WO2007046218A1 - 中間転写体、中間転写体の製造方法及び画像形成装置 - Google Patents

中間転写体、中間転写体の製造方法及び画像形成装置 Download PDF

Info

Publication number
WO2007046218A1
WO2007046218A1 PCT/JP2006/319246 JP2006319246W WO2007046218A1 WO 2007046218 A1 WO2007046218 A1 WO 2007046218A1 JP 2006319246 W JP2006319246 W JP 2006319246W WO 2007046218 A1 WO2007046218 A1 WO 2007046218A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate transfer
layer
transfer member
image
gas
Prior art date
Application number
PCT/JP2006/319246
Other languages
English (en)
French (fr)
Inventor
Yuichiro Maehara
Original Assignee
Konica Minolta Business Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies, Inc. filed Critical Konica Minolta Business Technologies, Inc.
Priority to JP2007540905A priority Critical patent/JP4577362B2/ja
Priority to EP06810704.4A priority patent/EP1947526B1/en
Priority to CN2006800387003A priority patent/CN101292200B/zh
Priority to US12/090,109 priority patent/US7773927B2/en
Publication of WO2007046218A1 publication Critical patent/WO2007046218A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1605Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support
    • G03G15/162Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support details of the the intermediate support, e.g. chemical composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0103Plural electrographic recording members
    • G03G2215/0119Linear arrangement adjacent plural transfer points
    • G03G2215/0122Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt
    • G03G2215/0135Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt the linear arrangement being vertical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24983Hardness

Definitions

  • the present invention relates to an intermediate transfer member for synthesizing and transferring a toner image for each color for a color image in an electrophotographic apparatus such as an electrophotographic copying machine, a laser beam printer, a facsimile, or an electrostatic recording apparatus,
  • the present invention relates to an intermediate transfer member manufacturing method and an image forming apparatus including the intermediate transfer member.
  • an image forming method using an intermediate transfer member is known as a method for transferring a toner image on an electrophotographic photosensitive member (hereinafter also simply referred to as a photosensitive member) to a recording material.
  • a second transfer process is performed, and after the primary transfer from the electrophotographic photosensitive member to the intermediate transfer member, the primary transfer image of the intermediate transfer member is recorded.
  • the final image is obtained by secondary transfer onto the material.
  • This method is used as a multiple transfer method for each color toner image in a so-called full-color image forming device that reproduces a color-separated original image using subtractive color mixing with toners such as black, cyan, magenta, and yellow. There are many.
  • transfer of a toner image is performed because two transfers of primary transfer and secondary transfer are performed, and four color toners are superimposed on the transfer member. Image defects are likely to occur due to defects.
  • transfer efficiency can be improved by surface-treating the toner surface with an external additive such as silica.
  • an external additive such as silica.
  • the toner surface is affected by the stress that the toner agitating member in the developing device receives, the stress received from the regulating blade for forming the toner layer on the developing roller, the stress received between the photosensitive member and the developing roller, etc. Since the silica is detached from the toner or buried in the toner, there is a problem that sufficient transfer efficiency cannot be obtained.
  • the surface of the intermediate transfer member is covered with silicon oxide, aluminum oxide, or the like, thereby improving the releasability of the toner image and improving the transfer efficiency to recording paper or the like.
  • silicon oxide, aluminum oxide, or the like have been proposed (see, for example, Patent Documents 1 and 2;).
  • Patent Document 1 Japanese Patent Laid-Open No. 9-212004
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-347593
  • an image forming apparatus having an intermediate transfer member cannot transfer 100% of a toner image at the time of secondary transfer at the present time. Need a cleaning device to scoop off.
  • the intermediate transfer members described in Patent Documents 1 and 2 have problems such as insufficient durability and short life.
  • the film is too thin and the film strength is insufficient, the thin film is easily scratched by disturbances, so that there is a problem that the thin film is easily damaged due to a paper jam or the like and image defects are likely to occur.
  • silicon oxide, aluminum oxide, and the like are formed by vacuum deposition and notching, large equipment such as a vacuum apparatus is required, which causes a problem in productivity.
  • the object of the present invention is to provide higher transferability and higher durability and durability. ⁇ Intermediate transfer member and large equipment such as a vacuum device are not required. It is an object of the present invention to provide a transfer body manufacturing apparatus and an image forming apparatus having the intermediate transfer body.
  • [0010] (1) has a surface layer which becomes the layer strength of at least one or more layers on the substrate surface, a universal hardness of the substrate is 50 N / mm 2 or more 190 N / mm 2 or less, and hardness of the surface layer of the surface, An intermediate transfer member characterized in that it is 3 GPa or more and l GPa or less as measured by the nanoindentation method.
  • At least one surface layer composed of one or more layers is formed by atmospheric pressure plasma CVD.
  • An image forming apparatus comprising the intermediate transfer member according to 1) or (2).
  • (1) has a surface layer composed of at least one layer on the substrate surface, the substrate has a universal hardness of 50 NZmm 2 or more and 190 NZmm 2 or less, and the surface layer has a surface hardness of nano
  • the substrate has a universal hardness of 50 NZmm 2 or more and 190 NZmm 2 or less
  • the surface layer has a surface hardness of nano
  • At least the outermost layer of the surface layer described in (3) is formed by an atmospheric pressure plasma CVD method, and the carbon atom content of the layer is 20 atomic% or less (XPS measurement).
  • the intermediate transfer body manufacturing method is characterized by the fact that it does not require large-scale equipment such as a vacuum device, has excellent releasability from toner, improves transfer efficiency, and has excellent durability. It is possible to obtain a production apparatus for producing a body and to easily form a thin film containing carbon atoms and excellent in durability.
  • At least one of the surface layers described in (4) is formed by an atmospheric pressure plasma CVD method, and the carbon atom content of the layer is 20 atomic% or less (XPS measurement)
  • the intermediate transfer body manufacturing method an intermediate transfer body with excellent releasability from the toner, improved transfer efficiency, and excellent durability is obtained without requiring large equipment such as a vacuum device.
  • a production apparatus can be obtained, and a thin film containing carbon atoms and excellent in durability can be easily formed.
  • the image forming apparatus using the intermediate transfer member according to (1) or (2) described in (5) provides an image forming apparatus with high transferability and high cleaning performance and durability.
  • FIG. 1 is a cross-sectional configuration diagram showing an example of a color image forming apparatus.
  • FIG. 2 is a conceptual cross-sectional view showing a layer structure of an intermediate transfer member.
  • FIG. 3 is a diagram of a surface hardness measurement apparatus using a nanoindentation method.
  • FIG. 4 is a load-displacement curve obtained by the nanoindentation method.
  • FIG. 5 is a schematic diagram showing a state in which the indenter of the surface hardness measuring apparatus by the nanoindentation method and the sample are in contact with each other.
  • FIG. 6 is an explanatory view of a first manufacturing apparatus for manufacturing an intermediate transfer member.
  • FIG. 7 is an explanatory view of a second manufacturing apparatus for manufacturing an intermediate transfer member.
  • FIG. 8 is an explanatory diagram of a first plasma film forming apparatus for producing an intermediate transfer member using plasma.
  • FIG. 9 is a schematic view showing an example of a roll electrode.
  • FIG. 10 is a schematic view showing an example of a fixed electrode.
  • the intermediate transfer member of the present invention is suitably used in an image forming apparatus such as an electrophotographic copying machine, a printer, a facsimile, and the like, and a toner image carried on the surface of a photoreceptor is primarily transferred onto the surface.
  • Any belt-type transfer body or drum-type transfer body can be used as long as it can hold the transferred toner image and secondarily transfer the held toner image onto the surface of the transfer object such as recording paper. good.
  • an image forming apparatus having an intermediate transfer member of the present invention will be described by taking a tandem type full color copying machine as an example.
  • FIG. 1 is a cross-sectional configuration diagram showing an example of a color image forming apparatus.
  • the color image forming apparatus 1 is called a tandem type full-color copying machine, and includes an automatic document feeder 13, a document image reading device 14, and a plurality of exposure means 13Y, 13M, 1
  • An automatic document feeder 13 and a document image reading device 14 are arranged on the upper part of the main body 12 of the image forming apparatus, and an image of the document d conveyed by the automatic document feeder 13 is a document image reading device. Reflected and imaged by 14 optical systems and read by line image sensor CCD.
  • the analog signal obtained by photoelectrically converting the original image read by the line image sensor CCD is subjected to analog processing, AZD conversion, siding correction, image compression processing, etc. in an image processing unit (not shown), and then exposure means.
  • a drum-shaped photoconductor (hereinafter also referred to as a photoconductor) that is sent to 13Y, 13M, 13C, and 13K as digital image data for each color and that is supported by the exposure means 13Y, 13M, 13C, and 13K.
  • 11Y, 11 ⁇ , 11 C, 1 IK forms a latent image of each color image data.
  • the image forming units 10Y, 10M, 10C, and 10K are arranged in tandem in the vertical direction.
  • the present invention is a semiconductive, endless belt-shaped second image carrier that is rotatably stretched by rolling rollers 171, 172, 173, 174 on the left side of the figure.
  • An intermediate transfer member 170 (hereinafter referred to as an intermediate transfer belt) 170 is disposed.
  • the intermediate transfer belt 170 of the present invention is driven in the direction of an arrow through a roller 171 that is rotationally driven by a driving device (not shown).
  • the image forming unit 10Y that forms a yellow image includes a charging unit 12Y, an exposing unit 13 ⁇ , a developing unit 14 ⁇ , and a primary transfer roller as a primary transfer unit disposed around the photoreceptor 11Y. It has 15 ⁇ and 16 ⁇ cleaning means.
  • An image forming unit 10M for forming a magenta image has a photoreceptor 11 ⁇ , a charging device 12 ⁇ , an exposure device 13 ⁇ , a developing device 14 ⁇ , a primary transfer roller 15 ⁇ as a primary transfer device, and a tallying device 16M. .
  • the image forming unit 10C that forms a cyan image includes a photoreceptor 11C, a charging unit 12C, an exposure unit 13C, a developing unit 14C, a primary transfer roller 15C as a primary transfer unit, and a tiling unit 16C. .
  • the image forming unit 10K that forms a black image includes a photoconductor 11K, a charging unit 12mm, an exposure unit 13mm, a developing unit 14mm, a primary transfer roller 15mm as a primary transfer unit, and a cleaning unit 16mm.
  • the toner replenishing means 141Y, 141M, 141C, and 141K replenish new toner to the developing devices 14Y, 14M, 14C, and 14K, respectively.
  • the primary transfer rollers 15Y, 15M, 15C, and 15K are selectively operated according to the type of image by a control unit (not shown), and the corresponding photoreceptors 11Y, 11M, 11C, and 1IK, respectively. Then, the intermediate transfer belt 170 is pressed to transfer the image on the photosensitive member.
  • the images of the respective colors formed on the photoreceptors 11Y, 11 ⁇ , 11C, and 1IK by the image forming units 10Y, 10M, 10C, and 10K are the primary transfer rollers 15Y, 15M, 15C, By 15K, the image is sequentially transferred onto the rotating intermediate transfer belt 170 to form a synthesized color image. That is, the intermediate transfer belt primarily transfers the toner image carried on the surface of the photoconductor onto the surface, and holds the transferred toner image.
  • the recording paper P as a recording medium accommodated in the paper feeding cassette 151 is fed from the paper feeding means 15 [next, a plurality of middle rollers 122A, 122B, 122C, 122D, a resist Then, the toner image is conveyed to a secondary transfer roller 117 as a secondary transfer unit through the peripheral roller 123, and the combined toner image on the intermediate transfer member is collectively transferred onto the recording paper P by the secondary transfer roller 117.
  • the toner image held on the intermediate transfer member is secondarily transferred onto the surface of the transfer object.
  • the secondary transfer roller 117 presses the recording paper P against the intermediate transfer belt 170 only when the recording paper P passes through the secondary transfer roller 117 and performs secondary transfer.
  • the recording paper P on which the color image has been transferred is subjected to fixing processing by the fixing device 124, sandwiched between the paper discharge rollers 125, and placed on the paper output tray 126 outside the apparatus.
  • the residual toner is removed by the cleaning means 8 in the intermediate transfer belt 170 from which the recording paper P is separated by curvature.
  • the intermediate transfer member may be replaced with a rotating drum-shaped intermediate transfer drum as described above.
  • the primary transfer rollers 15Y, 15M, 15C, 15K are made of, for example, a conductive core such as stainless steel having an outer diameter of 8 mm, a rubber material such as polyurethane, EPDM, or silicone, and a conductive filler such as carbon. Or containing an ionic conductive material, the volume resistance is 10 5 ⁇ : ⁇ 0 9 ⁇ 'cm, solid state or foamed sponge state, thickness 5 mm, rubber hardness 20 ⁇ It is formed by covering a semiconductive elastic rubber of about 70 ° (Asker hardness C).
  • the secondary transfer roller 117 is made by dispersing a conductive filler such as carbon in a rubber material such as polyurethane, EPDM, or silicone on the peripheral surface of a conductive core metal such as stainless steel having an outer diameter of 8 mm. Volume resistance is about 10 5 -10 9 ⁇ 'cm by adding ionic conductive material It is formed by covering a semiconductive elastic rubber having a thickness of 5 mm and a rubber hardness of about 20 to 70 ° (Asker hardness C) in a solid state or foamed sponge state.
  • a conductive filler such as carbon
  • a rubber material such as polyurethane, EPDM, or silicone
  • Volume resistance is about 10 5 -10 9 ⁇ 'cm by adding ionic conductive material
  • It is formed by covering a semiconductive elastic rubber having a thickness of 5 mm and a rubber hardness of about 20 to 70 ° (Asker hardness C) in a solid state or foamed sponge state.
  • the secondary transfer roller 117 is different from the primary transfer rollers 15Y, 15M, 15C, and 15K, there is no recording paper P, and there is a possibility that the toner may come into contact with the secondary transfer roller 117. It is better to coat semi-conductive fluorine resin, urethane resin, etc. with good releasability, and to the peripheral surface of conductive core metal such as stainless steel, rubber such as polyurethane, EPDM, silicone, etc. It is formed by coating a semiconductive material in which a conductive filler such as carbon is dispersed or an ionic conductive material is contained, with a thickness of about 0.05 to 0.5 mm.
  • FIG. 2 is a conceptual cross-sectional view showing the layer structure of the intermediate transfer member.
  • the intermediate transfer belt 170 has a base material 175, and a surface layer 176 composed of at least one layer on the surface of the base material 175.
  • the universal hardness of the base material is 50 NZmm 2 or more and 190 NZm m 2 or less, and
  • the surface hardness of the surface layer 176 is 3 GPa or more and l GPa or less as measured by a nanoindentation method.
  • a belt obtained by dispersing a conductive agent in a resin material can be used.
  • resin used for the belt so-called engineering plastic materials such as polycarbonate, polyimide, polyetheretherketone, polyvinylidene fluoride, ethylene tetrafluoroethylene copolymer, polyamide and polyphenylene sulfide are used. be able to.
  • Carbon black can be used as the conductive agent.
  • carbon black medium or acid carbon black can be used.
  • the amount of conductive filler used varies depending on the type of conductive filler used, but it is usually sufficient to add it so that the volume resistance value and surface resistance value of the intermediate transfer belt 170 are within the specified ranges.
  • the substrate 175 used in the present invention can be manufactured by a conventionally known general method. For example, pressing the raw material It can be manufactured by melting with an extruding machine, extruding with an annular die or T-die and quenching.
  • the thickness of the substrate 175 is about 50 to 200 ⁇ m for the resin material, and 300 for the rubber material.
  • the base material 175 has a universal hardness of 50 NZmm 2 or more 190
  • NZmm 2 or less is preferable.
  • the hardness of the base material can be adjusted by changing the type of the resin.
  • the universal hardness is measured even after the base material 175 is manufactured.
  • the hardness of the base material is defined by the universal hardness as shown below.
  • the universal hardness is a measurement object while applying a load to the indenter. By pushing into the object, the formula (I)
  • the universal hardness can be measured by using a commercially available hardness measuring device, for example, an ultra-micro hardness meter H-100V (manufactured by Fisher Co.). In this measuring device, a quadrangular pyramid or triangular pyramid shaped indenter is pushed into the object to be measured while applying a test load, and when the desired depth is reached, the indenter comes into contact with the object to be measured. Calculate the universal hardness from the above formula (I).
  • a surface layer 176 according to the present invention is formed on the substrate 175.
  • the surface layer 176 in the present invention is preferably an inorganic compound comprising an inorganic oxide, an inorganic nitride, an inorganic carbide, and a composite thereof.
  • Examples of the inorganic oxide used in the surface layer 176 in the present invention include silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, zinc oxide, iron oxide, vanadium oxide, acid beryllium, Zirconium oxide, Barium strontium titanate, Zirconate barium titanate, Lead zirconate titanate, Lead lanthanum titanate, Stron titanate Examples include thidium, noble titanate, bismuth titanate, strontium bismuth titanate, strontium bismuth tantalate, bismuth tantalate-obdate, and trioxide yttrium. Of these, more preferred are silicon oxide, acid aluminum, and acid titanium.
  • the material of the surface layer 176 in the present invention may be one kind of inorganic compound or may contain two or more kinds of inorganic compounds.
  • the surface layer 176 in the present invention may be one layer or more, and the layer preferably has a carbon atom content of 20 atomic% or less (XPS measurement).
  • composition analysis by XPS measurement of the surface layer can be measured by, for example, an X-ray photoelectron spectroscopic measuring instrument manufactured by VG Scientific. In the measurement, the outermost surface of the thin film was adsorbed and contaminated atoms were removed by argon ion etching. Similarly, the composition of each layer when there are multiple layers by etching can also be measured.
  • the carbon atom content can be adjusted by adjusting film forming conditions such as the output of the high-frequency power source, the additive gas amount ratio, the raw material gas amount ratio, and the substrate temperature.
  • At least one of the surface layers 176 in the present invention preferably has a carbon atom content of 20 atomic% or less, preferably 0.1 to 15 atomic%, more preferably 0.1 to 5 atomic%.
  • surface treatment such as corona treatment, flame treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, etc. may be performed.
  • an anchor coating agent layer may be formed between the surface layer 176 and the base material 175 in the present invention for the purpose of improving adhesion.
  • the anchor coating agent used in this anchor coating agent layer includes polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene bull alcohol resin, bull modified resin, epoxy resin, modified styrene resin. , Modified silicone resin, alkyl titanate and the like can be used in combination of one or more. Conventionally known additives can be added to these anchor coating agents.
  • the above-mentioned anchor coating agent can be used for roll coating, gravure coating, knife coating.
  • Anchor coating can be performed by coating on a substrate by a known method such as coating, dip coating, spray coating, etc., and removing the solvent, diluent, etc. by drying.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5 gZm 2 (dry state).
  • the film thickness of the surface layer 176 in the present invention is 200 nm to 1000 nm, and is preferably 200 nm to 600 nm, more preferably 250 nm to 500 nm.
  • the film thickness of the surface layer 176 is less than 200 nm, durability and surface strength are insufficient, and scratches occur due to transfer to cardboard, etc., and eventually the thin film wears and the toner transfer rate decreases. Resulting in. If it exceeds lOOOnm, adhesion and bending resistance are insufficient, and cracking and peeling are likely to occur during repeated use, and the time required for film formation also increases, which is preferable from the viewpoint of production.
  • the surface hardness of the surface layer 176 is preferably 3 GPa or more and 11 GPa or less as measured by a nanoindentation method.
  • the hardness of the surface layer can be similarly adjusted by adjusting the film forming conditions (the ratio of the additive gas amount to the raw material gas amount, the high frequency power supply output, the substrate temperature, etc.).
  • Hardness measurement by the nanoindentation method is a method for calculating the measured value force hardness by measuring the relationship between the load and the indentation depth (displacement) while pushing a minute diamond indenter into the thin film.
  • the indentation depth displacement
  • it is difficult to crack when pressed Generally used to measure the properties of very thin films.
  • FIG. 3 shows an example of a measuring apparatus using the nanoindentation method.
  • This measuring device can measure the displacement with nanometer accuracy using a transducer 31 and a Berkovich indenter 32 with an equilateral triangular tip while applying a load of ⁇ order.
  • a commercially available NANO Indenter XP / DCM manufactured by MTS Systems ZMTS Nano Instruments can be used.
  • FIG. 4 shows a typical load-displacement curve obtained by the nanoindentation method.
  • Figure 5 shows a schematic diagram of the indenter in contact with the sample.
  • P is the maximum load held by the indenter
  • A is the contact projection area between the indenter and the sample at that time.
  • the contact projection area A can be expressed by the following equation using he in FIG.
  • hs is the amount of indentation due to elasticity, and it is calculated from the gradient of the load curve after the indenter is pushed (gradient S in Fig. 4) and the shape of the indenter.
  • is a constant related to the shape of the indenter, and is 0.75 for the Berkovich indenter.
  • the hardness of the surface of the surface layer 176 formed on the substrate 175 can be measured using such a hardness measurement apparatus using the nanoindentation method.
  • FIG. 6 is an explanatory diagram of a first manufacturing apparatus that manufactures an intermediate transfer member.
  • the intermediate transfer body manufacturing apparatus 2 (direct method in which the discharge space and the thin film deposition area are substantially the same) forms the surface layer 176 on the base material 175, and the base material 175 of the intermediate transfer body 170 in the form of an endless belt.
  • an atmospheric pressure plasma CVD apparatus 3 that is a film forming apparatus for forming a surface layer 176 on the surface of the base material 175.
  • Atmospheric pressure plasma CVD apparatus 3 discharges at least one set of fixed electrodes 21 arranged along the outer periphery of roll electrode 20 and a region where fixed electrode 21 and roll electrode 20 face each other. Reduces the inflow of air into the discharge space 23, the mixed gas supply device 24 that generates the mixed gas G of at least the raw material gas and the discharge gas and supplies the mixed gas G to the discharge space 23, and the discharge space 23, etc.
  • the mixed gas supply device 24 mixes a source gas forming a film of at least one layer selected from an inorganic oxide layer, an inorganic nitride layer, and an inorganic carbide layer, and a rare gas such as nitrogen gas or argon gas.
  • the mixed gas is supplied to the discharge space 23.
  • the driven roller 201 is pulled in the direction of the arrow by the tension applying unit 202 and applies a predetermined tension to the base material 175.
  • the tension applying means 202 cancels the application of the tension when the base material 175 is changed, so that the base material 175 can be easily changed.
  • the first power supply 25 outputs a voltage having a frequency ⁇
  • the second power supply 26 outputs a voltage having a frequency ⁇ 2
  • these voltages cause the frequencies ⁇ 1 and ⁇ 2 to be superimposed on the discharge space 23.
  • the generated electric field V is generated.
  • the mixed gas G is turned into plasma by the electric field V, and a film (surface layer 176) corresponding to the raw material gas contained in the mixed gas G is deposited on the surface of the substrate 175.
  • a plurality of fixed electrodes positioned on the downstream side in the rotation direction of the roll electrode and the mixed gas supply device are stacked so that the surface layer 176 is stacked, and the thickness of the surface layer 176 is adjusted. It ’s okay.
  • the surface electrode 176 is deposited by the fixed electrode located on the most downstream side in the rotation direction of the roll electrode and the mixed gas supply device, and mixed with the other fixed electrode located further upstream.
  • Other layers such as an adhesive layer that improves the adhesion between the surface layer 176 and the substrate 175 may be formed by the gas supply device.
  • a gas supply for supplying a gas such as argon or oxygen upstream of the fixed electrode forming the surface layer 176 and the mixed gas supply device may be provided to perform plasma treatment to activate the surface of the substrate 175.
  • the intermediate transfer belt which is an endless belt, is stretched around a pair of rollers, and one of the pair of rollers serves as one electrode of the pair of electrodes, and the roller serves as one electrode.
  • An at least one fixed electrode which is the other electrode, is provided along the outside of the outer peripheral surface of the substrate, and an electric field is generated between the pair of electrodes at atmospheric pressure or near atmospheric pressure to cause plasma discharge, and the surface of the intermediate transfer member Tally with high transferability by adopting a structure to deposit and form a thin film on It is possible to produce an intermediate transfer member having high Jung property and durability.
  • FIG. 7 is an explanatory diagram of a second manufacturing apparatus for manufacturing the intermediate transfer member.
  • the second production apparatus 2b for the intermediate transfer member forms a surface layer on a plurality of substrates at the same time.
  • It is mainly composed of a plurality of film forming apparatuses 2bl and 2b2 for forming a surface layer on the surface of the substrate.
  • the second manufacturing apparatus 2b (a modification of the direct system, in which discharge and thin film deposition are performed between opposed roll electrodes) is substantially mirror-imaged with a predetermined gap from the first film forming apparatus 2bl.
  • a mixed gas G of at least a source gas and a discharge gas is generated between the second film forming apparatus 2b2 arranged and the first film forming apparatus 2bl and the second film forming apparatus 2b2.
  • a mixed gas supply device 24b for supplying the mixed gas G to the discharge space 23b.
  • the first film forming apparatus 2bl pulls the roll electrode 20a, the driven roller 201, and the driven roller 201 in the direction of the arrow, which are mounted on an endless belt-shaped intermediate transfer member base material 175 and rotated in the direction of the arrow. It has a tension applying means 202 and a first power supply 25 connected to the roll electrode 20a.
  • the second film-forming device 2b2 suspends an endless belt-like intermediate transfer material 175 and rotates in the direction of the arrow.
  • the second manufacturing apparatus 2b has a discharge space 23b in which discharge is performed in a region where the roll electrode 20a and the roll electrode 20b face each other.
  • the mixed gas supply device 24b mixed a source gas forming a film of at least one layer selected from an inorganic oxide layer, an inorganic nitride layer, and an inorganic carbide layer, and a rare gas such as nitrogen gas or argon gas.
  • the mixed gas is supplied to the discharge space 23b.
  • the first power supply 25 outputs a voltage having a frequency ⁇
  • the second power supply 26 outputs a voltage having a frequency ⁇ 2
  • these voltages cause the frequencies ⁇ 1 and ⁇ 2 to be superimposed on the discharge space 23b.
  • the generated electric field V is generated.
  • the mixed gas G is plasmatized (excited) by the electric field V, and the plasmatized (excited) mixed gas is converted into the surface of the base material 175 of the first film forming apparatus 2bl and the base material 175 of the second film forming apparatus 2b2.
  • a film (surface layer) corresponding to the source gas contained in the mixed gas that has been exposed to plasma and turned into plasma (excited) is formed on the surface of the base material 175 of the first film formation device 2bl and the base material 175 of the second film formation device 2b2. Same Sometimes a 'deposition' is formed.
  • the roll electrode 20a and the roll electrode 20b facing each other are arranged with a predetermined gap therebetween.
  • one of the roll electrode 20a and the roll electrode 20b may be connected to the ground, and the power supply may be connected to the other roll electrode.
  • the second power source it is preferable to use the second power source because it is possible to form a dense thin film, especially when a rare gas such as argon is used as the discharge gas.
  • FIG. 8 below is mainly a portion of the broken line in FIG.
  • FIG. 8 is an explanatory diagram of a first plasma film forming apparatus for manufacturing an intermediate transfer member using plasma.
  • Atmospheric pressure plasma CVD apparatus 3 has at least one pair of rollers that detachably mount and rotate the base material, and at least one pair of electrodes that perform plasma discharge. Of the electrodes, one electrode is one of the pair of rollers, and the other electrode is a fixed electrode facing the one roller through the base material.
  • An intermediate transfer body manufacturing apparatus in which the substrate is exposed to plasma generated in a region facing the fixed electrode to deposit and form the surface layer. For example, when nitrogen is used as a discharge gas, It is preferably used in order to start discharge stably and continue discharge by applying a high voltage and applying a high frequency with the other power source.
  • the atmospheric pressure plasma CVD apparatus 3 is driven to rotate the mixed gas supply device 24, fixed electrode 21, first power supply 25, first filter 25a, roll electrode 20, roll electrode in the direction of the arrow.
  • Means 20a, a second power source 26, and a second filter 26a, and a plasma discharge is performed in the discharge space 23 to excite and excite the mixed gas G, which is a mixture of the source gas and the discharge gas.
  • the mixed gas G1 is exposed to the substrate surface 175a, and a surface layer 176 is deposited on the surface.
  • the first high-frequency voltage of the frequency ⁇ is applied to the fixed electrode 21 from the first power supply 25.
  • the high frequency voltage of the frequency ⁇ is applied to the roll electrode 20 from the second power source 26.
  • an electric field is generated between the fixed electrode 21 and the roll electrode 20 by superimposing the frequency ⁇ at the electric field intensity VI and the frequency ⁇ at the electric field intensity V.
  • V> IV ⁇ V is satisfied, and the output density of the second high-frequency electric field is lWZcm 2 or more.
  • the electric field strength IV for starting the discharge of nitrogen gas is 3.7 kVZmm
  • the electric field strength V applied from at least the first power supply 25 is 3.7 kV / mm or more
  • the electric field strength V applied from the wave power source 60 is preferably 3.7 kV / mm or less.
  • first power source 25 high frequency power source
  • first atmospheric pressure plasma CVD apparatus 3 high frequency power source
  • the electric power supplied between the opposing electrodes from the first and second power supplies supplies the fixed electrode 21 with an electric power (output density) of lWZcm 2 or more, and excites the discharge gas to generate plasma.
  • the upper limit value of the power supplied to the fixed electrode 21 is preferably 50 WZcm 2 , more preferably 20 WZcm 2 .
  • the lower limit is preferably 1.2 W / cm 2 .
  • the discharge area (cm 2 ) refers to the area where discharge occurs in the electrode.
  • the output density can be improved while maintaining the uniformity of the high-frequency electric field.
  • a further uniform high-density plasma can be generated, and a further improvement in film forming speed and an improvement in film quality can be achieved.
  • it is 5 WZcm 2 or more.
  • the upper limit value of the power supplied to the roll electrode 20 is preferably 50 WZcm 2 .
  • the waveform of the high-frequency electric field is not particularly limited.
  • a continuous sine wave continuous oscillation mode called continuous mode and an intermittent oscillation mode called ON / OFF which is intermittently called pulse mode. Either of them can be used, but at least the high frequency supplied to the roll electrode 20 is continuous.
  • Sine waves are preferable because a denser and better quality film can be obtained.
  • a first filter 25a is installed between the fixed electrode 21 and the first power supply 25, so that the current from the first power supply 25 to the fixed electrode 21 can be easily passed. Ground the current from the second power supply 26 so that the current from the second power supply 26 to the first power supply 25 is less likely to pass.
  • a second filter 26a is installed between the roll electrode 20 and the second power source 26, and it is easy to pass the current from the second power source 26 to the roll electrode 20, and the first power source The current from 21 is grounded to make it difficult to pass the current from the first power supply 25 to the second power supply 26.
  • the fixed electrode 21 and the roll electrode 20 have a strong electric field.
  • at least one electrode surface is coated with the following dielectric.
  • the relationship between the electrode and the power source may be that the second power source 26 is connected to the fixed electrode 21 and the first power source 25 is connected to the roll electrode 20.
  • FIG. 9 is a schematic view showing an example of a roll electrode.
  • the roll electrode 20 sprays ceramics on a conductive base material 200a (hereinafter also referred to as “electrode base material”) such as a metal.
  • a ceramic coating treated dielectric 200b (hereinafter also simply referred to as “dielectric”) sealed with an inorganic material is used.
  • alumina or nitride nitride is preferably used as the ceramic material used for thermal spraying. Among these, alumina is more preferable because it is easy to process.
  • a roll electrode 20 is configured by combining a conductive base material 200A such as metal with a lining dielectric 200B provided with an inorganic material by lining. Also good.
  • a conductive base material 200A such as metal
  • a lining dielectric 200B provided with an inorganic material by lining.
  • silicate glass, borate glass, phosphate glass, germanate glass, tellurite glass, aluminate glass, vanadate glass, etc. are preferably used.
  • borate glass is more preferably used because it is easy to process.
  • Examples of conductive base materials 200a and 200A such as metals include forces such as silver, platinum, stainless steel, aluminum, titanium, and iron.
  • the base material 200a, 200A of the roll electrode is made of a stainless jacket roll base material having a cooling means with cooling water (not shown).
  • FIG. 10 is a schematic diagram showing an example of the fixed electrode.
  • the fixed electrode 21 of the prism or prism tube is sprayed with ceramics on the conductive base material 210c such as a metal, and then using an inorganic material, like the roll electrode 20 described above. It is composed of a combination of ceramic-coated dielectric 210d that has been sealed.
  • the prismatic or prismatic fixed electrode 21 ' is a combination of a conductive base material 21 such as metal coated with a lining dielectric 210B provided with an inorganic material by OA lining. It can be composed of
  • a mixed gas G is generated from the mixed gas supply device 24 and discharged into the discharge space 23.
  • a voltage of frequency ⁇ 1 is output from the first power supply 25 and applied to the fixed electrode 21, and a voltage of frequency ⁇ 2 is output from the second power supply 26 and applied to the roll electrode 20. This generates an electric field V in which the frequencies ⁇ ⁇ and ⁇ 2 are superimposed in the discharge space 23.
  • the mixed gas G discharged into the discharge space 23 by the electric field V is excited to be in a plasma state. Further, the mixed gas G in a plasma state is exposed to the surface of the substrate, and at least one film selected from an inorganic oxide layer, an inorganic nitride layer, and an inorganic carbide layer depending on the source gas in the mixed gas G, that is, the surface layer 176 is formed on substrate 175.
  • a plurality of surface layers formed in this manner may be provided, and a surface layer composed of a plurality of layers may be provided. At least one of the plurality of layers is formed by carbon content measurement by XPS measurement. It is preferable to contain 0.1-20 mass% of atoms.
  • a mixed gas discharge gas
  • carbon atoms present in the plasma are excited.
  • the raw material gas having a radical is radicalized and exposed to the surface of the substrate 175.
  • the carbon-containing molecules and carbon-containing radicals exposed to the surface of the substrate 175 are contained in the surface layer.
  • a discharge gas is a gas that is plasma-excited under the above-described conditions. Examples include lugon, helium, neon, krypton, xenon and mixtures thereof.
  • an organic metal compound that is gaseous or liquid at room temperature particularly an alkyl metal compound, a metal alkoxide compound, or an organometallic complex compound is used.
  • the phase state of these raw materials does not necessarily need to be a gas phase at normal temperature and pressure, and any liquid phase can be used as long as it can be vaporized through heating, decompression, etc. through melting, evaporation, sublimation, etc. It can also be used in a solid phase.
  • the raw material gas includes a component that is in a plasma state in the discharge space and forms a thin film, and includes an organic metal compound, an organic compound, an inorganic compound, and the like.
  • Examples include, but are not limited to, silicate 51.
  • titanium compounds include organometallic compounds such as tetradimethylaminotitanium, metal hydrides such as monotitan and dititanium, metal halides such as disodium titanium, trisalt titanium titanium, and titanium tetrachloride.
  • organometallic compounds such as tetradimethylaminotitanium, metal hydrides such as monotitan and dititanium, metal halides such as disodium titanium, trisalt titanium titanium, and titanium tetrachloride.
  • metal alkoxides such as tetraethoxy titanium, tetraisopropoxy titanium, and tetrabutoxy titanium.
  • Examples of the aluminum compound include aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum diisopropoxide ethylacetoacetate, aluminum ethoxide, aluminum hexafluoropentanedionate, aluminum isopropoxy. And aluminum, 2,4-pentanedioate, dimethylaluminum chloride, and the like.
  • Examples of zinc compounds include zinc bis (bis (trimethylsilyl) amide), zinc 2,4-pentanedionate, zinc 2,2,6,6-tetramethyl-3,5-heptanedionate, and the like. But not limited to these!
  • Zirconium compounds include zirconium t-butoxide, zirconium diisopropoxide bis (2, 2, 6, 6-tetramethyl-3, 5-heptanedionate, zirconium ethoxide, zirconium hexafluoropentanedio. ), Zirconium isopropoxide, zirconium 2-methyl-2-butoxide, zirconium trifluoropentane diol, and the like, but are not limited thereto.
  • These raw materials may be used alone, or two or more kinds of components may be mixed and used.
  • the hardness of the surface layer can be adjusted by the film formation rate, the additive gas amount ratio, or the like.
  • base materials A, B, and C were prepared as follows.
  • Polyphenol-lens sulfide fat (E2180, Torayen earthen) 100 parts by mass
  • Conductive filler (Furness # 3030B, manufactured by Mitsubishi Chemical Corporation) 16 parts by weight Graft copolymer (Modiper A4400, manufactured by NOF Corporation) 1 part by weight Lubricant (calcium montanate) 0.2 part by weight
  • the above materials were put into a single screw extruder and melt kneaded to obtain a resin mixture.
  • a slit-shaped annular die having a seamless belt-shaped discharge port was attached, and the kneaded resin mixture was extruded into a seamless belt shape.
  • a seamless cylindrical intermediate transfer belt was obtained by extrapolating the extruded seamless belt-shaped resin mixture to a cylindrical cooling cylinder provided at the discharge destination, cooling, and solidifying.
  • the thickness of the obtained base material was 120 / z m.
  • NMP N-Methylolpyrrolidone 600 mass ⁇
  • 3,3 ', 4,4, monobenzophenone tetracarboxylic dianhydride and 4,4, -diaminodiphenol ether are condensed in N-methylpyrrolidone solvent at 25 ° C and subjected to an imidization reaction. Thereafter, the conductive filler was dispersed and mixed with a ball mill to obtain a stock solution. The stock solution was uniformly cast in a cylindrical mold, and the solvent was evaporated and removed while heating and rotating and heat treatment was performed at 350 ° C for 30 minutes to obtain a seamless cylindrical intermediate transfer belt. The obtained base material had a thickness of 90 ⁇ m.
  • the above materials were put into a single screw extruder and melt kneaded to obtain a resin mixture.
  • a slit-shaped annular die having a seamless belt-shaped discharge port was attached, and the kneaded resin mixture was extruded into a seamless belt shape.
  • a seamless cylindrical intermediate transfer belt was obtained by extrapolating the extruded seamless belt-shaped resin mixture to a cylindrical cooling cylinder provided at the discharge destination, cooling, and solidifying.
  • the thickness of the obtained substrate was 150 / z m.
  • the hardness of each base material is a universal hardness tester (ultra-micro hardness tester, manufactured by Fischer, H-100, measurement conditions.
  • the indenter uses a square pyramid (Pickers) and the maximum load setting is 2mN (indentation depth) As a result of measurement with weak and stress so that the surface layer does not exceed 2 m, the result is as shown in Table 1.
  • one inorganic compound layer of 350 nm was formed as a surface layer on the base material using the plasma discharge treatment apparatus of FIG.
  • the surface layer titanium oxide, silicon oxide, or aluminum oxide was used.
  • the dielectric covering each electrode of the plasma discharge treatment apparatus used both electrodes facing each other and lmm-thick alumina coated with a ceramic spray coating.
  • the electrode gap after coating was set to 0.5 mm.
  • the metal base material coated with a dielectric has a stainless steel jacket specification that has a cooling function by cooling water. During discharge, the electrode temperature was controlled by cooling water. Details of the power supply used here will be described later.
  • Reacting gas 21% by volume of O gas
  • Source gas 0.1% by volume of tetraisopropoxy titanium (TTIP) based on the total gas
  • Reacting gas 21% by volume of O gas
  • Source gas 0. tetraethoxysilane (TEOS) to the total gas 1 vol 0/0
  • Low frequency power supply High frequency power (50kHz) manufactured by Shinko Electric): 10W / cm 2
  • High-frequency side power supply power Pull Industries high-frequency power supply (13. 56MHz): 1 ⁇ : Change in LOWZcm 2
  • Reaction gas 4.0% by volume of H gas with respect to the total gas
  • Source gas Tri-s-butoxide aluminum 0.1% by volume with respect to the total gas
  • Low frequency side power supply Heiden Laboratory impulse high frequency power supply (100kHz): 10W /
  • High-frequency side power supply (broadband high-frequency power supply (40.0 MHz) manufactured by Pearl Industry): 1 ⁇ : Change with LOWZc m 2
  • the surface hardness of the surface layer of the prepared sample was measured using a nanoindentation measurement device (NANO Indenter XP / DCM (MTS Systems / MTS Nano Instruments)) shown in FIG.
  • NANO Indenter XP / DCM MTS Systems / MTS Nano Instruments
  • the maximum load setting was about 25 N, and the conditions were such that the indentation depth was sufficiently small relative to the thickness of the surface layer.
  • the secondary transfer rate is the ratio of the toner mass of the toner image transferred onto the recording paper to the toner mass of the toner image formed on the intermediate transfer member, and was evaluated as follows.
  • Transfer rate (%) (1 (belt residual toner amount Z (print on paper 'toner amount + belt residual toner amount))) X 100
  • the primary transfer efficiency is the ratio of the mass of the toner image transferred onto the intermediate transfer member to the mass of the toner image formed on the photoreceptor.
  • the secondary transfer efficiency refers to the ratio of the mass of the toner image transferred onto the recording paper to the mass of the toner image formed on the intermediate transfer member.
  • the transfer rate was 95% or more.
  • the transfer rate was less than 95% and 90% or more.
  • the surface state of the intermediate transfer member after the surface of the intermediate transfer member was cleaned with a cleaning blade was visually observed to confirm the toner adhesion state.
  • indicates that there is no toner adhesion
  • indicates that there is a slight but no practical problem
  • X indicates that there is a practical problem.
  • Table 1 shows the measurement results and evaluation results of Examples 1 to 20 and Comparative Examples 1 to 9 described above.
  • an intermediate transfer member having good transfer efficiency and excellent cleaning properties and durability, a method for producing the intermediate transfer member, and an image forming apparatus including the intermediate transfer member.

Description

明 細 書
中間転写体、中間転写体の製造方法及び画像形成装置
技術分野
[0001] 本発明は、電子複写機、レーザビームプリンタ、ファクシミリ等の電子写真装置ゃ静 電記録装置において、カラー画像のための各色毎のトナー画像を合成して転写する ための中間転写体、中間転写体の製造方法及び中間転写体を備えた画像形成装 置に関するものである。
背景技術
[0002] 従来、電子写真感光体 (以下、単に感光体とも云う)上のトナー像を記録材に転写 する方式として、中間転写体を用いた画像形成方式が知られており、この方式は電 子写真感光体力ゝら記録材にトナー像を転写する工程内に、もう一つの転写工程を入 れ、電子写真感光体から中間転写体に一次転写した後、中間転写体の一次転写像 を記録材に二次転写することで最終画像を得る。この方式は、色分解された原稿画 像をブラック、シアン、マゼンタ、イェロー等のトナーによる減色混合を用いて再現す る、いわゆるフルカラー画像形成装置における各色トナー像の多重転写方式として 採用されることが多い。
[0003] しかし、この中間転写体を用いた多重転写方式では、一次転写及び二次転写の二 度の転写が入ることと、四色のトナーを転写体上で重ね合わせるため、トナー画像の 転写不良に伴う画像不良が発生しやすい。
[0004] 一般にトナーの転写不良に対しては、トナー表面をシリカ等の外添剤で表面処理 することにより転写効率を向上させられることが知られている。しかし、現像装置内で のトナーの攪拌部材カも受けるストレスや、現像ローラ上にトナー層を形成するため の規制ブレードから受けるストレス、感光体と現像ローラとの間で受けるストレス等で、 トナー表面からシリカが離脱したり、トナー内部に埋没したりするため、十分な転写効 率を得られな ヽと 、う問題がある。
[0005] このような問題に対し、中間転写体の表面に酸化ケィ素や酸化アルミニウム等を被 覆させることによりトナー画像の剥離性を向上させ記録紙等への転写効率向上を図 るものが提案されている (例えば、特許文献 1、 2参照。;)。
特許文献 1:特開平 9— 212004号公報
特許文献 2:特開 2001— 347593号公報
発明の開示
発明が解決しょうとする課題
[0006] しかし、中間転写体を有する画像形成装置は 2次転写時にトナー画像を 100%転 写することは現時点では不可能に近ぐ例えば中間転写体に残留したトナーを中間 転写体力もブレードで搔き落とすクリーニング装置を必要としている。
[0007] 特許文献 1、 2に記載された中間転写体は耐久性が不十分であり、寿命が短いとい つた問題点がある。さらに、膜付きや膜強度も不足しているため外乱により容易に薄 膜に傷が付いてしまうため、紙づまりなどが原因で薄膜が傷付き画像欠陥が発生し やすいという問題点もある。また、酸化ケィ素や酸化アルミニウム等を真空蒸着ゃス ノ ッタリングにより形成するため真空装置等の大が力りな設備が必要となるため生産 性にも問題点があった。
[0008] 本発明の目的は上述した問題点に鑑み、転写性がより高ぐクリーニング性及び耐 久性がより高!ヽ中間転写体と、真空装置等の大がかりな設備を必要としな ヽ中間転 写体の製造装置と、該中間転写体を有する画像形成装置を提供することを目的とす る。
課題を解決するための手段
[0009] 本発明に係る上記目的は下記により達成される。
[0010] (1)基材表面に少なくとも 1層以上の層力もなる表層を有し、基材のユニバーサル 硬度が 50N/mm2以上 190N/mm2以下で、且つ前記表層の表面の硬度が、ナノ インデンテーション法による測定で、 3GPa以上 l lGPa以下であることを特徴とする 中間転写体。
[0011] (2)前記表層の厚さが、 200nm以上 lOOOnm以下であることを特徴とする(1)に記 載の中間転写体。
[0012] (3) (1)又は(2)に記載の中間転写体の製造方法であって、基材表面に少なくとも 1層以上の層力 なる表層の少なくとも最も外側の層が大気圧プラズマ CVD法により 形成され、かつ、当該層の炭素原子含有量が 20原子%以下 (XPS測定)であること を特徴とする中間転写体の製造方法。
[0013] (4) (1)又は(2)に記載の中間転写体の製造方法であって、基材表面に少なくとも
1層以上の層からなる表層の少なくとも 1層が大気圧プラズマ CVD法により形成され
、かつ、当該層の炭素原子含有量が 20原子%以下 (XPS測定)であることを特徴と する中間転写体の製造方法。
[0014] (5)像担持体の表面を現像してトナー画像を形成し、該トナー画像を中間転写体 に転写した後、転写紙に更に転写する画像形成装置において、前記中間転写体が(
1)又は(2)に記載の中間転写体であることを特徴とする画像形成装置。
発明の効果
[0015] 本発明によれば次のような効果を得ることが出来る、すなわち、
(1)に記載の、基材表面に少なくとも 1層以上の層からなる表層を有し、前記基材 のユニバーサル硬度が 50NZmm2以上 190NZmm2以下で、且つ前記表層の表 面の硬度が、ナノインデンテーション法による測定で、 3GPa以上 l lGPa以下である ことを特徴とする中間転写体により、トナーとの離型性に優れ、転写効率が向上し、 かつ耐久性に優れた中間転写体を提供することができる。
[0016] また、(3)に記載の、表層の少なくとも最も外側の層が大気圧プラズマ CVD法によ り形成され、かつ、当該層の炭素原子含有量が 20原子%以下 (XPS測定)であること を特徴とする中間転写体の製造方法により、真空装置等の大がかりな設備を必要と せず、トナーとの離型性に優れ、転写効率が向上し、かつ耐久性に優れた中間転写 体を製造する製造装置を得ることでき、かつ容易に炭素原子を含有する耐久性に優 れた薄膜を成膜することが可能である。
[0017] また、(4)に記載の、表層の少なくとも 1層が大気圧プラズマ CVD法により形成され 、かつ、当該層の炭素原子含有量が 20原子%以下 (XPS測定)であることを特徴と する中間転写体の製造方法により、真空装置等の大がかりな設備を必要とせず、トナ 一との離型性に優れ、転写効率が向上し、かつ耐久性に優れた中間転写体を製造 する製造装置を得ることでき、かつ容易に炭素原子を含有する耐久性に優れた薄膜 を成膜することが可能である。 [0018] また、 (5)に記載の、(1)又は(2)の中間転写体を用いた画像形成装置により、転 写性が高ぐクリーニング性及び耐久性が高い画像形成装置を提供することができる 図面の簡単な説明
[0019] [図 1]カラー画像形成装置の 1例を示す断面構成図である。
[図 2]中間転写体の層構成を示す概念断面図である。
[図 3]ナノインデンテーション法による表面硬度測定装置の図である。
[図 4]ナノインデンテーション法で得られた荷重一変位曲線図である。
[図 5]ナノインデンテーション法による表面硬度測定装置の圧子と試料の接触してい る状態の模式図である。
[図 6]中間転写体を製造する第 1の製造装置の説明図である。
[図 7]中間転写体を製造する第 2の製造装置の説明図である。
[図 8]プラズマにより中間転写体を製造する第 1のプラズマ成膜装置の説明図である
[図 9]ロール電極の一例を示す概略図である。
[図 10]固定電極の一例を示す概略図である。
符号の説明
[0020] 1 カラー画像形成装置
2 中間転写体の製造装置
3 大気圧プラズマ CVD装置
17 中間転写体ユニット
20 ロール電極
21 固定電極
23 放電空間
24 混合ガス供給装置
25 第 1の電源
26 第 2の電源
117 2次転写ローラ 170 中間転写ベルト
175 基材
176 表層
201 従動ローラ
発明を実施するための最良の形態
[0021] 以下に本発明の実施の形態を説明するが、本欄の記載は請求の範囲の技術的範 囲や用語の意義を限定するものではな 、。
[0022] 本発明の中間転写体は、電子写真方式の複写機、プリンタ、ファクシミリ等の画像 形成装置に好適に用いられ、感光体の表面に担持されたトナー画像をその表面に 1 次転写され、転写されたトナー画像を保持し、保持したトナー画像を記録紙等の被転 写物の表面に 2次転写するものであれば良ぐベルト状の転写体でも、ドラム状の転 写体でも良い。
[0023] 先ず、本発明の中間転写体を有する画像形成装置について、タンデム型フルカラ 一複写機を例に取り説明する。
[0024] 図 1は、カラー画像形成装置の 1例を示す断面構成図である。
[0025] このカラー画像形成装置 1は、タンデム型フルカラー複写機と称せられるもので、自 動原稿送り装置 13と、原稿画像読み取り装置 14と、複数の露光手段 13Y、 13M、 1
3C、 13Kと、複数組の画像形成部 10Y、 10M、 10C、 10Kと、中間転写体ユニット 1
7と、給紙手段 15及び定着手段 124とから成る。
[0026] 画像形成装置の本体 12の上部には、自動原稿送り装置 13と原稿画像読み取り装 置 14が配置されており、自動原稿送り装置 13により搬送される原稿 dの画像が原稿 画像読み取り装置 14の光学系により反射 '結像され、ラインイメージセンサ CCDによ り読み込まれる。
[0027] ラインイメージセンサ CCDにより読み取られた原稿画像を光電変換されたアナログ 信号は、図示しない画像処理部において、アナログ処理、 AZD変換、シエーデイン グ補正、画像圧縮処理等を行った後、露光手段 13Y、 13M、 13C、 13Kに各色毎 のデジタル画像データとして送られ、露光手段 13Y、 13M、 13C、 13Kにより対応す る第 1の像担持体としてのドラム状の感光体 (以下感光体とも記す) 11Y、 11Μ、 11 C、 1 IKに各色の画像データの潜像を形成する。
[0028] 画像形成部 10Y、 10M、 10C、 10Kは、垂直方向に縦列配置されており、感光体
11Y、 11M、 11C、 11Kの図示左側方にローラ 171、 172、 173、 174を卷回して回 動可能に張架された半導電性でエンドレスベルト状の第 2の像担持体である本発明 の中間転写体 (以下中間転写ベルトと記す) 170が配置されて 、る。
[0029] そして、本発明の中間転写ベルト 170は図示しない駆動装置により回転駆動される ローラ 171を介し矢印方向に駆動されている。
[0030] イェロー色の画像を形成する画像形成部 10Yは、感光体 11 Yの周囲に配置され た帯電手段 12Y、露光手段 13Υ、現像手段 14Υ、 1次転写手段としての 1次転写口 ーラ 15Υ、クリーニング手段 16 Υを有する。
[0031] マゼンタ色の画像を形成する画像形成部 10Mは、感光体 11Μ、帯電手段 12Μ、 露光手段 13Μ、現像手段 14Μ、 1次転写手段としての 1次転写ローラ 15Μ、タリー ニング手段 16Mを有する。
[0032] シアン色の画像を形成する画像形成部 10Cは、感光体 11C、帯電手段 12C、露光 手段 13C、現像手段 14C、 1次転写手段としての 1次転写ローラ 15C、タリーニン グ手段 16Cを有する。
[0033] 黒色画像を形成する画像形成部 10Kは、感光体 11K、帯電手段 12Κ、露光手段 13Κ、現像手段 14Κ、 1次転写手段としての 1次転写ローラ 15Κ、クリーニング手段 1 6Κを有する。
[0034] トナー補給手段 141Y、 141M、 141C、 141Kは、現像装置 14Y、 14M、 14C、 1 4Kにそれぞれ新規トナーを補給する。
[0035] ここで、 1次転写ローラ 15Y、 15M、 15C、 15Kは、図示しない制御手段により画像 の種類に応じて選択的に作動され、それぞれ対応する感光体 11 Y、 11M、 11C、 1 IKに中間転写ベルト 170を押圧し、感光体上の画像を転写する。
[0036] このようにして、画像形成部 10Y、 10M、 10C、 10Kにより感光体 11Y、 11Μ、 11 C、 1 IK上に形成された各色の画像は、 1次転写ローラ 15Y、 15M、 15C、 15Kによ り、回動する中間転写ベルト 170上に逐次転写されて、合成されたカラー画像が形 成される。 [0037] 即ち、中間転写ベルトは感光体の表面に担持されたトナー画像をその表面に 1次 転写され、転写されたトナー画像を保持する。
[0038] また、給紙カセット 151内に収容された記録媒体としての記録紙 Pは、給紙手段 15 【こより給紙され、次 ヽで複数の中 ローラ 122A、 122B、 122C、 122D、レジス卜口 ーラ 123を経て、 2次転写手段としての 2次転写ローラ 117まで搬送され、 2次転写口 ーラ 117により中間転写体上の合成されたトナー画像が記録紙 P上に一括転写され る。
[0039] 即ち、中間転写体上に保持したトナー画像を被転写物の表面に 2次転写する。
[0040] ここで、 2次転写ローラ 117は、ここを記録紙 Pが通過して 2次転写を行なう時にの み、記録紙 Pを中間転写ベルト 170に圧接させる。
[0041] カラー画像が転写された記録紙 Pは、定着装置 124により定着処理され、排紙ロー ラ 125に挟持されて機外の排紙トレイ 126上に載置される。
[0042] 一方、 2次転写ローラ 117により記録紙 Pにカラー画像を転写した後、記録紙 Pを曲 率分離した中間転写ベルト 170は、クリーニング手段 8により残留トナーが除去される
[0043] ここで、中間転写体は前述したような回転するドラム状の中間転写ドラムに置き換え ても良い。
[0044] 次に、中間転写ベルト 170に接する 1次転写手段としての 1次転写ローラ 15Y、 15 M、 15C、 15K、と、 2次転写ローラ 117の構成について説明する。
[0045] 一次転写ローラ 15Y、 15M、 15C、 15Kは、例えば外径 8mmのステンレス等の導 電性芯金の周面に、ポリウレタン、 EPDM、シリコーン等のゴム材料に、カーボン等 の導電性フィラーを分散させたり、イオン性の導電材料を含有させたりして、体積抵 抗が 105〜: ί09 Ω 'cm程度のソリッド状態または発泡スポンジ状態で、厚さが 5mm、 ゴム硬度が 20〜70° 程度 (ァスカー硬度 C)の半導電弾性ゴムを被覆して形成され る。
[0046] 2次転写ローラ 117は、例えば外径 8mmのステンレス等の導電性芯金の周面に、 ポリウレタン、 EPDM、シリコーン等のゴム材料に、カーボン等の導電性フィラーを分 散させたり、イオン性の導電材料を含有させたりして、体積抵抗が 105〜109 Ω 'cm程 度のソリッド状態または発泡スポンジ状態で、厚さが 5mm、ゴム硬度が 20〜70° 程 度 (ァスカー硬度 C)の半導電弾性ゴムを被覆して形成される。
[0047] そして、 2次転写ローラ 117は、一次転写ローラ 15Y、 15M、 15C、 15Kと異なり、 記録紙 Pが無 、状態ではトナーが接する可能性があるため、 2次転写ローラ 117の表 面に半導電性のフッ素榭脂ゃウレタン榭脂等の離型性の良いものを被覆すると良く 、ステンレス等の導電性芯金の周面に、ポリウレタン、 EPDM、シリコーン等のゴムや 榭脂材料に、カーボン等の導電性フィラーを分散させたり、イオン性の導電材料を含 有させたりした半導電性材料を、厚さが 0. 05〜0. 5mm程度被覆して形成される。
[0048] 以下に上述した中間転写ベルト 170を例に取り本発明の中間転写体について説明 する。
[0049] 図 2は、中間転写体の層構成を示す概念断面図である。
[0050] 中間転写ベルト 170は基材 175と、基材 175の表面に少なくとも 1層以上の層から なる表層 176を有し、前記基材のユニバーサル硬度が 50NZmm2以上 190NZm m2以下で、且つ前記表層 176の表面の硬度が、ナノインデンテーション法による測 定で、 3GPa以上 l lGPa以下である。
[0051] 以下、本発明に係る中間転写ベルト 170の構成要件について、説明する。
(基材)
本発明における中間転写ベルト 170の基材 175としては、榭脂材料に導電剤を分 散させてなるベルトを用いることができる。ベルトに用いる榭脂としては、ポリカーボネ ート、ポリイミド、ポリエーテルエーテルケトン、ポリフッ化ビ-リデン、エチレンテトラフ ルォロエチレン共重合体、ポリアミド及びポリフエ-レンサルファイド等、いわゆるェン ジニアリングプラスチック材料を用いることができる。また、導電剤としては、カーボン ブラックを使用することができる。カーボンブラックとしては、中'性または酸'性カーボン ブラックを使用することができる。導電性フィラーの使用量は、使用する導電性フイラ 一の種類によっても異なるが中間転写ベルト 170の体積抵抗値および表面抵抗値が 所定の範囲になるように添加すれば良ぐ通常、榭脂材料 100質量部に対して 10〜 20質量部、好ましくは 10〜16質量部である。本発明に用いられる基材 175は、従来 公知の一般的な方法により製造することが可能である。例えば、材料となる榭脂を押 し出し機により溶融し、環状ダイや Tダイにより押しだして急冷することにより製造する ことができる。
[0052] 基材 175の厚みは、榭脂材料の場合 50〜200 μ m程度、ゴム材料の場合は 300
〜700 μ m程度に設定されて ヽる。
[0053] 本発明においては、基材 175の硬度がユニバーサル硬度で 50NZmm2以上 190
NZmm2以下が好ましい。
[0054] 基材の硬度の調整は、榭脂種の変更などにより行うことができる。
[0055] ユニバーサル硬度の測定は、基材 175を製造した後でも、また、基材 175を製造し
、その後表層 176を形成した後でも測定することができる。
[0056] 本発明の中間転写部材においては、その基材の硬度が、以下に示すようにュ-バ ーサル硬度で規定されるが、該ユニバーサル硬度とは、圧子を荷重をかけながら測 定対象物に押し込むことにより、式 (I)
ユニバーサル硬度 =〔試験荷重〕 /〔試験荷重下での圧子の測定対象物との接触 表面積〕 · ' ·(Ι)
として求められ、単位は NZmm2で表される。このユニバーサル硬度の測定は、巿販 の硬度測定装置を用いて行うことができ、例えば、超微小硬度計 H—100V (フイツシ ヤー社製)などを用いて測定することができる。この測定装置では、四角錐あるいは 三角錐形状の圧子を、試験加重をかけながら被測定物に押し込み、所望の深さに達 した時点でのその押し込み深さから圧子が被測定物と接触している表面積を求め、 上記式 (I)よりユニバーサル硬度を算出する。
(表層)
次に、この基材 175の上に本発明における表層 176を形成する。
[0057] 本発明における表層 176は、無機酸化物、無機窒化物、無機炭化物及びそれらの 複合物からなる無機化合物が好ま 、。
[0058] 本発明における表層 176に用いられる無機酸ィ匕物としては、酸化ケィ素、酸化アル ミニゥム、酸化タンタル、酸化チタン、酸化スズ、酸化亜鉛、酸化鉄、酸化バナジウム 、酸ィ匕ベリリウム、酸化ジルコニウム、チタン酸バリウムストロンチウム、ジルコニウム酸 チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン、チタン酸ストロン チウム、チタン酸ノ リウム、チタン酸ビスマス、チタン酸ストロンチウムビスマス、タンタ ル酸ストロンチウムビスマス、タンタル酸-ォブ酸ビスマス、トリオキサイドイットリウムな どが挙げられる。これらのうちより好ましいのは、酸化ケィ素、酸ィ匕アルミニウム、酸ィ匕 チタンである。
[0059] 本発明における表層 176の材料は、 1種類の無機化合物でも良いし、 2種類以上 の無機化合物を有して 、ても良 、。
[0060] 本発明における表層 176は、 1層以上あれば良ぐ当該層の炭素原子含有量が 20 原子%以下 (XPS測定)であれば好ま 、。
[0061] 表層の XPS測定による組成分析はたとえば VGサイエンティフィック社製 X線光電 子分光分析測定器などにより測定することができる。測定に際しては、アルゴンイオン エッチングにより薄膜の最表面の吸着、汚染原子の除去をおこなった。また、同様に エッチングにより複数層ある場合の各層の組成も測定できる。
[0062] 炭素原子を 20原子%以下 (XPS測定)にすることにより、ベルト搬送にともなう屈曲 によるひび割れが発生しに《なり耐久性が向上する。炭素原子の含有量の調整は、 高周波電源の出力、添加ガス量比、原料ガス量比、基材温度などの成膜条件を調 整することにより行うことができる。本発明における表層 176の少なくとも 1層は、炭素 原子含有量は 20原子%以下が良ぐ好ましくは 0. 1〜15原子%、より好ましくは 0. 1〜5原子%である。
[0063] 本発明における表層 176を基材 175の上に形成する前にコロナ処理、火炎処理、 プラズマ処理、グロ一放電処理、粗面化処理、薬品処理などの表面処理を行っても 良い。
[0064] 更に、本発明における表層 176と基材 175との間には、密着性の向上を目的として 、アンカーコート剤層を形成しても良い。このアンカーコート剤層に用いられるアンカ 一コート剤としては、ポリエステル榭脂、イソシァネート榭脂、ウレタン榭脂、アクリル榭 脂、エチレンビュルアルコール榭脂、ビュル変性榭脂、エポキシ榭脂、変性スチレン 榭脂、変性シリコン榭脂、およびアルキルチタネート等を、 1または 2種以上併せて使 用することができる。これらのアンカーコート剤には、従来公知の添加剤を加えること もできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコ ート、ディップコート、スプレーコート等の公知の方法により基材上にコーティングし、 溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上 記のアンカーコート剤の塗布量としては、 0. l〜5gZm2 (乾燥状態)程度が好ましい
[0065] 本発明における表層 176の膜厚は、 200nm〜1000nm力 S良く、好ましくは 200nm 〜600nm、さらに好ましくは 250nm〜500nmである。
[0066] 表層 176の膜厚が 200nm未満である場合には耐久性や表面強度が不足するため 、厚紙への転写などにより擦り傷が発生し、最終的には薄膜が摩耗しトナー転写率が 低下してしまう。 lOOOnm越えである場合、密着性や屈曲耐性が不足するため繰り返 し使用において、割れや剥離が生じ易くなる上、成膜に必要な時間も増加するため 生産上の観点からも好ましくな 、。
[0067] 表層 176の表面の硬度は、ナノインデンテーション法による測定で、 3GPa以上 11 GPa以下が好ましい。
[0068] 表面層の硬度の調整も、同様に成膜条件 (添加ガス量と原料ガス量比および高周 波電源出力、基材温度など)を調整することにより行うことができる。
[0069] ナノインデンテーション法による硬度の測定は、微小なダイヤモンド圧子を薄膜に 押し込みながら荷重と押し込み深さ (変位量)の関係を測定し、測定値力 硬さを算 出する方法である。特に 1 μ m以下の薄膜の測定に対して、基材の物性の影響を受 けにくぐまた、押し込んだ際に薄膜に割れが発生しにくいと言う特徴を有している。 一般に非常に薄 ヽ薄膜の物性測定に用いられて 、る。
[0070] 図 3に、ナノインデンテーション法による測定装置の一例を示す。この測定装置はト ランスデューサー 31と先端形状が正三角形のダイヤモンド Berkovich圧子 32を用 いて、 μ Νオーダーの荷重を加えながらナノメートルの精度で変位量を測定をするこ とができる。この測定には、たとえば市販の NANO Indenter XP/DCM (MTS Systems社 ZMTS Nano Instruments社製)などを用いることができる。
[0071] 図 4に、ナノインデンテーション法で得られた典型的な荷重一変位曲線を示す。ま た、図 5に、圧子と試料の接触している状態の模式図を示す。
[0072] 硬さ Hは、次式から求められる。 [0073] H = Pmax/A
ここで、 Pは、圧子にカ卩えられた最大荷重であり、 Aは、そのときの圧子と試料間の 接触射影面積である。
[0074] 接触射影面積 Aは、図 5における heを用いて、次式で表すことができる。
[0075] A= 24. 5hc2
ここで heは、図 5に示すように接触点の周辺表面の弾性へこみにより、全体の押し 込み深さ hより浅くなり、次式で表される。
[0076] hc =h-hs
ここで hsは、弾性によるへこみの量であり、圧子の押し込み後の荷重曲線の勾配( 図 4の勾配 S)と圧子形状から
hs = ε X P/S
と表される。
[0077] ここで、 εは圧子形状に関する定数で、 Berkovich圧子では 0. 75である。
[0078] このようなナノインデンテーション法による硬さ測定装置を用いて、基板 175上に形 成した表層 176の表面の硬度を測定することができる。
[0079] 次に本発明に係る中間転写体の表層を大気圧プラズマ CVDにより形成する場合 の装置及び方法、また使用するガスにっ 、て説明する。
[0080] 図 6は、中間転写体を製造する第 1の製造装置の説明図である。
[0081] 中間転写体の製造装置 2 (放電空間と薄膜堆積領域が略同一なダイレクト方式)は 基材 175上に表層 176を形成するもので、エンドレスベルト状の中間転写体 170の 基材 175を卷架して矢印方向に回転するロール電極 20と従動ローラ 201、及び、基 材 175表面に表層 176を形成する成膜装置である大気圧プラズマ CVD装置 3より構 成されている。
[0082] 大気圧プラズマ CVD装置 3は、ロール電極 20の外周に沿って配列された少なくと も 1式の固定電極 21と、固定電極 21とロール電極 20との対向領域で且つ放電が行 われる放電空間 23と、少なくとも原料ガスと放電ガスとの混合ガス Gを生成して放電 空間 23に混合ガス Gを供給する混合ガス供給装置 24と、放電空間 23等に空気の流 入することを軽減する放電容器 29と、ロール電極 20に接続された第 1の電源 25と、 固定電極 21に接続された第 2の電源 26と、使用済みの排ガス G'を排気する排気部 28とを有して!/ヽる。
[0083] 混合ガス供給装置 24は無機酸化物層、無機窒化物層、無機炭化物層から選ばれ る少なくとも 1つの層の膜を形成する原料ガスと、窒素ガス或いはアルゴンガス等の 希ガスを混合した混合ガスを放電空間 23に供給する。
[0084] また、従動ローラ 201は張力付与手段 202により矢印方向に牽引され、基材 175に 所定の張力を掛けている。張力付与手段 202は基材 175の掛け替え時等は張力の 付与を解除し、容易に基材 175の掛け替え等を可能として 、る。
[0085] 第 1の電源 25は周波数 ω ΐの電圧を出力し、第 2の電源 26は周波数 ω 2の電圧を 出力し、これらの電圧により放電空間 23に周波数 ω 1と ω 2とが重畳された電界 Vを 発生する。そして、電界 Vにより混合ガス Gをプラズマ化して混合ガス Gに含まれる原 料ガスに応じた膜 (表層 176)が基材 175の表面に堆積される。
[0086] なお、複数の固定電極の内、ロール電極の回転方向下流側に位置する複数の固 定電極と混合ガス供給装置で表層 176を積み重ねるように堆積し、表層 176の厚さ を調整するようにしても良 、。
[0087] また、複数の固定電極の内、ロール電極の回転方向最下流側に位置する固定電 極と混合ガス供給装置で表層 176を堆積し、より上流に位置する他の固定電極と混 合ガス供給装置で、例えば表層 176と基材 175との接着性を向上させる接着層等、 他の層を形成しても良い。
[0088] また、表層 176と基材 175との接着性を向上させるために、表層 176を形成する固 定電極と混合ガス供給装置の上流に、アルゴンや酸素などのガスを供給するガス供 給装置と固定電極を設けてプラズマ処理を行い、基材 175の表面を活性化させるよ うにしても良い。
[0089] 以上説明したように、エンドレスベルトである中間転写ベルトを 1対のローラに張架 し、 1対のローラの内一方を 1対の電極の一方の電極とし、一方の電極としたローラの 外周面の外側に沿って他方の電極である少なくとも 1の固定電極を設け、これら 1対 の電極間に大気圧または大気圧近傍下で電界を発生させプラズマ放電を行わせ、 中間転写体表面に薄膜を堆積,形成する構成を取ることにより、転写性が高ぐタリー ユング性及び耐久性が高い中間転写体を製造することを可能としている。
[0090] 図 7は、中間転写体を製造する第 2の製造装置の説明図である。
[0091] 中間転写体の第 2の製造装置 2bは複数の基材上に同時に表層を形成するもので
、主として基材表面に表層を形成する複数の成膜装置 2bl及び 2b2より構成されて いる。
[0092] 第 2の製造装置 2b (ダイレクト方式の変形で、対向したロール電極間で放電と薄膜 堆積を行う方式)は、第 1の成膜装置 2blと所定の間隙を隔てて略鏡像関係に配置 された第 2の成膜装置 2b2と、第 1の成膜装置 2blと第 2の成膜装置 2b2との間に配 置された少なくとも原料ガスと放電ガスとの混合ガス Gを生成して放電空間 23bに混 合ガス Gを供給する混合ガス供給装置 24bとを有している。
[0093] 第 1の成膜装置 2blはエンドレスベルト状の中間転写体の基材 175を卷架して矢 印方向に回転するロール電極 20aと従動ローラ 201と矢印方向に従動ローラ 201を 牽引する張力付与手段 202とロール電極 20aに接続された第 1の電源 25とを有し、 第 2の成膜装置 2b2はエンドレスベルト状の中間転写体の基材 175を卷架して矢印 方向に回転するロール電極 20bと従動ローラ 201と矢印方向に従動ローラ 201を牽 Iする張力付与手段 202とロール電極 20bに接続された第 2の電源 26とを有して ヽ る。
[0094] また、第 2の製造装置 2bはロール電極 20aとロール電極 20bとの対向領域に放電 が行われる放電空間 23bを有している。
[0095] 混合ガス供給装置 24bは無機酸化物層、無機窒化物層、無機炭化物層から選ば れる少なくとも 1つの層の膜を形成する原料ガスと、窒素ガス或いはアルゴンガス等 の希ガスを混合した混合ガスを放電空間 23bに供給する。
[0096] 第 1の電源 25は周波数 ω ΐの電圧を出力し、第 2の電源 26は周波数 ω 2の電圧を 出力し、これらの電圧により放電空間 23bに周波数 ω 1と ω 2とが重畳された電界 Vを 発生する。そして、電界 Vにより混合ガス Gをプラズマ化 (励起)し、プラズマ化 (励起) した混合ガスを第 1の成膜装置 2blの基材 175及び第 2の成膜装置 2b2の基材 175 の表面に晒し、プラズマ化 (励起)した混合ガスに含まれる原料ガスに応じた膜 (表層 )が第 1の成膜装置 2blの基材 175及び第 2の成膜装置 2b2の基材 175の表面に同 時に堆積'形成される。
[0097] ここで、対向するロール電極 20aとロール電極 20bとは所定の間隙を隔てて配置さ れている。
[0098] 更に他の形態として、ロール電極 20aとロール電極 20bの内、一方のロール電極を アースに接続して、他方のロール電極に電源を接続しても良い。この場合の電源は 第 2の電源を使用することが緻密な薄膜形成を行え好ましぐ特に放電ガスにァルゴ ン等の希ガスを用いる場合に好まし 、。
[0099] 以下に基材 175上に表層 176を形成する大気圧プラズマ CVD装置の形態につい て詳細に説明する。
[0100] なお、下記の図 8は図 6の主として破線部を抜き出したものである。
[0101] 図 8は、プラズマにより中間転写体を製造する第 1のプラズマ成膜装置の説明図で ある。
[0102] 図 8を参照して、表層 176の形成に好適に用いられる大気圧プラズマ CVD装置の 1例を説明する。
[0103] 大気圧プラズマ CVD装置 3は、基材を着脱可能に卷架して回転駆動させる少なく とも 1対のローラと、プラズマ放電を行う少なくとも 1対の電極とを有し、前記 1対の電 極の内、一方の電極は前記 1対のローラの内の一方のローラで、他方の電極は前記 一方のローラに前記基材を介して対向する固定電極であり、前記一方のローラと前 記固定電極との対向領域において発生するプラズマに、前記基材が晒されて前記 表層を堆積,形成される中間転写体の製造装置であり、例えば放電ガスとして窒素を 用いる場合に一方の電源により高電圧を掛け他方の電源により高周波を掛けること により安定して放電を開始し且つ放電を継続するため好適に用いられる。
[0104] 大気圧プラズマ CVD装置 3は前述したように混合ガス供給装置 24、固定電極 21、 第 1の電源 25、第 1のフィルタ 25a、ロール電極 20、ロール電極を矢印方向に駆動 回転させる駆動手段 20a、第 2の電源 26、第 2のフィルタ 26aとを有しており、放電空 間 23でプラズマ放電を行わせて原料ガスと放電ガスを混合した混合ガス Gを励起さ せ、励起した混合ガス G1を基材表面 175aに晒し、その表面に表層 176を堆積'形 成するものである。 [0105] そして、固定電極 21に第 1の電源 25から周波数 ωの第 1の高周波電圧が印加さ
1
れ、ロール電極 20に第 2の電源 26から周波数 ωの高周波電圧が印加されるように
2
なっており、それにより、固定電極 21とロール電極 20との間に電界強度 VIで周波数 ωと電界強度 Vで周波数 ωとが重畳された電界が発生し、固定電極 21に電流 II
1 2 2
が流れ、ロール電極 20に電流 Iが流れ、電極間にプラズマが発生する。
2
[0106] ここで、周波数 ωと周波数 ωの関係、及び、電界強度 Vと電界強度 Vおよび放電
1 2 1 2 ガスの放電を開始する電界強強度 IVとの関係力 ω < ωで、 V≥IV>V、または
1 2 1 2
、 V >IV≥Vを満たし、前記第 2の高周波電界の出力密度が lWZcm2以上となつ
1 2
ている。
[0107] 窒素ガスの放電を開始する電界強強度 IVは 3. 7kVZmmの為、少なくとも第 1の 電源 25から印加する電界強度 Vは 3. 7kV/mm,またはそれ以上とし、第 2の高周
1
波電源 60から印可する電界強度 Vは 3. 7kV/mm,またはそれ未満とすることが好
2
ましい。
[0108] また、第 1の大気圧プラズマ CVD装置 3に利用可能な第 1の電源 25 (高周波電源) としては、
印加電源記号 メーカー 周波数 製品名
A1 神鋼電機 3kHz SPG3 -4500
A2 神鋼電機 5kHz SPG5 -4500
A3 春日電機 15kHz AGI-023
A4 神鋼電機 50kHz SPG50-4500
A5 ハイデン研究所 100kHz水 PHF— 6k
A6 パール工業 200kHz CF- 2000 - 200k
A7 パール工業 400kHz CF- 2000 -400k
A8 SEREN IPS 100〜460kHz L3001
等の市販のものを挙げることが出来、何れも使用することが出来る。
また、第 2の電源 26 (高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
B1 ノ ール工業 800kHz CF- 2000 -800k B2 パール工業 2MHz CF- 2000- 2M
B3 ノ ール工業 13. 56MHz CF— 5000— 13M
B4 ノ ール工業 27MHz CF- 2000- 27M
B5 ノ ール工業 150MHz CF- 2000- 150M
B6 ノ ール工業 20〜99. 9MHz RP- 2000- 20/100M 等の市販のものを挙げることが出来、何れも使用することが出来る。
[0110] なお、上記電源のうち、 *印はハイデン研究所インパルス高周波電源 (連続モード で 100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。
[0111] 本発明において、第 1及び第 2の電源から対向する電極間に供給する電力は、固 定電極 21に lWZcm2以上の電力(出力密度)を供給し、放電ガスを励起してプラズ を発
生させ、薄膜を形成する。固定電極 21に供給する電力の上限値としては、好ましくは 50WZcm2、より好ましくは 20WZcm2である。下限値は、好ましくは 1. 2W/cm2で ある。なお、放電面積 (cm2)は、電極において放電が起こる範囲の面積のことを指す
[0112] また、ロール電極 20にも、 lWZcm2以上の電力(出力密度)を供給することにより、 高周波電界の均一性を維持したまま、出力密度を向上させることが出来る。これによ り、更なる均一高密度プラズマを生成出来、更なる製膜速度の向上と膜質の向上が 両立出来る。好ましくは 5WZcm2以上である。ロール電極 20に供給する電力の上限 値は、好ましくは 50WZcm2である。
[0113] ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続 サイン波状の連続発振モードと、パルスモードと呼ばれる ONZOFFを断続的に行う 断続発振モード等があり、そのどちらを採用してもよいが、少なくともロール電極 20に 供給する高周波は連続サイン波の方がより緻密で良質な膜が得られるので好ましい
[0114] また、固定電極 21と第 1の電源 25との間には、第 1フィルタ 25aが設置されており、 第 1の電源 25から固定電極 21への電流を通過しやすくし、第 2の電源 26からの電流 をアースして、第 2の電源 26から第 1の電源 25への電流が通過しにくくなるようになつ ており、ロール電極 20と第 2の電源 26との間には、第 2フィルター 26aが設置されて おり、第 2の電源 26からロール電極 20への電流を通過しやすくし、第 1の電源 21か らの電流をアースして、第 1の電源 25から第 2の電源 26への電流を通過しにくくする ようになっている。
[0115] 電極には前述したような強い電界を印加して、均一で安定な放電状態を保つことが 出来る電極を採用することが好ましぐ固定電極 21とロール電極 20には強い電界に よる放電に耐えるため少なくとも一方の電極表面には下記の誘電体が被覆されてい る。
[0116] 以上の説明において、電極と電源の関係は、固定電極 21に第 2の電源 26を接続 して、ロール電極 20に第 1の電源 25を接続しても良い。
[0117] 図 9は、ロール電極の一例を示す概略図である。
[0118] ロール電極 20の構成について説明すると、図 9 (a)において、ロール電極 20は、金 属等の導電性母材 200a (以下、「電極母材」ともいう。)に対しセラミックスを溶射後、 無機材料を用いて封孔処理したセラミック被覆処理誘電体 200b (以下、単に「誘電 体」ともいう。)を被覆した組み合わせで構成されている。また、溶射に用いるセラミツ クス材としては、アルミナ '窒化ケィ素等が好ましく用いられる力 この中でもアルミナ が加工し易いので、更に好ましく用いられる。
[0119] また、図 9 (b)に示すように、金属等の導電性母材 200Aにライニングにより無機材 料を設けたライニング処理誘電体 200Bを被覆した組み合わせでロール電極 20,を 構成してもよい。ライニング材としては、ケィ酸塩系ガラス、ホウ酸塩系ガラス、リン酸 塩系ガラス、ゲルマン酸塩系ガラス、亜テルル酸塩ガラス、アルミン酸塩ガラス、バナ ジン酸塩ガラス等が好ましく用いられる力 この中でもホウ酸塩系ガラスが加工し易 ヽ ので、更に好ましく用いられる。
[0120] 金属等の導電性母材 200a、 200Aとしては、銀、白金、ステンレス、アルミニウム、 チタニウム、鉄等の金属等が挙げられる力 加工の観点力 ステンレスが好ましい。
[0121] 尚、本実施の形態においては、ロール電極の母材 200a、 200Aは、冷却水による 冷却手段を有するステンレス製ジャケットロール母材を使用して 、る(不図示)。
[0122] 図 10は、固定電極の一例を示す概略図である。 [0123] 図 10 (a)において、角柱或いは角筒柱の固定電極 21は上記記載のロール電極 20 と同様に、金属等の導電性母材 210cに対しセラミックスを溶射後、無機材料を用い て封孔処理したセラミック被覆処理誘電体 210dを被覆した組み合わせで構成されて いる。また、図 10 (b)に示す様に、角柱或いは角筒柱型の固定電極 21 'は金属等の 導電性母材 21 OAヘライニングにより無機材料を設けたライニング処理誘電体 210B を被覆した組み合わせで構成してもよ 、。
[0124] 以下に、中間転写体の製造方法の工程の内、基材 175上に表層 176を堆積 '形成 する成膜工程の例を、図 6、 8を参照して説明する。
[0125] 図 6及び 8において、ロール電極 20及び従動ローラ 201に基材 175を張架後、張 力付与手段 202の作動により基材 175に所定の張力を掛け、次いでロール電極 20 を所定の回転数で回転駆動する。
[0126] 混合ガス供給装置 24から混合ガス Gを生成し、放電空間 23に放出する。
[0127] 第 1の電源 25から周波数 ω 1の電圧を出力して固定電極 21に印加し、第 2の電源 26から周波数 ω 2の電圧を出力してロール電極 20に印加し、これらの電圧により放 電空間 23に周波数 ω ΐと ω 2とが重畳された電界 Vを発生させる。
[0128] 電界 Vにより放電空間 23に放出された混合ガス Gを励起しプラズマ状態にする。そ して、基材表面にプラズマ状態の混合ガス Gを晒し混合ガス G中の原料ガスにより無 機酸化物層、無機窒化物層、無機炭化物層から選ばれる少なくとも 1つの層の膜、 即ち表層 176を基材 175上に形成する。
[0129] この様にして形成される表層は、複数設け、複数層からなる表層としても良いが、当 該複数層の内、最低 1層は、 XPS測定による炭素原子の含有量測定で、炭素原子 0 . 1〜20質量%含むことが好ましい。
[0130] 例えば、上記の大気圧プラズマ CVD装置 3においては、一対の電極間(ロール電 極 20と固定電極 21)で混合ガス (放電ガス)をプラズマ励起させ、このプラズマ中に 存在する炭素原子を有する原料ガスをラジカル化して基材 175の表面に晒すもので ある。そして、この基材 175の表面に晒された炭素含有分子や炭素含有ラジカルが、 表層の中に含有される。
[0131] 放電ガスとは上記のような条件においてプラズマ励起される気体をいい、窒素、ァ ルゴン、ヘリウム、ネオン、クリプトン、キセノン等及びそれらの混合物などがあげられ る。
[0132] また、表層を形成するための原料ガスとしては、常温で気体または液体の有機金属 化合物、特にアルキル金属化合物や金属アルコキシドィ匕合物、有機金属錯体化合 物が用いられる。これら原料における相状態は常温常圧において必ずしも気相であ る必要はなぐ混合ガス供給装置 24で加熱或は減圧等により溶融、蒸発、昇華等を 経て気化し得るものであれば、液相でも固相でも使用可能である。
[0133] 原料ガスとしては、放電空間でプラズマ状態となり、薄膜を形成する成分を含有す るものであり、有機金属化合物、有機化合物、無機化合物等である。
[0134] 例えば、ケィ素化合物として、シラン、テトラメトキシシラン、テトラエトキシシラン (TE OS)、テトラ n プロボキシシラン、テトライソプロボキシシラン、テトラ n—ブトキシシラ ン、テトラ t ブトキシシラン、ジメチノレジメトキシシラン、ジメチノレジェトキシシラン、ジ ェチルジメトキシシラン、ジフエ二ルジメトキシシラン、メチルトリエトキシシラン、ェチル トリメトキシシラン、フエ-ルトリエトキシシラン、(3, 3, 3—トリフルォロプロピル)トリメト キシシラン、へキサメチルジシロキサン、ビス(ジメチルァミノ)ジメチルシラン、ビス(ジ メチルァミノ)メチルビ-ルシラン、ビス(ェチルァミノ)ジメチルシラン、 N, O ビス(ト リメチルシリル)ァセトアミド、ビス(トリメチルシリル)カルポジイミド、ジェチルアミノトリメ チルシラン、ジメチルアミノジメチルシラン、へキサメチルジシラザン、へキサメチルシ クロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オタタメチルシクロ テトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナ一トシラン、テトラメチ ルジシラザン、トリス(ジメチルァミノ)シラン、トリエトキシフルォロシラン、ァリルジメチ ルシラン、ァリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)ァ セチレン、 1, 4 ビストリメチルシリル 1, 3 ブタジイン、ジ tーブチルシラン、 1, 3—ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジェニルトリメチルシラン 、フエ二ルジメチルシラン、フエニルトリメチルシラン、プロパルギルトリメチルシラン、テ トラメチルシラン、トリメチルシリルアセチレン、 1— (トリメチルシリル)一 1—プロピン、ト へキサメチルジシラン、オタタメチルシクロテトラシロキサン、テトラメチルシクロテトラシ ロキサン、へキサメチルシクロテトラシロキサン、 M
シリケート 51などが挙げられるがこれらに限定されない。
[0135] チタンィ匕合物としては、テトラジメチルァミノチタンなどの有機金属化合物、モノチタ ン、ジチタンなどの金属水素化合物、二塩ィ匕チタン、三塩ィ匕チタン、四塩化チタンな どの金属ハロゲンィ匕合物、テトラエトキシチタン、テトライソプロポキシチタン、テトラブ トキシチタンなどの金属アルコキシドなどが挙げられるがこれらに限定されない。
[0136] アルミニウム化合物としては、アルミニウム n—ブトキシド、アルミニウム s—ブトキシド 、アルミニウム tーブトキシド、アルミニウムジイソプロポキシドエチルァセトアセテート、 アルミニウムエトキシド、アルミニウムへキサフルォロペンタンジォネート、アルミニウム イソプロポキシド、アルミニウム ΠΙ2, 4—ペンタンジォネート、ジメチルアルミニウムクロ ライドなどが挙げられるがこれらに限定されない。
[0137] 亜鉛ィ匕合物としては、ジンクビス(ビス(トリメチルシリル)アミド)、ジンク 2, 4—ペンタ ンジォネート、ジンク 2, 2, 6, 6—テトラメチルー 3, 5—ヘプタンジォネートなどが挙 げられるがこれらに限定されな!、。
[0138] ジルコニウム化合物としては、ジルコニウム t—ブトキシド、ジルコニウムジイソプロボ キシドビス(2, 2, 6, 6—テトラメチルー 3, 5—ヘプタンジォネート、ジルコニウムエト キシ、ジルコニウムへキサフルォロペンタンジォネート)、ジルコニウムイソプロポキシ ド、ジルコニウム 2—メチルー 2—ブトキシド、ジルコニウムトリフルォロペンタンジォネ ートなどが挙げられるがこれらに限定されない。
[0139] また、これらの原料は、単独で用いても良いが、 2種以上の成分を混合して使用す るようにしても良い。
[0140] また、前記のように表層の硬度は、成膜速度や添加ガス量比などによって調整する ことができる。
[0141] 上記のような方法によって表層 176を基材 175表面に形成することにより、転写性 が高ぐクリーニング性及び耐久性が高い中間転写体を提供することができる。 実施例
[0142] 以下に実施例を挙げて、本発明を具体的に説明するが、本発明の実施形態はこれ に限定されるものではない。 1.試料の作製
基材を以下のように A、 B、 Cの 3種類作成した。
[0143] (基材 A)
ポリフエ-レンサルファイド榭脂 (E2180、東レネ土製) 100質量部
導電フィラー (ファーネス # 3030B、三菱化学社製) 16質量部 グラフト共重合体 (モディパー A4400、 日本油脂社製) 1質量部 滑材(モンタン酸カルシウム) 0. 2質量部
上記材料を単軸押出機に投入し、溶融混練させて榭脂混合物とした。単軸押出機 の先端にはスリット状でシームレスベルト形状の吐出口を有する環状ダイスが取り付 けてあり、混練された上記榭脂混合物を、シームレスベルト形状に押し出した。押し 出されたシームレスベルト形状の榭脂混合物を、吐出先に設けた円筒状の冷却筒に 外挿させて冷却し、固化することによりシームレス円筒状の中間転写ベルトを得た。 得られた基材の厚さは、 120 /z mであった。
[0144] (基材 B)
N—メチノレピロリドン(NMP) 600質量咅
3, 3' , 4, 4,一べンゾフエノンテトラカルボン酸二無水物(BPDA)
100質量部
4, 4,ージアミノジフエ-ルエーテル(DATE) 62質量部
カーボンブラック 24質量部
3, 3' , 4, 4,一べンゾフエノンテトラカルボン酸二無水物と 4, 4,ージアミノジフエ- ルエーテルを N—メチルピロリドン溶媒中にて 25°Cにて縮合'イミド化反応をおこなつ た後、導電フィラーをボールミルにて分散混合し原液を得た。円筒金型内に原液を 均一にキャストし、加熱 ·回転させながら溶媒の蒸発 ·除去および 350°Cにて 30分間 熱処理をおこなうことで、シームレス円筒状の中間転写ベルトを得た。得られた基材 の厚さは、 90 μ mであった。
[0145] (基材 C)
ポリフッ化ビ-リデン共重合体 (KYNAR2800— 20、アルケマ社製)
100質量部 カーボンブラック 10質量部
上記材料を単軸押出機に投入し、溶融混練させて榭脂混合物とした。単軸押出機 の先端にはスリット状でシームレスベルト形状の吐出口を有する環状ダイスが取り付 けてあり、混練された上記榭脂混合物を、シームレスベルト形状に押し出した。押し 出されたシームレスベルト形状の榭脂混合物を、吐出先に設けた円筒状の冷却筒に 外挿させて冷却し、固化することによりシームレス円筒状の中間転写ベルトを得た。 得られた基材の厚さは、 150 /z mであった。
[0146] それぞれの基材の硬度は、ユニバーサル硬度計 (超微小硬さ試験器 フイシヤー社 製、 H— 100、測定条件 圧子は四角錐 (ピッカース)を使用し最大荷重設定 2mN (押し込み深さが表層 2 mを超えな 、ように弱 、応力で測定) )で測定した結果、表 1のようになった。
[0147] 次にこの基材の上に図 6のプラズマ放電処理装置を用いて、表層として 1層の無機 化合物層 350nmを形成した。表層としては、酸化チタン、酸化ケィ素、酸化アルミ- ゥムを用いた。この時のプラズマ放電処理装置の各電極を被覆する誘電体は対向す る両電極共に、セラミック溶射カ卩ェにより片肉で lmm厚のアルミナを被覆したものを 使用した。被覆後の電極間隙は、 0. 5mmに設定した。また誘電体を被覆した金属 母材は、冷却水による冷却機能を有するステンレス製ジャケット仕様であり、放電中 は冷却水による電極温度コントロールを行いながら実施した。また、ここで使用する電 源の詳細は後述する。
[0148] 表層の成膜条件を変えることで、表 1に示す実施例および比較例の試料を作成し た。各原料ガスは、加熱することで蒸気を生成し、あらかじめ余熱をおこなった放電ガ スおよび反応ガスと混合'希釈した後、放電空間への供給をおこなった。
(酸化チタン層)
放電ガス: Nガス
2
反応ガス: Oガスを全ガスに対し 21体積%
2
原料ガス:テトライソプロポキシチタン (TTIP)を全ガスに対し 0. 1体積%
低周波側電源電力(SEREN IPS製高周波電源(110kHz) ): 10W/cm2 高周波側電源電力(パール工業製高周波電源(13. 56MHz) ) : 1〜: LOWZcm2で 変化
(酸化ケィ素層)
放電ガス: Nガス
2
反応ガス: Oガスを全ガスに対し 21体積%
2
原料ガス:テトラエトキシシラン (TEOS)を全ガスに対し 0. 1体積0 /0
低周波側電源電力(神鋼電機製高周波電源 (50kHz) ): 10W/cm2
高周波側電源電力(パール工業製高周波電源(13. 56MHz) ) : 1〜: LOWZcm2で 変化
(酸ィ匕アルミニウム層)
放電ガス: Nガス
2
反応ガス: Hガスを全ガスに対し 4. 0体積%
2
原料ガス:トリ s—ブトキシドアルミニウムを全ガスに対し 0. 1体積%
低周波側電源電力(ハイデン研究所製インパルス高周波電源(100kHz) ): 10W/
2
cm
高周波側電源電力 (パール工業製広帯域高周波電源 (40. 0MHz) ) : 1〜: LOWZc m2で変化
作製した試料の表層の表面硬度を図 3示すナノインデンテーション法による測定装 置(NANO Indenter XP/DCM (MTS Systems社/ MTS Nano Instrum ents社製))を用いて測定した。トランスデューサー 31と先端形状が正三角形のダイ ャモンド Berkovich圧子 32を用いて、最大荷重設定を 25 N程度として、表層の厚 みに対し十分に小さな押し込み深さとなる条件として測定した。
2.評価方法
(1)トナー 2次転写率の評価方法
2次転写率は、中間転写体上に形成されたトナー像のトナー質量に対する記録紙 上に転写されたトナー像のトナー質量の割合のことであり、以下のように評価を行つ た。
プリンターにコ-カミノルタ社製 magicolor5440DLを用い、平均粒径 6. 5 mの 重合トナーを使用し、イェロー、マゼンタ、シアン、ブラックの最大トナー濃度でコ-カ ミノルタ CFペーパーへテストプリントを行う。テストプリント紙上のトナー付着量および ベルト上の残存トナー量を光学 (反射)濃度測定結果からトナー付き量へと換算し、ト ナー転写率を求めた。
転写率 (%) = (1 (ベルト残留トナー量 Z (紙上へのプリント 'トナー量 +ベルト残留 トナー量))) X 100
2色重ねベタ画像を印字したときの 1次 · 2次転写でのトナー移動性を転写効率で評 価した。 1次転写効率は、感光体上に形成されたトナー像の質量に対する中間転写 体上に転写されたトナー像の質量の割合をいう。 2次転写効率は、中間転写体上に 形成されたトナー像の質量に対する記録紙上に転写されたトナー像の質量の割合を いう。
〇:転写率が 95%以上であった。
△:転写率が 95%未満 90%以上であった。
X:転写率が 90%未満であった。
(2)クリーニング性
前記プリンターを用い、中間転写体表面をクリーニングブレードでクリーニングした 後の中間転写体の表面状態を目視観察し、トナーの付着状態を確認した。そして、ト ナ一の付着のないものを〇、僅かにあるが実用上問題のないものを△、実用上問題 があるものを Xとした。
(3)耐久性試験
上記プリンターを用い、コ-カミノルタ CFペーパー(Α4)、各トナー色とも 5%ィメー ジ率のテストパターンにて 20万枚プリントを行 、、その後トナー 2次転写率の評価お よびプリント品質の目視検査を行な!/、初期から 20万枚目まで変化が認められな 、も のを〇(ΟΚ)、僅かにあるが実用上問題のないものを△、実用上問題があるものを X (NG)と評価した。
[0150] 以上の実施例 1〜20と比較例 1〜9の測定結果及び評価結果を表 1に示す。
[0151] [表 1]
Figure imgf000028_0001
表 1の結果から、次のように本発明の目的効果が認められる。
(1)試料番号:!〜 9、 28、 29を比較すると、基材のユニバーサル硬度が 50NZmm2 以上 190NZmm2以下で、且つ表層の表面の硬度が、ナノインデンテーション法に よる測定で、 3GPa以上 llGPa以下であることにより、トナーとの離型性に優れ、転 写効率が向上し、かつ耐久性に優れた中間転写体であることが認められる。
(2)試料 14〜15を比較すると、表層の最も外側の層の炭素原子含有量が 20質量% 以下 (XPS測定)であることにより、より転写効率の良い、クリーニング性、耐久性に優 れた中間転写体であることが認められる。 (3)試料 24〜27を比較すると、表層の厚さが、 200nm以上 lOOOnm以下であること により、より転写効率の良い、クリーニング性、耐久性に優れた中間転写体であること が認められる。
よって、本発明により、転写効率が良ぐクリーニング性と耐久性に優れた中間転写 体とその中間転写体の製造方法及びその中間転写体を備えた画像形成装置を提供 することができる。

Claims

請求の範囲
[1] 基材表面に少なくとも 1層以上の層力もなる表層を有し、基材のユニバーサル硬度が 50NZmm2以上 190NZmm2以下で、且つ前記表層の表面の硬度が、ナノインデ ンテーシヨン法による測定で、 3GPa以上 l lGPa以下であることを特徴とする中間転 写体。
[2] 前記表層の厚さが、 200nm以上 lOOOnm以下であることを特徴とする請求の範囲 第 1項に記載の中間転写体。
[3] 請求の範囲第 1項又は第 2項に記載の中間転写体の製造方法であって、基材表面 に少なくとも 1層以上の層力 なる表層の少なくとも最も外側の層が大気圧プラズマ C VD法により形成され、かつ、当該層の炭素原子含有量が 20原子%以下 (XPS測定 )であることを特徴とする中間転写体の製造方法。
[4] 請求の範囲第 1項又は第 2項に記載の中間転写体の製造方法であって、基材表面 に少なくとも 1層以上の層力 なる表層の少なくとも 1層が大気圧プラズマ CVD法に より形成され、かつ、当該層の炭素原子含有量が 20原子%以下 (XPS測定)である ことを特徴とする中間転写体の製造方法。
[5] 像担持体の表面を現像してトナー画像を形成し、該トナー画像を中間転写体に転写 した後、転写紙に更に転写する画像形成装置において、前記中間転写体が請求の 範囲第 1項又は第 2項に記載の中間転写体であることを特徴とする画像形成装置。
PCT/JP2006/319246 2005-10-20 2006-09-28 中間転写体、中間転写体の製造方法及び画像形成装置 WO2007046218A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007540905A JP4577362B2 (ja) 2005-10-20 2006-09-28 中間転写体、中間転写体の製造方法及び画像形成装置
EP06810704.4A EP1947526B1 (en) 2005-10-20 2006-09-28 Intermediate transfer body, method for manufacturing intermediate transfer body, and image-forming device
CN2006800387003A CN101292200B (zh) 2005-10-20 2006-09-28 中间转印体、中间转印体的制造方法以及图像形成装置
US12/090,109 US7773927B2 (en) 2005-10-20 2006-09-28 Intermediate transfer member, method of manufacturing intermediate transfer member, and image forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-305435 2005-10-20
JP2005305435 2005-10-20

Publications (1)

Publication Number Publication Date
WO2007046218A1 true WO2007046218A1 (ja) 2007-04-26

Family

ID=37962315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319246 WO2007046218A1 (ja) 2005-10-20 2006-09-28 中間転写体、中間転写体の製造方法及び画像形成装置

Country Status (5)

Country Link
US (1) US7773927B2 (ja)
EP (1) EP1947526B1 (ja)
JP (1) JP4577362B2 (ja)
CN (1) CN101292200B (ja)
WO (1) WO2007046218A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146743A1 (ja) * 2007-05-25 2008-12-04 Konica Minolta Business Technologies, Inc. 中間転写体
JP2009020321A (ja) * 2007-07-12 2009-01-29 Konica Minolta Business Technologies Inc 画像形成装置
JP2009075572A (ja) * 2007-08-27 2009-04-09 Konica Minolta Business Technologies Inc 画像形成方法
JP2009186641A (ja) * 2008-02-05 2009-08-20 Konica Minolta Business Technologies Inc 電子写真感光体
JP2010002567A (ja) * 2008-06-19 2010-01-07 Konica Minolta Business Technologies Inc 中間転写体
JP2010250088A (ja) * 2009-04-16 2010-11-04 Konica Minolta Business Technologies Inc 中間転写体、中間転写体の製造方法、及び画像形成装置
US7904013B2 (en) 2007-06-18 2011-03-08 Konica Minolta Business Technologies, Inc. Image-forming apparatus
US7920813B2 (en) * 2007-06-15 2011-04-05 Konica Minolta Business Technologies, Inc. Image-forming apparatus equipped with intermediate transfer member
EP2003516A3 (en) * 2007-06-15 2011-09-14 Konica Minolta Business Technologies, Inc. Image-forming apparatus with intermediate transfer member
US8068774B2 (en) 2007-06-08 2011-11-29 Konica Minolta Business Technologies, Inc. Image-forming apparatus equipped with specified intermediate transfer member
JP2015018118A (ja) * 2013-07-11 2015-01-29 キヤノン株式会社 画像形成装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380770B2 (ja) * 2005-10-20 2009-12-09 コニカミノルタビジネステクノロジーズ株式会社 中間転写体、中間転写体の製造方法及び中間転写体を備えた画像形成装置
JP5131199B2 (ja) * 2007-01-09 2013-01-30 コニカミノルタビジネステクノロジーズ株式会社 中間転写体、それを用いた画像形成方法及び画像形成装置
JP4600516B2 (ja) * 2008-05-08 2010-12-15 富士ゼロックス株式会社 環状部材、環状部材張架装置、及び画像形成装置
US20120027473A1 (en) * 2009-03-11 2012-02-02 Daishi Yamashita Intermediate transfer member
KR20120033903A (ko) * 2010-09-30 2012-04-09 코오롱인더스트리 주식회사 무단 벨트
JP6029336B2 (ja) * 2011-06-15 2016-11-24 キヤノン株式会社 現像ローラ、プロセスカートリッジおよび電子写真装置
JP2016126105A (ja) * 2014-12-26 2016-07-11 株式会社リコー シームレスベルト用組成物
JP7077707B2 (ja) * 2018-03-28 2022-05-31 富士フイルムビジネスイノベーション株式会社 定着部材、定着装置、プロセスカートリッジ及び画像形成装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926707A (ja) * 1995-07-12 1997-01-28 Minolta Co Ltd 中間転写体
JPH09212004A (ja) 1996-02-06 1997-08-15 Matsushita Electric Ind Co Ltd 中間転写体および中間転写体を備えた電子写真装置
JP2001347593A (ja) 2000-06-08 2001-12-18 Gunze Ltd 耐摩耗性半導電ポリイミド系フイルム、その製造方法及びその使用

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843533A (en) * 1995-03-23 1998-12-01 Lockheed Martin Energy Systems, Inc. CVD method of forming self-lubricating composites
US5728496A (en) * 1996-05-24 1998-03-17 Eastman Kodak Company Electrostatographic apparatus and method for improved transfer of small particles
US6175712B1 (en) * 1998-07-27 2001-01-16 Bridgestone Corporation Intermediate transfer member and image formation apparatus using same
JP2000112251A (ja) * 1998-10-02 2000-04-21 Bridgestone Corp 中間転写部材及びそれを用いた中間転写装置
US6393226B1 (en) * 2000-10-04 2002-05-21 Nexpress Solutions Llc Intermediate transfer member having a stiffening layer and method of using
JP2002287012A (ja) * 2001-03-26 2002-10-03 Sanyo Electric Co Ltd オートフォーカス機能を有する撮像装置
JP2005157178A (ja) * 2003-11-28 2005-06-16 Canon Inc 画像形成方法及び画像形成装置
JP2005250455A (ja) * 2004-02-03 2005-09-15 Canon Inc 電子写真装置
JP4622393B2 (ja) * 2004-03-22 2011-02-02 富士ゼロックス株式会社 画像形成装置
JP2006043813A (ja) * 2004-08-04 2006-02-16 Denso Corp 保護膜付きマイクロシステム構造体及びその製造方法
JP2006235547A (ja) * 2005-02-28 2006-09-07 Bridgestone Corp 導電性エンドレスベルトおよびこれを用いた画像形成装置
JP2006235538A (ja) * 2005-02-28 2006-09-07 Bridgestone Corp 導電性エンドレスベルト、その製造方法およびそれを用いた画像形成装置
US7560209B2 (en) * 2005-08-23 2009-07-14 Konica Minolta Business Technologies, Inc. Electrophotographic image forming apparatus and image forming unit
US7488563B2 (en) * 2005-10-14 2009-02-10 Eastman Kodak Company Electrostatographic method using compliant intermediate transfer member
JP4810673B2 (ja) * 2006-02-13 2011-11-09 コニカミノルタビジネステクノロジーズ株式会社 中間転写体、中間転写体の製造方法、画像形成方法、画像形成装置
JP2008015491A (ja) * 2006-06-06 2008-01-24 Canon Inc 中間転写ベルトおよび電子写真装置
JP2008310108A (ja) * 2007-06-15 2008-12-25 Konica Minolta Business Technologies Inc 画像形成装置
JP2008310110A (ja) * 2007-06-15 2008-12-25 Konica Minolta Business Technologies Inc 画像形成装置
US20090060598A1 (en) * 2007-08-27 2009-03-05 Konica Minolta Business Technologies, Inc. Image forming method
JP5084412B2 (ja) * 2007-09-07 2012-11-28 キヤノン株式会社 画像形成装置および中間転写ベルト

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926707A (ja) * 1995-07-12 1997-01-28 Minolta Co Ltd 中間転写体
JPH09212004A (ja) 1996-02-06 1997-08-15 Matsushita Electric Ind Co Ltd 中間転写体および中間転写体を備えた電子写真装置
JP2001347593A (ja) 2000-06-08 2001-12-18 Gunze Ltd 耐摩耗性半導電ポリイミド系フイルム、その製造方法及びその使用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1947526A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146743A1 (ja) * 2007-05-25 2008-12-04 Konica Minolta Business Technologies, Inc. 中間転写体
US8295747B2 (en) 2007-05-25 2012-10-23 Konica Minolta Business Technologies, Inc. Intermediate transfer member for use in electrophotographic image forming apparatus
US8068774B2 (en) 2007-06-08 2011-11-29 Konica Minolta Business Technologies, Inc. Image-forming apparatus equipped with specified intermediate transfer member
US7920813B2 (en) * 2007-06-15 2011-04-05 Konica Minolta Business Technologies, Inc. Image-forming apparatus equipped with intermediate transfer member
EP2003516A3 (en) * 2007-06-15 2011-09-14 Konica Minolta Business Technologies, Inc. Image-forming apparatus with intermediate transfer member
US7904013B2 (en) 2007-06-18 2011-03-08 Konica Minolta Business Technologies, Inc. Image-forming apparatus
JP2009020321A (ja) * 2007-07-12 2009-01-29 Konica Minolta Business Technologies Inc 画像形成装置
JP2009075572A (ja) * 2007-08-27 2009-04-09 Konica Minolta Business Technologies Inc 画像形成方法
JP2009186641A (ja) * 2008-02-05 2009-08-20 Konica Minolta Business Technologies Inc 電子写真感光体
JP2010002567A (ja) * 2008-06-19 2010-01-07 Konica Minolta Business Technologies Inc 中間転写体
JP2010250088A (ja) * 2009-04-16 2010-11-04 Konica Minolta Business Technologies Inc 中間転写体、中間転写体の製造方法、及び画像形成装置
JP2015018118A (ja) * 2013-07-11 2015-01-29 キヤノン株式会社 画像形成装置

Also Published As

Publication number Publication date
EP1947526B1 (en) 2014-03-05
CN101292200B (zh) 2010-12-08
CN101292200A (zh) 2008-10-22
JP4577362B2 (ja) 2010-11-10
EP1947526A4 (en) 2012-04-04
JPWO2007046218A1 (ja) 2009-04-23
EP1947526A1 (en) 2008-07-23
US20090041514A1 (en) 2009-02-12
US7773927B2 (en) 2010-08-10

Similar Documents

Publication Publication Date Title
JP4577362B2 (ja) 中間転写体、中間転写体の製造方法及び画像形成装置
JP5131199B2 (ja) 中間転写体、それを用いた画像形成方法及び画像形成装置
JP4380770B2 (ja) 中間転写体、中間転写体の製造方法及び中間転写体を備えた画像形成装置
US8295747B2 (en) Intermediate transfer member for use in electrophotographic image forming apparatus
JP4438866B2 (ja) 中間転写体、中間転写体の製造装置、中間転写体の製造方法、及び画像形成装置
WO2010106973A1 (ja) 中間転写体
WO2010103896A1 (ja) 中間転写体
JP4775489B2 (ja) 中間転写体及び画像形成装置
JP4973781B2 (ja) 中間転写体
JP4497205B2 (ja) 中間転写体、中間転写体の製造方法及び画像形成装置
EP1986056A2 (en) Image forming apparatus
JP2008209835A (ja) 中間転写体及び画像形成装置
JPWO2008084714A1 (ja) 中間転写体、それを用いた画像形成方法及び画像形成装置
JP2008256958A (ja) 中間転写体、該中間転写体の製造方法、該中間転写体を用いる画像形成方法及び画像形成装置
JP2010039253A (ja) 中間転写体、画像形成装置
WO2009145174A1 (ja) 中間転写体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038700.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007540905

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006810704

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12090109

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE