WO2009145174A1 - 中間転写体 - Google Patents
中間転写体 Download PDFInfo
- Publication number
- WO2009145174A1 WO2009145174A1 PCT/JP2009/059579 JP2009059579W WO2009145174A1 WO 2009145174 A1 WO2009145174 A1 WO 2009145174A1 JP 2009059579 W JP2009059579 W JP 2009059579W WO 2009145174 A1 WO2009145174 A1 WO 2009145174A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- intermediate transfer
- transfer member
- image
- member according
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/14—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
- G03G15/16—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
- G03G15/1605—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support
- G03G15/161—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support with means for handling the intermediate support, e.g. heating, cleaning, coating with a transfer agent
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/14—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
- G03G15/16—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
- G03G15/1605—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support
- G03G15/162—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support details of the the intermediate support, e.g. chemical composition
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/16—Transferring device, details
- G03G2215/1604—Main transfer electrode
- G03G2215/1623—Transfer belt
Definitions
- the present invention relates to an intermediate transfer member having an elastic layer, and more particularly to an intermediate transfer member in which a surface layer having at least a hard layer and an intermediate layer is provided on the elastic layer.
- an electrophotographic photosensitive member (hereinafter also simply referred to as a photosensitive member) is transferred to a transfer material such as paper, the image is transferred from the surface of the photosensitive member.
- a transfer material such as paper
- an intermediate transfer member In addition to a method for directly transferring a toner image onto a material, there is a method using a belt-like or drum-like member called an intermediate transfer member.
- This system has two transfer processes: a primary transfer for transferring a toner image from an electrophotographic photosensitive member to an intermediate transfer member, and a secondary transfer for transferring a toner image on the intermediate transfer member onto a transfer material. It is.
- the intermediate transfer method is mainly used for so-called full-color image formation in which an image is formed using a plurality of types of toners such as black, cyan, magenta, and yellow. That is, each color toner image formed on a plurality of photoconductors is sequentially primary transferred onto an intermediate transfer member to superimpose a color toner image, and the full color toner image thus formed is transferred onto a transfer material. A full-color print is produced.
- the intermediate transfer member is required to have high durability because the transfer of the toner image on the surface and the removal of the toner remaining after the transfer are repeatedly performed. For this reason, highly durable resin members represented by polyimide resin and the like have been used, but members made of such materials are generally hard, and the toner image on the photoreceptor is not evenly distributed on the surface of the intermediate transfer member. There was a problem that it was difficult to transfer.
- an inorganic coating layer having a thickness of 0.1 to 70 ⁇ m is provided on an elastic layer so as not to cause a transfer defect or image flow after 60,000 full-color images are formed. Yes.
- Patent Document 2 discloses a transport belt provided with a surface layer made of a diamond-like carbon film and an intermediate layer for bonding the surface layer and a belt base material made of an elastic body.
- Patent Document 3 discloses a technique for producing an intermediate transfer body having a structure in which a surface of a semiconductive endless belt made of an elastic body is subjected to an atmospheric pressure plasma treatment and a fluorine compound is chemically bonded to the surface of the elastic body. Has been.
- JP 2000-206801 A JP 2006-259581 A JP 2003-165857 A
- Patent Document 1 is of the level of 60,000 sheets, and it cannot be inferred from the description of the above documents whether it can withstand print production of 160,000 sheets or more. .
- the technique of Patent Document 1 improves the cleaning performance by providing an inorganic coating layer on an elastic body to improve wear resistance, and prevents contamination of the surface of the intermediate transfer body with toner.
- the organic film is bound, and when 160,000 sheets were printed, they were scraped to cause scratches, from which toner filming was expected.
- the amount of colloidal silica added is increased in order to improve wear resistance, there is a concern that cracks are likely to occur.
- Patent Document 2 Although the technique disclosed in Patent Document 2 is disclosed to form a high-hardness and smooth coating layer on an elastic body, the coating layer on the elastic body is expected to be too hard from its configuration, There was a concern that sufficient transfer from the photoreceptor to the intermediate transfer member could not be performed, and the above-described toner image was lost or scattered.
- Patent Document 3 the technique disclosed in Patent Document 3 is considered that the fluorine compound layer formed on the surface is very soft, so that sufficient transfer onto the transfer material cannot be performed and sufficient strength can be obtained. Since it is difficult to ensure, there is a concern that the image may deteriorate due to wear and abrasion due to repeated contact with the cleaning blade.
- the transfer of the toner image from the photosensitive member and the transfer to the transfer material can be balanced and durability can be achieved by installing the elastic layer. It was difficult to think that it could be easily used for producing large-scale prints exceeding 160,000 sheets.
- the present invention does not generate cracks or toner filming even when a large number of prints, for example, exceeding 160,000 sheets are continuously formed, maintains good secondary transferability and good cleaning, and allows character images to be printed.
- An object of the present invention is to provide an intermediate transfer member capable of stably forming a toner image having a good image quality without causing image defects such as voids.
- the present invention is achieved by adopting the following configuration.
- an intermediate transfer member that primarily transfers a toner image carried on the surface of an electrophotographic photosensitive member to an intermediate transfer member, and then secondarily transfers the toner image from the intermediate transfer member to a transfer material.
- the intermediate transfer member is provided with an elastic layer on the outer periphery of a resin substrate and a surface layer on the elastic layer.
- the surface layer has a thickness of 0.5 nm or more and 1000 nm or less, and is composed of a hard layer mainly composed of an intermediate layer and a metal oxide,
- the intermediate transfer member, wherein the hard layer has a carbon atom content of 2.0 atom% or less, and the carbon atom content is less than the carbon atom content of the intermediate layer.
- the intermediate transfer member according to the present invention does not cause cracks or toner filming even if a large amount of printing exceeding 160,000 sheets is continuously performed, and has good primary transferability and good secondary transferability. In addition, it has an excellent effect of stably forming a good quality toner image that maintains good cleaning characteristics and does not cause image defects such as voids in character images. Accordingly, the intermediate transfer member according to the present invention promotes the development of an electrophotographic image forming apparatus in the field of on-demand printing that provides timely and trouble-free printed matter for a required number of sheets without causing a plate. Be expected.
- FIG. 3 is a conceptual cross-sectional view showing a layer configuration of an intermediate transfer member. It is a schematic diagram which shows an example of the measuring apparatus by a nano indentation method. It is explanatory drawing of the 1st manufacturing apparatus which manufactures the surface layer of an intermediate transfer body. It is explanatory drawing of the 2nd manufacturing apparatus which manufactures the surface layer of an intermediate transfer body. It is explanatory drawing of the 1st plasma film-forming apparatus which manufactures the surface layer of an intermediate transfer body with plasma. It is the schematic which shows an example of a roll electrode. It is the schematic which shows an example of a fixed electrode.
- 1 is a cross-sectional configuration diagram illustrating an example of an image forming apparatus in which an intermediate transfer member of the present invention can be used.
- the inventors of the present invention have a configuration in which an elastic layer is provided on the outer periphery of the resin substrate, and a surface layer composed of an intermediate layer and a hard layer is provided thereon, and the layer thickness of the surface layer and the elastic modulus of the surface are set to specific values.
- the intermediate transfer member can exhibit excellent properties such as prevention of cracks and toner filming, improvement and maintenance of transferability, maintenance of cleaning properties, and prevention of occurrence of voids in character images.
- the intermediate transfer member according to the present invention has a structure in which an elastic layer is provided on the outer periphery of a resin substrate and a surface layer composed of an intermediate layer and a hard layer is provided thereon.
- the thickness of the surface layer is specified
- the carbon atom content of the hard layer constituting the surface layer is specified in a specific range
- the carbon atom content of the hard layer described above is the carbon atom content of the intermediate layer. It has been found that the problem of the present invention is solved by making the amount less than the amount. That is, according to the intermediate transfer member of the present invention, for example, even if a large amount of printing exceeding 160,000 sheets is continuously performed, the occurrence of cracks and toner filming is prevented, and transferability is improved, maintained, and cleaned. The effect of maintaining the character and preventing the occurrence of voids in the character image was obtained.
- the intermediate transfer member according to the present invention forms a state in which the toner image on the photosensitive member is smoothly adhered during the primary transfer, and can reliably transfer the toner onto the transfer material during the secondary transfer. It is thought to form a state.
- the transfer of the surface layer having a good state It is considered to have elasticity that expresses performance.
- the surface of the intermediate transfer member is deformed by the action of pressing from the photoconductor to form a contact area that can sufficiently hold the toner.
- the surface of the intermediate transfer member is released from the above-described deformation due to the pressure and the contact area with the toner is also reduced, so that the state where the toner can easily move onto the transfer material is formed. Conceivable.
- the intermediate transfer member according to the present invention is deformed by the action of pressing during primary transfer by defining the carbon atom content of the hard layer and the intermediate layer constituting the surface layer as described above.
- the toner adhesion performance is promoted, and during the secondary transfer, the deformation due to the pressure is released, and the performance of detaching and transferring the toner is promoted so that elasticity and rigidity can be expressed in a balanced manner. Conceivable. As a result, it is considered that stable transfer performance can be maintained because deformation and contraction can be repeated in a short time even when mass printing is performed.
- the potential stability of the surface of the intermediate transfer member without impairing the conductivity of the resin substrate. is considered to be maintained.
- the toner does not scatter around the image even when a large-scale print is made.
- the strength of the surface of the intermediate transfer member is also improved by this configuration, and it is considered that the surface does not wear excessively even when a large amount of printing exceeding 160,000 sheets is performed, and the slipping property and the wear resistance can be stably expressed. .
- the intermediate layer acts as a cushion between the two, It is assumed that cracking and peeling of the hard layer are prevented.
- the intermediate transfer member according to the present invention can exhibit a good balance between elasticity and rigidity, and can stably maintain the strength of the surface, so that even if the surface layer is repeatedly rubbed with a cleaning member, it may be damaged. Therefore, it is considered that the transfer residual toner can be removed over a long period of time. As a result, it is presumed that high-quality toner image prints free from image contamination due to poor cleaning can be stably provided even when large-scale printing exceeding 160,000 sheets is performed.
- the intermediate transfer member according to the present invention generates high-quality transfer characteristics over a long period of time, even if a large amount of continuous prints, for example, exceeding 160,000 sheets, and causes image defects called voids. It seems that there is nothing. Further, it is considered that cracks and toner filming do not occur, and wear and scratches due to rubbing of the cleaning member do not occur. As a result, it is considered that a high-quality toner image can be stably formed.
- the intermediate transfer member according to the present invention has an elastic layer provided on the outer periphery of a resin substrate and a surface layer provided on the elastic layer.
- the surface layer includes at least one hard layer and at least one intermediate layer. It is composed of.
- FIG. 1 is a perspective view of an intermediate transfer member according to the present invention and a cross-sectional view showing an example of its layer structure.
- the layer structure of the intermediate transfer member according to the present invention is not limited to the one shown in FIG.
- the intermediate transfer member shown in FIG. 1 has a belt shape and is usually called an “intermediate transfer belt”.
- 170 is an intermediate transfer member
- 175 is a resin substrate
- 176 is an elastic layer
- 177 is a surface layer
- the surface layer 177 is composed of an intermediate layer 178 and a hard layer 179.
- the intermediate layer 178 has a multilayer structure as shown in FIG. 1B, for example, as a first intermediate layer 178a, a second intermediate layer 178b, and a third intermediate layer 178c. There may be.
- FIG. 1A showing the layer structure of an intermediate transfer member 170 which is an example of the intermediate transfer member according to the present invention is provided with an elastic layer 176 on the outer periphery of a resin substrate 175 and an intermediate layer 178 as a surface layer 177 thereon.
- An intermediate transfer body 170 having a layer structure provided with a hard layer 179 is shown.
- FIG. 1B shows an example in which an elastic layer 176 is provided on the outer periphery of the resin base 175, as in FIG. 1A, but the surface layer 177 provided on the elastic layer 176 has three layers ( 178a, 178b, 178c) and an intermediate transfer member 170 having a layer structure in which a hard layer 179 is provided thereon.
- the layer structure of the intermediate transfer member according to the present invention is preferably that shown in FIGS. 1A and 1B.
- the intermediate layer 178 has a multilayer structure as shown in FIG.
- the layer structure b) is preferred.
- the carbon atom content is the largest in the third intermediate layer 178c, and the second intermediate layer 178b is in the middle. It is preferable to minimize the eye intermediate layer 178a.
- a method for manufacturing the resin substrate 175, the elastic layer 176, and the intermediate transfer member 170 constituting the intermediate transfer member 170 will be described later.
- the surface layer constituting the intermediate transfer member according to the present invention comprises at least an intermediate layer and a hard layer mainly composed of a metal oxide.
- the surface layer can be formed by using at least one of a metal oxide, a carbon-containing metal oxide, and amorphous carbon, for example. It is also possible to form.
- the thickness (hereinafter also referred to as layer thickness) of the surface layer constituting the intermediate transfer member according to the present invention is 0.5 nm to 1000 nm, and preferably 3 nm to 500 nm.
- the surface layer thickness is 0.5 nm or more, durability and surface strength can be satisfied, and scratches do not occur due to transfer to cardboard, etc., and the film wears and the transfer rate decreases or uneven transfer occurs. It does not occur.
- the surface layer By forming the surface layer to a thickness of 1000 nm or less, the adhesion to the elastic layer is not lowered or the bending resistance is insufficient, and the film is not cracked or peeled off even when a large number of sheets are printed. The time required for this can be shortened, which is preferable from the viewpoint of production.
- the layer thickness measurement of the surface layer constituting the intermediate transfer member according to the present invention is, for example, a known film thickness measurement for measuring a thickness in nanometer units such as an X-ray reflection measurement method (XRR: X-ray Reflection).
- XRR X-ray Reflection
- the film thickness measurement by the X-ray reflectance measurement method is a measurement using an interference signal of a reflected wave generated from incident X-rays that have entered the film.
- Incident X-rays that have entered the thin film are divided into reflected waves having an interference action with transmitted waves at the sample surface or interface.
- the X-ray reflectivity measurement method by measuring while changing the incident angle, an interference signal of a reflected wave accompanying a change in optical path difference is obtained, and the thickness of the thin film is measured and calculated based on the analysis result. It can be done.
- MXP21 micro X-ray diffractometer
- Copper is used as the target of the X-ray source, and it is operated at 42 kV and 500 mA.
- a multilayer parabolic mirror is used for the incident monochromator.
- the incident slit is 0.05 mm ⁇ 5 mm, and the light receiving slit is 0.03 mm ⁇ 20 mm.
- Measurement is performed by the FT method with a step width of 0.005 ° and a step of 10 seconds from 0 to 5 ° in the 2 ⁇ / ⁇ scan method.
- Reflectivity Analysis Program Ver. 1 is used to perform curve fitting, and each parameter is obtained so that the residual sum of squares of the actually measured value and the fitting curve is minimized.
- the layer thickness of the stack is obtained from each parameter.
- the surface layer constituting the intermediate transfer member according to the present invention is composed of at least an intermediate layer and a hard layer mainly composed of a metal oxide.
- the hard layer is a region that forms the outermost surface of the intermediate transfer member according to the present invention, and transfers and attaches the toner image formed on the photosensitive member, and transfers the attached toner image onto the transfer material.
- the intermediate layer is disposed between the hard layer and the elastic layer, and is provided for the purpose of preventing the hard layer from cracking or peeling from the elastic layer.
- the intermediate layer and the hard layer will be described in detail.
- the intermediate layer referred to in the present invention is disposed between the elastic layer and the hard layer, and can be constituted by a single layer structure or a multilayer structure of two or more layers.
- the intermediate layer has a multilayer structure of two or more layers.
- the intermediate layer has a multilayer structure of two or more layers.
- the inclined structure is a structure in which the constituent elements of the intermediate layer such as the carbon atom concentration continuously change in the thickness direction of the intermediate layer, and the film forming conditions are continuously changed when forming the intermediate layer. Can be formed.
- the thickness of the intermediate layer may be 0.3 nm or more, preferably 5 nm or more and 900 nm or less, and more preferably 20 nm or more and 300 nm or less.
- the intermediate layer preferably has a silicon oxide compound or amorphous carbon as a main component or a mixture thereof as a main component.
- the method for forming the intermediate layer is not particularly limited.
- plasma is generated by generating two or more electric fields having different frequencies.
- the intermediate layer is formed by the atmospheric pressure plasma method, the carbon atom content, film density, and elastic modulus are appropriately adjusted by controlling the output of the power source controlling the strength of the electric field and the concentration of the feedstock.
- An intermediate layer can be formed.
- the hard layer referred to in the present invention constitutes a part that directly contacts the toner image in order to transfer the toner image from the photosensitive member and the toner image to the transfer material.
- the hard layer is required to ensure high transfer characteristics stably over a long period of time, prevent toner filming from occurring, and have a strength that does not cause scratches even when subjected to rubbing by a cleaning member.
- the hard layer is a layer mainly composed of a metal oxide.
- metal oxides such as silicon oxide, silicon oxynitride, silicon nitride, titanium oxide, titanium oxynitride, titanium nitride, and aluminum oxide.
- silicon oxide film is preferable.
- the hard layer only needs to be one layer, or may constitute a multilayer structure of two or more layers.
- the hard layer By configuring the hard layer with a multilayer structure, it is possible to have a structure in which the film density and elastic modulus are gradually increased from the intermediate layer side toward the hard layer surface side where the toner image is transferred and held.
- the thickness of the hard layer may be 0.2 nm or more, preferably 5 nm to 300 nm, more preferably 10 nm to 200 nm.
- the carbon atom content of the surface layer constituting the intermediate transfer member that is, the intermediate layer and the hard layer is defined as follows. That is, the carbon atom content of the hard layer is 2.0 atom% or less, and the carbon atom content of the hard layer is less than the carbon atom content of the intermediate layer. Further, the carbon atom content of the intermediate layer is preferably 2.1 atomic percent or more and 98 atomic percent or less, and if the intermediate layer contains a silicon oxide compound, it is 2.1 atomic percent or more and 8 atomic percent or less. Are preferred.
- carbon atom% is expressed in coal bed atom%, and the coal bed atom% can be obtained using a known analysis means, but in the present invention, it is calculated by the XPS method described below. Is preferred. Carbon atom% is defined as follows.
- Carbon atom% (number of carbon atoms / number of all atoms) ⁇ 100
- the XPS method is also called X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy), and measures the energy of photoelectrons emitted from a sample when the sample is irradiated with X-rays in a vacuum. It is an analysis method that identifies the elements present on the surface and identifies the chemical bonding state.
- Specific conditions for measuring the carbon content of the intermediate layer and the hard layer of the intermediate transfer member according to the present invention using the above apparatus are magnesium (Mg) for the X-ray anode and an output of 600 W (acceleration voltage 15 kV). , And an emission current of 40 mA).
- the energy resolution was set to be 1.5 eV to 1.7 eV when measured with a half-width of a clean Ag3d5 / 2 peak.
- the range of binding energy from 0 eV to 1100 eV was measured at a data acquisition interval of 1.0 eV to determine what elements were detected.
- the data of the etching ion species detected for all the elements were taken in, the interval was set to 0.2 eV, the photoelectron peak giving the maximum intensity was narrow-scanned, and the spectrum of each element was measured.
- the obtained spectrum is on “COMMON DATA PROCESSING SYSTEM” (Ver. 2.3 or later is preferable) manufactured by VAMAS-JAPAN in order to prevent the difference in the content calculation result due to the difference in the measuring apparatus or the computer. Then, the processing was performed with the same software, and the value of the element (carbon) content of each analysis target was determined as carbon atom%.
- the carbon scale was calibrated with the Count Scale, and a 5-point smoothing process was performed.
- the peak area (cps * eV) from which the background was removed was used.
- the method by Shirley was used.
- the Shirley method see D.C. A. Shirley, Phys. Rev. B5, 4709 (1972) can be referred to.
- the intermediate layer and the hard layer constituting the surface layer of the intermediate transfer member according to the present invention will be further described.
- the film density of the hard layer is set to be higher than the film density of the intermediate layer. It is preferable to enlarge it.
- the elastic modulus of the hard layer is preferably larger than that of the intermediate layer.
- the film density of the hard layer is preferably in a 2.07 g / cm 3 or more 2.19 g / cm 3 or less, the film density of the intermediate layer be made smaller than the film density of the hard layer preferable.
- the film density of the intermediate layer is preferably 1.40 g / cm 3 or more and 2.10 g / cm 3 or less on the assumption that the film density is smaller than the film density of the hard layer.
- the intermediate layer and the hard layer constituting the surface layer of the intermediate transfer member have a hard layer with a film density higher than that of the intermediate layer.
- the elastic modulus of a hard layer is larger than the elastic modulus of an intermediate
- film density refers to the mass per unit volume of the surface layer constituting the intermediate transfer member.
- the film density of the surface layers (intermediate layer and hard layer) constituting the intermediate transfer member according to the present invention can be obtained, for example, by the X-ray reflectivity measurement method (XRR) described in the method for measuring the thickness of the surface layer.
- XRR X-ray reflectivity measurement method
- the total reflection critical angle can be calculated.
- the total reflection critical angle is a critical incident angle at which the irradiated X-rays are totally reflected. When the incident angle is larger than the angle, X-rays that enter the sample are generated.
- the film density of the hard layer can be directly measured as it is, but the film density of the intermediate layer is determined by polishing the hard layer, etc. The measurement is performed after removing the intermediate layer to expose the intermediate layer.
- the incident slit is 0.05 mm ⁇ 5 mm, and the light receiving slit is 0.03 mm ⁇ 20 mm. Measurement is performed by the FT method with a step width of 0.005 ° and a step of 10 seconds from 0 to 5 ° in the 2 ⁇ / ⁇ scan method.
- Curve fitting is performed on the obtained reflectance curve using “Reflectivity Analysis Program Ver. 1” manufactured by Mac Science, and each parameter is obtained so that the residual sum of squares of the actual measurement value and the fitting curve is minimized. . From each parameter, the thickness and density of the laminated film can be obtained.
- the film thickness in the present invention can also be determined from the above X-ray reflectivity measurement.
- the measurement of the elastic modulus of the surface layer constituting the intermediate can be performed by a known elastic modulus measuring method.
- a method of measuring constant strain with a constant frequency (Hz) using Vibron DDV-2 manufactured by Orientec, or using RSA-II (manufactured by Remetrics) as a measuring device on a transparent substrate After the ceramic layer is formed, a method obtained from a measurement value obtained when the applied strain is changed at a constant frequency, or a nanoindenter using a nanoindentation method, for example, a nanoindenter manufactured by MST Systems It can be measured by “NANO Indenter TMXP / DCM”.
- the surface layer constituting the intermediate transfer member according to the present invention is an extremely thin layer having a thickness of 10 nm or more and 1000 nm or less.
- the “nanoindentation method” is used. Is preferable.
- the “nanoindentation method” creates a load-displacement curve by continuously loading and unloading a sample using a minute load applying means such as a needle called an indenter. Then, the elastic modulus and hardness of the sample are calculated from the load-displacement curve.
- the elastic modulus and hardness obtained by the nanoindentation method represent the value of the elastic modulus and hardness of the direct surface of the sample, so the elastic modulus and hardness calculated by the nanoindentation method are Suitable as an index of surface elastic modulus or surface hardness.
- elastic modulus means the ratio of the stress applied to the sample and the strain generated by the action of the stress, where the elastic modulus is G, the stress is ⁇ , and the strain is ⁇ .
- G ⁇ / ⁇ It is represented by As can be interpreted from the above formula, the harder the material, the higher the value of the elastic modulus, and the softer the material, the smaller the value of the elastic modulus.
- the elastic modulus of the surface layer constituting the intermediate transfer member according to the present invention that is, the elastic modulus of the intermediate layer and the hard layer can be measured by the elastic modulus measurement method by the “nanoindentation method”.
- a fine diamond indenter is used as the indenter, and the relationship between the load and the indentation depth (displacement amount) is measured while pushing this into the thin film (surface layer), and the plastic deformation hardness is calculated from the measured value. It is.
- the elastic modulus of the hard layer can be directly measured.
- the elastic modulus of the intermediate layer is determined by removing the hard layer by polishing or the like. After exposure, it is measured by the nanoindentation method.
- FIG. 2 is a schematic diagram illustrating an example of a measuring apparatus capable of measuring an elastic modulus by a nanoindentation method.
- 31 is a transducer
- 32 is a diamond Berkovich indenter having a regular triangle shape
- 170 is an intermediate transfer member
- 175 is a resin substrate
- 176 is an elastic layer
- 177 is a surface layer.
- the measuring apparatus of FIG. 2 it is possible to measure the displacement with an accuracy of nanometer order while applying a load of ⁇ N order, for example, using a transducer 31 and a diamond Berkovich indenter 32 having a regular triangle shape.
- a commercially available measuring apparatus having the configuration of FIG. 2 for example, “NANO Indenter XP / DCM (manufactured by MTS Systems / MST NANO Instruments)” can be cited.
- the measurement conditions in the case of measuring the elastic modulus of each layer constituting the surface layer of the intermediate transfer member using the above-described measuring apparatus are as follows, for example.
- Measurement conditions Measuring instrument: NANO Indenter XP / DCM (manufactured by MTS Systems) Measuring indenter: Diamond Berkovich indenter with a regular triangular tip Measurement environment: 20 ° C., 60% RH Measurement sample: Cut the intermediate transfer member to a size of 5 cm ⁇ 5 cm to prepare a measurement sample Maximum load setting: 25 ⁇ N Indentation speed: A speed that reaches a maximum load of 25 ⁇ N in 5 seconds, and a weight is applied in proportion to the time. Each sample is measured at 10 points at random, and the average value is measured by the nanoindentation method. To do.
- the compressive stress acting on the surface layer of the intermediate transfer member is 30 MPa or less.
- the “compressive stress” referred to in the present invention is a value obtained by dividing the force generated when compressed from the direction perpendicular to the surface of the intermediate transfer member by the unit area.
- the “compressive stress” acts in the direction perpendicular to the surface of the intermediate transfer member, ie, the surface layer, and does not act in the horizontal direction, ie, the surface direction of the surface layer.
- the intermediate transfer member when the compressive stress of the surface layer is 30 MPa or less, the internal stress acting on the surface layer becomes appropriate without giving a large stress to the surface layer, and as a result, generation of cracks occurs. It is thought to contribute to prevention.
- the toner image carried on the intermediate transfer member also contributes to the aspect of imparting the hardness to transfer the toner image uniformly and uniformly to the transfer material.
- the compressive stress defined in the present invention can be calculated using any measuring device as long as it is a commercially available measuring device capable of measuring compressive stress.
- a specific measuring apparatus for example, a film physical property evaluation apparatus “MH4000” manufactured by NEC Sanei Co., Ltd. can be cited as a representative example.
- the compressive stress of the surface layer of the intermediate transfer body according to the present invention is measured using the film physical property evaluation apparatus “MH4000”, specifically, on quartz glass having a thickness of 100 ⁇ m, a width of 10 mm, and a length of 50 mm, Each layer can be formed to a thickness of 1 ⁇ m, and the compressive stress (residual stress, MPa) can be measured with the measuring device.
- the resin substrate constituting the intermediate transfer member according to the present invention has rigidity that prevents the intermediate transfer member from being deformed by a load applied from a cleaning blade as a cleaning member. That is, the resin base acts so that the transfer performance is not affected even if an external force is applied to the intermediate transfer body due to its rigidity.
- the resin substrate constituting the intermediate transfer member according to the present invention is preferably formed with an elastic modulus measured by a nanoindentation method in the range of 1.5 GPa to 15.0 GPa.
- Examples of the resin material exhibiting such performance include resin materials such as polycarbonate, polyphenylene sulfide, polyvinylidene fluoride, polyimide, polyether, polyether ketone, and among these, polyimide, polycarbonate, and polyphenylene sulfide are preferable.
- the resin substrate may be prepared by adding a conductive substance to the resin material so that, for example, the electric resistance value (volume resistivity) is adjusted to 10 5 to 10 11 ⁇ ⁇ cm.
- the thickness of the resin substrate is preferably 50 to 200 ⁇ m.
- the shape of the resin substrate may be a shape of a seamless belt used for an intermediate transfer belt or a shape capable of taking a drum shape. A resin substrate capable of taking a drum shape is advantageous in obtaining a large mechanical strength.
- a typical conductive material that can be added to the resin material includes carbon black, and it is preferable to use neutral or acidic carbon black.
- the amount of conductive substance added to the resin material varies depending on the type of conductive substance used, but it must be added so that the electrical resistance value (volume resistance value) of the intermediate transfer member falls within the above range. Is preferred. Specifically, the amount is preferably 10 to 20 parts by mass, more preferably 10 to 16 parts by mass with respect to 100 parts by mass of the resin material.
- the resin substrate can be manufactured by a conventionally known general method. For example, it can be manufactured by melting a material obtained by mixing the above-described conductive material in the above-described resin material, extruding the melt from a T die or an annular die, and rapidly cooling it.
- the surface of the resin substrate may be subjected to surface treatment such as corona treatment, flame treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, and the like.
- the elastic layer constituting the intermediate transfer member according to the present invention imparts a certain degree of elasticity to the intermediate transfer member so that the toner image on the photosensitive member can be uniformly and uniformly transferred onto the surface of the intermediate transfer member. That is, the elastic layer is deformed in response to the pressure from the photoconductor during the primary transfer, thereby reducing the load concentration on the toner image and preventing the occurrence of image defects called voids.
- the elastic layer constituting the intermediate transfer member according to the present invention can be made of an elastic material called rubber or elastomer.
- elastic materials include styrene-butadiene rubber, high styrene rubber, butadiene rubber, isoprene rubber, ethylene-propylene copolymer, nitrile butadiene rubber, chloroprene rubber, butyl rubber, silicone rubber, fluorine rubber, nitrile rubber, urethane rubber. , Acrylic rubber, epichlorohydrin rubber, norbornene rubber and the like alone or in mixture.
- the hardness of the elastic layer is preferably 40 to 80 in terms of JIS A hardness.
- the thickness of the elastic layer is preferably 100 ⁇ m to 500 ⁇ m.
- the elastic layer constituting the intermediate transfer member according to the present invention has an electrical resistance value (volume resistivity) adjusted to, for example, 10 5 to 10 11 ⁇ ⁇ cm by dispersing a conductive substance in the elastic material described above. Can be made.
- Examples of the conductive substance that can be added to the elastic layer include carbon black, zinc oxide, tin oxide, and silicon carbide. Among these, when carbon black is used, neutral or acidic carbon black is preferable. Can be used.
- the amount of the conductive substance added to the elastic material varies depending on the type of the conductive substance to be used, but it is preferable to add so that the electric resistance value (volume resistance value) of the elastic layer is in the above range. Specifically, it is preferable to add 10 to 20 parts by mass with respect to 100 parts by mass of the elastic material, and more preferably 10 to 16 parts by mass.
- the elastic layer can be produced, for example, by the following procedure. First, in the tank containing the coating solution for forming the elastic layer, the above-mentioned resin substrate is placed in a vertically standing state and immersed, and after repeated immersion, a coating film having a predetermined thickness is formed. Pull out from the liquid. Next, after drying to remove the solvent, heat treatment (for example, a treatment temperature of 60 to 150 ° C., a treatment time of 60 minutes) is performed to produce an elastic layer.
- heat treatment for example, a treatment temperature of 60 to 150 ° C., a treatment time of 60 minutes
- an anchor coating agent layer in the intermediate transfer member according to the present invention, in order to improve the adhesion between the elastic layer and the resin substrate, an anchor coating agent layer can be formed between them.
- the anchor coating agent used to form the anchor coating agent layer include polyester resins, isocyanate resins, polyurethane resins, polyacrylic resins, polyethylene vinyl alcohol resins, polyvinyl modified resins, epoxy resins, modified polystyrene resins, and modified silicone resins. , And alkyl titanates alone or a mixture of two or more of the above resins. It is also possible to add conventionally known additives to the anchor coating agent.
- the anchor coating agent layer is formed by applying the coating solution for forming the anchor coating agent layer on the resin substrate by a known application method such as roll coating, gravure coating, knife coating, dip coating or spray coating. Thereafter, it can be formed by drying and removing a solvent, a diluent or the like, or by UV curing treatment.
- the amount of coating solution applied when forming the anchor coating agent layer is preferably about 0.1 to 5 g / m 2 (dry state).
- the method for producing the surface layer constituting the intermediate transfer member according to the present invention is not particularly limited.
- a dry process such as a vacuum deposition method, a molecular beam epitaxial growth method, a sputtering method, an atmospheric pressure plasma CVD method, It can be produced through a wet process such as a spray coating method, a blade coating method, a dip coating method, a casting method, or a coating method, or a printing or inkjet patterning method.
- a gas containing a thin film forming gas is supplied to the discharge space formed between the counter electrodes under atmospheric pressure or a pressure in the vicinity thereof, and the gas is excited by generating a high-frequency electric field in the discharge space. It is preferable that the substrate is exposed to the excited gas to produce a surface layer thin film by an atmospheric pressure plasma CVD method.
- This atmospheric pressure plasma CVD method does not require a decompression chamber or the like, and can form a high speed film and is a highly productive film forming method.
- a film formed by the atmospheric pressure plasma CVD method has a uniform and smooth surface, and a film with very little internal stress can be formed relatively easily.
- electrophotographic image forming apparatuses are required to form toner images with image quality such as color reproducibility and fine line reproducibility faithful to the original by techniques such as digital processing and toner diameter reduction. Even when placed on an intermediate transfer member, it is required to transfer the toner image formed on the photosensitive member onto a transfer material such as paper with high accuracy without impairing the image quality, and high surface smoothness is required. . Since the atmospheric pressure plasma CVD method can form a uniform and highly smooth thin film as described above, the present inventor considers it to be an effective means of the surface layer preparation method of the intermediate transfer member and examines it. It was found again that an intermediate transfer member having the above-described effects can be produced by an atmospheric pressure plasma CVD method.
- one of the typical production methods for producing the surface layer (intermediate layer and hard layer) constituting the intermediate transfer member according to the present invention is to generate an electric field under atmospheric pressure or a pressure in the vicinity thereof.
- An atmospheric pressure plasma CVD method for forming a thin film of the surface layer by performing plasma discharge can be given.
- the “atmospheric pressure plasma CVD (Chemical Vapor Deposition) method” (hereinafter also referred to as “atmospheric pressure plasma method”) in the present invention refers to excitation of a discharge gas under atmospheric pressure or pressure near atmospheric pressure.
- atmospheric pressure or its vicinity represents a pressure of 20 kPa to 110 kPa, preferably 93 kPa to 104 kPa.
- FIG. 3 is an explanatory view of a first manufacturing apparatus for manufacturing the surface layer of the intermediate transfer member.
- a first production apparatus for an intermediate transfer member (a direct method in which the discharge space and the thin film deposition region are substantially the same) forms a surface layer on an elastic layer 176 formed on a resin substrate 175, and is a seamless belt-like intermediate transfer.
- a roll electrode 20 and a driven roller 201 which are wound around a resin substrate 175 of a body 170 and rotated in the direction of the arrow, and an atmospheric pressure plasma CVD apparatus 3 which is a film forming apparatus for forming a surface layer on the surface of the elastic layer 176. ing.
- the atmospheric pressure plasma CVD apparatus 3 includes at least one set of fixed electrodes 21 arranged along the outer periphery of the roll electrode 20, a discharge space 23 in which discharge is performed in a region where the fixed electrode 21 and the roll electrode 20 face each other, A mixed gas supply device 24 that generates a mixed gas G of at least a raw material gas and a discharge gas and supplies the mixed gas G to the discharge space 23; a discharge vessel 29 that reduces the inflow of air into the discharge space 23 and the like; A first power source 25 connected to the roll electrode 20, a second power source 26 connected to the fixed electrode 21, and an exhaust unit 28 that exhausts the used exhaust gas G ′.
- the mixed gas supply device 24 supplies, to the discharge space 23, a mixed gas obtained by mixing a raw material gas for forming a film of at least one layer selected from an inorganic oxide layer and an inorganic nitride layer and a rare gas such as nitrogen gas or argon gas. Supply. It is more preferable to mix oxygen gas or hydrogen gas for promoting the reaction by the oxidation-reduction reaction.
- the driven roller 201 is pulled in the direction of the arrow by the tension applying means 202 and applies a predetermined tension to the resin base 175.
- the tension applying means 202 cancels the application of the tension when the resin base 175 is changed, so that the resin base 175 can be easily changed.
- the first power supply 25 outputs a voltage having a frequency ⁇ 1
- the second power supply 26 outputs a voltage having a frequency ⁇ 2
- the electric field V in which the frequencies ⁇ 1 and ⁇ 2 are superimposed is generated in the discharge space 23 by these voltages.
- the mixed gas G is turned into plasma by the electric field V, and a film (intermediate layer, hard layer) corresponding to the source gas contained in the mixed gas G is deposited on the surface of the elastic layer 176.
- a plurality of fixed electrodes positioned on the downstream side in the rotation direction of the roll electrode and the mixed gas supply device are stacked so that the surface layers are stacked, and the thickness of the surface layer is adjusted. Good.
- the surface layer is deposited with the fixed electrode located on the most downstream side in the rotation direction of the roll electrode and the mixed gas supply device, and with the other fixed electrode and mixed gas supply device located further upstream,
- other layers such as an adhesive layer that improves the adhesion between the surface layer 177 and the elastic layer 176 may be formed.
- a gas supply device and a fixed electrode for supplying a gas such as argon or oxygen upstream of the fixed electrode and the mixed gas supply device for forming the surface layer.
- the surface of the elastic layer 176 may be activated by performing plasma treatment.
- the intermediate transfer member which is a seamless belt, is stretched around a pair of rollers, and one of the pair of rollers serves as one electrode of a pair of electrodes, and the outer peripheral surface of the roller as one electrode At least one fixed electrode which is the other electrode is provided along the outside of the electrode, and an electric field is generated between these pair of electrodes under atmospheric pressure or near atmospheric pressure to cause plasma discharge, and a thin film is formed on the surface of the intermediate transfer member.
- FIG. 4 is an explanatory view of a second manufacturing apparatus for manufacturing the surface layer of the intermediate transfer member.
- the second production apparatus 2b for the intermediate transfer member forms a surface layer simultaneously on the elastic layer provided on the plurality of resin substrates, and includes a plurality of film forming apparatuses 2b1 that mainly form the surface layer on the elastic layer, and 2b2.
- the second manufacturing apparatus 2b (a method in which discharge and thin film deposition are performed between opposed roll electrodes in a modification of the direct system) is arranged in a substantially mirror image relation with a predetermined gap from the first film forming apparatus 2b1.
- a mixed gas supply device 24b for supplying the mixed gas G.
- the first film forming apparatus 2b1 is a seamless belt-shaped intermediate transfer member resin substrate 175 wound around a roll electrode 20a that rotates in an arrow direction, a driven roller 201, and a tension applying unit 202 that pulls the driven roller 201 in the arrow direction.
- a first power supply 25 connected to the roll electrode 20a, and the second film forming apparatus 2b2 rolls a resin substrate 175 of a seamless belt-like intermediate transfer member and rotates in the direction of the arrow.
- the second manufacturing apparatus 2b has a discharge space 23b in which discharge is performed in a region where the roll electrode 20a and the roll electrode 20b are opposed to each other.
- the mixed gas supply device 24b supplies, to the discharge space 23b, a mixed gas obtained by mixing a source gas for forming a film of at least one layer selected from an inorganic oxide layer and an inorganic nitride layer, and a rare gas such as nitrogen gas or argon gas. Supply. It is more preferable to mix oxygen gas or hydrogen gas for promoting the reaction by the oxidation-reduction reaction.
- the first power supply 25 outputs a voltage having a frequency ⁇ 1
- the second power supply 26 outputs a voltage having a frequency ⁇ 2, and generates an electric field V in which the frequencies ⁇ 1 and ⁇ 2 are superimposed on the discharge space 23b.
- the mixed gas G is converted into plasma (excited) by the electric field V
- the plasma (excited) mixed gas is converted into the elastic layer 176 of the first film forming apparatus 2b1 and the surface of the elastic layer 176 of the second film forming apparatus 2b2.
- the elastic layer 176 provided on the resin substrate 175 of the first film forming apparatus 2b1 and the second layer corresponding to the source gas contained in the plasma gas (excited) mixed gas exposed to They are simultaneously deposited and formed on the surface of the elastic layer 176 provided on the resin substrate 175 of the film forming apparatus 2b2.
- the roll electrode 20a and the roll electrode 20b facing each other are arranged with a predetermined gap therebetween.
- FIG. 5 below is a diagram mainly extracted from the broken line part of FIG.
- FIG. 5 is an explanatory diagram of a first plasma film forming apparatus for manufacturing the surface layer 177 of the intermediate transfer member by plasma.
- the atmospheric pressure plasma CVD apparatus 3 has at least one pair of rollers that detachably rolls and rotates a resin substrate, and at least one pair of electrodes that perform plasma discharge.
- One electrode is one of the pair of rollers, and the other electrode is a fixed electrode facing the one roller through the resin base, and the one roller and the fixed electrode are opposed to each other.
- An apparatus for manufacturing an intermediate transfer body in which the surface layer is exposed to plasma generated in a region to deposit and form the surface layer For example, when nitrogen is used as a discharge gas, a high voltage is applied by one power source to the other. It is preferably used in order to start discharge stably and continue discharge by applying a high frequency with the power source.
- the atmospheric pressure plasma CVD apparatus 3 includes the mixed gas supply device 24, the fixed electrode 21, the first power source 25, the first filter 25a, the roll electrode 20, and the driving means 20a for driving and rotating the roll electrode in the arrow direction.
- a second power source 26 and a second filter 26a are provided, and plasma discharge is performed in the discharge space 23 to excite the mixed gas G obtained by mixing the source gas and the discharge gas, and the excited mixed gas G1 is converted into the elastic layer. It is exposed to the surface 176a, and a surface layer 177 is deposited and formed on the surface.
- a first high frequency voltage having a frequency ⁇ 1 is applied to the fixed electrode 21 from the first power source 25, and a high frequency voltage having a frequency ⁇ 2 is applied to the roll electrode 20 from the second power source 26.
- an electric field is generated between the fixed electrode 21 and the roll electrode 20 in which the frequency ⁇ 1 is superimposed on the electric field strength V1 and the frequency ⁇ 2 is superimposed on the electric field strength V2, the current I1 flows through the fixed electrode 21, and the current flows through the roll electrode 20 I2 flows and plasma is generated between the electrodes.
- the relationship between the frequency ⁇ 1 and the frequency ⁇ 2, and the relationship between the electric field strength V1, the electric field strength V2, and the electric field strength IV at which discharge of the discharge gas starts is ⁇ 1 ⁇ 2, and V1 ⁇ IV> V2, or V1> IV ⁇ V2 is satisfied, and the output density of the second high-frequency electric field is 1 W / cm 2 or more.
- the electric field strength IV for starting the discharge of nitrogen gas is 3.7 kV / mm
- the electric field strength V1 applied from at least the first power source 25 is 3.7 kV / mm or more, and the second high-frequency power source 60 is used. Is preferably 3.7 kV / mm or less.
- first power supply 25 high frequency power supply
- first atmospheric pressure plasma CVD apparatus 3 specific examples of the first power supply 25 (high frequency power supply) that can be used for the first atmospheric pressure plasma CVD apparatus 3 include commercially available ones shown in Table 1 below, all of which should be used. Can do. That is,
- the second power source 26 (high frequency power source)
- specific examples of the second power source 26 can be listed as shown in Table 2 below, and any of them can be used. That is,
- * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode). Other than that, it is a high-frequency power source that can apply only a continuous sine wave.
- the power supplied between the opposing electrodes from the first and second power sources supplies power (power density) of 1 W / cm 2 or more to the fixed electrode 21, excites the discharge gas to generate plasma, Form.
- the upper limit value of the power supplied to the fixed electrode 21 is preferably 50 W / cm 2 , more preferably 20 W / cm 2 .
- the lower limit is preferably 1.2 W / cm 2 .
- discharge area (cm ⁇ 2 >) points out the area of the range which discharge occurs in an electrode.
- the roll electrode 20 by supplying power (power density) of 1 W / cm 2 or more to the roll electrode 20, it is possible to improve the power density while maintaining the uniformity of the high frequency electric field. Thereby, a further uniform high-density plasma can be generated, and a further improvement in film formation speed and an improvement in film quality can be achieved.
- power density power density
- the upper limit value of the power supplied to the roll electrode 20 is preferably 50 W / cm 2 .
- the waveform of the high-frequency electric field is not particularly limited.
- a continuous sine wave continuous oscillation mode called a continuous mode
- an intermittent oscillation mode called ON / OFF intermittently called a pulse mode. Either of them may be adopted, but at least the high frequency supplied to the roll electrode 20
- the continuous sine wave is preferable because a denser and better quality film can be obtained.
- a first filter 25 a is installed between the fixed electrode 21 and the first power supply 25 to facilitate passage of current from the first power supply 25 to the fixed electrode 21, and the second power supply 26.
- the current from the second power source 26 to the first power source 25 is less likely to pass through, and the second electrode 26 and the second power source 26 are connected between the second electrode 26 and the second power source 26.
- a filter 26a is provided to facilitate the passage of current from the second power source 26 to the roll electrode 20, ground the current from the first power source 21, and the first power source 25 to the second power source 26. It is designed to make it difficult for current to pass through.
- Electrode 21 and the roll electrode 20 have at least a resistance to discharge by a strong electric field.
- One electrode surface is coated with the following dielectric.
- the relationship between the electrode and the power source may be that the second power source 26 is connected to the fixed electrode 21 and the first power source 25 is connected to the roll electrode 20.
- FIG. 6 is a schematic view showing an example of a roll electrode.
- the roll electrode 20 is an inorganic material after thermal spraying ceramics on a conductive base material 200a (hereinafter also referred to as “electrode base material”) such as metal. And a ceramic coated dielectric 200b (hereinafter, also simply referred to as “dielectric”) that has been sealed with a metal.
- a ceramic material used for thermal spraying alumina, silicon nitride or the like is preferably used. Among these, alumina is more preferable because it is easily processed.
- the roll electrode 20 ' may be constituted by a combination of a conductive base material 200A such as a metal coated with a lining dielectric 200B provided with an inorganic material by lining.
- a conductive base material 200A such as a metal coated with a lining dielectric 200B provided with an inorganic material by lining.
- the lining material silicate glass, borate glass, phosphate glass, germanate glass, tellurite glass, aluminate glass, vanadate glass and the like are preferably used. Of these, borate glass is more preferred because it is easy to process.
- Examples of the conductive base materials 200a and 200A such as metal include metals such as silver, platinum, stainless steel, aluminum, titanium, titanium alloy, and iron. Stainless steel is preferable from the viewpoint of processing and cost.
- the base material 200a, 200A of the roll electrode uses a stainless steel jacket roll base material having a cooling means by cooling water (not shown).
- FIG. 7 is a schematic view showing an example of a fixed electrode.
- the fixed electrodes 21 and 21a, 21b of the prisms or cylindrical cylinders use an inorganic material after thermal spraying ceramics on the conductive base material 210c such as metal as in the roll electrode 20 described above. And a ceramic coating treated dielectric 210d that has been sealed.
- the prismatic or prismatic fixed electrode 21 ' is a combination of a conductive base material 210A such as metal coated with a lining dielectric 210B provided with an inorganic material by lining. It may be configured.
- the mixed gas G is generated from the mixed gas supply device 24 and discharged into the discharge space 23.
- a voltage of frequency ⁇ 1 is output from the first power supply 25 and applied to the fixed electrode 21, and a voltage of frequency ⁇ 2 is output from the second power supply 26 and applied to the roll electrode 20, and these voltages enter the discharge space 23.
- An electric field V in which the frequencies ⁇ 1 and ⁇ 2 are superimposed is generated.
- the mixed gas G discharged into the discharge space 23 by the electric field V is excited to be in a plasma state. Then, the surface of the elastic layer is exposed to the plasma mixed gas G, and at least one layer selected from the inorganic oxide layer and the inorganic nitride layer by the source gas in the mixed gas G, that is, the surface layer 177 is formed on the elastic layer 176. To form.
- the discharge gas refers to a gas that is plasma-excited under the above-mentioned conditions, and examples thereof include nitrogen, argon, helium, neon, krypton, xenon, and mixtures thereof. Among these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
- a gas or liquid organometallic compound As a source gas used for forming the surface layer, a gas or liquid organometallic compound, particularly an alkyl metal compound, a metal alkoxide compound, or an organometallic complex compound is used at room temperature.
- the phase state of these raw materials does not necessarily need to be a gas phase at normal temperature and normal pressure, and can be solid even in a liquid phase as long as it can be vaporized through heating, decompression, etc. by melting, evaporation, sublimation, etc. It can also be used in phases.
- the raw material gas includes a component that is in a plasma state in the discharge space and forms a thin film, and is an organic metal compound, an organic compound, an inorganic compound, or the like.
- silicon compounds such as silane, tetramethoxysilane, tetraethoxysilane (TEOS), tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetrat-butoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane , Diethyldimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) dimethyl Silane, bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl
- Titanium compounds include organometallic compounds such as tetradimethylaminotitanium, metal hydrogen compounds such as monotitanium and dititanium, metal halogen compounds such as titanium dichloride, titanium trichloride, and titanium tetrachloride, tetraethoxy titanium, tetraisopropoxy titanium And metal alkoxides such as tetrabutoxytitanium, but are not limited thereto.
- Aluminum compounds include aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum diisopropoxide ethyl acetoacetate, aluminum ethoxide, aluminum hexafluoropentanedionate, aluminum isopropoxide, aluminum III2,4- Pentandionate, dimethylaluminum chloride and the like are exemplified, but not limited thereto.
- raw materials may be used alone, or two or more kinds of components may be mixed and used.
- an additive gas When forming the surface layer of the intermediate transfer member according to the present invention, an additive gas can be used for the purpose of controlling the composition, elastic modulus, and film density during film formation.
- the additive gas examples include oxygen, hydrogen, and carbon dioxide gas.
- oxygen when hydrogen is used as the additive gas, a carbon-containing film is easily formed, and when oxygen is used, a metal oxide film is easily formed.
- the elastic modulus of the surface layer can be adjusted by the film forming speed, the raw material gas used, the kind of additive gas, the amount ratio of each gas, and the like.
- the intermediate layer containing carbon atoms causes plasma excitation of a mixed gas (discharge gas) between a pair of electrodes (roll electrode 20 and fixed electrode 21).
- the source gas having carbon atoms present in the plasma is radicalized and exposed to the surface of the elastic layer 176.
- numerator and carbon containing radical which were exposed to the surface of this elastic layer 176 are contained in an intermediate
- an organic compound gas that is a gas or liquid at room temperature particularly a hydrocarbon gas
- the phase state of these raw materials does not necessarily need to be a gas phase at normal temperature and normal pressure, and can be solid even in a liquid phase as long as it can be vaporized through heating, decompression, etc. by melting, evaporation, sublimation, etc. It can also be used in phases.
- hydrocarbon gas for example, paraffinic hydrocarbons such as CH 4 , C 2 H 6 , C 3 H 8 , and C 4 H 10 , and acetylene carbonization such as C 2 H 2 and C 2 H 4 are used.
- Gases containing at least all hydrocarbons such as hydrogen, olefinic hydrocarbons, diolefinic hydrocarbons, and aromatic hydrocarbons can be used.
- Other than more hydrocarbons such as alcohols, ketones ethers, esters, CO, CO 2, etc. can be used as long as it is a compound including at least carbon elements.
- these source gases may be used alone, or two or more kinds of components may be mixed and used.
- the intermediate transfer member of the present invention is suitably used for image forming methods and image forming apparatuses such as electrophotographic copying machines, printers, and facsimiles.
- An image forming apparatus that can use the intermediate transfer member of the present invention will be described using a color image forming apparatus as an example.
- FIG. 8 is a cross-sectional configuration diagram illustrating an example of a color image forming apparatus.
- the color image forming apparatus 10 is called a tandem type full-color copying machine, and includes an automatic document feeder 13, a document image reading device 14, a plurality of exposure means 13Y, 13M, 13C, and 13K, and a plurality of sets of images.
- the image forming apparatus includes a forming unit 10Y, 10M, 10C, and 10K, an intermediate transfer body unit 17 on which the intermediate transfer body according to the present invention can be mounted, a paper feeding unit 15, and a fixing unit 124.
- An automatic document feeder 13 and a document image reading device 14 are arranged on the upper part of the main body 12 of the image forming apparatus, and an image of the document d conveyed by the automatic document feeder 13 is an optical system of the document image reading device 14. The image is reflected and imaged by the line image sensor CCD.
- the analog signal obtained by photoelectrically converting the original image read by the line image sensor CCD is subjected to analog processing, A / D conversion, shading correction, image compression processing, and the like in an image processing unit (not shown), and then exposure means 13Y, 13M, 13C, and 13K are sent as digital image data for each color, and the exposure means 13Y, 13M, 13C, and 13K correspond to the corresponding drum-shaped photoconductors 11Y, 11M, 11C, and 11K as the corresponding first image carriers.
- a latent image of the image data is formed.
- the image forming units 10Y, 10M, 10C, and 10K are arranged in tandem in the vertical direction, and can be rotated by winding rollers 171, 172, 173, and 174 around the left side of the photoreceptors 11Y, 11M, 11C, and 11K in the drawing.
- the intermediate transfer belt 170 according to the present invention is driven in the direction of an arrow through a roller 171 that is rotationally driven by a driving device (not shown).
- the image forming unit 10Y that forms a yellow image includes a charging unit 12Y, an exposure unit 13Y, a developing unit 14Y, a primary transfer roller 15Y as a primary transfer unit, and a cleaning unit 16Y disposed around the photoreceptor 11Y. Have.
- the image forming unit 10M that forms a magenta image includes a photoreceptor 11M, a charging unit 12M, an exposure unit 13M, a developing unit 14M, a primary transfer roller 15M as a primary transfer unit, and a cleaning unit 16M.
- the image forming unit 10C that forms a cyan image includes a photoreceptor 11C, a charging unit 12C, an exposure unit 13C, a developing unit 14C, a primary transfer roller 15C as a primary transfer unit, and a cleaning unit 16C.
- the image forming unit 10K that forms a black image includes a photoreceptor 11K, a charging unit 12K, an exposure unit 13K, a developing unit 14K, a primary transfer roller 15K as a primary transfer unit, and a cleaning unit 16K.
- the toner replenishing means 141Y, 141M, 141C, and 141K replenish new toner to the developing devices 14Y, 14M, 14C, and 14K, respectively.
- the primary transfer rollers 15Y, 15M, 15C, and 15K are selectively operated according to the type of image by a control unit (not shown), and the intermediate transfer belt 170 is respectively applied to the corresponding photoreceptors 11Y, 11M, 11C, and 11K. To transfer the image on the photoreceptor.
- the images of the respective colors formed on the photoreceptors 11Y, 11M, 11C, and 11K by the image forming units 10Y, 10M, 10C, and 10K are rotated by the primary transfer rollers 15Y, 15M, 15C, and 15K.
- the image is sequentially transferred onto the intermediate transfer belt 170, and a combined color image is formed.
- the toner image carried on the surface of the photoreceptor is primarily transferred onto the intermediate transfer belt 170, and the intermediate transfer belt 170 holds the transferred toner image.
- the transfer material P as a recording medium accommodated in the paper feeding cassette 151 is fed by the paper feeding means 15 and then passes through a plurality of intermediate rollers 122A, 122B, 122C, 122D, and a registration roller 123, and then the secondary material.
- the toner image is conveyed to a secondary transfer roller 117 serving as a transfer unit, and the combined toner image on the intermediate transfer member is collectively transferred onto the transfer material P by the secondary transfer roller 117.
- the toner image held on the intermediate transfer member is secondarily transferred onto the surface of the transfer object.
- the secondary transfer means 6 presses the transfer material P against the intermediate transfer belt 170 only when the transfer material P passes through the secondary transfer means 6 and performs secondary transfer.
- the transfer material P onto which the color image has been transferred is fixed by the fixing device 124, sandwiched between the discharge rollers 125, and placed on the discharge tray 126 outside the apparatus.
- the residual toner is removed by the cleaning means 8 from the intermediate transfer belt 170 from which the transfer material P is separated by curvature.
- the intermediate transfer member may be replaced with a rotating drum-like member as described above.
- the primary transfer rollers 15Y, 15M, 15C, and 15K disperse a conductive material such as carbon in a rubber material such as polyurethane, EPDM, or silicone on the peripheral surface of a conductive core metal such as stainless steel having an outer diameter of 8 mm. Or a solid state or foamed sponge state with a volume resistance of about 10 5 to 10 9 ⁇ ⁇ cm, a thickness of 5 mm, and a rubber elastic modulus of about 20 to 70 ° ( It is formed by coating a semiconductive elastic rubber having an Asker elastic modulus C).
- the secondary transfer roller 117 disperses a conductive material such as carbon in a rubber material such as polyurethane, EPDM, or silicone on the peripheral surface of a conductive metal core such as stainless steel having an outer diameter of 8 mm, or an ionic conductive material.
- a conductive material such as carbon in a rubber material such as polyurethane, EPDM, or silicone
- a conductive metal core such as stainless steel having an outer diameter of 8 mm, or an ionic conductive material.
- the thickness is 5 mm
- the rubber elastic modulus is about 20 to 70 ° (Asker elastic modulus C). It is formed by covering a semiconductive elastic rubber.
- the transfer material used in the present invention is a support for holding a toner image, and is usually called an image support, a transfer material, or transfer paper.
- Specific examples include various kinds of transfer materials such as plain paper from thin paper to thick paper, coated printing paper such as art paper and coated paper, commercially available Japanese paper and postcard paper, plastic films for OHP, and cloth. However, it is not limited to these.
- resin substrate 1 A seamless belt made of polyphenylene sulfide (PPS) containing a conductive material having a thickness of 100 ⁇ m was prepared and referred to as “resin substrate 1”.
- PPS polyphenylene sulfide
- resin substrate 2 A seamless-less belt made of polyimide (PI) containing a conductive material having a thickness of 100 ⁇ m was prepared and referred to as “resin substrate 2”.
- resin substrate 3 A seamless belt made of polyester containing a conductive material having a thickness of 100 ⁇ m was prepared and designated as “resin substrate 3”.
- the following intermediate layer mixed gas composition was used as a forming material of the intermediate layer 1.
- the intermediate layer 1 was formed under the following film formation conditions.
- the dielectric covering each electrode of the plasma discharge processing apparatus at this time both electrodes facing each other were coated with 1 mm thick alumina by a ceramic spraying process.
- the electrode gap after coating was set to 1 mm.
- the metal base material coated with a dielectric is a stainless steel jacket specification having a cooling function by cooling water, and during discharge, the electrode temperature is controlled by cooling water, and the “intermediate layer 1” (Si x O y ) was prepared.
- the hard layer forming material As the hard layer forming material, the following hard layer mixed gas composition was used. The hard layer was formed under the following film forming conditions. As the dielectric covering each electrode of the plasma discharge processing apparatus at this time, both electrodes facing each other were coated with 1 mm thick alumina by ceramic spraying. The electrode gap after coating was set to 1 mm.
- the metal base material coated with a dielectric is a stainless steel jacket specification that has a cooling function by cooling water. During discharge, the electrode temperature is controlled by cooling water, and the “hard layer 1” (SiO 2 ) is formed. Produced.
- Discharge gas Nitrogen gas 94.99 volume% Film formation (raw material) gas: Tetraethoxysilane (TEOS) 0.01% by volume
- Additive gas Oxygen gas 5.00% by volume
- Electrode temperature 70 ° C Through the above procedure, an “intermediate transfer member 1” was produced by forming “elastic layer 1”, “intermediate layer 1” and “hard layer 1” on “resin substrate 1” made of polyphenylene sulfide (PPS). .
- PPS polyphenylene sulfide
- intermediate transfer member 2 was prepared by the same procedure except that the thickness of the intermediate layer 1 and the hard layer 1 was changed to the values shown in Table 3 in the preparation of the “intermediate transfer member 1”.
- intermediate transfer member 5 In the production of the “intermediate transfer body 1”, when the “intermediate layer 1” is formed, the carbon atom content is continuously from 8 carbon atom% to 3.3 carbon atom% from the elastic layer side toward the hard layer. Thus, an intermediate layer having a gradient structure was produced by changing the intermediate gas mixture composition. Otherwise, “intermediate transfer member 5” was prepared by the same procedure as that of “intermediate transfer member 1”.
- intermediate transfer member 8 was prepared in the same procedure except that the “intermediate transfer member 1” was formed without forming the “intermediate layer 1” but only the “hard layer 1”.
- intermediate transfer member 9 was prepared in the same manner as the “intermediate transfer member 1” except that only the “intermediate layer 1” was formed and the “hard layer 1” was not formed.
- intermediate transfer member 20 In the production of the “intermediate transfer member 1”, an “intermediate transfer member 20” was produced by the same procedure except that the hard layer was produced by the following method.
- the hard layer forming material As the hard layer forming material, the following hard layer mixed gas composition was used. The hard layer was formed under the following film forming conditions. As the dielectric covering each electrode of the plasma discharge processing apparatus at this time, both electrodes facing each other were coated with 1 mm thick alumina by a ceramic spraying process. The electrode gap after coating was set to 1 mm.
- the metal base material coated with a dielectric is a stainless steel jacket specification that has a cooling function by cooling water. During discharge, the electrode temperature is controlled by cooling water, and the “hard layer 2” (SiOxCy) is formed. Produced.
- Discharge gas Nitrogen gas 94.99 volume% Film formation (raw material) gas: Tetraethoxysilane (TEOS) 0.05% by volume
- Addition gas 4.96% by volume of oxygen gas
- an “intermediate transfer member 20” was produced by forming “elastic layer 1”, “intermediate layer 2” and “hard layer 2” on “resin substrate 1” made of polyphenylene sulfide (PPS). .
- the layer thickness of the intermediate layer and the hard layer is a value obtained by measuring the reflectance according to the above-described procedure using the above-described micro X-ray diffraction apparatus “MXP21 (manufactured by Mac Science)”.
- Table 4 shows the elastic modulus, film density, and compressive stress of the intermediate transfer member produced above.
- intermediate transfer members 1 to 20 “intermediate transfer members 1 to 7, 10, 11, 14, 15, 19 and 20” satisfying the configuration of the present invention are referred to as “Examples 1 to 13”
- Intermediate transfer members 8, 9, 12, 13, 16 to 18” having no configuration of the invention are referred to as “Comparative Examples 1 to 7”.
- the elastic modulus, film density, and compressive stress of each intermediate transfer member are values obtained by using the above-described measuring apparatus and measuring procedure.
- the print creation environment was a low temperature and low humidity environment (temperature 10 ° C., relative humidity 20% RH) and a high temperature and high humidity environment (temperature 33 ° C., relative humidity 80% RH), and 160,000 prints were created in this environment. .
- A4 size fine paper 64 g / m 2 was used as a transfer material.
- a printed document has a character image with a printing rate of 7% (3 point characters and 5 point characters are 50% each), a color human face image (dot image including a halftone), a solid white image, and a solid image each 1/4.
- the original image (A4 version) in equal parts was used.
- the evaluation was performed with respect to the primary transfer rate, the secondary transfer rate, character dropout, blade cleaning properties, cracks, and toner filming.
- Evaluation of the primary transfer rate was performed by printing in a low-temperature and low-humidity environment (temperature 10 ° C., relative humidity 20% RH), and measuring the transfer rate at the initial stage and after the completion of 160,000 prints.
- the primary transfer rate is that when a solid image (20 mm ⁇ 50 mm) having a pixel density of 1.30 is formed on the photoconductor, the toner mass of the toner image formed on the photoconductor and the intermediate transfer member were transferred to the intermediate transfer body. Thereafter, the toner mass of the transfer remaining on the photoreceptor was determined, and the transfer rate was determined from the following formula.
- Primary transfer rate (%) [ ⁇ (Toner mass of toner image formed on photoconductor) ⁇ (toner mass of transfer residue remaining on photoconductor) ⁇ / (toner mass of toner image formed on photoconductor)] ⁇ 100 In addition, 98% or more was evaluated as favorable.
- the evaluation of the secondary transfer rate was performed in the low temperature and low humidity environment (temperature 10 ° C., relative humidity 20% RH) at the initial transfer rate after printing 160,000 sheets.
- the secondary transfer rate refers to the toner mass of the toner image transferred onto the transfer material and the toner of the toner image formed on the intermediate transfer member when a solid image (20 mm ⁇ 50 mm) having a pixel density of 1.30 is formed. The mass was determined, and the transfer rate was determined from the following formula.
- Secondary transfer rate (%) [ ⁇ (Toner mass of toner image formed on intermediate transfer material) ⁇ (toner mass of residual toner remaining on intermediate transfer member) ⁇ / (toner mass of toner image formed on intermediate transfer member) ] ⁇ 100 A secondary transfer rate of 98% or higher was evaluated as good.
- Evaluation Criteria ⁇ Occurrence of void in character image is good with 3 or less in all 10 printed images ⁇ : One or more characters with void in character image occurring in 4 or more and 19 or less There is no problem in practical use. ⁇ : There are one or more characters in which 20 or more characters are lost in the character image, and there is a problem in practical use.
- Evaluation criteria A No residual toner was observed on the intermediate transfer member up to 160,000 sheets, and no image smear due to poor cleaning occurred in the printed image. Although it is recognized, there is no problem in practical use because no image smear due to poor cleaning occurs in the printed image.
- X Residual toner is recognized on the intermediate transfer body after 100,000 sheets, and image smear due to poor cleaning also in the print image Has occurred and there is a problem in practical use.
- Evaluation Criteria A No occurrence of cracks on the surface of the intermediate transfer member ⁇ : Although minor cracks are confirmed on the surface of the intermediate transfer member, no image defects due to the cracks are observed and there is no practical problem. The occurrence of significant cracks on the surface of the intermediate transfer member was confirmed, and the occurrence of image defects due to the cracks was also confirmed, causing a problem in practical use.
- the evaluation of the toner filming on the surface of the intermediate transfer member is evaluated by evaluating the occurrence of toner filming on the surface of the intermediate transfer member after making 160,000 prints in a high temperature and high humidity environment (temperature 33 ° C., relative humidity 90% RH). The state was visually observed and evaluated from the state of occurrence of fog and white streaks on the printed image when 160,000 prints were produced.
- Evaluation criteria A No gloss unevenness due to toner filming was observed, and no fogging or white streaks due to toner filming occurred in the printed image. No fogging or white streaks were observed in the places. X: Uneven gloss due to toner filming was observed, and fogging or white streaks occurred in the corresponding locations.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Abstract
たとえば16万枚に及ぶ様な多数枚のプリント作成を行っても、クラックやトナーフィルミングの発生がなく、良好な転写性能とクリーニング性能を維持して、中抜け等の画像欠陥のない優れた品質のトナー画像を安定して作成する中間転写体を提供することを目的とする。 そのために、樹脂基体の外周に弾性層を設け、その上に表面層を設けた構造を有し、表面層は厚さが0.5nm以上1000nm以下で中間層と金属酸化物を主成分とする硬質層からなり、硬質層は、炭素原子含有量が2.0原子%以下であり、かつ、該炭素原子含有量が中間層の炭素原子含有量よりも少ない中間転写体を見出した。
Description
本発明は、弾性層を有する中間転写体に関し、特に、弾性層の上に少なくとも硬質層と中間層を有する表面層を設けた中間転写体に関する。
従来、電子写真方式の画像形成におかれては、電子写真感光体(以下、単に感光体ともいう)表面に形成されたトナー画像を用紙等の転写材に転写する際、感光体表面より転写材上にトナー画像を直接転写する方式の他に、中間転写体と呼ばれるベルト状あるいはドラム状の部材を用いた方式がある。
この方式は、電子写真感光体上より中間転写体上にトナー画像を転写する1次転写と、中間転写体上のトナー画像を転写材上に転写する2次転写という2つの転写工程を有するものである。中間転写方式は、たとえば、ブラック、シアン、マゼンタ、イエロー等の複数種類のトナーを用いて画像を形成するいわゆるフルカラー画像形成に主に用いられる。すなわち、複数の感光体上に形成した各色トナー画像を中間転写体上に順次1次転写してカラートナー画像を重ね合わせ、この様に形成したフルカラーのトナー画像を転写材上に転写することにより、フルカラーのプリント物を作製する。
中間転写体は、その表面でトナー画像の転写や転写後に残ったトナーの除去が繰り返し行われるので高い耐久性が要求されていた。そのため、ポリイミド樹脂等に代表される高耐久性の樹脂部材が使用されてきたが、この様な材質からなる部材は一般に硬いことが多く、感光体上のトナー画像を中間転写体表面にムラなく転写することが難しいという課題を有していた。
この様に、硬い樹脂部材が存在することで感光体上のトナー画像を中間転写体表面にムラなく均一に転写することが難しく、所定のトナーがところどころ脱落した中抜けと呼ばれる画像欠陥がしばしば発生した。特に、文字画像を形成する際にこの問題が顕著に表れ、画像品質に大きな影響を与えた。また、中間転写体に転写されずに感光体上に残存したトナーが飛散するトナー飛散の発生による画像汚染や機内汚染の問題もあった。そこで、中間転写体に弾性層を設けて感光体上のトナー画像を確実に転写させる技術が検討される様になった(たとえば、特許文献1~3参照)。
ところで、中間転写体表面に転写させたトナー画像を今度は用紙等の転写材上に転写する場合には、中間転写体表面が柔らかいとトナー画像が転写しにくくなるので、中間転写体にはある程度の硬さが求められていた。上記特許文献に開示された技術は、いずれも弾性層の存在による転写材への転写性低下を考慮し、さらに、耐久性向上をねらって弾性層の上に無機コーティング層等の別の層を設けることが検討されていた。
たとえば特許文献1の技術は、弾性層の上に0.1~70μmの無機コーティング層を設けることにより、6万枚のフルカラー画像形成を行った後も転写不良や画像流れを起こさない様にしている。
また、特許文献2には、ダイヤモンドライクカーボン膜からなる表面層と、この表面層と弾性体からなるベルト基材の間に両者を接着するための中間層を設けた搬送ベルトが開示されている。さらに、特許文献3には、弾性体よりなる半導電性エンドレスベルト表面に大気圧プラズマ処理を施して弾性体表面にフッ素化合物を化学的に結合させた構造の中間転写体を作成する技術が開示されている。
この様に、中間転写体に弾性層を設けるとともに、弾性層の上に別の層を設けることにより、転写材への転写性確保と耐久性向上等を実現させた中間転写体の検討が進められていた。
ところで、近年のデジタル技術の進展やトナーの小径化技術により、写真画像の様な高精細な画像形成を電子写真方式の画像形成方法で行える様になってきた。この様に高画質画像を形成できる様になることで、従来は印刷で作成していた写真画像等のプリント物が電子写真方式で作成できる様になり、オンデマンド印刷と呼ばれる新しいプリントビジネスが展開される様になった。このオンデマンド印刷と呼ばれるプリントビジネスは、必要枚数分のプリント物を版を起こさずに手間なくタイムリーに提供できるメリットがある。
この様なプリントビジネス市場では、たとえば16万枚を超える様な大量のプリント作製を受注するケースも十分想定されるものといえる。たとえば、200頁前後のプリント物からなる冊子を一度に1000部以上注文するケース等も市場で起こり得るものと想定される。したがって、フルカラープリント物を作製する機会の多い中間転写体に対して、この様なプリント作製環境下におかれても、画像欠陥のない良好な画質のプリント物を安定して作製する性能が求められる様になってきた。
しかしながら、前述の特許文献1に開示された技術は、6万枚レベルのもので、16万枚以上のプリント作成に耐え得るものかどうかは上記文献の記載から推測することはできないものであった。特に、特許文献1の技術は、弾性体上に無機コーティング層を設けて摩耗耐性を向上させることでクリーニング性を改良し、中間転写体表面のトナーによる汚染を防止するものであるが、コロイダルシリカを結着させているのは有機膜であり、16万枚のプリントを行ったときにこれらが削れて擦り傷が発生し、そこからトナーフィルミングの発生が予想されるものであった。また、摩耗耐性を向上させるために、コロイダルシリカの添加量を増大させると、クラックが発生し易くなることも懸念された。
また、特許文献2に開示された技術は、高硬度で平滑な被覆層を弾性体上に形成することが開示されているが、その構成から弾性体上の被覆層は硬すぎると予想され、感光体から中間転写体に十分な転写が行えず、前述したトナー画像の中抜けやトナー飛散等の発生が懸念された。
さらに、特許文献3に開示された技術は、表面に形成されたフッ素化合物の層は非常に軟らかいものと考えられるので、転写材上への十分な転写が行えないことに加えて十分な強度の確保も困難なことから、クリーニングブレードとの接触を繰り返すうちに摩耗して擦り傷が発生し、画像品質を劣化させることが懸念された。
この様に、弾性層とその上に他の層を設けた構成の中間転写体では、感光体からのトナー画像の転写と転写材への転写をバランスよく両立することや弾性層の設置による耐久性低下の課題があり、16万枚を超える様な大量プリント作成に容易に使用できるとは考えにくかった。
本発明は、たとえば、16万枚を超える様な大量プリント作成を連続で行っても、クラックやトナーフィルミングが発生せず、良好な2次転写性と良好なクリーニングを維持し、文字画像の中抜けの様な画像欠陥を発生させることのない良好な画質のトナー画像を安定して形成することが可能な中間転写体を提供することを目的とする。
本発明は、以下の構成を採ることにより達成される。
1.電子写真感光体の表面に担持されたトナー画像を中間転写体に1次転写した後、該中間転写体から該トナー画像を転写材に2次転写する中間転写体において、
該中間転写体は樹脂基体の外周に弾性層を設け、その上に表面層を設けたもので、
該表面層は、厚さが0.5nm以上1000nm以下であり、かつ、中間層と金属酸化物を主成分とする硬質層からなるものであって、
該硬質層は、炭素原子含有量が2.0原子%以下であり、かつ、該炭素原子含有量が中間層の炭素原子含有量よりも少ないものであることを特徴とする中間転写体。
該中間転写体は樹脂基体の外周に弾性層を設け、その上に表面層を設けたもので、
該表面層は、厚さが0.5nm以上1000nm以下であり、かつ、中間層と金属酸化物を主成分とする硬質層からなるものであって、
該硬質層は、炭素原子含有量が2.0原子%以下であり、かつ、該炭素原子含有量が中間層の炭素原子含有量よりも少ないものであることを特徴とする中間転写体。
2.前記中間層は、炭素原子含有量が1.0原子%以上8.0原子%以下であることを特徴とする前記1に記載の中間転写体。
3.前記硬質層の膜密度が、前記中間層の膜密度よりも大きいものであることを特徴とする請求項1または2に記載の中間転写体。
4.前記硬質層の弾性率が、前記中間層の弾性率よりも大きいものであることを特徴とする前記1~3の何れか1項に記載の中間転写体。
5.前記表面層が、金属酸化物、カーボン含有酸化金属、アモルファスカーボンのいずれかを含有するものであることを特徴とする前記1~4の何れか1項に記載の中間転写体。
6.前記硬質層が、少なくとも酸化ケイ素を含有するものであることを特徴とする前記1~5の何れか1項に記載の中間転写体。
7.前記中間層が、少なくとも酸化ケイ素化合物を含有するものであることを特徴とする前記1~6の何れか1項に記載の中間転写体。
8.前記表面層が、異なる周波数の電界を2つ以上形成した大気圧下またはその近傍の圧力下で行われるプラズマCVDによって作製されたものであることを特徴とする前記1~7の何れか1項に記載の中間転写体。
9.前記表面層の圧縮応力が、30MPa以下であることを特徴とする前記1~8の何れか1項に記載の中間転写体。
10.前記弾性層が、クロロプレンゴム、ニトリルゴム、エチレン-プロピレン共重合体のうち少なくとも1つを含有するものであることを特徴とする前記1~9の何れか1項に記載の中間転写体。
11.前記樹脂基体が、ポリイミド、ポリカーボネート、ポリフェニレンサルファイドのうち少なくとも1つから形成されたものであることを特徴とする前記1~10の何れか1項に記載の中間転写体。
本発明に係る中間転写体は、たとえば、16万枚を超える様な大量プリントを連続で行っても、クラックやトナーフィルミングが発生せず、良好な1次転写性と良好な2次転写性及び良好なクリーニング特性を維持し、文字画像の中抜けの様な画像欠陥の発生を起こさない良好な画質のトナー画像を安定して形成することができる優れた効果を有する。したがって、本発明に係る中間転写体は、必要枚数分のプリント物を版を起こさずに手間なくタイムリーに提供するオンデマンド印刷分野への電子写真方式の画像形成装置の展開を促進させるものと期待される。
本発明者等は、樹脂基体の外周に、弾性層を設け、その上に中間層と硬質層からなる表面層を設けた構成で、表面層の層厚と表面の弾性率を特定な値とする中間転写体が、クラックとトナーフィルミングの発生防止、転写性向上とその維持、クリーニング性の維持、文字画像の中抜け発生防止等に優れた特性を発現させることができた。
本発明に係る中間転写体は、樹脂基体の外周に弾性層を設け、その上に中間層と硬質層からなる表面層を設けた構成とするものである。本発明では、表面層の厚さを規定するとともに、表面層を構成する硬質層の炭素原子含有量を特定範囲に規定するとともに、前述した硬質層の炭素原子含有量が中間層の炭素原子含有量よりも少ないものとすることにより、本発明の課題が解消されることを見出した。すなわち、本発明に係る中間転写体によれば、たとえば、16万枚を超えるレベルの大量プリントを連続で行っても、クラックやトナーフィルミングの発生が防止され、転写性向上とその維持、クリーニング性の維持、文字画像の中抜け発生の防止等の効果が得られた。
本発明の構成を有する中間転写体が、16万枚を超えるレベルの大量プリントを行っても上記の様な効果を発現できる理由は明らかではないが、以下の様な理由によるものと考えられる。
先ず、本発明に係る中間転写体は、1次転写時では感光体上のトナー画像をスムーズに付着させる状態を形成し、2次転写時はトナーを転写材上に確実に転写させることのできる状態を形成するものと考えられる。本発明では、トナー画像を保持、転写させる表面層に着目し、表面層を構成する硬質層と中間層の炭素原子含有量を前述した様に規定することにより、表面層の状態が良好な転写性能を発現する弾性を有する様にしたものと考えられる。
つまり、1次転写のとき、中間転写体表面は感光体からの押圧の作用で変形してトナーを十分保持することができる接触面積が形成されるものと考えられる。一方、2次転写のとき、中間転写体表面は前述の押圧による変形が解除されてトナーとの接触面積も縮小しているのでトナーが転写材上に移動し易い状態が形成されているものと考えられる。
この様に、本発明に係る中間転写体は、表面層を構成する硬質層と中間層の炭素原子含有量を前述の様に規定することにより、1次転写時は押圧の作用で変形することによりトナー付着性能が促進され、2次転写時は押圧による変形が解除されてトナーを脱離、転写させる性能が促進される状態になるという、弾性と剛性がバランスよく発現できる様にしたものと考えられる。その結果、大量プリントを行ったときも短時間で変形と収縮を繰り返し行えるので安定した転写性能を維持できるものと考えられる。
また、本発明では、表面層の厚さを特定するとともに最表面に金属酸化物を含有する硬質層を配置することにより、樹脂基体の導電性を損うことなく中間転写体表面の電位安定性が維持される様になったものと考えられる。その結果、大量プリント作成を行ってもトナーが画像周辺に飛散することもなくなったものと考えられる。また、この構成により中間転写体表面の強度も向上して、16万枚を超える大量プリントを行っても表面がみだりに摩耗せず、すべり性や耐摩耗性能が安定して発現できるものと考えられる。
また、本発明では、最も硬い硬質層と柔軟な弾性層の間に、硬質層よりも軟らかく弾性層よりも硬い中間層を配置することで、中間層が両者間でクッションとして作用することにより、硬質層の割れや剥がれの発生が防止されるものと推察している。
さらに、本発明に係る中間転写体は、前述の様に、弾性と剛性をバランスよく発現できることや、表面の強度を安定して維持できることにより、表面層をクリーニング部材で繰り返し摺擦しても傷つかず、長期にわたり転写残トナーを除去できる様になったものと考えられる。その結果、16万枚を超えるレベルの大量プリントを行ってもクリーニング不良に伴う画像汚染のない高品質のトナー画像のプリント物を安定して提供できる様になったものと推察される。
以上の理由により、本発明に係る中間転写体は、たとえば16万枚を超える様な大量の連続プリント作成を行っても、高い転写特性が長期にわたり確保されて中抜けと呼ばれる画像不良を発生させることがないものと考えられる。また、クラックやトナーフィルミングを発生させず、クリーニング部材の摺擦による摩耗や傷を発生させないものと考えられる。その結果、高品質のトナー画像を安定して形成することができるものと考えられる。
以下、本発明について詳細に説明する。
(中間転写体の層構成)
最初に、本発明に係る中間転写体の層構成について説明する。
最初に、本発明に係る中間転写体の層構成について説明する。
本発明に係る中間転写体は、樹脂基体の外周に弾性層を設け、その上に表面層を設けたものであり、前記表面層は少なくとも1層以上の硬質層と少なくとも1層以上の中間層より構成されるものである。
図1は、本発明に係る中間転写体の斜視図とその層構成の一例を示す断面図である。なお、本発明に係る中間転写体の層構成は図1に示すもののみに限定されるものではない。
図1に示す中間転写体は、ベルト形状のもので、通常、「中間転写ベルト」と呼ばれるものである。図1において、170は中間転写体、175は樹脂基体、176は弾性層、177は表面層を表し、表面層177は中間層178と硬質層179より構成される。なお、中間層178は、たとえば図1(b)に、1層目の中間層178a、2層目の中間層178b、3層目の中間層178cと示す様に、多層構造を構成するものであってもよい。
本発明に係る中間転写体の一例である中間転写体170の層構造を示す図1(a)は、樹脂基体175の外周に弾性層176を設け、その上に表面層177として中間層178と硬質層179を設けた層構成を有する中間転写体170を示すものである。
一方、図1(b)は、図1(a)と同様、樹脂基体175の外周に弾性層176を設けたものであるが、弾性層176の上に設けられる表面層177が、3層(178a、178b、178c)からなる中間層178と、その上に硬質層179を設けた層構成の中間転写体170を示すものである。
本発明に係る中間転写体の層構成は、図1の(a)及び(b)に示すものが好ましく、その中でも、転写性を向上させる観点から、中間層178を多層構造にした図1(b)の層構成が好ましい。なお、中間層178を図1(b)に示す多層の構成にする場合、炭素原子含有量は、3層目の中間層178cを最も多く、2層目の中間層178bを中間に、1層目の中間層178aを最も少なくすることが好ましい。
なお、中間転写体170を構成する樹脂基体175と弾性層176、中間転写体170の作製方法については後述する。
(表面層の説明)
次に、本発明に係る中間転写体を構成する表面層について説明する。
次に、本発明に係る中間転写体を構成する表面層について説明する。
〈表面層の構成〉
本発明に係る中間転写体を構成する表面層は、少なくとも中間層と金属酸化物を主成分とする硬質層で構成されるものである。
本発明に係る中間転写体を構成する表面層は、少なくとも中間層と金属酸化物を主成分とする硬質層で構成されるものである。
また、表面層は、たとえば、金属酸化物、カーボン含有酸化金属、アモルファスカーボンのうち、少なくとも1種類以上を用いて層を形成することが可能なもので、これら化合物を複数種類用いて積層構造を形成することも可能である。
本発明に係る中間転写体を構成する表面層の厚さ(以下、層厚ともいう)は、0.5nm以上1000nm以下のものであり、3nm以上500nm以下のものが好ましいものである。
表面層の層厚を0.5nm以上とすることで耐久性や表面強度が満足でき、厚紙への転写などにより擦り傷が発生することがなく、膜が摩耗し転写率が低下したり転写むらが発生したりすることもない。表面層の層厚を1000nm以下とすることで弾性層との密着性が低下したり屈曲耐性が不足することなく、多数枚プリントしても膜が割れたり剥離することがなく、且つ層を形成するのに必要な時間も短縮でき生産上の観点からも好ましい。
(層厚の測定方法)
本発明に係る中間転写体を構成する表面層の層厚測定は、たとえば、X線反射率測定法(XRR:X-ray Reflection)等のナノメートル単位の厚さを測定する公知の膜厚測定方法により行う。ここで、X線反射率測定法による膜厚測定とは、膜内に侵入した入射X線より発生する反射波の干渉信号を利用して測定するものである。
本発明に係る中間転写体を構成する表面層の層厚測定は、たとえば、X線反射率測定法(XRR:X-ray Reflection)等のナノメートル単位の厚さを測定する公知の膜厚測定方法により行う。ここで、X線反射率測定法による膜厚測定とは、膜内に侵入した入射X線より発生する反射波の干渉信号を利用して測定するものである。
すなわち、基板上に形成された薄膜に対して非常に浅い角度でX線を入射させるとX線は全反射するが、X線の入射角度がある値以上になるとX線が薄膜内部に侵入することができる。薄膜内部に侵入した入射X線は、試料表面や界面で透過波と干渉作用を有する反射波に分かれる。X線反射率測定法では、入射角度を変えながら測定を行うことにより、光路差の変化に伴う反射波の干渉信号を得て、その解析結果に基づき薄膜の厚さを測定、算出することができるものである。
この様なX線反射率測定法を用いた測定装置としては、たとえば、微小部X線回折装置「MXP21(マックサイエンス社製)」がある。「MXP21(マックサイエンス社製)」による本発明に係る中間転写体を構成する表面層の層厚測定手順を以下に説明する。
X線源のターゲットには銅を用い、42kV、500mAで作動させる。インシデントモノクロメータには多層膜パラボラミラーを用いる。入射スリットは0.05mm×5mm、受光スリットは0.03mm×20mmを用いる。2θ/θスキャン方式で0から5°をステップ幅0.005°、1ステップ10秒のFT法にて測定を行う。得られた反射率曲線に対し、マックサイエンス社製Reflectivity Analysis Program Ver.1を用いてカーブのフィッティングを行い、実測値とフィッティングカーブの残差平方和が最小になるように各パラメータを求める。各パラメータから積層の層厚を求める。
(中間層と硬質層の説明)
次に、表面層を構成する中間層と硬質層について説明する。前述した様に、本発明に係る中間転写体を構成する表面層は、少なくとも中間層と金属酸化物を主成分とする硬質層で構成されるものである。ここで、硬質層は本発明に係る中間転写体の最表面を形成する領域で、感光体上に形成されたトナー画像を転写、付着させるとともに、付着させたトナー画像を転写材上に転写させるものである。また、中間層は硬質層と弾性層の間に配置され、硬質層が割れたり弾性層から剥離することを防止する目的で設けられるものである。以下、中間層と硬質層について詳細に説明する。
次に、表面層を構成する中間層と硬質層について説明する。前述した様に、本発明に係る中間転写体を構成する表面層は、少なくとも中間層と金属酸化物を主成分とする硬質層で構成されるものである。ここで、硬質層は本発明に係る中間転写体の最表面を形成する領域で、感光体上に形成されたトナー画像を転写、付着させるとともに、付着させたトナー画像を転写材上に転写させるものである。また、中間層は硬質層と弾性層の間に配置され、硬質層が割れたり弾性層から剥離することを防止する目的で設けられるものである。以下、中間層と硬質層について詳細に説明する。
(中間層)
本発明でいう中間層は、弾性層と硬質層の間に配置されるもので、1層構造もしくは2層以上の多層構造により構成することが可能である。
本発明でいう中間層は、弾性層と硬質層の間に配置されるもので、1層構造もしくは2層以上の多層構造により構成することが可能である。
また、本発明では、中間層を2層以上の多層構造にすることが好ましく、この様に中間層を多層構造にしたりあるいは傾斜構造にすることにより、中間層の炭素原子含有量を弾性層側から硬質層側に向かって小さくすることが可能になる。ここで、傾斜構造とは、炭素原子濃度等の中間層構成要素が中間層の厚さ方向に連続的に変化する構造のもので、中間層を形成する際に製膜条件を連続的に変化させることにより形成することができる。
中間層の厚さは、0.3nm以上あればよく、5nm以上900nm以下が好ましく、20nm以上300nm以下がより好ましいものである。
中間層は、酸化ケイ素化合物あるいはアモルファスカーボンを主成分とするもの、あるいはこれら混合物を主成分とするものが好ましい。
中間層を形成する方法は、特に限定されるものではなく、浸漬法に代表される公知の塗布法による形成の他に、後述する様に、異なる周波数の電界を2つ以上発生させて行うプラズマ放電により層形成を行う大気圧プラズマ法で形成することも可能である。大気圧プラズマ法により中間層を形成する場合、電界の強度を制御する電源の出力や供給原料の濃度を制御する等により、炭素原子含有量や膜密度、弾性率が適宜調整されて所望の性能を有する中間層を形成することができる。
(硬質層)
本発明でいう硬質層は、中間転写体最表面、すなわち、感光体からのトナー画像の転写及び転写材へのトナー画像の転写を行うため、トナー画像に直接触れる部位を構成するものである。硬質層は、高い転写特性を長期にわたり安定して確保するとともに、トナーフィルミングの発生防止、クリーニング部材による摺擦を受けても傷を発生させない強度が求められる。
本発明でいう硬質層は、中間転写体最表面、すなわち、感光体からのトナー画像の転写及び転写材へのトナー画像の転写を行うため、トナー画像に直接触れる部位を構成するものである。硬質層は、高い転写特性を長期にわたり安定して確保するとともに、トナーフィルミングの発生防止、クリーニング部材による摺擦を受けても傷を発生させない強度が求められる。
硬質層は、金属酸化物を主成分とする層である。具体的には、酸化ケイ素、酸化窒化ケイ素、窒化ケイ素、酸化チタン、酸化窒化チタン、窒化チタン又は酸化アルミニウム等の金属酸化物が挙げられ、これらの中では酸化ケイ素膜が好ましい。
本発明では、硬質層は1層あればよく、また、2層以上の多層構造を構成するものでもよい。硬質層を多層構造で構成することにより、中間層側よりトナー画像を転写、保持する硬質層表面側に向かって膜密度や弾性率を徐々に高くする構造にすることが可能である。
硬質層の厚さは、0.2nm以上あればよく、5nm以上300nm以下が好ましく、10nm以上200nm以下がより好ましい。
(炭素原子含有量の説明)
本発明では、中間転写体を構成する表面層、すなわち、中間層及び硬質層の炭素原子含有量を次の様に規定するものである。つまり、硬質層の炭素原子含有量が2.0原子%以下であり、かつ、硬質層の炭素原子含有量が中間層の炭素原子含有量よりも少ないものである。また、中間層の炭素原子含有量は2.1原子%以上98原子%以下であることが好ましく、中間層が酸化ケイ素化合物を含有するものであれば、2.1原子%以上8原子%以下のものが好ましい。
本発明では、中間転写体を構成する表面層、すなわち、中間層及び硬質層の炭素原子含有量を次の様に規定するものである。つまり、硬質層の炭素原子含有量が2.0原子%以下であり、かつ、硬質層の炭素原子含有量が中間層の炭素原子含有量よりも少ないものである。また、中間層の炭素原子含有量は2.1原子%以上98原子%以下であることが好ましく、中間層が酸化ケイ素化合物を含有するものであれば、2.1原子%以上8原子%以下のものが好ましい。
ここで、炭素原子含有量は、炭層原子%で表されるもので、炭層原子%は公知の分析手段を用いて求めることができるが、本発明では下記に説明するXPS法により算出されるものが好ましい。なお、炭素原子%は、以下の様に定義される。
炭素原子%=(炭素原子の個数/全原子の個数)×100
XPS法は、X線光電子分光分析法(X-ray Photoelectron Spectroscopy)とも呼ばれ、真空中で試料にX線を照射したときに試料から放出される光電子のエネルギーを測定することにより、試料の局表面に存在する元素の同定や化学結合状態を特定する分析方法である。
XPS法は、X線光電子分光分析法(X-ray Photoelectron Spectroscopy)とも呼ばれ、真空中で試料にX線を照射したときに試料から放出される光電子のエネルギーを測定することにより、試料の局表面に存在する元素の同定や化学結合状態を特定する分析方法である。
本発明では、市販のXPS表面分析装置を使用することが可能で、具体的な装置としては、VGサイエンティック社製「ESCALAB-200R」等が挙げられ、後述する実施例では前記装置を用いた。
前記装置を用いて本発明に係る中間転写体の中間層と硬質層の炭素含有量を測定する場合の具体的な条件は、X線アノードにマグネシウム(Mg)を用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定した。エネルギー分解能は、清浄なAg3d5/2ピークの半値幅で測定したとき、1.5eV~1.7eVとなるよう設定した。
測定としては、先ず、結合エネルギー0eV~1100eVの範囲を、データ取り込み間隔1.0eVで測定し、いかなる元素が検出されるかを求めた。
次に検出された、エッチングイオン種を全ての元素について、データを取り込み、間隔を0.2eVとして、その最大強度を与える光電子ピークについてナロースキャンを行い、各元素のスペクトルを測定した。
得られたスペクトルは、測定装置、あるいは、コンピュータの違いによる含有率算出結果の違いを生じせしめなくするためにVAMAS-JAPAN製の「COMMON DATA PROCESSING SYSYTEM」(Ver.2.3以降が好ましい)上に転送した後、同ソフトで処理を行い、各分析ターゲットの元素(炭素)の含有率の値を炭素原子%として求めた。
定量処理を行う前に炭素元素についてCount Scaleのキャリブレーションを行い、5ポイントのスムージング処理を行った。定量処理では、バックグラウンドを除去したピークエリア(cps*eV)を用いた。バックグラウンド処理には、Shirleyによる方法を用いた。Shirley法については、D.A.Shirley、Phys.Rev.B5,4709(1972)を参考にすることができる。
(膜密度と弾性率の説明)
本発明に係る中間転写体の表面層を構成する中間層と硬質層について、さらに説明する。本発明では、表面層を構成する中間層と硬質層を規定する際に、その膜密度と弾性率を規定することも好ましく、具体的には硬質層の膜密度を中間層の膜密度よりも大きくすることが好ましい。また、弾性率についても硬質層の弾性率を中間層の弾性率よりも大きくすることが好ましい。
本発明に係る中間転写体の表面層を構成する中間層と硬質層について、さらに説明する。本発明では、表面層を構成する中間層と硬質層を規定する際に、その膜密度と弾性率を規定することも好ましく、具体的には硬質層の膜密度を中間層の膜密度よりも大きくすることが好ましい。また、弾性率についても硬質層の弾性率を中間層の弾性率よりも大きくすることが好ましい。
本発明では、硬質層の膜密度は、2.07g/cm3以上2.19g/cm3以下とすることが好ましく、中間層の膜密度は硬質層の膜密度よりも小さなものにすることが好ましい。中間層の膜密度は、硬質層の膜密度よりも小さいことを前提にして1.40g/cm3以上2.10g/cm3以下にすることが好ましい。
この様に、本発明では、中間転写体の表面層を構成する中間層と硬質層は、硬質層の膜密度が中間層の膜密度よりも大きいことが好ましい。また、硬質層の弾性率が中間層の弾性率よりも大きいことが好ましいものである。
(膜密度の測定方法)
次に、中間層と硬質層の膜密度の測定方法について説明する。ここで「膜密度」とは中間転写体を構成する表面層の単位体積あたりの質量のことをいうものである。本発明に係る中間転写体を構成する表面層(中間層と硬質層)の膜密度は、たとえば、前述の表面層の厚さの測定方法で説明したX線反射率測定法(XRR)により得られる全反射臨界角より算出することができるものである。ここで、全反射臨界角とは、照射X線が全反射する臨界入射角度のことで、入射角度が当該角度よりも大きくなると試料内に侵入するX線が発生するものである。
次に、中間層と硬質層の膜密度の測定方法について説明する。ここで「膜密度」とは中間転写体を構成する表面層の単位体積あたりの質量のことをいうものである。本発明に係る中間転写体を構成する表面層(中間層と硬質層)の膜密度は、たとえば、前述の表面層の厚さの測定方法で説明したX線反射率測定法(XRR)により得られる全反射臨界角より算出することができるものである。ここで、全反射臨界角とは、照射X線が全反射する臨界入射角度のことで、入射角度が当該角度よりも大きくなると試料内に侵入するX線が発生するものである。
なお、中間層と硬質層から構成される表面層におかれては、硬質層の膜密度はそのままの状態で直接測定することが可能であるが、中間層の膜密度は硬質層を研磨等で除去して中間層を露出させた状態にしてから測定する。
X線反射率測定法の概要は、たとえば、「X線回折ハンドブック(理学電気株式会社編 2000年 国際文献印刷社)」の151頁の記載や、「化学工業1999年 No.22」の記載を参照することができる。
本発明で用いられる膜密度の測定方法の具体例を以下に示す。これは、上面が平坦な物質に非常に浅い角度でX線を入射させ測定を行う方法で、測定装置としては、マックサイエンス社製「MXP21」を用いて行う。X線源のターゲットには銅を用い、42kV、500mAで作動させる。インシデントモノクロメータには多層膜パラボラミラーを用いる。入射スリットは0.05mm×5mm、受光スリットは0.03mm×20mmを用いる。2θ/θスキャン方式で0から5°をステップ幅0.005°、1ステップ10秒のFT法にて測定を行う。得られた反射率曲線に対して、マックサイエンス社製「Reflectivity Analysis Program Ver。1」を用いてカーブフィッティングを行い、実測値とフィッティングカーブの残差平方和が最小になるように各パラメータを求める。各パラメータから積層膜の厚さ及び密度を求めることができる。本発明における膜厚も上記X線反射率測定より求めることができる。
(弾性率の測定方法)
次に、中間転写体の表面層を構成する中間層と硬質層の弾性率の測定方法について説明する。
次に、中間転写体の表面層を構成する中間層と硬質層の弾性率の測定方法について説明する。
中間体を構成する表面層の弾性率の測定は、公知の弾性率測定方法により行うことができる。たとえば、オリエンテック社製のバイブロンDDV-2を用いて一定の歪みを一定の周波数(Hz)をかけて測定する方法や、測定装置としてRSA-II(レメトリックス社製)を用い、透明基体上にセラミック層を形成した後、一定周波数で印加歪を変化させたとき得られる測定値より求める方法、あるいは、ナノインデンテーション法を適用したナノインデンター、たとえば、MSTシステム社製のナノインデンター「NANO Indenter TMXP/DCM」により測定できる。
本発明に係る中間転写体を構成する表面層は、厚さが10nm以上1000nm以下という極めて薄い層であり、この様な薄層の弾性率を高精度に測定する観点から、「ナノインデンテーション法」による測定が好ましいものである。ここで、「ナノインデンテーション法」とは、試料に対して圧子と呼ばれる針等の微小な荷重付与手段を用いて連続的に負荷、除荷を行い、荷重-変位曲線を作成する。そして、当該荷重-変位曲線から当該試料の弾性率や硬度を算出するものである。ナノインデンテーション法により得られる弾性率や硬度は、試料の直接的な表面の弾性率や硬度の値を表すものであるので、ナノインデンテーション法で算出された弾性率や硬度は、その試料の表面弾性率あるいは表面硬度の指標として適している。
また、本発明でいう「弾性率」とは、試料に加えられる応力と当該応力の作用で生ずるひずみとの比を意味するもので、弾性率をG、応力をσ、ひずみをγとしたときに、下記式
G=σ/γ
で表されるものである。上記式より解釈できる様に、硬い材質のものほど弾性率の値が高くなり、柔らかな材質のものほど弾性率の値が小さくなるものである。
G=σ/γ
で表されるものである。上記式より解釈できる様に、硬い材質のものほど弾性率の値が高くなり、柔らかな材質のものほど弾性率の値が小さくなるものである。
以下、ナノインデンテーション法による中間転写体の表面層(中間層と硬質層)の弾性率測定方法についてさらに説明する。
上述の様に、本発明に係る中間転写体を構成する表面層の弾性率、すなわち、中間層と硬質層の弾性率は、「ナノインデンテーション法」による弾性率の測定方法により測定が可能である。具体的には、圧子として微小なダイヤモンド圧子を用い、これを薄膜(表面層)に押し込みながら荷重と押し込み深さ(変位量)の関係を測定し、測定値から塑性変形硬さを算出するものである。
特に1μm以下の薄膜の測定に対して、樹脂基体の物性の影響を受けにくく、また、押し込んだ際に薄膜に割れが発生しにくいという特徴を有している。一般に非常に薄い薄膜の物性測定に用いられている。
なお、硬質層と中間層の弾性率を測定するとき、硬質層の弾性率はそのまま直接測定することが可能であるが、中間層の弾性率は硬質層を研磨等で除去して中間層を露出させてからナノインデンテーション法により測定する。
以下、図2を用いて「ナノインデンテーション法」による弾性率測定方法を具体的に説明する。図2は、ナノインデンテーション法による弾性率測定が可能な測定装置の一例を示す模式図である。
図2において、31はトランスデューサ、32は先端形状が正三角形のダイヤモンドBerkovich圧子、170は中間転写体、175は樹脂基体、176は弾性層、177は表面層を示す。
図2の測定装置では、トランスデューサ31と先端形状が正三角形のダイヤモンドBerkovich圧子32を用いて、たとえば、μNオーダーの荷重を加えながらナノメートルオーダーの精度で変位量を測定することが可能である。図2の構成を有する市販の測定装置としては、たとえば、「NANO Indenter XP/DCM(MTS Systems社/MST NANO Insturuments社製)」等が挙げられる。
上記測定装置等を用いて、中間転写体の表面層を構成する各層の弾性率を測定する場合の測定条件は、たとえば、以下の様なものである。
測定条件
測定機:NANO Indenter XP/DCM(MTS Systems社製)
測定圧子:先端形状が正三角形のダイヤモンドBerkovich圧子
測定環境:20℃、60%RH
測定試料:5cm×5cmの大きさに中間転写体を切断して測定試料を作製
最大荷重設定:25μN
押し込み速度:最大荷重25μNに5secで達する速度で、時間に比例して加重を印加する
なお、測定は各試料ともランダムに10点測定し、その平均値をナノインデンテーション法により測定した弾性率とする。
測定機:NANO Indenter XP/DCM(MTS Systems社製)
測定圧子:先端形状が正三角形のダイヤモンドBerkovich圧子
測定環境:20℃、60%RH
測定試料:5cm×5cmの大きさに中間転写体を切断して測定試料を作製
最大荷重設定:25μN
押し込み速度:最大荷重25μNに5secで達する速度で、時間に比例して加重を印加する
なお、測定は各試料ともランダムに10点測定し、その平均値をナノインデンテーション法により測定した弾性率とする。
次に、本発明に係る中間転写体の表面層に作用する圧縮応力について説明する。本発明では、中間転写体の表面層に作用する圧縮応力が30MPa以下であるものが好ましい。本発明でいう「圧縮応力」とは、中間転写体表面に対し垂直方向より圧縮したときに生ずる力を単位面積で除して得られる値である。「圧縮応力」は、中間転写体表面すなわち表面層に対し垂直方向に作用するもので、水平方向つまり表面層の面方向に作用するものではない。
本発明に係る中間転写体では、表面層の圧縮応力を30MPa以下とすると、表面層に作用する内部応力は表面層に大きなストレスを与えることのない適度なものになり、その結果、クラックの発生防止に寄与するものと考えられる。また、中間転写体上に担持したトナー画像を転写材にムラなく均一に転写する硬さを付与する面でも寄与するものと考えられる。
(圧縮応力の測定)
本発明で規定する圧縮応力は、市販の圧縮応力測定が可能な測定装置であれば、どの測定装置を用いても算出することが可能である。具体的な測定装置としては、たとえば、NEC三栄社製の膜物性評価装置「MH4000」が代表的なものとして挙げられる。
本発明で規定する圧縮応力は、市販の圧縮応力測定が可能な測定装置であれば、どの測定装置を用いても算出することが可能である。具体的な測定装置としては、たとえば、NEC三栄社製の膜物性評価装置「MH4000」が代表的なものとして挙げられる。
前記膜物性評価装置「MH4000」を用いて本発明に係る中間転写体の表面層の圧縮応力を測定する場合、具体的には、厚さ100μm、幅10mm、長さ50mmの石英ガラス上に、各層を1μm厚みで製膜し、上記測定装置で圧縮応力(残留応力、MPa)を測定することができる。
次に、本発明に係る中間転写体を構成する樹脂基体と弾性層、及び、これらの作製方法について説明する。なお、表面層の形成方法については後述する。
〈樹脂基体及びその作製方法〉
本発明に係る中間転写体を構成する樹脂基体は、クリーニング部材であるクリーニングブレードから加わる負荷により中間転写体が変形することを回避させる剛性を有するものである。つまり、樹脂基体はその剛性により、中間転写体に外力が加わっても転写性能に影響が及ばない様に作用している。本発明に係る中間転写体を構成する樹脂基体は、ナノインデンテーション法により測定される弾性率が1.5GPa~15.0GPaの範囲にあるもので形成されることが好ましい。
本発明に係る中間転写体を構成する樹脂基体は、クリーニング部材であるクリーニングブレードから加わる負荷により中間転写体が変形することを回避させる剛性を有するものである。つまり、樹脂基体はその剛性により、中間転写体に外力が加わっても転写性能に影響が及ばない様に作用している。本発明に係る中間転写体を構成する樹脂基体は、ナノインデンテーション法により測定される弾性率が1.5GPa~15.0GPaの範囲にあるもので形成されることが好ましい。
この様な性能を発現する樹脂材料として、たとえば、ポリカーボネート、ポリフェニレンサルファイド、ポリフッ化ビニリデン、ポリイミド、ポリエーテル、ポリエーテルケトン等の樹脂材料が挙げられ、これらの中でもポリイミド、ポリカーボネート、ポリフェニレンサルファイドが好ましい。
また、樹脂基体は、上記樹脂材料中に導電性物質を添加することにより、たとえば電気抵抗値(体積抵抗率)を105~1011Ω・cmに調製したものを用いることができる。また、樹脂基体の厚さは50~200μmが好ましい。さらに、樹脂基体の形状は、中間転写ベルトに使用されるシームレスベルトの形状をとるものの他、ドラム形状をとることが可能なものが挙げられる。ドラム形状をとることが可能な樹脂基体は大きな機械的強度を得る上で有利である。
前記樹脂材料への添加が可能な代表的な導電性物質としては、カーボンブラックが挙げられ、中性または酸性のカーボンブラックを使用することが好ましい。導電性物質の樹脂材料中への添加量は、使用する導電性物質の種類によっても異なるが、中間転写体の電気抵抗値(体積抵抗値)が上記範囲にの範囲になる様に添加することが好ましい。具体的には、樹脂材料100質量部に対して10~20質量部が好ましく、より好ましくは10~16質量部である。
上記樹脂基体は、従来公知の一般的な方法により製造することが可能である。たとえば、前述した樹脂材料中に前述した導電性物質を混合した材料を溶融させ、溶融物をTダイや環状ダイより押し出し、これを急冷することにより製造することができる。
また、上記樹脂基体表面にコロナ処理、火炎処理、プラズマ処理、グロー放電処理、粗面化処理、薬品処理等の表面処理を施したものにしてもよい。
〈弾性層及びその作製方法〉
本発明に係る中間転写体を構成する弾性層は、中間転写体にある程度の弾性を付与することにより、感光体上のトナー画像を中間転写体表面にムラなく均一に転写できる様にしている。すなわち、1次転写のときに感光体からの押圧に対して弾性層が変形することにより、トナー画像への荷重集中が低減されて中抜けと呼ばれる画像欠陥の発生を防止できる様にしている。
本発明に係る中間転写体を構成する弾性層は、中間転写体にある程度の弾性を付与することにより、感光体上のトナー画像を中間転写体表面にムラなく均一に転写できる様にしている。すなわち、1次転写のときに感光体からの押圧に対して弾性層が変形することにより、トナー画像への荷重集中が低減されて中抜けと呼ばれる画像欠陥の発生を防止できる様にしている。
本発明に係る中間転写体を構成する弾性層は、ゴムやエラストマーと呼ばれる弾性材料で構成することができる。弾性材料の具体例としては、スチレン-ブタジエンゴム、ハイスチレンゴム、ブタジエンゴム、イソプレンゴム、エチレン-プロピレン共重合体、ニトリルブタジエンゴム、クロロプレンゴム、ブチルゴム、シリコーンゴム、フッ素ゴム、ニトリルゴム、ウレタンゴム、アクリルゴム、エピクロロヒドリンゴム及びノルボルネンゴム等の単独物や混合物が挙げられる。
弾性層の硬度は、JIS A硬度で40~80が好ましい。また、弾性層の厚さは、100μm~500μmが好ましい。
また、本発明に係る中間転写体を構成する弾性層は、前述した弾性材料中に導電性物質を分散させて、たとえば電気抵抗値(体積抵抗率)を105~1011Ω・cmに調整したものにすることができる。
弾性層への添加が可能な導電性物質としては、たとえば、カーボンブラック、酸化亜鉛、酸化スズ、炭化ケイ素等が挙げられる。このうち、カーボンブラックを使用する場合、中性または酸性のカーボンブラックが好ましい。を使用することができる。導電性物質の弾性材料中への添加量は、使用する導電性物質の種類によっても異なるが、弾性層の電気抵抗値(体積抵抗値)が上記範囲になる様に添加することが好ましい。具体的には、弾性材料100質量部に対して10~20質量部添加することが好ましく、より好ましくは10~16質量部である。
弾性層は、たとえば、以下の手順で作製することができる。先ず、弾性層形成用の塗布液を収容した槽中に、前述の樹脂基体を垂直に立てた状態で入れて浸漬させ、浸漬を数回繰り返して所定厚さの塗膜を形成した後、塗布液中から引き上げる。次に、乾燥処理して溶剤を除去した後、加熱処理(たとえば、処理温度60~150℃、処理時間60分間)を行い、弾性層を作製する。
(アンカーコート剤層)
本発明に係る中間転写体では、前述した弾性層と樹脂基体の密着性を向上させるために、両者間にアンカーコート剤層を形成することも可能である。アンカーコート剤層の形成に使用されるアンカーコート剤としては、たとえば、ポリエステル樹脂、イソシアネート樹脂、ポリウレタン樹脂、ポリアクリル樹脂、ポリエチレンビニルアルコール樹脂、ポリビニル変性樹脂、エポキシ樹脂、変性ポリスチレン樹脂、変性シリコーン樹脂、及びアルキルチタネート等の単独物や上記樹脂を2種以上併用した混合物が挙げられる。また、アンカーコート剤に従来公知の添加剤を添加することも可能である。
本発明に係る中間転写体では、前述した弾性層と樹脂基体の密着性を向上させるために、両者間にアンカーコート剤層を形成することも可能である。アンカーコート剤層の形成に使用されるアンカーコート剤としては、たとえば、ポリエステル樹脂、イソシアネート樹脂、ポリウレタン樹脂、ポリアクリル樹脂、ポリエチレンビニルアルコール樹脂、ポリビニル変性樹脂、エポキシ樹脂、変性ポリスチレン樹脂、変性シリコーン樹脂、及びアルキルチタネート等の単独物や上記樹脂を2種以上併用した混合物が挙げられる。また、アンカーコート剤に従来公知の添加剤を添加することも可能である。
また、上記アンカーコート剤層は、たとえば、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の塗布方法により、前述の樹脂基体上にアンカーコート剤層形成用塗布液を塗布した後、溶剤や希釈剤等を乾燥除去したり、あるいはUV硬化処理することにより形成することができる。アンカーコート剤層を形成する際の塗布液塗布量は、0.1~5g/m2(乾燥状態)程度が好ましい。
次に、本発明に係る中間転写体を構成する表面層の作製方法について、具体例を挙げて説明する。本発明に係る中間転写体を構成する表面層の作製方法は、特に限定されるものではなく、たとえば、真空蒸着法、分子線エピタキシャル成長法、スパッタリング法、大気圧プラズマCVD法等のドライプロセスや、スプレーコート法、ブレードコート法、デイップコート法、キャスト法等の塗布による方法、印刷やインクジェットなどのパターニングによる方法等のウェットプロセスを経て作製することができる。
その中でも、大気圧もしくはその近傍の圧力下で、対向電極間に形成した放電空間に薄膜形成ガスを含有するガスを供給し、該放電空間に高周波電界を発生させることにより該ガスを励起し、励起した該ガスに基材を晒すことにより、表面層の薄膜を形成する大気圧プラズマCVD法により作製することが好ましい。
この大気圧プラズマCVD法は、減圧チャンバー等が不要で、高速製膜ができ生産性の高い製膜方法である。また、大気圧プラズマCVD法で形成される膜は、均一かつ表面の平滑性を有し、さらに内部応力も非常に少ない膜を比較的容易に形成することが可能となる。
近年、電子写真方式の画像形成装置では、デジタル処理やトナーの小径化等の技術によりオリジナルに忠実な色再現性や細線再現性等の画質をトナー画像形成が求められている。中間転写体におかれても、感光体で形成されたトナー画像の画質を損ねることなく、用紙等の転写材上に高精度に転写することが求められ、高い表面平滑性が求められている。大気圧プラズマCVD法は、前述の様に、均一で平滑性の高い薄膜を形成することが可能なことから、本発明者は中間転写体の表面層作製方法の有力な手段と考え、検討を重ねて、前述した効果を奏する中間転写体を大気圧プラズマCVD法により作製できることを見出したのである。
この様に、本発明に係る中間転写体を構成する表面層(中間層と硬質層)を作製する代表的な作製方法の1つに、大気圧またはその近傍の圧力下で電界を発生させてプラズマ放電を行うことにより、表面層の薄膜を形成する大気圧プラズマCVD法を挙げることができる。
以下、大気圧プラズマCVD法により形成する装置及び方法、また、使用するガスについて説明する。
なお、本発明でいう「大気圧プラズマCVD(Chemical Vapor Deposition;化学気相成長)法(以下、大気圧プラズマ法ともいう)」とは、大気圧または大気圧近傍の圧力下で放電ガスを励起、放電させ、原料ガスあるいは反応性ガスを放電空間へ導入して励起させ、励起させた原料ガスあるいは反応性ガスを基材上に晒すことにより薄膜形成を行う処理方法のことを意味するものである。
その方法については、特開平11-133205号、特開2000-185362号、特開平11-61406号、特開2000-147209号、特開2000-121804号等に記載されており、大気圧プラズマ法によれば、高機能性の薄膜を生産性高く形成することができる。
また、ここでいう「大気圧もしくはその近傍」とは、20kPa~110kPaの圧力を表すもので、93kPa~104kPaが好ましい。
図3は、中間転写体の表面層を製造する第1の製造装置の説明図である。
中間転写体の第1の製造装置(放電空間と薄膜堆積領域が略同一なダイレクト方式)は樹脂基体175上に形成した弾性層176上に表面層を形成するもので、シームレスベルト状の中間転写体170の樹脂基体175を巻架して矢印方向に回転するロール電極20と従動ローラ201、及び、弾性層176表面に表面層を形成する成膜装置である大気圧プラズマCVD装置3より構成されている。
大気圧プラズマCVD装置3は、ロール電極20の外周に沿って配列された少なくとも1式の固定電極21と、固定電極21とロール電極20との対向領域で且つ放電が行われる放電空間23と、少なくとも原料ガスと放電ガスとの混合ガスGを生成して放電空間23に混合ガスGを供給する混合ガス供給装置24と、放電空間23等に空気の流入することを軽減する放電容器29と、ロール電極20に接続された第1の電源25と、固定電極21に接続された第2の電源26と、使用済みの排ガスG’を排気する排気部28とを有している。
混合ガス供給装置24は無機酸化物層、無機窒化物層から選ばれる少なくとも1つの層の膜を形成する原料ガスと、窒素ガスあるいはアルゴンガス等の希ガスを混合した混合ガスを放電空間23に供給する。また、酸化還元反応による反応促進のための酸素ガスまたは水素ガスを混合することがより好ましい。
また、従動ローラ201は張力付与手段202により矢印方向に牽引され、樹脂基体175に所定の張力を掛けている。張力付与手段202は樹脂基体175の掛け替え時等は張力の付与を解除し、容易に樹脂基体175の掛け替え等を可能としている。
第1の電源25は周波数ω1の電圧を出力し、第2の電源26は周波数ω2の電圧を出力し、これらの電圧により放電空間23に周波数ω1とω2とが重畳された電界Vを発生する。そして、電界Vにより混合ガスGをプラズマ化して混合ガスGに含まれる原料ガスに応じた膜(中間層、硬質層)が弾性層176の表面に堆積される。
なお、複数の固定電極の内、ロール電極の回転方向下流側に位置する複数の固定電極と混合ガス供給装置で表面層を積み重ねるように堆積させ、表面層の厚さを調整するようにしてもよい。
また、複数の固定電極の内、ロール電極の回転方向最下流側に位置する固定電極と混合ガス供給装置で表面層を堆積し、より上流に位置する他の固定電極と混合ガス供給装置で、たとえば、表面層177と弾性層176との接着性を向上させる接着層等、他の層を形成してもよい。
また、表面層177と弾性層176との接着性を向上させるために、表面層を形成する固定電極と混合ガス供給装置の上流に、アルゴンや酸素などのガスを供給するガス供給装置と固定電極を設けてプラズマ処理を行い、弾性層176の表面を活性化させるようにしても良い。
以上説明したように、シームレスベルトである中間転写体を1対のローラに張架し、1対のローラの内一方を1対の電極の一方の電極とし、一方の電極としたローラの外周面の外側に沿って他方の電極である少なくとも1の固定電極を設け、これら1対の電極間に大気圧又は大気圧近傍下で電界を発生させプラズマ放電を行わせ、中間転写体表面に薄膜を堆積・形成する構成を取ることにより、転写性が高く、クリーニング性及び耐久性が高い中間転写体を製造することを可能としている。
図4は、中間転写体の表面層を製造する第2の製造装置の説明図である。
中間転写体の第2の製造装置2bは複数の樹脂基体上に設けられた弾性層上に同時に表面層を形成するもので、主として弾性層上に表面層を形成する複数の成膜装置2b1及び2b2より構成されている。
第2の製造装置2b(ダイレクト方式の変形で、対向したロール電極間で放電と薄膜堆積を行う方式)は、第1の成膜装置2b1と所定の間隙を隔てて略鏡像関係に配置された第2の成膜装置2b2と、第1の成膜装置2b1と第2の成膜装置2b2との間に配置された少なくとも原料ガスと放電ガスとの混合ガスGを生成して放電空間23bに混合ガスGを供給する混合ガス供給装置24bとを有している。
第1の成膜装置2b1はシームレスベルト状の中間転写体の樹脂基体175を巻架して矢印方向に回転するロール電極20aと従動ローラ201と矢印方向に従動ローラ201を牽引する張力付与手段202とロール電極20aに接続された第1の電源25とを有し、第2の成膜装置2b2はシームレスベルト状の中間転写体の樹脂基体175を巻架して矢印方向に回転するロール電極20bと従動ローラ201と矢印方向に従動ローラ201を牽引する張力付与手段202とロール電極20bに接続された第2の電源26とを有している。
また、第2の製造装置2bはロール電極20aとロール電極20bとの対向領域に放電が行われる放電空間23bを有している。
混合ガス供給装置24bは無機酸化物層、無機窒化物層から選ばれる少なくとも1つの層の膜を形成する原料ガスと、窒素ガスあるいはアルゴンガス等の希ガスを混合した混合ガスを放電空間23bに供給する。また、酸化還元反応による反応促進のための酸素ガスまたは水素ガスを混合することがより好ましい。
第1の電源25は周波数ω1の電圧を出力し、第2の電源26は周波数ω2の電圧を出力し、これらの電圧により放電空間23bに周波数ω1とω2とが重畳された電界Vを発生する。そして、電界Vにより混合ガスGをプラズマ化(励起)し、プラズマ化(励起)した混合ガスを第1の成膜装置2b1の弾性層176及び第2の成膜装置2b2の弾性層176の表面に晒し、プラズマ化(励起)した混合ガスに含まれる原料ガスに応じた膜(中間層、硬質層)が第1の成膜装置2b1の樹脂基体175上に設けた弾性層176及び第2の成膜装置2b2の樹脂基体175上に設けた弾性層176の表面に同時に堆積、形成される。
ここで、対向するロール電極20aとロール電極20bとは所定の間隙を隔てて配置されている。
以下に弾性層176上に表面層を形成する大気圧プラズマCVD装置の形態について詳細に説明する。
なお、下記の図5は図3の主として破線部を抜き出したものである。
図5は、プラズマにより中間転写体の表面層177を製造する第1のプラズマ成膜装置の説明図である。
図5を参照して、表面層177の形成に好適に用いられる大気圧プラズマCVD装置の一例を説明する。
大気圧プラズマCVD装置3は、樹脂基体を着脱可能に巻架して回転駆動させる少なくとも1対のローラと、プラズマ放電を行う少なくとも1対の電極とを有し、前記1対の電極の内、一方の電極は前記1対のローラの内の一方のローラで、他方の電極は前記一方のローラに前記樹脂基体を介して対向する固定電極であり、前記一方のローラと前記固定電極との対向領域において発生するプラズマに、前記表面層が晒されて前記表面層を堆積・形成される中間転写体の製造装置であり、たとえば放電ガスとして窒素を用いる場合に一方の電源により高電圧を掛け他方の電源により高周波を掛けることにより安定して放電を開始し且つ放電を継続するため好適に用いられる。
大気圧プラズマCVD装置3は前述したように混合ガス供給装置24、固定電極21、第1の電源25、第1のフィルタ25a、ロール電極20、ロール電極を矢印方向に駆動回転させる駆動手段20a、第2の電源26、第2のフィルタ26aを有しており、放電空間23でプラズマ放電を行わせて原料ガスと放電ガスを混合した混合ガスGを励起させ、励起した混合ガスG1を弾性層表面176aに晒し、その表面に表面層177を堆積、形成するものである。
そして、固定電極21に第1の電源25から周波数ω1の第1の高周波電圧が印加され、ロール電極20に第2の電源26から周波数ω2の高周波電圧が印加されるようになっており、それにより、固定電極21とロール電極20との間に電界強度V1で周波数ω1と電界強度V2で周波数ω2とが重畳された電界が発生し、固定電極21に電流I1が流れ、ロール電極20に電流I2が流れ、電極間にプラズマが発生する。
ここで、周波数ω1と周波数ω2の関係、及び、電界強度V1と電界強度V2及び放電ガスの放電を開始する電界強強度IVとの関係が、ω1<ω2で、V1≧IV>V2、または、V1>IV≧V2を満たし、前記第2の高周波電界の出力密度が1W/cm2以上となっている。
窒素ガスの放電を開始する電界強強度IVは3.7kV/mmのため、少なくとも第1の電源25から印加する電界強度V1は3.7kV/mm、またはそれ以上とし、第2の高周波電源60から印加する電界強度V2は3.7kV/mm、またはそれ未満とすることが好ましい。
また、第1の大気圧プラズマCVD装置3に利用可能な第1の電源25(高周波電源)の具体例としては、以下の表1に示す市販のものを挙げることができ、いずれも使用することができる。すなわち、
また、第2の電源26(高周波電源)としては、の具体例としては、以下の表2に示す市販のものを挙げることができ、いずれも使用することができる。すなわち、
なお、上記電源の内、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。
第1及び第2の電源から対向する電極間に供給する電力は、固定電極21に1W/cm2以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、薄膜を形成する。固定電極21に供給する電力の上限値としては、好ましくは50W/cm2、より好ましくは20W/cm2である。下限値は、好ましくは1.2W/cm2である。なお、放電面積(cm2)は、電極において放電が起こる範囲の面積のことを指す。
また、ロール電極20にも、1W/cm2以上の電力(出力密度)を供給することにより、高周波電界の均一性を維持したまま、出力密度を向上させることができる。これにより、更なる均一高密度プラズマを生成でき、更なる成膜速度の向上と膜質の向上が両立できる。好ましくは5W/cm2以上である。ロール電極20に供給する電力の上限値は、好ましくは50W/cm2である。
ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続サイン波状の連続発振モードと、パルスモードと呼ばれるON/OFFを断続的に行う断続発振モード等があり、そのどちらを採用してもよいが、少なくともロール電極20に供給する高周波は連続サイン波の方がより緻密で良質な膜が得られるので好ましい。
また、固定電極21と第1の電源25との間には、第1フィルタ25aが設置されており、第1の電源25から固定電極21への電流を通過しやすくし、第2の電源26からの電流をアースして、第2の電源26から第1の電源25への電流が通過しにくくなるようになっており、ロール電極20と第2の電源26との間には、第2フィルタ26aが設置されており、第2の電源26からロール電極20への電流を通過しやすくし、第1の電源21からの電流をアースして、第1の電源25から第2の電源26への電流を通過しにくくするようになっている。
電極には前述したような強い電界を印加して、均一で安定な放電状態を保つことができる電極を採用することが好ましく、固定電極21とロール電極20には強い電界による放電に耐えるため少なくとも一方の電極表面には下記の誘電体が被覆されている。
以上の説明において、電極と電源の関係は、固定電極21に第2の電源26を接続して、ロール電極20に第1の電源25を接続しても良い。
図6は、ロール電極の一例を示す概略図である。
ロール電極20の構成について説明すると、図6(a)において、ロール電極20は、金属等の導電性母材200a(以下、「電極母材」ともいう。)に対しセラミックスを溶射後、無機材料を用いて封孔処理したセラミックス被覆処理誘電体200b(以下、単に「誘電体」ともいう。)を被覆した組み合わせで構成されている。また、溶射に用いるセラミックス材としては、アルミナ・窒化ケイ素等が好ましく用いられるが、この中でもアルミナが加工し易いので、さらに好ましく用いられる。
また、図6(b)に示すように、金属等の導電性母材200Aにライニングにより無機材料を設けたライニング処理誘電体200Bを被覆した組み合わせでロール電極20’を構成してもよい。ライニング材としては、ケイ酸塩系ガラス、ホウ酸塩系ガラス、リン酸塩系ガラス、ゲルマン酸塩系ガラス、亜テルル酸塩ガラス、アルミン酸塩ガラス、バナジン酸塩ガラス等が好ましく用いられるが、この中でもホウ酸塩系ガラスが加工し易いので、さらに好ましく用いられる。
金属等の導電性母材200a、200Aとしては、銀、白金、ステンレス、アルミニウム、チタニウム、チタン合金、鉄等の金属等が挙げられるが、加工やコストの観点からステンレスが好ましい。
なお、本実施の形態においては、ロール電極の母材200a、200Aは、冷却水による冷却手段を有するステンレス製ジャケットロール母材を使用している(不図示)。
図7は、固定電極の一例を示す概略図である。
図7(a)において、角柱あるいは角筒柱の固定電極21及び21a、21bは上記記載のロール電極20と同様に、金属等の導電性母材210cに対しセラミックスを溶射後、無機材料を用いて封孔処理したセラミックス被覆処理誘電体210dを被覆した組み合わせで構成されている。また、図7(b)に示す様に、角柱あるいは角筒柱型の固定電極21’は金属等の導電性母材210Aへライニングにより無機材料を設けたライニング処理誘電体210Bを被覆した組み合わせで構成してもよい。
以下に、中間転写体の製造方法の工程の内、樹脂基体175上に形成した弾性層176上に、表面層177を堆積、形成させる工程の例を、図3及び5を参照して説明する。
図3及び5において、ロール電極20及び従動ローラ201に樹脂基体175を張架後、張力付与手段202の作動により樹脂基体175に所定の張力を掛け、次いでロール電極20を所定の回転数で回転駆動する。
混合ガス供給装置24から混合ガスGを生成し、放電空間23に放出する。
第1の電源25から周波数ω1の電圧を出力して固定電極21に印加し、第2の電源26から周波数ω2の電圧を出力してロール電極20に印加し、これらの電圧により放電空間23に周波数ω1とω2とが重畳された電界Vを発生させる。
電界Vにより放電空間23に放出された混合ガスGを励起しプラズマ状態にする。そして、弾性層表面にプラズマ状態の混合ガスGを晒し混合ガスG中の原料ガスにより無機酸化物層、無機窒化物層から選ばれる少なくとも1つの層の膜、即ち表面層177を弾性層176上に形成する。
放電ガスとは上記のような条件においてプラズマ励起される気体をいい、窒素、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等及びそれらの混合物などが挙げられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
(原料ガス)
表面層の形成に用いられる原料ガスとしては、常温で気体または液体の有機金属化合物、特にアルキル金属化合物や金属アルコキシド化合物、有機金属錯体化合物が用いられる。これら原料における相状態は常温常圧において必ずしも気相である必要はなく、混合ガス供給装置24で加熱あるいは減圧等により溶融、蒸発、昇華等を経て気化し得るものであれば、液相でも固相でも使用可能である。
表面層の形成に用いられる原料ガスとしては、常温で気体または液体の有機金属化合物、特にアルキル金属化合物や金属アルコキシド化合物、有機金属錯体化合物が用いられる。これら原料における相状態は常温常圧において必ずしも気相である必要はなく、混合ガス供給装置24で加熱あるいは減圧等により溶融、蒸発、昇華等を経て気化し得るものであれば、液相でも固相でも使用可能である。
原料ガスとしては、放電空間でプラズマ状態となり、薄膜を形成する成分を含有するものであり、有機金属化合物、有機化合物、無機化合物等である。
たとえば、ケイ素化合物として、シラン、テトラメトキシシラン、テトラエトキシシラン(TEOS)、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O-ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4-ビストリメチルシリル-1,3-ブタジイン、ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51などが挙げられるがこれらに限定されない。
チタン化合物としては、テトラジメチルアミノチタンなどの有機金属化合物、モノチタン、ジチタンなどの金属水素化合物、二塩化チタン、三塩化チタン、四塩化チタンなどの金属ハロゲン化合物、テトラエトキシチタン、テトライソプロポキシチタン、テトラブトキシチタンなどの金属アルコキシドなどが挙げられるがこれらに限定されない。
アルミニウム化合物としては、アルミニウムn-ブトキシド、アルミニウムs-ブトキシド、アルミニウムt-ブトキシド、アルミニウムジイソプロポキシドエチルアセトアセテート、アルミニウムエトキシド、アルミニウムヘキサフルオロペンタンジオネート、アルミニウムイソプロポキシド、アルミニウムIII2,4-ペンタンジオネート、ジメチルアルミニウムクロライドなどが挙げられるがこれらに限定されない。
また、これらの原料は、単独で用いてもよいが、2種以上の成分を混合して使用するようにしてもよい。
(添加ガス)
本発明に係る中間転写体の表面層を形成する際、成膜時の組成や弾性率、膜密度を制御する目的で添加ガスを用いることができる。
本発明に係る中間転写体の表面層を形成する際、成膜時の組成や弾性率、膜密度を制御する目的で添加ガスを用いることができる。
添加ガスとしては、酸素、水素、炭酸ガスを挙げることができる。たとえば、添加ガスとして水素を用いると炭素含有膜が形成しやすく、酸素を用いると金属酸化膜を形成しやすくなる。
表面層の弾性率は、成膜速度や用いる原料ガス、添加ガスの種類、各ガスの量比等により調整することができる。
なお、層中に炭素原子を含有する中間層は、上記の大気圧プラズマCVD装置3においては、1対の電極間(ロール電極20と固定電極21)で混合ガス(放電ガス)をプラズマ励起させ、このプラズマ中に存在する炭素原子を有する原料ガスをラジカル化して弾性層176の表面にさらすものである。そして、この弾性層176の表面にさらされた炭素含有分子や炭素含有ラジカルが、中間層の中に含有される。
アモルファスカーボン層(アモルファスカーボンを主成分とする膜)を形成するための原料ガスとしては、常温で気体又は液体の有機化合物ガス、特に炭化水素ガスが用いられる。これら原料における相状態は常温常圧において必ずしも気相である必要はなく、混合ガス供給装置24で加熱或いは減圧等により溶融、蒸発、昇華等を経て気化し得るものであれば、液相でも固相でも使用可能である。原料ガスとしての炭化水素ガスについては、例えば、CH4、C2H6、C3H8、C4H10等のパラフィン系炭化水素、C2H2、C2H4等のアセチレン系炭化水素、オレフィン系炭化水素、ジオレフィン系炭化水素、さらには芳香族炭化水素等全ての炭化水素を少なくとも含むガスが使用可能である。さらに炭化水素以外でも、例えば、アルコール類、ケトン類、エーテル類、エステル類、CO、CO2等少なくとも炭素元素を含む化合物であれば使用可能である。
また、これらの原料ガスは、単独で用いてもよいが、2種以上の成分を混合して使用するようにしてもよい。
次に、本発明の中間転写体を用いた画像形成方法、画像形成装置について説明する。
《画像形成方法、画像形成装置》
本発明の中間転写体は、電子写真方式の複写機、プリンタ、ファクシミリ等の画像形成方法、画像形成装置に好適に用いられる。
本発明の中間転写体は、電子写真方式の複写機、プリンタ、ファクシミリ等の画像形成方法、画像形成装置に好適に用いられる。
本発明の中間転写体を用いることができる画像形成装置について、カラー画像形成装置を例に取り説明する。
図8は、カラー画像形成装置の一例を示す断面構成図である。
このカラー画像形成装置10は、タンデム型フルカラー複写機と称せられるもので、自動原稿送り装置13と、原稿画像読み取り装置14と、複数の露光手段13Y、13M、13C、13Kと、複数組の画像形成部10Y、10M、10C、10Kと、本発明に係る中間転写体が搭載可能な中間転写体ユニット17と、給紙手段15及び定着手段124とからなる。
画像形成装置の本体12の上部には、自動原稿送り装置13と原稿画像読み取り装置14が配置されており、自動原稿送り装置13により搬送される原稿dの画像が原稿画像読み取り装置14の光学系により反射・結像され、ラインイメージセンサCCDにより読み込まれる。
ラインイメージセンサCCDにより読み取られた原稿画像を光電変換されたアナログ信号は、図示しない画像処理部において、アナログ処理、A/D変換、シェーディング補正、画像圧縮処理等を行った後、露光手段13Y、13M、13C、13Kに各色毎のデジタル画像データとして送られ、露光手段13Y、13M、13C、13Kにより対応する第1の像担持体としてのドラム状の感光体11Y、11M、11C、11Kに各色の画像データの潜像を形成する。
画像形成部10Y、10M、10C、10Kは、垂直方向に縦列配置されており、感光体11Y、11M、11C、11Kの図示左側方にローラ171、172、173、174を巻回して回動可能に張架された半導電性でシームレスベルト状の第2の像担持体である本発明に係る中間転写体(以下、中間転写ベルトともいう)170が配置されている。
そして、本発明に係る中間転写ベルト170は図示しない駆動装置により回転駆動されるローラ171を介し矢印方向に駆動されている。
イエロー色の画像を形成する画像形成部10Yは、感光体11Yの周囲に配置された帯電手段12Y、露光手段13Y、現像手段14Y、1次転写手段としての1次転写ローラ15Y、クリーニング手段16Yを有する。
マゼンタ色の画像を形成する画像形成部10Mは、感光体11M、帯電手段12M、露光手段13M、現像手段14M、1次転写手段としての1次転写ローラ15M、クリーニング手段16Mを有する。
シアン色の画像を形成する画像形成部10Cは、感光体11C、帯電手段12C、露光手段13C、現像手段14C、1次転写手段としての1次転写ローラ15C、クリーニング手段16Cを有する。
黒色画像を形成する画像形成部10Kは、感光体11K、帯電手段12K、露光手段13K、現像手段14K、1次転写手段としての1次転写ローラ15K、クリーニング手段16Kを有する。
トナー補給手段141Y、141M、141C、141Kは、現像装置14Y、14M、14C、14Kにそれぞれ新規トナーを補給する。
ここで、1次転写ローラ15Y、15M、15C、15Kは、図示しない制御手段により画像の種類に応じて選択的に作動され、それぞれ対応する感光体11Y、11M、11C、11Kに中間転写ベルト170を押圧し、感光体上の画像を転写する。
この様にして、画像形成部10Y、10M、10C、10Kにより感光体11Y、11M、11C、11K上に形成された各色の画像は、1次転写ローラ15Y、15M、15C、15Kにより、回動する中間転写ベルト170上に逐次転写されて、合成されたカラー画像が形成される。
すなわち、中間転写ベルト170上に感光体の表面に担持されたトナー画像が1次転写され、中間転写ベルト170は転写されたトナー画像を保持する。
また、給紙カセット151内に収容された記録媒体としての転写材Pは、給紙手段15により給紙され、次いで複数の中間ローラ122A、122B、122C、122D、レジストローラ123を経て、2次転写手段としての2次転写ローラ117まで搬送され、2次転写ローラ117により中間転写体上の合成されたトナー画像が転写材P上に一括転写される。
即ち、中間転写体上に保持したトナー画像を被転写物の表面に2次転写する。
ここで、2次転写手段6は、ここを転写材Pが通過して2次転写を行う時にのみ、転写材Pを中間転写ベルト170に圧接させる。
カラー画像が転写された転写材Pは、定着装置124により定着処理され、排紙ローラ125に挟持されて機外の排紙トレイ126上に載置される。
一方、2次転写ローラ117により転写材Pにカラー画像を転写した後、転写材Pを曲率分離した中間転写ベルト170は、クリーニング手段8により残留トナーが除去される。
ここで、中間転写体は前述したような回転するドラム状のものに置き換えても良い。
次に、中間転写ベルト170に接する1次転写手段としての1次転写ローラ15Y、15M、15C、15K、と、2次転写ローラ117の構成について説明する。
1次転写ローラ15Y、15M、15C、15Kは、たとえば外径8mmのステンレス等の導電性芯金の周面に、ポリウレタン、EPDM、シリコーン等のゴム材料に、カーボン等の導電性物質を分散させたり、イオン性の導電材料を含有させたりして、体積抵抗が105~109Ω・cm程度のソリッド状態または発泡スポンジ状態で、厚さが5mm、ゴム弾性率が20~70°程度(アスカー弾性率C)の半導電弾性ゴムを被覆して形成される。
2次転写ローラ117は、たとえば外径8mmのステンレス等の導電性芯金の周面に、ポリウレタン、EPDM、シリコーン等のゴム材料に、カーボン等の導電性物質を分散させたり、イオン性の導電材料を含有させたりして、体積抵抗が105~109Ω・cm程度のソリッド状態または発泡スポンジ状態で、厚さが5mm、ゴム弾性率が20~70°程度(アスカー弾性率C)の半導電弾性ゴムを被覆して形成される。
〈転写材〉
本発明に用いられる転写材としては、トナー画像を保持する支持体で、通常画像支持体、転写材或いは転写紙といわれるものである。具体的には薄紙から厚紙までの普通紙、アート紙やコート紙等の塗工された印刷用紙、市販されている和紙やはがき用紙、OHP用のプラスチックフィルム、布等の各種転写材を挙げることができるが、これらに限定されるものではない。
本発明に用いられる転写材としては、トナー画像を保持する支持体で、通常画像支持体、転写材或いは転写紙といわれるものである。具体的には薄紙から厚紙までの普通紙、アート紙やコート紙等の塗工された印刷用紙、市販されている和紙やはがき用紙、OHP用のプラスチックフィルム、布等の各種転写材を挙げることができるが、これらに限定されるものではない。
以下に実施例を挙げて、本発明を具体的に説明するが、本発明の実施形態はこれに限定されるものではない。
《中間転写体の作製》
以下の手順で「中間転写体1~20」を作製した。
以下の手順で「中間転写体1~20」を作製した。
〈樹脂基体の準備〉
(樹脂基体1の準備)
厚さ100μmの導電性物質を含有するポリフェニレンサルファイド(PPS)からなるシームレスベルトを準備し「樹脂基体1」とした。
(樹脂基体1の準備)
厚さ100μmの導電性物質を含有するポリフェニレンサルファイド(PPS)からなるシームレスベルトを準備し「樹脂基体1」とした。
(樹脂基体2の準備)
厚さ100μmの導電性物質を含有するポリイミド(PI)からなるシームレスレスベルトを準備し「樹脂基体2」とした。
厚さ100μmの導電性物質を含有するポリイミド(PI)からなるシームレスレスベルトを準備し「樹脂基体2」とした。
(樹脂基体3の準備)
厚さ100μmの導電性物質を含有するポリエステルからなるシームレスベルトを準備し「樹脂基体3」とした。
厚さ100μmの導電性物質を含有するポリエステルからなるシームレスベルトを準備し「樹脂基体3」とした。
〈中間転写体1の作製〉
(弾性層1の作製)
上記で準備した「樹脂基体1」の外周に、クロロプレンゴムからなる厚さ150μmの「弾性層1」をディッピング塗布法により設けた。
(弾性層1の作製)
上記で準備した「樹脂基体1」の外周に、クロロプレンゴムからなる厚さ150μmの「弾性層1」をディッピング塗布法により設けた。
(中間層1の作製)
次に、上記の「弾性層1」の上に、図3のプラズマ放電処理装置を用いて、「中間層1」を形成した。
次に、上記の「弾性層1」の上に、図3のプラズマ放電処理装置を用いて、「中間層1」を形成した。
中間層1の形成材料としては、下記の中間層混合ガス組成物を用いた。中間層1の形成は、下記の膜形成条件で行った。このときのプラズマ放電処理装置の各電極を被覆する誘電体は対向する両電極共に、セラミックス溶射加工により片肉で1mm厚のアルミナを被覆したものを使用した。被覆後の電極間隙は1mmに設定した。また、誘電体を被覆した金属母材は、冷却水による冷却機能を有するステンレス製ジャケット仕様であり、放電中は冷却水により電極温度をコントロールしながら実施し、「中間層1」(SixOy)を作製した。
〔中間層混合ガス組成物〕
放電ガス:窒素ガス 94.85体積%
膜形成(原料)ガス:ヘキサメチルジシロキサン 0.15体積%
添加ガス:酸素ガス 5.00体積%
各原料ガスは、加熱により蒸気を生成し、あらかじめ原料が凝集しないように余熱処理を行った放電ガス及び反応ガスとを混合・希釈した後、放電空間へ供給した。
放電ガス:窒素ガス 94.85体積%
膜形成(原料)ガス:ヘキサメチルジシロキサン 0.15体積%
添加ガス:酸素ガス 5.00体積%
各原料ガスは、加熱により蒸気を生成し、あらかじめ原料が凝集しないように余熱処理を行った放電ガス及び反応ガスとを混合・希釈した後、放電空間へ供給した。
〔中間層形成条件〕
第1電極側電源類
印加電源;ハイデン研究所社製高周波電源「PHF-6k」
周波数 100kHz(連続モード)
出力密度 10W/cm2(このときの電圧Vpは7kVであった)
電極温度 70℃
第2電極側電源類
印加電源;パール工業社製高周波電源「CF-5000-13M」
周波数 13.56MHz
出力密度 5W/cm2(このときの電圧Vpは1kVであった)
電極温度 70℃
(硬質層1の作製)
次に、上記の「中間層1」の上に、図3の大気圧プラズマCVD装置を用いて、「硬質層1」を形成した。
第1電極側電源類
印加電源;ハイデン研究所社製高周波電源「PHF-6k」
周波数 100kHz(連続モード)
出力密度 10W/cm2(このときの電圧Vpは7kVであった)
電極温度 70℃
第2電極側電源類
印加電源;パール工業社製高周波電源「CF-5000-13M」
周波数 13.56MHz
出力密度 5W/cm2(このときの電圧Vpは1kVであった)
電極温度 70℃
(硬質層1の作製)
次に、上記の「中間層1」の上に、図3の大気圧プラズマCVD装置を用いて、「硬質層1」を形成した。
硬質層の形成材料としては、下記の硬質層混合ガス組成物を用いた。硬質層の形成は、下記の膜形成条件で行った。この時のプラズマ放電処理装置の各電極を被覆する誘電体は対向する両電極共に、セラミックス溶射加工により片肉で1mm厚のアルミナを被覆したものを使用した。被覆後の電極間隙は、1mmに設定した。又誘電体を被覆した金属母材は、冷却水による冷却機能を有するステンレス製ジャケット仕様であり、放電中は冷却水による電極温度コントロールを行いながら実施し、「硬質層1」(SiO2)を作製した。
〔硬質層混合ガス組成物〕
放電ガス:窒素ガス 94.99体積%
膜形成(原料)ガス:テトラエトキシシラン(TEOS)
0.01体積%
添加ガス:酸素ガス 5.00体積%
各原料ガスは、加熱により蒸気を生成し、あらかじめ原料が凝集しないように余熱処理を行った放電ガス及び反応ガスとを混合・希釈した後、放電空間へ供給した。
放電ガス:窒素ガス 94.99体積%
膜形成(原料)ガス:テトラエトキシシラン(TEOS)
0.01体積%
添加ガス:酸素ガス 5.00体積%
各原料ガスは、加熱により蒸気を生成し、あらかじめ原料が凝集しないように余熱処理を行った放電ガス及び反応ガスとを混合・希釈した後、放電空間へ供給した。
〔硬質層形成条件〕
第1電極側電源類
印加電源;ハイデン研究所社製高周波電源「PHF-6k」
周波数 100kHz(連続モード)
出力密度 10W/cm2(このときの電圧Vpは7kVであった)
電極温度 70℃
第2電極側電源類
印加電源;パール工業社製高周波電源「CF-5000-13M」
周波数 13.56MHz
出力密度 10W/cm2(このときの電圧Vpは2kVであった)
電極温度 70℃
以上の手順により、ポリフェニレンサルファイド(PPS)製の「樹脂基体1」上に「弾性層1」と「中間層1」及び「硬質層1」を形成してなる「中間転写体1」を作製した。
第1電極側電源類
印加電源;ハイデン研究所社製高周波電源「PHF-6k」
周波数 100kHz(連続モード)
出力密度 10W/cm2(このときの電圧Vpは7kVであった)
電極温度 70℃
第2電極側電源類
印加電源;パール工業社製高周波電源「CF-5000-13M」
周波数 13.56MHz
出力密度 10W/cm2(このときの電圧Vpは2kVであった)
電極温度 70℃
以上の手順により、ポリフェニレンサルファイド(PPS)製の「樹脂基体1」上に「弾性層1」と「中間層1」及び「硬質層1」を形成してなる「中間転写体1」を作製した。
〈中間転写体2の作製〉
前記「中間転写体1」の作製において、中間層1及び硬質層1の厚さを表3に示す値になる様に変更した他は同様の手順により「中間転写体2」を作製した。
前記「中間転写体1」の作製において、中間層1及び硬質層1の厚さを表3に示す値になる様に変更した他は同様の手順により「中間転写体2」を作製した。
〈中間転写体3の作製〉
前記「中間転写体1」の作製において、「中間層1」の形成で使用する中間層混合ガス組成物と中間層形成条件を以下の様に変更してアモルファスカーボンを組成とする「中間層3」を形成した。その他は前記「中間転写体1」の作製と同様の手順により「中間転写体3」を作製した。
前記「中間転写体1」の作製において、「中間層1」の形成で使用する中間層混合ガス組成物と中間層形成条件を以下の様に変更してアモルファスカーボンを組成とする「中間層3」を形成した。その他は前記「中間転写体1」の作製と同様の手順により「中間転写体3」を作製した。
〔中間層混合ガス組成物〕
放電ガス:窒素ガス 97.00体積%
膜形成ガス:メタン 3.00体積%
添加ガス:酸素ガス 0.00体積%
〔中間層形成条件〕
第1電極側電源類
印加電源;パール工業社製高周波電源「CF-5000-13M」
周波数 13.56MHz
出力密度 10W/cm2(このときの電圧Vpは2kVであった)
電極温度 70℃
第2電極側電源類
印加電源;パール工業社製高周波電源「CF-5000-13M」
周波数 13.56MHz
出力密度 10W/cm2(このときの電圧Vpは2kVであった)
電極温度 70℃
〈中間転写体4の作製〉
前記「中間転写体1」の作製において、「中間層1」を形成する際、炭素原子含有量が、弾性層側から硬質層に向かって、順に8炭素原子%、5炭素原子%、3.3炭素原子%になるよう中間層混合ガス組成物を変えることにより3層からなる中間層を作製した。その他は「中間転写体1」の作製と同様の手順により「中間転写体4」を作製した。
放電ガス:窒素ガス 97.00体積%
膜形成ガス:メタン 3.00体積%
添加ガス:酸素ガス 0.00体積%
〔中間層形成条件〕
第1電極側電源類
印加電源;パール工業社製高周波電源「CF-5000-13M」
周波数 13.56MHz
出力密度 10W/cm2(このときの電圧Vpは2kVであった)
電極温度 70℃
第2電極側電源類
印加電源;パール工業社製高周波電源「CF-5000-13M」
周波数 13.56MHz
出力密度 10W/cm2(このときの電圧Vpは2kVであった)
電極温度 70℃
〈中間転写体4の作製〉
前記「中間転写体1」の作製において、「中間層1」を形成する際、炭素原子含有量が、弾性層側から硬質層に向かって、順に8炭素原子%、5炭素原子%、3.3炭素原子%になるよう中間層混合ガス組成物を変えることにより3層からなる中間層を作製した。その他は「中間転写体1」の作製と同様の手順により「中間転写体4」を作製した。
〈中間転写体5の作製〉
前記「中間転写体1」の作製において、「中間層1」を形成する際、炭素原子含有量が、弾性層側から硬質層に向かって、8炭素原子%から3.3炭素原子%に連続的に変化する様、中間層混合ガス組成物を変えることにより傾斜構造を有する中間層を作製した。その他は「中間転写体1」の作製と同様の手順により「中間転写体5」を作製した。
前記「中間転写体1」の作製において、「中間層1」を形成する際、炭素原子含有量が、弾性層側から硬質層に向かって、8炭素原子%から3.3炭素原子%に連続的に変化する様、中間層混合ガス組成物を変えることにより傾斜構造を有する中間層を作製した。その他は「中間転写体1」の作製と同様の手順により「中間転写体5」を作製した。
〈中間転写体6の作製〉
前記「中間転写体1」の作製で用いた「樹脂基体1」をポリイミドからなる「樹脂基体2」に変更した。また、前記「樹脂基体2」の外周には、市販のニトリルゴムからなる厚さ150μmの「弾性層2」をディッピング塗布法により設けた。その他は前記「中間転写体1」の作製と同様の手順で「中間転写体6」を作製した。
前記「中間転写体1」の作製で用いた「樹脂基体1」をポリイミドからなる「樹脂基体2」に変更した。また、前記「樹脂基体2」の外周には、市販のニトリルゴムからなる厚さ150μmの「弾性層2」をディッピング塗布法により設けた。その他は前記「中間転写体1」の作製と同様の手順で「中間転写体6」を作製した。
〈中間転写体7の作製〉
前記「中間転写体1」の作製で用いた「樹脂基体1」をポリエステルからなる「樹脂基体3」に変更した。また、前記「樹脂基体3」の外周には、市販のエチレン-プロピレン共重合体ゴムからなる厚さ150μmの「弾性層3」をディッピング塗布法により設けた。その他は前記「中間転写体1」の作製と同様の手順で「中間転写体7」を作製した。
前記「中間転写体1」の作製で用いた「樹脂基体1」をポリエステルからなる「樹脂基体3」に変更した。また、前記「樹脂基体3」の外周には、市販のエチレン-プロピレン共重合体ゴムからなる厚さ150μmの「弾性層3」をディッピング塗布法により設けた。その他は前記「中間転写体1」の作製と同様の手順で「中間転写体7」を作製した。
〈中間転写体8の作製〉
前記「中間転写体1」の作製で、「中間層1」を形成せず、「硬質層1」のみを形成したものとした以外は同様の手順で「中間転写体8」を作製した。
前記「中間転写体1」の作製で、「中間層1」を形成せず、「硬質層1」のみを形成したものとした以外は同様の手順で「中間転写体8」を作製した。
〈中間転写体9の作製〉
前記「中間転写体1」の作製で、「中間層1」のみを形成し、「硬質層1」を形成しないものとした以外は同様の手順で「中間転写体9」を作製した。
前記「中間転写体1」の作製で、「中間層1」のみを形成し、「硬質層1」を形成しないものとした以外は同様の手順で「中間転写体9」を作製した。
〈中間転写体10~19の作製〉
前記「中間転写体1」の作製において、「中間層1」及び「硬質層1」の作製条件について、炭素原子含有量と層厚を表3に示す様に変更した以外は同様の手順で「中間転写体10~19」を作製した。
前記「中間転写体1」の作製において、「中間層1」及び「硬質層1」の作製条件について、炭素原子含有量と層厚を表3に示す様に変更した以外は同様の手順で「中間転写体10~19」を作製した。
〈中間転写体20の作製〉
前記「中間転写体1」の作製において、硬質層を以下の方法で作製した他は同様の手順により「中間転写体20」を作製した。
前記「中間転写体1」の作製において、硬質層を以下の方法で作製した他は同様の手順により「中間転写体20」を作製した。
(硬質層1の作製)
図3の大気圧プラズマCVD装置を用いて、「硬質層2」を形成した。
図3の大気圧プラズマCVD装置を用いて、「硬質層2」を形成した。
硬質層の形成材料としては、下記の硬質層混合ガス組成物を用いた。硬質層の形成は、下記の膜形成条件で行った。このときのプラズマ放電処理装置の各電極を被覆する誘電体は対向する両電極共に、セラミックス溶射加工により片肉で1mm厚のアルミナを被覆したものを使用した。被覆後の電極間隙は、1mmに設定した。また、誘電体を被覆した金属母材は、冷却水による冷却機能を有するステンレス製ジャケット仕様であり、放電中は冷却水による電極温度コントロールを行いながら実施し、「硬質層2」(SiOxCy)を作製した。
〔硬質層混合ガス組成物〕
放電ガス:窒素ガス 94.99体積%
膜形成(原料)ガス:テトラエトキシシラン(TEOS)
0.05体積%
添加ガス:酸素ガス 4.96体積%
各原料ガスは、加熱により蒸気を生成し、あらかじめ原料が凝集しないように余熱処理を行った放電ガス及び反応ガスとを混合・希釈した後、放電空間へ供給した。
放電ガス:窒素ガス 94.99体積%
膜形成(原料)ガス:テトラエトキシシラン(TEOS)
0.05体積%
添加ガス:酸素ガス 4.96体積%
各原料ガスは、加熱により蒸気を生成し、あらかじめ原料が凝集しないように余熱処理を行った放電ガス及び反応ガスとを混合・希釈した後、放電空間へ供給した。
〔硬質層形成条件〕
第1電極側電源類
印加電源;ハイデン研究所社製高周波電源「PHF-6k」
周波数 100kHz(連続モード)
出力密度 10W/cm2(このときの電圧Vpは7kVであった)
電極温度 70℃
第2電極側電源類
印加電源;パール工業社製高周波電源「CF-5000-13M」
周波数 13.56MHz
出力密度 10W/cm2(このときの電圧Vpは2kVであった)
電極温度 70℃
以上の手順により、ポリフェニレンサルファイド(PPS)製の「樹脂基体1」上に「弾性層1」と「中間層2」及び「硬質層2」を形成してなる「中間転写体20」を作製した。
第1電極側電源類
印加電源;ハイデン研究所社製高周波電源「PHF-6k」
周波数 100kHz(連続モード)
出力密度 10W/cm2(このときの電圧Vpは7kVであった)
電極温度 70℃
第2電極側電源類
印加電源;パール工業社製高周波電源「CF-5000-13M」
周波数 13.56MHz
出力密度 10W/cm2(このときの電圧Vpは2kVであった)
電極温度 70℃
以上の手順により、ポリフェニレンサルファイド(PPS)製の「樹脂基体1」上に「弾性層1」と「中間層2」及び「硬質層2」を形成してなる「中間転写体20」を作製した。
表3に上述した「中間転写体1~20」で用いた「樹脂基体」、「弾性層」の材料、「中間層」と「硬質層」の層数、組成、炭素原子含有量及び層厚、表面層の層厚(中間層と硬質層の合計)を示す。
なお、中間層と硬質層の層厚は、前述した微小部X線回折装置「MXP21(マックサイエンス社製)」を用い、前述の手順により反射率を測定して得られた値である。
表4に、上記で作製した中間転写体の弾性率、膜密度、圧縮応力を示す。ここで、「中間転写体1~20」のうち、本発明の構成を満たす「中間転写体1~7、10、11、14、15、19及び20」を「実施例1~13」、本発明の構成を有さない「中間転写体8、9、12、13、16~18」を「比較例1~7」とする。
なお、各中間転写体の弾性率、膜密度、圧縮応力は、前述した測定装置と測定手順を用いることにより得られた値である。
《評価実験》
〈画像形成装置〉
上記「中間転写体1~20」を、図8に示す画像形成装置に対応する市販の画像形成装置「bizhub PRO C6500(コニカミノルタビジネステクノロジーズ(株)製)」にそれぞれ装着し、プリント作成実施前後における下記項目の変動を評価した。
〈画像形成装置〉
上記「中間転写体1~20」を、図8に示す画像形成装置に対応する市販の画像形成装置「bizhub PRO C6500(コニカミノルタビジネステクノロジーズ(株)製)」にそれぞれ装着し、プリント作成実施前後における下記項目の変動を評価した。
なお、プリント作成を行う際、体積基準メディアン粒径(D50)が4.5μmのトナーと60μmのコートキャリアよりなるトナー濃度が6%の2成分現像剤を使用した。
プリント作成環境は、低温低湿環境(温度10℃、相対湿度20%RH)と高温高湿環境(温度33℃、相対湿度80%RH)とし、この環境下で16万枚のプリント作成を行った。なお、プリント作成を行うにあたりA4版の上質紙(64g/m2)を転写材として使用した。
プリント原稿は、印字率が7%の文字画像(3ポイント文字と5ポイント文字がそれぞれ50%)、カラー人物顔画像(ハーフトーンを含むドット画像)、ベタ白画像、ベタ画像がそれぞれ1/4等分にあるオリジナル画像(A4版)を用いた。また、評価は、1次転写率、2次転写率、文字の中抜け、ブレードクリーニング性、クラック及びトナーフィルミングについて行った。
〈1次転写率の評価〉
1次転写率の評価は、低温低湿環境(温度10℃、相対湿度20%RH)でプリントを行い、初期と16万枚プリント作成終了後における転写率を測定して評価した。1次転写率は、画素濃度が1.30のソリッド画像(20mm×50mm)を感光体上に形成した時、感光体上に形成されたトナー像のトナー質量と中間転写体上に転写された後、感光体上に残った転写残のトナー質量を求め、下記式より転写率を求めた。
1次転写率の評価は、低温低湿環境(温度10℃、相対湿度20%RH)でプリントを行い、初期と16万枚プリント作成終了後における転写率を測定して評価した。1次転写率は、画素濃度が1.30のソリッド画像(20mm×50mm)を感光体上に形成した時、感光体上に形成されたトナー像のトナー質量と中間転写体上に転写された後、感光体上に残った転写残のトナー質量を求め、下記式より転写率を求めた。
1次転写率(%)
=〔{(感光体上に形成されたトナー像のトナー質量)-(感光体上に残った転写残のトナー質量)}/(感光体上に形成されたトナー像のトナー質量)〕×100
なお、98%以上を良好と評価した。
=〔{(感光体上に形成されたトナー像のトナー質量)-(感光体上に残った転写残のトナー質量)}/(感光体上に形成されたトナー像のトナー質量)〕×100
なお、98%以上を良好と評価した。
〈2次転写率の評価〉
2次転写率の評価は、低温低湿環境(温度10℃、相対湿度20%RH)下で、初期と16万枚プリント終了後の転写率で行った。2次転写率は、画素濃度が1.30のソリッド画像(20mm×50mm)を形成したとき、転写材上に転写されたトナー像のトナー質量と中間転写体上に形成されたトナー像のトナー質量を求め、下記式より転写率を求めた。
2次転写率の評価は、低温低湿環境(温度10℃、相対湿度20%RH)下で、初期と16万枚プリント終了後の転写率で行った。2次転写率は、画素濃度が1.30のソリッド画像(20mm×50mm)を形成したとき、転写材上に転写されたトナー像のトナー質量と中間転写体上に形成されたトナー像のトナー質量を求め、下記式より転写率を求めた。
2次転写率(%)
=〔{(中間転写材上に形成されたトナー像のトナー質量)-(中間転写体上に残った転写残のトナー質量)}/(中間転写体上に形成されたトナー像のトナー質量)〕×100
2次転写率は98%以上を良好と評価した。
=〔{(中間転写材上に形成されたトナー像のトナー質量)-(中間転写体上に残った転写残のトナー質量)}/(中間転写体上に形成されたトナー像のトナー質量)〕×100
2次転写率は98%以上を良好と評価した。
〈文字画像の中抜け評価〉
文字画像の中抜けの評価は、高温高湿環境(温度33℃、相対湿度80%RH)下でプリント作成を行い、初期の10枚と16万枚プリント終了後の10枚を取り出し、文字画像をルーペで拡大観察して、文字画像の中抜け発生程度を評価した。
文字画像の中抜けの評価は、高温高湿環境(温度33℃、相対湿度80%RH)下でプリント作成を行い、初期の10枚と16万枚プリント終了後の10枚を取り出し、文字画像をルーペで拡大観察して、文字画像の中抜け発生程度を評価した。
評価基準
◎:文字画像の中抜けの発生が、10枚全てのプリント画像で3個以下と良好
○:文字画像の中抜けが、4個以上19個以下発生しているのものが1枚以上あるが実用上問題なし
×:文字画像の中抜けが、20個以上発生しているものが1枚以上あり、実用上問題あり。
◎:文字画像の中抜けの発生が、10枚全てのプリント画像で3個以下と良好
○:文字画像の中抜けが、4個以上19個以下発生しているのものが1枚以上あるが実用上問題なし
×:文字画像の中抜けが、20個以上発生しているものが1枚以上あり、実用上問題あり。
〈クリーニング性の評価〉
クリーニング性の評価は、低温低湿環境(温度10℃、相対湿度20%RH)下でプリント作成を行い、クリーニングブレードでクリーニングした後の中間転写体の表面を目視観察し、その表面における残存トナーの程度と、プリント作成により得られたプリント画像上におけるクリーニング不良に起因する画像汚れの発生程度を評価し、◎と○を合格とした。
クリーニング性の評価は、低温低湿環境(温度10℃、相対湿度20%RH)下でプリント作成を行い、クリーニングブレードでクリーニングした後の中間転写体の表面を目視観察し、その表面における残存トナーの程度と、プリント作成により得られたプリント画像上におけるクリーニング不良に起因する画像汚れの発生程度を評価し、◎と○を合格とした。
なお、プリント作成実施中にクリーニングブレードのめくれの発生もクリーニング性不良として評価した。
評価基準
◎:16万枚まで中間転写体上に残存トナーが認められず、プリント画像にもクリーニング不良に起因する画像汚れが発生しなかった
○:16万枚で中間転写体上に残存トナーが認められるが、プリント画像にクリーニング不良に起因する画像汚れは発生せず実用上問題なし
×:10万枚で中間転写体上に残存トナーが認められ、プリント画像にもクリーニング不良に起因する画像汚れが発生して実用上問題あり。
◎:16万枚まで中間転写体上に残存トナーが認められず、プリント画像にもクリーニング不良に起因する画像汚れが発生しなかった
○:16万枚で中間転写体上に残存トナーが認められるが、プリント画像にクリーニング不良に起因する画像汚れは発生せず実用上問題なし
×:10万枚で中間転写体上に残存トナーが認められ、プリント画像にもクリーニング不良に起因する画像汚れが発生して実用上問題あり。
〈クラック発生の評価〉
クラック発生の評価は、低温低湿環境(温度10℃、相対湿度20%RH)下で16万枚のプリント作成を実施後、中間転写体表面を目視観察してクラックの発生程度と、得られたプリント画像上にクラックに起因する画像欠陥の発生程度により評価した。◎と○を合格とした。
クラック発生の評価は、低温低湿環境(温度10℃、相対湿度20%RH)下で16万枚のプリント作成を実施後、中間転写体表面を目視観察してクラックの発生程度と、得られたプリント画像上にクラックに起因する画像欠陥の発生程度により評価した。◎と○を合格とした。
評価基準
◎:中間転写体表面にクラック発生がみられない
○:中間転写体表面に軽微なクラック発生が確認されるが、クラックに起因する画像欠陥の発生は見られず実用上問題なし
×:中間転写体表面に顕著なクラック発生が確認され、かつ、クラックに起因する画像欠陥の発生も確認されて実用上問題あり。
◎:中間転写体表面にクラック発生がみられない
○:中間転写体表面に軽微なクラック発生が確認されるが、クラックに起因する画像欠陥の発生は見られず実用上問題なし
×:中間転写体表面に顕著なクラック発生が確認され、かつ、クラックに起因する画像欠陥の発生も確認されて実用上問題あり。
〈トナーフィルミング発生の評価〉
中間転写体表面のトナーフィルミング発生の評価は、高温高湿環境(温度33℃、相対湿度90%RH)下で16万枚のプリント作成を実施後、中間転写体表面におけるトナーフィルミングの発生状態を目視観察するとともに、16万枚のプリント作成を実施したときのプリント画像上のかぶりと白すじの発生状態より評価した。
中間転写体表面のトナーフィルミング発生の評価は、高温高湿環境(温度33℃、相対湿度90%RH)下で16万枚のプリント作成を実施後、中間転写体表面におけるトナーフィルミングの発生状態を目視観察するとともに、16万枚のプリント作成を実施したときのプリント画像上のかぶりと白すじの発生状態より評価した。
評価基準
◎:トナーフィルミングによる光沢むらが全く認められず、プリント画像にトナーフィルミングによるかぶりや白すじは発生しなかった
○:トナーフィルミングによる光沢むらがかすかに認められたか、それに対応した場所にかぶりや白すじの発生が認められなかった
×:トナーフィルミングによる光沢むらが認められ、それに対応した場所にかぶりや白すじが発生した。
◎:トナーフィルミングによる光沢むらが全く認められず、プリント画像にトナーフィルミングによるかぶりや白すじは発生しなかった
○:トナーフィルミングによる光沢むらがかすかに認められたか、それに対応した場所にかぶりや白すじの発生が認められなかった
×:トナーフィルミングによる光沢むらが認められ、それに対応した場所にかぶりや白すじが発生した。
以上の評価結果を表5に示す。
表5の結果から明らかなように、本発明の構成を有する「実施例1~13」である「中間転写体1~7、10、11、14、15、19、20」は、初期及び16万枚プリント作成後の1次転写率及び2次転写率、クリーニング性、文字画像の中抜け、クラック発生、トナーフィルミング発生の何れの評価項目で良好な結果が得られた。一方、本発明の構成を満たさない「比較例1~7」である「中間転写体8、9、12、13、16~18」は評価項目中の何れかの項目で所定の結果が得られず、本発明の中間転写体とは明らかに異なる結果になった。
170 中間転写体
175 樹脂基体
176 弾性層
177 表面層
178 中間層
178a 中間層の1層目
178b 中間層の2層目
178c 中間層の3層目
179 硬質層
175 樹脂基体
176 弾性層
177 表面層
178 中間層
178a 中間層の1層目
178b 中間層の2層目
178c 中間層の3層目
179 硬質層
Claims (11)
- 電子写真感光体の表面に担持されたトナー画像を中間転写体に1次転写した後、該中間転写体から該トナー画像を転写材に2次転写する中間転写体において、
該中間転写体は樹脂基体の外周に弾性層を設け、その上に表面層を設けたもので、
該表面層は、厚さが0.5nm以上1000nm以下であり、かつ、中間層と金属酸化物を主成分とする硬質層からなるものであって、
該硬質層は、炭素原子含有量が2.0原子%以下であり、かつ、該炭素原子含有量が中間層の炭素原子含有量よりも少ないものであることを特徴とする中間転写体。 - 前記中間層は、炭素原子含有量が1.0原子%以上25.0原子%以下であることを特徴とする請求項1に記載の中間転写体。
- 前記硬質層の膜密度が、前記中間層の膜密度よりも大きいものであることを特徴とする請求項1または2に記載の中間転写体。
- 前記硬質層の弾性率が、前記中間層の弾性率よりも大きいものであることを特徴とする請求項1~3の何れか1項に記載の中間転写体。
- 前記表面層が、金属酸化物、カーボン含有金属酸化物、アモルファスカーボンのいずれかを含有するものであることを特徴とする請求項1~4の何れか1項に記載の中間転写体。
- 前記硬質層が、少なくとも酸化ケイ素化合物を含有するものであることを特徴とする請求項1~5の何れか1項に記載の中間転写体。
- 前記中間層が、少なくとも酸化ケイ素化合物を含有するものであることを特徴とする請求項1~6の何れか1項に記載の中間転写体。
- 前記表面層が、異なる周波数の電界を2つ以上形成した大気圧下またはその近傍の圧力下で行われるプラズマCVDによって作製されたものであることを特徴とする請求項1~7の何れか1項に記載の中間転写体。
- 前記表面層の圧縮応力が、30MPa以下であることを特徴とする請求項1~8の何れか1項に記載の中間転写体。
- 前記弾性層が、クロロプレンゴム、ニトリルゴム、エチレン-プロピレン共重合体ゴムのうち少なくとも1つを含有するものであることを特徴とする請求項1~8の何れか1項に記載の中間転写体。
- 前記樹脂基体が、ポリイミド、ポリカーボネート、ポリフェニレンサルファイドのうち少なくとも1つから形成されたものであることを特徴とする請求項1~10の何れか1項に記載の中間転写体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008136363 | 2008-05-26 | ||
JP2008-136363 | 2008-05-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009145174A1 true WO2009145174A1 (ja) | 2009-12-03 |
Family
ID=41377047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/059579 WO2009145174A1 (ja) | 2008-05-26 | 2009-05-26 | 中間転写体 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009145174A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09212004A (ja) * | 1996-02-06 | 1997-08-15 | Matsushita Electric Ind Co Ltd | 中間転写体および中間転写体を備えた電子写真装置 |
JP2000206801A (ja) * | 1999-01-11 | 2000-07-28 | Canon Inc | 画像形成装置 |
JP2006178232A (ja) * | 2004-12-22 | 2006-07-06 | Sumitomo Rubber Ind Ltd | 導電性ベルトおよび導電性ベルトの製造方法 |
WO2007046260A1 (ja) * | 2005-10-20 | 2007-04-26 | Konica Minolta Business Technologies, Inc. | 中間転写体、中間転写体の製造方法及び中間転写体を備えた画像形成装置 |
JP2007292888A (ja) * | 2006-04-21 | 2007-11-08 | Sumitomo Electric Fine Polymer Inc | 画像形成装置用の多層エンドレスベルト |
JP2008040139A (ja) * | 2006-08-07 | 2008-02-21 | Shin Etsu Polymer Co Ltd | 無端ベルト及び画像形成装置 |
-
2009
- 2009-05-26 WO PCT/JP2009/059579 patent/WO2009145174A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09212004A (ja) * | 1996-02-06 | 1997-08-15 | Matsushita Electric Ind Co Ltd | 中間転写体および中間転写体を備えた電子写真装置 |
JP2000206801A (ja) * | 1999-01-11 | 2000-07-28 | Canon Inc | 画像形成装置 |
JP2006178232A (ja) * | 2004-12-22 | 2006-07-06 | Sumitomo Rubber Ind Ltd | 導電性ベルトおよび導電性ベルトの製造方法 |
WO2007046260A1 (ja) * | 2005-10-20 | 2007-04-26 | Konica Minolta Business Technologies, Inc. | 中間転写体、中間転写体の製造方法及び中間転写体を備えた画像形成装置 |
JP2007292888A (ja) * | 2006-04-21 | 2007-11-08 | Sumitomo Electric Fine Polymer Inc | 画像形成装置用の多層エンドレスベルト |
JP2008040139A (ja) * | 2006-08-07 | 2008-02-21 | Shin Etsu Polymer Co Ltd | 無端ベルト及び画像形成装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5131199B2 (ja) | 中間転写体、それを用いた画像形成方法及び画像形成装置 | |
JP4973781B2 (ja) | 中間転写体 | |
JP4577362B2 (ja) | 中間転写体、中間転写体の製造方法及び画像形成装置 | |
JP4380770B2 (ja) | 中間転写体、中間転写体の製造方法及び中間転写体を備えた画像形成装置 | |
US8295747B2 (en) | Intermediate transfer member for use in electrophotographic image forming apparatus | |
WO2010103896A1 (ja) | 中間転写体 | |
JP4438866B2 (ja) | 中間転写体、中間転写体の製造装置、中間転写体の製造方法、及び画像形成装置 | |
WO2010106973A1 (ja) | 中間転写体 | |
CN103608732A (zh) | 电子照相用构件、处理盒和电子照相设备 | |
JP4775489B2 (ja) | 中間転写体及び画像形成装置 | |
JP4497205B2 (ja) | 中間転写体、中間転写体の製造方法及び画像形成装置 | |
JP2010113118A (ja) | 中間転写体 | |
JP2008209835A (ja) | 中間転写体及び画像形成装置 | |
WO2009145174A1 (ja) | 中間転写体 | |
JP2009204922A (ja) | 電子写真感光体 | |
JP2008256958A (ja) | 中間転写体、該中間転写体の製造方法、該中間転写体を用いる画像形成方法及び画像形成装置 | |
JPWO2008084714A1 (ja) | 中間転写体、それを用いた画像形成方法及び画像形成装置 | |
JP2010039253A (ja) | 中間転写体、画像形成装置 | |
JP2009265293A (ja) | 電子写真感光体 | |
JP2009186642A (ja) | 電子写真感光体 | |
JP2009186641A (ja) | 電子写真感光体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09754682 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09754682 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |