WO2007062610A2 - Dendrímero con peg de cuatro ramas para la conjugación a proteínas y péptidos - Google Patents

Dendrímero con peg de cuatro ramas para la conjugación a proteínas y péptidos Download PDF

Info

Publication number
WO2007062610A2
WO2007062610A2 PCT/CU2006/000014 CU2006000014W WO2007062610A2 WO 2007062610 A2 WO2007062610 A2 WO 2007062610A2 CU 2006000014 W CU2006000014 W CU 2006000014W WO 2007062610 A2 WO2007062610 A2 WO 2007062610A2
Authority
WO
WIPO (PCT)
Prior art keywords
peg
dendrimer
branches
protein
conjugation
Prior art date
Application number
PCT/CU2006/000014
Other languages
English (en)
French (fr)
Other versions
WO2007062610A3 (es
Inventor
José Ángel RAMÓN HERNÁNDEZ
Fidel Raúl CASTRO ODIO
Vivian María SÁEZ MARTÍNEZ
Rolando PÁEZ MEIRELES
Eduardo FERNÁNDEZ SÁNCHEZ
Original Assignee
Centro De Ingenieria Genetica Y Biotecnologia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Ingenieria Genetica Y Biotecnologia filed Critical Centro De Ingenieria Genetica Y Biotecnologia
Priority to JP2008542584A priority Critical patent/JP5123201B2/ja
Priority to AU2006319636A priority patent/AU2006319636B2/en
Priority to EP06817995.1A priority patent/EP1967212B1/en
Priority to ES06817995.1T priority patent/ES2604461T3/es
Priority to KR1020087015901A priority patent/KR101134983B1/ko
Priority to CA2631335A priority patent/CA2631335C/en
Priority to US12/095,335 priority patent/US8703893B2/en
Publication of WO2007062610A2 publication Critical patent/WO2007062610A2/es
Publication of WO2007062610A3 publication Critical patent/WO2007062610A3/es
Priority to EG2008060905A priority patent/EG26619A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/325Polymers modified by chemical after-treatment with inorganic compounds containing nitrogen

Definitions

  • the present invention is related to a polymeric structure similar to dendrimers and with four branches of polyethylene glycol (PEG), for obtaining conjugates of pharmaceutical interest.
  • PEG polyethylene glycol
  • PEGylation also sterically blocks degradation pathways induced by hydrophobic interactions and generates non-specific steric obstacles that reduce intermolecular interactions involved in the thermal instability of proteins. All this means that PEGylated proteins have greater physical stability than unmodified molecules, which is very useful for the development of a final pharmaceutical form (Harris JM and Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2: 214-21).
  • the methylated polyethylene glycol derivative is usually used at one end, known as monomethoxyPEG (mPEG).
  • mPEG monomethoxyPEG
  • PEGylation One of the first PEG derivatives was synthesized by reaction with cyanogen chloride. But conjugation with it caused extensive PEGylation. This is not desirable for therapeutic proteins because PEGylation to a high degree causes a sharp decrease in biological activity, either by directly blocking the active centers or by topological changes that disappear from the accessible surface of the protein.
  • the desired conjugate is one where there is only one PEG residue per protein molecule, this is known as the monoPEGylated one.
  • More "soft" active groups begin to be used. These are essentially esters of Ia / V-hydroxysuccinimide although other groups were also used. Three of the most common are: succinimidyl succinate, tresylate and succinimidyl carbonate. This generation of activated PEGs is known as First Generation (Roberts M. J., Bentley M. D., Harris J. M. (2002) Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Reviews 54: 459-76).
  • the monofunctional PEG of two branches has allowed obtaining a conjugate with interferon alfa 2a that has shown better results in the clinic than Ia native protein (Rajender Reddy K., Modi MW, Pedder S. (2002) Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C. Adv. Drug Deliv. Reviews 54: 571-86).
  • conjugates of greater molecular mass could be achieved for the first time and, in addition to the aforementioned advantage, would allow the use of smaller mPEG linear chains to obtain reagents for PEGilar of such mass molecular than that of structures with only two branches. These smaller chains would have a smaller diol fraction facilitating the synthesis processes.
  • the present invention solves the aforementioned problem by providing a monofunctional structure similar to a dendrimer having four mPEG branches.
  • This structure allows to obtain conjugates with polymeric residues of up to 120 kDa. This fact allows to explore conjugates of a great variety of molecular masses, including those of high molecular mass.
  • PEG can be obtained with molecular masses similar to other monofunctional branched reagents, but with linear chains of lower molecular mass.
  • a polymeric structure is obtained, where the molecular mass of each PEG chain is between 5,000 and 30,000 Da and the total molecular mass between 20,000 and 120,000
  • the use of small linear chains practically allowed eliminate the existing diol contamination in larger linear PEGs.
  • conjugates with our structure had a physical-chemical stability (resistance to high temperatures and protease degradation) much greater than conjugates of similar molecular mass but prepared with the structure of only two branches. Also unexpectedly, they had a half-life in greater blood.
  • Another unexpected result was that the conjugates with our dendrimer-like structure were more homogeneous, less positional isomers, than those obtained with conjugates of similar molecular mass but with only two branches.
  • the four-branch monofunctional PEG similar to dendrimer is obtained in two fundamental stages.
  • the first is to obtain derivatives of two branches by joining two linear chains of PEG to a core that can be, for example, lysine.
  • a similar process has been used by other authors with good results (US 5,932,462).
  • the second stage is the union of two molecules of derivatives of two branches to a nucleus similar to the previous one to obtain the derivative of four branches.
  • succinimidyl succinate succinimidyl carbonate
  • succinimidyl propionoate succinimidyl butanoate
  • succinimidyl butanoate succinimidyl butanoate
  • a preferred linear activated PEG in this invention is succinimidyl carbonate. This is due to two fundamental reasons: the good performance of the reaction between this and the nuclei with free amino groups and the ease of the process of obtaining this functionalized PEG. This process of obtaining (Mirón T., Wilchek M. (1993) A Simplified Method for the Preparation of Succinimidyl Carbonate Polyethylene Glycol for Coupling to Proteins. Bioconjugate Chem. 4: 568-69) is known to those working on the subject:
  • the first step is easily completed by reacting it with the molecule chosen as the nucleus.
  • the core is L-lysine because it is a biocompatible molecule, with two free amino groups and a carboxylic group that can be used to be subsequently activated. 2 inPEG - O - C - O - or
  • the derivative of two branches is easily purified from the reaction mixture by chromatographic methods. This derivative of two branches is activated for the subsequent reaction with a core molecule and obtaining the derivative of four branches. It can be activated in various ways, but a preferred form for its efficiency and ease is the formation of an ⁇ / -hydroxysuccinimide ester.
  • the second stage of obtaining the derivative of four branches consists in the reaction of the derivative of two branches activated with a core molecule, which also in the first step a preferred embodiment of this invention is that the core is L-lysine.
  • the derivative of interest is easily purified from the reaction mixture by chromatographic methods.
  • This dendrimer-like PEG can be activated for the conjugation of proteins with different reactive groups.
  • Any of the functional groups used for the activation of other PEG structures can be used for the dendrimer-like PEG described in this patent. Examples of these groups are: esters of / V-hydroxysuccinimide, succinimidyl carbonate, aldehydes of different types, maleimides among others.
  • Another type of groups that allow the binding of this structure to proteins are chelating groups such as nitrilotriacetate (NTA), which by means of a transition metal can combine the histidines present in the peptide skeleton.
  • NTA nitrilotriacetate
  • the choice of which reactive group will be used depends on what residue of the protein we want to bind the PEG.
  • the dendrimer-like polymer can be activated as an N-hydroxysuccinimide ester.
  • the ⁇ / -hydroxysuccinimide ester is obtained following the same procedure followed for the activation of the structure of two branches of stage 1.
  • the conjugation of the protein with the activated PEG is carried out in an appropriate buffer solution.
  • the characteristics of the buffer solution depend, among other factors, on the functional group of the polymer and the objective of the conjugation. For example, if it is desired to conjugate the free amino groups with a PEG functionalized as ester of ⁇ / -hydroxysuccinimide, the conjugation sites can be planned, to a certain degree, using a given pH. A pH around 9 will favor conjugation by the ⁇ -amino of the plants.
  • conjugation with aldehyde function a slightly acidic pH will allow the PEGylation to be preferably through the n-terminal end of the protein.
  • the subsequent purification of the conjugate of interest can be performed by various chromatographic techniques.
  • conjugates are described wherein the nucleinic group is comprised in a biomolecule selected from the group consisting of proteins, peptides, polypeptides and lipids.
  • a biomolecule selected from the group consisting of proteins, peptides, polypeptides and lipids.
  • concentration of the conjugate can usually be determined by ultraviolet spectroscopy (absorbance at 280 nm) because the PEG residue does not practically affect the extinction coefficient of the protein.
  • the purity of the purified product should preferably be determined by electrophoresis in polyacrylamide gels in the presence of sodium dodecyl sulfate (SDS-PAGE) since chromatographic methods such as gel filtration can poorly resolve the signals corresponding to the conjugate of interest and to contaminants.
  • SDS-PAGE sodium dodecyl sulfate
  • Other chemical-physical properties can be studied by the usual procedures.
  • a preferred embodiment of the present invention describes the preparation of conjugates where the protein is selected from the group consisting of interferon alfa-2b, streptokinase, granulocyte colony stimulating factor, erythropoietin or epidermal growth factor.
  • Figure 1 Protection against degradation by proteases. On the X-axis, the time in hours is shown and on the Y-axis the amount of protein that remains without degrading expressed as a percentage of the amount at zero time.
  • Example 1 Obtaining activated PEG as an ester of ⁇ Mydroxysuccinimide.
  • the Lis-2PEG was separated from the rest of the components of the reaction mixture by ion exchange chromatography with sepharose DEAE.
  • a column containing 1 liter of the chromatographic matrix was equilibrated with 3 volumes of 100 mM borate buffer solution pH 7.5 and subsequently washed with 5 volumes of double-distilled water. 10 grams of the reaction mixture were applied dissolved in double distilled water at 5 mg / ml.
  • the unreacted PEG was removed by washing the column with two volumes of double distilled water and the Lis-2PEG was eluted with a solution of 1 mM sodium chloride. This fraction was adjusted to pH 3 with hydrochloric acid and extracted three times with a volume of DCM.
  • Lis-2PEG Six grams of Lis-2PEG were dissolved in 20 ml of dry DCM and 60 mg of / V-hydroxysuccinimide and 250 mg of A /, / V-dicyclohexylcarbodiimide were added. The reaction is kept under stirring for 24 hours at room temperature. Be filter and concentrate by rotoevaporation up to 5 ml. It is precipitated with 20 ml of cold diethyl ether. This was recrystallized three times by dissolving in acetone and precipitating with diethyl ether. The final product was dried under high vacuum and stored under nitrogen at -20 ° C. The total process yield was greater than 95%.
  • the fraction of activated PEG was determined by reaction with glycyl glycine and quantification of the free amino groups by reaction with TNBS. Obtaining the PEG of four branches similar to dendrimer. Five grams of PEG2, i2 ⁇ -NHS were reacted with 7 mg of L - (+) - lysine dissolved at 0.1 mg / ml in 100 mM borate buffer solution, pH 8.5. The reaction was carried out at room temperature with stirring for 16 hours. After this time, the reaction mixture was diluted 5 times with double distilled water and the pH was adjusted to 3 with hydrochloric acid. The PEG was extracted three times with a volume of DCM.
  • the union of the three extraction fractions was dried with anhydrous sodium sulfate and filtered.
  • the PEG solution in DCM was concentrated to 5 ml in a rotary evaporator.
  • the concentrate was precipitated with 30 ml of cold diethyl ether, filtered off and dried under high vacuum.
  • the dendrimer-like four-branch PEG was purified by size exclusion chromatography on a G3000PW column.
  • the fraction containing the desired structure was adjusted to pH 3 with hydrochloric acid and extracted three times with a volume of DCM.
  • the union of the three extraction fractions was dried with anhydrous sodium sulfate and filtered.
  • the PEG solution in DCM was concentrated to 5 ml in a rotary evaporator.
  • the concentrate was precipitated with 30 ml of cold diethyl ether, filtered off and dried under high vacuum.
  • the degree of purity was determined by SDS-PAGE by staining the gel with a solution of 5% barium chloride and 100 mM iodine and was greater than 98%.
  • the molecular mass determined by flight time mass spectrometry with laser desorption / ionization assisted by the matrix (in English: Matrix-Assisted Laser Desorption lonization-Time Of FIy, abbreviated MALDI-TOF) was 45.5-50 kDa. The total process yield was over 30%. Functionalization of the four-branch PEG similar to dendrimer as an ester of H-hldroxisuccinimide (PEG 4 ⁇ 12 ⁇ -NHS).
  • a gram and a half of the four-branch dendrimer-like PEG was dissolved in 5 ml of dry DCM and 9 mg of ⁇ / -hydroxysuccinide and 37 mg of ⁇ /, ⁇ / -dcyclohexylcarbodiimide were added. The reaction is kept under stirring for 24 hours at room temperature. Filter and precipitate with 20 ml of cold diethyl ether. The precipitate was recrystallized three times by dissolving in acetone and precipitating with diethyl ether. The final product was dried under high vacuum and stored under nitrogen at -20 0 C. The total process yield was greater than 95%. The fraction of activated PEG was determined by reaction with glycyl glycine and quantification of the free amino groups by reaction with TNBS.
  • Example 2 Obtaining of IFN- ⁇ 2b conjugated with PEG 4 , i 2K -NHS. Conjugation reaction.
  • PEG 4i i2 ⁇ -NHS PEG 4i i2 ⁇ -NHS
  • the reaction was maintained for 1 hour at 4 0 C with gentle stirring. The reaction was stopped by diluting 50 times with 10 mM sodium acetate buffer solution, pH 4.
  • the yield of the reaction was determined by densitometry of the analysis by SDS-PAGE staining with Coomasie Brilliant Blue R-250.
  • the monoPEGylated IFN- ⁇ 2b fraction with the four-branch PEG-like dendrimer was greater than 40%.
  • the monoPEGylated conjugate was eluted with 50 mM sodium acetate buffer solution, pH 4 with 150 mM sodium chloride. The purity was greater than 96% and the main contaminants were unmodified interferon and the biPEGylated conjugate.
  • the fraction of interest was concentrated to 200 ml and applied on a XK 50/60 column (Pharmacia) containing 1 L of sefadex G-25 equilibrated with 50 mM phosphate buffer solution, pH 7, with 100 mM sodium chloride.
  • MonoPEGylated interferon with the four-branch PEG-like dendrimer was filtered through a cellulose acetate membrane with pore size of 0.2 ⁇ m and stored at
  • the concentration of the conjugate as a function of the protein residue was determined by AbS 280 .
  • An Abs unit was considered to correspond to a concentration of 1 mg / ml.
  • the molecular mass of the conjugate was determined by MALDI-TOF.
  • the expected average molecular mass of the four-branch PEG similar to dendrimer was 48 000 and that of the IFN- ⁇ 2b was 19 200, so that the theoretical mass of the conjugate was 67 200.
  • the determined mass of the PEG 4.12 ⁇ -IFN- ⁇ 2b was 64,000-70,000.
  • the in vitro antiviral activity was determined by the inhibition of the cytopathic effect produced by the Mengo virus to Hep-2 cells (ATCC No. CCL23). Serial dilutions (1: 2) of the conjugate in minimum essential medium with 2% fetal calf serum and 40 ⁇ g / ml gentamicin were mixed with cell monolayers in 96-well microtiter plates. The plates were incubated at 37 0 C for 24 hours under a 3% carbon dioxide and 95% humidity. The virus (10 7 TCID) was added and the plates incubated until the cytopathic effect (90% cell lysis) was evident. The degree of destruction of the cells was measured by staining the cells with crystal violet. The activity of each sample was expressed in international units (Ul) compared to the international standard 69/19 of IFN- ⁇ 2b of The World Health Organization. The results obtained are shown in Table 1.
  • Example 5 Chemical-physical stability of PEG 4j and 2 ⁇ -lFN- ⁇ 2b. Resistance to degradation by proteasesase Forty microliters of a 4% sodium hydrogen carbonate solution, pH 8, with 400 ⁇ g / ml of native IFN- ⁇ 2b, conjugated to the four-branch PEG or conjugated to a two-branch PEG of similar molecular mass to the previous one they were mixed with 10 ⁇ l of a trypsin solution at 160 ⁇ g / ml. The mixture was allowed to incubate at 37 ° C for a certain time. The reaction was stopped with 10 ⁇ l of trifluoroacetic acid.
  • the comparative pharmacokinetic study between the unmodified interferon and the PEG conjugate of four branches similar to dendrimer was performed in rabbits of the New Zealand strain of 2 kg of average mass.
  • IFN- ⁇ 2b conjugated to a PEG of two branches of molecular mass similar to dendrimer-like was used.
  • the biomolecules were injected subcutaneously at 150 ⁇ g of protein per kilogram of weight. Samples were taken over an interval of 144 hours at pre-established times. The samples were centrifuged and the serum extracted and stored at -20 ° C until analysis.
  • the concentration of IFN- ⁇ 2b (conjugate or not) was determined by an ELISA-like assay with specific monoclononal antibodies for this cytosine.
  • Example 7 Conjugation of other therapeutic proteins to the PEG of four branches similar to dendrimer.
  • recombinant streptokinase in English recombinant Streptokinase, abbreviated SKr
  • erythropoietin in English Erythropoietin, abbreviated EPO
  • granulocyte colony stimulating factor in English Granulocyte-Colony Stimulate Factor, abbreviated G-CSF
  • epidermal growth in English Epidermal Growth Factor, abbreviated EGF

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Inorganic Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Polyethers (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

Una estructura polimérica semejante a dendrímero con cuatro ramas de monometoxipolietilénglicol, que puede ser representada como: El grupo carboxílico de la estructura anterior puede ser funcionalizado para la obtención de conjugados de interés farmacéutico. La unión de este polietilénglicol semejante a dendrímeros a proteínas terapeúticas mejora la estabilidad in vitro e in vivo de éstas.

Description

ESTRUCTURA POUMÉRICA SEMEJANTE A DENDRÍMERO PARA LA OBTENCIÓN DE CONJUGADOS DE INTERÉS FARMACÉUTICO.
Campo de Ia técnica La presente invención está relacionada con una estructura polímerica semejante a los dendrímeros y con cuatro ramas de polietilénglicol (PEG), para Ia obtención de conjugados de interés farmacéutico.
Estado de Ia técnica anterior Es bien conocido los beneficios que reporta en varias propiedades farmacológicas Ia conjugación de proteínas terapéuticas a polietilénglicol. Por ejemplo, el tiempo de vida media en sangre aumenta por varias causas, entre ellas: el residuo polimérico puede impedir el ataque de proteasas y el reconocimiento del fármaco por el sistema inmune y el volumen hidrodinámico significativamente superior del conjugado respecto a Ia proteína nativa hace que disminuya sensiblemente Ia filtración por riñon. A pesar de que en mucho casos Ia actividad biológica in vitro de una proteína se ve afectada por Ia PEGilación, el aumento substancial del tiempo de vida en sangre hace que su acción terapéutica sea más efectiva (Harris J. M. y Chess R. B. (2003) Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2:214-21).
La PEGilación también bloquea estéricamente vías de degradación inducidas por interacciones hidrofóbicas y genera obstáculos estéricos no específicos que disminuyen las interacciones intermoleculares involucradas en Ia inestabilidad térmica de las proteínas. Todo esto hace que las proteínas PEGiladas tengan una mayor estabilidad física que las moléculas sin modificar, Io cuál es muy útil para el desarrollo de una forma farmacéutica final (Harris J. M. y Chess R. B. (2003) Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2:214-21). Para Ia conjugación de proteínas se utiliza usualmente el derivado de polietilénglicol metilado en un extremo, conocido como monometoxiPEG (mPEG). El hecho de que uno de los extremos de Ia cadena de PEG esté protegido por un grupo metilo permite que él sólo se active por el otro extremo, reactivo monofuncional. Esto es muy importante para Ia conjugación de proteínas terapéuticas porque Ia conjugación de éstas a reactivos bifuncionales, o polifuncionales en general, provoca un entrecruzamiento que da al traste con Ia función biológica de Ia proteína. Siempre los mPEG tienen una pequeña fracción contaminante de polímero no metilado, fracción cliol. En los mPEG de mayor masa molecular Ia fracción diol es más grande debido a que es más difícil controlar el proceso de polimerización para cadenas muy larga (Roberts M. J., Bentley M. D., Harris J. M. (2002) Chemistry for peptide and protein PEGylation. Adv. Drug DeWv. Reviews 54:459-76).
Uno de los primeros derivados de PEG fue el sintetizado por reacción con cloruro de cianógeno. Pero Ia conjugación con éste provocaba una PEGilación extensiva. Esto no es deseable para las proteínas terapéuticas pues Ia PEGilación en alto grado provoca una brusca disminución de Ia actividad biológica, ya sea por bloquear directamente los centros activos o por cambios topológicos que desaparecen a éstos de Ia superficie accesible de Ia proteína. Usualmente el conjugado deseado es aquel donde hay sólo un residuo de PEG por cada molécula de proteína, éste es conocido como el monoPEGilado. A partir de finales de los años 80 comienzan a utilizarse grupos activos más "suaves". Éstos son fundamentalmente esteres de Ia /V-hidroxisuccinimida aunque también se usaron otros grupos. Tres de los más comunes son: el succinimidil succinato, el tresilato y succinimidil carbonato. Esta generación de PEG activados es conocida como Primera Generación (Roberts M. J., Bentley M. D., Harris J. M. (2002) Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Reviews 54:459-76).
En Ia segunda mitad de los años 90, surge Ia Segunda Generación de los PEG activados. Aquí hubo dos adelantos importantes: grupos que permitían una PEGilación más selectiva (por ejemplo: grupo aldehido que conjuga preferentemente por el n-terminal de las proteínas) y estructura ramificadas (Roberts M. J., Bentley M. D., Harris J. M. (2002) Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Reviews 54:459-76). Entre los PEG ramificados desarrollados tenemos los monofuncionales de dos ramas (US 5,932,462), los tetrafuncionales de cuatro brazos y los octafuncionales de ocho brazos. Para Ia conjugación de proteínas terapéuticas, los PEG activados más útiles son los monofuncionales porque evitan el entrecruzamiento entre Ia proteína y el polímero. Los PEG ramificados también tienen un efecto tipo-sombrilla que permite una mejor protección de Ia superficie de Ia proteína.
El PEG monofuncional de dos ramas ha permitido Ia obtención de un conjugado con interferón alfa 2a que ha demostrado mejores resultados en Ia clínica que Ia proteína nativa (Rajender Reddy K., Modi M.W., Pedder S. (2002) Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C. Adv. Drug Deliv. Reviews 54:571-86).
Con Ia tecnología actual de síntesis de mPEG sólo se pueden lograr cadenas de hasta 30 kDa por Io que reactivos con sólo dos ramas sólo permiten alcanzar masas moleculares de hasta 60 kDa. Es deseado poseer estructuras con PEG monofuncionales de mayor masa molecular que permitan explorar un mayor rango de conjugados para obtener el óptimo en determinadas proteínas. Sin embargo, en ninguno de los reportes descritos anteriormente se ha utilizado, caracterizado o mencionado un reactivo para PEGilar que fuese monofuncional y con más de dos cadenas de PEG. De lograrse un reactivo con más de dos cadenas de PEG se podrían lograr por primera vez conjugados de mayor masa molecular y, además de Ia ventaja antes mencionada, permitirían Ia utilización de cadenas lineales de mPEG de menor tamaño para obtener reactivos para PEGilar de semejante masa molecular que Ia de estructuras de sólo dos ramas. Estas cadenas de menor tamaño tendrían una menor fracción diol facilitando los procesos de síntesis.
Explicación de Ia invención
La presente invención resuelve el problema antes mencionado, proporcionando una estructura monofuncional semejante a un dendrímero que posee cuatro ramas de mPEG. Esta estructura permite obtener conjugados con residuos poliméricos de hasta 120 kDa. Este hecho permite explorar conjugados de una gran variedad de masas moleculares, incluyendo los de alta masa molecular. Además, con esta estructura se pueden obtener PEG con masas moleculares semejantes a otros reactivos ramificados monofuncionales, pero con cadenas lineales de menor masa molecular.
En una realización preferida de Ia presente invención se obtiene una estructura polimérica, donde Ia masa molecular de cada cadena de PEG está entre 5 000 y 30 000 Da y Ia masa molecular total entre 20 000 y 120 000 La utilización de cadenas lineales pequeñas permitió prácticamente eliminar Ia contaminación diol existente en PEG lineales mayores. Inesperadamente, conjugados con nuestra estructura tuvieron una estabilidad físico-química (resistencia a altas temperaturas y a Ia degradación por proteasas) mucho mayor que conjugados de masa molecular semejante pero preparados con las estructura de sólo dos ramas. También de forma imprevista, tuvieron un tiempo de vida media en sangre mayor. Otro resultado no previsto fue que los conjugados con nuestra estructura semejante a dendrímero fueron más homogéneos, menos isómeros de posición, que los obtenidos con conjugados de masa molecular semejante pero con sólo dos ramas.
El PEG monofuncional de cuatro ramas semejante a dendrímero se obtiene en dos etapas fundamentales. La primera es Ia obtención de derivados de dos ramas por unión de dos cadenas lineales de PEG a un núcleo que puede ser, por ejemplo, lisina. Un proceso semejante ha sido utilizado por otros autores con buenos resultados (US 5,932,462). La segunda etapa es Ia unión de dos moléculas de derivados de dos ramas a un núcleo semejante al anterior para obtener el derivado de cuatro ramas.
Para poder unir las dos cadenas lineales de PEG a un núcleo en el primer paso se necesitan que éstas tengan un grupo activo. Este grupo puede ser escogido de varios conocidos en el estado del arte. Por ejemplo: succinimidil succinato, succinimidil carbonato, p-nitrofenilcarbonato, succinimidil propionoato, succinimidil butanoato, entre otros. Un PEG lineal activado preferido en esta invención es el succinimidil carbonato. Esto se debe a dos razones fundamentales: los buenos rendimiento de Ia reacción entre este y los núcleos con grupos aminos libres y Ia facilidad del proceso de obtención de este PEG funcionalizado. Este proceso de obtención (Mirón T., Wilchek M. (1993) A Simplified Method for the Preparation of Succinimidyl Carbonate Polyethylene Glycol for Coupling to Proteins. Bioconjugate Chem. 4:568-69) es conocido por aquellos que trabajan en el tema:
Figure imgf000005_0001
Una vez que se tiene el PEG lineal activado el primer paso se completa fácilmente por reacción de éste con Ia molécula elegida como núcleo. En una realización preferida de esta invención el núcleo es L-lisina por ser una molécula biocompatible, con dos grupos aminos libres y un grupo carboxílico que puede ser utilizado para ser posteriormente activado. 2 inPEG — O — C — O — o
Figure imgf000006_0001
El derivado de dos ramas es fácilmente purificado de Ia mezcla de reacción por métodos cromatográficos. Este derivado de dos ramas es activado para Ia reacción posterior con una molécula núcleo y obtención del derivado de cuatro ramas. Puede ser activado de diversas formas, pero una forma preferida por su eficiencia y facilidad es Ia formación de un éster de Λ/-hidroxisuccinimida.
Figure imgf000006_0002
Este procedimiento ha sido utilizado con éxito para Ia activación de grupos carboxílicos, de estructuras que contienen cadenas de PEG, como éster de N- hidroxisuccinimida (US 4,732,863 y US 5,932,462).
La segunda etapa de Ia obtención del derivado de cuatro ramas consiste en Ia reacción del derivado de dos ramas activado con una molécula núcleo, que igualmente al primer paso una realización preferida de esta invención es que el núcleo sea L-lisina.
Figure imgf000007_0001
El derivado de interés es fácilmente purificado de Ia mezcla de reacción por métodos cromatograficos.
Este PEG semejante a dendrímero puede ser activado para Ia conjugación de proteínas con diferentes grupos reactivos. Cualquiera de los grupos funcionales utilizados para Ia activación de otras estructuras de PEG pueden ser utilizado para el PEG semejante a dendrímero descrito en esta patente. Ejemplo de estos grupos tenemos en: esteres de /V-hidroxisuccinimida, succinimidil carbonato, aldehidos de distintos tipos, maleimidos entre otros. Otro tipo de grupos que permiten Ia unión de esta estructura a proteínas son los grupos quelantes como el nitrilotriacetato (NTA), que por mediación de un metal de transición puede conjugar las histidinas presentes en el esqueleto peptídico. La elección de que grupo reactivo se utilizará, depende de a que residuo de Ia proteína queremos unir el PEG.
Por ejemplo, si interesa que se una preferentemente a los grupos amino libres se puede activar al polímero semejante a dendrímero como un éster de N- hidroxisuccinimida. Como una materialización de Ia invención se obtiene el éster de Λ/-hidroxisuccinimida siguiendo el mismo procedimiento seguido para Ia activación de Ia estructura de dos ramas de Ia etapa 1.
Figure imgf000008_0001
La conjugación de Ia proteína con el PEG activado se realiza en una solución tampón apropiada. Las características de Ia solución tampón dependen, entre otros factores, del grupo funcional del polímero y del objetivo de Ia conjugación. Por ejemplo si se desea conjugar por los grupos aminos libres con un PEG funcionalizado como éster de Λ/-hidroxisuccinimida los sitios de conjugación se pueden planificar, hasta cierto grado, usando un pH determinado. Un pH alrededor de 9 favorecerá la conjugación por el ε-amino de las usinas.
Figure imgf000008_0002
Otro ejemplo es que en Ia conjugación con función aldehido, un pH ligeramente ácido permitirá que Ia PEGilación sea preferentemente por el extremo n-terminal de Ia proteína. La posterior purificación del conjugado de interés puede realizarse por diversas técnicas cromatográficas.
En una materialización de la presente invención, se describen conjugados donde el grupo nucleínico está comprendido en una biomolécula seleccionada del grupo que consiste en proteínas, péptidos, polipéptidos y lípidos. Varias propiedades químicas, físicas y biológicas de los conjugados deben ser analizadas para lograr una caracterización Io más completa posible del conjugado purificado. Por ejemplo, Ia concentración del conjugado puede ser usualmente determinada por espectroscopia ultravioleta (absorbancia a 280 nm) pues el residuo de PEG no afecta prácticamente el coeficiente de extinción de Ia proteína. La pureza del producto purificado debe ser determinada preferiblemente por electroforesis en geles de poliacrilamida en presencia de dodecilsulfato de sodio (SDS-PAGE) pues métodos cromatográficos como la gel filtración pueden resolver pobremente las señales correspondientes al conjugado de interés y a los contaminantes. Otras propiedades químico-física pueden ser estudiadas por los procedimientos usuales. Como resultado de este trabajo, una realización preferida de Ia presente invención describe Ia preparación de conjugados donde Ia proteína es seleccionada del grupo que consiste de interferon alfa-2b, estreptokinasa, factor estimulador de colonias de granulocitos, eritropoyetina o factor de crecimiento epidérmico.
Breve descripción de las figuras
Figura 1. Protección a Ia degradación por proteasas. En el eje X se muestra el tiempo en horas y en el eje Y Ia cantidad de proteína que queda sin degradar expresado en porciento de Ia cantidad en el tiempo cero.
Figura 2. Resistencia térmica. En el eje X se muestra el tiempo en días y en el eje Y Ia cantidad de proteína que queda sin degradar expresado en porciento de Ia cantidad en el tiempo cero.
Exposición detallada de modos de realización / Ejemplos
Ejemplo 1. Obtención del PEG activado como éster de ΛMiidroxisuccinimida.
Obtención de Ia estructura y activación.
Obtención del succinimidilcarbonato de monometoxipolietilénglicol (SC-PEG). Quince gramos de monometoxipolietilénglicol de masa molecular 12 000 (mPEGi2κ) se disolvieron en 500 mi de tolueno y se secaron azeotrópicamente durante 3 horas. Pasado este tiempo el volumen se llevó a 250 mi y se dejó enfriar hasta temperatura ambiente. A Ia solución anterior se Ie añadieron 60 mi de diclorometano (DCM) seco, 2 g de disuccinimidil carbonato (DSC) disuelto en 15 mi de acetona seca y, gota a gota, 1 g de dimetilaminopiridina disuelto en 10 mi de una mezcla 3:1 de tolueno:DCM. Se dejó reaccionar durante toda Ia noche (16 h) con agitación. La mezcla de reacción se precipitó con un litro de éter dietílico frío y el precipitado se recogió por filtración. Éste se recristalizó tres veces disolviendo en acetona y precipitando con éter dietílico. El producto final se secó con alto vacío y se almacenó bajo nitrógeno a -20°C. El rendimiento total del proceso fue mayor del 90%. La fracción de PEG activado se determinó por reacción con glicil-glicina y cuantificación de los grupos aminos libres por reacción con TNBS. Obtención de Usina biPEGilada (Lis-2PEG). Doce gramos de SC-PEG12K se hicieron reaccionar con 46 mg de L-(+)-lisina disuelta a 0,2 mg/ml en solución tampón borato 100 mM, pH 8,5. La reacción se realizó a temperatura ambiente con agitación durante 16 horas. Pasado este tiempo, Ia mezcla de reacción se diluyó 5 veces con agua bidestilada y se ajustó el pH a 3 con ácido clorhídrico. El PEG se extrajo tres veces con un volumen de DCM. La unión de las tres fracciones de extracción se secó con sulfato de sodio anhidro y se filtró. La solución de PEG en DCM se concentró hasta 20 mi en un rotoevaporador. El concentrado se precipitó con 120 mi de éter dietílico frío, se separó por filtración y se secó a alto vacío. El Lis-2PEG se separó del resto de los componentes de Ia mezcla de reacción por cromatografía de intercambio iónico con DEAE sefarosa. Una columna que contenía 1 litro de Ia matriz cromatográfica se equilibró con 3 volúmenes de solución tampón borato 100 mM pH 7.5 y posterior lavado con 5 volúmenes de agua bidestilada. 10 gramos de Ia mezcla de reacción fueron aplicados disueltos en agua bidestilada a 5 mg/ml. El PEG sin reaccionar se eliminó lavando Ia columna con dos volúmenes de agua bidestilada y Ia Lis-2PEG se eluyó con una solución de cloruro de sodio 1 mM. Ésta fracción se Ie ajustó el pH a 3 con ácido clorhídrico y se extrajo tres veces con un volumen de DCM. La unión de las tres fracciones de extracción se secó con sulfato de sodio anhidro y se filtró. La solución de PEG en DCM se concentró hasta 10 mi en un rotoevaporador. El concentrado se precipitó con 60 mi de éter dietílico frío, se separó por filtración y se secó a alto vacío. El grado de pureza se determinó por SDS-PAGE tiñendo el gel con una solución de cloruro de bario al 5% y yodo 100 mM. La masa molecular determinada por MALDI-TOF fue de 23-24,5 kDa. El rendimiento total del proceso fue superior al 40%. Activación de Ia Usina biPEGilada como éster de U-hidroxisuccinimida (PEG2,i2κ- NHS).
Seis gramos de Lis-2PEG se disolvieron en 20 mi de DCM seco y se Ie añadieron 60 mg de /V-hidroxisuccinimida y 250 mg de A/,/V-diciclohexilcarbodiimida. La reacción se mantiene bajo agitación durante 24 horas a temperatura ambiente. Se filtra y se concentra por rotoevaporación hasta 5 mi. Se precipita con 20 mi de éter dietílico frío. Éste se recristalizó tres veces disolviendo en acetona y precipitando con éter dietílico. El producto final se secó con alto vacío y se almacenó bajo nitrógeno a -20°C. El rendimiento total del proceso fue mayor del 95%. La fracción de PEG activado se determinó por reacción con glicil-glicina y cuantificación de los grupos aminos libres por reacción con TNBS. Obtención del PEG de cuatro ramas semejante a dendrímero. Cinco gramos de PEG2,i2κ-NHS se hicieron reaccionar con 7 mg de L-(+)-lisina disuelta a 0,1 mg/ml en solución tampón borato 100 mM, pH 8,5. La reacción se realizó a temperatura ambiente con agitación durante 16 horas. Pasado este tiempo, Ia mezcla de reacción se diluyó 5 veces con agua bidestilada y se ajustó el pH a 3 con ácido clorhídrico. El PEG se extrajo tres veces con un volumen de DCM. La unión de las tres fracciones de extracción se secó con sulfato de sodio anhidro y se filtró. La solución de PEG en DCM se concentró hasta 5 mi en un rotoevaporador. El concentrado se precipitó con 30 mi de éter dietílico frío, se separó por filtración y se secó a alto vacío. El PEG de cuatro ramas semejante a dendrímero se purificó por cromatografía de exclusión de tamaño en una columna G3000PW. La fracción que contenía Ia estructura deseada se Ie ajustó el pH a 3 con ácido clorhídrico y se extrajo tres veces con un volumen de DCM. La unión de las tres fracciones de extracción se secó con sulfato de sodio anhidro y se filtró. La solución de PEG en DCM se concentró hasta 5 mi en un rotoevaporador. El concentrado se precipitó con 30 mi de éter dietílico frío, se separó por filtración y se secó a alto vacío. El grado de pureza se determinó por SDS-PAGE tiñendo el gel con una solución de cloruro de bario al 5% y yodo 100 mM y fue superior al 98%. La masa molecular determinada por espectrometría de masas de tiempo de vuelo con desorción / ionización láser asistida por Ia matriz (en inglés: Matrix-Assisted Láser Desorption lonization-Time Of FIy, abreviado MALDI-TOF) fue de 45,5-50 kDa. El rendimiento total del proceso fue superior al 30%. Funcionalización del PEG de cuatro ramas semejante a dendrímero como éster de H-hldroxisuccinimida (PEG4ι 12κ-NHS).
Un gramo y medio del PEG de cuatro ramas semejante a dendrímero se disolvieron en 5 mi de DCM seco y se Ie añadieron 9 mg de Λ/-hidroxisuccin¡mida y 37 mg de Λ/,Λ/-d¡ciclohexilcarbodiimida. La reacción se mantiene bajo agitación durante 24 horas a temperatura ambiente. Se filtra y se precipita con 20 mi de éter dietílico frío. El precipitado se recristalizó tres veces disolviendo en acetona y precipitando con éter dietílico. El producto final se secó con alto vacío y se almacenó bajo nitrógeno a -200C. El rendimiento total del proceso fue mayor del 95%. La fracción de PEG activado se determinó por reacción con glicil-glicina y cuantificación de los grupos aminos libres por reacción con TNBS.
Ejemplo 2. Obtención de IFN-α2b conjugado con PEG4,i2K-NHS. Reacción de conjugación. Cuatro gramos del PEG de cuatro ramas semejante a dendrímero activado como éster de N-hidroxisuccinimida (PEG4ii2κ-NHS) fueron añadidos a una solución que contenía 1 gramo de IFN-α2b a 6 mg/ml en solución tampón borato 120 mM pH 8.5. La reacción se mantuvo durante 1 hora a 40C con agitación suave. La reacción se detuvo diluyendo 50 veces con solución tampón acetato de sodio 10 mM, pH 4. El rendimiento de Ia reacción fue determinado por densitometría del análisis por SDS- PAGE tinción con Coomasie Brilliant Blue R-250. La fracción de IFN-α2b monoPEGilado con el PEG de cuatro ramas semejante a dendrímero fue superior al 40%.
Purificación del IFN-α2b monoPEGilado con el PEG de cuatro ramas semejante a dendrímero. Una columna XK 50/60 (Pharmacia) que contenía 500 mi de Fractogel EMD 650 (M) COO- se equilibró a 40 ml/min con 3 volúmenes de solución tampón acetato de sodio 10 mM, pH 4. La solución que contenía Ia mezcla de reacción fue aplicada en la columna al mismo flujo. El PEG sin reaccionar y los conjugados con más de un residuo de PEG fueron eliminados con un lavado de 2 horas con solución tampón acetato de sodio 50 mM, pH 4 con 25 mM de cloruro de sodio. El conjugado monoPEGilado fue eluído con solución tampón acetato de sodio 50 mM, pH 4 con 150 mM de cloruro de sodio. La pureza fue mayor al 96% y los contaminantes principales fueron interferón sin modificar y el conjugado biPEGilado. La fracción de interés fue concentrada hasta 200 mi y aplicada en una columna XK 50/60 (Pharmacia) que contenía 1 L de sefadex G-25 equilibrada con solución tampón fosfato 50 mM, pH 7, con 100 mM de cloruro de sodio. El interferón monoPEGilado con el PEG de cuatro ramas semejante a dendrímero fue filtrado a través de una membrana de acetato de celulosa con tamaño de poro de 0,2 μm y almacenado a
4°C para su posterior uso.
Ejemplo 3. Caracterización químico-física del PEG4ii2κ-IFN-α2b.
Determinación de Ia concentración del conjugado. La concentración del conjugado en función del residuo proteico se determinó por AbS280. Se consideró que una unidad de Abs correspondía a una concentración de 1 mg/ml.
Determinación de Ia masa molecular del conjugado. La masa molecular del conjugado se determinó por MALDI-TOF. La masa molecular promedio esperada del PEG de cuatro ramas semejante a dendrímero era 48 000 y Ia del IFN-α2b era 19 200, por Io que Ia masa teórica del conjugado era 67 200. La masa determinada del PEG4,12κ-IFN-α2b fue de 64 000-70 000. Ejemplo 4. Caracterización biológica del conjugado de PEG4,12κ-IFN-α2b. Identificación inmunológica del conjugado en un ensayo tipo ELISA. En una placa de microtitulación recubierta con un anticuerpo monoclonal contra IFN- α2b se aplicaron muestras del conjugado de distintas concentraciones y muestras blanco. Posteriormente se añadió otro anticuerpo monoclonal contra IFN-α2b, que reconoce otro epítope, conjugado a peróxidasa de rábano picante. Se consideró que había reconocimiento inmunológico cuando Ia absorbancia de las muestras de conjugado era superior al promedio de las absorbancia de los blancos más tres veces Ia desviación estándar de éstas absorbancia. Hubo reconocimiento en todos los casos.
Actividad antiviral in vitro. La actividad antiviral in vitro fue determinada por Ia inhibición del efecto citopático producido por el virus Mengo a células Hep-2 (ATCC No. CCL23). Diluciones seriadas (1 :2) del conjugado en medio mínimo esencial con 2% de suero fetal de ternero y 40 μg/ml de gentamicina fueron mezclados con monocapas de celulares en placas de microtitulación de 96 pocilios. Las placas se incubaron a 370C por 24 horas bajo 3% de dióxido de carbono y 95% de humedad. El virus (107 TCID) fue añadido y las placas incubadas hasta que el efecto citopático (90% de lisis celular) fue evidente. El grado de destrucción de las células se midió por tinción de las células con violeta cristal. La actividad de cada muestra se expresó en unidades internacionales (Ul) comparando con el estándar internacional 69/19 de IFN-α2b de Ia Organización Mundial de Ia Salud. Los resultados obtenidos se muestran en Ia tabla 1.
Tabla 1. Actividad antiviral in vitro del IFN-α2b nativo y conjugado al PEG de cuatro ramas semejante a dendrímero.
Figure imgf000014_0001
Actividad antiproliferativa in vitro.
La actividad antiproliferativa in vitro se midió por Ia capacidad del IFN-α2b conjugado de inhibir el crecimiento de células Daudi (Linfoma Burkitt). Los resultados demostraron que Ia actividad in vitro del PEG4J2K -IFN-α2b fue un 5% de Ia actividad del IFN-α2b sin modificar.
Ejemplo 5. Estabilidad químico-física del PEG4ji2κ-lFN-α2b. Resistencia a Ia degradación porproteasas Cuarenta microlitros de una solución de hidrogenocarbonato de sodio al 4%, pH 8, con 400 μg/ml de IFN-α2b nativo, conjugado al PEG de cuatro ramas o conjugado a un PEG de dos ramas de masa molecular semejante al anterior fueron mezclados con 10 μl de una solución de tripsina a 160 μg/ml. La mezcla se dejó incubar a 37°C durante un tiempo determinado. La reacción se detuvo con 10 μl de ácido trifluoracético. La cantidad residual de proteína (conjugada o no) se estimó por Ia desaparición de la banda en un análisis por SDS-PAGE teñido con Coomassie Brilliant Blue. Los resultados (Figura 1) demuestran que Ia protección que brinda Ia estructura de cuatro ramas (A) a Ia degradación del conjugado de IFN-α2b es superior a Ia producida por la estructura de dos ramas de semejante masa molecular (•). Estabilidad térmica.
Para determinar el efecto sobre Ia estabilidad del IFN-α2b brindado por Ia conjugación al PEG de cuatro ramas semejante a dendrímero muestras de Ia proteína nativa y conjugada, en tampón fosfato salino, se pusieron a 60°C. Como control fue utilizado el IFN-α2b conjugado a un PEG de dos ramas de masa molecular semejante al parecido a dendrímero. A tiempos determinado se tomaron muestras y se estimó Ia cantidad residual de proteína (conjugada o no) por Ia desaparición de Ia banda en un análisis por SDS-PAGE teñido con Coomassie Brilliant Blue. Los resultados (Figura 2) demuestran que Ia estabilidad térmica del conjugado a Ia estructura de cuatro ramas (A) es superior a los otros dos casos (IFN nativo (B), IFN conjugado a Ia estructura de dos ramas (•)). Ejemplo 6. Farmacocinética del PEG4,i2κ-IFN-α2b.
El estudio farmacocinético comparativo entre el interferón sin modificar y el conjugado al PEG de cuatro ramas semejante a dendrímero se realizó en conejos de Ia cepa Nueva Zelandia de 2 kg de masa promedio. Como control fue utilizado el IFN-α2b conjugado a un PEG de dos ramas de masa molecular semejante al parecido a dendrímero. Las biomoléculas se inyectaron por vía subcutánea a 150 μg de proteína por kilogramo de peso. Se extrajeron muestras durante un intervalo de 144 horas a tiempos preestablecidos. Las muestras fueron centrifugadas y el suero extraído y guardado a -20°C hasta su análisis. La concentración de IFN-α2b (conjugado o no) se determinó por un ensayo tipo ELISA con anticuerpos monoclononales específicos para esta citosina. La interpretación fue basada en el modelo mamilar compartimentado clásico. Los resultados se muestran en Ia Tabla 2. Tabla 2. Farmacocinética comparada del IFN-α2b nativo y conjugado al PEG de dos ramas y al PEG4|12κ-lFN-α2b.
Figure imgf000015_0001
Ejemplo 7. Conjugación de otras proteínas terapéuticas al PEG de cuatro ramas semejante a dendrímero.
Otras proteínas terapéuticas como Ia estreptoquinasa recombinante (en inglés recombinant Streptokinase, abreviado SKr), eritropoyetina (en inglés Erythropoietin, abreviado EPO), factor estimulador de colonias de granulocitos (en inglés Granulocyte-Colony Stimulate Factor, abreviado G-CSF) y factor de crecimiento epidérmico (en inglés Epidermal Growth Factor, abreviado EGF); fueron conjugadas con Ia estructura de cuatro ramas semejante a dendrímero. Se evaluó el efecto de Ia conjugación sobre Ia velocidad de degradación por proteasas. Conjugación con el PEG semejante a dendrímero activado como éster de N- hidroxisuccinimida.
100 miligramos del PEG de cuatro ramas semejante a dendrímero activado como éster de N-hidroxisuccinimida (PEG4,i2κ-NHS) fueron añadidos a una solución que contenía 25 mg de Ia proteína terapéutica a 6 mg/ml en solución tampón borato 120 mM, pH 8.5. La reacción se mantuvo durante 1 hora a 4°C con agitación suave. La reacción se detuvo diluyendo 50 veces con solución tampón acetato de sodio 10 mM, pH 4. El rendimiento de Ia reacción fue determinado por densitometría del análisis por SDS-PAGE tinción con Coomasie Brilliant Blue R-250. La fracción de proteína monoPEGilada con el PEG de cuatro ramas semejante a dendrímero fue superior al 30% en todos los casos.
Conjugación con el PEG semejante a dendrímero activado como aldehido. 100 miligramos del PEG de cuatro ramas semejante a dendrímero activado como aldehido (PEG4ti2κ-ALD) fueron añadidos a una solución que contenía 15 mg de Ia proteína terapéutica a 4 mg/ml en solución tampón acetato 100 mM, pH 5 que contenía 20 mM de cianoborihidruro de sodio. La reacción se mantuvo durante 24 hora a 4°C con agitación suave. La reacción se detuvo diluyendo 20 veces con solución HC1 1 mM. El rendimiento de Ia reacción fue determinado por densitometría del análisis por SDS-PAGE tinción con Coomasie Brilliant Blue R-250. La fracción de proteína monoPEGilada con el PEG de cuatro ramas semejante a dendrímero fue superior al 30% en todos los casos. Efecto de Ia conjugación al PEG de cuatro ramas semejante a dendrímero sobre Ia degradación de proteínas por proteasas.
Cuarenta μl de una solución de hidrogenocarbonato de sodio al 4%, pH 8, con 400 μg/ml de de Ia proteína nativa o conjugada al PEG de cuatro ramas fueron mezclado con 10 μl de una solución de tripsina a 160 μg/ml. La mezcla se dejó incubar a 37°C durante 4 horas con agitación suave. Pasado este tiempo se detuvo con 10 μl de ácido trifluoracético. La cantidad residual de proteína (conjugada o no) se estimó por Ia desaparición de Ia banda en un análisis por SDS-PAGE teñido con Coomassie Brilliant Blue. Los resultados (Tabla 3) muestran que Ia conjugación al PEG de cuatro ramas semejante a dendrímero brinda un protección a Ia degradación por tripsina de las proteínas conjugadas. En todos los casos, independientemente de Ia química de conjugación, más del 35% de Ia proteína no se había digerido transcurridas 4 horas de reacción con tripsina. En cambio, pasado ese tiempo de reacción no se podía detectar señal en el caso de las proteínas nativas.
Tabla 3: Fracción (%) de proteína sin digerir con tripsina respecto a Ia cantidad de proteínas antes de reaccionar.
Figure imgf000017_0001

Claims

REIVINDICACIONES
1. Una estructura polimérica semejante a dendrímero que comprende cuatro ramas de monometoxipolietilénglicol, que puede ser representada como:
Figure imgf000018_0001
para Ia obtención de conjugados de interés farmacéutico.
2. Una estructura polimérica según Ia reivindicación 1 , donde Ia masa molecular de cada cadena de PEG esté entre 5 000 y 30 000 Da y Ia masa molecular total entre 20 000 y 120 000 Da.
3. Una estructura polimérica según Ia reivindicación 2, activada para Ia conjugación con grupos nucleofílicos obtenida por funcionalización del grupo carboxílico.
4. Un conjugado que comprende Ia estructura polimérica de Ia reivindicación 1 y un grupo nucleofílico.
5. Un conjugado según Ia reivindicación 4, donde el grupo nucleofílico está comprendido en una biomolécula seleccionada del grupo que consiste en proteínas, péptidos, polipéptidos y lípidos.
6. Un conjugado según Ia reivindicación 5, donde Ia proteína es seleccionada del grupo que consiste de interferon alfa-2b, estreptokinasa, factor estimulador de colonias de granulocitos, eritropoyetina o factor de crecimiento epidérmico.
PCT/CU2006/000014 2005-11-30 2006-11-20 Dendrímero con peg de cuatro ramas para la conjugación a proteínas y péptidos WO2007062610A2 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2008542584A JP5123201B2 (ja) 2005-11-30 2006-11-20 タンパク質及びペプチドに対する結合のための4分枝デンドリマー−peg
AU2006319636A AU2006319636B2 (en) 2005-11-30 2006-11-20 Four branched dendrimer-peg for conjugation to proteins and peptides
EP06817995.1A EP1967212B1 (en) 2005-11-30 2006-11-20 Four branched dendrimer-peg for conjugation to proteins and peptides
ES06817995.1T ES2604461T3 (es) 2005-11-30 2006-11-20 Dendrímero-PEG de cuatro ramas para la conjugación con proteínas y peptidos
KR1020087015901A KR101134983B1 (ko) 2005-11-30 2006-11-20 단백질 및 펩티드로의 접합을 위한 4개의 분지된덴드리머-폴리에틸렌글리콜
CA2631335A CA2631335C (en) 2005-11-30 2006-11-20 Four branched dendrimer-peg for conjugation to proteins and peptides
US12/095,335 US8703893B2 (en) 2005-11-30 2006-11-20 Four branched dendrimer-PEG for conjugation to proteins and peptides
EG2008060905A EG26619A (en) 2005-11-30 2008-06-01 PEG-quadrangle arbor polymer for binding to proteins and peptides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU2005-0241 2005-11-30
CU20050241A CU23556A1 (es) 2005-11-30 2005-11-30 Estructura polimérica semejante a dendrímero para la obtención de conjugados de interés farmacéutico

Publications (2)

Publication Number Publication Date
WO2007062610A2 true WO2007062610A2 (es) 2007-06-07
WO2007062610A3 WO2007062610A3 (es) 2007-09-20

Family

ID=37672068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2006/000014 WO2007062610A2 (es) 2005-11-30 2006-11-20 Dendrímero con peg de cuatro ramas para la conjugación a proteínas y péptidos

Country Status (17)

Country Link
US (1) US8703893B2 (es)
EP (1) EP1967212B1 (es)
JP (1) JP5123201B2 (es)
KR (1) KR101134983B1 (es)
CN (2) CN104906594B (es)
AR (1) AR058841A1 (es)
AU (1) AU2006319636B2 (es)
BR (1) BRPI0604313A (es)
CA (1) CA2631335C (es)
CU (1) CU23556A1 (es)
EG (1) EG26619A (es)
MY (1) MY150739A (es)
RU (1) RU2409389C2 (es)
UA (1) UA91575C2 (es)
UY (1) UY29981A1 (es)
WO (1) WO2007062610A2 (es)
ZA (1) ZA200804694B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037423A (ja) * 2006-01-20 2014-02-27 Starpharma Pty Ltd 修飾高分子

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252834B2 (en) 2008-03-12 2012-08-28 The Regents Of The University Of Michigan Dendrimer conjugates
WO2010039861A2 (en) 2008-09-30 2010-04-08 The Regents Of The University Of Michigan Dendrimer conjugates
WO2010054321A2 (en) 2008-11-07 2010-05-14 The Regents Of The University Of Michigan Methods of treating autoimmune disorders and/or inflammatory disorders
WO2010075423A2 (en) * 2008-12-23 2010-07-01 The Regents Of The University Of Michigan Dendrimer based modular platforms
CN102917699A (zh) * 2009-10-13 2013-02-06 密执安大学评议会 树枝状聚合物组合物和合成方法
US8912323B2 (en) 2009-10-30 2014-12-16 The Regents Of The University Of Michigan Multifunctional small molecules
US9402911B2 (en) 2011-12-08 2016-08-02 The Regents Of The University Of Michigan Multifunctional small molecules
CN107652438B (zh) * 2011-12-21 2021-10-12 加利福尼亚大学董事会 药物递送增强的末端树枝状聚合物
US9642916B2 (en) 2012-12-12 2017-05-09 The Regents Of The University Of California Porphyrin modified telodendrimers
US10660940B2 (en) * 2013-03-05 2020-05-26 Hanmi Pharm. Co., Ltd Preparation method for high-yield production of physiologically active polypeptide conjugate
EP2786766A1 (en) * 2013-04-05 2014-10-08 Ufpeptides S.r.l. Supramolecular aggregates comprising maleimido cores
WO2014207769A1 (en) 2013-06-27 2014-12-31 Mylan Laboratories Ltd Process for the preparation of nepafenac
CU20140003A7 (es) * 2014-01-08 2015-08-27 Ct De Inmunología Molecular Biofarmacuba Conjugado que comprende eritropoyetina y una estructura polimérica ramificada
ES2824028T3 (es) 2014-08-19 2021-05-11 Biogen Ma Inc Método de PEGilación
KR20180017104A (ko) * 2015-06-11 2018-02-20 앰비오 파마슈티컬스, 엘엘씨 Peg화된 과립세포 콜로니 자극 인자(gcsf)
EP3385383B1 (en) 2015-12-04 2021-04-07 Zenyaku Kogyo Co., Ltd. Anti-il-17 aptamer having improved retention in blood
CN114306629B (zh) 2016-01-08 2023-11-10 阿森迪斯药物生长障碍股份有限公司 具有增加的nep稳定性的控制释放cnp激动剂
WO2017118698A1 (en) 2016-01-08 2017-07-13 Ascendis Pharma Growth Disorders A/S Cnp prodrugs with carrier attachment at the ring moiety
CA3007982C (en) 2016-01-08 2023-12-19 Ascendis Pharma Growth Disorders A/S Controlled-release cnp agonists with low initial npr-b activity
CA3007976C (en) 2016-01-08 2023-09-26 Ascendis Pharma Growth Disorders A/S Cnp prodrugs with large carrier moieties
SG11201805026SA (en) 2016-01-08 2018-07-30 Ascendis Pharma Growth Disorders As Controlled-release cnp agonists with low npr-c binding
IL259658B2 (en) 2016-01-08 2024-06-01 Ascendis Pharma Growth Disorders As Controlled-release CNP agonists with reduced side effects
US11369688B2 (en) 2016-09-15 2022-06-28 The Regents Of The University Of California Hybrid telodendrimers
HRP20230385T1 (hr) 2016-09-29 2023-06-23 Ascendis Pharma Growth Disorders A/S Kombinirana terapija sa cnp agonistima s kontroliranim oslobađanjem
WO2019001473A1 (zh) * 2017-06-28 2019-01-03 北京键凯科技股份有限公司 一种树状多缩乙二醇衍生物及其制备方法和应用
CN109134282B (zh) * 2017-06-28 2021-03-16 北京键凯科技股份有限公司 一种树状多缩乙二醇衍生物及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732863A (en) 1984-12-31 1988-03-22 University Of New Mexico PEG-modified antibody with reduced affinity for cell surface Fc receptors
US5932462A (en) 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951974A (en) * 1993-11-10 1999-09-14 Enzon, Inc. Interferon polymer conjugates
US5985263A (en) * 1997-12-19 1999-11-16 Enzon, Inc. Substantially pure histidine-linked protein polymer conjugates
US20040082765A1 (en) 2000-10-16 2004-04-29 Teruo Nakamura Peg-modified erythropoietin
CA2466027C (en) 2001-11-07 2013-01-08 Nektar Therapeutics Al, Corporation Branched polymers and their conjugates
US7144978B2 (en) * 2002-01-15 2006-12-05 Pan Asia Bio Co., Ltd. Multidrop tree branching functional polyethylene glycol, methods of preparing and using same
CN1569892A (zh) * 2004-04-30 2005-01-26 新峰生物科技(上海)有限公司 多臂树杈型聚乙二醇与蛋白质或多肽的结合物及其制备方法
CN1176137C (zh) * 2002-01-15 2004-11-17 泛亚生物技术有限公司 多臂树杈型功能化聚乙二醇制备方法及它在药物中的应用
ITMI20020951A1 (it) * 2002-05-06 2003-11-06 Univ Degli Studi Trieste Derivati multifunzionali del polietilenglicole loro preparazione ed impiego
CN1747748B (zh) * 2003-05-23 2011-01-19 尼克塔治疗公司 具有特定原子排列的聚合物衍生物
EP1653996A2 (en) * 2003-08-08 2006-05-10 Novo Nordisk Health Care AG Use of galactose oxidase for selective chemical conjugation of protractor molecules to proteins of therapeutic interest
CN101072789B (zh) * 2004-01-08 2013-05-15 生物种属学股份公司 肽的o-连接的糖基化
JP2008506704A (ja) * 2004-07-16 2008-03-06 ネクター セラピューティクス アラバマ,コーポレイション Gm−csf成分およびポリマーの複合体
EP1848461A2 (en) * 2005-02-16 2007-10-31 Nektar Therapeutics Al, Corporation Conjugates of an epo moiety and a polymer
RU2007128983A (ru) * 2005-02-16 2009-03-27 Ново Нордиск А/С (DK) Инсулинотропные агенты, конъюгированные со структурно определенными разветвленными полимерами

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732863A (en) 1984-12-31 1988-03-22 University Of New Mexico PEG-modified antibody with reduced affinity for cell surface Fc receptors
US5932462A (en) 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HARRIS J. M.; CHESS R. B.: "Effect of pegylation on pharmaceuticals", NAT. REV. DRUG DISCOV., vol. 2, 2003, pages 214 - 21
MIRON T.; WILCHEK M.: "A Simplified Method for the Preparation of Succinimidyl Carbonate Polyethylene Glycol for Coupling to Proteins", BIOCONJUGATE CHEM., vol. 4, 1993, pages 568 - 69
RAJENDER REDDY K.; MODI M.W.; PEDDER S.: "Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C.", ADV. DRUG DELIV. REVIEWS, vol. 54, 2002, pages 571 - 86
ROBERTS M. J.; BENTLEY M.D.; HARRIS J.M.: "Chemistry for peptide and protein PEGylation", ADV. DRUG DELIV. REVIEWS, vol. 54, 2002, pages 459 - 76
ROBERTS M. J.; BENTLEY M.D.; HARRIS J.M.: "Chemistry for peptide and protein PEGylation.", ADV. DRUG DELIV. REVIEWS, vol. 54, 2002, pages 459 - 76

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037423A (ja) * 2006-01-20 2014-02-27 Starpharma Pty Ltd 修飾高分子

Also Published As

Publication number Publication date
WO2007062610A3 (es) 2007-09-20
EG26619A (en) 2014-04-08
UA91575C2 (ru) 2010-08-10
JP5123201B2 (ja) 2013-01-23
UY29981A1 (es) 2007-06-29
CU23556A1 (es) 2010-07-20
CN104906594A (zh) 2015-09-16
EP1967212B1 (en) 2016-09-21
MY150739A (en) 2014-02-28
US8703893B2 (en) 2014-04-22
RU2008126209A (ru) 2010-01-10
KR20080072960A (ko) 2008-08-07
CA2631335C (en) 2013-07-16
AR058841A1 (es) 2008-02-27
CA2631335A1 (en) 2007-06-07
BRPI0604313A (pt) 2007-01-30
AU2006319636A1 (en) 2007-06-07
RU2409389C2 (ru) 2011-01-20
JP2009517414A (ja) 2009-04-30
US20090082537A1 (en) 2009-03-26
AU2006319636B2 (en) 2012-10-18
KR101134983B1 (ko) 2012-04-09
ZA200804694B (en) 2009-03-25
CN104906594B (zh) 2016-12-28
CN101389354A (zh) 2009-03-18
EP1967212A2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
WO2007062610A2 (es) Dendrímero con peg de cuatro ramas para la conjugación a proteínas y péptidos
ES2238522T3 (es) Metodo para preparar conjugados del factor viii y un polimero biocompatible.
ES2285843T3 (es) Modificacion de proteinas especifica de sitio por mutagenesis.
ES2741524T3 (es) Profármaco polimérico con un enlazador autoinmolador
ES2390816T3 (es) N,N-bis-(2-hidroxietil) glicina amida como ligador en profármacos conjugados con polímeros
ES2930159T3 (es) Modificación de FVIII dirigida al sitio
ES2390082T5 (es) Conjugados de resto de Factor IX y polímeros
ES2590679T3 (es) Glicopolisialilación de proteínas diferentes a proteínas de coagulación de la sangre
ES2866674T3 (es) Conjugados de una fracción de IL-2 y un polímero
JP2007533665A (ja) 新規g−csf結合体
ES2856055T3 (es) Glicopolisialilación de proteínas diferentes de las proteínas de coagulación de la sangre
JP2005514505A (ja) マルチアーム樹枝状および機能的なpegの調製法および用途
Zalipsky et al. Thiolytically cleavable dithiobenzyl urethane-linked polymer–protein conjugates as macromolecular prodrugs: reversible PEGylation of proteins
EP1625855A1 (en) Polymeric prodrug with a self-immolative linker
EP0622394A1 (en) Reversible modification of sulfur-containing molecules with polyalkylene glycol derivatives and their use
Bonora et al. Reactive PEGs for protein conjugation
Cisneros Ruíz Chromatographic separation of conjugates polymerprotein
AU2011213827B2 (en) Polymeric prodrug with a self-immolative linker
JPH10509208A (ja) 部位特異的結合のための官能化されたポリマー
WO2015104008A1 (es) Conjugado que comprende eritropoyetina y una estructura polimérica ramificada

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049165.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2631335

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008542584

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/007085

Country of ref document: MX

Ref document number: 12008501300

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008060905

Country of ref document: EG

Ref document number: DZP2008000348

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 1276/MUMNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 08065675

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2006319636

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2006817995

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008126209

Country of ref document: RU

Ref document number: 2006817995

Country of ref document: EP

Ref document number: 1020087015901

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006319636

Country of ref document: AU

Date of ref document: 20061120

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006319636

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006817995

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12095335

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)