WO2015104008A1 - Conjugado que comprende eritropoyetina y una estructura polimérica ramificada - Google Patents

Conjugado que comprende eritropoyetina y una estructura polimérica ramificada Download PDF

Info

Publication number
WO2015104008A1
WO2015104008A1 PCT/CU2015/000001 CU2015000001W WO2015104008A1 WO 2015104008 A1 WO2015104008 A1 WO 2015104008A1 CU 2015000001 W CU2015000001 W CU 2015000001W WO 2015104008 A1 WO2015104008 A1 WO 2015104008A1
Authority
WO
WIPO (PCT)
Prior art keywords
epo
kda
peg
conjugate
molecular mass
Prior art date
Application number
PCT/CU2015/000001
Other languages
English (en)
French (fr)
Other versions
WO2015104008A8 (es
Inventor
Rolando PÁEZ MEIRELES
Daniel Enrique AMARO GONZÁLEZ
Fidel Raúl CASTRO ODIO
Yenisel HERNÁNDEZ VALDES
Gladys Amalia RUIZ ESTRADA
Original Assignee
Centro De Ingenieria Genetica Y Biotecnologia
Centro De Inmunologia Molecular
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016545283A priority Critical patent/JP6367952B2/ja
Priority to EP15705897.5A priority patent/EP3093024A1/en
Priority to AU2015205774A priority patent/AU2015205774B2/en
Priority to EA201691386A priority patent/EA201691386A1/ru
Application filed by Centro De Ingenieria Genetica Y Biotecnologia, Centro De Inmunologia Molecular filed Critical Centro De Ingenieria Genetica Y Biotecnologia
Priority to SG11201604984TA priority patent/SG11201604984TA/en
Priority to CA2935306A priority patent/CA2935306A1/en
Priority to CN201580004018.1A priority patent/CN106163541A/zh
Priority to MX2016008928A priority patent/MX2016008928A/es
Priority to US15/108,862 priority patent/US20160317674A1/en
Priority to KR1020167018696A priority patent/KR20160105811A/ko
Priority to NZ722092A priority patent/NZ722092A/en
Publication of WO2015104008A1 publication Critical patent/WO2015104008A1/es
Priority to IL246526A priority patent/IL246526A0/en
Priority to ZA2016/04636A priority patent/ZA201604636B/en
Publication of WO2015104008A8 publication Critical patent/WO2015104008A8/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1816Erythropoietin [EPO]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics

Definitions

  • the present invention is related to the field of biotechnology, with the biological sciences and the pharmaceutical industry, and in particular with the modification of molecules to improve their pharmacokinetics, increasing their half-life in blood and their biological activity.
  • biomolecules for therapeutic use in humans has increased in recent years, mainly due to: (1) discovery of new protein and peptide molecules, (2) better understanding of the mechanisms of action in vivo, (3) improvement in protein expression systems and in the synthesis of peptides and (4) improvement in formulations or in molecule modification technologies, which allow to improve the pharmacodynamic and pharmacokinetic properties.
  • New drug delivery systems can be produced through a change in the formulation (for example, continuous release products or liposomes), or through an addition to the drug molecule, for example peguylation, which is nothing more than the covalent attachment of this to one or more polyethylene glycol (PE ' G) molecules.
  • the new forms of release lead to an increase in half-life, a decrease in adverse effects, an increase in the efficacy of the medication, and a better quality of life for the patient.
  • Continuous release systems release drugs in a controlled and predetermined manner, and are especially suitable for those drugs where it is important to avoid large fluctuations in plasma concentrations.
  • peguylation Another of the benefits of peguylation is the increase in physical stability, because it sterically blocks degradation pathways induced by hydrophobic interactions and generates non-specific spherical obstacles that decrease the intermolecular interactions involved in thermal instability of proteins. Increasing physical stability allows more stable formulations (Harris J. M. and Chess R. B. (2003) Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2: 214-221).
  • activated PEGs Thanks to the emergence of the second generation of activated PEGs, it was possible to have groups that allowed more selective peguylation (for example: the aldehyde group that preferentially joins at the N-terminal end of the proteins) and branched structures (Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Reviews 54: 459-476).
  • the branched PEGs developed are the monofunctional of two branches (US Patent No. 5,932,462), the tetrafunctional of four branches, and the octafunctional of eight branches.
  • the most useful activated PEGs are the monofunctional ones, because they avoid cross-linking between the protein and the PEG polymer. Branched PEGs also have an umbrella-like effect, which allows better protection of the protein surface.
  • the monofunctional two-branch PEG has allowed obtaining a conjugate with interferon alfa 2a that has shown better clinical results than the native protein (Rajender Reddy K., Modi MW, Pedder S. (2002). Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C. Adv. Drug Deliv. Reviews 54: 571-586).
  • EPO erythropoietin
  • EPO hr recombinanté human erythropoietin
  • EPO is a glycoprotein of 165 amino acids. Its estimated molecular weight using sodium polyacrylamide dodecyl sulfate gel electrophoresis (Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis, abbreviated SDS-PAGE) ranges from 27 to 39 kDa (Mikaye, T. et al. (1977). Purification of Human Erythropoietin J. Biol. Chem. 252: 5558-5564), depending on its degree of glycosylation.
  • the present invention solves the problem set forth above, by providing a conjugate comprising erythropoietin (EPO) and an asymmetric branched polymeric structure comprising two monomethoxypolyethylene glycol (mPEG) branches where the molecular mass of one of these mPEG branches is between 10 kDa and 14 kDa, and the molecular mass of the other branch of mPEG is between 7 kDa and 23 kDa.
  • EPO erythropoietin
  • mPEG monomethoxypolyethylene glycol
  • the invention provides a conjugate comprising a branched monofunctional PEG structure that has a molecular size similar to that used by Papadimitriou (US Patent No. 7,202,208), but employing a two-chain PEG structure of different molecular masses .
  • the total molecular mass of the two-branch PEG polymer structure is between 27 and 37 kDa.
  • the molecular mass of mPEG1 is 12 kDa and that of mPEG2 is 20 kDa.
  • the monofunctional PEG of two asymmetric branches is obtained by the union of two linear chains of PEG of different molecular size to a nucleus.
  • a similar process has been used by other authors with good results (US Patent No. 5,932,462).
  • this active group can be selected from several groups known in the state of the art.
  • this active group may be: succinimidyl succinate, succinimidyl carbonate, p-nitrophenylcarbonate, succinimidyl propanoate, succinimidyl butanoate, among others.
  • a preferred linear PEG in this invention is that activated with succinimidyl carbonate.
  • the core is L-lysine, being a biocompatible molecule, with two free amino groups and a carboxylic group that can be used to be subsequently activated. Therefore, in a embodiment of the invention, the EPO is conjugated to an asymmetric branched polymeric structure that is represented as:
  • the molecular mass of mPEG1 is 12 kDa and the molecular mass of mPEG2 is 20 kDa, or the molecular mass of mPEG1 is 20 kDa and the molecular mass of mPEG2 is 12 kDa.
  • the derivative of two asymmetric branches can be purified using chromatographic methods, and subsequently activated with different reactive groups for conjugation with biomolecules.
  • Any of the functional groups used for the activation of other PEG structures can be used for the asymmetric branched PEG described in this invention.
  • these functional groups we have: esters of A / -hydroxysuccinimide, succinimidyl carbonate, aldehydes of different types, maleimides, among others.
  • Another type of functional groups that allow the binding of this structure to proteins are the chelating groups, such as nitrilotriacetate, which, by means of a transition metal, can be conjugated to the histidines present in the peptide skeleton.
  • the choice of the reactive group to be used depends on the residue of the protein to which the PEG is to be bound.
  • the fundamental raw materials for obtaining the PEG structure of two asymmetric branches in the present invention are the 12 kDa mPEG (12K PEG) and the 20 kDa mPEG (20K PEG).
  • the molecular weight of these mPEGs has a range established by the manufacturers, since PEG is a polydispersed polymer. For example, according to the specification of one of the manufacturers, the polydispersion must be less than 1.1%. In that case, the range of molecular weights reported by the manufacturer for PEG 12K would be 12.0 ⁇ 1.2 kDa; and that of PEG 20K would be 20.0 ⁇ 2.0 kDa.
  • the conjugation of the protein with the activated PEG is carried out in an appropriate buffer.
  • the characteristics of the buffer depend, among other factors, on the group functional of the polymer and the objective of conjugation. For example, if it is desired to conjugate by the free amino groups, with a PEG functionalized as an N-hydroxysuccinimide ester, the conjugation sites can be predicted, to some extent, according to the pH of the conjugation reaction. A pH between 8.0 and 9.0 favors conjugation by the ⁇ -amino group of lysines.
  • the conjugate is obtained, it is characterized using several techniques.
  • the chemical, physical and biological properties of the conjugates are analyzed to achieve as complete a characterization as possible of the purified conjugate.
  • concentration of the conjugate can usually be determined by ultraviolet spectroscopy (absorbance at 280 nm), since the PEG residue does not practically affect the molar extinction coefficient of the protein.
  • the purity of the purified product is preferably determined by SDS-PAGE, since chromatographic methods, such as gel filtration chromatography, poorly discriminate the signals corresponding to the conjugate of interest and the contaminants.
  • Other physicochemical properties can be studied by the usual procedures known to those skilled in this branch of the art.
  • the term erythropoietin refers to any of the variants of the EPO molecule that maintains its biological activity; for example truncated molecules.
  • EPO can be obtained by recombinant deoxyribonucleic acid (DNA) technology, using the expression and purification systems known to those skilled in this branch of the art. Therefore, in a embodiment of the present invention, the conjugate comprises EPO hr.
  • the conjugate object of the invention also comprises any of the EPO variants obtained by the methods described above, after being modified through any prior art procedure, such as amino acid substitution.
  • the subject of the present invention is also a pharmaceutical composition comprising any of the PEG-EPO conjugates disclosed therein and a pharmaceutically acceptable excipient.
  • Another aspect of the present invention is a method for obtaining sinked EPO characterized in that said protein is conjugated to an asymmetric branched polymeric structure comprising two mPEG branches where the molecular mass of one of the mPEG branches is between 10 kDa and 14 kDa, and the Molecular mass of the other branch of mPEG is between 17 kDa and 23 kDa.
  • the invention provides a method for improving the pharmacokinetic parameters of said protein, in order to reduce the doses administered to a subject in need.
  • improvement of the pharmacokinetic parameters of EPO is understood as the increase in the average life time and / or the average residence time of said protein.
  • the invention reveals a method of chemical modification of the EPO molecule, in order to increase the half-life of said molecule, characterized in that said protein is conjugated to an asymmetric branched polymeric structure comprising two branches.
  • the molecular mass of one of these mPEG branches is between 10 kDa and 14 kDa, and the molecular mass of the other mPEG branch is between 17 kDa and 23 kDa.
  • the molecular mass of one of the branches of. mPEG in the asymmetric branched polymer structure is 12 kDa and the molecular mass of the other branch of mPEG is 20 kDa.
  • the asymmetric branched polymer structure that is conjugated to the EPO, in the method of the invention is represented as:
  • the molecular mass of mPEG1 is 12 kDa and the molecular mass of mPEG2 is 20 kDa, or the molecular mass of mPEG1 is 20 kDa and the molecular mass of mPEG2 is 12 kDa.
  • the EPO is EPO hr.
  • Figure 1 Results of SDS-PAGE with double staining (Coomassie bright blue and iodine) of the product of the EPO conjugation reaction with PEG 2
  • Sample 1 corresponds to the positive EPO control and sample 2 to the product of the
  • Figure 4 Biological activity in vivo of native EPO and monooperated EPO determined by the normocytemic mouse method.
  • Example 1 Obtaining activated PEG as an N-hydroxysuccinimide ester Activation reaction of mPEG 2 0K-OH
  • the reaction mixture was filtered, to remove solid products, using a fiberglass membrane.
  • the filtrate was precipitated with 1.5 L of dry diethyl ether, and It was filtered under vacuum.
  • the precipitate was collected in vacuo, dried under high vacuum for 4 h and stored at -20 ° C. It was possible to recover 96% of the initial mass of mPEG 2 0 -OH as succinidimyl carbonate (PEG20K-SC), with an activation degree of 96.0 ⁇ 0.8%.
  • reaction mixture was diluted with 300 mL of distilled water, and the pH of the mixture was adjusted to 3.5 with a solution of hydrochloric acid.
  • the mixture was passed to a separatory funnel, where 100 mL of DCM was added. It was stirred manually and the lower phase (organic phase) was extracted. A total of 5 extractions were performed. 20 g of sodium sulfate were added to the bottle containing the organic phase, and it was stirred manually until the phase was clear. It was filtered under vacuum, using a fiberglass membrane. The filtrate was concentrated in the rotary evaporator as much as possible. 500 mL of diethyl ether was added and stirred manually to precipitate the product. It was filtered under vacuum and the product (20K monoperated L-lysine) was dried for 1 h under vacuum in the rotary evaporator.
  • the purification of PEG 2 , 32K-COOH was carried out on a DEAE-Sepharosa column with 80 cm height, and a volumetric flow of 40 mL / min was used. He The gel was previously sanitized with 4.5 L of 0.2 M sodium hydroxide solution. The column was equilibrated with 50 mM boric acid solution, pH 9.0. Subsequently, the column was washed with 5 L of distilled water. The sample of PEG 2, 32K-COOH dissolved in water was applied, until reaching a conductivity of 40 pS / cm more than the conductivity of water. After applying the sample, the column was washed with 3 L of purified water.
  • Elution of the sample containing the EPO conjugate with PEG 2, 32K-NHS was performed sequentially, using the same equilibration buffer with increasing concentrations of sodium chloride between 0. 175 M and 0 , 5 M.
  • the volumetric flow rate was 1.2 mL / min and the load was 0.58 mg protein / mL gel.
  • the recovery of the process was 40% of the EPO monopeguilada and the degree of purity of 97%.
  • Example 4 Obtaining EPO conjugated with PEG 2 , 4OK-NHS
  • a purification scheme was designed by anion exchange chromatography. The separation process was carried out using a column packed with Q-Sepharosa, 12 cm high. The gel was previously sanitized with 22 mL of 0.2 M sodium hydroxide solution. 33 mL of distilled water was passed, and then 33 mL of the 50 mM boric acid equilibrium solution, pH 8.0. The sample from the diluted conjugation reaction in the equilibrium solution was applied, to a concentration of 0.9 mg / mL.
  • Chromatographic separations were performed using a high efficiency liquid chromatography pump (HPLC) and an ultraviolet light detector with a 226 nm filter. The application mass was 100 pg of protein. Chromatographs were performed with a Superdex-200 matrix. Two variants of puffed EPO (PEG 2 , 3 2 -EPO and PEG 2 , 4Ü K -EPO) and unmodified EPO were analyzed.
  • Figure 3 shows the correspondence between the estimated molecular mass for each variant and the resulting retention times.
  • mice The determination of the potency of the peeled EPO was carried out by the method of normocytemic mice.
  • Two animals were additionally used, which were inoculated with a 50 mM borate buffer solution, pH 8.0, in order to assess their toxicity.
  • a blood sample was taken from each animal, retroorbitally, and deposited in vials containing 4 ⁇ _ of sodium heparin (5000 Ul).
  • 40 pL of the peripheral blood were taken, and mixed with 120 pL of a solution composed of 0.3 mM of methylene blue; 1.29 mM sodium citrate, 5 ml_ of physiological serum; and 10 mL of distilled water, and incubated for one hour in a water bath, at 37 ° C.
  • a selective hemolysis was then performed, for 6 minutes, by treatment with a lysing solution composed of 0.08 mM tetrasodium EDTA; 0.15 mM ammonium chloride; and 9.98 mM sodium bicarbonate.
  • Erythrocyte lysis is stopped by over-dilution with physiological serum, and reticulocytes are counted visually in a Neubauer chamber.
  • the values obtained must comply with the provisions of the European Pharmacopoeia, which states that the value of the ratio of the calculated power over the assumption, expressed as a percentage, must not be less than 80% or greater than 125%, and that the fiducial limits of the calculated power must be in a range between 64% and 156%.
  • Figure 4 shows the graph of the data obtained directly from the reticulocyte count experiment, where increasing amounts of EPO measured in power Ul have been applied.
  • a Tukey-Kramer statistical test was applied for the comparison of means, with the aim of analyzing the values of the activities in vivo. The statistical analysis of the data showed that there are no significant differences between the values, for P ⁇ 0.05.
  • the differences in the biological activities between the peeled EPO and the unmodified EPO used as a positive control, are in the range of the trial variation ( ⁇ 50%).
  • the doses that were used to perform the test were 300, 450 and 600 Ul of potency. These are the doses established to detect the biological activity of the native EPO, while the test was carried out using the Amgen company product, Mircera TM, which is an EPO conjugated to a linear polymeric structure of 30 kDa molecular mass (PEGi , 30K -EPO), requires a minimum dose of 6000 Ul of power). However, in the Assay performed in this invention, with a dose 20 times lower, in vivo biological activity of the peeled EPO is detected.
  • the pharmacokinetic study was performed by comparing the unmodified EPO, the PEG 2, 32-EPO conjugate, the 2.4 OK-EPO PEG conjugate and the PEGI conjugate , 30 K-EPO. Rabbits of the New Zealand strain of 2 kg of dough were used. The results of the average life time (t 1 ⁇ 2), area under the curve (from the English area under the curve, abbreviated AUC) and average residence time (from English mean residence time, abbreviated MRT) are shown in Table 1.
  • 2K -EPO was obtained similarly to the PEG 2.3 2K-EPO conjugate, but using mPEG of lower molecular mass.
  • the PEG 2, I 4K- EPO conjugate was obtained similarly to the PEG 2 40 K-EPO conjugate, but using mPEG of lower molecular mass.
  • the PEG- ⁇ , i 2K -EPO conjugate was obtained by activating the 12 kDa mPEG of molecular mass as described at the beginning of Example 1, and then conjugation with the EPO hr was performed, as described in Example 2. For comparison, rabbits of the New Zealand strain, 2 kg of dough, were used. The results are shown in Table 2.
  • the conjugate of the present invention (PEG ,: 2K-EPO) was shown to have a longer half-life than the other conjugates analyzed.
  • the biological activity of the conjugates was measured in a manner similar to that described in Example 6. The results obtained for the conjugates were compared: (1) PEG 2 , 3 2K-EPO; (2) PEG 2 , 12K -EPO; (3) PEG 2 . K -EPO; and (4) PEGi, 12K -EPO. How control was used the unmodified hr EPO.
  • the conjugate of the present invention PEG 2, 3 2 K-EPO
  • maintains the biological activity of the unmodified protein unlike the rest of the conjugates analyzed, in which the biological activity decreases when the peguilation occurs.
  • Example 1 Pharmacokinetic study using the extreme molecular mass limits of the mPEGs that make up the two asymmetric branches of the PEG 2 , 32K-EPO conjugate
  • the starting material used to form the PEG asymmetric structure PEG 2, 32K can have a theoretical value variation of 12 kDa and 20 kDa molecular weight, a pharmacokinetic study of the EPO conjugates with asymmetric PEG structures with molecular masses of 29 kDa (PEG 2, 29K-EPO) and 35 kDa (PEG 2.3 5K-EPO). These are the total molecular mass limits of the PEG that is part of the EPO conjugate of the present invention.
  • the conjugates PEG 2,2S3K -EPO and PEG 2,35K -EPO were obtained in the same way

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Polyethers (AREA)

Abstract

La presente invención revela un conjugado que comprende eritropoyetina (EPO) y una estructura polimérica ramificada asimétrica que comprende dos ramas de monometoxipolietilenglicol (mPEG) donde la masa molecular de una de estas ramas de mPEG está entre 10 kDa y 14 kDa, y la masa molecular de la otra rama de mPEG está entre 17 kDa y 23 kDa, así como las composiciones farmacéuticas que lo contienen. La invención también provee un método para la obtención de EPO peguilada que se caracteriza porque dicha proteína se conjuga a una estructura polimérica ramificada asimétrica, con dos ramas de mPEG que poseen las masas moleculares antes descritas.

Description

CONJUGADO QUE COMPRENDE ERITROPOYETINA Y UNA ESTRUCTURA POLIMÉRICA RAMIFICADA
Campo de la técnica
La presente invención está relacionada con el campo de la biotecnología, con las ciencias biológicas y la industria farmacéutica, y en particular con la modificación de moléculas para mejorar su farmacocinética, aumentando su tiempo de vida media en sangre y su actividad biológica.
Estado de la técnica anterior
El empleo de biomoléculas para uso terapéutico en humanos se ha incrementado en los últimos años, debido fundamentalmente a: (1 ) descubrimiento de nuevas moléculas de proteínas y péptidos, (2) mejor entendimiento de los mecanismos de acción in vivo, (3) mejoramiento en los sistemas de expresión de las proteínas y en la síntesis de los péptidos y (4) mejoramiento en las formulaciones o en las tecnologías de modificación de moléculas, que permiten mejorar las propiedades farmacodinámicas y farmacocinéticas.
El desarrollo tecnológico en el campo de la liberación modificada de fármacos ha permitido la introducción de un gran número de sistemas que alteran la liberación de los fármacos inyectables, con la intención de mejorar las propiedades farmacodinámicas y farmacocinéticas de los agentes terapéuticos. Se pueden producir nuevos sistemas de liberación de fármacos a través de un cambio en la formulación (por ejemplo, productos de liberación continua o liposomas), o a través de una adición a la molécula del fármaco, por ejemplo la peguilación, que no es más que la unión covalente de éste a una o más moléculas de polietilenglicol (PE'G). Las nuevas formas de liberación conllevan a un aumento del tiempo de vida media, una disminución en los efectos adversos, un incremento en la eficacia del medicamento, y una mayor calidad de vida del paciente. Los sistemas de liberación continua liberan los fármacos de manera controlada y predeterminada, y son apropiados especialmente para aquellos fármacos donde es importante evitar grandes fluctuaciones en las concentraciones en el plasma.
La liberación sistémica de moléculas empleando microesferas biodegradables ha sido ampliamente estudiada debido a la protección a proteínas sensibles a la degradación y a la liberación prolongada o modificada (Sinha, V. R. and Trehan, A. (2003). Biodegradable microspheres as protein delivery, J. Controlled Reléase, 90(3): 261 -280). La peguilación provee un método para la modificación de proteínas terapéuticas, con el propósito de minimizar muchas de las limitaciones farmacológicas de las biomoléculas. Por ejemplo, el tiempo de vida media en sangre aumenta por varias causas, entre ellas: el residuo polimérico puede impedir el ataque de proteasas; y el reconocimiento del fármaco por el sistema inmune y el volumen hidrodinámico significativamente superior del conjugado, respecto a la proteína nativa, hacen que disminuya sensiblemente la filtración por el riñon. A pesar de que en muchos casos la actividad biológica in vitro de una proteína se ve afectada por la peguilación, el aumento sustancial del tiempo de vida en sangre hace que su acción terapéutica sea más efectiva (Harris J. M. y Chess R. B. (2003) Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2:214-221 ).
Otro de los beneficios de la peguilación lo constituye el aumento de la estabilidad física, debido a que esta bloquea estéricamente vías de degradación inducidas por interacciones hidrofóbicas y genera obstáculos esféricos no específicos que disminuyen las interacciones intermoleculares involucradas en la inestabilidad térmica de las proteínas. El aumento de la estabilidad física permite obtener formulaciones más estables (Harris J. M. y Chess R. B. (2003) Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2:214-221 ).
Gracias al surgimiento de la segunda generación de los PEG activados se pudo contar con grupos que permitían una peguilación más selectiva (por ejemplo: el grupo aldehido que se une preferentemente por el extremo N-terminal de las proteínas) y estructuras ramificadas (Roberts M. J. , Bentley M.D., Harris J.M. (2002) Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Reviews 54:459- 476). Entre los PEG ramificados desarrollados están los monofuncionales de dos ramas (Patente Nro. US 5,932,462), los tetrafuncionales de cuatro ramas, y los octafuncionales de ocho ramas. Para la conjugación de proteínas terapéuticas, los PEG activados más útiles son los monofuncionales, porque evitan el entrecruzamiento entre la proteína y el polímero de PEG. Los PEG ramificados también tienen un efecto tipo sombrilla, que permite una mejor protección de la superficie de la proteína.
El PEG monofuncional de dos ramas ha permitido la obtención de un conjugado con interferón alfa 2a que ha demostrado mejores resultados en la clínica que la proteína nativa (Rajender Reddy K., Modi M.W., Pedder S. (2002). Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C. Adv. Drug Deliv. Reviews 54:571 -586).
Existen reportes de un gran número de proteínas en las que se han aplicado las diferentes tecnologías de liberación modificada, entre las que se encuentra la eritropoyetina (EPO) humana recombinanté (EPO hr). La EPO es una glicoproteína de 165 aminoácidos. Su peso molecular estimado utilizando electroforesis en gel de poliacrilamida-dodecilsulfato sódico (del inglés Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis, abreviado SDS-PAGE) oscila entre 27 y 39 kDa (Mikaye, T. et al. (1977). Purification of Human Erythropoietin. J. Biol. Chem. 252: 5558- 5564), en dependencia de su grado de glicosilación.
En las investigaciones se ha comprobado que al retirar el estímulo hipóxico, el ácido ribonucleico mensajero (ARNm) de la EPO disminuye rápidamente en la sangre, pudiendo ser indetectable a las 3 horas, lo que indica que su tiempo de vida media es corto (Lacombe, C. et al. (1988). Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J. Clin. Invest. 81 :620-623; Koury, S.T. et al. (1989). Quantitation of erythropoietin producing cells in kidneys of mice by in situ hybridation: Correlation with hematocrit, renal erythropoietin mRNA and serum erythropoietin concentration. Blood 74: 645-651 ). Se estimó que el tiempo de vida media en plasma sanguíneo de la EPO oscila entre 4 y 13 horas, este tiempo es muy bajo si se compara con el de otras moléculas de uso terapéutico. Esto hace que un paciente que requiera del empleo de la hormona de forma regular deba inyectarse con frecuencia, para mantener los niveles de eritrocitos cercanos a los normales (Spivak, J.L. 1992. The mechanism of action of erythropoietin: Erythroid cell response. En: J.W. Fisher (Ed.) Biochemical Pharmacology of Blood and Blood- Forming Organs. Springer-Verlag Berlín. Handbook of Experimental Pharmacology. 101 : 49-1 14; Jelkmann, W. (1986). Renal Erythropoietin: Properties and Production. Rev. Physiol. Biochem. Pharmacol. 104: 139-205).
Con el objetivo de aumentar el tiempo, de vida medio de la EPO hr se han realizado mutaciones a la molécula para aumentar los sitios de A/-glicosilación (Burke, Paul (2003). Device for the sustained reléase of aggregation-stabilized, biologically active agent. Solicitud de Patente en Estados Unidos Nro. 20030133979), se ha encapsulado en microesferas (Morlock M, et al. (1998). Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: protein stabilization and in-vitro reléase properties. J Control Reléase 4; 56 (1-3): 105-1 15) y en liposomas (Moriya H, ef al. (1997). Pharmacokinetic and pharmacological profiles of free and liposomal recombinant human erythropoietin after intravenous and subcutaneous administrations in rats. Pharm Res. 14 (1 1): 1621 - 1628), y se ha reportado la obtención de un dímero de EPO hr con vistas a aumentar la actividad biológica de la misma (Bruno D., ef al. (2001 ). Dimeric erythropoietin fusión protein with enhanced erythropoietic activity in vitro and in vivo. Blooti, Vol. 97, No. 12, 3776-3782).
Una de las modificaciones que más resultados ha tenido en la clínica lo constituye la conjugación química de la EPO hr con polímeros (Jolling K. et al. (2005). Mixed- effects Modelling of the Interspecies Pharmacokinetic Scaling of Pegylated Human Erythropoietin. Eur J Pharm Sci; 24: 465-475). En el desarrollo de esta EPO hr peguilada se ha encontrado como dificultad el bajo rendimiento del proceso de conjugación, debido a la formación de especies monopeguiladas y bipeguiladas, constituyendo esta última un contaminante del proceso.
Por todo lo expresado anteriormente, sigue siendo de interés la obtención de nuevos conjugados de EPO con polímeros, que ofrezcan ventajas terapéuticas con respecto a la molécula sin modificar.
Explicación de la invención
La presente invención resuelve el problema antes planteado, al proveer un conjugado que comprende eritropoyetina (EPO) y una estructura polimérica ramificada asimétrica que comprende dos ramas de monometoxipolietilenglicol (mPEG) donde la masa molecular de una de estas ramas de mPEG está entre 10 kDa y 14 kDa, y la masa molecular de la otra rama de mPEG está entre 7 kDa y 23 kDa.
De esta manera, la invención proporciona un conjugado que comprende una estructura de PEG monofuncional ramificada que presenta una talla molecular similar a la utilizada por Papadimitriou (Patente Nro. US 7,202,208), pero que emplea una estructura de PEG de dos cadenas de distintas masas moleculares. Esta alternativa, inesperadamente, ofrece nuevas ventajas al fármaco. En el conjugado de la invención, la masa molecular total de la estructura polimérica de PEG de dos ramas está entre 27 y 37 kDa. En una realización de la invención, la masa molecular de mPEG1 es de 12 kDa y la de mPEG2 es 20 kDa. El empleo de cadenas ramificadas asimétricas de PEG, en vez de lineales, que poseen la masa molecular indicada permitió disminuir la formación de los contaminantes bipeguilados, e inesperadamente aumentó de forma significativa el tiempo de vida media de la molécula, así como su estabilidad físico-química.
Otro resultado no esperado fue que se mantuvo intacta la actividad biológica de la molécula peguilada con este PEG monofuncional ramificado asimétrico. La pérdida de la actividad biológica de las biomoléculas con la peguilación ha sido ampliamente reportada en la literatura (Harris J. M. y Chess R. B. (2003). Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2:214-221 ).
El PEG monofuncional de dos ramas asimétricas se obtiene por la unión de dos cadenas lineales de PEG de diferente talla molecular a un núcleo. Un proceso semejante ha sido utilizado por otros autores con buenos resultados (Patente Nro. US 5,932,462). Para poder unir las dos cadenas lineales de PEG a un núcleo, se necesita que éstas tengan un grupo activo. Este grupo puede ser seleccionado entre varios grupos conocidos en el estado del arte. Por ejemplo, este grupo activo puede ser: succinimidil succinato, succinimidil carbonato, p-nitrofenilcarbonato, succínimidil propanoato, succinimidil butanoato, entre otros. Un PEG lineal preferido en esta invención es el activado con succinimidil carbonato. Esto se debe a dos razones fundamentales: a) los buenos rendimientos de la reacción entre éste y los grupos aminos y b) la facilidad del proceso de obtención de este PEG funcionalizado. El proceso de obtención de este PEG funcionalizado es conocido por aquellos que trabajan en esta rama de la técnica (Mirón T., Wilchek M. (1993). A Simplified Method for the Preparation of Succinimidyl Carbonate Polyethylene Glycol for Coupling to Proteins. Bioconjugate Chem. 4:568-569). Una vez que se tiene el PEG lineal activado, a continuación éste se hace reaccionar con la molécula elegida como núcleo.
En una realización preferida de esta invención el núcleo es L-lisina, por ser una molécula biocompatible, con dos grupos amino libres y un grupo carboxílico que puede ser utilizado para ser posteriormente activado. Por tanto, en una materialización de la invención, la EPO está conjugada a una estructura polímérica ramificada asimétrica que se representa como:
Figure imgf000007_0001
En una realización particular, en dicha estructura polimérica que forma parte del conjugado, la masa molecular de mPEG1 es 12 kDa y la masa molecular de mPEG2 es 20 kDa, o la masa molecular de mPEG1 es 20 kDa y la masa molecular de mPEG2 es 12 kDa.
El derivado de dos ramas asimétricas puede ser purificado empleando métodos cromatográficos, y posteriormente se activa con diferentes grupos reactivos para la conjugación con las biomoléculas. Cualquiera de los grupos funcionales utilizados para la activación de otras estructuras de PEG puede ser utilizado para el PEG ramificado asimétrico descrito en esta invención. Como ejemplo de estos grupos funcionales tenemos: ésteres de A/-hidroxisuccinimida, succínimidil carbonato, aldehidos de distintos tipos, maleimidos, entre otros. Otro tipo de grupos funcionales que permiten la unión de esta estructura a proteínas son los grupos quelantes, como el nitrilotriacetato, que por mediación de un metal de transición puede conjugarse a las histidínas presentes en el esqueleto peptídico. La elección del grupo reactivo a utilizar depende del residuo de la proteína al que se quiere unir el PEG.
En los ejemplos de la solicitud de patente presentada por Huang (EP 147971 A1) se muestran estructuras ramificadas de PEG con masas moleculares diferentes en cada una de las ramas, pero el tamaño molecular de las ramas es menor que el de la presente invención. En la solicitud de patente Nro. EP 147971 1 A1 los inventores plantean que la actividad biológica del conjugado disminuye con respecto a la actividad biológica del fármaco sin modificar. Sin embargo, en la presente invención, inesperadamente, la actividad biológica del conjugado de EPO con el PEG monofuncional de dos ramas asimétricas, de masa molecular total entre 27 y 37 kDa, fue similar a la de la EPO sin modificar. Por otro lado, en la presente invención se demostró que el tiempo de vida media de una estructura de PEG con dos ramas que poseen masas moleculares inferiores, según la solicitud de patente presentada por Huang, es menor que el tiempo de vida media del conjugado de EPO con un PEG de dos ramas de 12 kDa y 20 kDa, respectivamente, de esta invención.
Este resultado obtenido en la invención fue inesperado. Con el conjugado que comprende una estructura polimérica asimétrica (PEG2,32K) se logra una distribución espacial de la molécula que no limita la actividad biológica, mejora la reacción de conjugación disminuyendo la formación de los productos polipeguilados, y mejoran significativamente los parámetros farmacocinéticos. Esto permite la disminución de la dosis del tratamiento en las personas que lo necesitan.
Las materias primas fundamentales para obtener la estructura de PEG de dos ramas asimétricas en la presente invención son el mPEG de 12 kDa (PEG 12K) y el mPEG de 20 kDa (PEG 20K). El peso molecular de estos mPEG posee un rango establecido por los fabricantes, ya que el PEG es un polímero polidisperso. Por ejemplo, según especificación de uno de los fabricantes la polidispersión debe ser menor de 1 , 1 %. En ese caso, el rango de pesos moleculares reportado por el fabricante para el PEG 12K sería de 12,0 ± 1 ,2 kDa; y el del PEG 20K sería de 20,0 ± 2,0 kDa.
Para determinar si esta diferencia en los pesos moleculares entre cada lote de material de partida de PEG influye en los resultados de la farmacocinética, se realizó un experimento con lotes de PEG que tuvieran un peso molecular correspondiente a los valores extremos de las especificaciones (Ejemplo 1 1 ). Se tomó un PEG 12K con 1 1 kDa de peso molecular y un PEG 20K con 18 kDa de peso molecular, para formar un conjugado de EPO con una estructura de PEG de dos ramas de 29 kDa de peso molecular total (PEG2,29K-EPO). También se tomó un PEG 12K con 13 kDa de peso molecular y un PEG 20K con 22 kDa de peso molecular, para formar un conjugado de EPO con una estructura de PEG de dos ramas de 35 kDa de peso molecular total (PEG2,3SK-EPO). Los resultados mostraron que los parámetros farmacocinéticos son similares cuando se usan diferentes lotes de partida de PEG 12K y PEG 20K. Por lo tanto, los conjugados formados por las estructuras de PEG2,29K-EPO y PEG2,35K-EPO se consideran esencialmente iguales a los formados por la estructura del peso teórico indicado por el fabricante, que es el conjugado de EPO y un PEG de dos ramas, una de 12 kDa y otra de 20 kDa
La conjugación de la proteína con el PEG activado se realiza en un tampón apropiado. Las características del tampón dependen, entre otros factores, del grupo funcional del polímero y del objetivo de la conjugación. Por ejemplo, si se desea conjugar por los grupos amino libres, con un PEG funcionalizado como éster de N- hidroxisuccinimida, ios sitios de conjugación se pueden predecir, hasta cierto grado, según el pH de la reacción de conjugación. Un pH entre 8,0 y 9,0 favorece la conjugación por el grupo ε-amino de las lisinas.
Una vez obtenido el conjugado, este se caracteriza empleando varias técnicas. Las propiedades químicas, físicas y biológicas de los conjugados se analizan para lograr una caracterización lo más completa posible del conjugado purificado. Por ejemplo, la concentración del conjugado puede ser usualmente determinada por espectroscopia ultravioleta (absorbencia a 280 nm), pues el residuo de PEG no afecta prácticamente el coeficiente de extinción molar de la proteína. La pureza del producto purificado se determina preferiblemente por SDS-PAGE, pues los métodos cromatográficos, como la cromatografía de filtración en gel, discriminan pobremente las señales correspondientes al conjugado de interés y a los contaminantes. Otras propiedades físico-químicas pueden ser estudiadas por los procedimientos usuales conocidos por los versados en esta rama de la técnica.
En el contexto de esta invención el término eritropoyetina (EPO) se refiere a cualquiera de las variantes de la molécula de EPO que mantenga su actividad biológica; por ejemplo moléculas truncadas. La EPO puede ser obtenida mediante tecnología del ácido desoxirribonucleico (ADN) recombinante, empleando los sistemas de expresión y purificación conocidos por los versados en esta rama de la técnica. Por tanto, en una materialización de la presente invención, el conjugado comprende EPO hr. El conjugado objeto de la invención también comprende cualquiera de las variantes de EPO obtenidas mediante los métodos descritos anteriormente, después de ser modificada a través de cualquier procedimiento del estado de la técnica, tal como la sustitución de aminoácidos.
Es también objeto de la presente invención una composición farmacéutica que comprende cualquiera de los conjugados PEG-EPO que se revelan en la misma y un excipiente farmacéuticamente aceptable.
Otro aspecto de la presente invención es un método para la obtención de EPO peguilada que se caracteriza porque dicha proteína se conjuga a una estructura polimérica ramificada asimétrica que comprende dos ramas de mPEG donde la masa molecular de una de las ramas de mPEG está entre 10 kDa y 14 kDa, y la masa molecular de la otra rama de mPEG está entre 17 kDa y 23 kDa. A través del método de la invención, se produce un incremento de la vida media de la EPO en la sangre de un mamífero al que se administra dicha proteína, si se compara con la vida media de la EPO sin conjugar con PEG. Por tanto, la invención provee un método para la mejora de los parámetros farmacocinéticos de dicha proteína, con el fin de reducir las dosis que se administran a un sujeto que lo necesita. En el contexto de la invención, se entiende por mejora de los parámetros farmacocinéticos de la EPO el aumento del tiempo de vida media y/o el tiempo medio de residencia de dicha proteína. De este modo, la invención revela un método de modificación química de la molécula de EPO, con el fin de incrementar el tiempo de vida media de dicha molécula, que se caracteriza porque dicha proteína se conjuga a una estructura polimérica ramificada asimétrica que comprende dos ramas de mPEG, donde la masa molecular de una de estas ramas de mPEG está entre 10 kDa y 14 kDa, y la masa molecular de la otra rama de mPEG está entre 17 kDa y 23 kDa. En una realización de la invención, la masa molecular de una de las ramas de. mPEG en la estructura polimérica ramificada asimétrica es 12 kDa y la masa molecular de la otra rama de mPEG es 20 kDa. En una materialización de la invención, la estructura polimérica ramificada asimétrica que se conjuga a la EPO, en el método de la invención, se representa como:
o
iiiFHG l
iuFEC.2— O
Figure imgf000010_0001
OH
En una realización preferida del método de la invención, en la estructura polimérica ramificada asimétrica que se conjuga a la EPO, la masa molecular de mPEG1 es 12 kDa y la masa molecular de mPEG2 es 20 kDa, o la masa molecular de mPEG1 es 20 kDa y la masa molecular de mPEG2 es 12 kDa. En una realización más preferida, en el método de la invención, la EPO es EPO hr. Breve descripción de las figuras
Figura 1. Resultados de SDS-PAGE con doble tinción (Azul brillante de Coomassie y yodo) del producto de la reacción de conjugación de la EPO con el PEG2|32K. La muestra 1 corresponde al control positivo de EPO y la muestra 2 al producto de la
5 reacción de conjugación de la EPO con el PEG2,32K-
Figura 2. Resultados de SDS-PAGE con doble tinción (Azul brillante de Coomassie y yodo) del producto de la reacción de conjugación de la EPO con el PEG2,4OK- La muestra 1 corresponde al control positivo de EPO y la muestra 2 al producto de la reacción de conjugación de la EPO con el PEG2,40K.
I O Figura 3. Cromatogramas obtenidos empleando cromatografía de filtración en gel para evaluar diferentes conjugados de PEG-EPO.
Figura 4. Actividad biológica in vivo de la EPO nativa y la EPO monopeguilada determinada por el método de ratones normocitémicos.
Figura 5. Resultados obtenidos del ensayo de degradación con tripsina de los 15 conjugados PEG2 32« -EPO, PEG2 4OK—EPO y la EPO sin modificar. Se representa la" cinética de degradación seguida por SDS-PAGE.
Figura 6. Actividad biológica de distintos conjugados de PEG-EPO y de EPO sin modificar, determinada por el método de ratones normocitémicos. 0 Exposición detallada de modos de realización / Ejemplos de realización
Ejemplo 1. Obtención del PEG activado como éster de N-hidroxisuccinimida Reacción de activación de mPEG20K-OH
Se secaron azeotrópicamente 50 g de mPEG de 20 kDa de peso molecular sin activar (mPEG20K-OH) en 450 mL de tolueno, durante 3 horas. Pasado este tiempo,5 se extrajeron 200 mL de solvente, y se dejó enfriar la solución hasta alcanzar la temperatura ambiente. Posteriormente se añadieron 60 mL de diclorometano (DCM) seco como cosolvente. Se pesaron 4,9 g de disuccinidimil carbonato y se disolvieron en 40 mL de dimetilformamida. Se agregó la solución anterior al frasco que contiene el mPEG20K-OH. Se pesaron 2,5 g de dimetilaminopiridina y se disolvieron en 20 mL0 de DCM. Se agregó la solución anterior al frasco que contiene el mPEG20K-OH y se comenzó a agitar. Se dejó reaccionar durante toda la noche a temperatura ambiente.
La mezcla de reacción se filtró, para eliminar los productos sólidos, empleando una membrana de fibra de vidrio. El filtrado se precipitó con 1 ,5 L de éter dietílico seco, y se filtró al vacío. El precipitado se colectó al vacío, se secó a alto vacío durante 4 h y se almacenó a -20 °C. Se logró recuperar como succinidimil carbonato de PEG (PEG20K-SC) un 96% de la masa inicial de mPEG20 -OH, con un grado de activación de 96,0 ± 0,8%.
Reacción de activación de mPEGi2K-OH
Se siguió el mismo procedimiento empleado para la reacción de activación del mPEG20K-OH, pero en este caso se utilizó como materia prima inicial el mPEG de 12 kDa de peso molecular sin activar (mPEGm- OH).
Reacción de L-iisina con PEG20K-SC y PEG12K-SC
Se pesaron 9, 1 g de L-lisina y se disolvieron en 30 mL de solución de ácido bórico 0, 1 M; pH 8,0. Se añadieron 20 g de PEG2OK-SC y 15 mL de la solución de L-lisina en ácido bórico. La solución se mantuvo en agitación durante 2 horas.
Posteriormente, se diluyó la mezcla de reacción con 300 mL de agua destilada, y se ajustó a 3,5 el pH de la mezcla con una solución de ácido clorhídrico. La mezcla se pasó a un embudo separador, donde se añadieron 100 mL de DCM. Se agitó manualmente y se extrajo la fase inferior (fase orgánica). Se realizaron un total de 5 extracciones. Se añadieron 20 g de sulfato de sodio al frasco que contiene la fase orgánica, y se agitó manualmente hasta total claridad de la fase. Se filtró al vacío, empleando una membrana de fibra de vidrio. El filtrado se concentró en el rotoevaporador al máximo posible. Se le añadieron 500 mL de éter dietílico y se agitó manualmente, para precipitar el producto. Se filtró al vacío y el producto (L- lisina monopeguilada 20K) se secó durante 1 h al vacío en el rotoevaporador.
En la segunda etapa de la reacción se añadieron 9 g de PEG12 -SC a 15 g de L- lisina monopeguilada 20K. Los reaccionantes se disolvieron en 215 mL de DCM y se añadió 0, 14 mL de trietilamina. La mezcla de reacción se filtró al vacío, empleando una membrana de fibra de vidrio. El filtrado se concentró al máximo en el rotoevaporador. Se le adicionaron 300 mL de éter dietílico y se agitó manualmente durante 2 minutos, para precipitar el producto. Se filtró al vacío y el producto obtenido (PEG de dos ramas asimétricas, una de 12 kDa y otra de 20 kDa (PEG2,32K-COOH)) se secó durante 1 h al vacío, en el rotoevaporador. El rendimiento total del proceso fue superior al 70%.
Purificación de PEG2i32K-COOH
La purificación del PEG2,32K-COOH se llevó a cabo en una columna de DEAE- Sepharosa con 80 cm de altura, y se empleó un flujo volumétrico de 40 mL/min. El gel se higienizó previamente con 4,5 L de solución de hidróxido de sodio 0,2 M. Se equilibró la columna con solución de ácido bórico 50 mM, pH 9,0. Posteriormente, la columna se lavó con 5 L de agua destilada. Se aplicó la muestra de PEG2,32K-COOH disuelta en agua, hasta alcanzar una conductividad de 40 pS/cm más que la conductividad del agua. Luego de aplicar la muestra, se lavó la columna con 3 L de agua purificada. La elución de la muestra se realizó con 5 L de una solución de cloruro de sodio 10 mM. Se colectaron fracciones de 500 mL. Posteriormente, se regeneró la columna con 3 L de una solución de cloruro de sodio 1 M. El recobrado total del proceso fue superior al 90%, con una pureza mayor al 95%.
Obtención del PEG ramificado activado como éster de W- idroxisuccinimida (PEG2,32K-NHS)
Se disolvió 1 g del PEG2,32K-COOH en DCM. Se añadieron 0,01 g de N- hidroxisuccinimida (NHS) y 0,02 g de diciclohexilcarbodiimida. La mezcla de reacción se mantuvo en agitación durante 12 h. Posteriormente, se diluyó con 5 mL de DCM y se filtró a través de una membrana de fibra de vidrio. El filtrado se concentró en el rotoevaporador y se le añadió 400 mL de éter dietílico para precipitar el producto. La mezcla se filtró al vacío y se colectó el producto sólido (PEG2,32K-N HS), el cual fue secado durante 1 h al vacío en el rotoevaporador. Se alcanzaron grados de activación superiores a 95% y una recuperación de la masa inicial de polímero superior a 90%.
Ejemplo 2. Obtención de la EPO conjugada con PEG2,32K-NHS
Reacción de conjugación
Seis gramos de PEG2,32K-N HS fueron añadidos a una solución que contenía 1 g de EPO hr a una concentración inicial de 5 mg/mL en solución de borato 50 mM, pH 8,0. La reacción se mantuvo durante 2 horas a 4°C, con agitación lenta. La reacción se detuvo diluyendo hasta una concentración final de proteínas de 0,9 mg/mL con ácido bórico 50 mM, pH 8,0. El rendimiento de la reacción fue determinado por densitometría del gel obtenido por SDS-PAGE, como se muestra en la Figura 1. El recobrado total fue superior al 40%, con menos del 3% de productos polipeguilados. Purificación de la EPO monopeguilada
Para separar los productos de la reacción de conjugación de la EPO hr con PEG, o sea la EPO monopeguilada de la EPO libre y de la EPO bipeguilada, se diseñó un esquema de purificación por cromatografía de intercambio aniónico. El proceso de separación se llevó a cabo empleando una columna empacada con Q-Sepharosa, de 12 cm de altura. El gel se higienizó previamente con 22 mL de solución de hidróxido de sodio 0,2 M. Se pasaron 33 mL de agua purificada, y seguidamente 33 mL de la solución de equilibrio de ácido bórico 50 mM, pH 8,0. Se aplicó la muestra procedente de la reacción de conjugación, diluida en la solución de equilibrio hasta una concentración de 0,9 mg/mL. La elución de la muestra que contiene el conjugado de EPO con PEG2,32K-NHS (PEG2,32K-EPO) se realizó secuencialmente, empleando el mismo tampón de equilibrio con concentraciones crecientes de cloruro de sodio entre 0, 175 M y 0,5 M. El flujo volumétrico fue de 1 ,2 mL/min y la carga de 0,58 mg de proteína/mL de gel. El recobrado del proceso fue del 40% de la EPO monopeguilada y el grado de pureza del 97%.
Ejemplo 3. Obtención del PEG ramificado activado como éster de N- hidroxisuccinimida (PEG2,4OK-NHS)
Para la obtención del PEG2,4OK-NHS se siguió el procedimiento descrito en el Ejemplo 1 , pero se usó en la segunda etapa de la reacción con lisina el PEG2OK-SC . Se logró un rendimiento total de más de 50%, con una activación superior a 90%. Ejemplo 4. Obtención de la EPO conjugada con PEG2,4OK-NHS
Reacción de conjugación
Seis gramos de PEG2,4OK-N HS fueron añadidos a una solución que contenía 1 g de EPO hr a una concentración inicial de 5 mg/mL en solución tampón borato 50 mM, pH 8,0. La reacción se mantuvo durante 2 horas a 4°C con agitación lenta. La reacción se detuvo diluyendo hasta una concentración final de proteínas de 0,9 mg/mL con ácido bórico 50 mM, pH 8,0. El rendimiento de la reacción fue determinado por densitometría del gel obtenido mediante SDS-PAGE, como se muestra en la Figura 2. El recobrado total fue superior a 40%, con menos de 1 % de productos polipeguilados.
Purificación de la EPO monopeguilada
Para separar los productos de la reacción de conjugación de la EPO con PEG, o sea la EPO monopeguilada de la EPO libre y de la EPO bipeguilada, se diseñó un esquema de purificación por cromatografía de intercambio aniónico. El proceso de separación se llevó a cabo empleando una columna empacada con Q-Sepharosa, de 12 cm de altura. El gel se higienizó previamente con 22 mL de solución de hidróxido de sodio 0,2 M. Se pasaron 33 mL de agua destilada, y seguidamente 33 mL de la solución de equilibrio de ácido bórico 50 mM, pH 8,0. Se aplicó la muestra procedente de la reacción de conjugación diluida en la solución de equilibrio, hasta una concentración de 0,9 mg/mL. La elución de la muestra que contiene el conjugado de EPO con PEG2,4OK-NHS (PEG2,4OK-EPO) se realizó secuencialmente empleando el mismo tampón de equilibrio con concentraciones crecientes de cloruro de sodio entre 0, 175 M y 0,5 M. El flujo volumétrico fue de 1 ,2 mL/min, y la carga de 0,58 mg de proteína/mL de gel. El recobrado del proceso fue de 40% y se obtuvo un grado de pureza de 97%.
Ejemplo 5. Caracterización físico-química de las EPO peguiladas
Determinación de la concentración del conjugado
Se determinó por medición de absorbencia a 280 nm, en un espectrofotómetro. El cálculo de la concentración de proteínas se realizó empleando un coeficiente de extinción molar para la EPO de 0,743.
Caracterización mediante la cromatografía de filtración en gel
Las separaciones cromatográficas se realizaron utilizando una bomba de cromatografía líquida de alta eficacia (HPLC) y un detector de luz ultravioleta con un filtro de 226 nm. La masa de aplicación fue de 100 pg de proteína. Las cromatografías fueron realizadas con una matriz Superdex-200. Se analizaron dos variantes de EPO peguilada (PEG2,32 -EPO y PEG2,K -EPO) y la EPO sin modificar.
En la Figura 3 se observa la correspondencia que existe entre la masa molecular estimada para cada variante y los tiempos de retención resultantes. Con el menor tiempo de retención eluyó el conjugado de PEG2 40K-EPO, pues tiene el mayor tamaño molecular, seguidamente eluyó el conjugado de PEG2|32K -EPO y finalmente eluyó la EPO sin modificar.
Ejemplo 6. Caracterización biológica del conjugado de PEG2,32 -EPO
La determinación de la potencia de la EPO peguilada se realizó por el método de ratones normocitémicos. Los ratones de la línea B6D2F1 (16-18 g) hembras, vírgenes, fueron inoculados por vía subcutánea con 0,2 mL de las diferentes diluciones ((300, 450 y 600 UI/mL, que equivalen a 3; 4,5 y 6 pg/ratón) de las muestras de PEG2,4OK -EPO, PEG2|32K -EPO, el material de referencia (como control positivo) y el control negativo (solo diluente), a razón de tres animales por grupo. Se emplearon adicionalmente dos animales, a los que se les inoculó con una solución de tampón borato 50 mM, pH 8,0; con el objetivo de evaluar su toxicidad. Después de 72 horas de inoculados, se le extrajo una muestra de sangre a cada animal, por vía retroorbital, y fueron depositadas en viales que contenían 4 μΙ_ de heparína sódica (5000 Ul). Se tomaron 40 pL de la sangre periférica, y se mezclaron con 120 pL de una solución compuesta por 0,3 mM de azul de metileno; 1 ,29 mM de citrato de sodio, 5 ml_ de suero fisiológico; y 10 mL de agua destilada, y se incubaron por una hora en baño de María, a 37 °C. Luego se realizó una hemolisis selectiva, durante 6 minutos, mediante tratamiento con una solución lisante compuesta por 0,08 mM de EDTA tetrasódico; 0, 15 mM de cloruro de amonio; y 9,98 mM de bicarbonato de sodio. La lisis de los eritrocitos es detenida por sobredilución con suero fisiológico, y los reticulocitos son contados visualmente en una cámara de Neubauer. El procesamiento de los datos y el cálculo de la potencia se efectúo utilizando un diseño al azar de líneas paralelas de un patrón y un desconocido, para la detección de la validez de la linealidad y el paralelismo, a un nivel de significación α = 0,05. Los valores obtenidos deben cumplir con lo establecido por la Farmacopea Europea, que establece que el valor de la relación de la potencia calculada sobre la supuesta, expresada en porciento, no debe ser menor de un 80% ni mayor de un 125%, y que los límites fiduciales de la potencia calculada se deben encontrar en un rango comprendido entre 64% y 156%.
En la Figura 4 se observa el gráfico de los datos obtenidos directamente del experimento del conteo de reticulocitos, donde se han aplicado cantidades crecientes de EPO medidas en Ul de potencia. Se le aplicó un test estadístico de Tukey-Kramer para la comparación de medias, con el objetivo de analizar los valores de las actividades in vivo. El análisis estadístico de los datos demostró que no existen diferencias significativas entre los valores, para P<0, 05. Las diferencias de las actividades biológicas entre la EPO peguilada y la EPO sin modificar empleada como control positivo, se encuentra en el rango de la variación del ensayo (± 50%).
Es importante destacar que las dosis que se emplearon para realizar el ensayo fueron de 300, 450 y 600 Ul de potencia. Estas son las dosis establecidas para detectar la actividad biológica de la EPO nativa, mientras que el ensayo realizado empleando el producto de la compañía Amgen, Mircera™, que es una EPO conjugada a una estructura polimérica lineal de 30 kDa de masa molecular (PEGi,30K -EPO), requiere una dosis mínima de 6000 Ul de potencia). Sin embargo, en el ensayo realizado en esta invención, con una dosis 20 veces menor, se detecta actividad biológica in vivo de la EPO peguilada.
Ejemplo 7. Resistencia a la degradación por proteasas
Para verificar la resistencia a degradación por proteasas de las diferentes moléculas de PEG-EPO, se realizó un experimento in vitro, en el cual las EPO peguiladas y la proteína nativa (como control) se digirieron con tripsina. Las dos variantes peguiladas de EPO mostraron una mayor resistencia a la degradación por proteasas que la EPO nativa. En la Figura 5 se muestran los resultados de la cinética de degradación de la EPO, empleada como control, y de las dos variantes peguiladas PEG2 32K -EPO y PEG2,4ÜK -EPO. Se puede observar que las dos variantes de EPO peguiladas presentan una mayor resistencia a la degradación por proteasas que la EPO nativa.
Ejemplo 8. Farmacocinética del conjugado PEG2,32K- EPO
El estudio farmacocinético se realizó comparando la EPO sin modificar, el conjugado PEG2,32 -EPO, el conjugado PEG2,4OK-EPO y el conjugado PEGI ,30K-EPO. Se emplearon conejos de la cepa Nueva Zelandia, de 2 Kg de masa. Los resultados de tiempo de vida media (t ½), área bajo la curva (del inglés área under the curve, abreviado AUC) y tiempo medio de residencia (del inglés mean residence time, abreviado MRT) se muestran en la Tabla 1.
Tabla 1. Farmacocinética comparada de la EPO, el conjugado PEG2,32 -EPO, el conjugado PEG2,4O -EPO y el conjugado PEG1 30K-EPO.
Figure imgf000017_0001
Se puede apreciar que todas las EPO peguiladas resultaron tener un tiempo de vida medio superior al de la EPO sin modificar. El tiempo de vida media del conjugado PEG2,32 -EPO fue muy superior (2,4 veces) al obtenido con el PEGI ,30K-EPO. Este resultado es inesperado, teniendo en cuenta que ambos conjugados presentan tamaños moleculares muy similares. También esta molécula ramificada asimétrica presentó un tiempo de vida medio superior al conjugado PEG2,4OK-EPO, que también es ramificado, y con un peso molecular superior, lo cual tampoco era de esperar. Ejemplo 9. Comparación de los resultados farmacocinéticos de distintos conjugados de EPO
Este estudio farmacocinético se realizó comparando el conjugado PEG2,32K-EPO, que tiene una rama de 12 kDa y otra de 20 kDa de masa molecular; EPO conjugada a una estructura de PEG asimétrico con una rama de 5 kDa y otra de 7 kDa de masa molecular (PEG2,I2K-EPO) ; el conjugado de EPO con una estructura simétrica de dos ramas de 7 kDa cada una (PEG2,14 -EP0); y el conjugado de EPO a un PEG lineal de 12 kDa de masa molecular (PEG-ii12K-EPO). Para realizar este estudio, el conjugado PEG2 -|2K-EPO se obtuvo de forma similar al conjugado PEG2,32K-EPO, pero utilizando mPEG de menor masa molecular. El conjugado PEG2, I 4K-EPO se obtuvo de forma similar al conjugado PEG2 40K-EPO, pero utilizando mPEG de menor masa molecular. El conjugado de PEG-¡ ,i2K-EPO se obtuvo activando el mPEG de 12 kDa de masa molecular como se describió al inicio del Ejemplo 1 , y después se realizó la conjugación con la EPO hr, como se describe en el Ejemplo 2. Para la comparación, se emplearon conejos de la cepa Nueva Zelandia, de 2 Kg de masa. Los resultados se muestran en la Tabla 2. El conjugado de la presente invención (PEG ,:i2K-EPO) mostró tener un tiempo de vida media mayor que los restantes conjugados analizados.
Tabla 2. Parámetros farmacocinéticos de distintos conjugados de EPO.
Figure imgf000018_0001
Ejemplo 10. Comparación de la actividad biológica de distintos conjugados de EPO
La actividad biológica de los conjugados se midió de forma similar a lo descrito en el Ejemplo 6. Se compararon los resultados obtenidos para los conjugados: (1) PEG2,32K-EPO; (2) PEG2,12K-EPO; (3) PEG2. K-EPO; y (4) PEGi,12K-EPO. Como control se utilizó la EPO hr sin modificar. En la Figura 6 se puede observar que el conjugado de la presente invención (PEG2,32K-EPO) mantiene la actividad biológica de la proteína sin modificar, a diferencia del resto de los conjugados analizados, en los cuales disminuye la actividad biológica al ocurrir la peguilación.
5 Ejemplo 1 1 . Estudio farmacocinético empleando los límites extremos de masa molecular de los mPEG que conforman las dos ramas asimétricas del conjugado PEG2,32K- EPO
Como el PEG es polidisperso, y el material de partida que se utiliza para conformar la estructura de PEG asimétrico PEG2,32K puede tener una variación del valor teórico l o de 12 kDa y 20 kDa de peso molecular, se realizó un estudio farmacocinético de los conjugados de EPO con estructuras asimétricas de PEG con masas moleculares de 29 kDa (PEG2,29K-EPO) y 35 kDa (PEG2,35K-EPO). Estos son los límites de masa molecular total del PEG que forma parte del conjugado de EPO de la presente invención. Los conjugados PEG2,2S3K-EPO y PEG2,35K-EPO se obtuvieron de igual
15 forma que el conjugado PEG2i32 -EPO. Se emplearon conejos de la cepa Nueva Zelandia, de 2 Kg de masa. Los resultados se muestran en la Tabla 3. Como se puede apreciar, no existen diferencias en cuanto a los parámetros farmacocinéticos en las variantes de conjugado estudiadas.
Tabla 3. Resultados de los parámetros farmacocinéticos de conjugados con0 PEG de diferentes pesos moleculares.
Figure imgf000019_0001
5

Claims

REIVINDICACIONES CONJUGADO QUE COMPRENDE ERITROPOYETINA Y UNA ESTRUCTURA POLIMÉRICA RAMIFICADA
1. Un conjugado que comprende eritropoyetina (EPO) y una estructura polimérica ramificada asimétrica que comprende dos ramas de monometoxipolietilenglicol (mPEG) donde la masa molecular de una de las ramas de mPEG está entre 10 kDa y 14 kDa, y la masa molecular de la otra rama de mPEG está entre 7 kDa y 23 kDa.
2. El conjugado de la reivindicación 1 donde la masa molecular de una de las ramas de mPEG es 12 kDa y la masa molecular de la otra rama de mPEG es 20 kDa.
3. El conjugado de la reivindicación 1 donde la estructura polimérica ramificada asimétrica se representa como:
O
Figure imgf000020_0001
Ol í
4. El conjugado de la reivindicación 3 donde la masa molecular de mPEGl es 12 kDa y la masa molecular de mPEG2 es 20 kDa, o la masa molecular de mPEGl es 20 kDa y la masa molecular de mPEG2 es 12 kDa.
5. El conjugado de cualquiera de las reivindicaciones 1-4 donde la EPO es EPO humana recombinante (EPO hr).
6. Una composición farmacéutica que comprende el conjugado de cualquiera de las reivindicaciones 1-5 y un excipiente farmacéuticamente aceptable.
7. Un método para la obtención de eritropoyetina (EPO) peguilada que se caracteriza porque dicha proteína se conjuga a una estructura polimérica ramificada asimétrica que comprende dos ramas de monometoxipolietilenglicol (mPEG) donde la masa molecular de una de las ramas de mPEG está entre 10 kDa y 14 kDa, y la masa molecular de la otra rama de mPEG está entre 17 kDa y 23 kDa.
8. El método de la reivindicación 7 donde la masa molecular de una de las ramas de mPEG es 12 kDa y la masa molecular de la otra rama de mPEG es 20 kDa.
9. El método de la reivindicación 7 donde la estructura polimérica ramificada asimétrica se representa como:
o
Figure imgf000021_0001
OH 10. El método de la reivindicación 9 donde la masa molecular de mPEGI es 12 kDa y la masa molecular de mPEG2 es 20 kDa, o la masa molecular de mPEGI es 20 kDa y la masa molecular de mPEG2 es 12 kDa.
11. El método de cualquiera de las reivindicaciones 7-10 donde la EPO es EPO humana recombinante (EPO hr).
PCT/CU2015/000001 2014-01-08 2015-01-08 Conjugado que comprende eritropoyetina y una estructura polimérica ramificada WO2015104008A1 (es)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CA2935306A CA2935306A1 (en) 2014-01-08 2015-01-08 Conjugate comprising erythropoietin and a branched polymer structure
AU2015205774A AU2015205774B2 (en) 2014-01-08 2015-01-08 Conjugate comprising erythropoietin and a branched polymer structure
EA201691386A EA201691386A1 (ru) 2014-01-08 2015-01-08 Конъюгат, включающий эритропоэтин и разветвленную полимерную структуру
MX2016008928A MX2016008928A (es) 2014-01-08 2015-01-08 Conjugado que comprende eritropoyetina y una estructura polimerica ramificada.
SG11201604984TA SG11201604984TA (en) 2014-01-08 2015-01-08 Conjugate comprising erythropoietin and a branched polymer structure
EP15705897.5A EP3093024A1 (en) 2014-01-08 2015-01-08 Conjugate comprising erythropoietin and a branched polymer structure
CN201580004018.1A CN106163541A (zh) 2014-01-08 2015-01-08 包含促红细胞生成素和支化聚合物结构的缀合物
JP2016545283A JP6367952B2 (ja) 2014-01-08 2015-01-08 エリスロポエチンおよび分枝ポリマー構造を含む複合体
US15/108,862 US20160317674A1 (en) 2014-01-08 2015-01-08 Conjugate comprising erythropoietin and a branched polymer structure
KR1020167018696A KR20160105811A (ko) 2014-01-08 2015-01-08 에리트로포이에틴을 포함하는 컨쥬게이트 및 분지형 폴리머 구조
NZ722092A NZ722092A (en) 2014-01-08 2015-01-08 Conjugate comprising erythropoietin and a branched polymer structure
IL246526A IL246526A0 (en) 2014-01-08 2016-06-29 A bracelet containing erythropoietin and a branched polymer structure
ZA2016/04636A ZA201604636B (en) 2014-01-08 2016-07-07 Conjugate comprising erythropoietin and a branched polymeric structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CUCU-2014-0003 2014-01-08
CUP2014000003A CU20140003A7 (es) 2014-01-08 2014-01-08 Conjugado que comprende eritropoyetina y una estructura polimérica ramificada

Publications (2)

Publication Number Publication Date
WO2015104008A1 true WO2015104008A1 (es) 2015-07-16
WO2015104008A8 WO2015104008A8 (es) 2016-08-25

Family

ID=52573994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2015/000001 WO2015104008A1 (es) 2014-01-08 2015-01-08 Conjugado que comprende eritropoyetina y una estructura polimérica ramificada

Country Status (17)

Country Link
US (1) US20160317674A1 (es)
EP (1) EP3093024A1 (es)
JP (1) JP6367952B2 (es)
KR (1) KR20160105811A (es)
CN (1) CN106163541A (es)
AR (1) AR099045A1 (es)
AU (1) AU2015205774B2 (es)
CA (1) CA2935306A1 (es)
CU (1) CU20140003A7 (es)
EA (1) EA201691386A1 (es)
IL (1) IL246526A0 (es)
MX (1) MX2016008928A (es)
NZ (1) NZ722092A (es)
SG (1) SG11201604984TA (es)
TW (1) TWI561245B (es)
WO (1) WO2015104008A1 (es)
ZA (1) ZA201604636B (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932462A (en) 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
US20030133979A1 (en) 1992-06-11 2003-07-17 Alkermes Controlled Therapeutics, Inc. Device for the sustained release of aggregation-stabilized, biologically active agent
EP1479711A1 (en) 2002-01-15 2004-11-24 Pan Asia Bio (Shanghai) Co., Ltd Multidrop tree branching functional polyethylene glycol, the preparation method and the use of it
US7202208B2 (en) 2000-05-15 2007-04-10 Hoffman-La Roche Inc. Erythropoietin composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040136952A1 (en) * 2002-12-26 2004-07-15 Mountain View Pharmaceuticals, Inc. Polymer conjugates of cytokines, chemokines, growth factors, polypeptide hormones and antagonists thereof with preserved receptor-binding activity
WO2006061853A2 (en) * 2004-12-10 2006-06-15 Serum Institute Of India Limited Novel erythropoietic compounds and a process for producing erythropoietic compounds
CU23556A1 (es) * 2005-11-30 2010-07-20 Ct Ingenieria Genetica Biotech Estructura polimérica semejante a dendrímero para la obtención de conjugados de interés farmacéutico
PT2054074E (pt) * 2006-08-04 2014-11-07 Prolong Pharmaceuticals Llc Eritropoietina modificada
US8188222B2 (en) * 2006-11-08 2012-05-29 Nippon Kayaku Kabushiki Kaisha High molecular weight derivative of nucleic acid antimetabolite
CN101376676B (zh) * 2008-10-09 2012-04-25 天津派格生物技术有限公司 聚乙二醇化红细胞生成素蛋白长效制剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030133979A1 (en) 1992-06-11 2003-07-17 Alkermes Controlled Therapeutics, Inc. Device for the sustained release of aggregation-stabilized, biologically active agent
US5932462A (en) 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
US7202208B2 (en) 2000-05-15 2007-04-10 Hoffman-La Roche Inc. Erythropoietin composition
EP1479711A1 (en) 2002-01-15 2004-11-24 Pan Asia Bio (Shanghai) Co., Ltd Multidrop tree branching functional polyethylene glycol, the preparation method and the use of it

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
"Handbook of Experimental Pharmacology", vol. 101, pages: 49 - 114
A M FELIX ET AL: "Synthesis of symmetrically and asymmetrically branched pegylating reagents Correspondence to", J. PEPTIDE RES., vol. 63, 1 January 2004 (2004-01-01), pages 85 - 90, XP055189533 *
BRUNO D. ET AL.: "Dimeric erythropoietin fusion protein with enhanced erythropoietic activity in vitro and in vivo", BLOOD, vol. 97, no. 12, 2001, pages 3776 - 3782, XP002453391, DOI: doi:10.1182/blood.V97.12.3776
HARRIS J. M.; CHESS R. B.: "Effect of pegylation on pharmaceuticals", NAT. REV. DRUG DISCOV, vol. 2, 2003, pages 214 - 221, XP009042217, DOI: doi:10.1038/nrd1033
HARRIS J. M.; CHESS R. B.: "Effect of pegylation on pharmaceuticals", NAT. REV. DRUG DISCOV., vol. 2, 2003, pages 214 - 221, XP009042217, DOI: doi:10.1038/nrd1033
HARRIS J. M.; CHESS R. B: "Effect of pegylation on pharmaceuticals", NAT. REV. DRUG DISCOV., vol. 2, 2003, pages 214 - 221, XP009042217, DOI: doi:10.1038/nrd1033
JELKMANN, W.: "Renal Erythropoietin: Properties and Production", REV. PHYSIOL. BIOCHEM. PHARMACOL., vol. 104, 1986, pages 139 - 205
JOLLING K. ET AL.: "Mixed-effects Modelling of the Interspecies Pharmacokinetic Scaling of Pegylated Human Erythropoietin", EUR J PHARM SCI, vol. 24, 2005, pages 465 - 475, XP025316365, DOI: doi:10.1016/j.ejps.2005.01.002
KOURY, S.T. ET AL.: "Quantitation of erythropoietin producing cells in kidneys of mice by in situ hybridation: Correlation with hematocrit, renal erythropoietin mRNA and serum erythropoietin concentration", BLOOD, vol. 74, 1989, pages 645 - 651
LACOMBE, C. ET AL.: "Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney", J. CLIN. INVEST., vol. 81, 1988, pages 620 - 623
LONG D L ET AL: "Design of homogeneous, monopegylated erythropoietin analogs with preserved in vitro bioactivity", EXPERIMENTAL HEMATOLOGY, ELSEVIER INC, US, vol. 34, no. 6, 1 June 2006 (2006-06-01), pages 697 - 704, XP027879567, ISSN: 0301-472X, [retrieved on 20060601] *
MIKAYE, T. ET AL.: "Purification of Human Erythropoietin", J. BIOL. CHEM., vol. 252, 1977, pages 5558 - 5564
MIRON T.; WILCHEK M.: "A Simplified Method for the Preparation of Succinimidyl Carbonate Polyethylene Glycol for Coupling to Proteins", BIOCONJUGATE CHEM., vol. 4, 1993, pages 568 - 569, XP000417290, DOI: doi:10.1021/bc00024a022
MORIYA H ET AL.: "Pharmacokinetic and pharmacological profiles of free and liposomal recombinant human erythropoietin after intravenous and subcutaneous administrations in rats", PHARM RES., vol. 14, no. 11, 1997, pages 1621 - 1628, XP002337925, DOI: doi:10.1023/A:1012142704924
MORLOCK M ET AL.: "Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: protein stabilization and in-vitro release properties", J CONTROL RELEASE, vol. 56, no. 1-3, 4 December 1997 (1997-12-04), pages 105 - 115, XP004153924, DOI: doi:10.1016/S0168-3659(98)00070-4
RAJENDER REDDY K.; MODI M.W.; PEDDER S.: "Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C", ADV. DRUG DELIV. REVIEWS, vol. 54, 2002, pages 571 - 586, XP008086287, DOI: doi:10.1016/S0169-409X(02)00028-5
ROBERTS M. J.; BENTLEY M.D.; HARRIS J.M.: "Chemistry for peptide and protein PEGylation", ADV. DRUG DELIV. REVIEWS, vol. 54, 2002, pages 459 - 476, XP002354432, DOI: doi:10.1016/S0169-409X(02)00022-4
SINHA, V. R.; TREHAN, A.: "Biodegradable microspheres as protein delivery", J. CONTROLLED RELEASE, vol. 90, no. 3, 2003, pages 261 - 280, XP004440534, DOI: doi:10.1016/S0168-3659(03)00194-9
SPIVAK, J.L.: "Biochemical Pharmacology of Blood and Blood-Forming Organs", 1992, SPRINGER-VERLAG, article "The mechanism of action of erythropoietin: Erythroid cell response"
WANG Y J ET AL: "PEGylation markedly enhances the in vivo potency of recombinant human non-glycosylated erythropoietin: A comparison with glycosylated erythropoietin", JOURNAL OF CONTROLLED RELEASE, ELSEVIER, AMSTERDAM, NL, vol. 145, no. 3, 3 August 2010 (2010-08-03), pages 306 - 313, XP027129716, ISSN: 0168-3659, [retrieved on 20100426] *

Also Published As

Publication number Publication date
ZA201604636B (en) 2018-05-30
JP2017506619A (ja) 2017-03-09
IL246526A0 (en) 2016-08-31
NZ722092A (en) 2017-11-24
AR099045A1 (es) 2016-06-22
KR20160105811A (ko) 2016-09-07
AU2015205774B2 (en) 2017-11-30
SG11201604984TA (en) 2016-07-28
CA2935306A1 (en) 2015-07-16
CU20140003A7 (es) 2015-08-27
US20160317674A1 (en) 2016-11-03
TWI561245B (en) 2016-12-11
WO2015104008A8 (es) 2016-08-25
TW201538168A (zh) 2015-10-16
MX2016008928A (es) 2016-10-04
EP3093024A1 (en) 2016-11-16
AU2015205774A1 (en) 2016-07-28
CN106163541A (zh) 2016-11-23
EA201691386A1 (ru) 2016-11-30
JP6367952B2 (ja) 2018-08-01

Similar Documents

Publication Publication Date Title
Mero et al. Selective conjugation of poly (2-ethyl 2-oxazoline) to granulocyte colony stimulating factor
RU2409389C2 (ru) Дендример-пэг с четырьмя ветками для конъюгирования с белками и пептидами
Veronese et al. PEG− doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity
ES2877852T3 (es) Conjugados poliméricos de factor VIII
US7683158B2 (en) Pegylated factor VIII
ES2390082T5 (es) Conjugados de resto de Factor IX y polímeros
ES2636741T3 (es) Composición de insulina de acción prolongada
ES2597954T3 (es) Conjugados de proteína de la coagulación sanguínea
ES2382124T3 (es) Interferón alfa 2b modificado con polietilenglicol y método de preparación y aplicaciones de este
BR122016022033B1 (pt) conjugados de polipeptídeo isolado apresentando atividade pró-coagulante de fator viii, seu uso e composição farmacêutica
Gil et al. Bioengineered robust hybrid hydrogels enrich the stability and efficacy of biological drugs
BRPI0722341A2 (pt) G-csf modificado por polietileno glicol em forma de y, a preparação e uso do mesmo
Mahajan et al. Structural modification of proteins and peptides
CN102083469A (zh) 含有肝素结合蛋白和肝素-羟烷基淀粉缀合物的复合物
ES2386575T3 (es) Interferón alfa 2a modificado por polietilenglicol, su proceso de síntesis y su aplicación
Maso et al. Poly (L-glutamic acid)-co-poly (ethylene glycol) block copolymers for protein conjugation
Tuesca et al. Synthesis, characterization and in vivo efficacy of PEGylated insulin for oral delivery with complexation hydrogels
Licciardi et al. Nanoaggregates based on new poly-hydroxyethyl-aspartamide copolymers for oral insulin absorption
WO2015104008A1 (es) Conjugado que comprende eritropoyetina y una estructura polimérica ramificada
Na et al. Capillary electrophoretic separation of high-molecular-weight poly (ethylene glycol)-modified proteins
CN108884146A (zh) 具有延长的半衰期及降低的配体结合性质的因子viii
BR112014014868B1 (pt) Composições de hormônio estimulante da tiroide, métodos de produção do mesmo e uso de tais composições
Oss‐Ronen et al. Photopolymerizable Hydrogels Made from Polymer‐Conjugated Albumin for Affinity‐Based Drug Delivery
JP2019532019A (ja) オキシム含有リンケージを有する第viii因子部分のコンジュゲート
WO2021124266A1 (en) Pegylation of a trail ligand

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2935306

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 246526

Country of ref document: IL

Ref document number: 15108862

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 16175436

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 2016545283

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/008928

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167018696

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201604571

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016015764

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015205774

Country of ref document: AU

Date of ref document: 20150108

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201691386

Country of ref document: EA

REEP Request for entry into the european phase

Ref document number: 2015705897

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: A201608590

Country of ref document: UA

Ref document number: 2015705897

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016015764

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160706