WO2007055113A1 - スロットアンテナ - Google Patents

スロットアンテナ Download PDF

Info

Publication number
WO2007055113A1
WO2007055113A1 PCT/JP2006/321541 JP2006321541W WO2007055113A1 WO 2007055113 A1 WO2007055113 A1 WO 2007055113A1 JP 2006321541 W JP2006321541 W JP 2006321541W WO 2007055113 A1 WO2007055113 A1 WO 2007055113A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
frequency
band
slot antenna
loop
Prior art date
Application number
PCT/JP2006/321541
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kanno
Kazuyuki Sakiyama
Ushio Sangawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007509758A priority Critical patent/JP4050307B2/ja
Priority to CN2006800012695A priority patent/CN101099267B/zh
Priority to US11/723,786 priority patent/US7397439B2/en
Publication of WO2007055113A1 publication Critical patent/WO2007055113A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/25Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the present invention relates to an antenna for transmitting / receiving analog high-frequency signals such as microwave bands and millimeter wave bands, or digital signals.
  • the frequency band from 3. lGHz to 10.6 GHz approved for high-speed communication systems for short distances is 109.5% as the ratio band specified by the center frequency fO in the band. It corresponds to a large value.
  • the notch antenna known as the basic antenna, has a bandwidth ratio of less than 5%, and a slot antenna has a bandwidth ratio of less than 10%. Depending on such an antenna, it is extremely difficult to cover the entire wide frequency band.
  • the approved frequency band is divided into a plurality of parts and used.
  • UWB Ultra Wide Band
  • FIG. 23 (a) is a schematic perspective view from the upper surface side
  • FIG. 23 (b) is a schematic cross-sectional view cut along a straight line AB
  • FIG. 23 (c) is a schematic diagram of the rear surface transparent view of the upper surface side force.
  • a feed line 261 is provided on the top surface of the dielectric substrate 101, and a notch 14 extending inward from the edge 12a of the finite ground conductor 12 on the back surface side. It functions as a slot 14 formed and open at one end 13.
  • the slot 14 is a circuit element obtained by completely removing the conductor in the thickness direction in a partial region of the ground conductor 12. Slot 14 resonates near a frequency where the slot length Ls corresponds to a quarter effective wavelength.
  • the feed line 261 partially faces the slot 14 and excites the slot 14.
  • the feed line 261 is connected to an external circuit via the input terminal 201. Note that the distance t3 from the open end point 20 of the feed line 261 to the center of the slot 14 is generally set to about a quarter effective wavelength at the frequency fO in order to achieve input matching.
  • Patent Document 1 discloses a structure for operating a quarter-wave slot antenna at a plurality of resonance frequencies.
  • Figure 24 (a) shows a schematic diagram of the structure.
  • the same reference numerals are assigned to elements corresponding to the respective parts in the antenna of FIG.
  • the quarter-wave slot 14 is excited at the feeding point 15, and normal antenna operation is performed.
  • the resonant frequency of a slot antenna is defined by the loop length of slot 14.
  • the capacitive element 16 set between the points 16a and 16b is set to pass a signal having a frequency higher than the original resonance frequency of the slot 14. For this reason, the resonator length of the slot 14 can be changed according to the frequency. That is, at a low frequency, as shown in FIG. 24 (b), the resonator length of the slot 14 is determined by the physical length of the notch structure, as usual. On the other hand, at a high frequency, as shown in FIG.
  • Patent Document 1 states that with the above configuration, a double resonance operation can be realized with a single slot structure.
  • Patent Document 2 discloses a structure for causing a half-wave slot antenna to resonate at a plurality of frequencies.
  • FIG. 25 is a perspective view from the back side ground conductor side. As shown in this figure, in Patent Document 2, a plurality of slots 14 a, 14 b, 14 c sized to satisfy the resonance conditions for a plurality of desired frequencies are arranged in the structure of the ground conductor 12.
  • the slots 14a, 14b, and 14c are excited at the points 51a, 51b, and 51c at the respective frequencies from the open end point 20 of the feed line 261 at the respective frequencies, thereby generating double resonance.
  • the pattern shown with the continuous line in the figure has shown the conductor pattern of the board
  • the pattern shown with the dotted line has shown the conductor pattern of the board
  • Non-Patent Document 1 discloses another method for operating a half-wave slot antenna in a wide band. As described above, as a conventional slot antenna input matching method, the method of exciting the slot resonator 14 at a point where the effective wavelength is a quarter of the frequency fO from the open end 20 of the feed line 261 is employed. I came. However, in Non-Patent Document 1, as shown in the top perspective schematic diagram in FIG. 26, the line width of the region corresponding to the distance of the quarter effective wavelength at the frequency fO from the open end 20 of the feed line 261 is obtained. A narrow, high impedance region 263 is formed. The transmission line in the high-impedance region 263 has a characteristic impedance higher than the characteristic impedance (50 ⁇ ) that a normal transmission line has, and is coupled to the slot 14 at almost the center. .
  • the newly introduced high impedance region 263 functions as a resonator different from the slot resonator in terms of circuit.
  • the number of resonators is increased to two, so that multiple resonance operations can be obtained by coupling the resonators together.
  • Figure 2 (b) in Non-Patent Document 1 shows the frequency dependence of the reflection intensity characteristics obtained under the conditions shown in Table 1 below.
  • Non-Patent Document 1 in the above-mentioned offset distance range, good reflection intensity characteristics of minus 10 dB or less can be obtained in a specific band of 32% (from 4.1 GHz to 5.7 GHz). As compared with the measured characteristics shown in Fig. 4 of Non-Patent Document 1, this band characteristic is far superior to the 9% ratio band of a normal slot antenna fabricated on the same substrate condition.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-336328
  • Patent Document 2 JP 2004-23507 A
  • Non-Patent Document 1 “A Novel Broadband Microstrip—Fed Wide Slot Antenn a With Double Rejection Zeros” IEEE Antennas and Wireless Propagation Letters, vol. 2, 2003, pp. 194-196
  • the conventional slot antenna described above has a problem in terms of ensuring a wide band.
  • the operating band is limited by the band of the resonance phenomenon.
  • the frequency band where good reflection intensity characteristics can be obtained is limited to a specific band of about 10%.
  • Patent Document 1 achieves wideband operation by introducing a capacitive reactance element into the slot, specifically, an additional component such as a chip capacitor is required as the capacitive reactance element. There is a problem of becoming. Also newly introduced There is also a problem that the characteristics of the antenna vary due to variations in the characteristics of the additional components. Furthermore, according to the example disclosed in Patent Document 1, there is a problem in the band characteristics. For example, FIG. 14 of Patent Document 1 shows an example in which double resonance operation is obtained at 1.18 GHz and 2.05 GHz, but the VSWR (Voltage Standing Wave Ratio) is lower than 2, respectively. The band that rotates is only a few tens of MHz. In addition, Fig.
  • Patent Document 1 shows an example in which the VSWR is less than 3 in a band corresponding to a relative band conversion of 66% from 1.7 GHz to 3.45 GHz.
  • the band is still not sufficient, VSWR is about 3, and it is hard to say that the reflection intensity characteristics are good.
  • Patent Document 1 it is difficult to provide an antenna with an input matching characteristic that is low reflection in a currently desired ultra-wideband frequency band.
  • Patent Document 2 The method of Patent Document 2 is expected to be extremely difficult to implement. That is, since the feed line 261 crosses a plurality of slots between the input terminal force and the end of the open end, it is expected that a significant impedance mismatch will occur. In the frequency band where the resonance bands of each slot overlap, there is a possibility that good antenna operation cannot be performed by coupling between adjacent slots. If multiple slots introduced into the structure do not overlap in their respective resonance bands, it is not impossible to achieve impedance matching in each separated frequency band. In addition to having a 10% bandwidth, antenna operations in different modes, such as the 2nd harmonic and 3rd harmonic, even in the spurious band, may occur, so the frequency that can achieve both desired reflection intensity characteristics and radiation characteristics. Bandwidth is extremely limited. In any case, it is a difficult structure to obtain a specific bandwidth of several tens of percent or more.
  • Non-Patent Document 1 shows a narrow slot width Ws, similar to fig. 1 in Non-Patent Document 1, but under the conditions where the above broadband characteristics are obtained, 4 Ws is set to a value of 5 mm, which corresponds to a length of more than half of the 1/8 wavelength range of 9.8 mm.
  • the present invention solves the above-described conventional problems, and allows the slot antenna to operate in a wider band than in the past under easy-to-implement conditions, thereby realizing a broadband communication system and coexistence of multiple systems in a simple terminal. Make it easy.
  • the slot antenna of the present invention is formed by cutting out a dielectric substrate, a ground conductor having a finite area provided on the back side of the dielectric substrate, and a notch inward with a side edge of the ground conductor as an open point. And a feed line for feeding a high-frequency signal to the slot, the feed line intersecting at least partly with the slot, and at a first point near the slot, the feed line is Branched into a branch line group including at least two branch lines, and at least two branch lines in the branch line group are connected to each other at a second point near the slot different from the first point.
  • At least one loop wiring is formed on the feeder line, and the maximum loop length of each loop wiring is less than one effective wavelength at the upper limit frequency of the operating band.
  • the branch lengths of all the branch line groups that are set to be open and terminated without forming the loop wiring among the branch line groups are less than a quarter effective wavelength at the upper limit frequency of the operating band.
  • each loop wiring intersects the edge of the slot, and the slot is excited at two or more feeding points at different distances from the open point.
  • the region force in a region having a length of a quarter effective wavelength from the open-ended termination point to the center frequency of the operating band is higher than 50 ⁇ .
  • the transmission line and the slot are at least partly located at a distance less than a quarter effective wavelength from the open end point of the characteristic impedance to the center frequency of the operating band from the open end point of the characteristic impedance.
  • the total wiring width of the branch line group is set to be equal to or less than the wiring width of the transmission line having a characteristic impedance of 50 ⁇ on the same substrate.
  • the total wiring width of the branch line group is set to be higher than the 50 ⁇ and below the wiring width of the transmission line having the characteristic impedance.
  • the lowest resonance frequency of the ground conductor is The slot antenna is set lower than the operating band.
  • the introduction of the loop wiring makes it possible to easily obtain the multi-resonance characteristics that have been difficult to realize in the conventional slot antenna, and to enable wide band operation. Further, even in a conventional slot antenna that has already been operated at a double resonance, the operating band can be further expanded by adopting the structure of the present invention.
  • FIG. 1 is a schematic top view of a slot antenna according to the present invention.
  • FIG. 2 (a) is a schematic cross-sectional view of the slot antenna of the present invention of FIG. 1, (b) is a schematic cross-sectional view of another embodiment of the slot antenna of the present invention, and (c) is a schematic view of the slot antenna of the present invention.
  • FIG. 3 is a schematic top perspective view of the slot antenna of the present invention.
  • ⁇ 4 In a general high-frequency circuit structure with an infinite ground conductor structure on the back side, it is a schematic diagram of two circuits with a branching part in the signal wiring, (a) is a schematic diagram in the case of loop wiring, (B) is a schematic diagram in the case of stub wiring with open end, (c) is a schematic diagram in the case of loop wiring, especially when the second path is set extremely short.
  • FIG. 5 is a schematic top perspective view illustrating a path of a high-frequency current in a ground conductor in one embodiment of the slot antenna of the present invention.
  • FIG. 6 A cross-sectional structure diagram for explaining a concentrated portion of high-frequency current in the ground conductor of the transmission line, where (a) is a cross-sectional structure diagram in the case of a general transmission line, and (b) is branched.
  • FIG. 7 is a schematic top perspective view of the embodiment of the slot antenna of the present invention.
  • FIG. 8 is a schematic top perspective view of the embodiment of the slot antenna of the present invention.
  • FIG. 9 is a schematic top perspective view of the embodiment of the slot antenna of the present invention.
  • FIG. 10 is a schematic top perspective view of the embodiment of the slot antenna of the present invention.
  • FIG. 11 is a schematic top perspective view of the embodiment of the slot antenna of the present invention.
  • FIG. 12 is a schematic top perspective view of the embodiment of the slot antenna of the present invention.
  • FIG. 13 is a schematic top perspective view of Comparative Example 1.
  • FIG. 14 is a schematic top perspective view of Example la.
  • FIG. 15 is a comparison diagram showing the frequency dependence of the reflection intensity characteristics of Comparative Example 1 and Example la.
  • FIG. 16 is a schematic top perspective view of Comparative Example 2.
  • FIG. 17 is a schematic top perspective view of Example 2a.
  • FIG. 19 is a schematic top perspective view of Example 2b.
  • FIG. 21 Reflection intensity characteristic diagram of Example 3.
  • FIG. 22 is an angle dependence characteristic diagram of the radiation intensity of the slot antenna of Example 3, wherein (a) is an angle dependence characteristic diagram at 2.6 GHz, (b) is an angle dependence characteristic diagram at 4 GHz, (C) Angle dependence characteristic diagram at 6 GHz (d) Angle dependence characteristic diagram at 9 GHz
  • FIG. 23 Shows a typical quarter-wave slot antenna, (a) is a schematic top perspective view, (b) is a schematic cross sectional side view, and (c) is a schematic back side view viewed from the top cover.
  • FIG. 24 (a) is a schematic diagram of the structure of a quarter-wave slot antenna of Patent Document 1
  • (b) is a schematic diagram of the structure of a slot antenna when operating in a low frequency band
  • (c) is a high frequency band. Schematic diagram of slot antenna structure when operating in
  • FIG. 25 is a schematic perspective view of the back surface force of the slot antenna structure of Patent Document 2.
  • FIG. 26 is a schematic top perspective view of the slot antenna structure described in Non-Patent Document 1.
  • the slot center force is also the offset length to the connection point with the feed line 261.
  • FIG. 1 is a schematic top perspective view showing the structure of the slot antenna of this embodiment.
  • the slot antenna of the present embodiment includes a dielectric substrate 101 and a ground conductor 12 having a finite area provided on the back surface of the dielectric substrate 101.
  • the ground conductor 12 is formed with a slot 14 formed by cutting away from the side edge 12 a of the ground conductor 12 in the inner direction 107.
  • One end of the slot 14 is open at the side edge 12a of the ground conductor 12, and this portion functions as an “open point”.
  • the slot length Ls is set to a quarter effective wavelength near the center frequency fO of the operating band. If the above assumption does not hold, the slot length (Ls X 2 + Ws) considering the slot width may be set to a half effective wavelength at the center frequency f 0.
  • a feed line 261 that intersects the slot 14 is formed on the surface of the dielectric substrate 101.
  • the feed line 261 is a feed line for feeding a high-frequency signal to the slot 14.
  • FIG. 2 (a) is a cross-sectional view taken along the line AB in FIG.
  • the feeder line 261 is disposed on the outermost surface of the dielectric substrate 101, and the dielectric substrate Force in which the ground conductor 12 is disposed on the rearmost surface of the 101
  • the slot antenna of the present invention is not limited to the one having such a configuration.
  • at least one of the feed line 261 and the ground conductor 12 may be arranged inside the dielectric substrate 101 by adopting a multilayer substrate or the like.
  • the conductor wiring surface that functions as the ground conductor 12 with respect to the feed line 261 is not limited to one in the structure, and the layer on which the feed line 261 is formed. A grounding conductor 12 facing the gap may be disposed. That is, the slot antenna of the present invention can obtain the same effect even when the circuit configuration has a stripline structure that is not limited to the microstripline structure.
  • an opening in which the conductor layer constituting the ground conductor 12 is completely removed in the thickness direction is defined as “slot”. That is, the “slot” in this specification does not include a structure (non-opening portion) in which the surface of the ground conductor 12 is cut in a partial region and the thickness thereof is reduced.
  • the feeder line 261 is branched into two or more branch wires 205, 207, 213... At a first branch point 223 in the vicinity of the position facing the slot 14. At the second branch point 221, the pair of branch wires 205 and 207 are connected again to form a loop wire 209.
  • branch wirings 205, 207, 213,... There may be a short open stub without forming a loop wiring.
  • the branch wiring 213 does not constitute a loop wiring and functions as an open stub.
  • the loop length of the loop wiring 209 is set to be less than 1 times the effective wavelength at the upper limit frequency fH of the operating band. Also, the stub length of the open stub 213 included in the structure is set to less than one quarter of the effective wavelength at the upper limit frequency fH.
  • the distance t3 from the open-ended end point 20 of the feed line 261 to the center line of the slot 14 is set to a quarter effective wavelength at the center frequency fO and includes an operating band including the center frequency fO.
  • the characteristic impedance of the feeder line 261 is preferably set to 50 ⁇ .
  • the “center line” of the slot 14 refers to the edge 237 closer to the input terminal 201 of the feed line 261 among the two edges of the slot 14 extending along the inner direction 107 and the tip of the feed line 261.
  • the slot antenna of the present invention can also have a feed line structure as shown in the top perspective schematic diagram of FIG.
  • a part of the feed line 261 is configured by a transmission line having a characteristic impedance higher than 50 ⁇ , and forms a high impedance region 263.
  • the high impedance region 263 is a region of the feed line 261 having a distance of (tl + Ws + t2) from the open end point 20 toward the input terminal 201 side.
  • the impedance Zo of a general external circuit connected to the input terminal 201 and the characteristic impedance Z261 of the feeder line 261 match. If this value is not 50 ⁇ , the characteristic impedance of the high impedance region 263 is set to a higher value.
  • the length of the high impedance region 263 is set to about a quarter effective wavelength at the center frequency fO.
  • the slot width Ws is preferably set to be approximately the same as the sum of tl and t2.
  • the structure shown in FIG. 1 is effective in obtaining a wide band characteristic under the condition that the slot width Ws must be set narrow, and the structure shown in FIG. 3 has no restriction on the setting of the slot width Ws. This is effective when the ultra-wideband characteristics are obtained under certain conditions.
  • the loop wiring 209 in the slot antenna of the present embodiment simultaneously performs two functions of increasing the number of excitation locations of the slot resonator to a plurality of locations and adjusting the electrical length of the input matching circuit. Realizes ultra-wide bandwidth.
  • the functions performed by loop wiring will be described in detail.
  • FIG. 4 (a) shows a schematic diagram of a circuit in which a loop wiring 209 including a first path 205 and a second path 207 is connected between an input terminal 201 and an output terminal 203. ing.
  • the loop wiring becomes a resonance condition under the condition that the sum of the path length Lpl of the first path 205 and the path length Lp2 of the second path 207 corresponds to one time the effective wavelength for the transmission signal.
  • Such loop wiring is sometimes used as a ring resonator.
  • the path lengths Lpl and Lp2 are shorter than the effective wavelength of the transmission signal, the loop wiring 209 does not show a steep frequency response, so there is no reason why it is actively used in a normal high-frequency circuit.
  • the introduction of the loop wiring 209 in the slot antenna of the present invention provides a powerful and unique effect that cannot be obtained with the general high-frequency circuit described above.
  • This point will be described with reference to the schematic top perspective view of FIG. If the linear feed line 261 is replaced with the loop wiring 209 in the vicinity of the location where the slot 14 exists in the ground conductor 12, the local high-frequency current distribution around the slot 14 is fluctuated, and the resonance characteristics of the slot antenna are improved. It can be changed.
  • the high-frequency current in the ground conductor 12 is guided in the direction of the arrow 233 along the first path 2 05 branched by the first branch point 221, while the arrow 23 5 in the second path 207. It is also guided in the direction.
  • different paths along the directions of arrows 233 and 235 can be generated in the flow of the high-frequency current in the ground conductor 21, and the slot antenna can be excited at a plurality of locations.
  • the high-frequency current distribution during signal transmission differs between the signal conductor side and the ground conductor side of the transmission line.
  • Fig. 6 we explain how the strength distribution of the high-frequency current on the signal conductor side and ground conductor side fluctuates due to signal conductor branching.
  • FIG. 6 shows a schematic diagram of a transmission line cross-sectional structure.
  • the signal conductor is not branched. Therefore, high-frequency current concentration occurs in the signal conductor 401 at the edge portions 403 and 405 of the signal conductor 401, and high-frequency current concentration occurs in the ground conductor 12 opposite to the central portion of the signal conductor 401. Region 407. Therefore, for example, even if the width of the feed line 261 is increased in the conventional slot antenna, a large change in the distribution of the high-frequency current in the ground conductor 12 cannot be caused. It is difficult to realize cocoon.
  • the signal conductor 401 is split into two signal conductors 409 and 411.
  • a high-frequency current distribution is generated in the ground conductor regions 413 and 415 facing the branch wirings 409 and 411, respectively. This contributes to the realization of a wider band.
  • the loop wiring included in the slot antenna of the present invention has a function of adjusting the electrical length of the feed line 261 as well as performing the function of making the slot antennas have a plurality of excitation locations.
  • the fluctuation of the electrical length of the feed line 261 due to the introduction of the loop wiring shifts the resonance condition of the feed line 261 to the double resonance condition, that is, the resonance condition is established in a plurality of frequency bands. The expansion effect is further enhanced.
  • the distance t3 from the open end point of the feed line to the point intersecting the slot, or (t2 + Ws ⁇ 2) was closely related to the effective wavelength at the center frequency fO.
  • the slot antenna feed structure shown in Fig. 1 or Fig. 3 expands the operating bandwidth of the conventional slot antenna (Figs. 23 and 26) by simply inheriting the design principle of the feed line.
  • the slot length is designed according to the center frequency fO of the operation, and the length t3 is set at the center frequency fO. Set to one-quarter effective wavelength. If the loop structure of the present invention is introduced in the vicinity of the slot of the feed line 26, the electrical length of the two paths constituting the loop wiring is short! The resonance frequency of the feed line 261 in the case of passing through the path is separated, and multiple resonance operation is guided.
  • the slot width Ws is set large, and tl
  • the impedance of the transmission line in the quarter effective wavelength region is set to a high value and operated under the condition of ttl2.
  • the loop wiring of the present invention is introduced in the vicinity of the slot of the feed line 261, a path having a short electrical length and a path having a long electrical length among the two paths constituting the loop wiring.
  • the resonance phenomenon coupled to the slot resonator occurs at a plurality of frequencies of 2 or more, and the wideband matching conditions that have already been obtained are further expanded. Become. [0060] As described above, in the present invention, the combination of the first function for making the resonance phenomenon of the slot itself double resonance and the second function for making the resonance phenomenon of the feed line coupled to the slot double resonance, It is possible to operate in a wider band than the conventional slot antenna.
  • the slot antenna of the present invention must be used under the condition that the loop wiring does not resonate in order to maintain the matching characteristics in a wide band.
  • the loop wiring 209 shown in Fig. 4 (a) as an example, the loop length Lp, which is the sum of the path length Lpl and the path length Lp2, corresponds to one effective wavelength at any frequency in the operating band. must not. This condition must be satisfied for all the loop wirings when there are a plurality of loop wirings in the slot antenna of the present invention. Therefore, the loop length of the largest loop wiring included in the antenna must also be set shorter than the effective wavelength of the upper limit frequency of the operating band.
  • a structure used in a general high-frequency circuit includes an open stub shown in Fig. 4 (b). If an open stub 213 having a length Lp3 is branched and connected to the transmission line 211, a resonance condition is established at a frequency at which the length Lp3 is a quarter effective wavelength. In that case, the open stub 213 functions as a band rejection filter for signal transmission between the input terminal 201 and the output terminal 203.
  • the one that does not constitute the loop wiring may be a stub.
  • the maximum stub length must be set to less than a quarter effective wavelength at the upper frequency limit of the operating band. The reason why the open stub resonates in the feed line and operates as a band rejection filter is to limit the operating band of the slot antenna.
  • Figure 4 (c) shows an extreme example of loop wiring, and explains the advantages of loop wiring compared to open stubs.
  • the loop wiring 209 in Fig. 4 (c) when the length Lp2 is made extremely small, the loop wiring apparently approaches an open stub structure.
  • the resonant frequency of the loop wiring is the frequency corresponding to the effective wavelength of the length Lpl
  • the resonant frequency of the open stub is the effective wavelength of the quarter of the length Lp3. Corresponding frequency.
  • the two structures are compared under the condition that half of the length Lpl is equal to the length Lp3, the resonant frequency of the loop wiring is twice the resonant frequency of the stub wiring.
  • the loop wiring is twice as effective in terms of frequency band as an open stub. is there.
  • the open termination point 213b of the open stub 213 in FIG. 4B is open in a circuit, no high-frequency current flows. As a result, even if the open end point 213b is arranged near the slot, it is difficult to obtain electromagnetic coupling with the slot.
  • one point 213c of the loop wiring 209 in FIG. 4 (c) is never opened in terms of circuit, a high-frequency current always flows. As a result, if it is arranged near the slot, it is easy to obtain electromagnetic coupling with the slot. Also from this point, in order to obtain the effect of the present invention, the use of the loop wiring is more advantageous than the use of the open stub.
  • the slot antenna of the present invention by introducing a “loop wiring” that is not a line having a large line width or an open stub to the feed line 261, the limitation of the operating band can be avoided well, and the broadband antenna can be avoided. It is possible to effectively realize drought.
  • FIG. 7 is a top perspective schematic diagram of the embodiment in which the number of branches of the branch line portion of the feed line 261 is three.
  • the number of branch lines that branch the feeder line 261 may be set to a value of 3 or more! /, But it is not possible to dramatically increase the operating band compared to the characteristics when branching to 2 lines. ,.
  • the distribution strength of the high-frequency current is high in the branch line group branched into a plurality of paths, that is, the path 251 that passes through the location closest to the open end side of the slot, and conversely, the location farthest from the open end side of the slot.
  • the arrangement of the loop wiring and the slot is such that the first path 205 and the second path 207 constituting the loop wiring 209 are both connected to the slot 14 and the ground conductor 12. It is preferable to cross at least one of the boundary lines, in other words, the edge 237 or 239 of the slot.
  • the entire loop wiring 209 is included in the slot 14, and the loop wiring 209 does not intersect with either of the slot edges 237 and 239. The effects of the present invention can be obtained. In the configuration of FIG.
  • the effect of the present invention can be achieved as long as the loop wiring 209 is in the vicinity of the slot. It is possible to obtain.
  • the condition that the loop wiring 209 is arranged “near the slot” is, strictly speaking, from the outermost point of the loop wiring 209 to the boundary line between the slot 14 and the ground conductor 12 (slot 14 This means that the distance Ldl to edge 237 or edge 239) is less than one times the wiring width of the feeder line 261.
  • the loop wiring 209 may be designed to cross both edges 237 and 239 of the slot 14, respectively.
  • the loop wiring 209 in FIG. 10 is formed in a trapezoidal shape.
  • the shape of the loop wiring 209 is not particularly limited.
  • a plurality of loop wirings 209 may be formed.
  • the loop wirings 209 may be connected in series, or may be connected in parallel as already shown in FIG. Further, the two loop wirings 209 may be directly connected to each other, or may be indirectly connected via a transmission line having an arbitrary shape.
  • two loop wirings 209a and 209b that individually intersect with the edges 237 and 239 of the slot 14 may be arranged in series.
  • parallel loop wirings 209c and 209d that individually intersect with the edge 237 of the slot 14 and the slots 237 are connected.
  • a parallel loop wiring 209e and 209f crossing the edge 239 of the lot 14 may be arranged in series.
  • the line width of the loop wiring 209 is selected so that the same condition as the characteristic impedance of the feeder line 261 connected to the input side or the open end of the tip end, or the condition for increasing the impedance is equivalently established. It is preferable. That is, when the feed line 261 is branched, it is preferable that the loop line 209 is constituted by a branch line that is not more than half the line width of the original feed line 261. As is clear from Non-Patent Document 1, the slot antenna itself tends to be easily matched to the resistance value of 50 ⁇ due to the coupling with the high-impedance line. Equivalently increasing the characteristic impedance of the feeder 261 near 14 is an effective force for realizing further low reflection characteristics.
  • the shape of the slot need not be rectangular and can be replaced with an arbitrary curved shape.
  • a series inductance can be added to the main slot in terms of a circuit, and the slot length of the main slot can be shortened, which is practically preferable.
  • the effect of the broadband antenna of the slot antenna of the present invention can be obtained without change even under the condition that the slot width of the main slot is narrowed and bent down to a meander shape or the like.
  • a slot antenna (Comparative Example 1) as shown in the top schematic view of FIG. 13 and a slot antenna (Example 1) as shown in the schematic top view of FIG. 14 were prepared.
  • a 20-micron-thick signal conductor pattern and ground conductor pattern were formed on the front and back surfaces of the substrate by copper wiring. Each wiring pattern removes part of the metal layer by wet etching The surface was gold plated with a thickness of 5 microns.
  • the outer edge 12a of the conductor grounding conductor 12 was set to be 100 microns inside even when it was closest to the end face of the dielectric substrate 101. In the figure, the ground conductor pattern is indicated by a dotted line.
  • An SMA connector was connected to the input terminal portion 201 so that the fabricated antenna and the measurement system could be connected via a feeder line 261 having a characteristic impedance of 50 ⁇ . Note that a practically useful reflection intensity standard is set to minus 10 dB or less, and the frequency band that satisfies the above characteristics is called the operating band.
  • the line width W1 of the feeder line 261 was 920 microns. In Comparative Example 1, loop wiring was not used for the signal conductor, and the line width of the feed line 261 was 920 microns even near the slot.
  • the slot width Ws is 0.5 mm
  • the offset length Ld2 is 2.5 mm
  • the slot length Ls is 12 mm
  • the distance t3 from the open end point 20 to the feed point at the center of the slot is fixed to 10 mm.
  • the operating band of Comparative Example 1 was 4.63 GHz to 6.53 GHz, and the specific band was 34.1%. From the frequency dependence of the reflection intensity characteristics, it was confirmed that the resonance phenomenon occurred only at a single frequency of 5. 87 GHz! / ,!
  • Example la the signal conductor in the vicinity of slot 14, which was linear in Comparative Example 1, was connected to the isosceles with the protruding portion protruding to the open end 13 side of the slot. Replaced with triangular loop wiring 209. Except for the above changes, the structural parameters of Example la were fixed to the same conditions as in Comparative Example 1.
  • the length of the base of the isosceles triangle of loop wiring 209 was 1.5 mm, and the height hi was 2.5 mm.
  • the wiring width of the loop wiring is 460 microns, which is half of the wiring width W1 of the 50 ohm line.
  • the operation band of Example la was 4.01 GHz and 7.01 GHz, and a specific band of 52.6% was obtained.
  • Example la showed the minimum value of the reflection intensity at the two frequencies of 4.75 GHz and 6.38 GHz, and confirmed the double resonance operation.
  • FIG. 15 shows the frequency dependence of the reflection intensity characteristics of Example 1 and Comparative Example 1.
  • the solid line shows the characteristics of Example la
  • the dotted line shows the characteristics of Comparative Example 1.
  • the effect of the present invention was proved from the change of the single resonance characteristic to the double resonance characteristic and the expansion of the operating band.
  • Example lb was produced by changing the loop wiring structure of Example la.
  • Example la the convex part of the isosceles triangle of the loop wiring protruded toward the slot open end 13 side.
  • Force In Example lb the arrangement direction of the loop wiring was reversed, and the direction in which the isosceles triangle protruded was set in the depth direction of the slot.
  • Other structural parameters were the same as in Example la.
  • Example lb The operating band of Example lb was 4.82 GHz from 4.45 GHz force, and a specific band of 42.1% was obtained.
  • Example lb also realized a wider band operation than Comparative Example 1.
  • the center of gravity of the isosceles triangle of the loop wiring that was matched with the center part of the gap of the slot was moved 0.25 mm toward the input terminal side.
  • Example lc toward the tip open point 20 side Example Id was made by moving 0.25 mm.
  • Examples lc and Id the positions of the centers of gravity of the isosceles triangles were set at points facing the slots 14 and the edges 237 and 239 of the ground conductor 12, respectively.
  • the operating band of the example lc was 4.72 GHz to 7.05 GHz, and a specific band of 39.6% was obtained.
  • Example The operating band of Id was 4.04 GHz to 6.28 GHz, and a specific band of 43.4% was obtained.
  • Example Due to the characteristics of lc and Id the introduction of loop wiring to the input terminal side feed line increases the bandwidth on the high frequency side of the band, and the introduction of the loop wiring to the open end side feed line increases the bandwidth on the low side of the band.
  • Example la to Id Even if the deviation from Example la to Id is wider than Comparative Example 1, a low reflection operation can be realized in a specific band, and the advantageous effect of the present invention has been proved.
  • Table 2 shows a comparison of characteristics between Examples la to Id and Comparative Example.
  • the operation band of Comparative Example 2 was 5.67 GHz from 3.46 GHz force, and the specific band was 48.4%.
  • the reflection loss was minimal at two frequencies of 3.77 GHz and 5.27 GHz, and the effect of realizing the double resonance operation disclosed in Non-Patent Document 1 was obtained.
  • Example 2a having a configuration in which a loop wiring structure was introduced into the high impedance region 263 having the linear shape of Comparative Example 2 was produced.
  • FIG. 17 shows a schematic top perspective view of Example 2a.
  • triangular loop wirings 209a and 209b are arranged in the vicinity of the slot 14 in series. Specifically, the loop wiring 209a is disposed at a position facing the edge 237 of the slot, and the loop wiring 209b is disposed at a position facing the edge 239.
  • the loop wirings 209a and 209b have a mirror symmetry relationship with a plane perpendicular to the substrate passing through the mirror plane 271 at the center of the gap portion of the slot 14 as a plane of symmetry.
  • Each of the loop wirings 209a and 209b has an isosceles triangular shape, its base is 4 mm, height hi is 2.5 mm, and wiring width is 125 microns.
  • Example 2a The operation band of Example 2a was 3.48 GHz from 3.13 GHz force, and the specific band reached 92.2%. Compared to Comparative Example 2, the specific band expansion effect in Example 2a was 1.9 times.
  • FIG. 18 shows the frequency dependence of the reflection intensity characteristics of Comparative Example 2 and Example 2a.
  • the characteristic of Comparative Example 2 is indicated by a dotted line, and the characteristic of Example 2a is indicated by a solid line. From FIG. 18, it was proved that this example 2a can realize an ultra-wideband characteristic that further exceeds the broadband characteristic of Comparative Example 2 in which the double resonance characteristic has already been realized.
  • Example 2b whose top perspective schematic diagram is shown in FIG. 19 was produced.
  • Example 2a the force in which the triangular convex portions of the two loop wirings 209a and 209b were directed toward the open end of the slot.
  • Example 2b the direction of the loop wiring was changed to the depth direction of the triangular convex partial force slot. The direction was reversed to be oriented in the opposite direction. Except for the direction of the loop wirings 209a and 209b, the structural parameters of Example 2a and Example 2b were all the same.
  • Example 2b The operating band of Example 2b was 6.29 GHz from 3.34 GHz force, and a specific band of 61.3% was obtained. Compared with Comparative Example 2, the specific band expansion effect in Example 2b was 1.27 times.
  • FIG. 20 shows the frequency dependence of the reflection intensity characteristics of Comparative Example 2 and Example 2b.
  • the operating band is as wide as Example 2a.
  • the reflection characteristics in the high frequency band of 7 GHz to 9 GHz are clearly improved by 4 dB or more.
  • the band characteristics of the slot antenna having the conventional structure can be improved by adopting the structure of the present invention.
  • Example 3 was produced.
  • the width a of the ground conductor 12 that was 60 mm in Example 2a was reduced to 35 mm to obtain Example 3.
  • the other structural parameters were the same as in Example 2a, but the length b on the vertical side of the grounding conductor 12 that did not significantly affect the reflection characteristics was reduced to 25 mm.
  • the specific bandwidth of 113.3% is a value wider than the specific bandwidth of 109.5% from 3.1 GHz to 10.6 GHz, which is a band used in short-range wireless communication.
  • Table 3 shows a comparison of characteristics of Example 2a, Example 2b, Example 3 and Comparative Example 2.
  • FIG. 22 shows (a) 2.6 GHz, (b) 4 GHz, (c) 6 GHz, and (d) 9 GHz in a plane parallel to the dielectric substrate of the slot antenna of Example 3.
  • the angle dependence of the radiation directivity is shown.
  • the direction corresponding to an angle of 270 degrees corresponds to the direction of the slot opening end as viewed from the back of the slot.
  • the main beam was directed in this direction, and the gain was almost equal to 4dB in OdB force.
  • the radiation directivity having the same tendency can be obtained not only in the ultra-wideband but also in the ultra-wideband.
  • the slot antenna of the present invention can expand the matching band without increasing the circuit occupation area and the manufacturing cost, a powerful high-performance terminal that cannot be realized unless a plurality of conventional antennas are mounted. This can be realized with a simple configuration. It can also contribute to the realization of a short-range wireless communication system that uses a much wider frequency band than before. Since the operating band can be expanded without using chip components, it is also useful as an antenna that is highly resistant to variations during manufacturing. Compared with the same slot width, the wideband slot antenna can be operated much wider than the conventional wideband slot antenna, so the wideband slot antenna can be downsized. It can also be used as a small antenna in systems that require ultra-wideband frequency characteristics such as transmitting and receiving digital signals wirelessly.

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

 本発明のスロットアンテナは、誘電体基板101の裏面側設けられた接地導体12と、接地導体12の側縁を開放点として内側に切り欠いて形成されたスロット14と、スロット14に高周波信号を給電するための給電線路261とを備えている。給電線路261は、スロット14と交差している。この給電線路261は、スロット付近の第一の地点において、少なくとも2本の分岐線路を含む分岐線路群に分岐され、分岐線路群の内の少なくとも2本の分岐線路は、スロット付近の第二の地点において相互に接続され、少なくとも1つのループ配線209を形成している。ループ配線209のループ長の最大値が動作帯域の上限周波数において1実効波長未満の長さに設定されている。また、分岐線路群の内、ループ配線209を形成せずに先端開放終端される全ての分岐線路群の分岐長が動作帯域の上限周波数において4分の1実効波長未満である。

Description

明 細 書
スロットアンテナ 技術分野
[0001] 本発明は、マイクロ波帯、およびミリ波帯などのアナログ高周波信号、またはデジタ ル信号を送信 ·受信するアンテナに関する。
背景技術
[0002] 二つの理由から、従来よりもはるかに広い帯域での動作を可能にする無線デバイス が必要となっている。第一の理由は、広大な周波数帯域の使用が認可された近距離 無線向け通信システムに対応するためである。第二の理由は、異なる周波数を用い て乱立する複数の通信システムを、一台の端末で共用するためである。
[0003] 例えば、近距離向け高速通信システム用に認可された 3. lGHz〜10. 6GHzの周 波数帯域は、帯域内の中心周波数 fOで規格ィ匕した比帯域としては 109. 5%という 広大な値に相当している。一方、基本的なアンテナとして知られるノツチアンテナの 比帯域特性は 5%未満、スロットアンテナの比帯域特性は 10%未満である。このよう なアンテナによっては、上記の広大な周波数帯域の全体をカバーすることは著しく困 難である。
[0004] 第一段階として策定されつつある上記通信システムの仕様では、認可された周波 数帯域が複数に分割して使用されることになつている。その理由の 1つは、超広帯域 (UWB : Ultra Wide Band)の全体をカバーするアンテナを現在の技術で実現す ることが困難なことにある。
[0005] 現在、世界で無線通信用に使用されている周波数帯域を例にとると、 1. 8GHz帯 〜2. 4GHz帯を同一アンテナでカバーするためには、 30%程度の比帯域を実現す る必要がある。また、上記帯域に加えて、 800MHz帯、 2GHz帯を同一アンテナで力 バーする場合には、 90%程度の比帯域を実現できなければならない。さらに、 800 MHz帯から 2. 4GHz帯までを同一アンテナでカバーするためには、 100%以上の 比帯域を実現することが要求されることになる。このように、同一端末で同時に扱うシ ステム数が増加し、カバーすべき周波数帯域が広がるほど、広帯域なアンテナの実 現が簡易な端末構成の一つの解として望まれることになる。
[0006] 図 23に模式図を示す 4分の 1波長スロットアンテナは、最も基本的な平面アンテナ の一つである。図 23 (a)は、上面側からの透視模式図、図 23 (b)は、直線 ABで切断 した断面模式図、図 23 (c)は上面側力もみた裏面透視模式図である。
[0007] 図示されているスロットアンテナでは、誘電体基板 101の上面に給電線路 261があ り、裏面側にある有限の接地導体 12の縁部 12aから内側方向(inward)に延びる切り 欠き 14が形成され、一端 13が開放されたスロット(slot) 14として機能する。スロット 1 4は、接地導体 12の一部の領域において、導体を厚さ方向に完全に除去して得られ る回路要素である。スロット 14は、スロット長 Lsが 4分の 1実効波長に相当する周波数 付近で共振する。
[0008] 給電線路 261は、スロット 14と一部で対向し、スロット 14を励振する。給電線路 261 は、入力端子 201を介して外部回路に接続される。なお、給電線路 261の先端開放 終端点 20からスロット 14の中心までの距離 t3は、入力整合を図るために、周波数 fO における 4分の 1実効波長程度に設定されることが一般的である。
[0009] 特許文献 1は、 4分の 1波長スロットアンテナを複数の共振周波数で動作させるため の構造を開示している。図 24 (a)に、その構造模式図を示す。図 24では、図 23のァ ンテナにおける各部と対応する要素に同一の参照符号を付している。
[0010] 図 24 (a)のスロットアンテナでは、 4分の 1波長スロット 14が給電点 15において励振 され、通常のアンテナ動作が実行される。通常、スロットアンテナの共振周波数はスロ ット 14のループ長で規定される。図示されているアンテナでは、点 16aと点 16bとの 間に設定された容量素子 16が、スロット 14の本来の共振周波数よりも高い周波数の 信号を通過させるよう設定されている。このため、スロット 14の共振器長を周波数に 応じて変化させることが可能となる。すなわち、低い周波数では、図 24 (b)に示すよう にスロット 14の共振器長は、通常と変わらずに、切り欠き構造の物理的な長さで決定 される。これに対して、高い周波数では、図 24 (c)に示すように、スロット 14の共振器 長が、現実の物理的な共振器長よりも短くなつた状態と同様の状態で動作する。特 許文献 1には、上記の構成により一つのスロット構造で複共振動作を実現できると記 載されている。 [0011] 特許文献 2は、 2分の 1波長スロットアンテナを複数の周波数で共振させるための構 造を開示している。図 25は、裏面接地導体側からの透視図である。この図に示すよう に、特許文献 2においては、複数の所望の周波数に対してそれぞれ共振条件を満足 するサイズの複数のスロット 14a、 14b、 14cを接地導体 12の構造内に配置している 。そして、給電線路 261の開放終端箇所 20から各周波数においてそれぞれ 4分の 1 実効波長となる地点 51a、 51b、 51cで各スロット 14a、 14b、 14cを励振し、複共振を 生じさせる。なお、図中実線で示したパターンは、基板裏面の導体パターンを示して おり、点線で示したパターンは、基板表面の導体パターンを示している。
[0012] 非特許文献 1は、 2分の 1波長スロットアンテナを広帯域に動作させる別の方法を開 示している。上述したように、従来のスロットアンテナの入力整合方法としては、給電 線路 261の先端開放終端点 20から周波数 fOにおける 4分の 1実効波長となる地点で スロット共振器 14を励振する方法が採用されてきた。しかし、非特許文献 1において は、図 26に上面透視模式図を示すように、給電線路 261の先端開放終端点 20から 周波数 fOにおける 4分の 1実効波長の距離に相当する領域の線路幅を狭め、高イン ピーダンス領域 263を形成して 、る。この高インピーダンス領域 263の伝送線路は、 通常の伝送線路が有して ヽる特性インピーダンス (50 Ω )よりも高 、特性インピーダ ンスを有しており、そのほぼ中央でスロット 14と結合している。
[0013] 新たに導入された高インピーダンス領域 263は、回路的には、スロット共振器とは別 の共振器として機能する。非特許文献 1によると、このような構成を採用すると、共振 器数が二つに増えるため、互いの共振器を結合することにより、複共振動作が得られ る。非特許文献 1の Fig. 2 (b)は、以下表 1に示す条件の下で得られた反射強度特 性の周波数依存性を示して 、る。
[0014] [表 1] 基板誘電率
基板厚さ 0. /5mm
スロット長(Ls) 24mm
設計周波数 5GHz
t1 +t2+Ws 9. 8mm
線路幅 w 20. 5mm
給電線路 261からスロット中心までオフ 9. 8mm〜1 0. 2mm セット距離
[0015] 非特許文献 1によると、上記のオフセット距離の範囲では、比帯域 32% (4. 1GHz 付近から 5. 7GHz付近)でマイナス 10dB以下の良好な反射強度特性が得られて ヽ る。この帯域特性は、非特許文献 1の Fig. 4に示される実測特性と比較されているよ うに、同一基板条件で作製した通常のスロットアンテナの比帯域 9%よりもはるかに優
D C
れている。
特許文献 1:特開 2004— 336328号公報
特許文献 2:特開 2004 - 23507号公報
非特許文献 1: "A Novel Broadband Microstrip— Fed Wide Slot Antenn a With Double Rejection Zeros" IEEE Antennas and Wireless Pro pagation Letters, vol. 2, 2003年, 194〜196ページ
発明の開示
発明が解決しょうとする課題
[0016] 上述した従来のスロットアンテナには、広帯域性の確保という点において課題があ る。
[0017] 第一に、構造内に単一の共振器構造しか有さない通常のスロットアンテナの場合、 共振現象の帯域によって動作帯域が制限される。その結果、良好な反射強度特性 が得られる周波数帯域は、 10%弱程度の比帯域に限られている。
[0018] 特許文献 1のアンテナにおいては、スロットへの容量性リアクタンス素子の導入によ り広帯域動作を実現しているものの、具体的に容量性リアクタンス素子としてはチップ コンデンサなどの追加部品が必要になるという問題がある。また、新たに導入された 追加部品の特性ばらつきにより、アンテナの特性がばらつくという問題もある。更に、 特許文献 1に開示されている例によれば、帯域特性にも課題がある。例えば、 1. 18 GHzと 2. 05GHzにおいて複共振動作が得られたことを示す実施例が特許文献 1の 図 14に示されているが、それぞれ、 VSWR (Voltage Standing Wave Ratio)が 2を下 回る帯域はわず力数十 MHz程度でしかない。また、特許文献 1の図 18では、 1. 7G Hzから 3. 45GHzという比帯域換算 66%にあたる帯域で VSWRが 3を下回った実 施例が示されているが、帯域はまだ十分でない上、 VSWRは 3程度であり反射強度 特性も良好とは言い難い。
[0019] このように、特許文献 1の開示内容によれば、現在望まれている超広帯域な周波数 帯域で低反射な入力整合特性を伴ったアンテナを提供することが困難である。
[0020] 特許文献 2の方法は、実現に著しい困難が予想される。すなわち、給電線路 261は 入力端子力も先端開放終端点までの間に複数のスロットと交差することになるので、 著 ヽインピーダンス不整合が発生することが予想される。各スロットが有する共振帯 域が重なる周波数帯域では、隣接するスロット間の結合で良好なアンテナ動作が行 えない可能性も考えられる。構造内に導入される複数のスロットが、それぞれの共振 帯域に重なりを持たな 、場合は、分離した各周波数帯域でインピーダンス整合を実 現することは不可能ではないが、現実には各スロットが 10%の帯域を有する上に、 2 倍波、 3倍波と 、うスプリアス帯域にぉ 、ても異なるモードのアンテナ動作が起きてし まうため、所望の反射強度特性と放射特性を両立できる周波数帯域は著しく限定さ れてしまう。いずれにせよ、数十%以上の比帯域を得るには困難な構造である。
[0021] また、非特許文献 1の例に示されるように、構造内への複数共振器導入により、共 振器間の結合により帯域特性を改善しても、比帯域特性は 35%程度に限られており 、更なる改善が必要である。また、非特許文献 1を模した図 26の上面透視模式図は 、非特許文献内の fig. 1と同様にスロット幅 Wsを狭く描いているが、上記広帯域特性 が得られた条件では、 4分の 1波長領域 9. 8mmの内半分以上の長さに相当する 5m mという値に Wsが設定されている。小型化を目的とし、限られた占有面積内にスロッ トを配置する必要が出てくれば、直線形状のスロットを折り曲げる等の対策が必要な だけに、 Wsが大きくなければ広帯域特性を得られない構造は小型化が困難となる。 [0022] 本発明は、上記従来の課題を解決し、スロットアンテナにおいて、実施容易な条件 において従来よりも広帯域な動作を可能とし、広帯域な通信システムの実現や、簡易 端末における複数システムの共存を容易とする。
課題を解決するための手段
[0023] 本発明のスロットアンテナは、誘電体基板と、前記誘電体基板の裏面側に設けられ た有限の面積の接地導体と、前記接地導体の側縁を開放点として内側に切り欠いて 形成されたスロットと、前記スロットに高周波信号を給電するための給電線路であって 、前記スロットと少なくとも一部が交差する給電線路とを備え、前記スロット付近の第 一の地点において、前記給電線路が少なくとも 2本の分岐線路を含む分岐線路群に 分岐され、前記分岐線路群の内の少なくとも 2本の分岐線路は、前記第一の地点と は異なる前記スロット付近の第二の地点において相互に接続され、前記給電線路に 少なくとも 1つのループ配線を形成しており、各ループ配線のループ長の最大値が、 それぞれ、動作帯域の上限周波数において 1実効波長未満の長さに設定され、前記 分岐線路群の内、前記ループ配線を形成せずに先端開放終端される全ての前記分 岐線路群の分岐長が動作帯域の上限周波数において 4分の 1実効波長未満である
[0024] 好ま 、実施形態にぉ 、て、各ループ配線は、前記スロットのエッジと交差し、前記 開放点から異なる距離の二点以上の給電点において前記スロットが励振される。
[0025] 好ましい実施形態において、前記給電線路のうち、先端開放終端点から、動作帯 域の中心周波数にお 、て 4分の 1実効波長の長さの領域の領域力 50 Ωよりも高 、 特性インピーダンスの伝送線路により構成され、前記先端開放終端点から動作帯域 の中心周波数にお!、て 4分の 1実効波長未満の距離にぉ 、て、前記給電線路と前 記スロットが少なくとも一部で交差する。
[0026] 好ま 、実施形態にぉ 、て、前記分岐線路群の配線幅の総和が、同一基板上で の 50 Ωの特性インピーダンスの伝送線路の配線幅以下に設定されて!ヽる。
[0027] 好ま 、実施形態にぉ 、て、前記分岐線路群の配線幅の総和が、前記 50 Ωよりも 高 、特性インピーダンスの伝送線路の配線幅以下に設定されて 、る。
[0028] 好ま 、実施形態にお!、て、前記接地導体が有する最低次の共振周波数は、前 記スロットアンテナの動作帯域よりも低く設定されて 、る。
発明の効果
[0029] 本発明のスロットアンテナでは、ループ配線の導入により、従来のスロットアンテナ にお 、ては実現困難だった複共振特性を容易に得ることができ、広帯域動作が可能 となる。また、既に複共振動作していた従来のスロットアンテナにおいても、本発明の 構造を採用することにより、更に動作帯域を飛躍的に拡大することができる。
図面の簡単な説明
[0030] [図 1]本発明のスロットアンテナの上面透視模式図
[図 2] (a)は図 1の本発明のスロットアンテナの断面模式図、(b)は本発明のスロットァ ンテナの別の実施形態の断面模式図、 (c)は本発明のスロットアンテナの別の実施 形態の断面模式図
[図 3]本発明のスロットアンテナの上面透視模式図
圆 4]無限の接地導体構造を裏面に有する一般的な高周波回路構造において、信 号配線に分岐部を有する二回路の模式図であって、 (a)はループ配線の場合の模 式図、(b)は先端開放スタブ配線の場合の模式図、(c)はループ配線の場合で、特 に第二の経路が極端に短く設定された場合の模式図
[図 5]本発明のスロットアンテナの一形態における接地導体での高周波電流の経路 を説明する上面透視模式図
[図 6]伝送線路の接地導体での高周波電流の集中箇所を説明するための断面構造 図であって、(a)は一般的な伝送線路の場合の断面構造図、(b)は分岐された伝送 線路の場合の断面構造図
[図 7]本発明のスロットアンテナの実施形態の上面透視模式図
[図 8]本発明のスロットアンテナの実施形態の上面透視模式図
[図 9]本発明のスロットアンテナの実施形態の上面透視模式図
[図 10]本発明のスロットアンテナの実施形態の上面透視模式図
[図 11]本発明のスロットアンテナの実施形態の上面透視模式図
[図 12]本発明のスロットアンテナの実施形態の上面透視模式図
[図 13]比較例 1の上面透視模式図 [図 14]実施例 laの上面透視模式図
[図 15]比較例 1と実施例 laの反射強度特性の周波数依存性を示す比較図
[図 16]比較例 2の上面透視模式図
[図 17]実施例 2aの上面透視模式図
[図 18]比較例 2と実施例 2aの反射強度特性の周波数依存性の比較図
[図 19]実施例 2bの上面透視模式図
[図 20]比較例 2と実施例 2bの反射強度特性の周波数依存性の比較図
[図 21]実施例 3の反射強度特性図
[図 22]実施例 3のスロットアンテナの放射強度の角度依存特性図であって、 (a)は 2. 6GHzの場合の角度依存特性図、(b)は 4GHzの場合の角度依存特性図、(c)は 6 GHzの場合の角度依存特性図(d) 9GHzの場合の角度依存特性図
[図 23]—般的な 4分の 1波長スロットアンテナを示し、(a)は上面透視模式図、(b)は 断面側面模式図、(c)は上面カゝら透視した裏面模式図
[図 24] (a)は、特許文献 1の 4分の 1波長スロットアンテナの構造模式図、(b)は低周 波帯で動作時のスロットアンテナの構造模式図、(c)は高周波帯で動作時のスロット アンテナの構造模式図
[図 25]特許文献 2のスロットアンテナ構造の裏面力もの透視模式図
[図 26]非特許文献 1に記載のスロットアンテナ構造の上面透視模式図
符号の説明
101 誘電体基板
107 内側方向(スロットの奥行き方向)
12 接地導体
12a 有限の面積を持つ接地導体の外縁部
14、 14a、 14b、 14c、 231 スロット
13 スロット開放端
15 給電部
16 容量性リアクタンス素子
16a、 16b 容量性リアクタンス素子により高周波的に接続される接地導体上の点 Ls スロット長
Ls2 容量性リアクタンス素子接続点からスロット開放端までの距離
261 給電線路
20 開放終端点
51a、 51b、 51c スロットと給電線路 261の結合点
263 給電線路 261の高インピーダンス領域
d スロット中心力も給電線路 261との結合点までのオフセット長
Ld2 スロット終端点力も給電線路 261までのオフセット長
tl、 t2 高インピーダンス領域を構成する各部位の線路長
t3 スロットのギャップ部分中心から給電先端開放終端点までの距離
W2 高インピーダンス領域の給電線路 261幅
Ws スロット幅
201、 203 入出力端子
205、 207 第一、第二の経路
Lpl、Lp2 第一、第二の経路長
Lp ループ長
209、 209a, 209b, 209c, 209d、 209e、 209f ループ配線
221、 223 第一、第二の分岐点
Lp3 開放スタブ長
211 伝送線路
213 開放スタブ
213b 開放スタブの先端開放終端点
213c ループ配線の任意の一点
233、 235 接地導体に生じる高周波電流の流れ
237 スロットの入力端子側エッジ
239 スロットの先端開放終端点側エッジ
241、 243 第一、第二の経路に伴い接地導体に生じる高周波電流の流れ方向 a、 b 有限の接地導体領域の横の長さと縦の長さ 271 スロットのギャップ部分の中央面
hi ループ配線の三角形状の二等辺三角形の高さ
401 信号導体
403、 405 信号導体の端縁部
407 信号導体の中央部に対向する接地導体上の領域
409、 411 分岐された信号導体
413、 415 信号導体分岐に基づき接地導体に高周波電流が誘起される領域 fO 動作帯域の中心周波数
fH 動作帯域の上限周波数
251、 253、 255 ループ配線を構成する経路
発明を実施するための最良の形態
[0032] 以下、図面を参照しながら、本発明によるスロットアンテナの実施形態を説明する。
[0033] (実施形態)
まず、図 1を参照する。図 1は、本実施形態のスロットアンテナの構造を示す上面透 視模式図である。
[0034] 本実施形態のスロットアンテナは、誘電体基板 101と、誘電体基板 101の裏面に設 けられた有限の面積の接地導体 12とを備えている。この接地導体 12には、接地導 体 12の側縁 12aから内側方向 107に切り欠いて形成されたスロット 14が形成されて いる。スロット 14の一端は、接地導体 12の側縁 12aにおいて開放されており、この部 分が「開放点」として機能する。スロット 14のスロット幅 Wsがスロット長 Lsに比べて無 視できるものと仮定した場合、スロット長 Lsは、動作帯域の中心周波数 fO付近におけ る 4分の 1実効波長に設定される。上記仮定が成立しない場合は、スロット幅を考慮し たスロット長 (Ls X 2 + Ws)を中心周波数 f 0における 2分の 1実効波長に設定すれば よい。
[0035] 誘電体基板 101の表面には、スロット 14と交差する給電線路 261が形成されている 。この給電線路 261は、スロット 14に高周波信号を給電するための給電線路である。
[0036] 次に、図 2 (a)を参照する。図 2 (a)は、図 1の直線 ABで切断した断面図である。本 実施形態では、誘電体基板 101の最表面に給電線路 261が配置され、誘電体基板 101の最裏面に接地導体 12が配置されている力 本発明のスロットアンテナは、この ような構成を有するものに限定されない。例えば、図 2 (b)に示すように、多層基板の 採用などにより、給電線路 261および接地導体 12の少なくとも一方が誘電体基板 10 1の内部に配置されて 、ても構わな 、。
[0037] また、図 2 (c)に示すように、給電線路 261に対して接地導体 12として機能する導 体配線面は構造内に一つに限定されず、給電線路 261が形成された層を挟んで対 向する接地導体 12が配置されていてもよい。すなわち、本発明のスロットアンテナは 、マイクロストリップ線路構造だけでなぐストリップ線路構造の回路構成であっても同 様の効果を得ることができる。
[0038] なお、本明細書では、接地導体 12を構成している導体層が厚さ方向に完全に除去 された開口部を「スロット」と定義している。すなわち、本明細書における「スロット」は、 接地導体 12の表面が一部の領域で削られ、その厚さを減じただけの構造 (非開口部 )を含むものではない。
[0039] 給電線路 261は、スロット 14との対向箇所付近の第一の分岐地点 223で 2以上の 本数の分岐配線 205、 207、 213 · · ·に分岐される。そして第二の分岐地点 221にお いて、一対の分岐配線 205、 207は再度接続され、ループ配線 209が形成される。
[0040] 分岐配線 205、 207、 213 · · 'のうち、ループ配線を形成せず短い開放スタブとなる ものがあってもよい。本実施形態では、分岐配線 213がループ配線を構成しておら ず、開放スタブとして機能する。
[0041] ループ配線 209のループ長は、動作帯域の上限周波数 fHにおける実効波長の 1 倍未満に設定される。また、構造内に含まれる開放スタブ 213のスタブ長も、上限周 波数 fHにおける実効波長の 4分の 1倍未満に設定される。
[0042] 図 1において、給電線路 261の先端開放終端点 20からスロット 14の中心線までの 距離 t3は、中心周波数 fOにおける 4分の 1実効波長に設定され、中心周波数 fOを含 む動作帯域で入力整合が得られる。給電線路 261の特性インピーダンスは 50 Ωに 設定されることが好ましい。ここで、スロット 14の「中心線」とは、内側方向 107に沿つ て延びるスロット 14の 2つのエッジのうち、給電線路 261の入力端子 201に近い側の エッジ 237と、給電線路 261の先端開放終端点 20に近い側のエッジ 239とに対して 最短距離が等しい点の集合によって形成される線である。
[0043] 本発明のスロットアンテナは、図 3の上面透視模式図に示すような給電線路構造も とり得る。図 3の例では、給電線路 261の一部が 50 Ωよりも高い特性インピーダンス の伝送線路により構成され、高インピーダンス領域 263を形成している。この高インピ 一ダンス領域 263は、給電線路 261のうち、先端開放終端点 20から入力端子 201の 側へ向かって(tl +Ws+t2)の距離の領域である。
[0044] 入力端子 201に接続される一般的な外部回路のインピーダンス Zoと給電線路 261 の特性インピーダンス Z261とは一致させることが好まし 、。この値が 50 Ωでな 、場 合、高インピーダンス領域 263の特性インピーダンスは更に高 、値に設定される。
[0045] 図 3に示す形態では、高インピーダンス領域 263の長さは中心周波数 fOにおける 4 分の 1実効波長程度に設定される。スロット幅 Wsは、 tlと t2の和と同程度に設定され ることが好ましい。
[0046] 図 1に示す構造は、スロット幅 Wsを狭く設定せざるをえな 、条件下で広帯域特性を 得る場合に有効であり、図 3に示す構造は、スロット幅 Wsの設定に制限がない条件 で超広帯域特性を得た ヽ場合に有効である。
[0047] 本実施形態のスロットアンテナにおけるループ配線 209は、スロット共振器の励振 箇所の複数個への増大と、入力整合回路の電気長調整の、二つの機能を同時に果 たし、アンテナ動作の超広帯域ィ匕を実現している。以下、ループ配線が果たしている 機能について詳しく説明する。
[0048] まず、誘電体基板の裏面に無限の面積の接地導体を有すると仮定した一般的な高 周波回路において、ループ配線構造が設けられた場合の高周波特性を説明する。
[0049] 図 4 (a)には、第一の経路 205及び第二の経路 207からなるループ配線 209が入 力端子 201と出力端子 203との間に接続された回路の模式図が示されている。第一 の経路 205の経路長 Lplと第二の経路 207の経路長 Lp2との和が伝送信号にとつ て実効波長の 1倍に相当する条件でループ配線は共振条件となる。このようなルー プ配線は、リング共振器として用いられることがある。しかし、経路長 Lpl、 Lp2が伝 送信号の実効波長より短 、場合、ループ配線 209は急峻な周波数応答を示さな 、 ため、通常の高周波回路に積極的に使用される理由はな力つた。 [0050] 均一な接地導体を有する一般的な高周波回路では、ループ配線の導入に伴って 局所的な高周波電流の分布に変動が生じても、二端子 201、 203間のマクロな高周 波特性の変動は平均化されてしまう。すなわち、非共振状態でのループ配線の高周 波特性は、 2本の経路の特性を平均化して一本の経路へ置換した場合の伝送線路 の高周波特性と大した差異がな 、。
[0051] 一方、本発明のスロットアンテナでのループ配線 209の導入は、上述した一般的な 高周波回路では得られな力つた特有の効果を提供する。図 5の上面透視模式図を参 照してこの点を説明する。接地導体 12にスロット 14が存在する箇所近傍で、直線的 な給電線路 261をループ配線 209に置換すれば、スロット 14周辺での局所的な高 周波電流分布を変動させ、スロットアンテナの共振特性を変化させることが可能とな る。接地導体 12での高周波電流は、第一の分岐点 221により分岐した第一の経路 2 05に沿って矢印 233の方向へと導かれる一方で、第二の経路 207に沿って矢印 23 5の方向にも導かれる。結果として、接地導体 21での高周波電流の流れに矢印 233 、 235の方向に沿った異なる経路を生じさせることができ、スロットアンテナを複数箇 所で励振することができる。
[0052] このような接地導体 12における高周波電流分布をスロット近傍で局所的に変化さ せることが、スロットアンテナの動作帯域を劇的に拡大することになる。
[0053] 一般に、信号伝送時の高周波電流分布は、伝送線路の信号導体側と接地導体側 とで異なっている。図 6を参照して、信号導体側及び接地導体側における高周波電 流の強度分布が信号導体の分岐によって如何に変動するかを説明する。
[0054] 図 6は、伝送線路断面構造の模式図を示している。図 6 (a)の伝送線路では、信号 導体は分岐されていない。このため、信号導体 401で高周波電流の集中が生じるの は信号導体 401の端縁部 403、 405であり、接地導体 12で高周波電流の集中が起 こるのは信号導体 401の中央部に対向する領域 407である。よって、例えば、従来の スロットアンテナにおいて給電線路 261の幅を大きくしても、接地導体 12における高 周波電流の分布に大きな変化を起こすことはできず、本発明のスロットアンテナと同 様の広帯域ィ匕を実現することは困難である。
[0055] し力し、図 6 (b)の例のように、信号導体 401が 2本の信号導体 409、 411に分岐さ れている例では、各分岐配線 409、 411のそれぞれに対向する接地導体領域 413、 415に高周波電流の分布が生じる。このことが広帯域化の実現に寄与する。
[0056] 本発明のスロットアンテナが有するループ配線は、スロットアンテナの励振箇所を複 数個にする機能を果たすだけでなぐ給電線路 261の電気長を調整する機能をも有 している。ループ配線導入による給電線路 261の電気長の変動は、給電線路 261の 共振条件を複共振条件に転じさせ、すなわち、共振条件が複数の周波数帯域で成 立しているため、本発明の動作帯域の拡大効果を更に高めている。
[0057] より詳しく説明すると、図 23や図 26を参照して説明した従来技術においては、給電 線路の先端開放終端点からスロットと交差する箇所までの距離 t3、または (t2+Ws ÷ 2)は、中心周波数 fOにおける実効波長と密接な関係があった。図 1または図 3に 示すスロットアンテナの給電構造は、従来のスロットアンテナ(図 23、図 26)における 給電線路の設計原理を、継承するだけでなぐその動作帯域を拡大する。
[0058] 図 23に示す一般的なスロットアンテナでは、スロットの共振周波数において入力整 合条件を成立させるため、スロット長を動作の中心周波数 fOに合わせて設計し、長さ t3を中心周波数 fOにおける 4分の 1実効波長に設定する。このような給電線路 26の スロット付近に本発明のループ構造を導入すれば、ループ配線を構成する 2本の経 路のうち電気長が短!ヽ経路を介した場合と電気長が長!ヽ経路を介した場合の給電 線路 261の共振周波数が分離し、複共振動作が導かれることになる。
[0059] また、図 26に示すスロットアンテナでは、スロット幅 Wsを大きく設定するとともに、 tl
+t2+Wsを中心周波数 fOにおける 4分の 1実効波長に設定している。また、 4分の 1 実効波長の領域の伝送線路のインピーダンスを高 、値に設定し、 tl t2の条件で 動作させる。このアンテナでは、スロット共振器に結合する共振器構造を等価回路内 に新たに導入することにより、 2つの共振周波数で入力整合が成立し、スロットアンテ ナの広帯域動作を実現できる。このような給電線路 261のスロット付近に本発明のル ープ配線を導入すれば、ループ配線を構成する 2本の経路のうち、電気長が短い経 路を介した場合と電気長が長い経路を介した場合の電気長の違いにより、スロット共 振器と結合する共振現象が 2以上の数の複数の周波数で生じ、既に得られていた広 帯域な整合条件を更に広帯域ィ匕することになる。 [0060] このように本発明では、スロット自体が有する共振現象を複共振化する第一の機能 と、スロットに結合する給電線路の共振現象を複共振化する第二の機能の組み合わ せにより、従来のスロットアンテナよりも広い帯域で動作することが可能となる。
[0061] ただし、本発明のスロットアンテナは、広帯域での整合特性を維持するため、ルー プ配線が共振しな 、条件で用いられなければならな 、。図 4 (a)に示すループ配線 2 09を例にとると、経路長 Lplと経路長 Lp2の和であるループ長 Lpが、動作帯域の如 何なる周波数においても実効波長の 1倍に相当してはならない。この条件は、本発明 のスロットアンテナ内に複数のループ配線が存在する場合、全てのループ配線につ いて成立しなければならない。したがって、アンテナに含まれる最も大きなループ配 線のループ長も、動作帯域の上限周波数の実効波長よりも短く設定されなければな らない。
[0062] 一般の高周波回路に用いられる構造には、図 4 (b)に示す開放スタブがある。伝送 線路 211に、長さ Lp3の開放スタブ 213が分岐して接続されれば、長さ Lp3が 4分の 1実効波長となる周波数で共振条件が成立する。その場合、入力端子 201と出力端 子 203との間の信号伝送に対して、開放スタブ 213が帯域阻止フィルタとして機能し てしまう。
[0063] 本発明のスロットアンテナの給電線路カゝら分岐される配線のうち、ループ配線を構 成しないものは、スタブであってもよい。しかし、そのスタブ長は、最大の場合でも、動 作帯域の上限周波数で 4分の 1実効波長未満に設定されなければならない。給電線 路において、開放スタブが共振し、帯域阻止フィルタとして動作することは、スロットァ ンテナの動作帯域を狭く限定するからである。
[0064] 図 4 (c)に、ループ配線の極端な例を示し、開放スタブと比較したループ配線の優 位点を説明する。図 4 (c)のループ配線 209において、長さ Lp2を極端に小さくする と、ループ配線は見かけ上開放スタブ構造に限りなく近づく。しかし、長さ Lp2が 0に 近づいた場合のループ配線の共振周波数は、長さ Lplが実効波長に相当する周波 数であり、開放スタブの共振周波数は長さ Lp3が 4分の 1実効波長に相当する周波 数である。仮に、長さ Lplの半分が長さ Lp3と等しい条件で二つの構造を比較すると 、ループ配線の共振周波数はスタブ配線の共振周波数の 2倍ということになる。 [0065] 以上の説明からわかるように、広 、動作帯域内で余計な共振現象を回避する給電 線路の構造としては、ループ配線が開放スタブよりも、周波数帯域に換算して 2倍有 効である。
[0066] また、図 4 (b)の開放スタブ 213の開放終端点 213bは回路的に開放されているた め、高周波電流が流れない。その結果、仮にスロット付近に開放終端点 213bが配置 されても、スロットとの電磁的結合が得にくい。一方、図 4 (c)のループ配線 209の一 点 213cは、回路的には決して開放されていないため、高周波電流が必ず流れる。そ の結果、スロット付近に配置されれば、スロットとの電磁的結合が得やすくなる。この 点からも、本発明の効果を得るためには、ループ配線の採用が開放スタブの採用より も有利である。
[0067] このように、本発明のスロットアンテナでは、線路幅が太い線路または開放スタブで はなぐ「ループ配線」を給電線路 261に導入することにより、動作帯域の制限をうまく 回避し、広帯域ィ匕を効果的に実現することができる。
[0068] 図 7は、給電線路 261の分岐線路部の分岐本数が 3の場合の実施形態の上面透 視模式図である。給電線路 261を分岐する分岐線路の本数は、 3本以上の値に設定 しても構わな!/、が、 2本に分岐した場合の特性と比べて動作帯域の飛躍的な拡大は 望めな 、。複数に分岐された分岐線路群の中で高周波電流の分布強度が高 、のは 、スロットの開放端側に最も近い箇所を通る経路 251と、逆にスロットの開放端側に最 も遠 、箇所を通る経路 253のみであり、両者の間に配線される経路 255に流れる高 周波電流の強度が強くないからである。しかし、分岐本数が 2の場合、経路 251と経 路 253が形成するループ配線のループ長は意図せず長くなつてしまうのでループ配 線の共振周波数の低下をまねき、本発明のスロットアンテナの動作帯域の上限周波 数 fHの向上に制限が生じる。しかし、経路 255を追加すれば、ループ配線が分割さ れることになり、上記制限の緩和に有効である。
[0069] ループ配線とスロットの配置関係としては、図 5に示すように、ループ配線 209を構 成する第一の経路 205と第二の経路 207とが、共にスロット 14と接地導体 12との境 界線、言い換えるとスロットのエッジ 237、 239の少なくともいずれかと交差することが 好ましい。 [0070] ただし、図 8に示すように、上面から見たとき、ループ配線 209の全体がスロット 14 に含まれてしまい、ループ配線 209がスロットのエッジ 237、 239のいずれとも交差し ない構成でも、本発明の効果を得ることができる。図 8の構成では、第一の経路 205 と第二の経路 207の経路差だけ、第一の経路 205に沿って信号導体を流れる高周 波電流に対応する接地導体側の電流 241と、第二の経路 207に沿って信号導体を 流れる高周波電流に対応する接地導体側の電流 243には位相差が生じ、入力整合 条件をより広帯域に転じせしめる効果が発生するからである。
[0071] なお、逆に図 9に示す別の形態のように、ループ配線 209がスロット 14と全く交差し ていない場合でも、ループ配線 209がスロット付近にある条件ならば、本発明の効果 を得ることが可能である。ここで、 「スロット付近」にループ配線 209が配置されている という条件は、厳密には、ループ配線 209の最も外側の点から、スロット 14と接地導 体 12との間の境界線 (スロット 14のエッジ 237またはエッジ 239)までの距離 Ldlが 給電線路 261の配線幅の一倍未満であることを意味する。距離 Ldlが給電線路 261 の配線幅よりも長くなつた場合、信号導体の両端に流れる高周波電流の位相差にそ れぞれ対応して接地導体側を流れる局所的な高周波電流 241と、高周波電流 243と の間に生じていた位相差が解消されてしまう。その結果、ループ配線 209とスロットァ ンテナの組み合わせによって得られる本発明特有の複合効果が得られなくなるから である。
[0072] ループ配線 209は、図 10に示すように、スロット 14のエッジ 237、 239の両者とそれ ぞれ交差するよう設計されてよい。図 10のループ配線 209は台形状に形成されてい る。このように、ループ配線 209の形状について、特に制限はない。ループ配線 209 は複数形成されてよい。複数のループ配線 209が設けられる場合、ループ配線 209 同士は直列に接続されてもよいし、図 7に既に示すように、並列に接続されてもよい。 また、二つのループ配線 209は直接に相互接続されてもよいし、任意の形状の伝送 線路を介して間接的に接続されてもよい。
[0073] 図 11〖こ示すよう〖こ、スロット 14のエッジ 237、 239とそれぞれ個別に交差する二つ のループ配線 209a、 209bが直列に配置されてもよい。更に、図 12に示すように、ス ロット 14のエッジ 237とそれぞれ個別に交差する並列のループ配線 209c、 209dとス ロット 14のエッジ 239とそれぞれ交差する並列のループ配線 209e、 209fが直列に 配置される構成でも構わな ヽ。
[0074] スロットアンテナを構成する有限の面積の接地導体が共振する周波数を、スロットァ ンテナの動作帯域と近接させ、更なる広帯域性を得ることも可能である。すなわち、 接地導体自体がパッチアンテナのように共振し放射特性を得ることができる周波数を 、本発明のスロットアンテナの共振帯域よりやや低い周波数に設定すれば、更なる入 力整合帯域の拡大が実現できる。
[0075] ループ配線 209の線路幅は、入力側または先端開放終端側に接続される給電線 路 261の特性インピーダンスと同一の条件、またはインピーダンスが高くなる条件が 等価的に成立するように選択されることが好ましい。すなわち、給電線路 261が二分 岐される場合は、元の給電線路 261の線路幅の半分以下の分岐配線でループ配線 209が構成されることが好ましい。非特許文献 1からも明らかなように、スロットアンテ ナ自体が高インピーダンス線路との結合により、入力端子の抵抗値 50 Ωへの整合が 取りやすくなる傾向があるため、ループ配線 209の導入によりスロット 14付近での給 電線路 261の特性インピーダンスを等価的に高くすることが、更なる低反射特性の実 現に効果的だ力 である。
[0076] 本発明のスロットアンテナにおいて、スロットの形状は矩形である必要はなぐ任意 の曲線形状に置換可能である。特に、主スロットに多数の細力べ短いスロットを並列接 続することにより、回路的には主スロットに直列のインダクダンスを付加することができ 、主スロットのスロット長が短縮でき実用上好ましい。また、主スロットのスロット幅を狭 くして、ミアンダ形状などに折り曲げ小型化を図った条件でも、本発明のスロットアン テナの広帯域ィ匕の効果を変わりなく得ることができる。
[0077] (実施例)
図 13の上面透視模式図に示すようなスロットアンテナ(比較例 1)と、図 14の上面透 視模式図に示すようなスロットアンテナ (実施例 1)を作製した。誘電体基板 101として 、総厚 500ミクロン、 60mm角(a=b = 60mm)の FR4基板を用いた。基板表面と裏 面には、銅配線により厚さ 20ミクロンの信号導体パターンと接地導体パターンをそれ ぞれ形成した。各配線パターンはウエットエッチングにより一部領域の金属層を除去 することによって形成し、表面は厚さ 5ミクロンの金メッキを施した。導体接地導体 12 の外縁部 12aは、誘電体基板 101の端面に最も近接した場合でも、 100ミクロン内側 となるように設定した。図中、接地導体パターンは点線で示している。
[0078] 入力端子部 201には SMAコネクタを接続し、 50 Ωの特性インピーダンスの給電線 路 261を介して、作製したアンテナと測定系を接続可能な状態にした。なお、実用上 有用な反射強度の目安をマイナス 10dB以下とし、上記特性が満足できた周波数帯 域を動作帯域と呼ぶこととした。給電線路 261の線路幅 W1は 920ミクロンとした。比 較例 1では信号導体にはループ配線は使わず、スロット付近でも給電線路 261の線 路幅は 920ミクロンとした。スロット幅 Wsは 0. 5mm、オフセット長 Ld2を 2. 5mm、ス ロット長 Ls= 12mm、先端開放終端点 20からスロット中心の給電点までの距離 t3を 10mmに固定した。比較例 1の動作帯域は 4. 63GHzカゝら 6. 53GHzであり、比帯 域は 34. 1%であった。反射強度特性の周波数依存性より、共振現象は単一周波数 5. 87GHzでしか起こって!/、な!/、ことが確認された。
[0079] 一方、図 14に示すように、実施例 laでは、比較例 1において直線形状であったスロ ット 14付近の信号導体を、凸部がスロットの開放端 13側に突き出た二等辺三角形状 のループ配線 209へと置換した。上記変更以外は、実施例 laの構造パラメータは比 較例 1と同様の条件に固定した。ループ配線 209の二等辺三角形の底辺の長さは 1 . 5mmとし、高さ hiは 2. 5mmとした。ループ配線の配線幅は 50オーム線路の配線 幅 W1の半分の 460ミクロンとした。実施例 laの動作帯域は 4. 09GHz力ら 7. 01G Hzで、 52. 6%の比帯域を得た。
[0080] また、実施例 laは、 4. 75GHzと 6. 38GHzの二周波数で反射強度の極小値を示 し、複共振動作を確認できた。
[0081] 図 15に実施例 1と比較例 1の反射強度特性の周波数依存性を示している。図 15に おいて、実線は実施例 laの特性を示し、点線は比較例 1の特性を示している。図 15 力も明らかなように、単共振特性の複共振特性への変化、動作帯域の拡大から、本 発明の効果が証明された。
[0082] 次に、実施例 laのループ配線構造を変化させた実施例 lbを作製した。実施例 la では、ループ配線の二等辺三角形の凸部分はスロット開放端 13側へ突き出ていた 力 実施例 lbではループ配線の配置方向を逆向きにし、二等辺三角形が突き出る 方向をスロットの奥行き方向へ設定した。その他の構造パラメータは、実施例 laと同 様であった。
[0083] 実施例 lbの動作帯域は、 4. 45GHz力ら 6. 82GHzであり、 42. 1%の比帯域を 得た。実施例 lbも、比較例 1よりも広帯域動作を実現した。同様に、実施例 laにおい て、スロットのギャップの中央部分に一致させていたループ配線の二等辺三角形の 重心を、入力端子側へ 0. 25mm移動させた実施例 lc、先端開放点 20側へ 0. 25m m移動させた実施例 Idを作製した。
[0084] 実施例 lc、 Idにおいて、二等辺三角形の重心の位置は、スロット 14と接地導体 12 のエッジ 237、 239とそれぞれ対向する地点に設定した。実施例 lcの動作帯域は 4. 72GHzから 7. 05GHzで、 39. 6%の比帯域を得た。実施例 Idの動作帯域は 4. 04 GHzから 6. 28GHzで、 43. 4%の比帯域を得た。実施例 lc、 Idの特性より、入力 端子側給電線路へのループ配線導入は帯域の高周波数側の広帯域化、先端開放 点側給電線路へのループ配線導入は帯域の低域側の広帯域ィ匕に寄与することが分 かった。そして実施例 laから Idの 、ずれにお 、ても比較例 1より広 、比帯域で低反 射動作が実現でき、本発明の有利な効果が証明された。実施例 laから Idと比較例 の特性比較を表 2に示す。
[0085] [表 2]
Figure imgf000022_0001
[0086] 次に、非特許文献 1において開示された複共振特性の 2分の 1波長スロットアンテ ナを 4分の 1波長スロットアンテナとして模した構造の比較例 2を作製した。図 16に比 較例 2の上面透視模式図を示す。
[0087] 比較例 1の給電線路 261では、入力端子 201から先端開放終端点 20まで、 50ォ ームにインピーダンスが統一されていた力 比較例 2では、給電線路 261の先端開放 終端点 20から (tl +t2+Ws)の距離だけ、高インピーダンス線路 263によって置換 した。具体的には、 W2 = 250ミクロン、 Wsを 4mm、 tl = 3. 5mm、 t2=4mmとした
[0088] 比較例 2の動作帯域は、 3. 46GHz力ら 5. 67GHzであり、比帯域は 48. 4%であ つた。また、 3. 77GHzと 5. 27GHzの 2周波数において反射損失が極小値を示し、 非特許文献 1で開示された複共振動作の実現効果が得られた。
[0089] 一方、比較例 2の直線形状を有する高インピーダンス領域 263に対して、ループ配 線構造を導入した構成を有する実施例 2aを作製した。図 17は、実施例 2aの上面透 視模式図を示している。実施例 2aでは、三角形状のループ配線 209a、 209bを直列 にスロット 14付近に配置した。具体的には、スロットのエッジ 237と対向する箇所には ループ配線 209aを、エッジ 239と対向する箇所にはループ配線 209bを配置した。 ループ配線 209aと 209bは、スロット 14のギャップ部分の中央の鏡面対称線 271を 通って基板に垂直となる平面を対称面として鏡面対称の関係を有して ヽる。ループ 配線 209a、 209bは、それぞれ、二等辺三角形の形状を有し、その底辺が 4mm、高 さ hiは 2. 5mm、配線幅は 125ミクロンに設定した。
[0090] 実施例 2aの動作帯域は、 3. 13GHz力ら 8. 48GHzであり、比帯域は 92. 2%に 達した。比較例 2に比べ、実施例 2aでの比帯域拡大効果は 1. 9倍であった。
[0091] 図 18に、比較例 2と実施例 2aの反射強度特性の周波数依存性を示す。比較例 2 の特性を点線で示し、実施例 2aの特性を実線で示している。図 18より、複共振特性 が既に実現されていた比較例 2の広帯域特性を更に上回る超広帯域特性が、本実 施例 2aにより、実現できることが証明された。
[0092] 次に、図 19に上面透視模式図を示す実施例 2bを作製した。実施例 2aにおいては 2つのループ配線 209a、 209bの三角形状の凸部分がスロットの開放端側へ向いて いた力 実施例 2bではループ配線の向きを三角形状の凸部分力スロットの奥行き方 向へ配向するよう逆向きに入れ替えた。ループ配線 209a、 209bの向き以外は、実 施例 2aと実施例 2bの構造パラメータは全て同一とした。
[0093] 実施例 2bの動作帯域は、 3. 34GHz力ら 6. 29GHzで、 61. 3%の比帯域を得た 。比較例 2と比較すると、実施例 2bでの比帯域拡大効果は 1. 27倍であった。
[0094] 図 20には、比較例 2と実施例 2bの反射強度特性の周波数依存性を示している。実 施例 2bでは、動作帯域が実施例 2aほどは広くな力つた力 7GHz〜9GHzの高周 波帯域における反射特性を比較例 2と比較すれば、 4dB以上の改善が明らかに得ら れており、やはり本発明の構造採用により、従来構造のスロットアンテナの帯域特性 を改善できることが証明された。
[0095] 次に、実施例 3を作製した。実施例 2aにおいて 60mmだった接地導体 12の横幅 a を 35mmに減じ実施例 3とした。また、その他の構造パラメータを実施例 2aと同一とし たが、反射特性に大きな影響を示さな力つた接地導体 12の縦側の長さ bは 25mmに 減じた。横幅が減じられた接地導体 12が 2. 7GHz付近で共振するアンテナとして機 能し、実施例 2aでも比帯域 92. 2%の動作帯域を得ていたスロットアンテナは更なる 広帯域動作を示した。具体的には、図 21に反射特性の周波数依存性を示すように、 動作帯域は 2. 57GHzから 9. 29GHzで、比帯域は 113. 3%に達した。比帯域 113 . 3%とは、近距離無線通信で使用される帯域である 3. 1GHzから 10. 6GHzの比 帯域 109. 5%よりも広い値である。実施例 2aと実施例 2bと実施例 3と比較例 2の特 性比較を表 3に示す。
[0096] [表 3]
動作周波数帯域
低域端 (GHz) 高域端 (GHz) 比帯域 (%) 実施例 2a 3.13 8.48 92.2 実施例 2b 3.34 6.29 61.3 実施例 3 2.57 9.29 113.3
比較実施例 2 3.46 5.67 48.4 [0097] 図 22には、(a) 2. 6GHz、(b) 4GHz、(c) 6GHz、(d) 9GHzの各周波数における 、実施例 3のスロットアンテナの誘電体基板に平行な面内での放射指向性の角度依 存性を示す。図中、角度 270度に相当する方向がスロットの奥側から見たスロット開 放端側の方向に相当して 、る。マイナス 10dB以下の低反射強度特性が得られた動 作帯域の全ての周波数で、主ビームがこの方向を向き、利得は OdB力も 4dBとほぼ 等しい値が得られた。
[0098] 以上のように、本発明のスロットアンテナによれば、反射特性が超広帯域なだけで なぐ超広帯域にわたり同様の傾向の放射指向性も得ることができた。
産業上の利用可能性
[0099] 本発明のスロットアンテナは、回路占有面積および製造コストを増大させることなぐ 整合帯域を拡大させることが出来るので、従来複数のアンテナを搭載しなければ実 現できな力 た高機能端末を簡易な構成で実現することが可能となる。また、従来よ りもはるかに広い周波数帯域を用いる近距離無線用の通信システムの実現にも貢献 することが出来る。チップ部品を使用せず動作帯域が拡大できるため、製造時のばら つきに対する耐性の強いアンテナとしても有用である。同一スロット幅の条件で比較 すると従来の広帯域スロットアンテナよりはるかに広帯域動作が可能となるため、広帯 域スロットアンテナの小型化が実現できる。また、デジタル信号を無線で送受信する ような、超広帯域な周波数特性を必要とするようなシステムにおいても小型アンテナと して使用され得る。

Claims

請求の範囲
[1] 誘電体基板と、
前記誘電体基板の裏面側に設けられた有限の面積の接地導体と、
前記接地導体の側縁を開放点として内側に切り欠いて形成されたスロットと、 前記スロットに高周波信号を給電するための給電線路であって、前記スロットと少な くとも一部が交差する給電線路と、
を備え、
前記スロット付近の第一の地点にお!、て、前記給電線路が少なくとも 2本の分岐線 路を含む分岐線路群に分岐され、前記分岐線路群の内の少なくとも 2本の分岐線路 は、前記第一の地点とは異なる前記スロット付近の第二の地点において相互に接続 され、前記給電線路に少なくとも 1つのループ配線を形成しており、
各ループ配線のループ長の最大値が、それぞれ、動作帯域の上限周波数におい て 1実効波長未満の長さに設定され、
前記分岐線路群の内、前記ループ配線を形成せずに先端開放終端される全ての 前記分岐線路群の分岐長が動作帯域の上限周波数において 4分の 1実効波長未満 であるスロットアンテナ。
[2] 各ループ配線は、前記スロットのエッジと交差し、前記開放点から異なる距離の二 点以上の給電点において前記スロットが励振される請求項 1に記載のスロットアンテ ナ。
[3] 前記給電線路のうち、先端開放終端点から、動作帯域の中心周波数において 4分 の 1実効波長の長さの領域の領域が、 50 Ωよりも高い特性インピーダンスの伝送線 路により構成され、
前記先端開放終端点力 動作帯域の中心周波数において 4分の 1実効波長未満 の距離において、前記給電線路と前記スロットが少なくとも一部で交差する請求項 1 に記載のスロットアンテナ。
[4] 前記分岐線路群の配線幅の総和が、同一基板上での 50 Ωの特性インピーダンス の伝送線路の配線幅以下に設定されている請求項 1に記載のスロットアンテナ。
[5] 前記分岐線路群の配線幅の総和が、前記 50 Ωよりも高 、特性インピーダンスの伝 送線路の配線幅以下に設定されている請求項 3に記載のスロットアンテナ。
前記接地導体が有する最低次の共振周波数は、前記スロットアンテナの動作帯域 よりも低く設定されて 、る請求項 1に記載のスロットアンテナ。
PCT/JP2006/321541 2005-11-10 2006-10-27 スロットアンテナ WO2007055113A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007509758A JP4050307B2 (ja) 2005-11-10 2006-10-27 スロットアンテナ
CN2006800012695A CN101099267B (zh) 2005-11-10 2006-10-27 隙缝天线
US11/723,786 US7397439B2 (en) 2005-11-10 2007-03-22 Slot antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-325674 2005-11-10
JP2005325674 2005-11-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/723,786 Continuation US7397439B2 (en) 2005-11-10 2007-03-22 Slot antenna

Publications (1)

Publication Number Publication Date
WO2007055113A1 true WO2007055113A1 (ja) 2007-05-18

Family

ID=38023119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321541 WO2007055113A1 (ja) 2005-11-10 2006-10-27 スロットアンテナ

Country Status (4)

Country Link
US (1) US7397439B2 (ja)
JP (1) JP4050307B2 (ja)
CN (1) CN101099267B (ja)
WO (1) WO2007055113A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542833B (zh) * 2007-01-11 2012-07-04 松下电器产业株式会社 宽带缝隙天线
JP4904197B2 (ja) 2007-05-08 2012-03-28 パナソニック株式会社 不平衡給電広帯域スロットアンテナ
JP4904196B2 (ja) 2007-05-08 2012-03-28 パナソニック株式会社 不平衡給電広帯域スロットアンテナ
US7710338B2 (en) 2007-05-08 2010-05-04 Panasonic Corporation Slot antenna apparatus eliminating unstable radiation due to grounding structure
FR2917242A1 (fr) * 2007-06-06 2008-12-12 Thomson Licensing Sas Perfectionnement aux antennes large bande.
US8373610B2 (en) * 2007-12-18 2013-02-12 Apple Inc. Microslot antennas for electronic devices
JP5029559B2 (ja) * 2008-09-30 2012-09-19 日立電線株式会社 アンテナ及びそれを備えた電気機器
TWI411163B (zh) 2009-06-06 2013-10-01 Acer Inc 一種行動通訊裝置
CN101924819B (zh) * 2009-06-12 2013-10-30 宏碁股份有限公司 一种移动通讯装置
CN102195136B (zh) * 2010-03-01 2014-10-01 日立金属株式会社 天线以及具备该天线的电气设备
TWI464962B (zh) * 2010-12-31 2014-12-11 Lite On Electronics Guangzhou 複合式多天線系統及其無線通訊裝置
TWI464960B (zh) * 2011-03-07 2014-12-11 Univ Nat Sun Yat Sen 行動通訊裝置及其單極槽孔天線
EP3291373B1 (en) * 2015-05-28 2019-12-11 Huawei Technologies Co., Ltd. Slot antenna and electronic device
US10283838B2 (en) * 2017-01-26 2019-05-07 Wistron Neweb Corporation Multi-mode mobile device and radiation enhancing device
EP3367505B1 (en) * 2017-02-27 2019-06-26 ProAnt AB Antenna arrangement and a device comprising such an antenna arrangement
CN108803777B (zh) * 2017-05-04 2021-06-18 启碁科技股份有限公司 可变形移动装置及辐射增强装置
JP2022537884A (ja) * 2019-06-21 2022-08-31 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) 生体センシングのための共振器アセンブリおよび電磁波を利用したバイオセンサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163625A (ja) * 1997-11-28 1999-06-18 Hitachi Cable Ltd スロットアンテナ及びアンテナアレイ
JP2003142937A (ja) * 2001-11-05 2003-05-16 Yasushi Horii コプレーナ線路により構成されたループに微小ループを磁気結合させた構造をもつ小型平面アンテナ
JP2003234615A (ja) * 2002-02-06 2003-08-22 Nec Corp スロットアンテナ及び無線lanカード
JP2004007705A (ja) * 2002-05-31 2004-01-08 Thomson Licensing Sa スロットタイプの改良型平面アンテナ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8913311D0 (en) * 1989-06-09 1990-04-25 Marconi Co Ltd Antenna arrangement
US5717410A (en) * 1994-05-20 1998-02-10 Mitsubishi Denki Kabushiki Kaisha Omnidirectional slot antenna
JP4060645B2 (ja) 2002-06-18 2008-03-12 八木アンテナ株式会社 多周波帯アンテナ及び多周波無指向性アンテナ
JP2004336328A (ja) 2003-05-07 2004-11-25 Sony Ericsson Mobilecommunications Japan Inc アンテナ装置及び無線装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163625A (ja) * 1997-11-28 1999-06-18 Hitachi Cable Ltd スロットアンテナ及びアンテナアレイ
JP2003142937A (ja) * 2001-11-05 2003-05-16 Yasushi Horii コプレーナ線路により構成されたループに微小ループを磁気結合させた構造をもつ小型平面アンテナ
JP2003234615A (ja) * 2002-02-06 2003-08-22 Nec Corp スロットアンテナ及び無線lanカード
JP2004007705A (ja) * 2002-05-31 2004-01-08 Thomson Licensing Sa スロットタイプの改良型平面アンテナ

Also Published As

Publication number Publication date
JPWO2007055113A1 (ja) 2009-04-30
JP4050307B2 (ja) 2008-02-20
US20070164918A1 (en) 2007-07-19
US7397439B2 (en) 2008-07-08
CN101099267A (zh) 2008-01-02
CN101099267B (zh) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4050307B2 (ja) スロットアンテナ
JP4904197B2 (ja) 不平衡給電広帯域スロットアンテナ
JP4287902B2 (ja) 広帯域スロットアンテナ
JP4904196B2 (ja) 不平衡給電広帯域スロットアンテナ
US7710338B2 (en) Slot antenna apparatus eliminating unstable radiation due to grounding structure
US7623072B2 (en) Multiband antenna and multiband antenna system
JP4871516B2 (ja) アンテナ装置およびアンテナ装置を用いた無線機
JP6222103B2 (ja) アンテナ及び無線通信装置
JP4131985B2 (ja) 可変スロットアンテナ及びその駆動方法
CN107369899B (zh) 基于多模谐振器滤波天线阵列
WO2007138959A1 (ja) 可変スロットアンテナ及びその駆動方法
KR101472371B1 (ko) 다중 주파수 대역 사용을 위한 안테나 및 이를 이용하는안테나 시스템
US10992047B2 (en) Compact folded dipole antenna with multiple frequency bands
JP2009111999A (ja) マルチバンドアンテナ
US6597317B2 (en) Radio device and antenna structure
JP7314158B2 (ja) アンテナおよび通信装置
TWI293819B (en) Chip antenna
JP2005020266A (ja) 多周波アンテナ装置
JP2005175846A (ja) アンテナ装置及びこれを備えた通信機器
JP7153843B2 (ja) アンテナ装置
JP2007081848A (ja) 平行2線式アンテナ
JP2003124727A (ja) 誘電体アンテナ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007509758

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11723786

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680001269.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822502

Country of ref document: EP

Kind code of ref document: A1