WO2007063576A1 - レジスト剥離方法およびレジスト剥離装置 - Google Patents

レジスト剥離方法およびレジスト剥離装置 Download PDF

Info

Publication number
WO2007063576A1
WO2007063576A1 PCT/JP2005/021877 JP2005021877W WO2007063576A1 WO 2007063576 A1 WO2007063576 A1 WO 2007063576A1 JP 2005021877 W JP2005021877 W JP 2005021877W WO 2007063576 A1 WO2007063576 A1 WO 2007063576A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
resist
substrate
water mist
water
Prior art date
Application number
PCT/JP2005/021877
Other languages
English (en)
French (fr)
Inventor
Norio Suzuki
Original Assignee
Realize Advanced Technology Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Realize Advanced Technology Limited filed Critical Realize Advanced Technology Limited
Priority to PCT/JP2005/021877 priority Critical patent/WO2007063576A1/ja
Publication of WO2007063576A1 publication Critical patent/WO2007063576A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/427Stripping or agents therefor using plasma means only

Definitions

  • Resist stripping method and resist stripping apparatus are Resist stripping method and resist stripping apparatus
  • the present invention relates to a resist stripping method and a resist stripping apparatus for stripping a resist on a semiconductor wafer, a liquid crystal, a printed circuit board, or the like.
  • resists such as semiconductor wafers, liquid crystals, and printed circuit boards (hereinafter collectively referred to as “substrates”) are peeled off
  • a plasma ashing method in which the resist film is removed by ashing with oxygen plasma, or a resist with an organic solvent is used.
  • a method of removing the film by heating, or a method of heating and melting the resist film with concentrated sulfuric acid or hydrogen peroxide is used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-118817 ((0012), (0014), and FIG. 1 etc.)
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-71332 ((0005) to (0007), and FIG. 1, FIG. 1) 2) Disclosure of the invention
  • Patent Document 1 can remove the resist film with a simple apparatus configuration and process. However, since the resist film is both lifted off and removed by steam, the resist film is completely removed. In order to peel off, it is necessary to generate a large amount of steam for a long time, and there is a problem that power consumption is large.
  • the configuration of Patent Document 2 uses different functions in which the steam lifts off the resist film and the water mist peels off the lifted resist film, and the water mist does not need to be heated to a high temperature. However, the method of Patent Document 2 mixes high-temperature steam and low-temperature water mist and sprays it onto the resist film, so that the temperature of the steam decreases. This may reduce the lift-off effect of the resist film. In addition, as shown in Fig. 1 or Fig. 2, there is a problem that the nozzle structure becomes complicated, for example, the nozzle for steam and the nozzle for water mist are configured in a double structure.
  • the present invention solves such problems, and provides a resist stripping method and a resist stripping apparatus that have a high resist stripping ability and a simple structure without using a chemical substance that does not damage the substrate.
  • the purpose is to do.
  • the resist stripping method of the first aspect of the present invention is a resist stripping method for stripping a resist on a substrate moving in a predetermined direction, wherein the resist on the substrate is steam and a water mist having a controlled particle size. It is characterized by injecting.
  • a plurality of holes for supplying the water mist are formed in a steam nozzle for spraying the steam, and the water mist is formed according to the hole diameter.
  • the particle size is controlled.
  • a plurality of holes for supplying the water mist are formed in the steam nozzle for injecting the steam, and the amount of steam to be injected or supplied The particle size of the water mist is controlled by the amount of the water mist.
  • the water mist having a controlled particle size is generated by applying ultrasonic vibration of 700 KHz to 3 MHz to pure water to generate the ultrasonic vibration.
  • the particle size is controlled by changing at least one of power and frequency.
  • a resist stripping apparatus is a resist stripping apparatus for stripping a resist formed on a substrate, and includes a substrate moving means for moving the substrate in a predetermined direction, and a steam spray nozzle for spraying steam onto the substrate. And a water mist supply part for supplying water mist in the steam injection nozzle, and a plurality of holes communicating the water mist supply part and the space in the steam injection nozzle are formed. .
  • the steam injection nozzle is configured by a pipe having a predetermined inner diameter and the water mist supply section is provided on an outer peripheral surface of the pipe.
  • the hole is formed from the outer peripheral surface of the pipe toward the inner peripheral surface.
  • the resist stripping can be performed with high resist stripping ability.
  • a resist stripping apparatus with a simple nozzle structure can be provided.
  • FIG. 1 is a perspective view showing an outline of a resist stripping apparatus in Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view showing an outline of a resist stripping apparatus in Embodiment 2 of the present invention.
  • FIG. 3 is a perspective view showing an outline of a resist stripping apparatus in Embodiment 3 of the present invention.
  • FIG. 4 is a perspective view showing an outline of a steam spray nozzle in the resist stripping apparatus according to Embodiments 1 to 3 of the present invention.
  • FIG. 5 is a perspective view showing an outline of a resist stripping apparatus in Embodiment 4 of the present invention.
  • FIG. 6 is a perspective view schematically showing a steam spray nozzle in the resist stripping apparatus according to Embodiment 5 of the present invention.
  • FIG. 9 is a longitudinal sectional view showing a main part of a resist stripping apparatus in Example 7 of the present invention.
  • ⁇ 10 Cross-sectional view showing the main part of the device
  • the resist stripping method according to the first embodiment of the present invention sprays water mist having a controlled steam and particle size onto a resist on a substrate.
  • the resist can be peeled off and the substrate can be cleaned by the water mist that receives the thermal energy and kinetic energy of the steam.
  • the resist can be stripped efficiently and at low cost.
  • a plurality of holes for supplying water mist are formed in a steam nozzle for spraying steam, and water mist particles are formed according to the hole diameter.
  • the diameter is controlled.
  • the particle size of water mist can be controlled to be constant structurally, and optimal kinetic energy can be supplied.
  • a plurality of holes for supplying water mist are formed in a steam nozzle for injecting steam, and the amount of steam to be injected, or The particle size of water mist is controlled by the amount of water mist supplied.
  • the particle size of the water mist to which the pores are also supplied can be controlled to be constant by the amount of steam to be injected or the amount of water mist to be supplied, and the optimum kinetic energy can be supplied.
  • water mist having a controlled particle size is generated by applying ultrasonic vibration of 700 KHz to 3 MHz to pure water, and the ultrasonic wave is generated.
  • the particle size is controlled by changing at least one of vibration power and frequency. According to this embodiment, water mist with little variation in particle size is easy? One can efficiently generate wrinkles.
  • the fifth embodiment of the present invention applies steam and water mist from a direction perpendicular to the surface of the substrate. According to the present embodiment, steam and water mist can be strongly sprayed onto the substrate.
  • the resist stripping apparatus includes a substrate moving means for moving a substrate in a predetermined direction, a steam spray nozzle for spraying steam onto the substrate, and supplying water mist into the steam spray nozzle.
  • a water mist supply unit is formed, and a plurality of holes for communicating the water mist supply unit and the space in the steam injection nozzle are formed.
  • the particle diameter of the water mist can be controlled to be constant in structure, and optimal kinetic energy can be supplied.
  • the steam spray nozzle is configured by a pipe having a predetermined inner diameter and a water mist supply unit is provided on the outer peripheral surface of the pipe.
  • the outer peripheral surface force of the pipe is also directed toward the inner peripheral surface to form a hole.
  • the mist temperature can be raised in the water mist supply section, and the controlled mist particle size can be reduced by configuring the steam injection nozzle with a pipe having a predetermined inner diameter. , Can be injected without changing the particle size.
  • FIG. 1 is a perspective view showing an outline of a resist stripping apparatus in Embodiment 1 of the present invention.
  • the substrate 12 having the resist 11 to which a predetermined pattern force is applied is rotated in the direction of arrow A by a rotating mechanism 13 using a motor.
  • a steam spray nozzle 15 that sprays the steam 14 is disposed above the surface of the substrate 12 where the resist 11 is formed.
  • the steam spray nozzle 15 is disposed such that the steam 14 sprayed from the steam spray nozzle 15 sprays from the oblique upper side to the resist 11 on the substrate 12. That is, the spray direction of the steam 14 from the steam injection nozzle 15 is arranged so as to be non-perpendicular to the surface of the substrate 12.
  • the steam injection nozzle 15 is connected to the steam generator 17 by the steam pipe 16, and hot steam 14 passes through the steam pipe 16 from the steam generator 16. It is supplied to the team spray nozzle 15 and sprayed to the resist 11 on the substrate 12 from the spray port 18 of the steam spray nozzle 15.
  • An ultrasonic oscillation device 19 is provided on the outer periphery of the steam injection nozzle 15, and the ultrasonic oscillation device 19 is driven by the ultrasonic driving power source 20 to apply ultrasonic waves to the steam injection nozzle 15.
  • the spray direction of the steam 14 from the steam spray nozzle 15 is preferably non-vertical, that is, a direction other than a right angle to the surface of the substrate 12.
  • the spraying direction of the steam 14 is sprayed so as to peel off the resist on the substrate 12. Therefore, the resist 11 easily floats from the substrate 12 and easily peels off.
  • the non-vertical angle the thermal energy and kinetic energy of the steam 14 applied to the resist on the substrate 12 can be adjusted.
  • the relationship between the spray direction of the steam 14 from the steam spray nozzle 15 and the moving direction of the substrate may be either a direction in which they face each other, a direction in which both are the same, or a lateral direction in which both cross.
  • FIG. 1 shows a case where the spray direction of the steam 14 and the moving direction of the substrate are opposite to each other.
  • the substrate 12 depends on the type and size of the substrate 12 and the type and thickness of the resist 11.
  • the rotation speed and direction, and the injection angle and direction of the steam 14 may be appropriately selected.
  • the temperature of the steam 14 is 100 ° C or higher, preferably 130 ° C or higher, but is not limited to this, and is adjusted according to the type and size of the substrate 12, the type and thickness of the resist 11, etc. do it.
  • the frequency of the ultrasonic wave oscillated by the ultrasonic oscillator 19 is preferably set to 28 KHz to 2 MHz in order to increase the resist peeling force.
  • FIG. 1 shows an example of rotating counterclockwise as shown by arrow A.
  • steam 14 having a high temperature of 100 ° C. or higher, preferably 130 ° C. or higher is generated by the steam generator 16, and the steam 14 is supplied to the steam injection nozzle 15 through the steam pipe 16.
  • the steam injection nozzle 15 injects the steam 14 from the injection port 18 onto the substrate 12. Since the steam injection nozzle 15 is arranged so that the injection direction of the steam 14 is non-perpendicular to the surface of the substrate 12, the steam 14 injected from the steam injection nozzle 15 is obliquely above the substrate 12 Inject from.
  • the steam 14 to which the ultrasonic energy is added hits the substrate 12, and the resist floating from the substrate 12 by the action of the steam 14 is peeled off by the ultrasonic energy.
  • the timing at which the ultrasonic wave is applied to the steam spray nozzle 15 may be continuous, but may be intermittently applied in accordance with the timing at which the resist is lifted from the substrate 12 by the operation of the steam 14. When applied intermittently, the operation of the ultrasonic drive power supply 20 is not complete. Therefore, power consumption can be reduced.
  • the spray direction of the steam 14 is set to be a transverse direction crossing the moving direction of the substrate 12, the energy of the steam 14 that is generated with respect to the substrate 12 can be set to a neutral state. it can. In this case, it is possible to inject steam 14 having appropriate energy that is not too strong and not too weak with respect to the substrate 12.
  • FIG. 2 is a perspective view showing an outline of a resist stripping apparatus in Embodiment 2 of the present invention.
  • ultrasonic application means for applying ultrasonic vibration to the substrate is provided independently of the steam injection nozzle.
  • the water injection nozzle 22 is connected to a water supply source 24 such as a water tank through a water pipe 23, and water from the water supply source 24 is supplied to the water injection nozzle 22 through the pipe 23.
  • the water jet 21 is jetted from the jet nozzle 25 to the substrate 12.
  • an ultrasonic oscillation device 19 is provided on the outer periphery of the water injection nozzle 22, and the ultrasonic oscillation device 19 is driven by the ultrasonic drive power source 20 to perform water injection. Apply ultrasonic energy to nozzle 22. This ultrasonic energy is added to the water jet 21 ejected from the ejection port 25 of the water ejection nozzle 22.
  • the water spray nozzle 22 is arranged in parallel with the steam spray nozzle 15 and in the downstream direction with respect to the moving direction of the substrate 12. Next, the operation will be described. First, in the same manner as in the first embodiment, the steam 14 is sprayed from the spray port 18 of the steam spray nozzle 15 onto the substrate 12, and the resist 11 is lifted from the substrate 12 by the action of the steam 14. When the substrate mounting table 12 rotates in this state, the substrate 12 in a state where the resist 11 is lifted up reaches the position of the injection port 25 of the water injection nozzle 22. At this position, the water jet 21 to which ultrasonic energy is added is ejected from the ejection port 25 to the substrate 12, so that the resist floating from the substrate 12 is peeled off.
  • the spray position of the steam 14 and the ultrasonic wave application position by the water jet 21 are separated from each other, and the ultrasonic wave is also applied to the steam 14 by the rotation of the substrate mounting table 12. Move to position. First, the resist is lifted from the substrate 12 by spraying the steam 14, and then the resist is peeled off by ultrasonic energy generated by the water jet 21. Therefore, the resist can be reliably peeled off.
  • FIG. 3 is a perspective view showing an outline of a resist stripping apparatus in Embodiment 3 of the present invention.
  • the steam spray nozzle is disposed on the front surface side of the substrate, and the ultrasonic wave application means for applying ultrasonic vibration is disposed on the back surface side of the substrate.
  • the water injection nozzle 22 is connected to a water supply source 24 such as a water tank through a water pipe 23, and water from the water supply source 24 is supplied to the water injection nozzle 22 through the pipe 23.
  • the water jet 21 is jetted from the jet nozzle 25 to the substrate 12.
  • an ultrasonic oscillation device 19 is provided on the outer periphery of the water injection nozzle 22, and the ultrasonic oscillation device 19 is driven by the ultrasonic drive power source 20 to perform water injection. Apply ultrasonic energy to nozzle 22. This ultrasonic energy is added to the water jet 21 ejected from the ejection port 25 of the water ejection nozzle 22.
  • the steam spray nozzle 15 is disposed on the surface of the substrate 12 on which the resist 11 is deposited, that is, on the surface side of the substrate 12, and the steam 14 sprayed from the steam spray nozzle 15 is sprayed on the surface of the substrate 12 and is resisted.
  • the water spray nozzle 22 is disposed on the back side of the substrate 12 on which the substrate 12 is placed, and the water jet 21 sprayed from the water spray nozzle 22 is sprayed on the back surface of the substrate 12 to dispose the substrate 12. Vibrate with ultrasonic energy. This Due to this vibration, the resist 11 floating from the substrate 12 is peeled off.
  • the timing at which the steam 14 energy is applied to the substrate 12 and the timing at which the ultrasonic energy is applied can be freely controlled by the steam injection timing from the steam injection nozzle 15 and the water jet injection timing from the water injection nozzle 22. . Therefore, the resist peeling state can be freely controlled.
  • FIG. 4 is a perspective view showing an outline of a steam spray nozzle in the resist stripping apparatuses of Examples 1 to 3.
  • the steam injection nozzle 15 described in FIGS. 1 to 3 is connected to the steam generator 17 by the steam pipe 16, and the high-temperature steam 14 generated by the steam generator 17 passes through the steam pipe 16 to the steam injection nozzle 15. It is the structure supplied. In this configuration, the steam injection nozzle 15 is separated from the steam generator 17, and the steam generated by the steam generator 17 is fed by the steam pipe 16, so that the amount of steam being fed is reduced, There are problems such as a drop in steam temperature during feeding, or steam contamination in the steam pipe 16.
  • an energy applying means 32 that converts the water in the water tank 31 into water vapor is provided.
  • the energy application means 32 is an ultrasonic excitation device that applies megasonic ultrasonic vibration to water to produce water vapor, a laser excitation device that irradiates water with laser light to produce water vapor, and microwave vibration to water.
  • a microwave excitation device is used to convert water into water vapor.
  • a calorie heat chamber 35 containing a heater 34 is connected to the outlet side of the water tank 31 via a connecting pipe 33, and a steam injection port 36 is provided on the outlet side of the heating chamber 35.
  • FIG. 5 is a perspective view showing an outline of a resist stripping apparatus in Embodiment 4 of the present invention.
  • a steam injection nozzle that injects steam onto the substrate and a water mist injection nozzle that injects water mist are provided, and the resist is formed by water mist that receives the thermal energy and kinetic energy of the steam injected from the steam injection nozzle. It is an example which performs peeling of a substrate and washing
  • a steam spray nozzle 41 and a water mist spray nozzle 42 provided coaxially therein are arranged above the surface of the substrate 12 where the resist 11 is formed.
  • the steam injection nozzle 41 and the water mist injection nozzle 42 are arranged so that the injection direction is perpendicular to the substrate 12.
  • the steam injection nozzle 41 is connected to the steam generator 44 by a steam pipe 43, and high-temperature steam is supplied from the steam generator 44 to the steam injection nozzle 41 through the steam pipe 43.
  • the water mist spray nozzle 42 is coaxially disposed inside the steam spray nozzle 41 at the tip, and is connected to the mist generating section 47 via a pipe 46.
  • the mist generator 47 is provided with an ultrasonic oscillator 48 driven by an ultrasonic drive power supply 49 on the outer periphery.
  • the oscillation frequency and oscillation power of the ultrasonic oscillator 48 are adjusted by an ultrasonic drive power source 49.
  • the frequency of the oscillating ultrasonic wave is set to a frequency in the megahertz band from 700KHz to 3MHz.
  • the mist generator 47 is supplied with water from a water supply source 50 such as a water tank.
  • the substrate 12 with the resist 11 attached is rotated in a predetermined direction by the rotation mechanism 13.
  • steam at a high temperature of 100 ° C. or higher, preferably 130 ° C. or higher is generated by the steam generator 44, and the steam is supplied to the steam injection nozzle 41 through the steam pipe 43.
  • hot pure water at 60 ° C to 70 ° C from water supply source 50 When it is supplied to the raw section 47 and ultrasonic waves of 700 KHz to 3 MHz are applied by the ultrasonic drive power supply 49, the hot pure water supplied to the mist generating section 47 is water-misted by the action of ultrasonic energy and is routed through the pipe 46. And supplied to the water mist injection nozzle 42.
  • the particle size of the generated water mist can be controlled by adjusting either or both of the ultrasonic oscillation frequency and power with the ultrasonic driving power source 49.
  • the ultrasonic oscillation frequency is increased, the particle size of the water mist is reduced, and when the ultrasonic frequency is increased, the particle size of the water mist is reduced.
  • the size of the particle size may be set according to the type and size of the substrate 12 and the type and thickness of the resist 11.
  • the water mist 51 sprayed from the water mist spray nozzle 42 is mixed with the steam 52 in the steam spray nozzle 41 and sprayed from the tip 45 of the steam spray nozzle 41 to the resist 11 on the substrate 12.
  • the water mist 51 receives the heat energy and kinetic energy of the steam 52 and has a high V, heat energy and kinetic energy.
  • the water mist having the high! The resist 11 is peeled off and removed by the energy. The action of peeling and removing the resist 11 varies depending on the particle size of the water mist. If the particle size is too large, not only the peeling and removing of the resist 11 but also the substrate 12 may be blown off.
  • either the ultrasonic oscillation frequency and / or the power are adjusted to reduce the water mist particle size and shorten the resist 11 without blowing off the substrate 12. Control to remove and remove over time.
  • the steam injection nozzle 41 and the water mist injection nozzle 42 are configured to be coaxial, and the injection direction is arranged in the direction perpendicular to the substrate 12.
  • the steam injection nozzle 15 is arranged in a non-perpendicular direction with respect to the substrate 12 in the same direction as the injection direction of the steam injection nozzle 15, and the non-vertical direction is opposed to the substrate movement direction, the direction in which the substrate is moved, and the substrate movement. You may make it set to the direction of the horizontal direction with respect to the direction.
  • FIG. 6 is a perspective view schematically illustrating another shape of the steam spray nozzle and the water mist spray nozzle in the resist stripping apparatus according to the fifth embodiment.
  • a spiral groove 55 is formed on the inner wall of the steam injection nozzle 41, and the steam 52 is allowed to advance spirally along the spiral groove 55 in the steam injection nozzle 41.
  • the water mist 51 injected into the steam injection nozzle 41 also advances in a spiral manner, and the mixture 56 of the steam 52 and the water mist 51 is injected spirally from the tip 45 of the steam injection nozzle 41. Since the mixture 56 of the steam 52 and the water mist 51 sprayed in a spiral form is difficult to disperse when the substrate 12 is oriented, it can efficiently collide with the resist 11 on the substrate 12 and increase the peeling effect of the resist 11. it can.
  • FIG. 7 is a longitudinal sectional view showing the main part of the resist stripping apparatus in Example 6 of the present invention
  • FIG. 8 is a transverse sectional view showing the main part of the apparatus.
  • a water mist supply section for supplying water mist is provided in a steam injection nozzle for injecting steam onto the substrate, and the water mist that receives the thermal energy and kinetic energy of the steam injection nozzle force is injected.
  • the resist is peeled off and the substrate is cleaned. The description of the same configuration as the above embodiment is omitted.
  • a steam spray nozzle 41A is arranged above the surface side where the resist on the substrate is formed.
  • a water mist supply section 42B is formed on the outer peripheral surface of the steam injection nozzle 41A.
  • the water mist supply section 42B communicates with the space inside the steam spray nozzle 41A through a plurality of holes 42A.
  • the steam injection nozzle 41A is configured by a passage having a square cross section, and the injection direction is arranged to be perpendicular to the substrate.
  • the steam injection nozzle 41A is connected to a steam generator (not shown) by a steam pipe 43. Accordingly, high-temperature steam is supplied to the steam injection nozzle 41A through the steam pipe 43.
  • the water mist supply unit 42B is connected to a mist generating unit (not shown) via a pipe 46.
  • the mist generating unit may be an ultrasonic oscillating device as used in the above embodiment, but in this embodiment, warm pure water without using the ultrasonic oscillating device may be supplied as it is.
  • the mist particle diameter can be controlled by the hole diameter of the hole 42A.
  • the amount of mist to be supplied can be controlled by the number of holes 42A.
  • the mist particle size can be controlled by changing the amount of steam supplied from the steam pipe 43 instead of the hole diameter of the hole 42A or together with the hole diameter.
  • the mist particle size can be controlled by the amount of hot pure water supplied from the pipe 46 or the amount of mist together with the pore size or the amount of steam instead of these.
  • the steam injection nozzle 41A is configured by a passage having a quadrangular cross section, whereby the controlled mist particle size can be injected without changing the particle size.
  • the spray direction of the steam spray nozzle 41A is arranged in a non-vertical direction with respect to the substrate 12 in the same manner as the spray direction of the steam spray nozzle 15 in FIG. 1, and the substrate is moved in the non-vertical direction. It is possible to set the direction opposite to the direction, the direction toward the moving direction of the substrate, and the lateral direction with respect to the moving direction of the substrate.
  • the water mist diameter can be changed by periodically changing the supply amount of at least one of hot pure water supplied from the pipe 46 and steam supplied from the steam pipe 43. Can be injected.
  • FIG. 9 is a longitudinal sectional view showing the main part of the resist stripping apparatus in Example 7 of the present invention
  • FIG. 10 is a transverse sectional view showing the main part of the apparatus. Only the differences from the sixth embodiment will be described below.
  • a water mist supply part 42B is formed on the outer peripheral surface of the steam pipe 43 .
  • the water mist supply unit 42B communicates with the space in the steam pipe 43 through a plurality of holes 42A.
  • the steam injection nozzle 41A is connected to the steam pipe 43 on the downstream side of the water mist supply section 42B, and a connecting portion between the steam pipe 43 and the steam injection nozzle 41A has a step. Further, the steam injection nozzle 41A is configured by a passage having a square cross section. According to this embodiment, warm pure water is introduced into the space inside the steam injection nozzle 41A through the plurality of holes 42A, or the pure water that has accumulated at the level difference between the steam pipe 43 and the steam injection nozzle 41A is injected into the injection nozzle 41A. Water is misunderstood when guided.
  • the mist particle diameter can be controlled by the hole diameter of the hole 42A, and the mist particle diameter can be controlled by the pure water accumulated at the step between the steam pipe 43 and the steam injection nozzle 41A according to the amount of pure water to be supplied. Can do.
  • the water mist diameter can be changed by periodically changing the supply amount of at least one of the hot pure water supplied from the pipe 46 and the steam supplied from the steam pipe 43. Water mist can be injected.
  • a resist stripping method and a resist stripping apparatus are provided for resist stripping of a semiconductor wafer in a manufacturing process of a semiconductor element, resist stripping of a liquid crystal element in a manufacturing process of a liquid crystal display, etc. It is useful when applied to strike stripping.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

明 細 書
レジスト剥離方法およびレジスト剥離装置
技術分野
[0001] 本発明は、半導体ウェハや液晶、プリント基板などにおけるレジストを剥離するレジ スト剥離方法およびレジスト剥離装置に関する。
背景技術
[0002] 従来、半導体ウェハ、液晶、プリント基板 (以下これらを基板と総称する)などのレジ ストを剥離する場合、酸素プラズマによりレジスト膜を灰化除去するプラズマアツシャ 法や、有機溶剤でレジスト膜を加熱除去する方法、あるいは、濃硫酸や過酸化水素 によりレジスト膜を加熱溶融する方法が行われている。
しかし、プラズマアツシャ法では荷電粒子によるチャージアップダメージが大きぐま た、ポリマのウエット除去工程が必要であるなど処理工程数が増大する問題がある。 一方、有機溶剤や濃硫酸、過酸ィ匕水素などによりレジスト膜を除去する方法では、化 学物質の廃液処理などの問題がある。
このため、水やスチームを用いてレジスト膜を除去する方法力 ^、くつ力提案されて いる。たとえば、レジスト膜にスチームを接触させ噴射してレジスト膜を除去する方法 ( たとえば、特許文献 1参照)、スチームでレジスト膜をリフトオフさせた後、噴射圧力を ともなった水ミストによりレジスト膜を剥離させる方法 (たとえば、特許文献 2参照)など が知られている。
特許文献 1 :特開 2001— 118817号公報((0012)、(0014)、および図 1など) 特許文献 2 :特開 2003— 71332号公報((0005)〜(0007)、および図 1、図 2など) 発明の開示
発明が解決しょうとする課題
[0003] 特許文献 1の構成は、簡素な装置構成および工程でレジスト膜を剥離させることが できるが、スチームでレジスト膜のリフトオフと除去の両方を行っているので、レジスト 膜を完全に除去、剥離させるには多量のスチームを長時間発生させる必要があり、 電力消費が大き 、と 、う課題がある。 特許文献 2の構成は、スチームはレジスト膜をリフトオフさせ、水ミストはリフトオフし たレジスト膜を剥離させるという異なる機能を利用しており、しかも水ミストは高温に熱 する必要がないので特許文献 1の方法に比較して電力消費を小さくすることができる しかし、特許文献 2の方法は、高温のスチームとそれより低温の水ミストを混合して レジスト膜に噴射するので、スチームの温度が低下してレジスト膜のリフトオフ効果が 低減するおそれがある。また、図 1または図 2に見られるように、スチーム用のノズルと 水ミスト用のノズルの 2つのノズルを二重構造に構成するなどノズル構造が複雑にな る課題がある。
[0004] 本発明はこのような課題を解決するもので、基板のダメージがなぐ化学物質等を 使用せずに、レジスト剥離能力が高ぐし力も構造が簡単なレジスト剥離方法および レジスト剥離装置を提供することを目的とする。
課題を解決するための手段
[0005] 第 1の本発明のレジスト剥離方法は、所定方向に移動する基板上のレジストを剥離 するレジスト剥離方法であって、前記基板上の前記レジストにスチームおよび粒径の 制御された水ミストを噴射することを特徴とする。
第 2の本発明は、第 1の発明のレジスト剥離方法において、前記スチームを噴射さ せるスチームノズルに、前記水ミストを供給する複数の孔を形成し、前記孔径によつ て前記水ミストの前記粒径を制御することを特徴とする。
第 3の本発明は、第 1の発明のレジスト剥離方法において、前記スチームを噴射さ せるスチームノズルに、前記水ミストを供給する複数の孔を形成し、噴射させる前記ス チーム量、又は供給する前記水ミスト量によって前記水ミストの前記粒径を制御する ことを特徴とする。
第 4の本発明は、第 1の発明のレジスト剥離方法において、前記粒径の制御された 前記水ミストは、純水に 700KHz〜3MHzの超音波振動を与えて発生させ、前記超 音波振動のパワーおよび周波数の少なくとも一方を変化させて前記粒径を制御する ことを特徴とする。
第 5の本発明は、第 1の発明のレジスト剥離方法において、前記スチームおよび前 記水ミストを前記基板の表面に対して垂直な方向から印加することを特徴とする。 第 6の本発明のレジスト剥離装置は、基板に形成されたレジストを剥離するレジスト 剥離装置であって、所定方向に前記基板を移動させる基板移動手段と、前記基板に スチームを噴射するスチーム噴射ノズルと、前記スチーム噴射ノズル内に水ミストを供 給する水ミスト供給部とを有し、前記水ミスト供給部と前記スチーム噴射ノズル内空間 とを連通する複数の孔を形成したことを特徴とする。
第 7の本発明は、第 6の発明のレジスト剥離装置において、前記スチーム噴射ノズ ルを内径が一定の所定長さの配管で構成し、前記水ミスト供給部を前記配管の外周 面に設け、前記配管の外周面から内周面に向かって前記孔を形成したことを特徴と する。
発明の効果
[0006] 本発明によれば、レジスト剥離に使用するスチームの量が少量でよいので、電力消 費を/ J、さくすることができる。
また、スチームの温度を低下させることなくジスト膜のリフトオフを行うことができるの で、レジスト剥離能力の高 、レジスト剥離を行うことができる。
また、ノズル構造が簡単なレジスト剥離装置を提供することができる。
図面の簡単な説明
[0007] [図 1]本発明の実施例 1におけるレジスト剥離装置の概略を示す斜視図
[図 2]本発明の実施例 2におけるレジスト剥離装置の概略を示す斜視図
[図 3]本発明の実施例 3におけるレジスト剥離装置の概略を示す斜視図
[図 4]本発明の実施例 1〜3のレジスト剥離装置におけるスチーム噴射ノズルの概略 を示す斜視図
[図 5]本発明の実施例 4におけるレジスト剥離装置の概略を示す斜視図
[図 6]本発明の実施例 5のレジスト剥離装置におけるスチーム噴射ノズルの概略を示 す斜視図
[図 7]本発明の実施例 6におけるレジスト剥離装置の要部を示す縦断面図
[図 8]同装置の要部を示す横断面図
[図 9]本発明の実施例 7におけるレジスト剥離装置の要部を示す縦断面図 圆 10]同装置の要部を示す横断面図 符号の説明
11 基板
12 基板載置台
13 回転機構
14 スチーム
15 スチーム噴射ノズル
16 スチーム配管
17 スチーム発生器
18 噴射口
19 超音波発振装置
20 超音波駆動電源
21 水ジェット
22 水噴射ノズル
23 水配管
24 水供給源
25 噴射口
31 水タンク
32 エネルギ印加手段
33 連結管
34 ヒータ
35 加熱室
36 スチーム噴射口
41 スチーム噴射ノズル
42 水ミスト噴射ノズル
43 スチーム配管
44 スチーム発生器 47 ミスト発生部
48 超音波発振装置
49 超音波駆動電源
50 水供給源
51 水ミスト
52 スチーム
55 螺旋状の溝
56 混合体
発明を実施するための最良の形態
本発明の第 1の実施の形態によるレジスト剥離方法は、基板上のレジストにスチー ムおよび粒径の制御された水ミストを噴射するものである。本実施の形態によれば、 スチームの熱エネルギと運動エネルギを受けた水ミストによりレジストの剥離と基板の 洗浄を行うことができるので、基板のダメージがなぐ化学物質等を使用せずに、水 だけで効率よく低コストでレジストを剥離することができる。
本発明の第 2の実施の形態は、第 1の実施の形態によるレジスト剥離方法において 、スチームを噴射させるスチームノズルに、水ミストを供給する複数の孔を形成し、孔 径によって水ミストの粒径を制御するものである。本実施の形態によれば、構造的に 水ミストの粒径を一定に制御でき、最適な運動エネルギを供給することができる。 本発明の第 3の実施の形態は、第 1の実施の形態によるレジスト剥離方法において 、スチームを噴射させるスチームノズルに、水ミストを供給する複数の孔を形成し、噴 射させるスチーム量、又は供給する水ミスト量によって水ミストの粒径を制御するもの である。本実施の形態によれば、噴射させるスチーム量、又は供給する水ミスト量に よって孔カも供給される水ミストの粒径を一定に制御でき、最適な運動エネルギを供 給することができる。
本発明の第 4の実施の形態は、第 1の実施の形態によるレジスト剥離方法において 、粒径の制御された水ミストを純水に 700KHz〜3MHzの超音波振動を与えて発生 させ、超音波振動のパワーおよび周波数の少なくとも一方を変化させて粒径を制御 するものである。本実施の形態によれば、粒径のばらつきが少ない水ミストを簡単か つ効率的〖こ発生させることができる。
本発明の第 5の実施の形態は、第 1の実施の形態によるレジスト剥離方法において 、スチームおよび水ミストを基板の表面に対して垂直な方向から印加するものである。 本実施の形態によれば、スチームおよび水ミストを基板に対して強力に噴射させるこ とがでさる。
本発明の第 6の実施の形態によるレジスト剥離装置は、所定方向に基板を移動さ せる基板移動手段と、基板にスチームを噴射するスチーム噴射ノズルと、スチーム噴 射ノズル内に水ミストを供給する水ミスト供給部とを有し、水ミスト供給部とスチーム噴 射ノズル内空間とを連通する複数の孔を形成したものである。本実施の形態によれ ば、構造的に水ミストの粒径を一定に制御でき、最適な運動エネルギを供給すること ができる。
本発明の第 7の実施の形態は、第 6の実施の形態によるレジスト剥離装置において 、スチーム噴射ノズルを内径が一定の所定長さの配管で構成し、水ミスト供給部を配 管の外周面に設け、配管の外周面力も内周面に向力つて孔を形成したものである。 本実施の形態によれば、水ミスト供給部においてミスト温度を上昇させることができる とともに、スチーム噴射ノズルを内径が一定の所定長さの配管で構成することで、制 御されたミスト粒径を、粒径を変えることなく噴射させることができる。
実施例 1
以下本発明の実施例について図面とともに詳細に説明する。
図 1は本発明の実施例 1におけるレジスト剥離装置の概略を示す斜視図である。所 定のパターン力卩ェが施されたレジスト 11を有する基板 12は、モータを利用した回転 機構 13により矢印 A方向に回転する。基板 12のレジスト 11が形成されている表面側 の上方には、スチーム 14を噴射するスチーム噴射ノズル 15が配置される。スチーム 噴射ノズル 15は、スチーム噴射ノズル 15から噴射されるスチーム 14が基板 12上の レジスト 11に対して斜上方から噴射するように配置される。すなわち、スチーム噴射ノ ズル 15からのスチーム 14の噴射方向が基板 12の表面に対して非垂直になるように 配置される。スチーム噴射ノズル 15はスチーム配管 16によりスチーム発生器 17に連 結しており、スチーム発生器 16から高温のスチーム 14がスチーム配管 16を通ってス チーム噴射ノズル 15に供給され、スチーム噴射ノズル 15の噴射口 18から基板 12上 のレジスト 11に噴射される。スチーム噴射ノズル 15の外周には超音波発振装置 19 が設けられており、超音波駆動電源 20により超音波発振装置 19を駆動してスチーム 噴射ノズル 15に超音波を印加する。
スチーム噴射ノズル 15からのスチーム 14の噴射方向は、上述したように、非垂直、 すなわち、基板 12の表面に対して直角以外の方向とすることが好ましい。スチーム 1 4の噴射方向を基板 12の表面に対して非垂直な方向とすることにより、スチーム 14 が基板 12上のレジストをはがすように噴射する。したがって、基板 12からレジスト 11 が浮きやすくなり、また、剥離しやすくなる。また、非垂直となる角度を変えることにより 、基板 12上のレジストに対して加えられるスチーム 14の熱エネルギおよび運動エネ ルギを調整することができる。
また、スチ噴射ノズル 15からのスチーム 14の噴射方向と基板の移動方向との関係 は、両者が対向する方向、両者が同じ方向、あるいは両者がクロスするような横方向 のいずれでも良い。図 1にはスチーム 14の噴射方向と基板の移動方向が対向する 方向の場合を示している。
図 1のように、スチーム 14の噴射方向と基板の移動方向が対向する方向となるよう にスチーム 14を噴射させた場合は、基板 12上のレジスト 11に対してカ卩えられるスチ ーム 14のエネルギと基板 12の移動エネルギが加算されるので、基板 12上のレジスト 11に対して加えられるスチーム 14のエネルギを大きくすることができる。
スチーム 14の噴射方向と基板 12の移動方向が同じ方向となるようにスチーム 14を 噴射させた場合は、基板 12上のレジスト 11に対して加えられるスチーム 14のェネル ギが基板 12の移動エネルギで減算されるので、基板 12上のレジストに対してスチー ム 14のエネルギがソフトに与えられる。したがって、微小な基板や薄い基板であって も、スチーム 14の噴射により飛ばされたり損傷したりすることが少なくなる。
スチーム 14の噴射方向を基板 12の移動方向に対して横方向となるようにスチーム 14を噴射させた場合は、基板 12に対して加えられるスチーム 14のエネルギを上記 二者の中間の中庸な状態にすることができる。
したがって、基板 12の種類や大きさ、レジスト 11の種類や厚さなどに応じて基板 12 の回転速度および回転方向、ならびに、スチーム 14の噴射角度および方向を適宜 選定すればよい。
スチーム 14の温度は 100°C以上、好ましくは 130°C以上が望ましいが、特にこれに 制限されるものではなぐ基板 12の種類や大きさ、レジスト 11の種類や厚さなどに応 じて調整すればよい。
超音波発振装置 19が発振する超音波の周波数は、レジストの剥離力を大きくする ために、 28KHz〜2MHzに設定することが好ましい。
つぎに動作を説明する。リソグラフイエ程などにより所定の加工を施され、レジスト 1 1が被着した状態の基板 12を回転機構 13により所定の方向に回転させる。図 1にお いては矢印 Aで示すように反時計方向に回転させる例を示す。一方、スチーム発生 器 16により 100°C以上、好ましくは 130°C以上の高温のスチーム 14を発生させ、ス チーム配管 16を経てスチーム噴射ノズル 15にスチーム 14を供給する。スチーム噴 射ノズル 15は、その噴射口 18からスチーム 14を基板 12に噴射する。スチーム噴射 ノズル 15はスチーム 14の噴射方向が基板 12の表面に対して非垂直になるように配 置されているので、スチーム噴射ノズル 15から噴射されるスチーム 14は基板 12に対 して斜上方から噴射する。
図 1においては、スチーム 14の噴射方向は基板 12の移動方向である矢印 A方向 に対して対向する方向であるので、基板 12上のレジストにはスチーム 14のエネルギ と基板 12の移動エネルギが加算された状態でスチーム 14が噴射され、基板 12上の レジスト 11は大きな運動エネルギのスチーム 14の作用により基板 12から浮き上がり、 はがれやすくなる。この状態で超音波駆動電源 20により超音波発振装置 19を駆動 してスチーム噴射ノズル 15に 28KHz〜2MHzの超音波を印加すると、スチーム噴 射ノズル 15から噴射されるスチーム 14に超音波エネルギが付加され、この超音波ェ ネルギが付加されたスチーム 14が基板 12に当たり、スチーム 14の作用により基板 1 2から浮き上がつているレジストを超音波エネルギにより剥離させる。スチーム噴射ノ ズル 15に超音波を印加するタイミングは連続的であってもよいが、スチーム 14の作 用によりレジストが基板 12から浮き上がるタイミングに合わせて間歇的に印加するよう にしても良い。間歇的に印加する場合は、超音波駆動電源 20の作動が完結的にな るので、消費電力を小さくすることができる。
[0013] 図 1の構成において、基板 12の回転方向を矢印 A方向と逆にして時計方向に回転 させると、スチーム 14の噴射方向と基板 12の移動方向が同じ方向となる。この場合 は、基板 12上のレジスト 11に対して加えられるスチーム 14のエネルギが基板 12の 移動エネルギで減算される。したがって、基板 12上のレジスト 11に対してスチーム 1 4のエネルギがソフトに与えられるので、スチーム 14の噴射により基板 12が飛ばされ たり損傷したりすることが少なくなり、基板 12が微小な、あるいは薄い基板である場合 に好適である。
また、スチーム 14の噴射方向を基板 12の移動方向に対してクロスする横方向とな るようにした場合は、基板 12に対してカロえられるスチーム 14のエネルギを中庸な状 態にすることができる。この場合は、基板 12に対して強すぎず、かつ、弱すぎない適 度なエネルギのスチーム 14を噴射することができる。
なお、図 1においては、基板 12を回転移動させる例について説明した力 基板 12 が直線移動する場合であっても同様の作用効果を有する。基板 12を直線移動させ る構成によれば、いわゆるベルトコンベア方式によりレジスト剥離を行うことができる。 実施例 2
[0014] 図 2は本発明の実施例 2におけるレジスト剥離装置の概略を示す斜視図である。本 実施例は、基板に超音波振動を与える超音波印加手段をスチーム噴射ノズルとは独 立して設けた例である。図 1と同一部分には同一符号を付して説明を省略する。 水噴射ノズル 22は水配管 23を介して水タンクなどの水供給源 24に連結しており、 水供給源 24からの水が配管 23を通って水噴射ノズル 22に供給され、水噴射ノズル 22の噴射口 25から基板 12に水ジェット 21が噴射される。水噴射ノズル 22の外周に は、図 1のスチーム噴射ノズル 15の場合と同様に、超音波発振装置 19が設けられて おり、超音波駆動電源 20により超音波発振装置 19を駆動して水噴射ノズル 22に超 音波エネルギを印加する。この超音波エネルギは水噴射ノズル 22の噴射口 25から 噴射される水ジェット 21に付加される。
水噴射ノズル 22は、スチーム噴射ノズル 15と並列に、かつ、基板 12の移動方向に 対して下流方向に配置される。 [0015] つぎに動作を説明する。まず、実施例 1と同様に、スチーム噴射ノズル 15の噴射口 18からスチーム 14を基板 12に噴射し、レジスト 11をスチーム 14の作用により基板 1 2から浮き上がらせる。この状態で基板載置台 12が回転すると、レジスト 11が浮き上 力 た状態の基板 12が水噴射ノズル 22の噴射口 25の位置に達する。この位置で、 噴射口 25から基板 12に超音波エネルギが付加された水ジヱット 21が噴射されるた め、基板 12から浮き上がつているレジストは剥離される。
本実施例によれば、スチーム 14の噴射位置と水ジェット 21による超音波の印加位 置が互いに離間しており、基板 12が基板載置台 12の回転によりスチーム 14の噴射 位置力も超音波の印加位置に移動する。そして、まずスチーム 14の噴射により基板 12からレジストを浮き上がらせ、つぎに、水ジェット 21による超音波エネルギでレジス トを剥離させる。したがって、レジストの剥離を確実に行うことができる。
実施例 3
[0016] 図 3は本発明の実施例 3におけるレジスト剥離装置の概略を示す斜視図である。本 実施例は、スチーム噴射ノズルを基板の表面側に、超音波振動を与える超音波印加 手段を基板の裏面側に配置した例である。図 2と同一部分には同一符号を付して説 明を省略する。
水噴射ノズル 22は水配管 23を介して水タンクなどの水供給源 24に連結しており、 水供給源 24からの水が配管 23を通って水噴射ノズル 22に供給され、水噴射ノズル 22の噴射口 25から基板 12に水ジェット 21が噴射される。水噴射ノズル 22の外周に は、図 1のスチーム噴射ノズル 15の場合と同様に、超音波発振装置 19が設けられて おり、超音波駆動電源 20により超音波発振装置 19を駆動して水噴射ノズル 22に超 音波エネルギを印加する。この超音波エネルギは水噴射ノズル 22の噴射口 25から 噴射される水ジェット 21に付加される。
スチーム噴射ノズル 15は基板 12のレジスト 11が被着している面、すなわち、基板 1 2の表面側に配置され、スチーム噴射ノズル 15から噴射されるスチーム 14は基板 12 の表面に噴射されてレジスト 11を浮き上がらせる。一方水噴射ノズル 22は、基板 12 を載置して ヽる基板 12の裏面側に配置され、水噴射ノズル 22から噴射された水ジェ ット 21は基板 12の裏面に噴射されて基板 12を超音波エネルギにより振動させる。こ の振動により基板 12から浮き上がつているレジスト 11は剥離される。
なお、基板 12にスチーム 14のエネルギを与えるタイミングおよび超音波エネルギを 与えるタイミングは、スチーム噴射ノズル 15からのスチーム噴射タイミングおよび水噴 射ノズル 22からの水ジェット噴射タイミングにより自由に制御することができる。したが つて、レジストの剥離状態を自由に制御することができる。
[0017] 図 4は実施例 1〜3のレジスト剥離装置におけるスチーム噴射ノズルの概略を示す 斜視図である。
図 1〜図 3で説明したスチーム噴射ノズル 15はスチーム配管 16によりスチーム発生 器 17に連結しており、スチーム発生器 17で発生した高温のスチーム 14がスチーム 配管 16を通ってスチーム噴射ノズル 15に供給される構成である。この構成は、スチ ーム噴射ノズル 15がスチーム発生器 17と離れており、スチーム発生器 17で発生した スチームをスチーム配管 16により給送しているので、給送中のスチーム量の低下や、 給送中におけるスチーム温度の低下、あるいは、スチーム配管 16でスチームが汚染 (コンタミネーシヨン)されることがあるなどの問題がある。
本実施例は、これらの問題を解決するために、スチーム噴射ノズルで直接スチーム を発生させるようにしたものである。
水を貯蔵した水タンク 31の外周に、水タンク 31内の水を水蒸気にするエネルギ印 加手段 32が設けられている。エネルギ印加手段 32は、水にメガソニック超音波振動 を印力!]して水蒸気にする超音波励起装置、水にレーザ光を照射して水蒸気にするレ 一ザ励起装置、水にマイクロ波振動を印カロして水蒸気にするマイクロ波励起装置な どが使用される。水タンク 31の出口側には連結管 33を介してヒータ 34を収納したカロ 熱室 35が連結されており、加熱室 35の出口側にスチーム噴射口 36が設けられてい る。
[0018] 水を貯蔵した水タンク 31にエネルギ印加手段 32によりエネルギを印加すると、水タ ンク 31内の水は印加されたエネルギで励起されて水蒸気になり、連結管 33を通って 加熱室 35に供給される。加熱室 35では供給された水蒸気をヒータ 34により加熱して 高温のスチームとし、スチーム噴射口 36から基板 12に対して高温スチームを噴射す る。 この構成は、スチームを噴射する基板 12の直近でスチームを発生させるので、配 管ロスなどによるスチーム量の低下がなぐまたスチーム温度の低下や汚染も発生し ない。また、水タンク 31と加熱室 35が近接しているので、スチーム噴射ノズルを小型 に構成することができ、低コストを実現することができる。また、基板 12の移動方向に 沿って本実施例のスチーム噴射ノズルを複数個配列することにより、連続的なレジス ト剥離を行うことができる。
実施例 4
[0019] 図 5は本発明の実施例 4におけるレジスト剥離装置の概略を示す斜視図である。本 実施例は、基板にスチームを噴射するスチーム噴射ノズルと水ミストを噴射する水ミス ト噴射ノズルを設けて、スチーム噴射ノズルから噴射されるスチームの熱エネルギと 運動エネルギを受けた水ミストによりレジストの剥離と基板の洗浄を行う実施例である
。図 1と同一部分には同一符号を付して説明を省略する。
基板 12のレジスト 11が形成されている表面側の上方には、スチーム噴射ノズル 41 とその内部に同軸に設けられた水ミスト噴射ノズル 42が配置される。スチーム噴射ノ ズル 41と水ミスト噴射ノズル 42は、その噴射方向が基板 12に対して垂直方向になる ように配置される。スチーム噴射ノズル 41はスチーム配管 43によりスチーム発生器 4 4に連結しており、スチーム発生器 44から高温のスチームがスチーム配管 43を通つ てスチーム噴射ノズル 41に供給される。水ミスト噴射ノズル 42は先端部がスチーム噴 射ノズル 41の内部に同軸配置されており、配管 46を介してミスト発生部 47に連結し ている。ミスト発生部 47は、外周に超音波駆動電源 49で駆動される超音波発振装置 48が設けられている。超音波発振装置 48は超音波駆動電源 49により発振周波数と 発振パワーが調整される。発振する超音波の周波数は 700KHz〜3MHzのメガへ ルツ帯の周波数に設定される。ミスト発生部 47には水タンクなどの水供給源 50から 水が供給される。
[0020] つぎに動作を説明する。レジスト 11が被着した状態の基板 12を回転機構 13により 所定の方向に回転させる。一方、スチーム発生器 44により 100°C以上、好ましくは 1 30°C以上の高温のスチームを発生させ、スチーム配管 43を経てスチーム噴射ノズル 41にスチームを供給する。一方、水供給源 50から 60°C〜70°Cの温純水をミスト発 生部 47に供給し、超音波駆動電源 49により 700KHz〜3MHzの超音波を印加する と、ミスト発生部 47に供給された温純水は超音波エネルギの作用により水ミストイ匕さ れ、配管 46を介して水ミスト噴射ノズル 42に供給される。
このとき、超音波駆動電源 49により超音波の発振周波数およびパワーのいずれか または両者を調整することにより、発生する水ミストの粒径を制御することができる。一 般に、超音波の発振周波数を高くすれば水ミストの粒径は小さくなり、超音波のパヮ 一を大きくすれば水ミストの粒径は小さくなる。粒径の大きさは基板 12の種類や大き さ、レジスト 11の種類や厚さなどに応じて設定すればよい。
水ミスト噴射ノズル 42から噴射した水ミスト 51はスチーム噴射ノズル 41内のスチー ム 52と混合してスチーム噴射ノズル 41の先端 45から基板 12上のレジスト 11に噴射 される。このとき、水ミスト 51はスチーム 52の熱エネルギと運動エネルギを授受して高 V、熱エネルギと運動エネルギを有しており、この高!、熱エネルギと運動エネルギを有 する水ミストがレジスト 11にぶつかってそのエネルギによりレジスト 11を剥離、除去す る。レジスト 11の剥離、除去する作用は、水ミストの粒径により異なり、粒径が大きす ぎる場合はレジスト 11の剥離、除去だけでなく基板 12をも吹き飛ばしてしまうことがあ る。一方、粒径が大きすぎる場合はレジストの除去、剥離に長時間を要してしまう。そ こで、本実施例においては、前述したように、超音波の発振周波数およびパワーのい ずれカゝまたは両者を調整して水ミストの粒径を、基板 12を吹き飛ばさずにレジスト 11 を短時間で剥離、除去するように制御する。
以上の説明では、スチーム噴射ノズル 41と水ミスト噴射ノズル 42を同軸に構成して 、その噴射方向を基板 12に対して垂直方向に配置した場合にっ 、て説明したが、 噴射方向を図 1のスチーム噴射ノズル 15の噴射方向と同様に基板 12に対して非垂 直方向に配置し、非垂直方向を基板の移動方向に対向する方向、基板の移動方向 に向力う方向および基板の移動方向に対して横方向の 、ずれかに設定するようにし てもよい。
実施例 5
図 6は実施例 5のレジスト剥離装置におけるスチーム噴射ノズルおよび水ミスト噴射 ノズルの他の形状の概略を示す斜視図である。 本実施例においては、スチーム噴射ノズル 41の内壁にらせん状の溝 55を形成し、 スチーム噴射ノズル 41内でスチーム 52を螺旋状の溝 55に沿ってらせん状に進行さ せる。この結果、スチーム噴射ノズル 41内に噴射した水ミスト 51もらせん状に進行し 、スチーム 52と水ミスト 51の混合体 56はスチーム噴射ノズル 41の先端 45かららせん 状に噴射する。らせん状に噴射したスチーム 52と水ミスト 51の混合体 56は基板 12が 向力 際に分散しにくいので、基板 12のレジスト 11に効率的にぶっかり、レジスト 11 の剥離効果を大きくすることができる。
なお、水ミスト噴射ノズル 42の内壁にらせん状の溝を形成しても同様な効果を得る ことができる。
実施例 6
[0022] 図 7は本発明の実施例 6におけるレジスト剥離装置の要部を示す縦断面図、図 8は 同装置の要部を示す横断面図である。本実施例は、基板にスチームを噴射するスチ ーム噴射ノズル内に水ミストを供給する水ミスト供給部を設けて、スチーム噴射ノズル 力 噴射されるスチームの熱エネルギと運動エネルギを受けた水ミストによりレジスト の剥離と基板の洗浄を行う実施例である。上記実施例と同一構成については説明を 省略する。
図示しな!、基板のレジストが形成されて ヽる表面側の上方には、スチーム噴射ノズ ル 41Aが配置される。このスチーム噴射ノズル 41Aの外周面には、水ミスト供給部 42 Bが形成されている。この水ミスト供給部 42Bは、複数の孔 42Aによってスチーム噴 射ノズル 41A内空間と連通している。
スチーム噴射ノズル 41 Aは、断面が四角形の通路で構成され、その噴射方向は基 板に対して垂直方向になるように配置される。スチーム噴射ノズル 41Aは、スチーム 配管 43によって、図示しないスチーム発生器に連結されている。従って、スチーム噴 射ノズル 41Aには、高温のスチームがスチーム配管 43を通って供給される。水ミスト 供給部 42Bは、配管 46を介して、図示しないミスト発生部に連結している。なお、ミス ト発生部としては、上記実施例で用いたように超音波発振装置でもよいが、本実施例 においては、超音波発振装置を用いることなぐ温純水をそのまま供給してもよい。
[0023] つぎに動作を説明する。スチーム配管 43からは、 100°C以上、好ましくは 130°C以 上の高温のスチームを供給する。一方、配管 46からは、 60°C〜70°Cの温純水を供 給する。配管 46から供給された温純水は、水ミスト供給部 42Bによって更に温度が 上昇し、複数の孔 42Aによってスチーム噴射ノズル 41A内空間に導かれるときに水ミ スト化される。
このとき、孔 42Aの孔径によってミスト粒径を制御することができる。なお、供給する ミスト量は、孔 42Aの個数によって制御することができる。また、孔 42Aの孔径の代わ りに、又は孔径とともに、スチーム配管 43から供給するスチーム量を変更することによ つてもミスト粒径を制御することができる。また、孔径ゃスチーム量とともに、又はこれ らの代わりに配管 46から供給する温純水の量、又はミスト量によってもミスト粒径を制 御することができる。
さらに本実施例のように、スチーム噴射ノズル 41 Aを断面が四角形の通路で構成 することで、制御されたミスト粒径を、粒径を変えることなく噴射させることができる。 なお、本実施例においても、スチーム噴射ノズル 41Aの噴射方向を、図 1のスチー ム噴射ノズル 15の噴射方向と同様に基板 12に対して非垂直方向に配置し、非垂直 方向を基板の移動方向に対向する方向、基板の移動方向に向かう方向、および基 板の移動方向に対して横方向の 、ずれかに設定するようにしてもょ 、。
また、配管 46から供給する温純水とスチーム配管 43から供給するスチームとの少 なくともいずれかを周期的に供給量を変化させることで、水ミスト径を変化させること ができ、異なる径の水ミストを噴射させることができる。
実施例 7
図 9は本発明の実施例 7におけるレジスト剥離装置の要部を示す縦断面図、図 10 は同装置の要部を示す横断面図である。以下、実施例 6と相違する点だけを説明す る。
スチーム配管 43の外周面には、水ミスト供給部 42Bが形成されている。この水ミスト 供給部 42Bは、複数の孔 42Aによってスチーム配管 43内空間と連通している。 スチーム噴射ノズル 41 Aは、水ミスト供給部 42Bよりも下流側のスチーム配管 43に 接続され、スチーム配管 43とスチーム噴射ノズル 41Aとの連接部には段差を有して いる。また、スチーム噴射ノズル 41 Aは、断面が四角形の通路で構成されている。 本実施例によれば、温純水は、複数の孔 42Aによってスチーム噴射ノズル 41A内 空間に導かれるとき、又はスチーム配管 43とスチーム噴射ノズル 41Aとの段差に一 且溜まった純水が噴射ノズル 41Aに導かれるときに水ミストイ匕される。
従って、孔 42Aの孔径によってミスト粒径を制御することができるとともに、供給する 純水の量に応じてスチーム配管 43とスチーム噴射ノズル 41Aとの段差に溜まる純水 によってミスト粒径を制御することができる。
本実施例においても、配管 46から供給する温純水とスチーム配管 43から供給する スチームとの少なくともいずれかを周期的に供給量を変化させることで、水ミスト径を 変化させることができ、異なる径の水ミストを噴射させることができる。
産業上の利用可能性
本発明によるレジスト剥離方法およびレジスト剥離装置は、半導体素子の製造工程 における半導体ウェハのレジスト剥離や、液晶ディスプレイなどの製造工程における 液晶素子のレジスト剥離、プリント基板の製造工程などにおける FPD基板などのレジ スト剥離などに適用して有用である。

Claims

請求の範囲
[1] 所定方向に移動する基板上のレジストを剥離するレジスト剥離方法であって、前記 基板上の前記レジストにスチームおよび粒径の制御された水ミストを噴射することを 特徴とするレジスト剥離方法。
[2] 前記スチームを噴射させるスチームノズルに、前記水ミストを供給する複数の孔を 形成し、前記孔径によって前記水ミストの前記粒径を制御することを特徴とする請求 項 1に記載のレジスト剥離方法。
[3] 前記スチームを噴射させるスチームノズルに、前記水ミストを供給する複数の孔を 形成し、噴射させる前記スチーム量、又は供給する前記水ミスト量によって前記水ミ ストの前記粒径を制御することを特徴とする請求項 1に記載のレジスト剥離方法。
[4] 前記粒径の制御された前記水ミストは、純水に 700KHz〜3MHzの超音波振動を 与えて発生させ、前記超音波振動のパワーおよび周波数の少なくとも一方を変化さ せて前記粒径を制御することを特徴とする請求項 1に記載のレジスト剥離方法。
[5] 前記スチームおよび前記水ミストを前記基板の表面に対して垂直な方向から印加 することを特徴とする請求項 1に記載のレジスト剥離方法。
[6] 基板に形成されたレジストを剥離するレジスト剥離装置であって、所定方向に前記 基板を移動させる基板移動手段と、前記基板にスチームを噴射するスチーム噴射ノ ズルと、前記スチーム噴射ノズル内に水ミストを供給する水ミスト供給部とを有し、前 記水ミスト供給部と前記スチーム噴射ノズル内空間とを連通する複数の孔を形成した ことを特徴とするレジスト剥離装置。
[7] 前記スチーム噴射ノズルを内径が一定の所定長さの配管で構成し、前記水ミスト供 給部を前記配管の外周面に設け、前記配管の外周面力も内周面に向力つて前記孔 を形成したことを特徴とする請求項 6に記載のレジスト剥離装置。
PCT/JP2005/021877 2005-11-29 2005-11-29 レジスト剥離方法およびレジスト剥離装置 WO2007063576A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/021877 WO2007063576A1 (ja) 2005-11-29 2005-11-29 レジスト剥離方法およびレジスト剥離装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/021877 WO2007063576A1 (ja) 2005-11-29 2005-11-29 レジスト剥離方法およびレジスト剥離装置

Publications (1)

Publication Number Publication Date
WO2007063576A1 true WO2007063576A1 (ja) 2007-06-07

Family

ID=38091917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021877 WO2007063576A1 (ja) 2005-11-29 2005-11-29 レジスト剥離方法およびレジスト剥離装置

Country Status (1)

Country Link
WO (1) WO2007063576A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022994A (ja) * 2001-07-06 2003-01-24 Sony Corp 基板洗浄方法
JP2003071332A (ja) * 2001-08-31 2003-03-11 Lam Research Kk 水供給装置および水供給方法
JP2003282513A (ja) * 2002-03-26 2003-10-03 Seiko Epson Corp 有機物剥離方法及び有機物剥離装置
JP2005216908A (ja) * 2004-01-27 2005-08-11 Aqua Science Kk 対象物処理装置および対象物処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022994A (ja) * 2001-07-06 2003-01-24 Sony Corp 基板洗浄方法
JP2003071332A (ja) * 2001-08-31 2003-03-11 Lam Research Kk 水供給装置および水供給方法
JP2003282513A (ja) * 2002-03-26 2003-10-03 Seiko Epson Corp 有機物剥離方法及び有機物剥離装置
JP2005216908A (ja) * 2004-01-27 2005-08-11 Aqua Science Kk 対象物処理装置および対象物処理方法

Similar Documents

Publication Publication Date Title
TWI447799B (zh) 基板洗淨方法及基板洗淨裝置
TWI280320B (en) Resist film removing device, resist film removing method, and organic substance removing device and organic substance removing method
KR101244086B1 (ko) 기판 세정 장치 및 방법
KR20060050162A (ko) 세정 방법 및 그것을 실시하기 위한 세정 장치
JP2008288541A (ja) 枚葉式洗浄装置
KR100483975B1 (ko) 초음파 세정장치 및 레지스트 박리장치
JP5399678B2 (ja) レジスト剥離装置
JP2006210598A (ja) 基板の処理装置及び処理方法
JP2005032819A (ja) レジスト剥離装置およびレジスト剥離方法
KR101987711B1 (ko) 기판 전체에 유체 분사가 가능한 노즐 및 이를 이용한 기판 세정 시스템
JP2006114738A (ja) レジスト剥離方法およびレジスト剥離装置
JP2006114738A5 (ja)
JP2000117201A (ja) 洗浄装置及び洗浄方法
WO2007063576A1 (ja) レジスト剥離方法およびレジスト剥離装置
KR100487834B1 (ko) 레이저를 이용한 패턴마스크 세정방법 및 장치
JP2007032991A (ja) 蒸気発生装置
JP2007317802A (ja) 基板の乾燥処理装置及び乾燥処理方法
JP2006150291A (ja) 洗浄装置
KR20090036435A (ko) 마스크 세정장치
JP4799807B2 (ja) 対象物処理装置及び対象物処理方法
JP2002169304A (ja) 剥離装置及びレジスト膜の剥離方法
JP2003017462A (ja) ガラス基板またはウエハー処理用噴射装置
KR101951764B1 (ko) 유체의 타력 제어가 가능한 노즐 및 이를 이용한 기판 세정 시스템
JP2004260099A (ja) 処理流体供給装置およびこれを適用した基板処理装置、ならびに基板処理方法
JP2006245446A (ja) レジスト剥離除去装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05811496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP