WO2007046454A1 - マスクブランクス、および転写マスクの製造方法 - Google Patents

マスクブランクス、および転写マスクの製造方法 Download PDF

Info

Publication number
WO2007046454A1
WO2007046454A1 PCT/JP2006/320812 JP2006320812W WO2007046454A1 WO 2007046454 A1 WO2007046454 A1 WO 2007046454A1 JP 2006320812 W JP2006320812 W JP 2006320812W WO 2007046454 A1 WO2007046454 A1 WO 2007046454A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resist
mask
etching
resist film
Prior art date
Application number
PCT/JP2006/320812
Other languages
English (en)
French (fr)
Inventor
Megumi Takeuchi
Masahiro Hashimoto
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Publication of WO2007046454A1 publication Critical patent/WO2007046454A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching

Definitions

  • the present invention relates to mask blanks and transfer masks used in the manufacture of semiconductor integrated circuits, liquid crystal display devices, and the like.
  • a transfer mask in which a transfer pattern made of a light-shielding film is formed on a light-transmitting substrate is used in a process of patterning a thin film using a photolithography technique. It is done.
  • a transfer mask first, a light-shielding film is formed on the entire surface of the light-transmitting substrate, and then a resist film is stacked on the entire surface of the light-shielding film.
  • the resist film is subjected to selective exposure, beta processing, and development processing to form a resist pattern, and then the light-shielding film is patterned using the resist pattern as a mask, and the transfer pattern is formed on the surface of the translucent substrate.
  • a transfer mask equipped with see Patent Document 1
  • the mask brand or the stage where the light-shielding film is formed on the entire surface of the translucent substrate and the stage where the light-shielding film and the resist film are laminated on the entire surface of the translucent substrate are used.
  • the latter is referred to as mask blank.
  • the resist pattern formed on the mask brand must also have nanometer resolution and cache accuracy.
  • the aspect ratio which is the ratio of the resist pattern film thickness to the resist pattern spacing (or the ratio of the resist pattern film thickness to the resist pattern width dimension)
  • the resist pattern collapses due to the surface tension of the rinsing solution or water after resist development. Therefore, the aspect ratio should be kept below 3 in general. Therefore, in order to form a finer resist pattern while avoiding the collapse of the resist pattern, the resist film Therefore, it is necessary to reduce the aspect ratio of the resist pattern.
  • the etching rate of the resist film in dry etching using an etching gas containing a chlorine-based gas is about 0.75 times the etching rate of the light-shielding film in the dry etching. If the resist film thickness is reduced while using a resist material, that is, a resist material having an etching selectivity ratio of about 1.3 times, dry etching using a chlorine-based gas is applied to the light-shielding film using the resist pattern as a mask. However, there is a problem in that the resist film is etched before etching of the light-shielding film is completed, so that it does not function as a mask.
  • the etching time can be shortened, so the film thickness of the resist film can be reduced by that amount.
  • the film thickness of the light-shielding film is defined by the optical density in photomask blanks.
  • phase shift master blanks there is a limit to making the light-shielding film thinner because it is determined according to the transmittance and the amount of phase shift. For this reason, conventionally, the resist film thickness cannot be reduced, and as a result, it is impossible to cope with a fine design rule of 65 nm or less.
  • the bias value which is the amount of receding line width of the resist pattern
  • the bias value is plus 2 Onm for positive resist and minus 20nm for negative resist.
  • the change in the resist pattern line width during dry etching becomes larger than the allowable amount, and the mask is masked. It becomes difficult to control the CD accuracy, which is the variation in the pattern line width in the plane.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-69055
  • an object of the present invention is to provide a mask blank that can cope with a fine design rule of 65 nm or less, and a method of manufacturing a transfer mask using the mask blank.
  • the etching rate of the resist film in dry etching using an etching gas containing a chlorine-based gas is 0.5 of the etching rate of the thin film in the dry etching. It is characterized by being less than double. That is, the resist film is characterized by having an etching resistance with an etching selection ratio of 2 times or more.
  • the mask blantas includes, in addition to a photomask blantas, a phase shift mask blank, a reflective mask blank, and an imprint transfer plate.
  • phase shift master blanks a phase shift film such as a halftone film is formed on a translucent substrate, a halftone film is formed on the translucent substrate, and a chromium-based material is formed thereon. This refers to a film on which a light-shielding film is formed.
  • an absorber film such as a chromium-based material is formed on a multilayer reflective film or a buffer layer provided on the multilayer reflective film on a substrate such as a low expansion substrate. And so on.
  • imprinting transfer plate it means that a transfer pattern forming thin film such as a chrome-based material is formed on a translucent substrate to be a transfer plate.
  • a resist film having high etching resistance against dry etching using a chlorine-based gas is used, and the etching rate of the resist film in the dry etching using an etching gas containing a chlorine-based gas is high. Or less than 0.5 times the etching rate of the thin film. That is, the resist film has an etching property with an etching selectivity of 2 times or more. For this reason, when responding to a design rule with a line width or space width of about 65 nm, the resist film thickness was reduced to reduce the aspect ratio to 3 or less so that the resist pattern did not collapse during development of the resist film. Even in this case, until the etching of the thin film is completed, the resist pattern is not etched and functions as a mask. Therefore, it is possible to cope with a design ruler that is significantly miniaturized compared to the conventional one.
  • the present invention is characterized in that the resist film is an organic film containing an element that suppresses film loss during dry etching using an etching gas containing a chlorine-based gas. Therefore, in order to prevent the resist pattern from collapsing during development of the resist film, the line width or space width corresponds to the design rule of about 65 nm. Even when the film thickness is reduced to an aspect ratio of 3 or less, the resist pattern is not etched until the etching of the thin film is completed, so that it functions as a mask. Therefore, it is possible to deal with design rules that are significantly smaller than conventional designs.
  • the element that suppresses film loss during dry etching refers to an element containing at least one selected from Si, In, Ga, Ge, Al, Mn, Mg, Ti, and Sn.
  • Si is preferable from the viewpoint of dry etching resistance.
  • the resist film can contain the above-mentioned target element by using a polymer containing the target element as the resist polymer, by mixing a polymer containing the target element with the resist polymer, or by ion implantation. There is a method of reacting a resist film with an organometallic compound.
  • the content of the element in the organic film is preferably 1 wt% or more and 90 wt% or less. If it is less than lwt%, the dry etching resistance is insufficient, and if it exceeds 90 wt%, it is difficult to remove the resist in the mask manufacturing process.
  • the content of the element is more preferably 1 wt% or more and 50 wt% or less.
  • the content of the above elements (particularly Si) is preferably 10 wt% or more and 50 wt% or less, more preferably 10 wt% or more and 25 wt% or less.
  • the content of the above elements (especially Si) is 1 wt% or more and 20 wt% or less, more preferably 1 wt% or more and 10 wt% or less, more preferably 2 wt% or more. 7wt% or less is desirable.
  • the thickness of the resist film is preferably 50 nm or more and 200 nm or less.
  • the design rule of about 65 nm can be supported, and when the film thickness of the resist film is set to 50 nm, the aspect ratio is set. Even if is set to 3, it can handle a design rule of about 17 nm.
  • the thin film also has a material strength including chromium.
  • a gas containing oxygen is used together with the chlorine-based gas.
  • the film composition of the thin film is defined by, for example, the optical density and the reflectance in the light-shielding film in the photomask blank, and in the light-shielding film on the phase shift film (including the non-tone film) in the phase shift mask blank. Depends on transmittance and phase shift It is prescribed.
  • the thin film has a single-layer or multiple-layer force, and a material containing chromium is used for the light-shielding film.
  • etching gas containing oxygen When an etching gas containing oxygen is used together with a chlorine-based gas as an etching gas, a dry film is used.
  • the etching rate of the resist film in etching is 0.2 times or less the etching rate of the light-shielding film in the dry etching, that is, the etching selectivity is 5 times or more, and the design rule is finer than 65 nm. Can cope with various conditions.
  • the resist film is a chemically amplified resist film.
  • at least an inactivation suppressing film for suppressing inactivation of the resist film is provided between the resist film and the thin film. It is preferable to form one layer.
  • the acid of the catalytic substance produced in the resist film by exposure has a functional group that controls the solubility of the polymer in the subsequent heat treatment step! / Is a functional substance. By reacting and removing the functional group etc., the exposed part is dissolved in the alkaline developer. Accordingly, when the acid concentration of the catalyst substance produced in the resist film by exposure is significantly lowered for some reason, it is not dissolved in the alkali developer.
  • the thin film residue remains after the thin film is etched.
  • Such a deactivation phenomenon is considered to be caused by the movement of the catalyst substance acid generated in the resist film by exposure such as diffusion into the thin film, and the film density near the surface of the thin film is reduced. In a relatively sparse or rough state, the acid of the catalyst substance produced in the resist film by exposure is likely to be captured. Therefore, when an inactivation suppressing film having a film density higher than the film density near the surface of the thin film or an inactivation suppressing film made of an organic film is interposed between the thin film and the chemically amplified resist film, Deactivation of the chemically amplified resist film can be effectively suppressed. Therefore, the resolution of the resist film and the shape of the resist pattern can be improved, which is useful for forming a transfer mask for transferring a fine pattern.
  • the mask blank according to the present invention can correspond to a design rule having a pattern of 65 nm or less.
  • Mask blanks to which the present invention is applied are used for a transfer mask in which a transfer pattern is formed by patterning the thin film. That is, after the resist film of the mask brand is selectively exposed and developed to form a resist pattern, the resist pattern Using the mask as a mask, dry etching using the etching gas is performed on the thin film to form a transfer pattern.
  • the mask includes a phase shift mask, a reflective mask, and an imprint transfer plate.
  • the resist film is etched in dry etching using an etching gas containing a chlorine-based gas.
  • Velocity force The etching rate of the thin film that forms the transfer pattern in the dry etching or the etching rate of the thin film for forming the transfer pattern is 0.5 times or less, and the resist film has an etching resistance with an etching selectivity of 2 times or more. is doing.
  • the resist film thickness is reduced to reduce the aspect ratio to 3 or less so that the resist pattern does not collapse during development of the resist film. Even in such a case, the resist pattern is not etched until the etching of the thin film described above is completed, and it functions as a mask. Therefore, it is possible to cope with design rules that have been significantly miniaturized compared to the conventional case.
  • FIG. 1 is a process cross-sectional view schematically showing how a transfer mask is formed using a mask blank after the mask blank is formed.
  • FIG. 1 is a process cross-sectional view schematically showing how a transfer mask is formed using a mask blank after the mask blank is formed.
  • a transfer mask To produce a transfer mask, first, as shown in Fig. 1 (a), synthetic quartz glass (for ArF excimer laser exposure), fluorine-doped quartz glass (for F2 excimer laser exposure), low expansion A substrate material such as glass (for EUV exposure) is mirror-polished and then cleaned to prepare a light-transmitting substrate 11 having a predetermined size.
  • the light is blocked on the translucent substrate 11 by sputtering or vapor deposition.
  • a light-sensitive film 12 is formed.
  • the film thickness of the light-shielding film 12 is appropriately adjusted so as to obtain a desired optical characteristic (for example, transmittance, reflectance, etc.) or a pattern with a predetermined shape. , 40 ⁇ ! It is adjusted in the range of ⁇ 120nm.
  • Any material can be used for such a light-shielding film 12 as long as it can be dry-etched by a chlorine-based gas.
  • a material containing chromium, a material containing tantalum, a material containing titanium, and the like can be given.
  • the material constituting the light-shielding film 12 may contain oxygen, nitrogen, carbon, or fluorine in order to control optical characteristics (for example, transmittance, reflectance, etc.) or pattern cross-sectional shape. Good.
  • the light-shielding film 12 may be composed of a composite film in which a CrN film, a CrC film, and a CrON film are laminated in this order.
  • argon (Ar) and nitrogen (N2) Reactive sputtering is performed in a mixed gas atmosphere with a chromium nitride film (CrN film) on the translucent substrate 11.
  • reactive sputtering is performed in a mixed gas atmosphere of argon (Ar) and methane (CH4) to form a chromium carbide film (CrC film) on the upper surface of the CrN film.
  • reactive sputtering is performed in a mixed gas atmosphere of argon (Ar) and nitrogen monoxide (NO) to form chromium nitride oxide (CrON film) on the upper surface of the CrC film.
  • a resist material is applied onto the deactivation suppressing film 13 by a spin coating method or the like, and then heated to form the resist film 14.
  • a mask brand 1 is formed in which the light-shielding film 12, the deactivation suppressing film 13, and the resist film 14 are laminated in this order on the translucent substrate 11.
  • the resist is formed using a material that has an etching rate of the resist film 14 in dry etching using a chlorine-based gas that is 0.5 times or less of the etching rate of the light-shielding film 12 in the dry etching.
  • a film 14 is formed.
  • the resist film 14 is formed using a material having a selection ratio of twice or more in dry etching using an etching gas containing a chlorine-based gas.
  • a resist film 14 As a material suitable for forming, there is a resist material containing silicon (Si).
  • the resist film is not particularly limited except that it contains silicon, but is preferably a chemically amplified resist film for producing a transfer mask corresponding to a semiconductor design rule of 65 nm or less.
  • the film thickness of the resist film 14 is preferably 50 nm or more and 200 nm or less from the viewpoint of setting the aspect ratio to 3 or less.
  • dry etching is performed on the light-shielding film 12 using an etching gas containing chlorine-based gas using the resist pattern shown in FIG. 1 (e) as a mask.
  • the deactivation suppressing film 13 formed on the surface of the light shielding film 12 is also etched at the same time.
  • dry etching is performed using an etching gas containing oxygen together with a chlorine-based gas.
  • the resist pattern 140 is removed with a mixed solution of hydrogen peroxide (H202) and sulfuric acid (H2S04).
  • H202 hydrogen peroxide
  • H2S04 sulfuric acid
  • the resist film 14 having high etching resistance against dry etching using a chlorine-based gas is used. That is, the etching rate of the resist film 14 in dry etching using an etching gas containing a chlorine-based gas is 0.5 times or less than the etching rate of the light-shielding film 12 in the dry etching. Etching resistance is 2 times or more. For this reason, when complying with a design rule with a line width or space width of about 65 nm, the resist pattern 140 is not collapsed during development of the resist film 14 so that the resist film 14 is reduced in thickness and the aspect ratio is reduced.
  • the resist pattern 140 is not etched until the etching of the light-shielding film 12 is completed, and functions as a mask. Therefore, it can handle design rules that are significantly finer than conventional designs. Togashi.
  • the deactivation suppression film 13 is removed after the resist pattern 140 is peeled off.
  • oxygen or nitrogen is used against the metal. You may use what added these. In this case, the deactivation suppression film 13 does not need to be removed after the resist pattern 140 is peeled off.
  • the deactivation suppressing film 13 formed by adding oxygen or nitrogen to the metal has an antireflection function, the strong deactivation suppressing film 13 can be used as it is as an antireflection film.
  • Examples of the deactivation suppressing film 13 include films made of MoSiO, MoSiN, MoSiON, TaSiO, TaSiN, TaSiON, WSiO, WSiN, WSiON, ZrSiO, ZrSiN, ZrSiON, TiSiO, TiSiN, TiSiON, and the like.
  • the mask blank using the deactivation suppression film 13 has been described.
  • the deactivation suppression film 13 is formed on the translucent substrate 11, and the mask blank is a mask blank. It's okay.
  • a substrate made of synthetic quartz is mirror-polished and is subjected to known cleaning to obtain a translucent substrate 11 of 152.4 mm ⁇ 152.4 mm ⁇ 6.35 mm (FIG. 1 (a)).
  • the light-shielding film 12 is formed on the light-transmitting substrate 11 using an in-line type sputtering apparatus in which a plurality of chromium targets are arranged in the same chamber (FIG. L (b)).
  • chromium nitride oxide (CrON film) is formed on the upper surface of the CrC film described above.
  • the above CrN film, CrC film, and CrON film are
  • the light-shielding film 12 formed on the light-transmitting substrate 11 is continuously formed using an in-line sputtering apparatus, and the CrN film, the CrC film, and the CrON film are formed in the thickness direction. It is the structure comprised continuously in this order. Further, the thickness of the light-shielding film 12 was 67 nm.
  • an organic deactivation suppression film 13 made of novolac-based resin is formed on the light-shielding film 12 by spin coating, followed by heat treatment (heating temperature 200 ° C, heating time 10 minutes) As a result, an organic deactivation suppression film 13 having a film thickness of lOnm is formed on the light-shielding film 12 (FIG. L (c)).
  • a heat treatment heat treatment (heating temperature 140 ° C., heating time 10 minutes) is performed to form a resist film 14 having a thickness of 150 nm on the deactivation suppression film 13 and mask blanks 1 (Fig. L (d)).
  • XRF fluorescent X-ray
  • Such a material constituting the resist film 14 has an etching rate of 0.5 times or less compared to the etching rate of the material constituting the light-shielding film 12 with respect to dry etching using a chlorine-based gas. (Etching selectivity is 2 times or more).
  • the resist film 14 is subjected to electron beam drawing by an electron beam drawing apparatus (manufactured by JEOL Ltd .: model number JBX9000), and after being subjected to development processing, a resist pattern 140 (65 nm) is obtained.
  • the following lines and spaces are formed (Fig. L (e)).
  • the line width of the obtained resist pattern 140 was measured with a scanning electron microscope (manufactured by JEOL Ltd .: model number JWS-7800), the line width of the resist pattern 140 was as expected at the time of design. In addition, there was no pattern collapse and the resist pattern 140 was very good.
  • the light-shielding film 12 and the organic deactivation suppression film 13 are dry-etched using a mixed gas of chlorine and oxygen at a gas pressure of 0.68 Pa and a power of 1 kW.
  • the resist pattern 140 is peeled off with a mixed solution of hydrogen peroxide / hydrogen water (H202) and sulfuric acid (H2S04).
  • a photomask 10 was obtained (Fig. L (f)).
  • the line width of the obtained transfer pattern 120 was measured using a scanning electron microscope in the same manner as the resist pattern 140.
  • the bias value was reduced by about 50%, confirming that it was 9 nm.
  • a CrN film, a CrC film, and a CrON film are successively formed in this order on a light-transmitting substrate that also has a synthetic quartz glass power, and a light-shielding film is formed.
  • the manufacturing conditions for the light-transmitting substrate and the light-shielding film are the same as in Example 1 above.
  • a PHS resin chemically amplified resist film that does not contain Si is formed on the light-shielding film by spin coating, followed by heat treatment (heating temperature 140 ° C, heating time 10 minutes) As a result, a 300 nm-thick resist film was formed on the light-shielding film to obtain mask blanks.
  • the material constituting the resist film has an etching rate for dry etching using a chlorine-based gas exceeding 0.5 times that of the material constituting the light-shielding film.
  • the resist film is subjected to electron beam lithography with an electron beam lithography apparatus (manufactured by JEOL Ltd .: model number JBX9000). The following lines and spaces were formed.
  • a scanning electron microscope manufactured by JEOL Ltd .: model number JWS-7800
  • collapse of the resist pattern was observed.
  • a CrN film, a CrC film, and a CrON film were successively formed in this order on a light-transmitting substrate having a synthetic quartz glass force to form a light-shielding film, and then an organic deactivation suppression film was formed.
  • the manufacturing conditions of the light-transmitting substrate, the light-shielding film, and the deactivation suppressing film are the same as in the above-described example.
  • the resist film is applied to an electron beam drawing apparatus (manufactured by JEOL Ltd .: model number JBX9000).
  • the resist pattern (lines and spaces of 65 nm or less) was formed by performing electron beam drawing and developing.
  • the light-shielding film was dry-etched using a mixed gas of chlorine and oxygen at a gas pressure of 0.68 Pa and a power of 1 kW to form a pattern.
  • the obtained pattern was observed using a scanning electron microscope (manufactured by JEOL Ltd .: model number JWS-7800) V. As a result, it was confirmed that no pattern was formed, and resist pattern 1 functioned as an etching mask. And that's what happened.
  • Example 2 Except that the Si content contained in the Si-containing chemically amplified resist film 14 used in Example 1 was 2 wt% (Example 2) and 7 wt% (Example 3), Mask blanks were produced in the same manner as in Example 1 described above.
  • Example 2 As a result of producing a mask in the same manner as in Example 1 and measuring and evaluating the resist pattern and transfer pattern using a scanning electron microscope, a resolution of 65 nm or less was obtained and no Si was contained! Compared to the case of using a chemically amplified resist based on resin, the bias value in Example 2 is reduced by approximately 70% to 6 nm, and in Example 3, it is reduced by approximately 50% to l lnm. Was confirmed.
  • a CrN film, a CrC film, and a CrON film are successively formed in this order on a light-transmitting substrate that also has a synthetic quartz glass power, and a light-shielding film is formed.
  • the manufacturing conditions for the light-transmitting substrate and the light-shielding film are the same as in Example 1 above.
  • a mask was fabricated in the same manner as in Example 1, and the resist pattern and transfer pattern were measured and evaluated using a scanning electron microscope. As a result, a resolution of 65 nm or less was obtained, and the bias value was reduced by approximately 50%. And 9 nm was confirmed.
  • Example 1 the Si-containing chemically amplified resist film 14 used in Example 1 has the Si content.
  • Mask blanks were prepared in the same manner as in Example 1 except that the Si-containing chemically amplified resist of acrylic resin containing 12 wt% was used.
  • the Si content included in the chemically amplified resist film is adjusted by a method in which a polymer containing Si is mixed with the resist polymer.
  • the present invention is not limited thereto. A method using a polymer containing Si as a resist polymer, a method using ion implantation, or reacting an organic Si compound with the resist film to adjust the Si content contained in the chemically amplified resist film. Nao.
  • the force described with reference to the example of the photomask branchas in the case of the light-shielding film as the thin film that becomes the transfer pattern as the mask blank is not limited to this, but the phase shift on the translucent substrate It may be a phase shift mask blank in which a film (including a no tone film and a light tone film) and a light shielding film are formed. Further, a reflective mask blank in the case of an absorber film may be used as a thin film to be a transfer pattern.
  • a material containing chromium that can be dry-etched with an etching gas containing a chlorine-based gas, a tantalum-based material containing tantalum, or the like is used as the absorber film.
  • an imprint transfer plate in which a transfer pattern forming thin film such as a chromium-based material is formed on a light-transmitting substrate may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 透光性基板11上に遮光性膜12およびレジスト膜14が積層されたマスクブランクス1において、塩素系ガスを含むエッチングガスを用いたドライエッチングにおけるレジスト膜14のエッチング速度が、当該ドライエッチングにおける遮光性膜12のエッチング速度の0.5倍以下である。このため、ライン幅あるいはスペース幅が65nm程度のデザインルールに対応する際、レジスト膜14の現像時にレジストパターン140の倒壊が発生しないようにレジスト膜14の膜厚を低減してアスペクト比を4以下、好ましくは3以下に抑えた場合でも、遮光性膜12のエッチングが完了するまで、レジストパターン140はエッチングされずマスクとしての機能を発揮する。

Description

明 細 書
マスクブランクス、および転写マスクの製造方法
技術分野
[0001] 本発明は、半導体集積回路や液晶表示装置等の製造において使用されるマスク ブランクス、および転写マスクに関するものである。
背景技術
[0002] 半導体集積回路や液晶表示装置等を製造する際、フォトリソグラフィ技術を用いて 薄膜をパターユングする工程では、透光性基板に遮光性膜からなる転写パターンが 形成された転写マスクが用いられる。このような転写マスクを製造するには、まず、透 光性基板の全面に遮光性膜を形成した後、遮光性膜の表面全体にレジスト膜を積 層する。次に、レジスト膜に対して選択的露光、ベータ処理、現像処理を行い、レジス トパターンを形成した後、レジストパターンをマスクとして遮光性膜をパターユングし、 透光性基板の表面に転写パターンを備えた転写マスクを製造する (特許文献 1参照)
[0003] ここで、透光性基板の全面に遮光性膜を形成した段階のもの、透光性基板の全面 に遮光性膜およびレジスト膜を積層した段階のもののいずれについてもマスクブラン タス (あるいはマスクブランク)と称することがある力 本願では、後者をマスクブランク スという。
[0004] 近年、 LSIの高集積ィ匕はめざましぐ LSI力卩ェに用いる転写マスクには、ライン幅あ るいはスペース幅がナノメートル単位のパターン精度が求められている。このような場 合には、マスクブランタスに形成したレジストパターンにもナノメートル単位の解像性、 およびカ卩ェ精度が求められる。その結果、レジストパターンの膜厚とレジストパターン の間隔の比 (あるいは、レジストパターンの膜厚とレジストパターンの幅寸法の比)であ るアスペクト比が大きくなり、力かるアスペクト比が 4を超えると、レジスト現像後のリン ス液または水の表面張力の影響でレジストパターンが倒壊するという問題が発生する 。従って、アスペクト比は概ね 3以下に抑えなければならない。それ故、レジストパタ ーンの倒壊を回避しつつ、さらに微細なレジストパターンを形成するには、レジスト膜 の膜厚を低減させ、レジストパターンのアスペクト比を小さくする必要がある。
[0005] し力しながら、従来のように、塩素系ガスを含むエッチングガスを用いたドライエッチ ングにおけるレジスト膜のエッチング速度が当該ドライエッチングにおける遮光性膜 のエッチング速度の 0. 75倍位のレジスト材料、すなわち、エッチング選択比が 1. 3 倍位のレジスト材料を用いたままでレジスト膜の膜厚を低減すると、レジストパターン をマスクにして遮光性膜に対して塩素系ガスを用いたドライエッチングを行った際、 遮光性膜のエッチングが終了しないうちにレジスト膜がエッチングされてしまい、マス クとして機能しなくなるという問題点がある。一方、遮光性膜を薄くすれば、エッチング 時間を短くできるので、その分、レジスト膜の膜厚を薄くできることになるが、遮光性膜 の膜厚は、フォトマスクブランクスにおいては光学濃度などに規定され、位相シフトマ スタブランクスにおいては透過率や位相シフト量などに応じて決定されるため、遮光 性膜を薄くするのには限界がある。このため、従来は、レジスト膜の膜厚を低減するこ とができず、その結果、 65nm以下といった微細なデザインルールに対応することが できな 、と!/、う問題点がある。
[0006] また、レジストパターンをエッチングマスクとして下地クロム膜のドライエッチングを行 う場合、レジストパターンの線幅後退量であるバイアス値は、ポジ型レジストでプラス 2 Onm、ネガ型レジストでマイナス 20nmが許容量といわれており、従来のドライエッチ ング速度を持つレジスト膜で 65nm以下と ヽつた微細なパターンを形成する場合、ド ライエッチング時のレジストパターン線幅の変化が許容量より大きくなり、マスク面内 でのパターン線幅のばらつきである CD精度を制御することが困難になる。
[0007] 特許文献 1 :特開平 10— 69055号公報
発明の開示
発明が解決しょうとする課題
[0008] それ故に本発明の目的は、 65nm以下と ヽつた微細なデザインルールに対応する ことができるマスクブランクス、およびこのマスクブランクスを用いた転写マスクの製造 方法を提供することにある。
課題を解決するための手段
[0009] 本発明では、基板上に少なくとも転写パターンとなる薄膜又は転写パターンを形成 するための薄膜と、レジスト膜とが積層されたマスクブランクスにおいて、塩素系ガス を含むエッチングガスを用いたドライエッチングにおける前記レジスト膜のエッチング 速度が当該ドライエッチングにおける前記薄膜のエッチング速度の 0. 5倍以下であ ることを特徴とする。すなわち、レジスト膜は、エッチング選択比が 2倍以上のエツチン グ耐性を有して 、ることを特徴とする。
[0010] 本発明において、マスクブランタスには、フォトマスクブランタスの他、位相シフトマス タブランクス、反射型マスクブランクス、インプリント用転写プレートも含まれる。位相シ フトマスタブランクスの場合には、透光性基板上にハーフトーン膜などの位相シフト膜 が形成されたものや、透光性基板上にハーフトーン膜と、その上にクロム系材料など の遮光性膜が形成されたものなどを指す。反射型マスクブランタスの場合には、低膨 張基板などの基板上に、多層反射膜上または多層反射膜の上に設けられたバッファ 層上にクロム系材料などの吸収体膜が形成されたものなどを指す。インプリント用転 写プレートの場合には、転写プレートとなる透光性基板上にクロム系材料などの転写 ノ ターン形成用薄膜が形成されたものなどを指す。
[0011] 本発明では、塩素系ガスを用いたドライエッチングに対する耐ェツチング性の高い レジスト膜を用いており、塩素系ガスを含むエッチングガスを用いたドライエッチング におけるレジスト膜のエッチング速度が当該ドライエッチングにおける前記薄膜のェ ツチング速度の 0. 5倍以下である。すなわち、レジスト膜は、エッチング選択比が 2倍 以上のエッチング而す性を有している。このため、ライン幅あるいはスペース幅が 65nm 程度のデザインルールに対応する際、レジスト膜の現像時にレジストパターンの倒壊 が発生しないようにレジスト膜の膜厚を低減してアスペクト比を 3以下に抑えた場合で も、前記薄膜のエッチングが完了するまで、レジストパターンはエッチングされずマス クとしての機能を発揮する。それ故、従来と比較して大幅に微細化したデザインルー ノレ〖こ対応することができる。
[0012] また、本発明では、レジスト膜は、塩素系ガスを含むエッチングガスを用いたドライ エッチング時における膜減りを抑制する元素を含有させた有機膜としたことを特徴と している。従って、ライン幅あるいはスペース幅を 65nm程度のデザインルールに対 応させ、レジスト膜の現像時にレジストパターンの倒壊を発生させないために、レジス ト膜の膜厚を低減してアスペクト比を 3以下に抑えた場合でも、前記薄膜のエツチン グが完了するまで、レジストパターンはエッチングされずマスクとしての機能を発揮す る。それ故、従来と比較して大幅に微細化したデザインルールに対応することができ る。上記ドライエッチング時における膜減りを抑制する元素とは、 Si、 In、 Ga、 Ge、 Al 、 Mn、 Mg、 Ti、 Snから選ばれる少なくとも一種を含むものを指す。上記元素の中で も、耐ドライエッチング性の点から、好ましくは、 Siが望ましい。レジスト膜に上記目的 の元素を含有させる方法としては、レジストのポリマーとして目的元素を含有した高分 子を用いる方法、レジストのポリマーに目的元素を含有した高分子を混合させる方法 、イオン注入による方法、レジスト膜に有機金属化合物を反応させる方法などがある。
[0013] また、上記元素は、前記有機膜における含有量が lwt%以上かつ 90wt%以下で あることが望ましい。 lwt%未満だと耐ドライエッチング性が不足となり、 90wt%超だ とマスク製造工程におけるレジスト剥離が困難となるからである。上記元素の含有量 は、さらに好ましくは lwt%以上かつ 50wt%以下が望ましい。例えば、アクリル系榭 脂材料の場合、上記元素 (特に Si)の含有量は、 10wt%以上 50wt%以下、さらに好 ましくは 10wt%以上 25wt%以下が望ましい。また、 PHS(Poly Hydroxy Styrene) 系榭脂材料の場合、上記元素 (特に Si)の含有量は、 lwt%以上 20wt%以下、さら に好ましくは lwt%以上 10wt%以下、さらに好ましくは 2wt%以上 7wt%以下が望 ましい。
[0014] 本発明にお!/、て、前記レジスト膜の膜厚は、 50nm以上かつ 200nm以下であること が好ましい。前記レジスト膜の膜厚を 200nmに設定した場合には、アスペクト比を 3 に設定した場合でも約 65nmのデザインルールに対応でき、前記レジスト膜の膜厚 は 50nmに設定した場合には、アスペクト比を 3に設定した場合でも約 17nmのデザ インルールに対応することができる。
[0015] 本発明において、前記薄膜はクロムを含む材料力もなり、この場合、前記エツチン グガスとしては、前記塩素系ガスとともに酸素を含むガスが用いられる。前記薄膜の 膜組成は、例えば、フォトマスクブランクスにおける遮光性膜においては光学濃度や 反射率によって規定され、また、位相シフトマスクブランクスにおける位相シフト膜 (ノヽ ーフトーン膜を含む)上の遮光性膜においては、透過率や位相シフト量などによって 規定される。前記薄膜は単層あるいは複数層で構成される力 いずれの場合も、遮 光性膜にクロムを含む材料が用いられ、エッチングガスとして塩素系ガスとともに酸素 を含むエッチングガスが用いられた場合、ドライエッチングにおけるレジスト膜のエツ チング速度が当該ドライエッチングにおける遮光性膜のエッチング速度の 0. 2倍以 下、すなわち、エッチング選択比が 5倍以上の条件を実現でき、デザインルールとし て 65nmよりさらに微細な条件にも対応することができる。
[0016] 本発明において、前記レジスト膜は、化学増幅型レジスト膜であり、この場合、当該 レジスト膜と前記薄膜との層間には、前記レジスト膜の失活を抑制する失活抑制膜が 少なくとも一層、形成されていることが好ましい。ポジタイプの化学増幅型レジストは、 露光によりレジスト膜中に生成される触媒物質の酸が、引き続き行われる熱処理工程 にお 、て、ポリマーの溶解性を制御する官能基ある!/、は官能物質と反応して官能基 等を外すことにより、露光部分がアルカリ現像液に溶解するようになる。従って、露光 によりレジスト膜中に生成される触媒物質の酸の濃度が何らかの原因により著しく低 下した失活状態になると、アルカリ現像液に溶解されなくなる。その結果、前記薄膜 をエッチング後、前記薄膜の残滓が残ってしまう。このような失活現象は、露光により レジスト膜中に生成される触媒物質の酸が、前記薄膜中に拡散するなどの移動など が原因であると考えられ、前記薄膜の表面近傍の膜密度が比較的疎な状態や荒れ た状態にあると、露光によりレジスト膜中に生成される触媒物質の酸が捕捉され易く なると考えられる。それ故、前記薄膜と化学増幅型レジスト膜との層間に、前記薄膜 の表面近傍の膜密度よりも高い膜密度を有する失活抑制膜や、有機膜からなる失活 抑制膜を介在させると、化学増幅型レジスト膜の失活を効果的に抑制することができ る。よって、レジスト膜の解像度、およびレジストパターン形状の向上を図ることができ 、微細なパターンを転写するための転写マスクを形成するのに有益である。
[0017] 本発明に係るマスクブランクスは、パターンが 65nm以下のデザインルールに対応 することができる。
[0018] 本発明を適用したマスクブランクスは、前記薄膜をパターユングすることにより、転 写パターンを形成した転写マスクに用いられる。すなわち、マスクブランタスの前記レ ジスト膜を選択露光、現像してレジストパターンを形成した後、当該レジストパターン をマスクにして前記薄膜に対して前記エッチングガスを用いたドライエッチングを行つ て転写パターンを形成する。なお、マスクには、フォトマスクに加えて、位相シフトマス ク、反射型マスクや、インプリント用の転写プレートも含まれる。
発明の効果
[0019] 本発明では、塩素系ガスを用いたドライエッチングに対する耐ェツチング性の高!ヽ レジスト膜を用いて ヽるため、塩素系ガスを含むエッチングガスを用いたドライエッチ ングにおけるレジスト膜のエッチング速度力 当該ドライエッチングにおける転写パタ ーンとなる薄膜又は転写パターンを形成するための薄膜のエッチング速度の 0. 5倍 以下であり、レジスト膜は、エッチング選択比が 2倍以上のエッチング耐性を有してい る。このため、ライン幅あるいはスペース幅が 65nm程度のデザインルールに対応す る際、レジスト膜の現像時にレジストパターンの倒壊が発生しないようにレジスト膜の 膜厚を低減してアスペクト比を 3以下に抑えた場合でも、前述した薄膜のエッチング が完了するまで、レジストパターンはエッチングされずマスクとしての機能を発揮する 。それ故、従来と比較して大幅に微細化したデザインルールに対応することができる 図面の簡単な説明
[0020] [図 1]マスクブランクスを形成した後、このマスクブランクスを用いて転写マスクを形成 する様子を模式的に示す工程断面図である。
発明を実施するための最良の形態
[0021] 以下に、本発明を適用したマスクブランクス、および転写マスクを説明する。
[0022] (全体構成)
図 1は、マスクブランクスを形成した後、このマスクブランクスを用いて転写マスクを 形成する様子を模式的に示す工程断面図である。
[0023] 転写マスクを製造するには、まず、図 1(a)に示すように、合成石英ガラス (ArFェキ シマレーザー露光用)、弗素ドープ石英ガラス (F2エキシマレーザー露光用)、低膨張 ガラス (EUV露光用)などカゝらなる基板材料を鏡面研磨した後、洗浄して所定寸法の 透光性基板 11を準備する。
[0024] 次に、図 1(b)に示すように、スパッタ法ゃ蒸着法などにより、透光性基板 11上に遮 光性膜 12を形成する。遮光性膜 12の膜厚は、所望の光学特性 (例えば、透過率や 反射率等)、もしくは所定形状のパターンが得られるよう適宜調整され、具体的には、 遮光性膜 12の膜厚は、 40ηπ!〜 120nmの範囲で調整される。このような遮光性膜 1 2に用いる材料としては、塩素系ガスによりドライエッチング可能なものであれば任意 である。例えば、クロムを含む材料、タンタルを含む材料、チタンを含む材料などが挙 げられる。これらの材料のうち、塩素系ガスを用いたエッチングに対するエッチング速 度を考慮すれば、クロムを含む材料であることが好ましい。また、遮光性膜 12を構成 する材料には、光学特性 (例えば、透過率や反射率等)、もしくはパターン断面形状 等を制御するために、酸素、窒素、炭素、または弗素を含んでいてもよい。
[0025] 例えば、遮光性膜 12を CrN膜、 CrC膜、および CrON膜がこの順で積層された複 合膜によって構成する場合があり、この場合、まず、アルゴン (Ar)と窒素 (N2)との混 合ガス雰囲気中で反応性スパッタリングを行い、透光性基板 11上に窒化クロム膜 (Cr N膜)を成膜する。次に、アルゴン (Ar)とメタン (CH4)との混合ガス雰囲気中で反応性 スパッタリングを行い、 CrN膜の上面に炭化クロム膜 (CrC膜)を成膜する。次に、アル ゴン (Ar)と一酸ィ匕窒素 (NO)との混合ガス雰囲気中で反応性スパッタリングを行 、、 C rC膜の上面に窒酸化クロム (CrON膜)を成膜する。
[0026] 次に、後述するレジスト膜をポジタイプの化学増幅型レジスト材料で構成する場合 には、図 1(c)に示すように、回転塗布法などにより、遮光性膜 12上に液状の失活抑 制材料としてのノボラック系榭脂からなる有機材料を塗布した後、加熱処理を行 ヽ、 遮光性膜 12上に有機系の失活抑制膜 13を形成する。
[0027] 次に、図 1(d)に示すように、回転塗布法などにより、失活抑制膜 13上にレジスト材 料を塗布した後、加熱し、レジスト膜 14を形成する。その結果、透光性基板 11上に 遮光性膜 12、失活抑制膜 13およびレジスト膜 14がこの順に積層されたマスクブラン タス 1が形成される。その際、塩素系ガスを含むエッチングガスを用いたドライエッチ ングにおけるレジスト膜 14のエッチング速度が当該ドライエッチングにおける遮光性 膜 12のエッチング速度の 0. 5倍以下となるような材料を用いてレジスト膜 14を形成 する。すなわち、塩素系ガスを含むエッチングガスを用いたドライエッチングにおける 選択比が 2倍以上の材料を用いてレジスト膜 14を形成する。このようなレジスト膜 14 を形成するのに適した材料としては、珪素 (Si)含有のレジスト材料がある。なお、レジ スト膜は、珪素を含んでいることの他に特に限定されないが、 65nm以下の半導体デ ザインルールに対応した転写マスクを作製する上では、化学増幅型レジスト膜である ことが好ましい。また、レジスト膜 14の膜厚は、アスペクト比を 3以下にするという観点 からすると、 50nm以上、かつ、 200nm以下であることが好ましい。
[0028] このように構成したマスクブランクス 1を用いて転写マスクを形成するには、まず、レ ジスト膜 14に対して、電子ビーム描画装置によって電子線描画 (選択露光)を行い、 次に、現像処理を施す。その結果、図 1(e)に示すレジストパターン 140が形成される
[0029] 次に、図 1(e)に示すレジストパターンをマスクとして、遮光性膜 12に対して塩素系ガ スを含むエッチングガスを用いてドライエッチングを行う。その際、遮光性膜 12の表 面に形成されていた失活抑制膜 13も同時にエッチングされる。ここで、クロムを含む 化合物によって遮光性膜 12を形成した場合には、塩素系ガスとともに酸素を含むェ ツチングガスを用いてドライエッチングを行う。
[0030] 次に、レジストパターン 140を過酸化水素水 (H202)と硫酸 (H2S04)との混合溶液 により剥離する。また、本形態では、遮光性膜 12の表面に有機系の失活抑制膜 13 を形成したので、失活抑制膜 13も除去する。
[0031] (本形態の主な効果)
以上説明したように、本形態では、塩素系ガスを用いたドライエッチングに対する耐 エッチング性の高いレジスト膜 14を用いている。すなわち、塩素系ガスを含むエッチ ングガスを用いたドライエッチングにおけるレジスト膜 14のエッチング速度が当該ドラ ィエッチングにおける遮光性膜 12のエッチング速度の 0. 5倍以下であり、レジスト膜 14は、エッチング選択比が 2倍以上のエッチング耐性を有している。このため、ライン 幅あるいはスペース幅が 65nm程度のデザインルールに対応する際、レジスト膜 14 の現像時にレジストパターン 140の倒壊が発生しな 、ようにレジスト膜 14の膜厚を低 減してアスペクト比を 4以下、好ましくは 3以下に抑えた場合でも、遮光性膜 12のエツ チングが完了するまで、レジストパターン 140はエッチングされずマスクとしての機能 を発揮する。それ故、従来と比較して大幅に微細化したデザインルールに対応するこ とがでさる。
[0032] [その他の実施の形態]
上記形態では、有機系の失活抑制膜 13を用いたので、レジストパターン 140を剥 離した後、失活抑制膜 13を除去したが、失活抑制膜 13として、金属に対して酸素や 窒素などを添加したものを用いてもよい。この場合、失活抑制膜 13は、レジストパタ ーン 140を剥離した後、失活抑制膜 13を除去する必要がない。また、金属に対して 酸素や窒素などを添加してなる失活抑制膜 13は反射防止機能を有しているので、 力かる失活抑制膜 13はそのまま反射防止膜として利用できる。このような失活抑制 膜 13としては、 MoSiO、 MoSiN、 MoSiON、 TaSiO、 TaSiN、 TaSiON、 WSiO、 WSiN、 WSiON、 ZrSiO、 ZrSiN、 ZrSiON、 TiSiO、 TiSiN、 TiSiONなどからな る膜が挙げられる。
[0033] また、上記形態では、失活抑制膜 13を用いたマスクブランクスにつ 、て説明したが 、透光性基板 11上に失活抑制膜 13が形成されて 、な 、マスクブランクスであっても 良い。
[0034] 以下、実施例に基づいて本発明をより具体的に説明する。
[0035] (実施例 1)
まず、合成石英カゝらなる基板を鏡面研磨し、公知の洗浄を施すことにより、 152. 4 mm X 152. 4mm X 6. 35mmの透光性基板 11を得る (図 l(a))。
[0036] 次に、同一のチャンバ一内に複数のクロムターゲットを配置したインライン型スパッ タリング装置を用いて、透光性基板 11上に遮光性膜 12を形成する (図 l(b))。
[0037] 具体的には、まず、ァルゴン(Ar)と窒素(N2)との混合ガス雰囲気(Ar:N2 = 72 : 28( 体積%)、圧力は 0. 3Pa)中で、反応性スパッタリングを行うことにより、透光性基板上 に窒化クロム膜 (CrN膜)を成膜する。続けて、アルゴン (Ar)とメタン (CH4)との混合ガ ス雰囲気(八1::じ1¾= 96. 5 : 3. 5(体積%)、圧力は 0. 3Pa)中で、反応性スパッタリン グを行うことにより、 CrN膜の上面に炭化クロム膜 (CrC膜)を成膜する。続いて、アル ゴン (Ar)と一酸ィ匕窒素 (NO)との混合ガス雰囲気 (Ar: NO = 87. 5 : 12. 5(体積0 /0)、 圧力は 0. 3Pa)中で、反応性スパッタリングを行うことにより、先述した CrC膜の上面 に窒酸化クロム (CrON膜)を成膜する。以上の CrN膜、 CrC膜、および CrON膜は、 インライン型スパッタリング装置を用いて、連続的に成膜されたものであり、透光性基 板 11上に形成された遮光性膜 12は、厚み方向において、 CrN膜、 CrC膜、および CrON膜がこの順で連続的に構成された構成になっている。また、遮光性膜 12の膜 厚は 67nmであった。
[0038] 次に、回転塗布法により、遮光性膜 12上にノボラック系榭脂からなる有機系の失活 抑制膜 13を形成した後、加熱処理 (加熱温度 200°C、加熱時間 10分)を行うことで、 遮光性膜 12上に膜厚 lOnmの有機系の失活抑制膜 13を成膜する (図 l(c》。
[0039] 次に、回転塗布法により、失活抑制膜 13上にレジストのポリマーに Siを含有した高 分子を混合させる方法により Si含有量を調整した PHS系榭脂の Si含有ィ匕学増幅型 のレジスト膜 14を形成した後、加熱処理 (加熱温度 140°C、加熱時間 10分)を行うこと で、失活抑制膜 13上に膜厚 150nmのレジスト膜 14を形成し、マスクブランクス 1を得 る (図 l(d))。尚、上記 Si含有ィ匕学増幅型レジスト膜 14に含まれる Siの含有量は、蛍 光 X線 (XRF)分析法による測定で 5.
Figure imgf000012_0001
[0040] このようなレジスト膜 14を構成する材料は、塩素系ガスを用いたドライエッチングに 対してのエッチング速度が、遮光性膜 12を構成する材料におけるエッチング速度と 比べて 0. 5倍以下 (エッチング選択比が 2倍以上)である。
[0041] 次に、レジスト膜 14に対して、電子ビーム描画装置(日本電子社製:型番 JBX9000 )によって電子線描画を行い、し力る後、現像処理を施すことにより、レジストパターン 140(65nm以下のラインおよびスペース)を形成する (図 l(e))。ここで、得られたレジ ストパターン 140の線幅を、走査型電子顕微鏡 (日本電子社製:型番 JWS - 7800)で 測定したところ、レジストパターン 140の線幅は、設計時の目論見値通りであるととも に、パターン倒壊も見られず、非常に良好なレジストパターン 140であった。
[0042] 次に、レジストパターン 140をマスクとして、遮光性膜 12と有機系失活抑制膜 13と を、塩素と酸素との混合ガスを用いて、ガス圧力 0. 68Pa、パワー lkWでドライエッチ ングを行い、転写パターン 120を形成した後、レジストパターン 140を過酸ィ匕水素水( H202)と硫酸 (H2S04)との混合溶液により剥離し、し力る後、公知の洗浄を施して転 写マスク 10を得た (図 l(f))。ここで、得られた転写パターン 120の線幅を、レジストパ ターン 140と同様に走査型電子顕微鏡を用いて測定した結果、 65nm以下の解像度 であり、 Siを含まない PHS系榭脂の化学増幅型のレジストを用いた場合と比較して バイアス値がおよそ 50%減少し、 9nmであることが確認できた。
[0043] (比較例 1)
合成石英ガラス力もなる透光性基板上に CrN膜、 CrC膜、および CrON膜をこの 順で連続的に成膜し、遮光性膜を成膜する。透光性基板、および遮光性膜の製造 条件は、上記実施例 1と同様である。
[0044] 次に、回転塗布法により遮光性膜上に、 Siを含有しない PHS系榭脂の化学増幅型 のレジスト膜を形成した後、加熱処理 (加熱温度 140°C、加熱時間 10分)を行うことで 、遮光性膜上に膜厚 300nmのレジスト膜を成膜し、マスクブランクスを得た。ここで、 レジスト膜を構成する材料は、塩素系ガスを用いたドライエッチングに対してのエッチ ング速度が、遮光性膜を構成する材料におけるエッチング速度と比べて 0. 5倍を超 えている。
[0045] 次に、レジスト膜に対して、電子ビーム描画装置(日本電子社製:型番 JBX9000)に よって電子線描画を行い、し力る後、現像処理を施すことにより、レジストパターン (65 nm以下のラインおよびスペース)を形成する処理を行った。ここで、得られたレジスト パターンを、走査型電子顕微鏡 (日本電子社製:型番 JWS— 7800)で観察したところ 、レジストパターンの倒壊が見られた。
[0046] (比較例 2)
合成石英ガラス力もなる透光性基板上に CrN膜、 CrC膜、および CrON膜をこの 順で連続的に成膜し遮光性膜を形成した後、有機系の失活抑制膜を形成した。透 光性基板、遮光性膜および失活抑制膜の製造条件は、上記実施例と同様である。
[0047] 次に、回転塗布法により遮光性膜上に、 Siを含有しない PHS系榭脂の化学増幅型 レジスト膜を形成した後、加熱処理 (加熱温度 140°C、加熱時間 10分)を行うことで、 有機系失活抑制膜上に膜厚 150nmのレジスト膜を形成し、マスクブランクスを得た。 ここで、レジスト膜を構成する材料は、塩素系ガスを用いたドライエッチングに対して のエッチング速度が、遮光性膜を構成する材料におけるエッチング速度と比べて 0. 5倍を超えている。
[0048] 次に、レジスト膜に対して、電子線描画装置(日本電子社製:型番 JBX9000)によつ て電子線描画を行い、現像処理を施すことにより、レジストパターン (65nm以下のラ インおよびスペース)を形成した。
[0049] 次に、レジストパターンをマスクとして、遮光性膜を、塩素と酸素との混合ガスを用い て、ガス圧力 0. 68Pa、パワー lkWでドライエッチングを行い、パターンを形成した。 得られたパターンを、走査型電子顕微鏡 (日本電子社製:型番 JWS - 7800)を用 Vヽ て観察した結果、パターンが形成されていないことが確認され、レジストパターン 1が エッチングマスクとして機能して 、な 、ことが分力つた。
[0050] (実施例 2、 3)
上述の実施例 1にお 、て使用した Si含有ィ匕学増幅型レジスト膜 14に含まれる Si含 有量を、 2wt% (実施例 2)、 7wt% (実施例 3)とした以外は、上述の実施例 1と同様に してマスクブランクスを作製した。
[0051] 実施例 1と同様の方法でマスクを作製し、レジストパターン、転写パターンを走査型 電子顕微鏡を用いて測定、評価した結果、 65nm以下の解像度が得られ、 Siを含ま な!ヽ PHS系榭脂の化学増幅型のレジストを用いた場合と比較して、実施例 2ではバ ィァス値がおよそ 70%減少し、 6nmとなり、実施例 3ではおよそ 50%減少し、 l lnm であることが確認された。
[0052] (実施例 4)
合成石英ガラス力もなる透光性基板上に CrN膜、 CrC膜、および CrON膜をこの 順で連続的に成膜し、遮光性膜を成膜する。透光性基板、および遮光性膜の製造 条件は、上記実施例 1と同様である。
[0053] 次に、回転塗布法により、遮光性膜 12上に実施例 1で使用した Si含有ィ匕学増幅型 のレジスト膜 14を形成した後、加熱処理 (加熱温度 140°C、加熱時間 10分)を行うこと で、膜厚 150nmのレジスト膜 14を形成し、マスクブランクスを得た。
[0054] 実施例 1と同様の方法でマスクを作製し、レジストパターン、転写パターンを走査型 電子顕微鏡を用いて測定、評価した結果、 65nm以下の解像度が得られ、バイアス 値がおよそ 50%減少し、 9nmであることが確認できた。
[0055] (実施例 5)
上述の実施例 1にお 、て使用した Si含有ィ匕学増幅型レジスト膜 14を、 Si含有量が 12wt%含むアクリル系榭脂の Si含有ィ匕学増幅型レジストとした以外は、上述の実施 例 1と同様にしてマスクブランクスを作製した。
[0056] 実施例 1と同様の方法でマスクを作製し、レジストパターン、転写パターンを走査型 電子顕微鏡を用いて測定、評価した結果、 65nm以下の解像度が得られ、バイアス 値は 7nmであることが確認された。
[0057] (その他の実施例)
なお、上述の実施例において、化学増幅型レジスト膜に含まれる Si含有量を、レジ ストのポリマーに Siを含有した高分子を混合させる方法により調整した例を挙げたが 、これに限らず、レジストのポリマーとして Siを含有した高分子を用いる方法、イオン 注入による方法、レジスト膜に有機 Siィ匕合物を反応させて化学増幅型レジスト膜に含 まれる Si含有量を調整しても構わな ヽ。
[0058] また、上述の実施例において、マスクブランクスとして転写パターンとなる薄膜として 遮光性膜の場合におけるフォトマスクブランタスの例を挙げて説明した力 これに限ら ず、透光性基板上に位相シフト膜 (ノ、ーフトーン膜を含む)と遮光性膜を形成した位相 シフトマスクブランクスであっても良い。また、転写パターンとなる薄膜として吸収体膜 の場合における反射型マスクブランクスであっても良い。この場合、吸収体膜として、 塩素系ガスを含むエッチングガスでドライエッチングが可能なクロムを含む材料や、タ ンタルを含むタンタル系材料などが使用される。また、転写パターンを形成するため の薄膜として、透光性基板上にクロム系材料などの転写パターン形成用薄膜を形成 したインプリント用転写プレートであっても良い。

Claims

請求の範囲
[1] 基板上に少なくとも転写パターンとなる薄膜又は転写パターンを形成するための薄 膜と、レジスト膜とが積層されたマスクブランクスにおいて、
塩素系ガスを含むエッチングガスを用いたドライエッチングにおける前記レジスト膜 のエッチング速度が当該ドライエッチングにおける前記薄膜のエッチング速度の 0. 5 倍以下であることを特徴とするマスクブランクス。
[2] 基板上に少なくとも転写パターンとなる薄膜又は転写パターンを形成するための薄 膜と、レジスト膜とが積層されたマスクブランクスにおいて、
前記レジスト膜は、前記塩素系ガスを含むエッチングガスを用いたドライエッチング 時における膜減りを抑制する元素を含有させた有機膜であることを特徴とするマスク ブランクス。
[3] 前記元素は、 Siであることを特徴とする請求項 2に記載のマスクブランクス。
[4] 前記元素は、前記有機膜における含有量が lwt%以上かつ 90wt%以下であるこ とを特徴とする請求項 2又は 3に記載のマスクブランクス。
[5] 前記レジスト膜の膜厚は、 50nm以上かつ 200nm以下であることを特徴とする請求 項 1乃至 4の何れか一項に記載のマスクブランクス。
[6] 前記薄膜は、 Crを含む材料力もなることを特徴とする請求項 1乃至 5の何れか一項 に記載のマスクブランクス。
[7] 前記エッチングガスは、さらに酸素を含むことを特徴とする請求項 1乃至 6の何れか 一項に記載のマスクブランクス。
[8] 前記レジスト膜は化学増幅型レジスト膜であり、当該レジスト膜と前記薄膜との層間 には、前記レジスト膜の失活を抑制する失活抑制膜が形成されて ヽることを特徴とす る請求項 1乃至 7の何れか一項に記載のマスクブランクス。
[9] パターンが 65nm以下のデザインルール用であることを特徴とする請求項 1乃至 8 の何れか一項に記載のマスクブランクス。
[10] 請求項 1乃至 9の何れか一項に記載のマスクブランタスの前記レジスト膜を選択的 露光、現像してレジストパターンを形成した後、当該レジストパターンをマスクにして、 前記薄膜に対して前記エッチングガスを用いたドライエッチングを行って転写パター ンを形成することを特徴とする転写マスクの製造方法。
PCT/JP2006/320812 2005-10-20 2006-10-19 マスクブランクス、および転写マスクの製造方法 WO2007046454A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-305292 2005-10-20
JP2005305292A JP2007114451A (ja) 2005-10-20 2005-10-20 マスクブランクス、および転写マスクの製造方法

Publications (1)

Publication Number Publication Date
WO2007046454A1 true WO2007046454A1 (ja) 2007-04-26

Family

ID=37962547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320812 WO2007046454A1 (ja) 2005-10-20 2006-10-19 マスクブランクス、および転写マスクの製造方法

Country Status (3)

Country Link
JP (1) JP2007114451A (ja)
TW (1) TW200725168A (ja)
WO (1) WO2007046454A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070819A (ja) * 2006-09-15 2008-03-27 Hoya Corp マスクブランク及びマスク
EP2515169A1 (en) * 2009-12-14 2012-10-24 Toppan Printing Co., Ltd. Photomask blank, and process for production of photomask

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955516B2 (en) * 2006-11-02 2011-06-07 Applied Materials, Inc. Etching of nano-imprint templates using an etch reactor
JP2008304689A (ja) * 2007-06-07 2008-12-18 Toppan Printing Co Ltd パターン形成方法、インプリントモールド、フォトマスク
US8512916B2 (en) * 2008-03-31 2013-08-20 Hoya Corporation Photomask blank, photomask, and method for manufacturing photomask blank
US9400421B2 (en) * 2011-05-19 2016-07-26 Hoya Corporation Mask blank substrate, mask blank, reflective mask blank, transfer mask, reflective mask, and methods of manufacturing the same
JP6944255B2 (ja) * 2017-03-14 2021-10-06 Hoya株式会社 転写用マスクの製造方法、および半導体デバイスの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268028A (ja) * 1985-04-08 1986-11-27 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション ホトレジスト中にマスク像を現像する方法
JPH02244625A (ja) * 1989-03-16 1990-09-28 Sony Corp ドライエッチング方法
JPH06250374A (ja) * 1991-06-11 1994-09-09 American Teleph & Telegr Co <Att> リソグラフィーエッチング方法
JP2002343769A (ja) * 2001-05-16 2002-11-29 Shin Etsu Chem Co Ltd クロム系フォトマスクの形成方法
JP2003107675A (ja) * 2001-09-28 2003-04-09 Hoya Corp マスクブランク、及びマスク
JP2003177549A (ja) * 2001-12-07 2003-06-27 Fujitsu Ltd パターン形成方法、薄膜磁気ヘッドの製造方法、及び薄膜磁気ヘッド

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268028A (ja) * 1985-04-08 1986-11-27 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション ホトレジスト中にマスク像を現像する方法
JPH02244625A (ja) * 1989-03-16 1990-09-28 Sony Corp ドライエッチング方法
JPH06250374A (ja) * 1991-06-11 1994-09-09 American Teleph & Telegr Co <Att> リソグラフィーエッチング方法
JP2002343769A (ja) * 2001-05-16 2002-11-29 Shin Etsu Chem Co Ltd クロム系フォトマスクの形成方法
JP2003107675A (ja) * 2001-09-28 2003-04-09 Hoya Corp マスクブランク、及びマスク
JP2003177549A (ja) * 2001-12-07 2003-06-27 Fujitsu Ltd パターン形成方法、薄膜磁気ヘッドの製造方法、及び薄膜磁気ヘッド

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070819A (ja) * 2006-09-15 2008-03-27 Hoya Corp マスクブランク及びマスク
EP2515169A1 (en) * 2009-12-14 2012-10-24 Toppan Printing Co., Ltd. Photomask blank, and process for production of photomask
EP2515169A4 (en) * 2009-12-14 2014-07-30 Toppan Printing Co Ltd FOTOMASKENROHLING AND METHOD FOR PRODUCING A PHOTOMASK
US9091931B2 (en) 2009-12-14 2015-07-28 Toppan Printing Co., Ltd. Photomask blank and method for manufacturing photomask

Also Published As

Publication number Publication date
JP2007114451A (ja) 2007-05-10
TW200725168A (en) 2007-07-01

Similar Documents

Publication Publication Date Title
JP5554239B2 (ja) フォトマスクブランク、フォトマスク及びその製造方法
JP4737426B2 (ja) フォトマスクブランク
TWI599841B (zh) Half-tone phase shift type mask blank, half-tone phase shift type mask and pattern exposure method
EP1801647B1 (en) Photomask blank and photomask
JP5507860B2 (ja) フォトマスクの製造方法
JP4797114B2 (ja) 転写用マスクの製造方法及び半導体デバイスの製造方法
JP5294227B2 (ja) マスクブランク及び転写マスクの製造方法
US8404406B2 (en) Photomask blank and method for manufacturing the same
JP2010156880A (ja) フォトマスクブランクの製造方法及びフォトマスクの製造方法
JP5642643B2 (ja) フォトマスクブランク及びその製造方法、並びにフォトマスク及びその製造方法
TWI407247B (zh) Mask base and mask
TW200949430A (en) Photo mask blank and manufacturing method thereof
WO2007046454A1 (ja) マスクブランクス、および転写マスクの製造方法
JP2017058562A (ja) フォトマスクブランク、その製造方法及びフォトマスク
JP2006287236A (ja) マスクブランク、及びマスク
JP4739461B2 (ja) 転写用マスクの製造方法及び半導体デバイスの製造方法
JP2009092840A (ja) フォトマスクおよびフォトマスクブランクス
US20210407803A1 (en) Manufacturing method of photomask, and photomask blank
JP5317137B2 (ja) マスクブランク、及びマスク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06812000

Country of ref document: EP

Kind code of ref document: A1