性と共にスピネルボンド組織形 成による強度付与の効果を持つ。 [0042] 耐火原料粉末中に占めるマグネシア微粉の割合は、 1質量%未満ではマグネシア のもつ耐食性の効果が得られず、し力もアルミナとの反応によるスピネル生成量が少 なくなって耐スラグ性の効果が不十分となる。 30質量%を超えると、不定形耐火物施 ェ体が使用時の熱間にお 、て、スピネル生成反応が不十分なマグネシア微粉の割 合が増えるため力 スラグ浸潤層が厚くなつて構造的スポーリングが原因した耐用性 の低下を招く。マグネシア微粉の具体的な粒径は、アルミナとの反応性を向上させる ために、例えば lmm以下とする。さらに好ましくは 150 m以下である。さらに 75 m以下と 、つた微細粒でもよ!/、。
[0043] 一方、吹付け材料を施工温度で大別すると、冷温間用吹付け材と熱間吹付け材と に分けることができる。冷温間付け材は、新たな窯炉のライニングあるいは大掛力りな 補修に使用され、窯炉等の温度は常温力 600°C以下の範囲で行われ、施工後の 養生時間中に水和反応が進行して結合組織が生成する。これに対して、熱間吹付け 材は、操業中に小規模な補修を目的に行われるため、窯炉を冷やすことなく補修作 業を行うので窯炉等の温度が 600°C以上の高温での作業となる。施工直後の水分の 蒸発と結合剤の重合もしくは縮合反応等によって急激に結合組織が生成する。
[0044] 600°C以下の温度で施工される冷温間吹付け材料としては、耐火原料粉末に対し てアルミナセメント、マグネシアセメント、リン酸塩またはケィ酸塩のうち 1種カゝらなる結 合剤と、急結剤と、分散剤と、繊維とを添加し混合してなる配合組成物であって、耐 火原料粉末中に粒径 75 μ m以下の原料を 25〜60質量%含有し、し力もこのうち 10 m以下の原料 Z75 m以下 10 m超の原料の質量比が 0. 25〜0. 7である吹付 け材料を使用することで、低水分で混練することができ緻密な施工体が得られる。
[0045] 本発明の施工方法において 1次注水器を通過した後の材料は、前述のように、粉 末状態の 2次粒子の単位でそれぞれが分散し均一に湿潤された状態になっていると 考えている。この 2次粒子には、急結剤、分散剤及び結合剤が含有されているがその 添加量は少なぐ製造時に他の耐火原料粉末と均一に混合されて!、るのでお互いに 接触する頻度は極め低い。このため急結剤、分散剤及び結合剤のほとんどは、その 効果を失効することなく 2次粒子粒に存在していると考えられる。このため、材料が搬 送されて!、る間に急結剤や分散剤が水中に溶解して広範囲に拡散することがほとん どない。したがって材料が凝集しないので、水分量が増えることもない。このため、急 結剤を先端部で別に添加する必要がなぐ急結剤の添加量の管理や材料搬送管の 洗浄と 、う煩雑な作業も不要となる。しかも低水分で緻密な施工体が得られる。
[0046] ただし本発明では施工水を 100 μ m以下の微粒ィ匕水が発生する条件で添加して いるため、湿潤効果が非常に高ぐこのため、急結剤、分散剤及び結合剤の溶解拡 散を抑制しながら効果的に施工水を添加するには、比表面積の大きな 10 m以下 の超微粉原料が有効であり、し力も 75 m以下 10 m超の原料とのバランスが重要 である。すなわち 10 μ m以下の原料 Ζ75 μ m以下 10 μ m超の原料の質量比が 0. 25-0. 7の範囲であることが好ましぐさらに 0. 30〜0. 60の範囲がより緻密な施工 体が得られることからより好ましい。 0. 25未満では凝集傾向になり施工水分が多くな り、 0. 7を超えると粉体が材料搬送管内に付着し易くなる。
[0047] また 75 μ m以下の原料の使用量は、 25質量%未満では、緻密な施工体が得られ にくぐ 60質量%を超えると施工体の耐用性が低下する。
[0048] 一方、この冷温間吹付け材料に繊維を添加しておくとより材料搬送管内へ材料が 付着しに《なる効果がある。この理由は、繊維の添カ卩によって搬送中の材料が空気 を多く含んだ、力さの低い塊りを形成するため、空気でより搬送されやすくなり材料搬 送管内の内面に付着しにくくなるためではないかと推定する。一方、施工体が緻密に なるので乾燥時の爆裂対策にも有効である。
[0049] さらにより好ましい冷温間吹付け材料の粒度構成は、粒径 5mm以下 lmm超が 20 〜45質量%、粒径 lmm以下 75 μ m超が 10〜40質量%、及び粒径 75 μ m以下が 25〜60質量0 /0であり、しかも 10 μ m以下の原料 Ζ75 μ m以下 10 μ m超の原料の 質量比が 0. 25〜0. 7である耐火原料粉末 100質量部に対して、外掛けで結合剤と してアルミナセメント、マグネシアセメント、リン酸塩またはケィ酸塩のうち 1種を 1〜7 質量部、急結剤を 0. 5〜5質量部、分散剤を 0. 01〜0. 5質量部、及び繊維を 0. 0 5〜0. 5質量部添加して混合してなる配合組成物である。
[0050] 以上は、施工時の温度が 600°C以下の場合であった力 600°C以上の温度で施工 される熱間吹付け材料として好まし ヽ材料は、耐火原料粉末に対して熱硬化性有機 榭脂、リン酸塩またはケィ酸塩のうち 1種カゝらなる結合剤を添加し混合してなる配合 組成物であって、耐火原料粉末中に粒径 m以下の原料を 10〜45質量%含有 し、し力もこのうち 10 μ m以下の原料 Ζ75 μ m以下 10 μ m超の原料の質量比が 0. 25-0. 7である。また、必要に応じて急結剤を添加することもできる。
[0051] この熱間吹付け材料は、従来の乾式施工方法で一般的に使用されている熱硬化 性有機榭脂、リン酸塩あるいはケィ酸塩を結合剤とするタイプと似ているが、微粉の 構成に特徴がある。つまり、施工水を平均粒径 100 m以下の微粒ィ匕水が発生する 条件で添加するため、従来の湿式材料よりも 75 m以下の微粉原料を 10〜45質量 %と多く使用することができ、その結果非常に緻密な施工体が得られるメリットがある
[0052] そして本発明では施工水を平均粒径が 100 μ m以下の微粒化水が発生する条件 で添加しているため、湿潤効果が非常に高ぐ比表面積の大きな 10 m以下の超微 粉原料が低水分で緻密な施工体を得るために有効であり、しかも 75 μ m以下 10 m超の原料とのバランスが重要である。すなわち 10 μ m以下の原料 Ζ75 μ m以下 1 0 m超の原料の質量比が 0. 25〜0. 7の範囲であることが好ましぐさらに 0. 30〜 0. 60の範囲がより緻密な施工体が得られること力 より好ましい。 0. 25未満では凝 集傾向になり施工水分が多くなり、 0. 7を超えると粉体が材料搬送管内に付着し易く なる。
[0053] さらに熱間吹付け材料におけるより好ましい粒度構成は、粒径 5mm以下 lmm超 力 20〜45質量%、粒径 lmm以下 75 μ m超が 20〜45質量%、及び粒径 75 μ m以 下が 10〜45質量%であり、しかも 10 μ m以下の原料 Ζ75 μ m以下 10 μ m超の原 料の質量比が 0. 3〜0. 6である耐火原料粉末 100質量部に対して外掛けで結合剤 として熱硬化性有機榭脂、リン酸塩またはケィ酸塩のうち 1種以上を 1〜7質量部混 合してなる配合組成物である。
[0054] 更に、本発明の吹付け施工方法では、常温で施工した施工体において、養生後 1 10°Cで 24時間以上乾燥した後、見掛け気孔率が 18〜30%、かつ通気率が 100 X 10" 5cm3 · cmZcm2 · cmH O · sec以上である吹付け材料を使用した場合にはより
2
低水分で緻密でしかも耐爆裂性に優れた施工体を得ることができる。本発明の施工 方法に適用する吹付け材料は、低水分施工を前提とした設計としているため、見掛 け気孔率は低下する反面、乾燥時あるいは熱間での吹付け時に爆裂を生じ易くなる 場合がある。このため、通気性を持たせた施工体とすることで爆裂を防止することが できる。見掛け気孔率が 18%未満では、緻密になり爆裂しやすくなり、 30%を超える と耐食性が低下する。通気率が100 10_ 5«113 111/«112 11111 O ' sec未満では
2
、爆裂しやすくなる。前記範囲を満足する材料は、粒度構成を最適化したり、繊維等 の通気性を高める添加材を入れることで得られる。例えば、 75 m以下の粒度構成 を調整することにより得られ、より具体的には、 10 111以下の原料775 111以下10 μ m超の原料の質量比を 0. 25-0. 7の範囲とすることで得ることができる。
[0055] 本発明の吹付け材料に使用する耐火原料粉末としては、一般的な不定形耐火物 に使用される耐火原料であれば問題なく使用することができる。例えば、金属酸化物 、金属炭化物、金属窒化物、炭素類、金属等である。また、耐火原料粉末の最大粒 径は、 5mmを超えると 1次注水器による注水後の搬送中に分離、セダレが生じ易くな り混練効果が低下するため、耐火原料粉末のうち粒径 5mm以下の原料が 90質量% 以上であることがより好ましぐさらにより好ましくは、耐火原料粉末のうち粒径 3mm 以下の原料が 90質量%以上である。尚、ここで言う粒径とは、ふるい目の開き (mm) のことである。例えば 3mm以下とはふるい目の開きが 3mmのふるいを通過したこと を示す。
[0056] 冷温間吹付け材料の結合剤としては、アルミナセメント、マグネシアセメント、リン酸 塩またはケィ酸塩のうち 1種力 なるものを使用することができる力 強度が発現しや す 、点からは、アルミナセメントがより好まし!/、。
[0057] 熱間吹付け材料の結合剤としては、熱硬化性有機榭脂、リン酸塩またはケィ酸塩 のうち 1種以上力もなるものを使用することができる。熱硬化性有機榭脂としては、フ エノール榭脂やフラン榭脂を使用することができる。
[0058] 分散剤は解こう剤とも称され、一般的な不定形耐火物で使用されているものであれ ば問題なく使用することができる。不定形耐火物施工時の流動性を付与する効果を もつ。具体例としては、トリポリリン酸ソーダ、へキサメタリン酸ソーダ、ウルトラポリリン 酸ソーダ、酸性へキサメタリン酸ソーダ、ホウ酸ソーダ、炭酸ソーダ、ポリメタリン酸塩 などの無機塩、タエン酸ソーダ、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソー ダ、ポリカルボン酸塩、 β ナフタレンスルホン酸塩類、ナフタリンスルフォン酸、カル ボキシル基含有ポリエーテル系分散剤等である。
[0059] 急結剤は施工水の存在下で結合剤と反応し、不定形耐火物を急速に硬化させ、不 定形耐火物に付着性を付与する。急結剤は粉末状態で不定形耐火物に当初から混 入させておく他、急結剤を吹付けノズルの近傍で且つ二次注水箇所より前方にて添 カロしてもよい。急結剤を吹付けノズルまたはその近傍で添加する場合は、必要により 、急結剤を水で希釈した液状で使用する。
[0060] 急結剤の具体例を挙げると、ケィ酸ナトリウム、ケィ酸カリウムなどのケィ酸塩、アル ミン酸ナトリウム、アルミン酸カリウム、アルミン酸カルシウムなどのアルミン酸塩、炭酸 ナトリウム、炭酸カリウム、炭酸水素ナトリウムなどの炭酸塩、硫酸ナトリウム、硫酸カリ ゥム、硫酸マグネシウムなどの硫酸塩、 CaO'Al O、 12CaO - 7Al O、 CaO - 2Al
2 3 2 3 2
O、 3CaO -Al O、 3CaO - 3Al O -CaF、 HCaO - 7Al O -CaFなどのカノレシゥ
3 2 3 2 3 2 2 3 2
ムアルミネート類、酸化カルシウム、水酸化カルシウム、塩化カルシウムなどのカルシ ゥム塩などである。
[0061] ただし、本発明の冷温間吹付け材料に使用する急結剤としては、アルミン酸ソーダ または消石灰のいずれも粉末が、施工体の強度に優れる面力もより好ましい。また本 発明の熱間吹付け材料に使用する急結剤としては、消石灰、活性マグネシア、ある いは硫酸塩の粉末が、施工体の強度に優れる面力もより好ましい。
繊維は、通常の不定形耐火物で爆裂防止等の目的で使用されている繊維を使用 することができ、例えば、ビニロン、ナイロン、 PVA、ポリビニル、ポリスチレン、ポリプ ロピレン、炭素等である。
発明の効果
[0062] 材料搬送管内へ注水された水流が平均粒径 100 μ m以下の微粒ィ匕水となる条件 で施工されるため、低水分で良好な混練効果が得られるためバラツキの少な 、緻密 な施工体が得られ、炉の寿命が向上する。また、ミキサー等の特別な混練装置を必 要とせず、し力も材料搬送管が詰まることもないので、作業中のトラブルが減少し、洗 浄作業も軽減されるので作業性に非常に優れる施工方法となる。
[0063] 吹付け材料力 粒径 75 μ m以下の炭化ケィ素を 5〜30質量%含むアルミナ—炭 化ケィ素質不定形耐火物である場合には従来の施工方法と比較して施工水との馴じ みが良ぐ材料搬送管内での施工水の添加では吹付け材料と施工水との混和が十 分となり、付着性の向上と共に、発塵が抑制される。そして、施工体の緻密性が向上 する。
[0064] 吹付け材料力 マグネシア微粉を 1〜30質量%含み、残部がアルミナを主体とする アルミナ マグネシア質不定形耐火物である場合には施工体の消化抑制とスピネル 生成の促進によって、アルミナ マグネシア質不定形耐火物力 Sもつ容積安定性およ び耐食性の効果力 ^、かんなく発揮され、吹付け施工体の耐用性は格段に向上する。
[0065] また、耐火原料粉末に対してアルミナセメント、マグネシアセメント、リン酸塩または ケィ酸塩のうち 1種からなる結合剤と、急結剤と、分散剤と、繊維とを添加し混合して なる配合組成物であって、耐火原料粉末中に粒径 75 m以下の原料を 25〜60質 量0 /0含有し、し力もこのうち 10 μ m以下の原料 Ζ75 μ m以下 10 μ m超の原料の質 量比が 0. 25〜0. 7で構成された材料を使用した場合、従来の湿式施工方法と比べ て、少な 、添加水分量で混練することができるので高品質でしかもばらつきの少な!/、 施工体が得られ、炉の寿命が向上する。さらに、従来のように急結剤の添加量の管 理ゃ材料搬送管の洗浄という煩雑な作業もほんどなぐ作業効率が向上する。
[0066] さらに、耐火原料粉末に対して結合剤として熱硬化性有機榭脂、リン酸塩またはケ ィ酸塩を添加し混合してなる配合組成物であって、耐火原料粉末中に粒径 75 m 以下の原料を 10〜45質量0 /0含有し、し力もこのうち 10 μ m以下の原料 Ζ75 μ m以 下 10 m超の原料の質量比が 0. 25〜0. 7で構成された材料を使用した場合、従 来の乾式施工方法と比べて少ない添加水分量で混練することができるので高品質で し力もばらつきの少ない施工体が得られ、炉の寿命が向上する。また、大掛かりな専 用のミキサーを設置することがな 、ので作業性に優れて 、る。
発明を実施するための最良の形態
[0067] 以下、本発明の実施の形態を実施例に基づいて説明する。
実施例
[0068] [第 1実施例]
図 1は、本発明の不定形耐火物の吹付け施工方法を実施するための吹付け装置 1 0の全体構成を示す。
[0069] 同図において、 1は吹付け材料 2が収納された加圧式の材料供給機を示す。材料 供給機 1は、一般に不定形耐火物の吹付け装置に使用されているもので定量吐出 できるものであれば、ロテクターガン、リードガン、野上セメントガン等の如何なるタイ プのものでも問題なく使用することができる。このうち加圧式の材料供給機を使用す ることで、吹付け材料が安定して供給されるため、均一に湿潤され、ノ ツキのない 施工体が得られる効果が得られる。
[0070] この材料供給機 1内の吹付け材料 2は、材料供給機 1内に供給される圧縮空気によ つて内圧が調整され、下端に設けられたモータ Mによって駆動するテーブルフィーダ 一 3によって、材料供給機 1から先端吹付けノズル 4まで配置された搬送ホース 5に供 給される。
[0071] 搬送ホース 5にはテーブルフィーダ一 3の搬送空気導入箇所 6を通して搬送空気が 供給され、材料供給機 1からの吹付け材料 2を搬送ホース 5の先端吹付けノズル 4か ら対象体 9に吹付け施工する。
[0072] この搬送ホース 5には、材料供給機 1の直後に 1次注水器 7が、また、先端吹付けノ ズル 4の直前には 2次注水器 8が設けられている。
[0073] この 1次注水器 7及び 2次注水器 8は、搬送ホース 5内で微粒ィヒ水を発生させ、空 気搬送される吹付け材料に 2段階で注水し、吹付け材料を湿潤する。
[0074] 図 2は、注水器の構成を搬送ホース 5に沿って切断した断面によって示す。注水器 としては、図 1に示す 1次注水器 7と 2次注水器 8とも同様の構造のものを適用すること ができる。
[0075] 注水器 7 (8)は外筒 11とその内部に設けられた内筒 12とからなる。注水器 7 (8)は 、注水器を貫通する図示しないボルトで搬送ホース 5間に固定されている。吹付け材 料は搬送ホース 5内を図中の矢印の方向に空気搬送される。注水器の外筒 11と内 筒 12との間には、加圧水の圧力が均一になるように溜りとして、円周方向に連続した 均圧室 13が形成されて!、る。
[0076] この均圧室 13には材料搬送方向に傾斜した注水孔 14が形成されている。この注 水孔 14は、図 2に示すように、搬送ホース 5の搬送方向の軸心に向かって、矢印で示 す材料進行方向とのなす角度 αが 30〜70度となるように傾斜して形成されている。 この実施例の注水孔は、内径は 0. 8mm、傾斜角度 αは 45度であり、円周方向に沿 つて等間隔に合計 12個設けられている。
[0077] 図 2において点線で示す微粒ィ匕水の動きは、実験用として注水器の両側に透明な 材質の円筒を接続し、吹付け材料は導入せず、加圧水のみを供給した状態を観察し た概略図を示している。注水孔 14から水は水流となって吐出し中央部で衝突して微 粒ィ匕水となりその後ほぼ平行に流れて並流噴霧流 Αを形成している。この状態で、材 料搬送空気を供給すると、衝突の中心がやや大きく不明確になってくるが笠状の並 流噴霧流が形成される。本発明では、この材料搬送用空気を供給した状態で 100 m以下の微粒化水が発生することとする。この状態において微粒ィ匕水の大きさを 100 μ m以下にするためには、注水孔の内径、傾斜角度、数、さらには注水孔から吐出さ れる水流の流速、水圧等を最適条件にすれば良い。
[0078] 図 3には、本発明に使用する混合管を示す。この混合管 16は、両側にフランジを有 する円筒で、内孔は、内径が材料搬送管 5より小さい絞り部 17と、その両側のテーパ 一部 18、さらにその両側に材料搬送管の内径 Dと同じストレート部 19とからなってい る。絞り部の内径 dは、材料搬送管の内径 Dに対して 0. 5D以上 0. 9D以下となって いる。この混合管は、 2次注水器の前後のいずれか一方もしく両方に設けることがで きる。この混合管を 2次注水器の前後に配置すると、より混練効果が高まりバラツキの 少な!/ヽ施工体が得られる。
[0079] 上記各図に示す吹付け装置 10による吹付けは以下の要領で施工される。
[0080] まず、従来の乾式吹付け方法と同様に、材料供給機 1の吹付け材料を搬送空気導 入箇所 6からの搬送空気により搬送ホース 5内を空気搬送させる。それと同時に、カロ 圧した水を、 1次注水器 7及び 2次注水器 8の施工水導入口 15に供給することで、空 気搬送されている吹付け材料に注水する。注水器力も注水される水流は、搬送ホー ス 5内で他の水流ある ヽは吹付け材料と衝突することで微粒ィ匕水となる。この微粒ィ匕 水が吹付け材料を均一に湿潤し均一に混練する。
[0081] そして、先端吹付けノズル 4を操作して、炉壁等の対象体 9に十分混練された不定 形耐火物を吹付ける。 [0082] 図 1に示す 1次注水器 7と 2次注水器 8との距離間隔については、特に限定すること はないが、ある程度離れていた方が混練効果の面力 好ましい。最低 lm以上の間 隔を設けることが好ましい。すなわち 1次注水器は 2次注水器の上流側 lm以上から 材料供給機 1までの間であれば特に制約なく設けることができる。さらに、 1次注水器 と 2次注水器との距離はより好ましくは 7m以上、さらに好ましくは 10m以上である。
[0083] 2次注水器 8は、先端吹付けノズル 4本体あるいはその直前付近に設けることができ る。先端吹付けノズルの先端力 離れ過ぎると搬送ホースや先端吹付けノズルが詰ま りやすくなる。搬送ホースの長さについても特に限定されず例えば 10〜: LOOmの間 であれば問題なく使用することができる。
[0084] 表 1は、耐火原料粉末として粒度調整したマグネシアクリンカー 100質量部に対し て、結合剤として粉末状のフエノール榭脂を 4質量部使用した吹付け材料に対して種 々の注水条件で吹付けテストを行った結果を示す。なお、注水器は先端吹付けノズ ルの先端から 1. 7mの位置に 1ケ所のみ設け、先端吹付けノズルの長さは 1. 5mで ある。また、吹付け材料の搬送用空気の流量は 4. 5Nm3Zmin、圧力は 0. 25MPa 、注水器の注水孔の傾斜角度は 45度とし、材料搬送管の内径は 35mm、注水器に 供給する水圧は 0. 9〜2MPaとした。施工水量は、水圧を変化させて吹付け状況や 施工体の状況に応じて調整した。このとき、表 1の実施例 1に使用した注水器を使用 して微粒ィ匕水の平均粒径を吹付け材料は供給せず吹付け材料の搬送用空気のみ を供給した状態でレーザードップラー法にて測定したところ 32 m (体積平均粒径) であった。また他の実施例についても同様な条件で測定したところ微粒ィ匕水の平均 粒径は 100 m以下であった。なお、測定位置は、注水器の注水孔より 300mm下 流部である。微粒ィ匕水の粒径の測定装置としては、米国 TSI社の商品名「AEROM ETRICS」を使用した。テストは水平方向に約 lm離れた位置に、垂直に置いた金枠 (深さ 40mm、幅 160mm、長さ 400mm)へ吹付け施工し、 110°Cで乾燥後の施工 体の品質を調べたものである。
[表 1] 実施例 1 実施例 2 実施例 3 実施例 4 比較例 1 比較例 2 内径 (mm) 0.6 0.8 1 1.2 1.8 2 注水孔
孔数 10 10 10 10 10 2 水流の流速 m/ s 39 22 14 11 5 21
L/min 6.6 6.7 6.8 7.2 8.1 7.8 施工水量
(質量部) 9.4 9.6 9.7 10.3 11.6 1 1.1 かさ比重 2.49 2.48 2.45 2.40 2.21 2.29 見掛け気孔率(%) 25.2 24.7 25.1 25.8 29.1 29.5 曲げ強度 (MPa) 4.51 4.45 4.40 4.20 2.95 3.01 注 1 )施工水量 (質量部)は耐火原料粉末 100質量部に対する質量部である。
[0085] 表 1において、実施例 1から実施例 4は注水孔の内径と水流の流速を変化させたも のであるが、本発明の範囲内であり、低水分で緻密な施工体が得られている。比較 例 1は、微粒化水の平均粒径が 100 mを超えてしまい本発明の範囲外であり、吹 付け作業を行うために実施例と比べて多くの水分が必要となり、その結果実施例と比 較するとラフで低強度な施工体となっている。比較例 2は、注水孔が 2個と本発明の 範囲外であり微粒ィ匕水の平均粒径は 100 mを超える。このため、吹付け作業を行う ために実施例と比べて多くの水分が必要となり、その結果実施例と比較するとラフで 低強度な施工体となって 、る。
[0086] 次に、表 2、表 3、及び表 4に示す配合割合において、図 1及び図 2に示す施工方 法で吹付けテストを実施した結果にっ 、て説明する。 1次注水器は先端吹付けノズ ルの先端から 20mの位置、 2次注水器は先端吹付けノズルの先端から 1. 7mの位置 、先端吹付けノズルの長さは 1. 5mである。また、吹付け材料の搬送用空気の流量 は 4. 8Nm3Zmin、圧力は 0. 27MPa、 1次注水器の水流の流速は 9. 5~10m/s 、注水孔の内径は 0. 6mm、注水孔の数は 4個、注水孔の傾斜角度は 50度、また 2 次注水器の水流の流速は 9. 5〜10mZs、注水孔の内径は 0. 8mm,注水孔の数 は 8個、注水孔の傾斜角度は 50度とし、注水器及び材料搬送管の内径は 35mm、 それぞれの注水器に供給する水圧は 0. 9〜2MPaとした。施工水量は、水圧を変化 させて吹付け状況や施工体の状況に応じて調整した。このとき、実施例 5において微 粒ィ匕水の平均粒径を吹付け材料は供給せず吹付け材料の搬送用空気のみを供給 した状態でレーザードップラー法にて測定したところ一次注水器では 43 m (体積平 均粒径)、二次注水器では 38 m (体積平均粒径)であった。なお、測定位置は、注 水器の注水孔より 300mm下流部である。また、測定は、測定対象の注水器のみから 微粒ィ匕水を発生させた状態で行った。テストは水平方向に約 lm離れた位置に、垂 直に置いた金枠(深さ 40mm、幅 160mm、長さ 400mm)へ吹付け施工し、 110°C で乾燥後の施工体の品質を調べたものである。回転侵食試験については、表 2では 高炉スラグを使用し 1550°C X 4時間行い、表 3、表 4では転炉スラグを用い 1650°C X 4時間行 ヽ試験片の残存厚みを比較した。通気率の測定方法〖お ISR2115に従 つ 7こ。
表 2は、冷温間吹付け材の例で、粒径 75 m以下の炭化ケィ素を 10質量%含み、 残部がアルミナ力 なる耐火原料粉末を使用したアルミナ 炭化ケィ素質吹付け材 において、微粉部の施工体に与える影響について調査した結果を示す。結合剤、急 結剤、及び分散剤は粉末状のものを使用し、耐火原料粉末及び繊維とあらかじめ均 一に混合した配合組成物を使用した。実施例 5〜12は、粒径 75 m以下の原料の 割合、及び 10 μ m以下の原料 Ζ75 μ m以下 10 μ m超の原料の質量比が本発明の 範囲内であり、低水分で緻密な施工体が得られている。これに対して比較例 3は 10 μ m以下の原料 Ζ75 μ m以下 10 μ m超の原料の質量比が 0. 2と小さいため、急結 剤が凝集傾向になり添加水分が増えるため緻密な施工体が得られな力つた。比較例 4は 10 μ m以下の原料 Ζ75 μ m以下 10 μ m超の原料の質量比が 0. 75と大き!/、た め、材料搬送管が詰り気味になりノズル力 材料が吐出する際に不安定となり良好な 施工体が得られな力つた。比較例 5は粒径 75 m以下の原料が不足し、低強度な施 ェ体となっている。比較例 6は粒径 75 μ m以下の原料が多すぎて耐食性が悪い。
[表 2]
Figure imgf000025_0001
注 1 )結合剤、急結剤、分散剤、繊維、施工水の配合量は耐火原料粉末 1 00質量部に対する質量部で示した。
注 2)回転侵食試験は、比較例 3の試験片において侵食された量を 1 00として指数で表示した (数値が小さい程耐食性に優れる) <
表 3は熱間吹付け材の例で、粒径 75 μ m以下のマグネシアを 10質量%含み、残 部がアルミナからなる耐火原料粉末を使用したアルミナ マグネシア材質吹付け材 にお 、て微粉部の施工体に与える影響にっ 、て調査した結果を示す。結合剤と急 結剤は粉末状のものを使用し耐火原料粉末とあらかじめ均一に混合した配合組成物 を使用した。実施例 13〜20は、粒径 75 μ m以下の原料の割合、及び 10 μ m以下 の原料 Z75 μ m以下 10 μ m超の原料の質量比が本発明の範囲内であり、低水分 で緻密な施工体が得られている。これに対して比較例 7は 10 m以下の原料 Z75 μ m以下 10 m超の原料の質量比が 0. 2と小さいため、急結剤が凝集傾向になり 添加水分が増えるため緻密な施工体が得られな力つた。比較例 8は 10 m以下の 原料 Z75 μ m以下 10 m超の原料の質量比が 0. 8と大きいため、材料搬送管が詰 り気味になりノズル力 材料が吐出する際に不安定となり良好な施工体が得られなか つた。比較例 9は粒径 75 m以下の原料が不足し、低強度な施工体となっている。 比較例 10は粒径 75 μ m以下の原料が多すぎて耐食性が悪い。
[表 3]
Figure imgf000027_0001
注 1 )結合剤、急結剤、施工水の配合量は耐火原料粉末 1 00質量部に対する質量部で示した。
注 2)回転侵食試験は、比較例 7の試験片において侵食された量を 1 00として指数で表示した (数値が小さい程耐食性に優れる) ,
表 4は結合剤としてフエノール榭脂を使用した熱間吹付け材の例で、粒径 75 μ m 以下のマグネシアを 10質量%含み、残部もマグネシアクリンカーからなる耐火原料 粉末を使用したマグネシア材質吹付け材において微粉部の施工体に与える影響に っ 、て調査した結果を示す。結合剤は粉末状のものを使用し耐火原料粉末とあらか じめ均一に混合した配合組成物を使用した。実施例 21〜28は、粒径 75 m以下の 原料の割合、及び 10 μ m以下の原料 Ζ75 μ m以下 10 μ m超の原料の質量比が本 発明の範囲内であり、低水分で緻密な施工体が得られている。これに対して比較例 1 1は 10 m以下の原料 Z75 μ m以下 10 μ m超の原料の質量比が 0. 2と小さ!/、ため 、添加水分が増えるため緻密な施工体が得られな力つた。比較例 12は 10 /z m以下 の原料 Ζ75 /ζ πι以下 10 /z m超の原料の質量比が 0. 8と大きいため、材料搬送管が 詰り気味になりノズル力 材料が吐出する際に不安定となり良好な施工体が得られな かった。比較例 13は粒径 75 m以下の原料が不足し、低強度な施工体となってい る。比較例 14は粒径 75 m以下の原料が多すぎて耐食性が悪い。
[表 4]
Figure imgf000029_0001
注 1 )結合剤、施工水の配合量は耐火原料粉末 1 00質量部に対する質量部で示した。
注 2)回転侵食試験は、比較例 1 2の試験片において侵食された量を 1 00として指数で表示した (数値力 ΐ小さい程耐食性に優れる)。
[0090] [第 2実施例]
図 4は、図 1に示す吹付け装置 10に使用する注水器の他の構成を搬送ホース 5に 沿って切断した断面によって示す。注水器としては、図 1に示す 1次注水器 7と 2次注 水器 8とも同様の構造のものを適用することができる。
[0091] 注水器 7 (8)は、注水器を貫通する図示しないボルトで搬送ホース 5間に固定され、 全く同じ構成力も成る注水部 7aと 7bとを備える。注水部 7aと 7bとの間隔は 150mm である。それぞれの注水部は、外筒 l la、 l ibとその内部に設けられた内筒 12a、 12 bと力らなる。吹付け材料は搬送ホース 5内を図中の矢印の方向に空気搬送される。 注水部 7a、 7bの外筒 l la、 l ibと内筒 12a、 12bとの間には、加圧水の圧力が均一 になるように溜りとして、円周方向に連続した均圧室 13a、 13bが形成されている。
[0092] この均圧室 13a、 13bには材料搬送方向に傾斜した注水孔 14a、 14bが形成され ている。この注水孔 14a、 14bは、図 2に示すように、搬送ホース 5の搬送方向の軸心 に向かって、矢印で示す材料進行方向とのなす角度 exが 30〜70度となるように傾 斜して形成されている。この実施例の注水孔は、それぞれ内径は 0. 8mm,傾斜角 度 αは 45度であり、円周方向に沿って等間隔に合計 12個設けられている。下流側 の注水孔と上流側の注水孔の位置関係は交互になっている。
[0093] 図 4において点線で示す微粒ィ匕水の動きは、実験用として注水器の両側に透明な 材質の円筒を接続し、吹付け材料は導入せず、加圧水のみを供給した状態を観察し た概略図を示している。注水孔 14a、 14bから水は水流となって吐出し中央部 Aと B でそれぞれ衝突して微粒ィ匕水となり、その後ほぼ平行に流れて並流噴霧流 Cを形成 している。この状態で、材料搬送空気を供給すると、衝突の中心がやや大きく不明確 になってくるが笠状の並流噴霧流が形成される。本発明では、この材料搬送用空気 を供給した状態で 100 m以下の微粒ィ匕水が発生することとする。この状態におい て微粒ィ匕水の大きさを 100 m以下にするためには、注水孔の内径、傾斜角度、数 、さらには注水孔から吐出される水流の流速、水圧等を最適条件にすれば良い。尚 、この注水器は、 2次注水器として使用することで、吹付け材料を高速で大量に搬送 する場合でも 1つの注水器でより多くの水を添加することができる。また、衝突によつ て発生する微粒ィヒ水の発生領域を材料搬送方向に長く取ることできるので搬送され る材料に対する湿潤効果がより高まる。
[0094] この注水器を使用した吹付け装置 10による吹付けは以下の要領で施工される。
[0095] まず、従来の乾式吹付け方法と同様に、加圧式材料供給機 1の吹付け材料を搬送 空気導入箇所 6からの搬送空気により搬送ホース 5内を空気搬送させる。それと同時 に、加圧した水を、 1次注水器 7及び 2次注水器 8の施工水導入口 15a、 15bに供給 することで、空気搬送されている吹付け材料に注水する。注水器から注水される水流 は、搬送ホース 5内で他の水流ある ヽは吹付け材料と衝突することで微粒ィ匕水となる 。この微粒ィ匕水が吹付け材料を均一に湿潤し均一に混練する。
[0096] そして、先端吹付けノズル 4を操作して、炉壁等の対象体 9に十分混練された不定 形耐火物を吹付ける。
[0097] 表 5は、耐火原料粉末として粒度調整したマグネシアクリンカー 100質量部に対し て、結合剤として粉末状のフエノール榭脂を 4質量部使用した吹付け材料に対して種 々の注水条件で吹付けテストを行った結果を示す。
[0098] なお、注水器は図 4と同タイプで注水孔の内径、孔数、あるいは列数の異なるもの を先端吹付けノズルの先端から 1. 7mの位置に 1ケ所のみ設けた。注水孔の傾斜角 度 αは 45度である。先端吹付けノズルの長さは 1. 5mである。また、吹付け材料の 搬送用空気の流量は 4. 5Nm3Zmin、圧力は 0. 25MPa、材料搬送管の内径は 35 mm、注水器に供給する水圧は 0. 9〜2MPaとした。施工水量は、吹付け状況や施 ェ体の状況に応じて水圧を変えて調整した。ここで、表 5に示した注水孔の列数は、 図 4で説明した注水部の数に対応する。すなわち、注水孔の列数は水流どうしの衝 突点の数を表す。また、注水孔の孔数とは 1列あたりの孔数である。
[0099] このとき、微粒ィ匕水の平均粒径を吹付け材料は供給せず吹付け材料の搬送用空 気のみを供給した状態でレーザードップラー法にて測定したところ表 5の実施例 30 においては 41 m (体積平均粒径)であった。また表 5の他の実施例でも微粒ィ匕水 の平均粒径は 100 μ m以下であった。なお、測定位置は、注水器の注水孔より 300 mm下流部である。微粒ィ匕水の粒径の測定装置としては、米国 TSI社の商品名「AE ROMETRICSJを使用した。
[0100] 吹付けテストは水平方向に約 lm離れた位置に、垂直に置いた金枠 (深さ 40mm、 幅 160mm、長さ 400mm)へ吹付け施工し、 110°Cで乾燥後の施工体の品質を調 ベたものである。
[表 5]
Figure imgf000032_0001
1 工 100質量部に対する質量部である。
[0101] 表 5において、実施例 29から実施例 32は注水孔の内径、孔数、列数と水流の流速 を変化させたものである力 本発明の範囲内であり、低水分で緻密な施工体が得ら れている。比較例 15は、水の流速が小さいためか微粒化水の平均粒径が 100 m を超えており本発明の範囲外であり、吹付け作業を行うために実施例と比べて多くの 水分が必要となり、その結果実施例と比較するとラフで低強度な施工体となっている 。比較例 16は、注水孔が 2個と本発明の範囲外であり微粒ィ匕水の平均粒径は 100 mを超える。このため、吹付け作業を行うために実施例と比べて多くの水分が必要 となり、その結果実施例と比較するとラフで低強度な施工体となっている。
産業上の利用可能性
[0102] 本発明は、各種の冶金炉、窯業炉の各部位の吹付け補修、築炉に好適に使用で きる。
図面の簡単な説明
[0103] [図 1]本発明の不定形耐火物の吹付け施工方法を実施するための装置の全体構成 を示す。
[図 2]本発明で使用する注水器の構成を示す。
[図 3]混合管の断面を示す。
[図 4]本発明で使用する注水器の他の構成を示す。
符号の説明 材料供給機
吹付け材料 (乾燥耐火物) テープノレフィーダ一 先端吹付けノズル 搬送ホース
搬送空気導入箇所
1次注水器
, 7b 注水部
2次注水器
対象体
吹付け装置
, 11a, l ib 外筒
, 12a, 12b 内筒
, 13a, 13b 均圧室, 14a, 14b 注水孔, 15a, 15b 施工水導入口 混合管
絞り部
テーパー部
ストレート部

Claims

請求の範囲
[1] 材料搬送管内を搬送される吹付け材料に対して注水器力 施工水を注水して吹付 ける不定形耐火物の吹付け施工方法であって、材料搬送管内へ注水器力 施工水 を注水する際に、材料搬送方向に対して 30〜70度傾斜し、材料搬送管内のほぼ中 心で衝突する 3本以上の水流を形成するように材料搬送管内に注水し、平均粒径 10 0 μ m以下の微粒ィ匕水を発生させることを特徴とする不定形耐火物の吹付け施工方 法。
[2] 水流どうしの衝突点が材料搬送方向に沿った 10mm以上 500mm以下の範囲内 に 2ケ所以上となるように注水する請求項 1に記載の不定形耐火物の吹付け施工方 法。
[3] 材料搬送管において上流側に 1次注水器と下流側に 2次注水器とを設けて 2ケ所 力も吹付け材料に施工水を注水し、 1次注水器からは全施工水の 10〜50質量%の 施工水を注水し、 2次注水器からは施工に必要な残りの施工水を注水して吹付ける 不定形耐火物の吹付け施工方法であって、少なくとも 1次注水器力 材料搬送管内 へ施工水を注水する際に、材料搬送方向に対して 30〜70度傾斜し、材料搬送管内 のほぼ中心で衝突する 3本以上の水流を形成するように材料搬送管内に注水し、平 均粒径 100 μ m以下の微粒化水を発生させることを特徴とする不定形耐火物の吹付 け施工方法。
[4] 水流の流速を 7mZs以上とする請求項 1〜3のいずれかに記載の不定形耐火物の 吹付け施工方法。
[5] 注水器の注水孔の内径を 0. 4mm以上 2mm以下、水圧を 0. 4Mpa以上 5Mpa以 下とする請求項 1〜4のいずれかに記載の不定形耐火物の吹付け施工方法。
[6] 吹付け材料力 粒径 75 μ m以下の炭化ケィ素を 5〜30質量%含むアルミナ—炭 化ケィ素質不定形耐火物である請求項 1〜5のいずれかに記載の不定形耐火物の 吹付け施工方法。
[7] 吹付け材料力 マグネシア微粉を 1〜30質量%含み、残部がアルミナを主体とする アルミナ マグネシア質不定形耐火物である請求項 1〜5のいずれかに記載の不定 形耐火物の吹付け施工方法。
[8] 冷温間で施工される冷温間吹付け材料であって、耐火原料粉末に対してアルミナ セメント、マグネシアセメント、リン酸塩またはケィ酸塩のうち 1種カゝらなる結合剤と、急 結剤と、分散剤と、繊維とを添加し混合してなり、耐火原料粉末中に粒径 75 m以 下の原料を 25〜60質量%含有し、し力もこのうち 10 μ m以下の原料 Ζ75 μ m以下 10 m超の原料の質量比が 0. 25-0. 7であることを特徴とする請求項 1〜7のい ずれかに記載の不定形耐火物の吹付け施工方法で使用される吹付け材料。
[9] 熱間で施工される熱間吹付け材料であって、耐火原料粉末に対して結合剤として 熱硬化性有機榭脂、リン酸塩またはケィ酸塩のうち 1種以上を添加し混合してなり、 耐火原料粉末中に粒径 75 m以下の原料を 10〜45質量%含有し、し力もこのうち 10 111以下の原料775 111以下10 111超の原料の質量比が0. 25〜0. 7であるこ とを特徴とする請求項 1〜7のいずれかに記載の不定形耐火物の吹付け施工方法で 使用される吹付け材料。
[10] 結合剤がアルミナセメントで、急結剤がアルミン酸ソーダまたは消石灰のいずれも 粉末である請求項 8に記載の吹付け材料。
[11] 結合剤がリン酸塩またはケィ酸で、急結剤として消石灰、活性マグネシア、ある 、は 硫酸塩を使用し、 Vヽずれも粉末である請求項 9に記載の吹付け材料。
[12] 常温で吹付け施工した施工体にぉ 、て、養生後 110°Cで 24時間以上乾燥した後 、見掛け気孔率が 18〜30%、かつ通気率が 100 X 10_5cm3' cmZcm2'cmH Ο ·
2 sec以上であることを特徴とする請求項 1〜7のいずれかに記載の不定形耐火物の吹 付け施工方法で使用される吹付け材料。
[13] 常温で吹付け施工した施工体にぉ 、て、養生後 110°Cで 24時間以上乾燥した後
、見掛け気孔率が 18〜30%、かっ通気率が^^ ^) 5。!!!3'。!!!/。!!!2'。!!!!! Ο ·
2 sec以上である請求項 8〜: L 1の!、ずれかに記載の吹付け材料。
PCT/JP2006/324268 2005-12-05 2006-12-05 不定形耐火物の吹付け施工方法とそれに使用する吹付け材料 WO2007066660A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-351162 2005-12-05
JP2005351162 2005-12-05
JP2006153319 2006-06-01
JP2006-153319 2006-06-01

Publications (1)

Publication Number Publication Date
WO2007066660A1 true WO2007066660A1 (ja) 2007-06-14

Family

ID=38122806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324268 WO2007066660A1 (ja) 2005-12-05 2006-12-05 不定形耐火物の吹付け施工方法とそれに使用する吹付け材料

Country Status (2)

Country Link
TW (1) TW200728243A (ja)
WO (1) WO2007066660A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011156576A1 (en) * 2010-06-09 2011-12-15 The Procter & Gamble Company Semi-continuous feed production of liquid personal care compositions
WO2011159409A1 (en) * 2010-06-14 2011-12-22 Dow Global Technologies Llc Static reactive jet mixer, and methods of mixing during an amine - phosgene mixing process
ITMI20112004A1 (it) * 2011-11-04 2013-05-05 Parcol S P A Dispositivo atomizzatore per attempramento di vapore
JP2017511269A (ja) * 2014-04-18 2017-04-20 ユナイテッド・ステイツ・ジプサム・カンパニー スタッコと水を混合するための排出器から構成されるミキサ
WO2018019887A1 (en) * 2016-07-28 2018-02-01 Refractory Intellectual Property Gmbh & Co. Kg System with a spraying nozzle unit and method for spraying an inorganic mass
IT201600097204A1 (it) * 2016-09-28 2018-03-28 Cristanini Spa Apparato per lo spruzzaggio di una miscela abrasiva verso una superficie delicata per la rimozione di scritte, disegni o graffiti dalla stessa
CN110358332A (zh) * 2019-07-19 2019-10-22 景德镇百陶会陶艺装备有限公司 一种窑炉内壁保温层涂料
EP3770540A4 (en) * 2018-03-23 2021-12-29 Krosakiharima Corporation Monolithic refractory spray application method, and spray material used therein
US20220306945A1 (en) * 2021-03-29 2022-09-29 Saudi Arabian Oil Company Methods and apparatuses for mixing crude oil and water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111632569B (zh) * 2020-05-24 2021-12-28 西安交通大学 一种用于超临界水氧化反应耦合的流动腐蚀-盐沉积装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161666U (ja) * 1982-04-26 1983-10-27 品川白煉瓦株式会社 吹付パイプ
JPS60186044U (ja) * 1984-05-23 1985-12-10 黒崎窯業株式会社 注水部構造
JPS61149097U (ja) * 1985-03-02 1986-09-13

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161666U (ja) * 1982-04-26 1983-10-27 品川白煉瓦株式会社 吹付パイプ
JPS60186044U (ja) * 1984-05-23 1985-12-10 黒崎窯業株式会社 注水部構造
JPS61149097U (ja) * 1985-03-02 1986-09-13

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011156576A1 (en) * 2010-06-09 2011-12-15 The Procter & Gamble Company Semi-continuous feed production of liquid personal care compositions
JP2013529135A (ja) * 2010-06-09 2013-07-18 ザ プロクター アンド ギャンブル カンパニー 液体パーソナルケア組成物の半連続供給式製造
US9174178B2 (en) 2010-06-09 2015-11-03 The Procter & Gamble Company Semi-continuous feed production of liquid personal care compositions
WO2011159409A1 (en) * 2010-06-14 2011-12-22 Dow Global Technologies Llc Static reactive jet mixer, and methods of mixing during an amine - phosgene mixing process
US9259704B2 (en) 2010-06-14 2016-02-16 Dow Global Technologies Llc Static reactive jet mixer, and methods of mixing during an amine-phosgene mixing process
ITMI20112004A1 (it) * 2011-11-04 2013-05-05 Parcol S P A Dispositivo atomizzatore per attempramento di vapore
JP2017511269A (ja) * 2014-04-18 2017-04-20 ユナイテッド・ステイツ・ジプサム・カンパニー スタッコと水を混合するための排出器から構成されるミキサ
WO2018019887A1 (en) * 2016-07-28 2018-02-01 Refractory Intellectual Property Gmbh & Co. Kg System with a spraying nozzle unit and method for spraying an inorganic mass
US11642685B2 (en) 2016-07-28 2023-05-09 Refractory Intellectual Property Gmbh & Co. Kg System with a spraying nozzle unit and method for spraying an inorganic mass
IT201600097204A1 (it) * 2016-09-28 2018-03-28 Cristanini Spa Apparato per lo spruzzaggio di una miscela abrasiva verso una superficie delicata per la rimozione di scritte, disegni o graffiti dalla stessa
EP3300836A1 (en) * 2016-09-28 2018-04-04 Cristanini Spa Apparatus for spraying an abrasive mixture towards a delicate surface for removing writings, drawings or graffiti therefrom
EP3770540A4 (en) * 2018-03-23 2021-12-29 Krosakiharima Corporation Monolithic refractory spray application method, and spray material used therein
CN110358332A (zh) * 2019-07-19 2019-10-22 景德镇百陶会陶艺装备有限公司 一种窑炉内壁保温层涂料
US20220306945A1 (en) * 2021-03-29 2022-09-29 Saudi Arabian Oil Company Methods and apparatuses for mixing crude oil and water
WO2022211830A1 (en) * 2021-03-29 2022-10-06 Saudi Arabian Oil Company Methods and apparatuses for mixing crude oil and water

Also Published As

Publication number Publication date
TW200728243A (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP4377913B2 (ja) 不定形耐火物の吹付け施工方法、それに使用する吹付け材料、及び施工装置
WO2007066660A1 (ja) 不定形耐火物の吹付け施工方法とそれに使用する吹付け材料
JP4603477B2 (ja) 不定形耐火物の吹付け施工方法とそれに使用する吹付け材料
JP5865200B2 (ja) 粉体急結剤及び不定形耐火物の吹き付け施工方法
RU2733573C1 (ru) Смесительная насадка для устройства для нанесения торкретбетона, устройство для нанесения торкретбетона, имеющее такую смесительную насадку, и способ нанесения торкретбетона
RU2730720C1 (ru) Смесительная насадка для устройства нанесения торкретбетона и устройство для нанесения торкретбетона, содержащее такую смесительную насадку, и способ нанесения торкретбетона
JP2011208837A (ja) 不定形耐火物の吹付け施工装置及び施工方法
JP5366240B2 (ja) 不定形耐火物の吹付け施工方法
JP4669362B2 (ja) 不定形耐火物の吹付け施工方法、それに使用する吹付け材料、及び施工装置
JP2006220348A (ja) 不定形耐火材の吹付け施工方法
JP3864054B2 (ja) 不定形耐火物の吹付け施工方法
WO2006106879A1 (ja) 不定形耐火物の吹付け施工法
JP6420921B1 (ja) 不定形耐火物の吹付け施工方法及びそれに使用する吹付け材料
JP6393437B1 (ja) 不定形耐火物の吹付け施工方法及びそれに使用する吹付け材料
TWI697648B (zh) 不定形耐火物的噴塗施工方法及使用於噴塗施工方法的噴塗材料
JP2003254672A (ja) 耐食性に優れた不定形耐火物の吹付け施工方法
JP6420920B1 (ja) 不定形耐火物の吹付け施工方法及びそれに使用する吹付け材料
JP3449673B2 (ja) 吹付け施工方法
JP2002048481A (ja) 不定形耐火物の湿式吹付け施工方法
JP2006298756A (ja) 吹付け用不定形耐火組成物
JP2002213880A (ja) 不定形耐火物の気流搬送式吹付け施工法
JP3885133B2 (ja) 吹付け用耐火物及び耐火物の吹付け方法
JP2019168161A (ja) 不定形耐火物の吹付け施工方法及びそれに使用する吹付け材料
JP2011214762A (ja) 不定形耐火物の吹付け施工方法、及び吹付け施工装置
JP2001158671A (ja) 湿式吹付用不定形耐火物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP