WO2007046391A1 - レンズユニットおよびレンズ駆動装置 - Google Patents

レンズユニットおよびレンズ駆動装置 Download PDF

Info

Publication number
WO2007046391A1
WO2007046391A1 PCT/JP2006/320680 JP2006320680W WO2007046391A1 WO 2007046391 A1 WO2007046391 A1 WO 2007046391A1 JP 2006320680 W JP2006320680 W JP 2006320680W WO 2007046391 A1 WO2007046391 A1 WO 2007046391A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
axis
guide member
main sliding
sliding portion
Prior art date
Application number
PCT/JP2006/320680
Other languages
English (en)
French (fr)
Inventor
Ryohhei Kawamuki
Hideaki Fujita
Masayuki Nishikawa
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2007540992A priority Critical patent/JP4709848B2/ja
Priority to US12/083,767 priority patent/US8300331B2/en
Priority to EP06811924A priority patent/EP1939661B1/en
Priority to CN2006800384128A priority patent/CN101288012B/zh
Publication of WO2007046391A1 publication Critical patent/WO2007046391A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/02Focusing arrangements of general interest for cameras, projectors or printers moving lens along baseboard
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing

Definitions

  • the present invention relates to a lens unit for displacing a lens.
  • the present invention also relates to a lens driving device including the lens unit.
  • a plurality of lenses are provided coaxially, and optical zooming is realized by displacing any of the lenses in the direction of their optical axis.
  • the techniques for displacing the lens the following first to fifth conventional techniques are well known.
  • the first prior art is disclosed in Japanese Patent Laid-Open No. 2001-242366.
  • a screw rod rotated by an electromagnetic motor and a guide shaft are arranged in parallel.
  • the lens holder includes a holding portion that holds the lens and a screwing portion into which the screw rod is inserted and screwed.
  • the rotation around the screw rod is regulated by the guide shaft.
  • the attitude of the lens holder is maintained by the screw rod and the guide shaft.
  • the frictional resistance between the screw rod and the screwing portion is increased.
  • the screw rod becomes difficult to rotate or the screw rod does not rotate.
  • the first conventional technique has a problem that the lens holder, and hence the lens held by the lens holder, cannot be displaced smoothly.
  • a driving force transmission member such as a screw rod or a rod-shaped member coupled to a piezoelectric element requires play with respect to a member for positioning or guiding them. Therefore, when the driving force transmission member is involved in maintaining the posture of the lens holder, it is difficult to maintain the posture of the lens holder with high accuracy.
  • FIG. 12 is a perspective view schematically showing the configuration of the second conventional lens unit.
  • the first lens holder 3 includes a first holding part 5 that holds the first lens 4, a first main sliding part 6, and a first sub sliding part 7.
  • the first lens holder 3 is guided to the first guide member 1 by the first main sliding portion 6 and is guided to the second guide member 2 by the first sub-sliding portion 7, and the first and second plans Displaceable along the inner members 1 and 2.
  • the second lens holding body 8 includes a second holding portion 10 that holds the second lens 9 coaxially with the first lens 4, a second main sliding portion 11, and a second sub sliding portion 12.
  • the second lens holding body 8 is guided to the first guide member 1 by the second main sliding portion 11 and in the second guide member 2 by the second sub-sliding portion 12. Displaceable along the guide members 1 and 2 is provided.
  • the first main sliding portion 6 in order to smoothly slide the first main sliding portion 6 with respect to the first guide member 1, the first main sliding portion 6 is in a direction along the first guide member 1. It is formed so as to extend. The longer the first main sliding portion 6 is in the direction along the first guide member 1, the more stable the posture and the sliding becomes. Further, in order to smoothly slide the second main sliding portion 11 with respect to the second guide member 2, the second main sliding portion 11 is formed so as to extend in a direction along the first guide member 1. Yes. The longer the second sliding portion 11 is in the direction along the first guide member 1, the more stable the posture and the sliding becomes.
  • the second main sliding portion 11 is provided so as to protrude from the second lens 9 toward the first holding portion 5.
  • the first main sliding portion 6 and the second main sliding portion 11 are guided by the same guide member, and the second main sliding portion 11 is guided by the second lens 9. Also protrudes toward the first holding part 5 side. Therefore, when the first lens 4 and the second lens 9 are brought close to each other, the first main sliding portion 6 and the second main sliding portion 11 interfere with each other, so that the first lens 4 and the second lens 9 There is a problem that can not be brought close enough.
  • FIG. 13 is a perspective view schematically showing the configuration of a third conventional lens unit.
  • FIG. 14 is a side view of the force in the direction of arrow 15 in FIG. Since the third prior art lens unit is similar to the second prior art lens unit, the same parts are denoted by the same reference numerals and description thereof is omitted.
  • the first main sliding portion 6 is provided so as to protrude from the first lens 4 on the side opposite to the second holding portion 10, and the second main sliding portion 11 is provided on the second lens. More than 9, the first holding part 5 is provided so as to protrude on the opposite side. Both ends of the first guide member 1 and both ends of the second guide member 2 Is fixed to the housing 16.
  • the first main sliding portion 6 is provided so as to protrude from the first lens 4 on the opposite side to the second holding portion 10, and the second main sliding portion 11 is provided.
  • the second lens 9 is provided so as to protrude on the side opposite to the first holding part 5. Therefore, when the first lens 4 and the second lens 9 are separated, the first main sliding portion 6 and the housing 16 interfere with each other, and the second main sliding portion 11 and the housing 16 interfere with each other. Therefore, there is a problem that the first lens 4 and the second lens 9 cannot be separated sufficiently!
  • the fourth prior art is disclosed in JP-A-2002-131611.
  • the first movable lens frame includes a first holding portion that holds the first lens, a first guide bushing portion that slides on the first guide shaft, and a first rotation stop portion that slides on the second guide shaft.
  • the second movable lens frame includes a second holding portion that holds the second lens, a second guide bush portion that slides on the second guide shaft, and a second rotation stop portion that slides on the third guide shaft.
  • the first guide bushing protrudes more toward the second holding part than the first lens.
  • the second guide bush portion protrudes closer to the first holding portion than the second lens.
  • the second guide bush portion and the first rotation stopper portion slide on the same guide shaft, and the second guide bush portion holds the first force more than the second lens. It protrudes to the club side. Therefore, when the first lens and the second lens are brought close to each other, the second guide bush part and the first rotation stopper part interfere with each other, so that the first lens and the second lens can be brought sufficiently close to each other. There is a problem!
  • the fifth prior art is disclosed in Japanese Patent Application Laid-Open No. 2002-131611, similar to the fourth prior art.
  • the first to fourth guide shafts are arranged in parallel.
  • the first movable lens frame includes a first holding portion that holds the first lens, a first guide bush portion that slides on the first guide shaft, and a first rotation stopper portion that slides on the second guide shaft.
  • the second movable lens frame includes a second holding portion that holds the second lens, a second guide bush portion that slides on the third guide shaft, and a second rotation stop portion that slides on the fourth guide shaft. .
  • the first guide bush portion protrudes closer to the second holding portion than the first lens.
  • the second guide bush portion protrudes closer to the first holding portion than the second lens.
  • An object of the present invention is to provide a lens unit and a lens driving device that enable a smooth displacement of the lens without increasing the restriction on the distance between the lenses, and suppress the decrease in the positional accuracy of the lens.
  • the present invention includes a first guide member having a first axis
  • a second guide member having a second axis parallel to the first axis
  • a lens unit comprising a third guide member having a third axis parallel to the first and second axes
  • a first main sliding portion that is slid and guided by the first guide member, and a first sub-slider that is guided by sliding by the third guide member and that is smaller than the first main sliding portion in the direction along the first axis.
  • a first lens holder having a sliding portion;
  • the present invention is characterized in that the first main sliding portion is provided so as to protrude from the first lens toward the second holding portion.
  • the present invention is characterized in that the second main sliding portion is provided so as to protrude from the second lens toward the first holding portion.
  • the first lens holder further includes a first reinforcing portion that reinforces a connection portion between the first main sliding portion and the first holding portion.
  • the second lens holder further includes a second reinforcing portion that reinforces a connection portion between the second main sliding portion and the second holding portion.
  • the present invention is characterized in that the first and second guide members are connected to the same member. Further, according to the present invention, when the first lens holder is vertically projected on a plane perpendicular to the first axis,
  • the area of the main sliding part is smaller than the area of the first holding part. Further, according to the present invention, when the second lens holder is vertically projected on a plane perpendicular to the second axis,
  • the area of the main sliding part is smaller than the area of the second holding part.
  • the first guide member is formed in a cylindrical shape
  • the first main sliding portion is formed in a cylindrical shape, and the first guide member is threaded therethrough.
  • the dimension of the first main sliding part in the direction along the first axis is Ll [m]
  • the inner diameter of the first main sliding part is Dl [m]
  • the outer diameter of the first guide member is dl [m].
  • the dimension of the first main sliding portion in the direction along the first axis is selected.
  • the second guide member is formed in a cylindrical shape
  • the second main sliding portion is formed in a cylindrical shape, and the second guide member is threaded therethrough.
  • the dimension of the second main sliding part in the direction along the second axis is L2 [m]
  • the inner diameter of the second main sliding part is D2 [m]
  • the outer diameter of the second guide member is d2 [m].
  • the allowable inclination of the second lens holder is a 2 [rad]
  • the dimension in the direction along the second axis of the second main sliding part is selected so as to satisfy the above.
  • the present invention also includes the lens unit;
  • First driving means for driving the first lens holding body along the first and third axes
  • second driving means for driving the second lens holding body along the second and third axes. It is a four-lens drive device characterized by including.
  • the first drive means is a first drive means
  • a first pressing piece that is displaceable along the first axis, abuts against the first lens holder, and presses the first lens holder in one direction along the first axis;
  • a first driving source for displacing and driving the first pressing piece along the first axis; And a first spring force generating means for elastically pressing the first lens holder in the other direction along the first axis.
  • the first spring force generating means is a compression coil spring, and is fitted on the first guide member.
  • the dimension of the first main sliding portion in the direction along the first axis is Ll [m]
  • the static friction coefficient between the first guide member and the first main sliding portion is 1, and the first 1
  • the pressing force in one direction along the first axis by the pressing piece is F1 [N]
  • the distance between the point of action of the pressing force and the first axis is hl l [m]
  • the first axis When the distance from the third axis is h21 [m] and the sliding resistance between the third guide member and the first auxiliary sliding part is Wl [N],
  • the dimension in the direction along the first axis of the first main sliding portion is selected.
  • the second drive means is
  • a second pressing piece provided so as to be displaceable along the second axis, abutting on the second lens holder, and pressing the second lens holder in one direction along the second axis;
  • a second drive source for displacing and driving the second pressing piece along the second axis
  • the second spring force generating means is a compression coil spring, and is fitted on the second guide member.
  • the dimension of the second main sliding portion in the direction along the second axis is L2 [m]
  • the coefficient of static friction between the second guide member and the second main sliding portion is z 2.
  • the pressing force in one direction along the second axis by the second pressing piece is F2 [N]
  • the distance between the point of application of the pressing force and the second axis is hl2 [m]
  • the second axis When the distance between the third guide line and the third axis is h22 [m] and the sliding resistance between the third guide member and the second auxiliary sliding part is W2 [N],
  • FIG. 1 is a perspective view showing a configuration of a lens unit 21 according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the lens unit 21.
  • FIG. 1 is a perspective view showing a configuration of a lens unit 21 according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the lens unit 21.
  • FIG. 3 is a perspective view showing the first lens holder 28.
  • FIG. 4 is a perspective view of the lens unit 21.
  • FIG. 5 is a sectional view taken along section line S5-S5 in FIG.
  • FIG. 6 is a perspective view showing the external appearance of the imaging device 24.
  • FIG. 7 is an exploded perspective view showing the imaging device 24 in an exploded manner.
  • FIG. 8 is a perspective view of the lens driving device 76.
  • FIG. 9 is a cross-sectional view of the lens driving device 76.
  • FIG. 10 is a diagram schematically showing the first main sliding portion 37 and the first sub sliding portion 38 in an enlarged manner.
  • FIG. 11 is a diagram schematically showing the first main sliding portion 37 in an enlarged manner.
  • FIG. 12 is a perspective view schematically showing the configuration of the second conventional lens unit.
  • FIG. 13 is a perspective view schematically showing the configuration of a third conventional lens unit.
  • FIG. 14 is a side view seen from the direction of arrow 15 in FIG.
  • FIG. 1 is a perspective view showing a configuration of a lens unit 21 according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the lens unit 21.
  • the lid member 22 is omitted.
  • a part of the housing 23 is cut away.
  • the lens unit 21 of the present embodiment constitutes a part of the imaging device 24 mounted on a portable device such as a digital camera.
  • the lens unit 21 includes a first guide member 25, a second guide member 26, a third guide member 27, a first lens holder 28, a second lens holder 29, a housing 23, and a lid member 22. (See Figure 4).
  • the first guide member 25 has a first axis 31.
  • the first guide member 25 is formed with a first guide portion extending in a direction along the first axis 31.
  • the first guide portion has a uniform cross-sectional shape perpendicular to the first axis 31 in the direction along the first axis 31.
  • the first guide member 25 is formed in a columnar shape, and an intermediate portion between both end portions of the first guide member 25 in the direction along the first axis 31 is the first guide portion.
  • the second guide member 26 has a second axis 32 that is parallel to the first axis 31.
  • the second guide member 26 is formed with a second guide portion extending in the direction along the second axis 32.
  • the second guide portion is uniform in the direction along the second axis 32, the cross-sectional shape force perpendicular to the second axis 32.
  • the second guide member 26 is formed in a columnar shape, and an intermediate portion between both end portions in the direction along the second axis 32 in the second guide member 26 becomes the second guide portion. .
  • the third guide member 27 has a third axis 33 that is parallel to the first and second axes 31 and 32.
  • the third guide member 27 is formed with a third guide portion extending in the direction along the third axis 33.
  • the cross-sectional shape perpendicular to the third axis 33 is uniform in the direction along the third axis 33.
  • the third guide member 27 is formed in a columnar shape, and an intermediate portion between both end portions in the direction along the third axis 33 in the third guide member 27 becomes the third guide portion. .
  • the third axis 33 is arranged at a position shifted from the plane including the first and second axes 31 and 32.
  • the distance between the first axis 31 and the third axis 33 is the same as or substantially the same as the distance between the second axis 32 and the third axis 33.
  • the direction along the first to third axes 31 to 33 is referred to as a first direction A.
  • first direction A the intersection of the plane perpendicular to the first direction A and the first axis 31 is defined as the first intersection
  • second intersection the intersection of the plane perpendicular to the first direction A and the second axis 32
  • B the direction along the line connecting the first intersection and the second intersection
  • B1 the direction from the first intersection to the second intersection
  • B2 the opposite direction The other in the second direction
  • the direction along the perpendicular line drawn from the third intersection point to the line segment connecting the first intersection point and the second intersection point is called the third direction C.
  • the direction from the intersection point between the line segment and the perpendicular line is directed toward the third intersection point.
  • the direction is called C1 in the third direction, and the other direction is called C2 in the third direction.
  • FIG. 3 is a perspective view showing the first lens holder 28.
  • the first lens holder 28 is the first lens A first holding portion 36 for holding the guide 35, a first main sliding portion 37, a first sub-sliding portion 38 having a smaller dimension than the first main sliding portion 37 in the first direction A, and a first A first reinforcing portion 39 (see FIG. 2) is provided to reinforce the connecting portion between the main sliding portion 37 and the first holding portion.
  • the first lens holder 28 is guided while the first main sliding portion 37 is slid and guided by the first guide member 25 in a state where the first guiding member 25 is inserted into the first main sliding portion 37.
  • the third guide member 27 inserted in the first sub-sliding portion 38, the first sub-sliding portion 38 is slid and guided by the third guide member 27, and is displaceable in the first direction A. It is done.
  • the first holding portion 36 is interposed between the first guide member 25 and the third guide member 27 in the third direction C.
  • the first holding part 36 has a plate shape.
  • the first holding part 36 is formed with a first through hole 41 penetrating in the thickness direction, and the first lens 35 is provided in the first through hole 41.
  • the thickness direction of the first holding part 36 and the optical axis direction of the first lens 35 are parallel to the first direction A.
  • the first main sliding portion 37 is bent and connected to the first holding portion 36 and extends in the first direction A.
  • the first main sliding portion 37 is formed in a cylindrical shape, and the first guide member 25 is inserted therein.
  • the first main sliding portion 37 is provided so as to protrude in the first direction A 1 from the first lens 35.
  • the first sub sliding portion 38 is continuous with the first holding portion 36.
  • the first sub-sliding portion 38 is provided at the same position as the first holding portion 36 in the first direction A.
  • the first sub-sliding portion 38 is substantially U-shaped when viewed in the first direction A force, and the third guide member 27 is inserted therein.
  • the first sub-sliding portion 38 includes a first base 42 that is continuous with the first holding portion 36, and a first circumferential direction that is continuous with the first base 42 and contacts the third guide member 27 with one circumferential force around the first axis 31.
  • the first abutting portion 43 includes a first circumferential direction other abutting portion 44 that is connected to the first base portion 42 and contacts the second guide member 26 with the other circumferential force around the first axis 31.
  • the first sub-sliding portion 38 is opened outward in the rotational radial direction around the first axis 31, thereby allowing an error in the distance between the first axis 31 and the third axis 33. Can do.
  • the first reinforcing portion 39 is realized by a rib that connects the vicinity of the first main sliding portion 37 in the first holding portion 36 and the vicinity of the first holding portion 36 in the first main sliding portion 37.
  • Such a first reinforcing part 39 reinforces the connecting portion between the first main sliding part 37 and the first holding part 36. Therefore, it is possible to avoid the problem that the first lens holder 28 is damaged due to an impact at the time of collision due to dropping or the like.
  • the area of the first main sliding portion 37 is smaller than the area of the first holding portion 36. Since the first lens holding body 28 is formed in this way, the first lens 35 and the second lens 45 are brought close to each other even if the distance force S between the first guide member 25 and the second guide member 26 is small. At this time, it is possible to avoid the problem that the first main sliding portion 37 interferes with the second main sliding portion 47 described later.
  • the second lens holder 29 includes a second holding portion 46 that holds the second lens 45 coaxially with the first lens 35, a second main sliding portion 47, and a first direction A.
  • the second sub-sliding portion 48 having a size smaller than that of the second main sliding portion 47, and the second reinforcing portion 49 for reinforcing the connecting portion of the second main sliding portion 47 and the second holding portion 46 ( (See Fig. 2).
  • the second lens holder 29 is guided while the second main sliding portion 47 is slid and guided to the second guide member 26 in a state where the second guide member 26 is inserted into the second main sliding portion 47.
  • the second sub-sliding portion 48 With the third guide member 27 inserted into the second sub-sliding portion 48, the second sub-sliding portion 48 is slid and guided to the third guide member 27, and can be displaced in the first direction A.
  • the second holding part 46 is interposed between the second guide member 26 and the third guide member 27 in the third direction C, and is provided on the other side A2 in the first direction than the first holding part 36.
  • the second holding part 46 is plate-shaped.
  • a second through hole 51 that penetrates in the thickness direction is formed in the second holding portion 46, and a second lens 45 is provided in the second through hole 51.
  • the thickness direction of the second holding part 46 and the optical axis direction of the second lens 45 are parallel to the first direction A.
  • the second main sliding portion 47 is bent and connected to the second holding portion 46 and extends in the first direction A.
  • the second main sliding portion 47 is formed in a cylindrical shape, and the second guide member 26 is inserted therein.
  • the second main sliding portion 47 is provided so as to protrude from the second lens 45 in the first direction A1.
  • the second auxiliary sliding part 48 is continuous with the second holding part 46.
  • the second sub-sliding portion 48 is provided at the same position as the second holding portion 46 in the first direction A.
  • the second sub-sliding portion 48 is formed in a substantially U shape when viewed in the first direction A force, and the third guide member 27 is inserted therein.
  • the second sub-sliding portion 48 includes a second base 52 connected to the second holding portion 46 and a second base 52 connected to the second base 52.
  • the second circumferential one-side contact portion 53 that contacts the guide member 26 with one circumferential force around the second axis 32 and the second base portion 52 are also applied to the third guide member 27 with the other circumferential force around the second axis 32.
  • the second circumferential contact portion 54 in contact with the second circumferential direction.
  • the second sub-sliding portion 48 is opened outward in the rotational radial direction around the second axis 32, thereby allowing an error in the distance between the second axis 32 and the third axis 33. Can do.
  • the second reinforcing portion 49 is realized by a rib that connects the vicinity of the second main sliding portion 47 in the second holding portion 46 and the vicinity of the second holding portion 46 in the second main sliding portion 47.
  • Such a second reinforcing part 49 reinforces the connecting portion between the second main sliding part 47 and the second holding part 46, so that the second lens holding body 29 is damaged by an impact at the time of a collision such as dropping. Can avoid the problem of failure.
  • the area area of the second main sliding portion 47 is smaller than the area area of the second holding portion 46. Since the second lens holder 29 is formed in this way, the first lens 35 and the second lens 45 are brought close to each other even if the distance force S between the first guide member 25 and the second guide member 26 is small. At this time, it is possible to avoid the problem that the first main sliding portion 37 and the second main sliding portion 47 interfere with each other.
  • the first main sliding portion 37 is formed with a first through hole through which the first guide member 25 is inserted, and the third auxiliary sliding portion 38 is fitted with the third guide member 27.
  • a first fitting groove is formed that fits.
  • the second main sliding portion 47 is formed with a second through-hole through which the second guide member 26 is inserted, and the second sub-sliding portion 48 is a second through which the third guide member 27 is fitted.
  • a fitting groove is formed.
  • the inner peripheral surfaces of the first and second through holes are slightly larger than the outer peripheral surfaces of the first and second guide members 25 and 26 within a tolerance range, and the inner surfaces of the first and second fitting grooves
  • the peripheral surface is formed to be slightly larger than the outer peripheral surface of the third internal member 27 within a tolerance range.
  • the first guide member 25 is inserted into the first main sliding portion 37 of the first lens holder 28.
  • the third guide member 27 is inserted into the first sub-sliding portion 38, it can be displaced in the first direction A, and the second lens holder 29 is connected to the second main sliding portion 47 in the second direction.
  • the guide member 26 can be displaced in the first direction A in a state where the guide member 26 is inserted and the third guide member 27 is inserted into the second sub-sliding portion 48.
  • the first and second through holes are formed as described above, the first and second lens holders are formed.
  • the inner peripheral surfaces of the first and second through holes are displaced in the through directions of the first and second guide members 25, 26. At least a part in the circumferential direction of the region facing the upstream end and the downstream end contacts. In this state, the first and second main sliding portions 37 and 47 are slid and guided by the first and second guide members 25 and 26.
  • FIG. 4 is a perspective view of the lens unit 21.
  • FIG. 5 is a cross-sectional view taken along section line S5-S5 in FIG. FIG. 4 shows a state where the lid member 22 is removed.
  • the first and second lens holders 28 and 29 are omitted.
  • the casing 23 includes a bottom portion 56 formed in a substantially rectangular plate shape, a first side wall portion 57 that is bent and connected to one side portion on the short side of the bottom portion 56, and stands on one side in the thickness direction of the bottom portion 56, and a bottom portion 56. 2nd side wall part 58 standing on one side in the thickness direction of the bottom part 56 and bent on one side of the long side of the bottom part 56 and connected to one side in the thickness direction of the bottom part 56 And a third side wall portion 59 standing upright. A housing space is formed by these portions 56 to 59.
  • the casing 23 is integrally formed using a mold.
  • first and second lens holders 28 and 29 are provided in such a casing 23 . Since the opposite side of the bottom part 56 and the opposite side of the third side wall part 59 are opened, the housing 23 has the first and second lens holders 28 and 29 and the first to third guide members 25 to 27. Assembling work is easy.
  • the first direction A is parallel to the longitudinal direction of the bottom portion 56
  • the second direction B is parallel to the width direction of the bottom portion 56
  • the third direction C is parallel to the width direction of the bottom portion 56.
  • the bottom 56 is provided on the other B2 side in the second direction with respect to the first and second lens holders 28 and 29.
  • the first side wall 57 is provided on the one A1 side in the first direction with respect to the first and second lens holders 28 and 29.
  • the second side wall portion 58 is provided on the other side A2 in the first direction with respect to the first and second lens holders 28 and 29.
  • the third side wall 59 is provided on the one side C1 in the third direction with respect to the first and second lens holders 28 and 29.
  • the first side wall 57 is formed with three insertion holes 61, 62, 63 into which the respective one end portions of the first to third guide members 25 to 27 are inserted.
  • the insertion holes 61 to 63 formed in the first side wall portion 57 extend in the first direction A and penetrate the first side wall portion 57.
  • the second side wall 58 has first to third guides. Three insertion holes 64, 65, 66 into which the other ends of the members 25 to 27 are inserted are formed.
  • the insertion holes 64 to 66 formed in the second side wall portion 58 extend in the first direction A and pass through the first side wall portion 57.
  • the first to third guide members 25 to 27 are press-fitted into the insertion holes 61 to 66 and fixed and connected.
  • the first to third guide members 25 to 27 are connected to the casing 23 which is the same member in this way, the first to third guide members 25 to 27 are compared with the case where the first to third guide members 25 to 27 are connected to different members.
  • the relative positional accuracy of the insertion holes 61 to 66 can be increased by adjusting the mold.
  • the parallelism of the first to third guide members 25 to 27 can be increased.
  • the positional accuracy of the lenses 35 and 45 can be increased, and good optical characteristics can be obtained.
  • the first side wall 57 holds the third lens 70 coaxially with the first and second lenses 35 and 45.
  • a through hole 71 that penetrates in the first direction A is formed in the first side wall portion 57, and the third lens 70 is provided in the through hole 71.
  • the second side wall 58 holds the fourth lens 72 on the same axis as the first and second lenses 35 and 45.
  • a through hole 73 that penetrates in the first direction A is formed in the second side wall portion 58, and the fourth lens 72 is provided in the through hole 73.
  • the lid member 22 is formed in a substantially rectangular plate shape.
  • the lid member 22 covers the first and second lens holders 28 and 29 from the opposite side of the bottom 56.
  • the lid member 22 is fixed to the housing 23 with an adhesive after the first and second lens holders 28 and 29 and the first to third guide members 25 to 27 are assembled.
  • FIG. 6 is a perspective view showing the external appearance of the imaging device 24.
  • FIG. 7 is an exploded perspective view showing the imaging device 24 in an exploded manner.
  • the imaging device 24 includes a lens driving device 76 and an imaging substrate 77.
  • the imaging substrate 77 is provided on a plate-like base material 78 and a surface portion on one side of the base material 78 in the thickness direction. Imaging element 79.
  • the image sensor 79 is realized by an image sensor using a charge coupled device (abbreviated as CCD), that is, a CCD image sensor.
  • CCD charge coupled device
  • the imaging substrate 77 is fixed to the first side wall portion 57 from one side A1 in the first direction by an adhesive in a state where the imaging element 79 faces the third lens 70.
  • FIG. 8 is a perspective view of the lens driving device 76.
  • FIG. 9 is a cross-sectional view of the lens driving device 76.
  • the lens driving device 76 includes the lens unit 21 shown in FIGS. 1 to 5, the first lens holding body 28, the first driving means 81 for driving the displacement in the first direction A, and the second lens holding body 29. Second driving means 82 for driving displacement in the first direction A.
  • a support body 83 that supports first and second drive sources 86 and 96 to be described later is fixed to the lens unit 21 by a bolt member and an adhesive.
  • the support 83 covers the first and second lens holders 28 and 29 from the force opposite to the third side wall 59.
  • the first driving means 81 is provided so as to be displaceable in the first direction A, and a first pressing piece 85 that contacts the first lens holding body 28 and presses the first lens holding body 28 toward the other A2 in the first direction.
  • the first driving source 86 for driving the first pressing piece 85 to move in the first direction A and the first spring force generating means for pressing the first lens holding body 28 to the one side A1 in the first direction.
  • the first drive source 86 includes a first motor 88 fixed to the support 83 and a first screw shaft 89 that is rotationally driven by the first motor 88.
  • the first motor 88 is realized by a stepping motor. By using a stepping motor as the first motor 88, position detecting means for detecting the position of the first lens holder 28 is not required, and the imaging device 24 can be reduced in size and cost.
  • the output shaft of the first motor 88 is parallel to the first direction A.
  • the first screw shaft 89 is provided on the support 83 so as to extend in the first direction A and to be rotatable around the axis.
  • the first screw shaft 89 is disposed between the first guide member 25 and the second guide member 26 in the second direction B.
  • a first input gear 90 is fixed to the output shaft of the first motor 88.
  • a first output gear 91 is fixed to one end of the first screw shaft 89.
  • a first intermediate gear 92 is interposed between the first input gear 90 and the first output gear 91.
  • the first intermediate gear 92 is provided on the support 83 so as to be rotatable about an axis extending in the first direction A.
  • the first intermediate gear 92 is connected to the first input gear 90. And mesh with the first output gear 91.
  • the first lens holder 28 further includes a first engaging portion 93 that engages with the first pressing piece 85.
  • the first engaging portion 93 is continuous with the first main sliding portion 37.
  • a first screw shaft 89 is threaded and engaged with the first pressing piece 85.
  • the first engaging portion 93 abuts against the first pressing piece 85 from the other side A2 in the first direction, and the circumferential force around the axis of the first screw shaft 89 also abuts against the first pressing piece 85.
  • the first engaging portion 93 does not rotate even if the first screw shaft 89 rotates. Does not rotate. Accordingly, the first pressing piece 85 is displaced in the first direction A as the first screw shaft 89 rotates around its axis.
  • the first compression coil spring 87 is fitted on the first guide member 25 and is disposed between the second side wall portion 58 and the first main sliding portion 37. Since the first compression coil spring 87 is fitted on the first guide member 25, it is possible to prevent a problem that the first compression coil spring 87 is detached due to an impact at the time of collision due to dropping or the like. In order to realize a configuration in which the first compression coil spring 87 is externally fitted to the first guide member 25, it is only necessary to insert the first guide member 25 into the first compression coil spring 87, and therefore, the assemblability is good.
  • the first pressing piece 85 presses the first lens holding body 28 toward the other side A2 in the first direction
  • the first compression coil spring 87 presses the first lens holding body 28 to the first. Press in one direction A1.
  • the first pressing piece 85 is driven to be displaced in the first direction A by the first drive source 86, whereby the first lens holder 28 can be driven to be displaced in the first direction A.
  • the first compression coil spring 87 presses the first lens holding body 28 toward the one side A1 in the first direction, so that the occurrence of rattling during displacement driving can be suppressed.
  • the second drive means 82 is provided so as to be displaceable in the first direction A, contacts the second lens holding body 29, and presses the second lens holding body 29 toward the other A2 in the first direction.
  • the second driving source 96 for driving the second pressing piece 95 to move in the first direction A and the second spring force generating means for pressing the second lens holding body 29 to one side A1 in the first direction.
  • a second compression coil spring 97 for pressing the second lens holding body 29 to one side A1 in the first direction.
  • the second drive source 96 includes a second motor 98 fixed to the support 83 and the second motor 98. And a second screw shaft 99 that is driven to rotate.
  • the second motor 98 is realized by a stepping motor. By using a stepping motor as the second motor 98, position detecting means for detecting the position of the second lens holder 29 becomes unnecessary, and the imaging device 24 can be reduced in size and cost.
  • the output shaft of the second motor 98 is parallel to the first direction A.
  • the second screw shaft 99 is provided on the support 83 so as to extend in the first direction A and to be rotatable about the axis.
  • the second screw shaft 99 is disposed in the second direction one B1 relative to the second guide member 26 in the second direction B.
  • a second input gear 100 is fixed to the output shaft of the second motor 98.
  • the second output gear 101 is fixed to one end of the second screw shaft 99.
  • a second intermediate gear 102 is interposed between the second input gear 100 and the second output gear 101.
  • the second intermediate gear 102 is provided on the support 83 so as to be rotatable around an axis extending in the first direction A.
  • the second intermediate gear 102 meshes with the second input gear 100 and meshes with the second output gear 101.
  • the second lens holding body 29 further includes a second engaging portion 103 that engages with the second pressing piece 95.
  • the second engaging portion 103 is continuous with the second main sliding portion 47.
  • the second screw shaft 99 is inserted into and screwed into the second pressing piece 95.
  • the second engaging portion 103 abuts against the second pressing piece 95 from the other side A2 in the first direction, and both circumferential forces around the axis of the second screw shaft 99 also abut against the second pressing piece 95.
  • the second engaging portion 103 since the second engaging portion 103 also abuts both the circumferential forces around the axis of the second screw shaft 99 against the second pressing piece 95, the second pressing piece 95 even if the second screw shaft 99 rotates. Does not rotate. Accordingly, the second pressing piece 95 is displaced in the first direction A by the rotation of the second screw shaft 99 around its axis.
  • the second compression coil spring 97 is fitted on the second guide member 26 and is disposed between the second side wall portion 58 and the second main sliding portion 47. Since the second compression coil spring 97 is fitted on the second guide member 26, it is possible to prevent a problem that the second compression coil spring 97 comes off due to an impact at the time of collision due to dropping or the like. In order to realize a configuration in which the second compression coil spring 97 is externally fitted to the second guide member 26, it is only necessary to insert the second guide member 26 into the second compression coil spring 97, and therefore, the assemblability is good.
  • the second pressing piece 95 moves the second lens holding body 29 in the first direction.
  • the other is pressed against A2
  • the second compression coil spring 97 presses the second lens holding body 29 toward one A1 in the first direction.
  • the second pressing source 95 is driven to be displaced in the first direction A by the second driving source 96, whereby the second lens holding body 29 can be driven to be displaced in the first direction A.
  • the second lens holding body 29 is pressed against the one A1 in the first direction by the second compression coil spring 97, the occurrence of rattling during displacement driving can be suppressed.
  • a first origin sensor 106 is disposed at the origin position when the first lens holder 28 is driven.
  • the first origin sensor 106 is fixed to the housing 23.
  • the first origin sensor 106 is realized by a photo interrupter including a light emitting element and a light receiving element.
  • the first lens holding body 28 further includes a first light shielding portion 107 that is continuous with the first holding portion 36. When the first lens holding body 28 is displaced to the origin position, the light having the light emitting element power is blocked by the first light shielding unit 107.
  • the first origin sensor 106 outputs different signals depending on whether the light is blocked or not. By using the signal from the first origin sensor 106, it is possible to detect that the first lens holder 28 has been displaced to the origin position.
  • a second origin sensor 108 is disposed at the origin position when the second lens holder 29 is driven.
  • Second origin sensor 108 is fixed to housing 23.
  • Second origin sensor 108 is realized by a photo interrupter including a light emitting element and a light receiving element.
  • the second lens holder 29 further includes a second light shield 109 that is continuous with the second holder 46.
  • the second origin sensor 108 outputs different signals depending on whether the light is blocked or not. By using the signal from the second origin sensor 108, it is possible to detect that the second lens holder 29 has been displaced to the origin position.
  • the first driving means 81 displaces and drives the first lens holding body 28 in the first direction A
  • the second driving means 82 drives the second lens holding body 29 in the first direction A.
  • the distance between the first lens 35 and the second lens 45 can be changed while the optical axes of the lenses 35 and 45 are matched.
  • FIG. 10 is a diagram schematically showing the first main sliding portion 37 and the first sub sliding portion 38 in an enlarged manner.
  • the dimension of the first main sliding portion 37 in the first direction A is Ll [m]
  • the coefficient of static friction between the first guide member 25 and the first main sliding portion 37 is z 1.
  • First direction with first pressing piece 85 On the other hand, the pressing force to Al is F1 [N], the distance between the point of application of the pressing force and the first axis 31 is hll [m], and the distance between the first axis 31 and the third axis 33 H21 [m], and the sliding resistance between the third guide member 27 and the first auxiliary sliding portion 38 is W1 [N].
  • the inner diameter of the first main sliding part 37 is Dl [m].
  • the contact of the first main sliding portion 37 and the first guide member 25 in the first direction other A2 is the first contact P11, and the first main sliding portion 37 and the first guide member 25 in the first direction one A1
  • the contact is the second contact P21
  • the distance in the first direction A between the first contact P11 and the point of action of the pressing force is L11
  • the first direction A of the second contact P21 and the point of action of the pressing force is A1.
  • L21 be the distance with respect to the first direction A between the first contact P11 and the second contact P21.
  • the resistance acting on the first contact P11 is R11 [
  • the resistance acting on the second contact P21 is R21 [N].
  • the coefficient of static friction; z 1 varies greatly depending on the material, usage environment, and environment during mass production, and accurate measurement is difficult. However, it is a value between 0.2 and 0.6 between grease and stainless steel. .
  • the distance hl l between the point of application of the pressing force and the first axis 31 is at least about 1.5 mm in consideration of the outer diameter of the first guide member 25 and the thickness of the first main sliding portion 37. is necessary. From the above, in order to improve the slidability of the first main sliding portion 37, it is most effective to increase the dimension L1 of the first main sliding portion 37 in the first direction A.
  • the dimension related to the direction along the first axis 31 of the first main sliding portion 37 is selected so as to satisfy Expression (5).
  • the upper limit of the dimension in the direction along the first axis 31 of the first main sliding portion 37 is selected so that the first main sliding portion 37 can slide the first guide member 25 in the housing 23. .
  • the dimension L1 in the direction along the first axis 31 of the first main sliding portion 37 is selected so as to satisfy Ll> 2- ⁇ -iFl-hi1 + Wl-h21) / (Fl-Wl)
  • the sliding resistance between the first main sliding portion 37 and the first guide member 25 becomes sufficiently small, and the first lens 35 can be displaced smoothly.
  • the dimensions of the second main sliding portion 47 in the direction along the second axis 32 are similar to the dimensions of the first main sliding portion 37 in the direction along the first axis 31 and will be described in a simplified manner.
  • the dimension of the second main sliding portion 47 in the first direction A is L2 [m]
  • the coefficient of static friction between the second guide member 26 and the second main sliding portion 47 is z 2
  • the second pressing The pressing force in the first direction A1 by the piece 95 is F2 [N]
  • the distance between the point of application of the pressing force and the second axis 32 is hl2 [m]
  • the second axis 32 and the third axis When the distance from the axis 33 is h22 [m] and the sliding resistance between the third guide member 27 and the second auxiliary sliding portion 48 is W2 [N],
  • the dimension of the second main sliding part 47 in the direction along the second axis 32 is selected.
  • the The upper limit value of the dimension of the second main sliding portion 47 in the direction along the second axis 32 is selected so that the second main sliding portion 47 can slide the second guide member 26 in the housing 23.
  • the dimension L2 in the first direction A of the second main sliding portion 47 is selected so as to satisfy L2> 2- ⁇ 2 (F2-hl2 + W2-h22) Z (F2-W2), the second The sliding resistance between the main sliding portion 47 and the second guide member 26 becomes sufficiently small, and the second lens 45 can be displaced smoothly.
  • FIG. 11 is a diagram schematically showing the first main sliding portion 37 in an enlarged manner.
  • the inner diameter of the first main sliding portion 37 is about several tens / zm larger than the outer diameter of the first guide member 25. This is because the inner diameter of the first main sliding portion 37 is smaller than the outer diameter of the first guide member 25 depending on deformation due to temperature change, and the first main sliding portion 37 causes the first guide member 25 to move. This is to prevent it from sliding. Due to the slight gap between the first main sliding portion 37 and the first guide member 25, the first lens holding body 28 tilts during sliding. In order to reduce the inclination of the first lens holder 28, the dimension of the first main sliding portion 37 in the direction along the first axis 31 is increased.
  • the dimension of the first main sliding part 37 in the first direction A is Ll [m]
  • the inner diameter of the first main sliding part 37 is Dl [m]
  • the outer diameter of the first guide member 25 is dl.
  • the allowable inclination of the first lens holder 28 is ⁇ 1 [rad]
  • the inclination of the first lens holder 28 is ⁇ 1 [rad] (0 ⁇ ⁇ ⁇ 1 ⁇ 2) .
  • L1 (01) is a monotone decreasing function in the range of 0 ⁇ ⁇ 2, in order to be 0 and ⁇ , L1 (0 l)> Ll (al) may be satisfied. That is, if the following equation (9) is satisfied, the inclination of the first lens holder 28 is less than the allowable value ⁇ 1 [rad], and the optical characteristics are maintained.
  • the dimension in the direction along the first axis 31 of the first main sliding portion 37 is selected so as to satisfy the expression (9).
  • the upper limit of the dimension of the first main sliding portion 37 in the direction along the first axis 31 is that the first main sliding portion 37 is the first guide member in the housing 23. 25 is chosen to be slidable.
  • the dimension L1 in the direction along the first axis 31 of the first main sliding portion 37 is Ll> (Dl'cosa 1
  • the dimensions of the second main sliding portion 47 in the direction along the second axis 32 are similar to the dimensions of the first main sliding portion 37 in the direction along the first axis 31 and will be described in a simplified manner.
  • the dimension of the second main sliding part 47 in the first direction A is L2 [m]
  • the inner diameter of the second main sliding part 47 is D2 [m]
  • the outer diameter of the second guide member 26 is d2 [m].
  • the dimension of the second main sliding portion 47 in the direction along the second axis 32 is selected.
  • the upper limit value of the dimension of the second main sliding portion 47 in the direction along the second axis 32 is selected so that the second main sliding portion 47 can slide the second guide member 26 in the housing 23.
  • the dimension L2 in the direction along the second axis 32 of the second main sliding portion 47 is L2> (D2-cos a 2
  • the tilting force of the second lens 45 can be kept within an allowable range, and good optical characteristics can be obtained.
  • the first to third guide members 25 to 27 have the first to third axes 31 to 33, and the first to third axes 31 to 33 are parallel to each other.
  • the first lens holding body 28 holds the first lens 35 by the first lens 35 holding portion, is slid and guided to the first guide member 25 by the first main sliding portion 37, and is The moving portion 38 is slidably guided by the third guide member 27 and is provided so as to be displaceable in the first direction A.
  • the second lens holding body 29 holds the second lens 45 coaxially with the first lens 35 by the second lens 45 holding portion, and is slid and guided to the second guide member 26 by the second main sliding portion 47.
  • the second sub-sliding portion 48 slides and is guided by the third guide member 27 and is provided so as to be displaceable in the first direction A. Therefore, the distance between the first lens 35 and the second lens 45 can be changed with the optical axes of the respective lenses matched.
  • the first sub-sliding portion 38 has a smaller dimension than the first main sliding portion 37 with respect to the first direction A
  • the second sub-sliding portion 48 has the first dimension with respect to the first direction A.
  • the first and second lens holders 28 and 29 are driven to be displaced during the optical zoom.
  • the first lens 35 and the second lens 45 are connected to, for example, 0. It can be close to the interval of about 3mm.
  • the second main sliding portion 47 is provided so as to protrude in the first direction A1 from the second lens 45, the second lens 45 is, for example, 0.3 mm from the fourth lens 72. Can be close to each other.
  • the mounting error of each guide member is accumulated compared to the case where the guide members are guided by different guide members. As a result, the positional accuracy of the first and second lenses 35 and 45 is increased.
  • the first sub-sliding portion 38 and the second sub-sliding portion 48 are guided by the same guide member, the number of guide members is reduced as compared with the case where they are planned in different guide members. This facilitates the assembly of the lens unit 21.
  • the second main sliding portion 47 is provided so as to protrude from the second lens 45 toward the first holding portion 36 side, the second main sliding portion 47 is provided in comparison with the case where it is provided protruding toward the opposite side.
  • the first lens 35 and the second lens 45 can be separated. In other words, even if the dimensions of the second main sliding portion 47 in the first direction A are selected so as to satisfy the expressions (6) and (10), it is not necessary to enlarge the housing 23.
  • the unit 21 can be downsized.
  • the first main sliding portion 37 satisfies the expressions (6) and (10), the sliding resistance between the first main sliding portion 37 and the first inner member 25 is reduced, and the first First main slide with respect to guide member 25 The inclination of part 37 is suppressed.
  • the first lens 35 can be smoothly displaced.
  • the inclination of the first main sliding portion 37 with respect to the first internal member 25 is suppressed, the inclination of the optical axis of the first lens 35 can be suppressed.
  • the second main sliding portion 37 satisfies the expressions (6) and (10)
  • the sliding resistance between the second main sliding portion 47 and the second internal member 26 is reduced, and the second The inclination of the second main sliding portion 47 with respect to the guide member 26 is suppressed.
  • the second lens 45 can be smoothly displaced.
  • the inclination of the second main sliding portion 47 with respect to the second internal member 26 is suppressed, the inclination of the optical axis of the second lens 45 can be suppressed.
  • the distance between the first axis 31 and the third axis 33 is the same as or substantially the same as the distance between the second axis 3 2 and the third axis 33. Therefore, the positional accuracy of the first lens holding body 28 and the positional accuracy of the second lens holding body 29 can be made the same level.
  • the above-described embodiment is merely an example of the present invention, and the configuration can be changed within the scope of the present invention.
  • the first main sliding portion 37 is provided so as to protrude to the second holding portion 46 side from the first lens 35
  • the second main sliding portion 37 is provided to the first holding portion 36 side from the second lens 45. May be provided so as to protrude.
  • the first lens 35 and the second lens 45 can be further separated without increasing the size of the housing 23.
  • the first and second drive sources 86 and 96 may be common.
  • the first to third guide members have first to third axes, and the first to third axes are arranged in parallel.
  • the first lens holder holds the first lens by the first lens holder.
  • the first main sliding part is slid and guided to the first guide member, and the first sub-sliding part is slid to the third guide member and guided to the first and third axes. It can be displaced along.
  • the second lens holding body holds the second lens coaxially with the first lens by the second lens holding portion, is slid and guided to the second guide member by the second main sliding portion, and is also
  • the sliding part is slid and guided by the third guide member, and is provided to be displaceable along the second and third axes. Therefore, the distance between the first lens and the second lens can be changed in a state where the optical axes of the respective lenses are matched.
  • the first main sliding portion slides the first lens holder along the first axis, and suppresses the inclination of the first lens holder relative to the first axis when sliding.
  • the first main sliding portion has a larger dimension in the direction along the first axis, the inclination of the first main sliding portion with respect to the first guide member is suppressed. Therefore, the inclination of the optical axis of the first lens can be suppressed.
  • the larger the dimension in the direction along the first axis the smaller the sliding resistance between the first main sliding portion and the first guide member.
  • the second main sliding portion slides the second lens holder along the second axis, and suppresses the inclination of the second lens holder relative to the second axis when sliding.
  • the inclination of the second main sliding portion with respect to the second guide member is suppressed as the size of the second main sliding portion in the direction along the second axis is larger. Therefore, the inclination of the optical axis of the second lens can be suppressed. Further, the larger the dimension in the direction along the second axis, the smaller the sliding resistance between the second main sliding portion and the second guide member.
  • the first sub-sliding portion slides with the third guide member and prevents the first lens holder from rotating around the first guide member.
  • the dimension along the first axis is smaller than that of the first main sliding portion.
  • the second auxiliary sliding portion slides with the third guide member and prevents the second lens holding body from rotating around the second guide member.
  • the dimension along the second axis is smaller than that of the second main sliding portion. Since the first main sliding portion and the second main sliding portion are guided by different guide members, when the first lens and the second lens are brought close to each other, the first main sliding portion and the second main sliding portion The problem of interference with moving parts is avoided.
  • first sub-sliding portion and the second sub-sliding portion have smaller dimensions in the direction along the first axis than the first main sliding portion and the second main sliding portion. Therefore, even if the first sub-sliding portion and the second sub-sliding portion are guided by the same guide member, the first lens and the second lens are brought close to each other. The problem that the first sub-sliding part and the second sub-sliding part interfere with each other is avoided. Thus, the problem that the first main sliding portion and the second main sliding portion interfere with each other is avoided, and the first sub sliding portion and the second sub sliding portion interfere with each other. Since the problem is avoided, the first lens and the second lens can be sufficiently close to each other.
  • the first main sliding portion is provided so as to protrude to the second holding portion side relative to the first lens, so that the lens unit can be easily assembled.
  • the first lens and the second lens can be separated from each other, and the lens unit can be downsized.
  • the second main sliding portion is provided so as to protrude to the first holding portion side with respect to the second lens
  • the first lens and the second lens are compared with the case where the second main sliding portion is provided to protrude to the opposite side.
  • the lens unit can be separated and the lens unit can be downsized.
  • the connection portion between the first main sliding portion and the first holding portion is reinforced by the first reinforcing portion, the first lens holding body is damaged due to an impact at the time of a collision such as dropping. If this happens, you can avoid problems.
  • the connecting portion between the second main sliding portion and the second holding portion is reinforced by the second reinforcing portion, the second lens holding body is damaged due to an impact at the time of a collision such as dropping. If this happens, you can avoid problems.
  • the parallelism of the first and second guide members is higher than when coupled to different members. This is because there is an error when assembling different members when connected to different members, but there is no such error when connected to the same member. As the parallelism of the first and second guide members increases, the positional accuracy of the first and second lenses increases.
  • the area area of the first main sliding portion is smaller than the area area of the first holding portion, so the first guide member and the second guide member Even if the distance between the first and second lenses is small, the first main sliding portion and the second main sliding portion may interfere with each other when the first lens and the second lens are brought close to each other. it can.
  • the first guide member and the second guide member Even if the distance between the first and second lenses is small, the first main sliding portion and the second main sliding portion may interfere with each other when the first lens and the second lens are brought close to each other. it can.
  • the dimension L1 in the direction along the first axis of the first main sliding portion is selected so as to satisfy Ll> (Dl'cosal-dl) Zsin a 1. Tilt force is kept within the allowable range, and good optical characteristics can be obtained.
  • the dimension L2 in the direction along the second axis of the second main sliding part is selected so as to satisfy L2> (D2-cos a2-d2) Zsin a 2, the second lens The tilting force is kept within the allowable range, and good optical characteristics can be obtained.
  • the first lens holding body is driven to move along the first and third axes by the first driving means, and the second lens holding body is moved by the second driving means to the second and third axes.
  • the distance between the first lens and the second lens can be changed in a state where the optical axes of the respective lenses are matched.
  • the first pressing piece presses the first lens holding body in one direction along the first axis
  • the first spring force generator means the first lens holding body in the other direction along the first axis. Press to.
  • the first pressing piece can be driven to be displaced along the first axis by the first drive source, whereby the first lens holder can be driven to be displaced along the first axis.
  • the first spring force generating means since the first lens holding body is pressed in the other direction along the first axis by the first spring force generating means, the occurrence of rattling during displacement driving can be suppressed.
  • the first spring force generating means is a compression coil spring and is fitted on the first guide member, the compression coil spring is disengaged due to an impact at the time of collision due to dropping or the like. Can be prevented.
  • the dimension L1 in the direction along the first axis of the first main sliding portion is such that Ll> 2- Since ⁇ 1 ⁇ (Fl 'hl l + Wl' h21) Z (Fl-Wl) is selected, the sliding resistance between the first main sliding part and the first guide member is sufficiently small. Therefore, the first lens can be displaced smoothly.
  • the second pressing piece presses the second lens holding body in one direction along the second axis
  • the second spring force generation means presses the second lens holding body in the other direction along the second axis. Press to.
  • the second pressing piece can be driven to be displaced along the second axis by the second drive source, whereby the second lens holder can be driven to be displaced along the second axis.
  • the second lens holding member is pressed in the other direction along the second axis by the second spring force generating means, the occurrence of rattling during displacement driving can be suppressed.
  • the second spring force generating means is a compression coil spring, and is externally fitted to the second guide member. Can be prevented.
  • the dimension L2 in the direction along the second axis of the second main sliding portion satisfies L2> 2- ⁇ 2 ⁇ (F2'hl2 + W2'h22) Z (F2-W2) Therefore, the sliding resistance between the second main sliding portion and the second guide member becomes sufficiently small, and the second lens can be smoothly displaced.

Abstract

 本発明は、レンズ間の距離に対する制約を大きくすることなく、レンズの滑らかな変位を可能にし、しかもレンズの位置精度の低下を抑えたレンズユニットおよびレンズ駆動装置に関する。第1~第3案内部材25~27は、第1~第3軸線31~33を有し、第1~第3軸線31~33は、平行に配置される。第1レンズ保持体28は、第1レンズ35保持部によって第1レンズ35を保持し、第1主摺動部37で第1案内部材25に摺動して案内されるとともに、第1副摺動部38で第3案内部材27に摺動して案内される。第2レンズ保持体29は、第2レンズ45保持部によって第1レンズ35と同軸に第2レンズ45を保持し、第2主摺動部47で第2案内部材26に摺動して案内されるとともに、第2副摺動部48で第3案内部材27に摺動して案内される。

Description

レンズユニットおよびレンズ駆動装置
技術分野
[0001] 本発明は、レンズを変位させるためのレンズユニットに関する。
また本発明は、前記レンズユニットを含むレンズ駆動装置に関する。
背景技術
[0002] 撮像装置では、複数のレンズが同軸に設けられ、各レンズのいずれかを、それらの 光軸方向に変位させることによって、光学ズームが実現される。レンズを変位させるた めの技術としては、後述の第 1〜第 5の従来技術が周知である。
第 1の従来技術は、特開 2001— 242366号公報に開示されている。第 1の従来技 術では、電磁モータによって回転されるねじロッドと、ガイド軸とが、平行に配置される 。レンズホルダは、レンズを保持する保持部と、ねじロッドが挿通して螺合する螺合部 とを備える。レンズホルダは、ガイド軸によってねじロッドまわりの回転が規制されるよ うになつている。電磁モータによってねじロッドが回転されると、レンズホルダは、ねじ ロッドに沿う方向に変位する。
このような第 1の従来技術では、ねじロッドとガイド軸とによって、レンズホルダの姿 勢を維持して 、る。このようにねじロッドがレンズホルダの姿勢の維持に寄与する場合 、ねじロッドと螺合部との間の摩擦抵抗が大きくなる。ねじロッドと螺合部との間の摩 擦抵抗が大きくなることによって、ねじロッドが回転しにくくなり、あるいはねじロッドが 回転しなくなる。このような第 1の従来技術では、レンズホルダ、したがつてこのレンズ ホルダによって保持されるレンズを、滑らかに変位させることができないという問題が ある。また、ねじロッド、または圧電素子に結合した棒状部材のような駆動力伝達部 材は、それらを位置決めもしくは案内する部材に対して遊びが必要である。そのため 、駆動力伝達部材がレンズホルダの姿勢の維持に関与する場合、レンズホルダの姿 勢を高精度に維持することが困難である。
図 12は、第 2の従来技術のレンズユニットの構成を簡略ィ匕して示す斜視図である。 第 2の従来技術では、第 1案内部材 1と第 2案内部材 2とが、平行に配置される。 第 1レンズ保持体 3は、第 1レンズ 4を保持する第 1保持部 5と、第 1主摺動部 6と、第 1副摺動部 7とを備える。第 1レンズ保持体 3は、第 1主摺動部 6で第 1案内部材 1に 案内されるとともに、第 1副摺動部 7で第 2案内部材 2に案内され、第 1および第 2案 内部材 1, 2に沿って変位可能に設けられる。
第 2レンズ保持体 8は、第 1レンズ 4と同軸に第 2レンズ 9を保持する第 2保持部 10と 、第 2主摺動部 11と、第 2副摺動部 12とを備える。第 2レンズ保持体 8は、第 2主摺動 部 11で第 1案内部材 1に案内されるとともに、第 2副摺動部 12で第 2案内部材 2に案 内され、第 1および第 2案内部材 1, 2に沿って変位可能に設けられる。
この第 2の従来技術では、第 1案内部材 1に対して第 1主摺動部 6を滑らかに摺動さ せるために、第 1主摺動部 6は、第 1案内部材 1に沿う方向に延びるように形成されて いる。第 1主摺動部 6は、第 1案内部材 1に沿う方向に関して長いほど姿勢が安定し、 摺動しゃすくなる。また第 2案内部材 2に対して第 2主摺動部 11を滑らかに摺動させ るために、第 2主摺動部 11は、第 1案内部材 1に沿う方向に延びるように形成されて いる。第 2摺動部 11は、第 1案内部材 1に沿う方向に関して長いほど姿勢が安定し、 摺動しゃすくなる。第 2主摺動部 11は、第 2レンズ 9よりも第 1保持部 5側に突出して 設けられている。
このような第 2の従来技術では、第 1主摺動部 6と第 2主摺動部 11とが同一の案内 部材によって案内され、しかも第 2主摺動部 11が、第 2レンズ 9よりも第 1保持部 5側 に突出している。したがって第 1レンズ 4と第 2レンズ 9とを近接させるときに、第 1主摺 動部 6と第 2主摺動部 11とが干渉してしまうので、第 1レンズ 4と第 2レンズ 9とを充分 に近接させることができな ヽと 、う問題がある。
図 13は、第 3の従来技術のレンズユニットの構成を簡略ィ匕して示す斜視図である。 図 14は、図 13の矢符 15方向力も見た側面図である。第 3の従来技術のレンズュ-ッ トは、第 2の従来技術のレンズユニットに類似するので、同一の部分には同一の符号 を付して説明を省略する。
第 3の従来技術では、第 1主摺動部 6は、第 1レンズ 4よりも、第 2保持部 10とは反対 側に突出して設けられ、第 2主摺動部 11は、第 2レンズ 9よりも、第 1保持部 5とは反 対側に突出して設けられる。第 1案内部材 1の両端部および第 2案内部材 2の両端部 は、筐体 16に固定されている。
このような第 3の従来技術では、第 1主摺動部 6が、第 1レンズ 4よりも、第 2保持部 1 0とは反対側に突出して設けられ、第 2主摺動部 11が、第 2レンズ 9よりも、第 1保持 部 5とは反対側に突出して設けられる。したがって第 1レンズ 4と第 2レンズ 9とを離反 させるときに、第 1主摺動部 6と筐体 16とが干渉してしまい、かつ第 2主摺動部 11と筐 体 16とが干渉してしまうので、第 1レンズ 4と第 2レンズ 9とを充分に離反させることが できな 、と!/、う問題がある。
第 4の従来技術は、特開 2002— 131611号公報に開示されている。第 4の従来技 術では、第 1〜第 3案内軸が、平行に配置される。第 1可動レンズ枠は、第 1レンズを 保持する第 1保持部と、第 1案内軸を摺動する第 1ガイドブッシュ部と、第 2案内軸を 摺動する第 1回転止め部とを備える。第 2可動レンズ枠は、第 2レンズを保持する第 2 保持部と、第 2案内軸を摺動する第 2ガイドブッシュ部と、第 3案内軸を摺動する第 2 回転止め部とを備える。第 1ガイドブッシュ部は、第 1レンズよりも、第 2保持部側に突 出している。第 2ガイドブッシュ部は、第 2レンズよりも、第 1保持部側に突出している。 このような第 4の従来技術では、第 2ガイドブッシュ部と第 1回転止め部とが同一の 案内軸を摺動し、し力も第 2ガイドブッシュ部が、第 2レンズよりも、第 1保持部側に突 出している。したがって第 1レンズと第 2レンズとを近接させるときに、第 2ガイドブッシ ュ部と第 1回転止め部とが干渉してしまうので、第 1レンズと第 2レンズとを充分に近接 させることができな!/、と!/ヽぅ問題がある。
第 5の従来技術は、第 4の従来技術と同様、特開 2002— 131611号公報に開示さ れている。第 5の従来技術では、第 1〜第 4案内軸が、平行に配置される。第 1可動レ ンズ枠は、第 1レンズを保持する第 1保持部と、第 1案内軸を摺動する第 1ガイドブッ シュ部と、第 2案内軸を摺動する第 1回転止め部とを備える。第 2可動レンズ枠は、第 2レンズを保持する第 2保持部と、第 3案内軸を摺動する第 2ガイドブッシュ部と、第 4 案内軸を摺動する第 2回転止め部とを備える。第 1ガイドブッシュ部は、第 1レンズより も、第 2保持部側に突出している。第 2ガイドブッシュ部は、第 2レンズよりも、第 1保持 部側に突出している。
このような第 5の従来技術では、前記第 4の従来技術の問題を解決することができる けれども、第 1ガイドブッシュ部と第 2ガイドブッシュ部とが、異なる案内軸を摺動するう えに、第 1回転止め部と第 2回転止め部とが、異なる案内軸を摺動するので、各案内 軸の取付け誤差が累積して、レンズの位置精度が低下してしまうという問題がある。 発明の開示
本発明の目的は、レンズ間の距離に対する制約を大きくすることなぐレンズの滑ら かな変位を可能にし、し力もレンズの位置精度の低下を抑えたレンズユニットおよび レンズ駆動装置を提供することである。
本発明は、第 1軸線を有する第 1案内部材と、
第 1軸線と平行な第 2軸線を有する第 2案内部材と、
第 1および第 2軸線と平行な第 3軸線を有する第 3案内部材とを備えたレンズュニッ トであって、
第 1案内部材に摺動し案内される第 1主摺動部と、第 3案内部材に摺動して案内さ れ、第 1軸線に沿う方向に関して第 1主摺動部より小さい第 1副摺動部とを備えた第 1 レンズ保持体と、
第 2案内部材に摺動し案内される第 2主摺動部と、第 3案内部材に摺動して案内さ れ、第 2軸線に沿う方向に関して第 2主摺動部より小さい第 2副摺動部とを備えた第 2 レンズ保持体とを
含むことを特徴とするレンズユニットである。
また本発明は、第 1主摺動部は、第 1レンズよりも第 2保持部側に突出して設けられ ることを特徴とする。
また本発明は、第 2主摺動部は、第 2レンズよりも第 1保持部側に突出して設けられ ることを特徴とする。
また本発明は、第 1レンズ保持体は、第 1主摺動部と第 1保持部との連結部位を補 強する第 1補強部をさらに備えることを特徴とする。
また本発明は、第 2レンズ保持体は、第 2主摺動部と第 2保持部との連結部位を補 強する第 2補強部をさらに備えることを特徴とする。
また本発明は、第 1および第 2案内部材は、同一の部材に連結されることを特徴と する。 また本発明は、第 1レンズ保持体は、第 1軸線に垂直な面に垂直投影した場合、第
1主摺動部の領域面積が第 1保持部の領域面積よりも小さいことを特徴とする。 また本発明は、第 2レンズ保持体は、第 2軸線に垂直な面に垂直投影した場合、第
2主摺動部の領域面積が第 2保持部の領域面積よりも小さいことを特徴とする。 また本発明は、第 1案内部材は、円柱状に形成され、
第 1主摺動部は、円筒状に形成されて、第 1案内部材が揷通され、
第 1主摺動部の第 1軸線に沿う方向に関する寸法を Ll [m]とし、第 1主摺動部の内 径を Dl [m]とし、第 1案内部材の外径を dl [m]とし、第 1レンズ保持体の傾きの許容 値を a l [rad]とするとき、
L1 (Dl ' cos 1— dl) z sin 1
を満足するうに、第 1主摺動部の第 1軸線に沿う方向に関する寸法が選ばれることを 特徴とする。
また本発明は、第 2案内部材は、円柱状に形成され、
第 2主摺動部は、円筒状に形成されて、第 2案内部材が揷通され、
第 2主摺動部の第 2軸線に沿う方向に関する寸法を L2 [m]とし、第 2主摺動部の内 径を D2 [m]とし、第 2案内部材の外径を d2 [m]とし、第 2レンズ保持体の傾きの許容 値を a 2 [rad]とするとき、
L2 > (D2 · cos α 2 - d2) /sin 2
を満足するように、第 2主摺動部の第 2軸線に沿う方向に関する寸法が選ばれること を特徴とする。
また本発明は、前記レンズユニットと、
第 1レンズ保持体を、第 1および第 3軸線に沿って変位駆動する第 1駆動手段と、 第 2レンズ保持体を、第 2および第 3軸線に沿って変位駆動する第 2駆動手段とを 含むことを特徴とする 4レンズ駆動装置である。
また本発明は、第 1駆動手段は、
第 1軸線に沿って変位可能に設けられ、第 1レンズ保持体に当接して、第 1レンズ 保持体を第 1軸線に沿う方向一方へ押圧する第 1押圧片と、
第 1押圧片を第 1軸線に沿って変位駆動する第 1駆動源と、 第 1レンズ保持体を第 1軸線に沿う方向他方へ弾発的に押圧する第 1ばね力発生 手段とを含むことを特徴とする。
また本発明は、第 1ばね力発生手段は、圧縮コイルばねであり、第 1案内部材に外 嵌されることを特徴とする。
また本発明は、第 1主摺動部の第 1軸線に沿う方向に関する寸法を Ll [m]とし、第 1案内部材と第 1主摺動部との間の静止摩擦係数を 1とし、第 1押圧片による第 1軸 線に沿う方向一方への押圧力を F1 [N]とし、前記押圧力の作用点と第 1軸線との間 の距離を hl l [m]とし、第 1軸線と第 3軸線との間の距離を h21 [m]とし、第 3案内部 材と第 1副摺動部との間の摺動抵抗を Wl [N]とするとき、
Ll > 2- μ 1 · (Fl -hl l +Wl -h21) / (Fl -Wl)
を満足するように、第 1主摺動部の第 1軸線に沿う方向に関する寸法が選ばれること を特徴とする。
また本発明は、第 2駆動手段は、
第 2軸線に沿って変位可能に設けられ、第 2レンズ保持体に当接して、第 2レンズ 保持体を第 2軸線に沿う方向一方へ押圧する第 2押圧片と、
第 2押圧片を第 2軸線に沿って変位駆動する第 2駆動源と、
第 2レンズ保持体を第 2軸線に沿う方向他方へ弾発的に押圧する第 2ばね力発生 手段とを含むことを特徴とする。
また本発明は、第 2ばね力発生手段は、圧縮コイルばねであり、第 2案内部材に外 嵌されることを特徴とする。
また本発明は、第 2主摺動部の第 2軸線に沿う方向に関する寸法を L2[m]とし、第 2案内部材と第 2主摺動部との間の静止摩擦係数を; z 2とし、第 2押圧片による第 2軸 線に沿う方向一方への押圧力を F2[N]とし、前記押圧力の作用点と第 2軸線との間 の距離を hl2[m]とし、第 2軸線と第 3軸線との間の距離を h22[m]とし、第 3案内部 材と第 2副摺動部との間の摺動抵抗を W2[N]とするとき、
L2> 2- μ 2· (F2-hl2+W2-h22) / (F2-W2)
を満足するように、第 2主摺動部の第 2軸線に沿う方向に関する寸法が選ばれること を特徴とする。 図面の簡単な説明
[0004] 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確にな るであろう。
図 1は、本発明の実施の一形態であるレンズユニット 21の構成を示す斜視図である 図 2は、レンズユニット 21の平面図である。
図 3は、第 1レンズ保持体 28を示す斜視図である。
図 4は、レンズユニット 21の斜視図である。
図 5は、図 2の切断面線 S5— S5から見た断面図である。
図 6は、撮像装置 24の外観を示す斜視図である。
図 7は、撮像装置 24を分解して示す分解斜視図である。
図 8は、レンズ駆動装置 76の斜視図である。
図 9は、レンズ駆動装置 76の断面図である。
図 10は、第 1主摺動部 37および第 1副摺動部 38を拡大して模式的に示す図であ る。
図 11は、第 1主摺動部 37を拡大して模式的に示す図である。
図 12は、第 2の従来技術のレンズユニットの構成を簡略ィ匕して示す斜視図である。 図 13は、第 3の従来技術のレンズユニットの構成を簡略ィ匕して示す斜視図である。 図 14は、図 13の矢符 15方向から見た側面図である。
発明を実施するための最良の形態
[0005] 以下図面を参考にして本発明の好適な実施例を詳細に説明する。
図 1は、本発明の実施の一形態であるレンズユニット 21の構成を示す斜視図である 。図 2は、レンズユニット 21の平面図である。図 1および図 2では、蓋部材 22を省略し ている。図 1では、筐体 23の一部を切り欠いている。
本実施の形態のレンズユニット 21は、デジタルカメラなどの携帯機器に搭載される 撮像装置 24の一部を構成する。レンズユニット 21は、第 1案内部材 25と、第 2案内 部材 26と、第 3案内部材 27と、第 1レンズ保持体 28と、第 2レンズ保持体 29と、筐体 23と、蓋部材 22 (図 4参照)とを含む。 第 1案内部材 25は、第 1軸線 31を有する。第 1案内部材 25には、第 1軸線 31に沿 う方向に延びる第 1案内部が形成される。第 1案内部は、第 1軸線 31に垂直な断面 形状が、第 1軸線 31に沿う方向に一様である。本実施の形態では、第 1案内部材 25 は、円柱状に形成され、この第 1案内部材 25における第 1軸線 31に沿う方向の両端 部間の中間部が、第 1案内部となる。
第 2案内部材 26は、第 1軸線 31と平行な第 2軸線 32を有する。第 2案内部材 26に は、第 2軸線 32に沿う方向に延びる第 2案内部が形成される。第 2案内部は、第 2軸 線 32に垂直な断面形状力 第 2軸線 32に沿う方向に一様である。本実施の形態で は、第 2案内部材 26は、円柱状に形成され、この第 2案内部材 26における第 2軸線 3 2に沿う方向の両端部間の中間部が、第 2案内部となる。
第 3案内部材 27は、第 1および第 2軸線 31, 32と平行な第 3軸線 33を有する。第 3 案内部材 27には、第 3軸線 33に沿う方向に延びる第 3案内部が形成される。第 3案 内部は、第 3軸線 33に垂直な断面形状が、第 3軸線 33に沿う方向に一様である。本 実施の形態では、第 3案内部材 27は、円柱状に形成され、この第 3案内部材 27にお ける第 3軸線 33に沿う方向の両端部間の中間部が、第 3案内部となる。
本実施の形態では、第 1および第 2軸線 31, 32を含む平面からずれた位置に、第 3軸線 33が配置される。第 1軸線 31と第 3軸線 33との間の距離は、第 2軸線 32と第 3 軸線 33との間の距離と同一または略同一である。
本実施の形態においては、第 1〜第 3軸線 31〜33に沿う方向を、第 1方向 Aという 。ここで、第 1方向 Aに垂直な面と第 1軸線 31との交点を、第 1交点とし、第 1方向 Aに 垂直な面と第 2軸線 32との交点を、第 2交点とし、第 1方向 Aに垂直な面と第 3軸線 3 3との交点を、第 3交点とする。このとき、第 1交点と第 2交点とを結ぶ線分に沿う方向 を、第 2方向 Bといい、第 1交点から第 2交点に向かう方向を第 2方向一方 B1といい、 その反対方向を第 2方向他方 B2という。また第 1交点と第 2交点とを結ぶ線分に第 3 交点から下ろした垂線に沿う方向を、第 3方向 Cといい、前記線分と垂線との交点か ら第 3交点に向力う方向を第 3方向一方 C1といい、その反対方向を第 3方向他方 C2 という。
図 3は、第 1レンズ保持体 28を示す斜視図である。第 1レンズ保持体 28は、第 1レン ズ 35を保持する第 1保持部 36と、第 1主摺動部 37と、第 1方向 Aに関して第 1主摺動 部 37よりも小さい寸法を有する第 1副摺動部 38と、第 1主摺動部 37と第 1保持部 36 との連結部位を補強する第 1補強部 39 (図 2参照)とを備える。第 1レンズ保持体 28 は、第 1主摺動部 37に第 1案内部材 25が挿入された状態で第 1主摺動部 37が第 1 案内部材 25に摺動して案内されるとともに、第 1副摺動部 38に第 3案内部材 27が挿 入された状態で第 1副摺動部 38が第 3案内部材 27に摺動して案内され、第 1方向 A に変位可能に設けられる。
第 1保持部 36は、第 3方向 Cに関して第 1案内部材 25と第 3案内部材 27との間に 介在する。第 1保持部 36は、板状である。第 1保持部 36には、その厚み方向に貫通 する第 1貫通孔 41が形成され、この第 1貫通孔 41には、第 1レンズ 35が設けられる。 第 1保持部 36の厚み方向および第 1レンズ 35の光軸方向は、第 1方向 Aに平行であ る。
第 1主摺動部 37は、第 1保持部 36に屈曲して連なり、第 1方向 Aに延びる。第 1主 摺動部 37は、円筒状に形成されて、第 1案内部材 25が挿入される。本実施の形態 では、第 1主摺動部 37は、第 1レンズ 35よりも、第 1方向一方 A1に突出して設けられ る。
第 1副摺動部 38は、第 1保持部 36に連なる。第 1副摺動部 38は、第 1方向 Aに関 して、第 1保持部 36と同一位置に設けられる。第 1副摺動部 38は、第 1方向 A力も見 た形状が大略的に U字状に形成されて、第 3案内部材 27が挿入される。
第 1副摺動部 38は、第 1保持部 36に連なる第 1基部 42と、第 1基部 42に連なり第 3 案内部材 27に第 1軸線 31まわりの周方向一方力も当接する第 1周方向一方当接部 43と、第 1基部 42に連なり第 2案内部材 26に第 1軸線 31まわりの周方向他方力も当 接する第 1周方向他方当接部 44とを含む。第 1副摺動部 38は、第 1軸線 31まわりの 回転半径方向外方に開放されており、これによつて第 1軸線 31と第 3軸線 33との間 の距離の誤差を許容することができる。
第 1補強部 39は、第 1保持部 36における第 1主摺動部 37の近傍部分と第 1主摺動 部 37における第 1保持部 36の近傍部分とを連結するリブによって実現される。このよ うな第 1補強部 39によって、第 1主摺動部 37と第 1保持部 36との連結部位が補強さ れるので、落下などによる衝突時の衝撃によって第 1レンズ保持体 28が破損してしま うという不具合を回避することができる。
第 1レンズ保持体 28は、第 1方向 Aに垂直な面に垂直投影した場合、第 1主摺動部 37の領域面積が第 1保持部 36の領域面積よりも小さい。このように第 1レンズ保持体 28が形成されるので、第 1案内部材 25と第 2案内部材 26との間の距離力 S小さくても 、第 1レンズ 35と第 2レンズ 45とを近接させるときに、第 1主摺動部 37と後述の第 2主 摺動部 47とが干渉してしまうという不具合を回避することができる。
図 1を再び参照して、第 2レンズ保持体 29は、第 1レンズ 35と同軸に第 2レンズ 45 を保持する第 2保持部 46と、第 2主摺動部 47と、第 1方向 Aに関して第 2主摺動部 4 7よりも小さい寸法を有する第 2副摺動部 48と、第 2主摺動部 47と第 2保持部 46との 連結部位を補強する第 2補強部 49 (図 2参照)とを備える。第 2レンズ保持体 29は、 第 2主摺動部 47に第 2案内部材 26が挿入された状態で第 2主摺動部 47が第 2案内 部材 26に摺動して案内されるとともに、第 2副摺動部 48に第 3案内部材 27が挿入さ れた状態で第 2副摺動部 48が第 3案内部材 27に摺動して案内され、第 1方向 Aに変 位可能に設けられる。
第 2保持部 46は、第 3方向 Cに関して第 2案内部材 26と第 3案内部材 27との間に 介在し、第 1保持部 36よりも第 1方向他方 A2に設けられる。第 2保持部 46は、板状 である。第 2保持部 46には、その厚み方向に貫通する第 2貫通孔 51が形成され、こ の第 2貫通孔 51には、第 2レンズ 45が設けられる。第 2保持部 46の厚み方向および 第 2レンズ 45の光軸方向は、第 1方向 Aに平行である。
第 2主摺動部 47は、第 2保持部 46に屈曲して連なり、第 1方向 Aに延びる。第 2主 摺動部 47は、円筒状に形成されて、第 2案内部材 26が挿入される。本実施の形態 では、第 2主摺動部 47は、第 2レンズ 45よりも、第 1方向一方 A1に突出して設けられ る。
第 2副摺動部 48は、第 2保持部 46に連なる。第 2副摺動部 48は、第 1方向 Aに関 して、第 2保持部 46と同一位置に設けられる。第 2副摺動部 48は、第 1方向 A力も見 た形状が大略的に U字状に形成されて、第 3案内部材 27が挿入される。
第 2副摺動部 48は、第 2保持部 46に連なる第 2基部 52と、第 2基部 52に連なり第 2 案内部材 26に第 2軸線 32まわりの周方向一方力も当接する第 2周方向一方当接部 53と、第 2基部 52に連なり第 3案内部材 27に第 2軸線 32まわりの周方向他方力も当 接する第 2周方向他方当接部 54とを含む。第 2副摺動部 48は、第 2軸線 32まわりの 回転半径方向外方に開放されており、これによつて第 2軸線 32と第 3軸線 33との間 の距離の誤差を許容することができる。
第 2補強部 49は、第 2保持部 46における第 2主摺動部 47の近傍部分と第 2主摺動 部 47における第 2保持部 46の近傍部分とを連結するリブによって実現される。このよ うな第 2補強部 49によって、第 2主摺動部 47と第 2保持部 46との連結部位が補強さ れるので、落下などによる衝突時の衝撃によって第 2レンズ保持体 29が破損してしま うという不具合を回避することができる。
第 2レンズ保持体 29は、第 1方向 Aに垂直な面に垂直投影した場合、第 2主摺動部 47の領域面積が第 2保持部 46の領域面積よりも小さ 、。このように第 2レンズ保持体 29が形成されるので、第 1案内部材 25と第 2案内部材 26との間の距離力 S小さくても 、第 1レンズ 35と第 2レンズ 45とを近接させるときに、第 1主摺動部 37と第 2主摺動部 47とが干渉してしまうという不具合を回避することができる。
本実施の形態では、第 1主摺動部 37には、第 1案内部材 25が挿通する第 1揷通孔 が形成され、第 1副摺動部 38には、第 3案内部材 27が嵌まり込む第 1嵌合溝が形成 される。また第 2主摺動部 47には、第 2案内部材 26が挿通する第 2揷通孔が形成さ れ、第 2副摺動部 48には、第 3案内部材 27が嵌まり込む第 2嵌合溝が形成される。 第 1および第 2揷通孔の内周面は、第 1および第 2案内部材 25, 26の外周面よりも 公差の範囲内でわずかに大きく形成され、第 1および第 2嵌合溝の内周面は、第 3案 内部材 27の外周面よりも公差の範囲内でわずかに大きく形成される。
このように第 1および第 2揷通孔ならびに第 1および第 2嵌合溝が形成されるので、 第 1レンズ保持体 28は、第 1主摺動部 37に第 1案内部材 25が挿入され、かつ第 1副 摺動部 38に第 3案内部材 27が挿入された状態で、第 1方向 Aに変位可能であり、第 2レンズ保持体 29は、第 2主摺動部 47に第 2案内部材 26が挿入され、かつ第 2副摺 動部 48に第 3案内部材 27が挿入された状態で、第 1方向 Aに変位可能である。 また前述のように第 1および第 2揷通孔が形成されるので、第 1および第 2レンズ保 持体 28, 29が第 1方向 Aに変位するとき、第 1および第 2揷通孔の内周面には、第 1 および第 2案内部材 25, 26のうち前記各揷通孔における変位方向上流側の端部お よび下流側の端部に臨む領域の周方向の少なくとも一部が、接触する。このような状 態で、第 1および第 2主摺動部 37, 47が第 1および第 2案内部材 25, 26に摺動して 案内される。
図 4は、レンズユニット 21の斜視図である。図 5は、図 2の切断面線 S5— S5から見 た断面図である。図 4では、蓋部材 22を取り外した状態を示す。図 5では、第 1および 第 2レンズ保持体 28, 29を省略している。
筐体 23は、略矩形板状に形成される底部 56と、底部 56の短辺側一側部に屈曲し て連なり底部 56の厚み方向一方に立設する第 1側壁部 57と、底部 56の短辺側他側 部に屈曲して連なり底部 56の厚み方向一方に立設する第 2側壁部 58と、底部 56の 長辺側一側部に屈曲して連なり底部 56の厚み方向一方に立設する第 3側壁部 59と を含む。これらの各部 56〜59によって、収容空間が形成される。筐体 23は、金型を 用いて、一体成形される。
このような筐体 23内には、第 1および第 2レンズ保持体 28, 29力設けられる。筐体 2 3は、底部 56の反対側と第 3側壁部 59の反対側とが開放されているので、第 1および 第 2レンズ保持体 28, 29ならびに第 1〜第 3案内部材 25〜27の組付け作業が容易 である。
本実施の形態では、第 1方向 Aは、底部 56の長手方向に平行であり、第 2方向 Bは 、底部 56の幅方向に平行であり、第 3方向 Cは、底部 56の幅方向に平行である。 底部 56は、第 1および第 2レンズ保持体 28, 29に関して、第 2方向他方 B2側に設 けられる。第 1側壁部 57は、第 1および第 2レンズ保持体 28, 29に関して、第 1方向 一方 A1側に設けられる。第 2側壁部 58は、第 1および第 2レンズ保持体 28, 29に関 して、第 1方向他方 A2側に設けられる。第 3側壁部 59は、第 1および第 2レンズ保持 体 28, 29に関して、第 3方向一方 C1側に設けられる。
第 1側壁部 57には、第 1〜第 3案内部材 25〜27の各一端部が挿入される 3つの挿 入孔 61, 62, 63が形成される。第 1側壁部 57に形成される各挿入孔 61〜63は、第 1方向 Aに延びて、第 1側壁部 57を貫通する。第 2側壁部 58には、第 1〜第 3案内部 材 25〜27の各他端部が挿入される 3つの挿入孔 64, 65, 66が形成される。第 2側 壁部 58に形成される各挿入孔 64〜66は、第 1方向 Aに延びて、第 1側壁部 57を貫 通する。第 1〜第 3案内部材 25〜27は、各挿入孔 61〜66に圧入されて、固定され て連結される。
このように第 1〜第 3案内部材 25〜27が、同一の部材である筐体 23に連結される ので、異なる部材に連結される場合に比べて、第 1〜第 3案内部材 25〜27の平行度 が高くなる。なぜなら、異なる部材に連結される場合は、異なる部材を組み立てるとき の誤差があるけれども、同一の部材に連結される場合は、そのような誤差がないから である。
筐体 23は、一体の部品として成形されるので、金型の調整によって、各挿入孔 61 〜66の相対位置精度を高めることができる。各挿入孔 61〜66の相対位置精度を高 めることによって、第 1〜第 3案内部材 25〜27の平行度を高くすることができる。この ように第 1〜第 3案内部材 25〜27の平行度を高くすることによって、第 1および第 2主 摺動部 37, 47が、異なる案内部材に案内されても、第 1および第 2レンズ 35, 45の 位置精度を高くすることができ、良好な光学特性を得ることができる。
第 1側壁部 57は、第 1および第 2レンズ 35, 45と同軸に第 3レンズ 70を保持する。 第 1側壁部 57には、第 1方向 Aに貫通する貫通孔 71が形成され、この貫通孔 71に、 前記第 3レンズ 70が設けられる。第 2側壁部 58は、第 1および第 2レンズ 35, 45と同 軸に第 4レンズ 72を保持する。第 2側壁部 58には、第 1方向 Aに貫通する貫通孔 73 が形成され、この貫通孔 73に、前記第 4レンズ 72が設けられる。
蓋部材 22は、略矩形板状に形成される。蓋部材 22は、底部 56の反対側から、第 1 および第 2レンズ保持体 28, 29を覆う。蓋部材 22は、第 1および第 2レンズ保持体 2 8, 29ならびに第 1〜第 3案内部材 25〜27を組み付けた後で、接着剤によって筐体 23に固定される。
図 6は、撮像装置 24の外観を示す斜視図である。図 7は、撮像装置 24を分解して 示す分解斜視図である。撮像装置 24は、レンズ駆動装置 76と、撮像基板 77とを含 む。
撮像基板 77は、板状の基材 78と、基材 78の厚み方向一方側の表面部に設けられ る撮像素子 79とを含む。撮像素子 79は、電荷結合素子 (Charge Coupled Device, 略称 CCD)を用いたイメージセンサ、すなわち CCDイメージセンサによって実現され る。撮像基板 77は、撮像素子 79が第 3レンズ 70に臨む状態で、第 1方向一方 A1か ら第 1側壁部 57に、接着剤によって固定される。
図 8は、レンズ駆動装置 76の斜視図である。図 9は、レンズ駆動装置 76の断面図 である。レンズ駆動装置 76は、前記図 1〜図 5に示すレンズユニット 21と、第 1レンズ 保持体 28を、第 1方向 Aに変位駆動する第 1駆動手段 81と、第 2レンズ保持体 29を 、第 1方向 Aに変位駆動する第 2駆動手段 82とを含む。
レンズユニット 21には、後述の第 1および第 2駆動源 86, 96を支持する支持体 83 が、ボルト部材と接着剤とによって固定される。支持体 83は、第 3側壁部 59の反対側 力ら第 1および第 2レンズ保持体 28, 29を覆う。
第 1駆動手段 81は、第 1方向 Aに変位可能に設けられ、第 1レンズ保持体 28に当 接して、第 1レンズ保持体 28を第 1方向他方 A2へ押圧する第 1押圧片 85と、第 1押 圧片 85を第 1方向 Aに変位駆動する第 1駆動源 86と、第 1レンズ保持体 28を第 1方 向一方 A1へ弹発的に押圧する第 1ばね力発生手段である第 1圧縮コイルばね 87と を含む。
第 1駆動源 86は、支持体 83に固定される第 1モータ 88と、この第 1モータ 88によつ て回転駆動される第 1ねじ軸 89とを含む。第 1モータ 88は、ステッピングモータによつ て実現される。第 1モータ 88としてステッピングモータが用いられることによって、第 1 レンズ保持体 28の位置を検出するための位置検出手段が不要となり、撮像装置 24 の小型化および低コストィ匕を図ることができる。
第 1モータ 88の出力軸は、第 1方向 Aと平行である。第 1ねじ軸 89は、第 1方向 Aに 延びて、その軸線まわりに回転可能に、支持体 83に設けられる。第 1ねじ軸 89は、 第 2方向 Bに関して、第 1案内部材 25と第 2案内部材 26との間に配置される。
第 1モータ 88の出力軸には、第 1入力歯車 90が固定される。第 1ねじ軸 89の一端 部には、第 1出力歯車 91が固定される。第 1入力歯車 90と第 1出力歯車 91との間に は、第 1中間歯車 92が介在する。第 1中間歯車 92は、第 1方向 Aに延びる軸線まわ りに回転可能に、支持体 83に設けられる。第 1中間歯車 92は、第 1入力歯車 90に嚙 合するとともに、第 1出力歯車 91に嚙合する。このような構成によって、第 1モータ 88 の出力軸の回転をねじ軸に伝達することができる。
第 1レンズ保持体 28は、第 1押圧片 85に係合する第 1係合部 93をさらに備える。第 1係合部 93は、第 1主摺動部 37に連なる。第 1押圧片 85には、第 1ねじ軸 89が揷通 して螺合する。第 1係合部 93は、第 1方向他方 A2から第 1押圧片 85に当接するとと もに、第 1ねじ軸 89の軸線まわりの周方向両方力も第 1押圧片 85に当接する。このよ うに第 1係合部 93が、第 1ねじ軸 89の軸線まわりの周方向両方力も第 1押圧片 85に 当接するので、第 1ねじ軸 89が回転しても、第 1押圧片 85は回転しない。したがって 第 1ねじ軸 89がその軸線まわりに回転することによって、第 1押圧片 85が第 1方向 A に変位する。
第 1圧縮コイルばね 87は、第 1案内部材 25に外嵌され、第 2側壁部 58と第 1主摺 動部 37との間に配置される。第 1圧縮コイルばね 87は、第 1案内部材 25に外嵌され るので、落下などによる衝突時の衝撃によって、第 1圧縮コイルばね 87が外れてしま うという不具合を防ぐことができる。第 1圧縮コイルばね 87が第 1案内部材 25に外嵌 された構成を実現するには、第 1圧縮コイルばね 87に第 1案内部材 25を挿通するだ けでよく、したがって組立性が良い。
このような第 1駆動手段 81では、第 1押圧片 85は、第 1レンズ保持体 28を第 1方向 他方 A2へ押圧し、第 1圧縮コイルばね 87は、第 1レンズ保持体 28を第 1方向一方 A 1へ押圧する。第 1駆動源 86によって第 1押圧片 85を第 1方向 Aに変位駆動し、これ によって第 1レンズ保持体 28を、第 1方向 Aに変位駆動することができる。このとき、 第 1圧縮コイルばね 87によって第 1レンズ保持体 28を第 1方向一方 A1へ押圧してい るので、変位駆動時のがたつきの発生を抑えることができる。
第 2駆動手段 82は、第 1方向 Aに変位可能に設けられ、第 2レンズ保持体 29に当 接して、第 2レンズ保持体 29を第 1方向他方 A2へ押圧する第 2押圧片 95と、第 2押 圧片 95を第 1方向 Aに変位駆動する第 2駆動源 96と、第 2レンズ保持体 29を第 1方 向一方 A1へ弹発的に押圧する第 2ばね力発生手段である第 2圧縮コイルばね 97と を含む。
第 2駆動源 96は、支持体 83に固定される第 2モータ 98と、この第 2モータ 98によつ て回転駆動される第 2ねじ軸 99とを含む。第 2モータ 98は、ステッピングモータによつ て実現される。第 2モータ 98としてステッピングモータが用いられることによって、第 2 レンズ保持体 29の位置を検出するための位置検出手段が不要となり、撮像装置 24 の小型化および低コストィ匕を図ることができる。
第 2モータ 98の出力軸は、第 1方向 Aと平行である。第 2ねじ軸 99は、第 1方向 Aに 延びて、その軸線まわりに回転可能に、支持体 83に設けられる。第 2ねじ軸 99は、 第 2方向 Bに関して、第 2案内部材 26よりも第 2方向一方 B1に配置される。
第 2モータ 98の出力軸には、第 2入力歯車 100が固定される。第 2ねじ軸 99の一 端部には、第 2出力歯車 101が固定される。第 2入力歯車 100と第 2出力歯車 101と の間には、第 2中間歯車 102が介在する。第 2中間歯車 102は、第 1方向 Aに延びる 軸線まわりに回転可能に、支持体 83に設けられる。第 2中間歯車 102は、第 2入力 歯車 100に嚙合するとともに、第 2出力歯車 101に嚙合する。このような構成によって 、第 2モータ 98の出力軸の回転をねじ軸に伝達することができる。
第 2レンズ保持体 29は、第 2押圧片 95に係合する第 2係合部 103をさらに備える。 第 2係合部 103は、第 2主摺動部 47に連なる。第 2押圧片 95には、第 2ねじ軸 99が 挿通して螺合する。第 2係合部 103は、第 1方向他方 A2から第 2押圧片 95に当接す るとともに、第 2ねじ軸 99の軸線まわりの周方向両方力も第 2押圧片 95に当接する。 このように第 2係合部 103が、第 2ねじ軸 99の軸線まわりの周方向両方力も第 2押圧 片 95に当接するので、第 2ねじ軸 99が回転しても、第 2押圧片 95は回転しない。し たがって第 2ねじ軸 99がその軸線まわりに回転することによって、第 2押圧片 95が第 1方向 Aに変位する。
第 2圧縮コイルばね 97は、第 2案内部材 26に外嵌され、第 2側壁部 58と第 2主摺 動部 47との間に配置される。第 2圧縮コイルばね 97は、第 2案内部材 26に外嵌され るので、落下などによる衝突時の衝撃によって、第 2圧縮コイルばね 97が外れてしま うという不具合を防ぐことができる。第 2圧縮コイルばね 97が第 2案内部材 26に外嵌 された構成を実現するには、第 2圧縮コイルばね 97に第 2案内部材 26を挿通するだ けでよく、したがって組立性が良い。
このような第 2駆動手段 82では、第 2押圧片 95は、第 2レンズ保持体 29を第 1方向 他方 A2へ押圧し、第 2圧縮コイルばね 97は、第 2レンズ保持体 29を第 1方向一方 A 1へ押圧する。第 2駆動源 96によって第 2押圧片 95を第 1方向 Aに変位駆動し、これ によって第 2レンズ保持体 29を、第 1方向 Aに変位駆動することができる。このとき、 第 2圧縮コイルばね 97によって第 2レンズ保持体 29を第 1方向一方 A1へ押圧してい るので、変位駆動時のがたつきの発生を抑えることができる。
第 1レンズ保持体 28の駆動時の原点位置には、第 1原点センサ 106が配置される 。第 1原点センサ 106は、筐体 23に固定される。第 1原点センサ 106は、発光素子と 受光素子とを含むフォトインタラプタによって実現される。第 1レンズ保持体 28は、第 1保持部 36に連なる第 1遮光部 107をさらに備える。第 1レンズ保持体 28が原点位 置に変位したとき、発光素子力もの光が第 1遮光部 107によって遮断される。第 1原 点センサ 106は、遮光状態と非遮光状態とで、異なる信号を出力する。この第 1原点 センサ 106からの信号を用いることによって、第 1レンズ保持体 28が原点位置に変位 したことを検出することができる。
第 2レンズ保持体 29の駆動時の原点位置には、第 2原点センサ 108が配置される 。第 2原点センサ 108は、筐体 23に固定される。第 2原点センサ 108は、発光素子と 受光素子とを含むフォトインタラプタによって実現される。第 2レンズ保持体 29は、第 2保持部 46に連なる第 2遮光部 109をさらに備える。第 2レンズ保持体 29が原点位 置に変位したとき、発光素子からの光が第 2遮光部 109によって遮断される。第 2原 点センサ 108は、遮光状態と非遮光状態とで、異なる信号を出力する。この第 2原点 センサ 108からの信号を用いることによって、第 2レンズ保持体 29が原点位置に変位 したことを検出することができる。
このようなレンズ駆動装置 76は、第 1駆動手段 81によって、第 1レンズ保持体 28を 第 1方向 Aに変位駆動し、第 2駆動手段 82によって、第 2レンズ保持体 29を第 1方向 Aに変位駆動して、第 1レンズ 35と第 2レンズ 45との間の距離を、各レンズ 35, 45の 光軸を一致させた状態で、変化させることができる。
図 10は、第 1主摺動部 37および第 1副摺動部 38を拡大して模式的に示す図であ る。ここで、第 1主摺動部 37の第 1方向 Aに関する寸法を Ll [m]とし、第 1案内部材 2 5と第 1主摺動部 37との間の静止摩擦係数を; z 1とし、第 1押圧片 85による第 1方向 一方 Alへの押圧力を F1[N]とし、前記押圧力の作用点と第 1軸線 31との間の距離 を hll[m]とし、第 1軸線 31と第 3軸線 33との間の距離を h21[m]とし、第 3案内部 材 27と第 1副摺動部 38との間の摺動抵抗を W1[N]とする。また、第 1主摺動部 37 の内径を Dl[m]とする。
第 1主摺動部 37と第 1案内部材 25との第 1方向他方 A2の接点を第 1接点 P11とし 、第 1主摺動部 37と第 1案内部材 25との第 1方向一方 A1の接点を第 2接点 P21とし たとき、第 1接点 P11と前記押圧力の作用点との第 1方向 Aに関する距離を L11とし 、第 2接点 P21と前記押圧力の作用点との第 1方向 Aに関する距離を L21とし、第 1 接点 P11と第 2接点 P21との第 1方向 Aに関する距離を L1とする。第 1接点 P11に作 用する抗カを R11 [ とし、第 2接点 P21に作用する抗カを R21[N]とする。第 1接 点 P11に発生する摩擦力は、 Qll=/z l'Rllであり、第 2接点 P21に発生する摩擦 力は、 Q21= μ 1-R21である。
第 1主摺動部 37が摺動するためには、以下の式(1)〜(3)が成立する。
Fl-hll+Wl-h21-Rll-Lll-R21-L21
-Q11- (Dl/2) +Q21- (D1/2) =0 …ひ)
R11=R21=R1 ---(2)
F1>Q11 + Q21+W1 ·'·(3)
以上の式(1)〜(3)を整理すると、以下の式 (4)が導かれる。
Ll>2- μ 1· (Fl-hll+Wl-h21)/(Fl-Wl) ·'·(4)
簡単のために、第 3案内部材 27と第 1副摺動部 38との間の摺動抵抗を W1 = 0とす ると、以下の式(5)が成立する。
0.5> μ 1-hll/Ll ---(5)
第 1主摺動部 37の第 1方向 Aに関する寸法 L1が小さい場合、式 (5)が満たされな い。これは、第 1主摺動部 37の第 1方向 Aに関する寸法 L1が小さい場合は、第 1およ び第 2接点 Pll, P21に大きな摩擦力が発生し、第 1主摺動部 37の摺動性が悪化す ることを意味する。
前記押圧力の作用点と第 1軸線 31との間の距離 hllが大きい場合も、式 (5)が満 たされない。これは、てこの原理によって、第 1および第 2接点 Pll, P21に作用する 抗カ Rl l, R21が大きくなり、これによつて第 1および第 2接点 Pl l, P21に発生する 摩擦力 Ql l, Q21の増大して、第 1主摺動部 37の摺動性が悪ィ匕することを意味する 。この点を考慮すると、前記押圧力の作用点と第 1軸線 31との間の距離 hl lは、小さ い方がよい。また静止摩擦係数; z 1が小さい方が、第 1主摺動部 37が摺動しやすい のは明らかである。
静止摩擦係数; z 1は、材料、使用環境、量産時の環境によって大きく変化し、正確 な測定が困難であるが、榭脂—ステンレス間では、 0. 2〜0. 6程度の値である。前記 押圧力の作用点と第 1軸線 31との間の距離 hl lは、第 1案内部材 25の外径と、第 1 主摺動部 37の肉厚を考慮すると、少なくとも 1. 5mm程度は必要である。以上のこと から、第 1主摺動部 37の摺動性を向上させるためには、第 1主摺動部 37の第 1方向 Aに関する寸法 L1を大きくすることが、最も有効である。この点を踏まえて、本実施の 形態では、式 (5)を満足するように、第 1主摺動部 37の第 1軸線 31に沿う方向に関 する寸法が選ばれる。第 1主摺動部 37の第 1軸線 31に沿う方向に関する寸法の上 限値は、筐体 23内で第 1主摺動部 37が第 1案内部材 25を摺動できる大きさに選ば れる。
第 1主摺動部 37の第 1軸線 31に沿う方向に関する寸法 L1が、 Ll > 2- μ Ι - iFl - hi 1 +Wl -h21) / (Fl -Wl)を満足するように選ばれるので、第 1主摺動部 37と 第 1案内部材 25との間の摺動抵抗が充分に小さくなり、第 1レンズ 35を滑らかに変位 させることがでさる。
第 2主摺動部 47の第 2軸線 32に沿う方向に関する寸法については、前述の第 1主 摺動部 37の第 1軸線 31に沿う方向に関する寸法に類似するので、簡略化して説明 する。第 2主摺動部 47の第 1方向 Aに関する寸法を L2[m]とし、第 2案内部材 26と 第 2主摺動部 47との間の静止摩擦係数を; z 2とし、第 2押圧片 95による第 1方向一 方 A1への押圧力を F2[N]とし、前記押圧力の作用点と第 2軸線 32との間の距離を hl2[m]とし、第 2軸線 32と第 3軸線 33との間の距離を h22[m]とし、第 3案内部材 2 7と第 2副摺動部 48との間の摺動抵抗を W2 [N]とするとき、
L2> 2- μ 2· (F2-hl2+W2-h22) / (F2-W2) · '· (6)
を満足するように、第 2主摺動部 47の第 2軸線 32に沿う方向に関する寸法が選ばれ る。第 2主摺動部 47の第 2軸線 32に沿う方向に関する寸法の上限値は、筐体 23内 で第 2主摺動部 47が第 2案内部材 26を摺動できる大きさに選ばれる。
第 2主摺動部 47の第 1方向 Aに関する寸法 L2が、 L2>2- μ 2· (F2-hl2+W2- h22)Z(F2— W2)を満足するように選ばれるので、第 2主摺動部 47と第 2案内部材 26との間の摺動抵抗が充分に小さくなり、第 2レンズ 45を滑らかに変位させることが できる。
図 11は、第 1主摺動部 37を拡大して模式的に示す図である。第 1主摺動部 37の 内径は、第 1案内部材 25の外径よりも、数十/ zm程度大きい。これは、温度変化によ る変形によっては、第 1主摺動部 37の内径が、第 1案内部材 25の外径よりも小さくな つて第 1主摺動部 37が第 1案内部材 25を摺動しなくなることを防ぐためである。第 1 主摺動部 37と第 1案内部材 25との間のわずかな隙間によって、摺動時に第 1レンズ 保持体 28が傾く。この第 1レンズ保持体 28の傾きを小さくするために、第 1主摺動部 37の第 1軸線 31に沿う方向に関する寸法を大きくする。
ここで、第 1主摺動部 37の第 1方向 Aに関する寸法を Ll[m]とし、第 1主摺動部 37 の内径を Dl[m]とし、第 1案内部材 25の外径を dl[m]とし、第 1レンズ保持体 28の 傾きの許容値を α 1 [rad]とし、第 1レンズ保持体 28の傾きを Θ 1 [rad] (0< Θ Κ α 1< πΖ2)とする。このとき、以下の式(7)が成立する。
Ll-tanQ 1 + dl/cos Θ 1 = D1 ·,·(7)
この式 (7)を変形すると、
Ll( Θ l) = (Dl-cos0 l-dl)/sin01 ·'·(8)
となる。 L1(01)は、 0< θ < π Ζ2の範囲では単調減少関数であるので、 0く αで あるためには、 L1(0 l)>Ll(al)であればよい。つまり、以下の式(9)が成立すれ ば、第 1レンズ保持体 28の傾きは、許容値である α 1 [rad]以下となり、光学特性は 保たれる。
Ll>(Dl-cosa l-dl)/sina 1 ·'·(9)
この点を踏まえて、本実施の形態では、式 (9)を満足するように、第 1主摺動部 37 の第 1軸線 31に沿う方向に関する寸法が選ばれる。第 1主摺動部 37の第 1軸線 31 に沿う方向に関する寸法の上限値は、筐体 23内で第 1主摺動部 37が第 1案内部材 25を摺動できる大きさに選ばれる。
第 1主摺動部 37の第 1軸線 31に沿う方向に関する寸法 L1が、 Ll> (Dl'cosa 1
— dl)Zsina 1を満足するように選ばれるので、第 1レンズ 35の傾き力 許容範囲内 に抑えられ、良好な光学特性を得ることができる。
第 2主摺動部 47の第 2軸線 32に沿う方向に関する寸法については、前述の第 1主 摺動部 37の第 1軸線 31に沿う方向に関する寸法に類似するので、簡略化して説明 する。第 2主摺動部 47の第 1方向 Aに関する寸法を L2[m]とし、第 2主摺動部 47の 内径を D2[m]とし、第 2案内部材 26の外径を d2[m]とし、第 2レンズ保持体 29の傾 きの許容値を α 2 [rad]とするとき、
L2> (D2-cosa2-d2)/sina2 ---(10)
を満足するように、第 2主摺動部 47の第 2軸線 32に沿う方向に関する寸法が選ばれ る。第 2主摺動部 47の第 2軸線 32に沿う方向に関する寸法の上限値は、筐体 23内 で第 2主摺動部 47が第 2案内部材 26を摺動できる大きさに選ばれる。
第 2主摺動部 47の第 2軸線 32に沿う方向に関する寸法 L2が、 L2> (D2-cos a 2
— d2)Zsina2を満足するように選ばれるので、第 2レンズ 45の傾き力 許容範囲内 に抑えられ、良好な光学特性を得ることができる。
以上のような本実施の形態によれば、第 1〜第 3案内部材 25〜27は、第 1〜第 3軸 線 31〜33を有し、第 1〜第 3軸線 31〜33は、平行に配置される。第 1レンズ保持体 28は、第 1レンズ 35保持部によって第 1レンズ 35を保持し、第 1主摺動部 37で第 1 案内部材 25に摺動して案内されるとともに、第 1副摺動部 38で第 3案内部材 27に摺 動して案内され、第 1方向 Aに変位可能に設けられる。第 2レンズ保持体 29は、第 2 レンズ 45保持部によって第 1レンズ 35と同軸に第 2レンズ 45を保持し、第 2主摺動部 47で第 2案内部材 26に摺動して案内されるとともに、第 2副摺動部 48で第 3案内部 材 27に摺動して案内され、第 1方向 Aに変位可能に設けられる。したがって第 1レン ズ 35と第 2レンズ 45との間の距離を、各レンズの光軸を一致させた状態で、変化させ ることがでさる。
第 1主摺動部 37と第 2主摺動部 47とは、異なる案内部材に案内されるので、第 1レ ンズ 35と第 2レンズ 45とを近接させるときに、第 1主摺動部 37と第 2主摺動部 47とが 干渉してしまうという不具合が回避される。また第 1副摺動部 38は、第 1方向 Aに関し て第 1主摺動部 37よりも小さい寸法を有し、かつ第 2副摺動部 48は、第 1方向 Aに関 して第 2主摺動部 47よりも小さい寸法を有するので、第 1副摺動部 38と第 2副摺動部 48とが同一の案内部材に案内されていても、第 1レンズ 35と第 2レンズ 45とを近接さ せるときに、第 1副摺動部 38と第 2副摺動部 48とが干渉してしまうという不具合が回 避される。このように第 1主摺動部 37と第 2主摺動部 47とが干渉してしまうという不具 合が回避され、し力も第 1副摺動部 38と第 2副摺動部 48とが干渉してしまうという不 具合が回避されるので、第 1レンズ 35と第 2レンズ 45とを充分に近接させることができ る。
第 1および第 2レンズ保持体 28, 29は、光学ズームの際に変位駆動される。本実施 の形態では、第 1主摺動部 37と第 2主摺動部 47とが干渉してしまうという不具合が回 避されるので、第 1レンズ 35と第 2レンズ 45とを、たとえば 0. 3mm程度の間隔まで近 接させることができる。また本実施の形態では、第 2主摺動部 47が第 2レンズ 45よりも 第 1方向一方 A1に突出して設けられるので、第 2レンズ 45を、第 4レンズ 72に対して たとえば 0. 3mmの間隔まで近接させることができる。
第 1副摺動部 38と第 2副摺動部 48とは、同一の案内部材に案内されるので、異な る案内部材に案内される場合に比べて、各案内部材の取付け誤差の累積が小さぐ これによつて第 1および第 2レンズ 35, 45の位置精度が高くなる。また第 1副摺動部 3 8と第 2副摺動部 48とは、同一の案内部材に案内されるので、異なる案内部材に案 内される場合に比べて、案内部材の本数が少なくなり、これによつてレンズユニット 21 が組み立てやすくなる。
また本実施の形態によれば、第 2主摺動部 47が、第 2レンズ 45よりも第 1保持部 36 側に突出して設けられるので、反対側に突出して設けられる場合に比べて、第 1レン ズ 35と第 2レンズ 45とを離反させることができる。換言すれば、第 2主摺動部 47の第 1方向 Aに関する寸法を、式 (6)および(10)を満足するように選んでも、筐体 23を大 型化する必要がないので、レンズユニット 21の小型化を図ることができる。
第 1主摺動部 37は、式 (6)および(10)を満足するので、第 1主摺動部 37と第 1案 内部材 25との間の摺動抵抗が小さくなり、また第 1案内部材 25に対する第 1主摺動 部 37の傾きが抑えられる。第 1主摺動部 37と第 1案内部材 25との間の摺動抵抗が 小さくなることによって、第 1レンズ 35を滑らかに変位させることができる。また第 1案 内部材 25に対する第 1主摺動部 37の傾きが抑えられることによって、第 1レンズ 35 の光軸の傾きを抑えることができる。
第 2主摺動部 37は、式 (6)および(10)を満足するので、第 2主摺動部 47と第 2案 内部材 26との間の摺動抵抗が小さくなり、また第 2案内部材 26に対する第 2主摺動 部 47の傾きが抑えられる。第 2主摺動部 47と第 2案内部材 26との間の摺動抵抗が 小さくなることによって、第 2レンズ 45を滑らかに変位させることができる。また第 2案 内部材 26に対する第 2主摺動部 47の傾きが抑えられることによって、第 2レンズ 45 の光軸の傾きを抑えることができる。
また本実施の形態によれば、第 1軸線 31と第 3軸線 33との間の距離は、第 2軸線 3 2と第 3軸線 33との間の距離と同一または略同一である。したがって、第 1レンズ保持 体 28の位置精度と、第 2レンズ保持体 29の位置精度とを、同じ程度にすることができ る。
前述の実施の形態は、本発明の例示に過ぎず、本発明の範囲内において構成を 変更することができる。たとえば第 1主摺動部 37が、第 1レンズ 35よりも第 2保持部 46 側に突出して設けられ、かつ第 2主摺動部 37が、第 2レンズ 45よりも第 1保持部 36側 に突出して設けられてもよい。この場合、筐体 23を大型化することなぐ第 1レンズ 35 と第 2レンズ 45とをさらに離反させることができる。また第 1および第 2駆動源 86, 96 は、共通であってもよい。
本発明は、その精神または主要な特徴力 逸脱することなぐ他のいろいろな形態 で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本 発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束され ない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のもので ある。
産業上の利用可能性
本発明によれば、第 1〜第 3案内部材は、第 1〜第 3軸線を有し、第 1〜第 3軸線は 、平行に配置される。第 1レンズ保持体は、第 1レンズ保持部によって第 1レンズを保 持し、第 1主摺動部で第 1案内部材に摺動して案内されるとともに、第 1副摺動部で 第 3案内部材に摺動して案内され、第 1および第 3軸線に沿って変位可能に設けら れる。第 2レンズ保持体は、第 2レンズ保持部によって第 1レンズと同軸に第 2レンズを 保持し、第 2主摺動部で第 2案内部材に摺動して案内されるとともに、第 2副摺動部 で第 3案内部材に摺動して案内され、第 2および第 3軸線に沿って変位可能に設けら れる。したがって第 1レンズと第 2レンズとの間の距離を、各レンズの光軸を一致させ た状態で、変化させることができる。
第 1主摺動部は、第 1レンズ保持体を第 1軸線に沿って摺動させるとともに、摺動時 に第 1レンズ保持体の、第 1軸線に対する傾きを抑える。第 1主摺動部は、第 1軸線 に沿う方向に関する寸法が大きいほど、第 1案内部材に対する第 1主摺動部の傾き が抑えられる。そのため、第 1レンズの光軸の傾きを抑えることができる。また、第 1軸 線に沿う方向に関する寸法が大きいほど、第 1主摺動部と第 1案内部材との間の摺 動抵抗が小さくなる。
第 2主摺動部は、第 2レンズ保持体を第 2軸線に沿って摺動させるとともに、摺動時 に第 2レンズ保持体の、第 2軸線に対する傾きを抑える。第 2主摺動部は、第 2軸線 に沿う方向に関する寸法が大きいほど、第 2案内部材に対する第 2主摺動部の傾き が抑えられる。そのため、第 2レンズの光軸の傾きを抑えることができる。また、第 2軸 線に沿う方向に関する寸法が大きいほど、第 2主摺動部と第 2案内部材との間の摺 動抵抗が小さくなる。
第 1副摺動部は、第 3案内部材と摺動し、第 1レンズ保持体が第 1案内部材まわりに 回転することを防ぐ。第 1軸線に沿う方向の寸法は、第 1主摺動部よりも小さい。 第 2副摺動部は、第 3案内部材と摺動し、第 2レンズ保持体が第 2案内部材まわりに 回転することを防ぐ。第 2軸線に沿う方向の寸法は、第 2主摺動部よりも小さい。 第 1主摺動部と第 2主摺動部とは、異なる案内部材に案内されるので、第 1レンズと 第 2レンズとを近接させるときに、第 1主摺動部と第 2主摺動部とが干渉してしまうとい う不具合が回避される。また第 1副摺動部と第 2副摺動部は、第 1主摺動部および第 2主摺動部と比べ、第 1軸線に沿う方向の寸法が小さい。したがって、第 1副摺動部と 第 2副摺動部とが同一の案内部材に案内されていても、第 1レンズと第 2レンズとを近 接させるときに、第 1副摺動部と第 2副摺動部とが干渉してしまうという不具合が回避 される。このように第 1主摺動部と第 2主摺動部とが干渉してしまうという不具合が回 避され、しかも第 1副摺動部と第 2副摺動部とが干渉してしまうという不具合が回避さ れるので、第 1レンズと第 2レンズとを充分に近接させることができる。
第 1副摺動部と第 2副摺動部とは、同一の案内部材に案内されるので、異なる案内 部材に案内される場合に比べて、各案内部材の取付け誤差の累積が小さぐこれに よって第 1および第 2レンズの位置精度が高くなる。また第 1副摺動部と第 2副摺動部 とは、同一の案内部材に案内されるので、異なる案内部材に案内される場合に比べ て、案内部材の本数が少なくなり、これによつてレンズユニットが組み立てやすくなる 本発明によれば、第 1主摺動部が、第 1レンズよりも第 2保持部側に突出して設けら れるので、反対側に突出して設けられる場合に比べて、第 1レンズと第 2レンズとを離 反させることができるとともに、レンズユニットを小型化できる。
本発明によれば、第 2主摺動部が、第 2レンズよりも第 1保持部側に突出して設けら れるので、反対側に突出して設けられる場合に比べて、第 1レンズと第 2レンズとを離 反させることができるとともに、レンズユニットを小型化できる。
本発明によれば、第 1補強部によって、第 1主摺動部と第 1保持部との連結部位が 補強されるので、落下などによる衝突時の衝撃によって第 1レンズ保持体が破損して しまうと!、う不具合を回避することができる。
本発明によれば、第 2補強部によって、第 2主摺動部と第 2保持部との連結部位が 補強されるので、落下などによる衝突時の衝撃によって第 2レンズ保持体が破損して しまうと!、う不具合を回避することができる。
本発明によれば、第 1および第 2案内部材が同一の部材に連結されるので、異なる 部材に連結される場合に比べて、第 1および第 2案内部材の平行度が高くなる。なぜ なら、異なる部材に連結される場合は、異なる部材を組み立てるときの誤差があるけ れども、同一の部材に連結される場合は、そのような誤差がないからである。第 1およ び第 2案内部材の平行度が高くなることによって、第 1および第 2レンズの位置精度 が高くなる。 本発明によれば、第 1軸線に垂直な面に垂直投影した場合、第 1主摺動部の領域 面積が第 1保持部の領域面積よりも小さいので、第 1案内部材と第 2案内部材との間 の距離が小さくても、第 1レンズと第 2レンズとを近接させるときに、第 1主摺動部と第 2 主摺動部とが干渉してしまうという不具合を回避することができる。
本発明によれば、第 2軸線に垂直な面に垂直投影した場合、第 2主摺動部の領域 面積が第 2保持部の領域面積よりも小さいので、第 1案内部材と第 2案内部材との間 の距離が小さくても、第 1レンズと第 2レンズとを近接させるときに、第 1主摺動部と第 2 主摺動部とが干渉してしまうという不具合を回避することができる。
本発明によれば、第 1主摺動部の第 1軸線に沿う方向に関する寸法 L1が、 Ll > ( Dl ' cos a l— dl) Zsin a 1を満足するように選ばれるので、第 1レンズの傾き力 許 容範囲内に抑えられ、良好な光学特性を得ることができる。
本発明によれば、第 2主摺動部の第 2軸線に沿う方向に関する寸法 L2が、 L2> ( D2- cos a 2— d2) Zsin a 2を満足するように選ばれるので、第 2レンズの傾き力 許 容範囲内に抑えられ、良好な光学特性を得ることができる。
本発明によれば、第 1駆動手段によって、第 1レンズ保持体を、第 1および第 3軸線 に沿って変位駆動し、第 2駆動手段によって、第 2レンズ保持体を、第 2および第 3軸 線に沿って変位駆動して、第 1レンズと第 2レンズとの間の距離を、各レンズの光軸を 一致させた状態で、変化させることができる。
本発明によれば、第 1押圧片は、第 1レンズ保持体を第 1軸線に沿う方向一方へ押 圧し、第 1ばね力発生手段は、第 1レンズ保持体を第 1軸線に沿う方向他方へ押圧す る。第 1駆動源によって第 1押圧片を第 1軸線に沿って変位駆動し、これによつて第 1 レンズ保持体を、第 1軸線に沿って変位駆動することができる。このとき、第 1ばね力 発生手段によって第 1レンズ保持体を第 1軸線に沿う方向他方へ押圧しているので、 変位駆動時のがたつきの発生を抑えることができる。
本発明によれば、第 1ばね力発生手段は、圧縮コイルばねであり、第 1案内部材に 外嵌されるので、落下などによる衝突時の衝撃によって、圧縮コイルばねが外れてし まうという不具合を防ぐことができる。
本発明によれば、第 1主摺動部の第 1軸線に沿う方向に関する寸法 L1が、 Ll > 2- μ 1 · (Fl 'hl l +Wl 'h21)Z(Fl— Wl)を満足するように選ばれるので、第 1主摺 動部と第 1案内部材との間の摺動抵抗が充分に小さくなり、第 1レンズを滑らかに変 位させることができる。
本発明によれば、第 2押圧片は、第 2レンズ保持体を第 2軸線に沿う方向一方へ押 圧し、第 2ばね力発生手段は、第 2レンズ保持体を第 2軸線に沿う方向他方へ押圧す る。第 2駆動源によって第 2押圧片を第 2軸線に沿って変位駆動し、これによつて第 2 レンズ保持体を、第 2軸線に沿って変位駆動することができる。このとき、第 2ばね力 発生手段によって第 2レンズ保持体を第 2軸線に沿う方向他方へ押圧しているので、 変位駆動時のがたつきの発生を抑えることができる。
本発明によれば、第 2ばね力発生手段は、圧縮コイルばねであり、第 2案内部材に 外嵌されるので、落下などによる衝突時の衝撃によって、圧縮コイルばねが外れてし まうという不具合を防ぐことができる。
本発明によれば、第 2主摺動部の第 2軸線に沿う方向に関する寸法 L2が、 L2> 2- μ 2· (F2'hl2+W2'h22)Z(F2—W2)を満足するように選ばれるので、第 2主摺 動部と第 2案内部材との間の摺動抵抗が充分に小さくなり、第 2レンズを滑らかに変 位させることができる。

Claims

請求の範囲
[1] 第 1軸線を有する第 1案内部材と、
第 1軸線と平行な第 2軸線を有する第 2案内部材と、
第 1および第 2軸線と平行な第 3軸線を有する第 3案内部材とを備えたレンズュニッ トであって、
第 1案内部材に摺動し案内される第 1主摺動部と、第 3案内部材に摺動して案内さ れ、第 1軸線に沿う方向に関して第 1主摺動部より小さい第 1副摺動部とを備えた第 1 レンズ保持体と、
第 2案内部材に摺動し案内される第 2主摺動部と、第 3案内部材に摺動して案内さ れ、第 2軸線に沿う方向に関して第 2主摺動部より小さい第 2副摺動部とを備えた第 2 レンズ保持体
とを含むことを特徴とするレンズユニット。
[2] 第 1主摺動部は、第 1レンズよりも第 2保持部側に突出して設けられることを特徴と する請求項 1記載のレンズユニット。
[3] 第 2主摺動部は、第 2レンズよりも第 1保持部側に突出して設けられることを特徴と する請求項 1または 2記載のレンズユニット。
[4] 第 1レンズ保持体は、第 1主摺動部と第 1保持部との連結部位を補強する第 1補強 部をさらに備えることを特徴とする請求項 1〜3のいずれか 1つに記載のレンズュ-ッ
[5] 第 2レンズ保持体は、第 2主摺動部と第 2保持部との連結部位を補強する第 2補強 部をさらに備えることを特徴とする請求項 1〜4のいずれか 1つに記載のレンズュ-ッ
[6] 第 1および第 2案内部材は、同一の部材に連結されることを特徴とする請求項 1〜5 のいずれか 1つに記載のレンズユニット。
[7] 第 1レンズ保持体は、第 1軸線に垂直な面に垂直投影した場合、第 1主摺動部の領 域面積が第 1保持部の領域面積よりも小さいことを特徴とする請求項 1〜6のいずれ 力 1つに記載のレンズユニット。
[8] 第 2レンズ保持体は、第 2軸線に垂直な面に垂直投影した場合、第 2主摺動部の領 域面積が第 2保持部の領域面積よりも小さいことを特徴とする請求項 1〜7のいずれ 力 1つに記載のレンズユニット。
[9] 第 1案内部材は、円柱状に形成され、
第 1主摺動部は、円筒状に形成されて、第 1案内部材が揷通され、
第 1主摺動部の第 1軸線に沿う方向に関する寸法を Ll [m]とし、第 1主摺動部の内 径を Dl [m]とし、第 1案内部材の外径を dl [m]とし、第 1レンズ保持体の傾きの許容 値を a l [rad]とするとき、
L1 (Dl ' cos 1— dlj Z sin 1
を満足するように、第 1主摺動部の第 1軸線に沿う方向に関する寸法が選ばれること を特徴とする請求項 1〜8のいずれか 1つに記載のレンズユニット。
[10] 第 2案内部材は、円柱状に形成され、
第 2主摺動部は、円筒状に形成されて、第 2案内部材が揷通され、
第 2主摺動部の第 2軸線に沿う方向に関する寸法を L2 [m]とし、第 2主摺動部の内 径を D2 [m]とし、第 2案内部材の外径を d2 [m]とし、第 2レンズ保持体の傾きの許容 値を a 2 [rad]とするとき、
L2 > (D2 · cos α 2 - d2) /sin 2
を満足するように、第 2主摺動部の第 2軸線に沿う方向に関する寸法が選ばれること を特徴とする請求項 1〜9のいずれか 1つに記載のレンズユニット。
[11] 請求項 1〜10のいずれ力 1つに記載のレンズユニットと、
第 1レンズ保持体を、第 1および第 3軸線に沿って変位駆動する第 1駆動手段と、 第 2レンズ保持体を、第 2および第 3軸線に沿って変位駆動する第 2駆動手段とを 含むことを特徴とするレンズ駆動装置。
[12] 第 1駆動手段は、
第 1軸線に沿って変位可能に設けられ、第 1レンズ保持体に当接して、第 1レンズ 保持体を第 1軸線に沿う方向一方へ押圧する第 1押圧片と、
第 1押圧片を第 1軸線に沿って変位駆動する第 1駆動源と、
第 1レンズ保持体を第 1軸線に沿う方向他方へ弾発的に押圧する第 1ばね力発生 手段とを含むことを特徴とする請求項 11記載のレンズ駆動装置。
[13] 第 1ばね力発生手段は、圧縮コイルばねであり、第 1案内部材に外嵌されることを 特徴とする請求項 12記載のレンズ駆動装置。
[14] 第 1主摺動部の第 1軸線に沿う方向に関する寸法を Ll [m]とし、第 1案内部材と第 1主摺動部との間の静止摩擦係数を 1とし、第 1押圧片による第 1軸線に沿う方向 一方への押圧力を F1 [N]とし、前記押圧力の作用点と第 1軸線との間の距離を hl l [m]とし、第 1軸線と第 3軸線との間の距離を h21 [m]とし、第 3案内部材と第 1副摺 動部との間の摺動抵抗を Wl [N]とするとき、
Ll > 2- μ 1 · (Fl -hl l +Wl -h21) / (Fl -Wl)
を満足するように、第 1主摺動部の第 1軸線に沿う方向に関する寸法が選ばれること を特徴とする請求項 12または 13記載のレンズ駆動装置。
[15] 第 2駆動手段は、
第 2軸線に沿って変位可能に設けられ、第 2レンズ保持体に当接して、第 2レンズ 保持体を第 2軸線に沿う方向一方へ押圧する第 2押圧片と、
第 2押圧片を第 2軸線に沿って変位駆動する第 2駆動源と、
第 2レンズ保持体を第 2軸線に沿う方向他方へ弾発的に押圧する第 2ばね力発生 手段とを含むことを特徴とする請求項 11〜14のいずれか 1つに記載のレンズ駆動装 置。
[16] 第 2ばね力発生手段は、圧縮コイルばねであり、第 2案内部材に外嵌されることを 特徴とする請求項 15記載のレンズ駆動装置。
[17] 第 2主摺動部の第 2軸線に沿う方向に関する寸法を L2[m]とし、第 2案内部材と第
2主摺動部との間の静止摩擦係数を; z 2とし、第 2押圧片による第 2軸線に沿う方向 一方への押圧力を F2[N]とし、前記押圧力の作用点と第 2軸線との間の距離を hl2
[m]とし、第 2軸線と第 3軸線との間の距離を h22[m]とし、第 3案内部材と第 2副摺 動部との間の摺動抵抗を W2[N]とするとき、
L2> 2- μ 2· (F2-hl2+W2-h22) / (F2-W2)を満足するように、第 2主摺 動部の第 2軸線に沿う方向に関する寸法が選ばれることを特徴とする請求項 15また は 16記載のレンズ駆動装置。
PCT/JP2006/320680 2005-10-18 2006-10-17 レンズユニットおよびレンズ駆動装置 WO2007046391A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007540992A JP4709848B2 (ja) 2005-10-18 2006-10-17 レンズユニットおよびレンズ駆動装置
US12/083,767 US8300331B2 (en) 2005-10-18 2006-10-17 Lens unit and lens driving apparatus
EP06811924A EP1939661B1 (en) 2005-10-18 2006-10-17 Lens unit and lens drive device
CN2006800384128A CN101288012B (zh) 2005-10-18 2006-10-17 透镜单元和透镜驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-303365 2005-10-18
JP2005303365 2005-10-18

Publications (1)

Publication Number Publication Date
WO2007046391A1 true WO2007046391A1 (ja) 2007-04-26

Family

ID=37962484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320680 WO2007046391A1 (ja) 2005-10-18 2006-10-17 レンズユニットおよびレンズ駆動装置

Country Status (5)

Country Link
US (1) US8300331B2 (ja)
EP (1) EP1939661B1 (ja)
JP (1) JP4709848B2 (ja)
CN (1) CN101288012B (ja)
WO (1) WO2007046391A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113166A (ja) * 2008-11-06 2010-05-20 Nikon Corp レンズ鏡筒および撮像装置
CN102809797A (zh) * 2011-12-08 2012-12-05 苏州科达科技有限公司 一种精确调整监控产品镜头后焦距的机构

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201120563A (en) * 2009-12-10 2011-06-16 Ability Entpr Co Ltd Lens module of an imaging device and a method of using the same
JP5917021B2 (ja) * 2011-06-07 2016-05-11 キヤノン株式会社 レンズ駆動装置およびそれを有する光学機器
JP5915038B2 (ja) * 2011-09-06 2016-05-11 株式会社ニコン レンズアセンブリ、レンズ鏡筒および撮像装置
JP2015080286A (ja) * 2013-10-15 2015-04-23 ソニー株式会社 駆動装置および撮像装置
TWI529441B (zh) * 2015-01-21 2016-04-11 信泰光學(深圳)有限公司 光學機構
JP6432117B2 (ja) * 2016-10-31 2018-12-05 Thk株式会社 レンズ移動機構
CN210327730U (zh) * 2019-07-29 2020-04-14 广景视睿科技(深圳)有限公司 一种调焦装置
CN214474350U (zh) * 2020-08-14 2021-10-22 台湾东电化股份有限公司 光学元件驱动机构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131611A (ja) * 2000-10-30 2002-05-09 Minolta Co Ltd レンズ駆動機構

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113791A (ja) 1995-10-20 1997-05-02 Fuji Photo Optical Co Ltd 移動式絞り装置
US5768038A (en) * 1996-01-26 1998-06-16 Konica Corporation Lens device
US5815325A (en) * 1996-10-31 1998-09-29 Eastman Kodak Company Optical assembly with drive linkage for a movable lens element
JP4214652B2 (ja) 2000-02-25 2009-01-28 コニカミノルタホールディングス株式会社 レンズユニット
US6556359B2 (en) 2000-02-25 2003-04-29 Konica Corporation Lens unit
CN2419058Y (zh) 2000-05-15 2001-02-14 北京市百佳艺苑教学用品有限公司 中小学美术学具版画专用油滚
JP3530952B2 (ja) 2000-12-19 2004-05-24 ミノルタ株式会社 レンズ駆動装置
JP2003195143A (ja) * 2001-12-26 2003-07-09 Pentax Corp レンズ駆動機構
JP3944785B2 (ja) 2003-10-31 2007-07-18 ソニー株式会社 沈胴式レンズ鏡筒および撮像装置
JP4487531B2 (ja) 2003-10-02 2010-06-23 ソニー株式会社 レンズ鏡筒
JP2005156787A (ja) * 2003-11-25 2005-06-16 Canon Inc レンズ鏡筒
JP2005234075A (ja) 2004-02-18 2005-09-02 Sony Corp レンズ鏡筒および撮像装置
KR100550898B1 (ko) * 2004-03-04 2006-02-13 삼성전기주식회사 초소형 렌즈모듈
JP2007310343A (ja) * 2006-04-17 2007-11-29 Sharp Corp レンズ鏡筒およびレンズ鏡筒の組立方法およびカメラモジュール

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131611A (ja) * 2000-10-30 2002-05-09 Minolta Co Ltd レンズ駆動機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1939661A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113166A (ja) * 2008-11-06 2010-05-20 Nikon Corp レンズ鏡筒および撮像装置
CN102809797A (zh) * 2011-12-08 2012-12-05 苏州科达科技有限公司 一种精确调整监控产品镜头后焦距的机构

Also Published As

Publication number Publication date
EP1939661A1 (en) 2008-07-02
US20100246034A1 (en) 2010-09-30
EP1939661A4 (en) 2010-11-10
US8300331B2 (en) 2012-10-30
CN101288012A (zh) 2008-10-15
EP1939661B1 (en) 2011-12-14
CN101288012B (zh) 2011-01-19
JPWO2007046391A1 (ja) 2009-04-23
JP4709848B2 (ja) 2011-06-29

Similar Documents

Publication Publication Date Title
WO2007046391A1 (ja) レンズユニットおよびレンズ駆動装置
US7126763B2 (en) Lens moving mechanism
US7747149B2 (en) Optical apparatus having image-blur correction/reduction system
US7826734B2 (en) Camera module and portable terminal using the same
US9397586B2 (en) Ultrasonic wave motor and ultrasonic wave motor-equipped device
US20070116445A1 (en) Lens drive device and manufacturing method
JPH05257048A (ja) レンズ鏡筒
US9557517B2 (en) Lens barrel
JP2007049878A (ja) アクチュエータ
EP1753041A2 (en) Actuator
JP5258770B2 (ja) レンズ鏡筒
US8117936B2 (en) Gear support structure
JP5537529B2 (ja) 光学装置
US8606096B2 (en) Lens barrel that moves lens unit using vibration actuator and camera system having the same
US8358472B2 (en) Lens barrel and optical apparatus including the same
JP2009128500A (ja) アクチュエータ、撮像装置、撮像機器、およびアクチュエータの製造方法
JP2019066870A (ja) 駆動装置及びこれを用いたレンズユニット
WO2021251142A1 (ja) レンズ鏡筒及び撮像装置
US20220269039A1 (en) Lens barrel, lens apparatus and image pickup apparatus
JP2015118344A (ja) 光学部材駆動装置および光学機器
JP2021196472A (ja) レンズ鏡筒及び撮像装置
JP5805996B2 (ja) 超音波モータを用いた駆動ユニット、レンズ鏡筒、および撮像装置
JP2003050343A (ja) 光学素子駆動装置
US10802240B2 (en) Lens driving device
JP2000284159A (ja) レンズ鏡胴

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038412.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007540992

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006811924

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12083767

Country of ref document: US