WO2007046260A1 - 中間転写体、中間転写体の製造方法及び中間転写体を備えた画像形成装置 - Google Patents

中間転写体、中間転写体の製造方法及び中間転写体を備えた画像形成装置 Download PDF

Info

Publication number
WO2007046260A1
WO2007046260A1 PCT/JP2006/320169 JP2006320169W WO2007046260A1 WO 2007046260 A1 WO2007046260 A1 WO 2007046260A1 JP 2006320169 W JP2006320169 W JP 2006320169W WO 2007046260 A1 WO2007046260 A1 WO 2007046260A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate transfer
inorganic compound
compound layer
transfer member
inorganic
Prior art date
Application number
PCT/JP2006/320169
Other languages
English (en)
French (fr)
Inventor
Ichiro Kudo
Original Assignee
Konica Minolta Business Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies, Inc. filed Critical Konica Minolta Business Technologies, Inc.
Priority to CN2006800386994A priority Critical patent/CN101292199B/zh
Priority to US12/090,280 priority patent/US7862883B2/en
Priority to JP2007540926A priority patent/JP4380770B2/ja
Priority to EP06811482.6A priority patent/EP1947527B1/en
Publication of WO2007046260A1 publication Critical patent/WO2007046260A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1605Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support
    • G03G15/162Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support details of the the intermediate support, e.g. chemical composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0103Plural electrographic recording members
    • G03G2215/0119Linear arrangement adjacent plural transfer points
    • G03G2215/0122Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt
    • G03G2215/0135Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt the linear arrangement being vertical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24893Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24926Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]

Definitions

  • the present invention relates to an intermediate transfer member for synthesizing and transferring a toner image for each color for a color image in an electrophotographic apparatus such as an electrophotographic copying machine, a laser beam printer, and a facsimile, and an electrostatic recording apparatus.
  • the present invention relates to an image forming apparatus provided with an intermediate transfer member.
  • an image forming method using an intermediate transfer member is known as a method for transferring a toner image on an electrophotographic photosensitive member (hereinafter also simply referred to as a photosensitive member) to a recording material.
  • a second transfer process is performed, and after the primary transfer from the electrophotographic photosensitive member to the intermediate transfer member, the primary transfer image of the intermediate transfer member.
  • the final image is obtained by secondary transfer to the recording material.
  • This method is often used as a multiple transfer method for each color toner image in a so-called full-color image forming apparatus that reproduces a color-separated document image using subtractive color mixing with toners such as black, cyan, magenta, and yellow. .
  • Patent Document 1 Japanese Patent Laid-Open No. 9-212004
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-206801
  • the first object of the present invention is to provide an intermediate transfer body having higher transferability and higher durability
  • the second object is a vacuum apparatus.
  • the present invention is to provide an intermediate transfer body manufacturing apparatus and an image forming apparatus having the intermediate transfer body, which do not require a large facility such as the above.
  • the first inorganic compound layer has a carbon content of 0.1 atomic% or more and 50 atomic% or less (X).
  • the first inorganic compound layer or the second inorganic compound layer is a compound containing at least one atom selected from Si, Ti, Al, Zr, and Zn.
  • the intermediate transfer member according to any one of No. 3 (3).
  • the first inorganic compound layer and the second inorganic compound layer are composed of a compound containing at least one atom selected from Si, Ti, Al, Zr and Zn.
  • the intermediate transfer member according to any one of (1) to (3).
  • the first inorganic compound layer and the second inorganic compound layer are inorganic oxide layers, wherein any one of (1) to (5) The intermediate transfer member described.
  • a method for producing an intermediate transfer member, wherein at least one of the first inorganic compound layer and the second inorganic compound layer is formed by an atmospheric pressure plasma CVD method.
  • the intermediate transfer body comprises (1) to (7)
  • An image forming apparatus which is the intermediate transfer member according to any one of items 1 to 3.
  • the present invention provides the second inorganic compound layer provided on the surface of the base material, and further does not contain carbon atoms thereon, or the second inorganic compound layer contains less carbon atoms than the first inorganic compound layer.
  • an inorganic compound layer By forming an inorganic compound layer, it is excellent in releasability with toner, transfer efficiency is improved, and even when used for durability, the surface strength of the substrate may cause the compound layer to peel off or crack.
  • FIG. 1 is a cross-sectional configuration diagram showing an example of a color image forming apparatus.
  • FIG. 2 is a conceptual cross-sectional view showing a layer structure of an intermediate transfer member.
  • FIG. 3 is an explanatory view of a first manufacturing apparatus for manufacturing an intermediate transfer member.
  • FIG. 4 is an explanatory view of a second manufacturing apparatus for manufacturing an intermediate transfer member.
  • FIG. 5 is an explanatory view of a first plasma film forming apparatus for producing an intermediate transfer member by plasma.
  • FIG. 6 is a schematic view showing an example of a roll electrode.
  • FIG. 7 is a schematic view showing an example of a fixed electrode.
  • the intermediate transfer member of the present invention is suitably used in an image forming apparatus such as an electrophotographic copying machine, printer, facsimile, etc., and a toner image carried on the surface of a photoreceptor is primarily transferred onto the surface.
  • a belt-like transfer member or a drum-like transfer member may be used as long as the transferred toner image is held and the transferred toner image is secondarily transferred onto the surface of the transfer object such as recording paper. .
  • FIG. 1 is a cross-sectional configuration diagram showing an example of a color image forming apparatus.
  • the color image forming apparatus 1 is called a tandem type full-color copying machine, and includes an automatic document feeder 13, a document image reading device 14, and a plurality of exposure means 13Y, 13M, 13C, and 13K. And a plurality of sets of image forming units 10Y, 10M, 10C, and 10K, an intermediate transfer body unit 17, a paper feeding unit 15, and a fixing unit 124.
  • An automatic document feeder 13 and a document image reading device 14 are arranged on the upper part of the main body 12 of the color image forming apparatus 1, and an image of the document d conveyed by the automatic document feeder 13 is provided.
  • the image is reflected and imaged by the optical system of the document image reader 14 and read by the line image sensor CCD.
  • the analog signal obtained by photoelectrically converting the original image read by the line image sensor CCD is subjected to analog processing, AZD conversion, shearing correction, image compression processing, etc. in an image processing unit (not shown), and then exposure means.
  • a drum-shaped photoconductor (hereinafter also referred to as a photoconductor) that is sent to 13Y, 13M, 13C, and 13K as digital image data for each color and that is supported by the exposure means 13Y, 13M, 13C, and 13K. )
  • a latent image of each color image data is formed on 11Y, 11mm, 11C, and 1IK.
  • the image forming units 10Y, 10M, 10C, and 10K are arranged in tandem in the vertical direction, and rollers 171, 172, 173, and 174 are wound around the left side of the photoreceptors 11Y, 11M, 11C, and 11K in the figure.
  • An intermediate transfer member 170 according to the present invention which is a semiconductive, endless belt-shaped second image bearing member stretched in a rotatable manner, is disposed.
  • the intermediate transfer member 170 of the present invention is driven in the direction of an arrow through a roller 171 that is rotationally driven by a driving device (not shown).
  • the image forming unit 10Y for forming a yellow image includes a charging unit 12Y, an exposure unit 13 ⁇ , a developing unit 14 ⁇ , and a primary transfer roller as a primary transfer unit disposed around the photoconductor 11Y. It has 15 ⁇ and 16 ⁇ cleaning means.
  • An image forming unit 10M that forms a magenta image has a photoreceptor 11 ⁇ , a charging unit 12 ⁇ , an exposure unit 13 ⁇ , a developing unit 14 ⁇ , a primary transfer roller 15 ⁇ as a primary transfer unit, and a tallying unit 16M. .
  • the image forming unit 10C for forming a cyan image includes a photoreceptor 11C, a charging unit 12C, an exposure unit 13C, a developing unit 14C, a primary transfer roller 15C as a primary transfer unit, and a cleaning unit 16C.
  • the image forming unit 10K that forms a black image includes a photoreceptor 11K, a charging unit 12mm, an exposure unit 13mm, a developing unit 14mm, a primary transfer roller 15mm as a primary transfer unit, and a cleaning unit 16mm.
  • Toner replenishing means 141Y, 141M, 141C, and 141K replenish new toner to developing devices 14Y, 14M, 14C, and 14K, respectively.
  • the primary transfer rollers 15Y, 15M, 15C, and 15K are selectively operated according to the type of image by a control unit (not shown), and the corresponding photoreceptors 11Y, 11M, 11C, and 1IK, respectively. Then, the intermediate transfer member 170 is pressed to transfer the image on the photosensitive member.
  • the images of the respective colors formed on the photoreceptors 11Y, 11 C, 11C, and 1IK by the image forming units 10Y, 10M, 10C, and 10K are the primary transfer rollers 15Y, 15M, 15C, By 15K, the image is sequentially transferred onto the rotating intermediate transfer body 170 to form a synthesized color image.
  • the intermediate transfer member 170 primarily transfers a toner image carried on the surface of the photoreceptors 11Y, 11M, 11C, and 1 IK to the surface, and holds the transferred toner image.
  • the recording paper P as a recording medium accommodated in the paper feeding cassette 151 is fed from the paper feeding means 15 [next, a plurality of middle rollers 122A, 122B, 122C, 122D, a resist After passing through the roller 123, it is conveyed to the secondary transfer roller 117 as the secondary transfer means.
  • the combined toner image on the intermediate transfer body 170 is transferred onto the recording paper P by the roller 117.
  • the toner image held on the intermediate transfer body 170 is secondarily transferred to the surface of the transfer object.
  • the secondary transfer roller 117 as a secondary transfer unit presses the recording paper P against the intermediate transfer body 170 only when the recording paper P passes through the secondary transfer roller 117 and performs secondary transfer.
  • the recording paper P on which the color image has been transferred is subjected to fixing processing by the fixing device 124, sandwiched between the paper discharge rollers 125, and placed on the paper output tray 126 outside the apparatus.
  • the residual toner is removed by the cleaning unit 8 from the intermediate transfer body 170 from which the recording paper P is separated by curvature.
  • intermediate transfer member 170 may be replaced with a rotating drum-shaped intermediate transfer drum as described above.
  • the primary transfer rollers 15Y, 15M, 15C, and 15K are made of, for example, a conductive core such as stainless steel having an outer diameter of 8 mm, a rubber material such as polyurethane, EPDM, or silicone, and a conductive material such as carbon. or dispersing a filler, and may be contained ionic conductive material, the volume resistance is 10 5 ⁇ ' «11 ⁇ 10 9 0 ' a solid state or foam sponge state of approximately cm, a thickness of 5 mm, It is formed by covering a semiconductive elastic rubber with a rubber hardness of about 20 ° to 70 ° (Asker hardness C).
  • the secondary transfer roller 117 is made by dispersing a conductive filler such as carbon in a rubber material such as polyurethane, EPDM, or silicone on the peripheral surface of a conductive core metal such as stainless steel having an outer diameter of 8 mm.
  • a conductive filler such as carbon
  • a rubber material such as polyurethane, EPDM, or silicone
  • volume resistance is 10 5 ⁇ 'cm ⁇ : ⁇ 0 9 ⁇ • Solid state or foamed sponge state of about 5 cm, thickness is 5 mm, rubber hardness is 20 ° to 70 ° It is formed by covering a semiconductive elastic rubber of a degree (Ausker hardness C).
  • the secondary transfer roller 117 is different from the primary transfer rollers 15Y, 15M, 15C, and 15K, the recording paper P is not present, and toner may come into contact with the secondary transfer roller 117. It is better to cover the surface with a good releasability such as semiconductive fluorine resin or urethane resin.
  • a conductive filler such as carbon is dispersed in a rubber or resin material such as polyurethane, EPDM, or silicone on the peripheral surface of a conductive metal core such as stainless steel, or an ionic conductive material is included. Conductive material with a thickness of 0.05mn! ⁇ 0.5mm Covered and formed.
  • FIG. 2 shows a cross-sectional view of the intermediate transfer member 170 according to the present invention.
  • the intermediate transfer member 170 in the present invention includes the first inorganic compound layer 176 on the surface of the base material 175, and the first inorganic compound layer 176 does not contain carbon atoms, or the first inorganic compound.
  • the second inorganic compound layer 177 having a lower carbon atom content than the layer 176 is provided in this order.
  • the second inorganic compound layer 177 which is the surface to which the toner is transferred, does not contain carbon atoms, or the content of carbon atoms is reduced, so that high releasability is maintained and the first inorganic compound layer 177 is maintained.
  • the carbon content of the compound layer 176 higher than the carbon content of the second inorganic compound layer 177, the adhesion between the base material 175 and the first inorganic compound layer 176 is maintained, and repeated bending operations are performed. However, it is considered that cracking and peeling are less likely to occur.
  • the carbon content of the second inorganic compound layer 177 measured by the XPS method is preferably 20 atomic% or less, and an intermediate transfer body 170 having better releasability is obtained. Further, when the carbon content of the first inorganic compound layer 176 measured by the XPS method is 0.1 atomic% or more and 50 atomic% or less, the intermediate transfer member 170 having more excellent durability can be obtained.
  • a member formed on the outer periphery of a belt or a drum in which a conductive agent is dispersed in a resin material or an elastic material can be used. These may be used alone or in combination of two or more, and a belt made of a combination of these resin materials and elastic material laminates can also be used.
  • the resin material include polycarbonate, polyimide, polyether ether ketone, polyvinylidene fluoride, ethylene tetrafluoroethylene copolymer, polyamide, polyamide imide, and polyphenylene sulfide. It is possible to use engineering plastic materials.
  • the elastic material includes isoprene rubber, butadiene rubber, styrene-butadiene rubber, acrylo-tolyl.
  • the elastic layer may be a foam.
  • the density is suitably from 0.1 lgZcm 3 to 0.9 gZcm 3 .
  • Carbon black can be used as the conductive agent. Carbon black can be used without any particular limitation, and neutral carbon black may be used.
  • the amount of conductive agent used varies depending on the type of conductive agent used, but it is usually sufficient to add it so that the volume resistance value and surface resistance value of the intermediate transfer member 170 are within the specified ranges. 4 to 40 parts by mass is added.
  • the base material 175 used in the present invention can be manufactured by a conventionally known general method. For example, it can be manufactured by melting the resin as a material with an extruder, extruding it with an annular die or a T-die and quenching it.
  • the first inorganic compound layer 176 and the second inorganic compound layer 177 in the present invention are formed on the substrate 175.
  • Examples of the inorganic compound used in the first inorganic compound layer 176 and the second inorganic compound layer 177 in the present invention include inorganic oxides, inorganic nitrides, inorganic carbides, and composites thereof.
  • Inorganic oxides used in the first inorganic compound layer 176 and / or the second inorganic compound layer 177 in the present invention include silicon oxide, acid aluminum, acid tantalum, acid Titanium oxide, zirconium oxide, tin oxide, zinc oxide, iron oxide, vanadium oxide, acid beryllium, barium strontium titanate, barium zirconate titanate, zirconate titanate titanate, lanthanum titanate titanate Examples include strontium, barium titanate, bismuth titanate, strontium bismuth titanate, strontium bismuth tantanolate, bismuth tantalate niobate, and yttrium trioxide. Of these, preferable are silicon oxide, acid aluminum, titanium oxide, zinc oxide, and acid dimethyl alcohol.
  • the material of the first inorganic compound layer 176 and the material of the second inorganic compound layer 177 in the present invention may be the same or different.
  • the material of the first inorganic compound layer 176 or the material of the second inorganic compound layer 177 in the present invention may be one kind of inorganic compound or two or more kinds of compounds.
  • first inorganic compound layer 176 and the base material 175 in the present invention, and the first inorganic compound layer 176 and the second inorganic compound layer 177 in the present invention are in close contact.
  • An anchor coat agent layer may be formed for the purpose of improving the properties.
  • the anchor coating agent used in this anchor coating agent layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene bull alcohol resin, bull modified resin, epoxy resin, and modified styrene resin. , Modified silicone resin, alkyl titanate and the like can be used in combination of one or more. Conventionally known additives can be added to these anchor coating agents.
  • the anchor coating agent is coated on the substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and the anchor coating is performed by removing the solvent, diluent, etc. by drying. Can.
  • the application amount of the anchor coating agent is preferably about 0.0001 g / m 2 to 5 g / m 2 (dry state).
  • the first inorganic compound layer 176 has a thickness of Inn! The preferred range is ⁇ 5000nm, and 3nm ⁇ 3000nm.
  • the thickness of the second inorganic compound layer 177 is lnm to 5000n. m is preferably 3 nm to 3000 nm.
  • the thickness of the first inorganic compound layer 176 is less than In m or exceeds 5000 nm, cracks and peeling occur during repeated use.
  • the second inorganic compound layer 177 is less than lnm, scratches occur and the toner releasability and transfer efficiency are insufficiently sustained, and when it exceeds 5000 nm, film cracking or Peeling occurs.
  • the carbon content of the second inorganic compound layer 177 in the present invention is preferably smaller than the carbon content of the first inorganic compound layer 176.
  • the second inorganic compound layer 177 is preferably a layer having a low carbon content in terms of releasability from the toner and transfer efficiency.
  • the compound layer 176 By forming the compound layer 176, it was possible to obtain an intermediate transfer member 170 that can be used for a long time without cracking or peeling even after repeated use. This is because the first inorganic compound layer 176 enhances the adhesion between the base material 175 and the second inorganic compound layer 177, reduces the bending stress exerted on the second inorganic compound layer 177, and prevents scratches. It is thought that there is work to do.
  • the carbon content of the first inorganic compound layer 176 measured by the XPS method is preferably 0.1 atomic percent or more and 50 atomic percent or less.
  • the carbon content of the second inorganic compound layer 177 measured by the XPS method is more preferably 20 atomic% or less! /.
  • the first inorganic compound layer 176 and the second inorganic compound layer 177 may be formed by vacuum deposition, molecular beam epitaxy, ion cluster beam method, low energy ion beam method, Dry process such as ion plating method, CVD method, sputtering method, atmospheric pressure plasma CVD method, spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method, bar coating method, die Method by coating such as coating method, method by patterning such as printing and inkjet Wet processes such as can be mentioned and can be used depending on the material.
  • the wet process includes a method in which fine particles of an inorganic compound are dispersed in an arbitrary organic solvent or water using a dispersion aid such as a surfactant as necessary, and a method of drying, an oxide precursor such as A so-called sol-gel method in which a solution of an alkoxide body is applied and dried is used.
  • the atmospheric pressure plasma CVD method is preferred.
  • the atmospheric pressure plasma CVD method does not require a depressurization chamber or the like, and can form a film at high speed and has high productivity.
  • a film formed by the atmospheric pressure plasma CVD method has a uniform and smooth surface, and it is possible to relatively easily form a film with very little internal stress.
  • a method for forming the first inorganic compound layer 176 and the second inorganic compound layer 177 (for example, inorganic oxides: SiO, TiO, etc.) by the plasma CVD method under atmospheric pressure is as follows.
  • the plasma CVD method under atmospheric pressure refers to exciting and discharging a discharge gas under atmospheric pressure or a pressure near atmospheric pressure, and introducing a source gas and / or a reactive gas into the discharge space.
  • the vicinity of atmospheric pressure represents a pressure of 20 kPa to: L lOkPa, preferably 93 kPa to 104 kPa.
  • FIG. 3 is an explanatory diagram of the first manufacturing apparatus 2 that manufactures the intermediate transfer member.
  • the intermediate transfer member manufacturing apparatus 2 (direct method in which the discharge space and the thin film deposition region are substantially the same) forms a first inorganic compound layer 176 and a second inorganic compound layer 177 on a substrate 175.
  • the endless belt-shaped intermediate transfer member 170 is rolled over the base material 175 and rotated in the direction of the arrow.
  • the atmospheric pressure plasma CVD apparatus 3 is a film forming apparatus for forming the compound layer 177.
  • discharge is performed in at least one set of fixed electrodes 21 arranged along the outer periphery of the roll electrode 20 and in a region where the fixed electrode 21 and the roll electrode 20 face each other.
  • the mixed gas supply device 24 that generates the mixed gas G of at least the raw material gas and the discharge gas and supplies the mixed gas G to the discharge space 23, and the discharge space 23, etc.
  • Discharge vessel 29 a first power source 26 connected to the roll electrode 20, a second power source 25 connected to the fixed electrode 21, and an exhaust unit 28 for exhausting the used exhaust gas G '. Talk!
  • the mixed gas supply device 24 includes a source gas that forms a film of at least one layer selected from an inorganic oxide layer, an inorganic nitride layer, and an inorganic carbide layer, and a rare gas such as nitrogen gas, argon gas, or helium gas. Supply gas to discharge space 23 to control gas and further decomposition of raw material gas
  • the gas for controlling the decomposition of the raw material gas represents a gas containing an element having activity in the molecular structure, for example, H, 0, N, S, Examples include gases containing F, B, Cl, P, Br, I, As, and Se.
  • a gas containing an element having activity may be used alone or in combination.
  • C may be included in the molecular structure of a gas containing an active element. Further, it may be used by mixing with a gas containing C in the molecular structure.
  • the driven roller 201 is urged in the arrow direction by the tension urging means 202 and applies a predetermined tension to the base material 175.
  • the tension urging means 202 cancels the tension urging when the base material 175 is changed, so that the base material 175 can be easily changed.
  • the first power supply 25 outputs a voltage having a frequency ⁇
  • the second power supply 26 outputs a voltage having a frequency ⁇ 2
  • these voltages cause the frequencies ⁇ 1 and ⁇ 2 to be superimposed on the discharge space 23.
  • the generated electric field V is generated.
  • the discharge gas is turned into plasma by the electric field V, and films (first inorganic compound layer 176, second inorganic compound layer 177) corresponding to the raw material gas contained in the mixed gas G are deposited on the surface of the base material 175. .
  • the plurality of fixed electrodes positioned on the downstream side in the rotation direction of the roll electrode and the mixed gas supply device are stacked so that the inorganic compound layers are stacked, and the thickness of the inorganic compound layer is reduced. You can adjust it.
  • the first inorganic compound layer 176 is deposited with a fixed electrode located on the most downstream side in the rotation direction of the roll electrode and the mixed gas supply device, and another one located further upstream.
  • Other layers such as an adhesive layer that improves the adhesion between the first inorganic compound layer 176 and the base material 175 may be formed with the fixed electrode and the mixed gas supply device.
  • the fixed electrode forming the first inorganic compound layer 176 and the upstream side of the mixed gas supply device are supplied with nitrogen.
  • a gas supply device that supplies a gas such as lithium, argon, oxygen, or hydrogen and a fixed electrode may be provided to perform plasma treatment to activate the surface of the substrate 175.
  • the intermediate transfer member which is an endless belt, is stretched around a pair of rollers, and one of the pair of rollers is used as one electrode of the pair of electrodes, and the roller is used as one electrode.
  • At least one fixed electrode which is the other electrode, is provided along the outside of the outer peripheral surface of the medium, and an electric field is generated between the pair of electrodes at atmospheric pressure or near atmospheric pressure to cause plasma discharge, thereby causing an intermediate transfer member.
  • a structure in which a thin film of an inorganic compound is deposited on the surface is formed, and the first inorganic compound layer 176 is formed on the first inorganic compound layer 176, so that the transfer property is high, and the cleaning property and durability are high. This makes it possible to obtain a high intermediate transfer member.
  • the first inorganic compound layer 176 and the second inorganic compound layer 177 As a method of forming the first inorganic compound layer 176 and the second inorganic compound layer 177, the first inorganic compound layer 176 is formed on the substrate 175, and then the second inorganic compound layer 177 is formed. If it is a method, the formation method is not particularly limited, but the first inorganic compound layer 176 is formed on the upstream side of the atmospheric pressure plasma CVD apparatus, and the second non-continuous layer is continuously formed on the downstream side.
  • the organic compound layer 177 may be formed. By continuously forming the film in this way, productivity is improved and adhesion between the first inorganic compound layer 176 and the second inorganic compound layer 177 can be improved, and further durable intermediate transfer can be performed.
  • the body can be manufactured.
  • one of the roll electrode and the fixed electrode may be connected to the ground, and the power supply may be connected to the other electrode.
  • the second power source for the formation of a dense thin film, and particularly preferable when a rare gas such as argon is used as the discharge gas.
  • FIG. 4 is an explanatory diagram of a second manufacturing apparatus that manufactures an intermediate transfer member.
  • the second production apparatus 2b for the intermediate transfer member is the first or second mineralization simultaneously on a plurality of substrates.
  • a compound layer is formed, and is mainly composed of a plurality of film forming apparatuses 2b1 and 2b2 that form an inorganic compound layer on the surface of the substrate.
  • the second manufacturing apparatus 2b (a method in which discharge and thin film deposition are performed between opposed roll electrodes in a modification of the direct method) is substantially mirror-imaged with a predetermined gap from the first film forming device 2bl.
  • a mixed gas G of at least a source gas and a discharge gas is generated between the second film forming apparatus 2b2 arranged and the first film forming apparatus 2bl and the second film forming apparatus 2b2.
  • a mixed gas supply device 24b for supplying the mixed gas G to the discharge space 23b.
  • the first film forming apparatus 2bl energizes the roll electrode 20a, the driven roller 201, and the driven roller 201 in the direction of the arrow, which are mounted on an endless belt-like intermediate transfer member base material 175 and rotated in the direction of the arrow.
  • a second power source 25 connected to the roll electrode 20a, and a second film-forming device 2b2 suspends an endless belt-shaped intermediate transfer member base material 175 in the direction of the arrow.
  • the second manufacturing apparatus 2b has a discharge space 23b in which discharge is performed in a region where the roll electrode 20a and the roll electrode 20b face each other.
  • the mixed gas supply device 24b includes a source gas for forming a film of at least one layer selected from an inorganic oxide layer, an inorganic nitride layer, and an inorganic carbide layer, and a rare gas such as nitrogen gas, argon gas, or helium gas. Further, a gas for controlling the decomposition of the raw material gas is supplied to the discharge space 23b.
  • the first power supply 25 outputs a voltage having a frequency ⁇
  • the second power supply 26 outputs a voltage having a frequency ⁇ 2
  • these voltages cause the frequencies ⁇ 1 and ⁇ 2 to be superimposed on the discharge space 23b.
  • the generated electric field V is generated.
  • the mixed gas G is plasmatized (excited) by the electric field V, and the plasmatized (excited) mixed gas is converted into the surface of the base material 175 of the first film forming apparatus 2bl and the base material 175 of the second film forming apparatus 2b2.
  • the film (inorganic compound layer) corresponding to the source gas contained in the gas mixture (excited) that has been exposed to plasma and formed into plasma (excited) is formed on the base material 175 of the first film formation apparatus 2bl and the base material 175 of the second film formation apparatus 2b2. It is deposited and formed on the surface simultaneously.
  • the roll electrode 20a and the roll electrode 20b facing each other are arranged with a predetermined gap therebetween. It is.
  • one of the roll electrode 20a and the roll electrode 20b may be connected to the ground, and the power supply may be connected to the other roll electrode.
  • the second power source it is preferable to use the second power source to form a dense thin film, particularly when a rare gas such as nitrogen gas or argon gas or helium gas is used as the discharge gas.
  • FIG. 5 below is obtained by mainly extracting the broken line portion in the first plasma film forming apparatus 2 of FIG.
  • FIG. 5 is an explanatory diagram of a first plasma film forming apparatus for manufacturing an intermediate transfer member using plasma.
  • the atmospheric pressure plasma CVD apparatus 3 has at least one pair of rollers that detachably mount and rotate the base material, and at least one pair of electrodes that perform plasma discharge. Of the electrodes, one electrode is one of the pair of rollers, and the other electrode is a fixed electrode facing the one roller through the base material.
  • An apparatus for manufacturing an intermediate transfer body in which the base material is exposed to plasma generated in a region facing the fixed electrode to deposit and form the inorganic compound layer For example, when using nitrogen as a discharge gas It is preferably used in order to start discharge stably and continue discharge by applying a high voltage with one power supply and applying a high frequency with the other power supply.
  • the atmospheric pressure plasma CVD apparatus 3 is driven to rotate the mixed gas supply device 24, the fixed electrode 21, the first power supply 25, the first filter 25a, the roll electrode 20, and the roll electrode in the direction of the arrow.
  • Means 20a, a second power source 26, and a second filter 26a, and a plasma discharge is performed in the discharge space 23 to excite the mixed gas G, which is a mixture of a source gas containing organic substances and a discharge gas.
  • the excited mixed gas G1 is exposed to the substrate surface 175a, and an inorganic compound layer containing carbon is deposited on the surface.
  • the first high-frequency voltage of the frequency ⁇ is applied to the fixed electrode 21 from the first power supply 25.
  • the high frequency voltage of the frequency ⁇ is applied to the roll electrode 20 from the second power source 26.
  • the electric field strength IV for starting the discharge of nitrogen gas is 3.7 kVZmm
  • the electric field strength V applied from at least the first power supply 25 is 3.7 kVZmm or higher
  • the electric field strength V applied from 6 is preferably 3.7 kV / mm or less.
  • the first power source 25 (high frequency power source) usable for the first atmospheric pressure plasma CVD apparatus 3,
  • * indicates a HEIDEN Laboratory impulse high-frequency power supply (100 kHz in continuous mode). Other than that, it is a high frequency power source that can apply only a continuous sine wave.
  • the power supplied between the electrodes facing the first and second power supply, solid to a constant electrode 21 supplies LWZcm 2 or more power (power density), to excite the discharge gas plasma A thin film is formed.
  • the upper limit of power supplied to the fixed electrode 21 is preferably 50 W / cm 2 .
  • the lower limit is preferably 1.2 WZcm 2 .
  • the discharge area (cm 2 ) refers to the area of the area where discharge occurs in the electrode.
  • the output density can be improved while maintaining the uniformity of the high-frequency electric field.
  • a further uniform high-density plasma can be generated, and a further improvement in film forming speed and an improvement in film quality can be achieved.
  • it is 2WZcm 2 or more.
  • the upper limit value of the power supplied to the roll electrode 20 is preferably 50 WZcm 2 .
  • the waveform of the high-frequency electric field is not particularly limited.
  • a continuous sine wave continuous oscillation mode called continuous mode and an intermittent oscillation mode called ON / OFF which is intermittently called pulse mode. Either of them can be used, but at least the high frequency supplied to the roll electrode 20 is continuous.
  • Sine waves are preferable because a denser and better quality film can be obtained.
  • a first filter 25a is installed between the fixed electrode 21 and the first power supply 25, so that the current from the first power supply 25 to the fixed electrode 21 can easily pass through the second power supply.
  • the current from 26 is grounded so that the current from the second power supply 26 to the first power supply 25 is difficult to pass.
  • a second filter 26a is installed between the roll electrode 20 and the second power source 26 to facilitate the passage of current from the second power source 26 to the roll electrode 20, and the first power source 25.
  • a strong current is grounded to make it difficult to pass the current from the first power supply 25 to the second power supply 26.
  • the fixed electrode 21 and the roll electrode 20 preferably have a strong electric field.
  • at least one electrode surface is coated with the following dielectric.
  • the relationship between the electrode and the power source may be that the second power source 26 is connected to the fixed electrode 21 and the first power source 25 is connected to the roll electrode 20.
  • one of the fixed electrode 21 and the roll electrode 20 may be connected to the ground, and the power supply may be connected to the other electrode.
  • the second power source for forming a dense thin film, particularly when a rare gas such as argon is used as the discharge gas.
  • FIG. 6 is a schematic view showing an example of a roll electrode.
  • the roll electrode 20 is formed by spraying ceramics on a conductive base material 200a (hereinafter also referred to as “electrode base material”) such as a metal.
  • a ceramic coating treated dielectric 200b (hereinafter also simply referred to as “dielectric”) sealed with an inorganic material is used.
  • a ceramic material used for thermal spraying alumina or silicon nitride is preferably used. Among these, alumina is more preferably used because it is easy to process.
  • a roll electrode 20 is configured by combining a conductive base material 200A such as metal with a lining dielectric 200B provided with an inorganic material by lining. Also good.
  • a conductive base material 200A such as metal
  • a lining dielectric 200B provided with an inorganic material by lining.
  • silicate glass, borate glass, phosphate glass, germanate glass, tellurite glass, aluminate glass, vanadate glass, etc. are preferably used.
  • borate glass is more preferably used because it is easy to process.
  • Examples of the conductive base materials 200a and 200A such as metals include metals such as silver, platinum, stainless steel, aluminum, and iron.
  • the base material 200a, 200A of the roll electrode is made of a stainless jacket roll base material having a cooling means with cooling water (not shown).
  • FIG. 7 is a schematic diagram showing an example of a fixed electrode.
  • the fixed electrode 21 of the prism or prismatic cylinder is similar to the roll electrode 20 described above, after spraying ceramics on the conductive base material 210c such as metal, and then using an inorganic material. And a ceramic coating treated dielectric 210d that has been sealed.
  • the prismatic or prismatic fixed electrode 21 ' is coated with a lining-treated dielectric 21OB provided with an inorganic material by a conductive base material 21 such as metal or OA lining. You can configure it in combination.
  • a mixed gas G is generated from the mixed gas supply device 24 and discharged into the discharge space 23.
  • a voltage of frequency ⁇ 1 is output from the first power supply 25 and applied to the fixed electrode 21, and the second power supply
  • a voltage having a frequency ⁇ 2 is output from 26 and applied to the roll electrode 20, and an electric field V in which the frequencies ⁇ ⁇ and ⁇ 2 are superimposed is generated in the discharge space 23 by these voltages.
  • the mixed gas G discharged into the discharge space 23 by the electric field V is excited to be in a plasma state. Then, the mixed gas G in a plasma state is exposed to the surface of the substrate, and a film of at least one layer selected from an inorganic oxide layer, an inorganic nitride layer, and an inorganic carbide layer depending on the source gas in the mixed gas G, that is, One inorganic compound layer 176 is formed on the substrate 175.
  • the second inorganic compound layer 177 can be provided in the same manner on the first inorganic compound layer formed in this manner.
  • the discharge gas refers to a gas that is plasma-excited under the above conditions, and examples thereof include nitrogen, argon, helium, neon, krypton, xenon, and mixtures thereof.
  • the source gas contains a component that forms a thin film, and examples thereof include organometallic compounds and organic compounds.
  • titanium compounds include organometallic compounds such as tetradimethylaminotitanium, metal hydrides such as monotitan and dititanium, metal halides such as dichloride-titanium, trichloride-titanium, and titanium tetrachloride.
  • organometallic compounds such as tetradimethylaminotitanium, metal hydrides such as monotitan and dititanium, metal halides such as dichloride-titanium, trichloride-titanium, and titanium tetrachloride.
  • metal alkoxides such as tetraethoxy titanium, tetraisopropoxy titanium, and tetrabutoxy titanium.
  • Aluminum compounds include aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum diisopropoxide ethylacetoacetate, aluminum ethoxide, aluminum hexafluoropentanedionate, aluminum isopropoxy. And aluminum, 2,4 pentanedionate, dimethylaluminum chloride and the like.
  • Zinc compounds include zinc bis (bis (trimethylsilyl) amide), zinc 2,4 pentanedionate, zinc 2, 2, 6, 6-tetramethyl-3,5 heptane dionate, etc. You can get it, but you are not limited to these!
  • Zirconium compounds include zirconium t-butoxide, zirconium diisopropoxide bis (2, 2, 6, 6-tetramethyl-3,5-heptanedionate), zirconium ethoxy, zirconium hexafluoropentane di Ionate, zirconium isopropoxide
  • these raw materials may be used alone as long as they form the inorganic compound layer having the carbon content.
  • two or more kinds of components may be used in combination. Good.
  • the substrate surface has at least two inorganic compound layers, and the first inorganic compound layer and the second inorganic compound layer having a lower carbon content than the first inorganic compound layer.
  • the carbon content of the inorganic compound layer can be adjusted by the amount of the source gas, the amount of gas for controlling the decomposition of the source gas, and the setting conditions of the plasma discharge treatment apparatus.
  • the carbon content of the first inorganic compound layer 176 formed on the substrate 175 in this way can be measured by the XPS method.
  • a second inorganic compound layer 177 adjusted to a predetermined carbon content is formed on the first inorganic compound layer by the same method as that for the first inorganic compound layer 176.
  • the carbon content of the first inorganic compound layer 176 in the present invention is preferably 0.1 atomic% or more and 50 atomic% or less (XPS measurement).
  • the carbon content of the second inorganic compound layer 177 preferably does not contain carbon atoms or is less than the carbon content of the first inorganic compound layer.
  • the carbon content of the second inorganic compound layer is more preferably 20 atomic% or less (XPS measurement).
  • the intermediate transfer body 170 has a second inorganic compound layer on the surface that does not contain carbon atoms or has a low carbon atom content
  • the second inorganic compounds 170 By forming the first inorganic compound layer having a carbon content higher than that of the compound layer between the base material and the second inorganic compound layer, there is no film cracking or peeling even during durable use.
  • An intermediate transfer member 170 having excellent releasability from the substrate can be produced.
  • the base material was produced as follows.
  • Conductive filler (Furness # 3030B, manufactured by Mitsubishi Chemical Corporation) 16 parts by mass Graft copolymer (Modiper A4400, manufactured by NOF Corporation) 1 part by mass Lubricant (calcium montanate) 0.2 part by mass
  • the above materials were put into a single screw extruder and melt kneaded to obtain a resin mixture.
  • a slit-shaped annular die having a seamless belt-shaped discharge port was attached, and the kneaded resin mixture was extruded into a seamless belt shape.
  • the extruded seamless belt-shaped resin mixture was extrapolated to a cylindrical cooling cylinder provided at the discharge destination, cooled and solidified to obtain a seamless cylindrical intermediate transfer body.
  • the thickness of the obtained substrate was 120 / zm.
  • lOOnm was formed as the first inorganic compound layer using the intermediate transfer body manufacturing apparatus by the plasma CVD method of FIG. Further, a 300 nm thick second inorganic compound layer was formed thereon.
  • the dielectric covering each electrode of the intermediate transfer body manufacturing apparatus by the plasma CVD method was coated with lmm on one side of the ceramic sprayed one with both electrodes facing each other.
  • the electrode gap after coating was set to 1 mm.
  • the metal base material coated with a dielectric has a stainless steel jacket specification that has a cooling function with cooling water. During discharge, the electrode temperature was controlled with cooling water.
  • the power source used here was a high frequency power source (50 kHz) manufactured by Shinko Electric and a high frequency power source (13. 56 MHz) manufactured by Pearl Industry.
  • Discharge gas conditions for forming each layer, raw material decomposition control gas conditions, raw material gas conditions, high Samples 1 to 8, 11 to 14, and 16 to 19 were fabricated by changing the frequency power output conditions (low frequency side power and high frequency power) as shown in Tables 1 and 2.
  • samples 9 and 1 were made in exactly the same manner as in the examples except for the conditions described in Tables 1 and 2.
  • composition analysis by XPS measurement was performed with an X-ray photoelectron spectrophotometer (ESCALAB 200R) manufactured by VG Scientific.
  • the toner mobility in the primary and secondary transfer can be improved with transfer efficiency. evaluated.
  • the primary transfer efficiency is a ratio of the mass of the toner image transferred onto the intermediate transfer body to the mass of the toner image formed on the photoconductor.
  • the secondary transfer efficiency is a ratio of the mass of the toner image transferred onto the recording paper to the mass of the toner image formed on the intermediate transfer member.
  • One of the primary and secondary transfer efficiencies was 90% or more. One was less than 90%; X: Both the primary and secondary transfer efficiencies were less than 90%.
  • the surface state of the intermediate transfer member after the surface of the intermediate transfer member was cleaned with a cleaning blade was visually observed to confirm the toner adhesion state.
  • indicates that there is no toner adhesion
  • indicates that there is a slight but no practical problem
  • X indicates that there is a practical problem.
  • the first inorganic compound layer containing carbon atoms and the surface layer on the base material do not contain carbon atoms or contain less carbon atoms than the first inorganic compound layer.
  • the toner is excellent in releasability, improved transfer efficiency, and does not crack even after long-term use. It was possible to provide an image forming apparatus using a body.
  • the carbon content of the second inorganic compound layer is 20 atomic% or less (XPS measurement), it can be seen that the intermediate transfer body is more excellent in transfer efficiency and cleanability.
  • the intermediate transfer body is more excellent in durability.

Abstract

 本発明は、転写性がより高く、クリーニング性及び耐久性がより高い中間転写体と、真空装置等の大がかりな設備を必要としない中間転写体の製造装置と、該中間転写体を有する画像形成装置を提供することを目的とする。 このため、中間転写体は、基材上に炭素原子を含有する第1の無機化合物層及び表面層として炭素原子を含有しない又は前記第1の無機化合物層よりも少ない量の炭素原子を含有する第2の無機化合物層を有している。

Description

中間転写体、中間転写体の製造方法及び中間転写体を備えた画像形成 装置
技術分野
[0001] 本発明は、電子複写機、レーザビームプリンタ、ファクシミリ等の電子写真装置ゃ静 電記録装置において、カラー画像のための各色毎のトナー画像を合成して転写する ための中間転写体および中間転写体を備えた画像形成装置に関するものである。 背景技術
[0002] 従来、電子写真感光体 (以下、単に感光体とも云う)上のトナー像を記録材に転写 する方式として、中間転写体を用いた画像形成方式が知られており、この方式は電 子写真感光体力ゝら記録材にトナー像を転写する工程内に、もう一つの転写工程を入 れ、電子写真感光体から中間転写体に 1次転写した後、中間転写体の 1次転写像を 記録材に 2次転写することで最終画像を得る。この方式は、色分解された原稿画像を ブラック、シアン、マゼンタ、イェロー等のトナーによる減色混合を用いて再現する、 いわゆるフルカラー画像形成装置における各色トナー像の多重転写方式として採用 されること力多い。
[0003] しかし、この中間転写体を用いた多重転写方式では、 1次転写及び 2次転写の二 度の転写が入ることと、四色のトナーを転写体上で重ね合わせるため、トナー画像の 転写不良に伴う画像不良が発生しやすい。
[0004] 一般にトナーの転写不良に対しては、トナー表面をシリカ等の外添剤で表面処理 することにより転写効率を向上させられることが知られている。しかし、現像装置内で のトナーの攪拌部材カも受けるストレスや、現像ローラ上にトナー層を形成するため の規制ブレードから受けるストレス、感光体と現像ローラとの間で受けるストレス等で、 トナー表面からシリカが離脱したり、トナー内部に埋没したりするため、十分な転写効 率を得られな 、と 、う問題があり、中間転写体に残留したトナーを中間転写体からブ レードで搔き落とすクリーニング装置を必要として 、る。
[0005] このような問題に対し、中間転写体表面に離型層を形成する方法として以下が提 案されている。中間転写体からのトナーの離型性を向上させるために、中間転写体 表面にシリコン酸ィ匕物や酸ィ匕アルミニウムの層を形成して 、る(特許文献 1参照)。
[0006] また、中間転写体表面に無機コーティング層を形成する方法が提案されている(特 許文献 2参照)。
特許文献 1:特開平 9— 212004号公報
特許文献 2:特開 2000— 206801号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、特許文献 1による方法で作製した中間転写体を実際の画像形成装 置において耐久試験を行ったところ、繰り返しの屈曲動作により表面層から酸ィ匕物層 が剥離するという問題点、また、シリコン酸化物を蒸着により、酸ィ匕アルミニウム等をス ノ^タリングにより形成するため真空装置等の大が力りな設備を必要とするという問題 点がめった。
[0008] また、特許文献 2の方法では、無機コーティング層に添加されるコロイダルシリカの 量を多く添加すればトナーの離型性が向上し、転写効率が良くなると分力つているが 、耐久試験における屈曲動作の繰り返しにより、無機コーティング層にひび割れが発 生するため、一定量以上の添加ができない。そのため、十分な離型性を発揮できず 、転写効率も一定以上に上げられな 、と 、う問題があった。
[0009] 本発明の第 1の目的は上述した問題点に鑑み、転写性がより高ぐクリーニング性 及び耐久性がより高い中間転写体を提供することであり、第 2の目的は、真空装置等 の大が力りな設備を必要としな 、中間転写体の製造装置と、該中間転写体を有する 画像形成装置を提供することである。
課題を解決するための手段
[0010] 本発明に係る上記目的は下記により達成される。
[0011] (1)基材上に炭素原子を含有する第 1の無機化合物層及び表面層として炭素原子 を含有しない又は前記第 1の無機化合物層よりも少ない量の炭素原子を含有する第 2の無機化合物層を有することを特徴とする中間転写体。
[0012] (2)前記第 1の無機化合物層は、炭素含有量が 0. 1原子%以上 50原子%以下 (X PS測定)であることを特徴とする(1)に記載の中間転写体。
[0013] (3)前記第 2の無機化合物層は、炭素含有量が 20原子%以下 (XPS測定)である ことを特徴とする(1)または(2)に記載の中間転写体。
[0014] (4)前記第 1の無機化合物層または前記第 2の無機化合物層は、 Si、 Ti、 Al、 Zr及 び Znから選ばれる少なくとも一つの原子を含む化合物であることを特徴とする(1)乃 至(3)のいずれか 1項に記載の中間転写体。
[0015] (5)前記第 1の無機化合物層及び前記第 2の無機化合物層は、 Si、 Ti、 Al、 Zr及 び Znから選ばれる少なくとも一つの原子を含む化合物で構成されることを特徴とする
(1)乃至(3)のいずれか 1項に記載の中間転写体。
[0016] (6)前記第 1の無機化合物層または前記第 2の無機化合物層は、無機酸ィ匕物層で あることを特徴とする(1)乃至(5)の 、ずれか 1項記載の中間転写体。
[0017] (7)前記第 1の無機化合物層及び前記第 2の無機化合物層は、無機酸ィ匕物層であ ることを特徴とする(1)乃至(5)の 、ずれか 1項記載の中間転写体。
[0018] (8) (1)乃至(7)の何れか 1項に記載の中間転写体の製造方法において、前記第
1の無機化合物層及び前記第 2の無機化合物層の少なくとも一方の層が大気圧ブラ ズマ CVD法により形成されることを特徴とする中間転写体の製造方法。
[0019] (9)像担持体の表面力 転写されたトナー像をさらに記録媒体に転写する中間転 写体を備えてなる画像形成装置において、前記中間転写体は、(1)乃至(7)のいず れか 1項に記載の中間転写体であることを特徴とする画像形成装置。
発明の効果
[0020] 本発明は、基材表面に第 1の無機化合物層を設け、更にその上に炭素原子を含有 しない、または、第 1の無機化合物層よりも炭素原子の含有量が少ない第 2の無機化 合物層を形成することにより、トナーとの離型性に優れ、転写効率が向上し、かつ耐 久使用にお 、ても基材表面力 化合物層が剥がれたり、割れたりすることのな ヽ中間 転写体を提供することができる。また、本発明に係る中間転写体を大気圧プラズマ C VD法を用いて製造することにより、真空装置等の大がかりな設備を必要とせず上記 効果を有する中間転写体を製造する製造装置を得ることが可能となる。さらに、本発 明に係る中間転写体を用いた画像形成装置を用いて、画像欠損のない、高画質な 画像を提供することができる。
図面の簡単な説明
[0021] [図 1]カラー画像形成装置の 1例を示す断面構成図である。
[図 2]中間転写体の層構成を示す概念断面図である。
[図 3]中間転写体を製造する第 1の製造装置の説明図である。
[図 4]中間転写体を製造する第 2の製造装置の説明図である。
[図 5]プラズマにより中間転写体を製造する第 1のプラズマ成膜装置の説明図である
[図 6]ロール電極の 1例を示す概略図である。
[図 7]固定電極の一例を示す概略図である。
符号の説明
[0022] 1 カラー画像形成装置
2 中間転写体の製造装置
3 大気圧プラズマ CVD装置
17 中間転写体ユニット
20 ロール電極
21 固定電極
23 放電空間
24 混合ガス供給装置
25 第 1の電源
26 第 2の電源
117 2次転写ローラ
170 中間転写ベルト
175 基材
176 第 1の無機化合物層
177 第 2の無機化合物層
201 従動ローラ
発明を実施するための最良の形態 [0023] 次に本発明を実施するための最良の形態について説明する力 本発明はこれに限 定されるものではない。
[0024] 本発明の中間転写体は、電子写真方式の複写機、プリンター、ファクシミリ等の画 像形成装置に好適に用いられ、感光体の表面に担持されたトナー画像をその表面 に 1次転写され、転写されたトナー画像を保持し、保持したトナー画像を記録紙等の 被転写物の表面に 2次転写するものであれば良ぐベルト状の転写体でも、ドラム状 の転写体でも良い。
[0025] 先ず、本発明の中間転写体を有する画像形成装置について、タンデム型フルカラ 一複写機を例に取り説明する。
[0026] 図 1は、カラー画像形成装置の 1例を示す断面構成図である。
[0027] このカラー画像形成装置 1は、タンデム型フルカラー複写機と称せられるもので、自 動原稿送り装置 13と、原稿画像読み取り装置 14と、複数の露光手段 13Y、 13M、 1 3C、 13Kと、複数組の画像形成部 10Y、 10M、 10C、 10Kと、中間転写体ユニット 1 7と、給紙手段 15及び定着手段 124とから成る。
[0028] カラー画像形成装置 1の本体 12の上部には、自動原稿送り装置 13と原稿画像読 み取り装置 14が配置されており、自動原稿送り装置 13により搬送される原稿 dの画 像が原稿画像読み取り装置 14の光学系により反射 '結像され、ラインイメージセンサ CCDにより読み込まれる。
[0029] ラインイメージセンサ CCDにより読み取られた原稿画像を光電変換されたアナログ 信号は、図示しない画像処理部において、アナログ処理、 AZD変換、シエーデイン グ補正、画像圧縮処理等を行った後、露光手段 13Y、 13M、 13C、 13Kに各色毎 のデジタル画像データとして送られ、露光手段 13Y、 13M、 13C、 13Kにより対応す る第 1の像担持体としてのドラム状の感光体 (以下感光体とも記す) 11Y、 11Μ、 11 C、 1 IKに各色の画像データの潜像を形成する。
[0030] 画像形成部 10Y、 10M、 10C、 10Kは、垂直方向に縦列配置されており、感光体 11Y、 11M、 11C、 11Kの図示左側方にローラ 171、 172、 173、 174を卷回して回 動可能に張架された半導電性でエンドレスベルト状の第 2の像担持体である本発明 の中間転写体 170が配置されて ヽる。 [0031] そして、本発明の中間転写体 170は図示しない駆動装置により回転駆動される口 ーラ 171を介し矢印方向に駆動されている。
[0032] イェロー色の画像を形成する画像形成部 10Yは、感光体 11 Yの周囲に配置され た帯電手段 12Y、露光手段 13Υ、現像手段 14Υ、 1次転写手段としての 1次転写口 ーラ 15Υ、クリーニング手段 16 Υを有する。
[0033] マゼンタ色の画像を形成する画像形成部 10Mは、感光体 11Μ、帯電手段 12Μ、 露光手段 13Μ、現像手段 14Μ、 1次転写手段としての 1次転写ローラ 15Μ、タリー ニング手段 16Mを有する。
[0034] シアン色の画像を形成する画像形成部 10Cは、感光体 11C、帯電手段 12C、露光 手段 13C、現像手段 14C、 1次転写手段としての 1次転写ローラ 15C、クリーニング 手段 16Cを有する。
[0035] 黒色画像を形成する画像形成部 10Kは、感光体 11K、帯電手段 12Κ、露光手段 13Κ、現像手段 14Κ、 1次転写手段としての 1次転写ローラ 15Κ、クリーニング手段 1 6Κを有する。
[0036] トナー補給手段 141Y、 141M、 141C、 141Kは、現像装置 14Y、 14M、 14C、 1 4Kにそれぞれ新規トナーを補給する。
[0037] ここで、 1次転写ローラ 15Y、 15M、 15C、 15Kは、図示しない制御手段により画像 の種類に応じて選択的に作動され、それぞれ対応する感光体 11 Y、 11M、 11C、 1 IKに中間転写体 170を押圧し、感光体上の画像を転写する。
[0038] このようにして、画像形成部 10Y、 10M、 10C、 10Kにより感光体 11Y、 11Μ、 11 C、 1 IK上に形成された各色の画像は、 1次転写ローラ 15Y、 15M、 15C、 15Kによ り、回動する中間転写体 170上に逐次転写されて、合成されたカラー画像が形成さ れる。
[0039] 即ち、中間転写体 170は感光体 11Y、 11M、 11C、 1 IKの表面に担持されたトナ 一画像をその表面に 1次転写され、転写されたトナー画像を保持する。
[0040] また、給紙カセット 151内に収容された記録媒体としての記録紙 Pは、給紙手段 15 【こより給紙され、次 ヽで複数の中 ローラ 122A、 122B、 122C、 122D、レジス卜口 ーラ 123を経て、 2次転写手段としての 2次転写ローラ 117まで搬送され、 2次転写口 ーラ 117により中間転写体 170上の合成されたトナー画像が記録紙 P上に一括転写 される。
[0041] 即ち、中間転写体 170上に保持したトナー画像を被転写物の表面に 2次転写する
[0042] ここで、 2次転写手段としての 2次転写ローラ 117は、ここを記録紙 Pが通過して 2次 転写を行なう時にのみ、記録紙 Pを中間転写体 170に圧接させる。
[0043] カラー画像が転写された記録紙 Pは、定着装置 124により定着処理され、排紙ロー ラ 125に挟持されて機外の排紙トレイ 126上に載置される。
[0044] 一方、 2次転写ローラ 117により記録紙 Pにカラー画像を転写した後、記録紙 Pを曲 率分離した中間転写体 170は、クリーニング手段 8により残留トナーが除去される。
[0045] ここで、中間転写体 170は前述したような回転するドラム状の中間転写ドラムに置き 換えても良い。
[0046] 次に、中間転写体 170に接する 1次転写手段としての 1次転写ローラ 15Y、 15Μ、 15C、 15K、と、 2次転写ローラ 117の構成について説明する。
[0047] 1次転写ローラ 15Y、 15M、 15C、 15Kは、例えば外径 8mmのステンレス等の導 電性芯金の周面に、ポリウレタン、 EPDM、シリコーン等のゴム材料に、カーボン等 の導電性フィラーを分散させたり、イオン性の導電材料を含有させたりして、体積抵 抗が 105 Ω ' «11〜1090 'cm程度のソリッド状態または発泡スポンジ状態で、厚さが 5 mm、ゴム硬度が 20° 〜70° 程度 (ァスカー硬度 C)の半導電弾性ゴムを被覆して 形成される。
[0048] 2次転写ローラ 117は、例えば外径 8mmのステンレス等の導電性芯金の周面に、 ポリウレタン、 EPDM、シリコーン等のゴム材料に、カーボン等の導電性フィラーを分 散させたり、イオン性の導電材料を含有させたりして、体積抵抗が 105 Ω 'cm〜: ί09 Ω •cm程度のソリッド状態または発泡スポンジ状態で、厚さが 5mm、ゴム硬度が 20° 〜70° 程度 (ァスカー硬度 C)の半導電弾性ゴムを被覆して形成される。
[0049] そして、 2次転写ローラ 117は、 1次転写ローラ 15Y、 15M、 15C、 15Kと異なり、 記録紙 Pが無 、状態ではトナーが接する可能性があるため、 2次転写ローラ 117の表 面に半導電性のフッ素榭脂ゃウレタン榭脂等の離型性の良いものを被覆すると良く 、ステンレス等の導電性芯金の周面に、ポリウレタン、 EPDM、シリコーン等のゴムや 榭脂材料に、カーボン等の導電性フィラーを分散させたり、イオン性の導電材料を含 有させたりした半導電性材料を、厚さが 0. 05mn!〜 0. 5mm程度被覆して形成され る。
[0050] 以下に上述した中間転写体 170を例に取り本発明の中間転写体について説明す る。
[0051] 図 2に本発明に係る中間転写体 170の断面図を示す。
[0052] 本発明における中間転写体 170は、基材 175の表面に第 1の無機化合物層 176 及びこの第 1の無機化合物層 176の表面に炭素原子を含有しない、または、第 1の 無機化合物層 176より炭素原子の含有量が少ない第 2の無機化合物層 177がこの 順で設けられている構成のものである。このような構成とすることにより、トナーとの離 型性に優れ、転写効率の良い中間転写体 170を得ることができ、且つ繰り返しの耐 久使用においても、長期間使用することができる。これは、トナーを転写する面である 第 2の無機化合物層 177に炭素原子を含有しない、または、炭素原子の含有量を少 なくすることにより、高い離型性を維持し、第 1の無機化合物層 176の炭素含有量を 第 2の無機化合物層 177の炭素含有量より多くすることで、基材 175と第 1の無機化 合物層 176との接着性を維持し、繰り返しの屈曲動作においても、割れや剥離を発 生しにくくなつて 、ると考えられる。
[0053] また、第 2の無機化合物層 177の XPS法により測定される炭素含有量は 20原子% 以下が好ましぐより離型性の優れた中間転写体 170が得られる。また、第 1の無機 化合物層 176の XPS法により測定される炭素含有量は 0. 1原子%以上 50原子%以 下にすることにより、より耐久性の優れた中間転写体 170が得られる。
[0054] 以下、本発明に係る中間転写体 170の構成要件について、説明する。
(基材)
本発明における中間転写体 170の基材 175としては、榭脂材料または弾性体材料 に導電剤を分散させてなるベルトまたはドラム外周に形成された部材を用いることが できる。これらは、単独で用いても 2種以上組み合わせても良ぐこれらの榭脂材料お よび弾性体材料の積層体による組み合わせカゝらなるベルトも用いることもできる。 [0055] 榭脂材料としては、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリ フッ化ビ-リデン、エチレンテトラフルォロエチレン共重合体、ポリアミド、ポリアミドイミ ド及びポリフエ-レンサルファイド等、 、わゆるエンジニアリングプラスチック材料を用 いることがでさる。
[0056] 弾性体材料としては、イソプレンゴム、ブタジエンゴム、スチレン 'ブタジエンゴム、ァ クリロ-トリル.ブタジエンゴム、二トリルゴム、水素化-トリルゴム、フッ素ゴム、シリコー ンゴム、エチレン.プロピレンゴム、クロロプレンゴム、アタリノレゴム、ブチノレゴム、ウレタ ンゴム、クロロスルフォン化ポリエチレンゴム、ェピクロルヒドリンゴム、天然ゴム、ポリエ 一テルゴム等のゴム材料や、ポリウレタン、ポリスチレン 'ポリブタジエンブロック重合 体、ポリオレフイン、ポリエチレン、塩素化ポリエチレン、エチレン '酢酸ビュル共重合 体等のエラストマ一を用いることができる。硬度を低下させるために弾性体層は発泡 体としても良ぐこの場合、密度は 0. lgZcm3〜0. 9gZcm3が適当である。
[0057] また、導電剤としては、カーボンブラックを使用することができる。カーボンブラックと しては、特に制限なく使用することができ、中性カーボンブラックを使用しても構わな い。導電剤の使用量は、使用する導電剤の種類によっても異なるが中間転写体 170 の体積抵抗値および表面抵抗値が所定の範囲になるように添加すれば良ぐ通常、 榭脂材料 100質量部に対して 4〜40質量部添加されて 、る。本発明に用いられる基 材 175は、従来公知の一般的な方法により製造することが可能である。例えば、材料 となる榭脂を押し出し機により溶融し、環状ダイや Tダイにより押しだして急冷すること により製造することができる。
(第 1の無機化合物層及び第 2の無機化合物層)
次に、この基材 175の上に本発明における第 1の無機化合物層 176及び第 2の無 機化合物層 177を形成する。
[0058] 本発明における第 1の無機化合物層 176及び第 2の無機化合物層 177に用いられ る無機化合物としては、無機酸化物、無機窒化物、無機炭化物及びそれらの複合物 があげられる。
[0059] 本発明における第 1の無機化合物層 176及び、または、第 2の無機化合物層 177 に用いられる無機酸ィ匕物としては、酸化ケィ素、酸ィ匕アルミニウム、酸ィ匕タンタル、酸 化チタン、酸化ジルコニウム、酸化スズ、酸化亜鉛、酸化鉄、酸化バナジウム、酸ィ匕 ベリリウム、チタン酸バリウムストロンチウム、ジルコニウム酸チタン酸バリウム、ジルコ -ゥム酸チタン酸鈴、チタン酸鈴ランタン、チタン酸ストロンチウム、チタン酸バリウム、 チタン酸ビスマス、チタン酸ストロンチウムビスマス、タンタノレ酸ストロンチウムビスマス 、タンタル酸ニオブ酸ビスマス、トリオキサイドイットリウムなどが挙げられる。これらのう ちょり好ましいのは、酸化ケィ素、酸ィ匕アルミニウム、酸化チタン、酸化亜鉛、酸ィ匕ジ ノレコ-ゥムである。
[0060] 本発明における第 1の無機化合物層 176の材料と第 2の無機化合物層 177の材料 は、同一でも良いし、異なっていても良い。また、本発明における第 1の無機化合物 層 176の材料又は第 2の無機化合物層 177の材料は、 1種類の無機化合物でも良 いし、 2種類以上の化合物を有していても良い。
[0061] 本発明における第 1の無機化合物層 176を基材 175の上に形成する前にコロナ処 理、火炎処理、プラズマ処理、グロ一放電処理、粗面化処理、薬品処理などの表面 処理を行っても良い。
[0062] 更に、本発明における第 1の無機化合物層 176と基材 175との間、及び本発明に おける第 1の無機化合物層 176と第 2の無機化合物層 177との間には、密着性の向 上を目的として、アンカーコート剤層を形成しても良い。このアンカーコート剤層に用 いられるアンカーコート剤としては、ポリエステル榭脂、イソシァネート榭脂、ウレタン 榭脂、アクリル榭脂、エチレンビュルアルコール榭脂、ビュル変性榭脂、エポキシ榭 脂、変性スチレン榭脂、変性シリコン榭脂、およびアルキルチタネート等を、 1または 2 種以上併せて使用することができる。これらのアンカーコート剤には、従来公知の添 加剤をカ卩えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビ ァコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上 にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングす ることができる。上記のアンカーコート剤の塗布量としては、 0. 0001g/m2〜5g/m 2 (乾燥状態)程度が好ましい。
[0063] 本発明における第 1の無機化合物層 176の膜厚は、 Inn!〜 5000nmが良ぐ好ま しくは、 3nm〜3000nmである。第 2の無機化合物層 177の膜厚は、 lnm〜5000n mが良ぐ好ましくは、 3nm〜3000nmである。第 1の無機化合物層 176の膜厚が In m未満か 5000nmを越える場合、繰り返し使用において、割れや剥離が生じる。また 、第 2の無機化合物層 177が lnm未満の場合は、擦り傷が生じやすぐトナーの離型 性や転写効率の持続性が不足し、 5000nmを越える場合は、繰り返し使用において 、膜の割れや剥離が生じる。
[0064] 本発明における第 2の無機化合物層 177の炭素含有量は、第 1の無機化合物層 1 76の炭素含有量よりも少ないものがよい。第 2の無機化合物層 177は、トナーとの離 型性及び転写効率の面力 炭素含有量の少ないものが好ましい。しかし、基材 175 の表面に炭素の少ない無機化合物層を形成した構成では、繰り返し使用において、 無機化合物層の剥離や割れが生じるという問題が生じていた。そこで、基材 175と炭 素原子を含有しない、または、炭素原子の含有量が少ない第 2の無機化合物層 177 との間に第 2の無機化合物層 177より炭素含有量の多い第 1の無機化合物層 176を 形成することにより、繰り返し使用においても、割れや剥離の生じない、長期に使用 できる中間転写体 170を得ることができた。これは、第 1の無機化合物層 176が基材 175と第 2の無機化合物層 177との接着性を高め、且つ第 2の無機化合物層 177に 力かる曲げ応力を緩和したり、擦り傷を防止する働きがあると考えられる。
[0065] また、第 1の無機化合物層 176の XPS法により測定される炭素含有量は、 0. 1原 子%以上 50原子%以下であることが好まし 、。
[0066] 更に、第 2の無機化合物層 177の XPS法により測定される炭素含有量は、 20原子 %以下であることがより好まし!/、。
[0067] 次に本発明における第 1の無機化合物層 176及び第 2の無機化合物層 177の形 成方法について説明する。
[0068] 本発明における第 1の無機化合物層 176及び第 2の無機化合物層 177の形成方 法としては、真空蒸着法、分子線ェピタキシャル成長法、イオンクラスタービーム法、 低エネルギーイオンビーム法、イオンプレーティング法、 CVD法、スパッタリング法、 大気圧プラズマ CVD法などのドライプロセスや、スプレーコート法、スピンコート法、 ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイ コート法などの塗布による方法、印刷やインクジェットなどのパターユングによる方法 などのウエットプロセスが挙げられ、材料に応じて使用できる。ウエットプロセスは、無 機化合物の微粒子を、任意の有機溶剤あるいは水に必要に応じて界面活性剤など の分散補助剤を用いて分散した液を塗布、乾燥する方法や、酸化物前駆体、例えば アルコキシド体の溶液を塗布、乾燥する、いわゆるゾルゲル法が用いられる。これら のうち好ましいのは、大気圧プラズマ CVD法である。大気圧プラズマ CVD法は、減 圧チャンバ一等が不要で、高速製膜ができ生産性の高い製膜方法である。また、大 気圧プラズマ CVD法で形成される膜は、均一かつ表面の平滑性を有し、更に内部 応力も非常に少ない膜を比較的容易に形成することが可能となる。
[0069] 大気圧下でのプラズマ CVD法による第 1の無機化合物層 176及び第 2の無機化 合物層 177 (例えば無機酸化物: SiO、 TiO等)の形成方法については以下のよう
2 2
に説明されている。
[0070] 前記大気圧下でのプラズマ CVD法とは、大気圧または大気圧近傍の圧力下で放 電ガスを励起し、放電させ、原料ガス及び、または、反応性ガスを放電空間へ導入し 、励起し、基材上に薄膜を形成する処理を指し、その方法については特開平 11— 1 33205号、特開 2000— 185362号、特開平 11— 61406号、特開 2000— 147209 号、特開 2000— 121804号等に記載されている(以下、大気圧プラズマ法とも称す る)。これによつて高機能性の薄膜を、生産性高く形成することができる。ここで大気 圧近傍とは、 20kPa〜: L lOkPaの圧力を表し、好ましくは、 93kPa〜104kPaが好ま しい。
[0071] 次に本発明に係る中間転写体の無機化合物層を大気圧プラズマ CVDにより形成 する場合の装置及び方法、また使用するガスについて説明する。
[0072] 図 3は、中間転写体を製造する第 1の製造装置 2の説明図である。
[0073] 中間転写体の製造装置 2 (放電空間と薄膜堆積領域が略同一なダイレクト方式)は 基材 175上に第 1の無機化合物層 176、第 2の無機化合物層 177を形成するもので 、エンドレスベルト状の中間転写体 170の基材 175を卷架して矢印方向に回転する ロール電極 20と従動ローラ 201、及び、基材 175表面に第 1の無機化合物層 176、 第 2の無機化合物層 177を形成する成膜装置である大気圧プラズマ CVD装置 3より 構成されている。 [0074] 大気圧プラズマ CVD装置 3は、ロール電極 20の外周に沿って配列された少なくと も 1式の固定電極 21と、固定電極 21とロール電極 20との対向領域で且つ放電が行 われる放電空間 23と、少なくとも原料ガスと放電ガスとの混合ガス Gを生成して放電 空間 23に混合ガス Gを供給する混合ガス供給装置 24と、放電空間 23等に空気の流 入することを軽減する放電容器 29と、ロール電極 20に接続された第 1の電源 26と、 固定電極 21に接続された第 2の電源 25と、使用済みの排ガス G'を排気する排気部 28とを有して!/ヽる。
[0075] 混合ガス供給装置 24は無機酸化物層、無機窒化物層、無機炭化物層から選ばれ る少なくとも 1つの層の膜を形成する原料ガスと、窒素ガス或いはアルゴンガス、ヘリ ゥムガス等の希ガス、更に原料ガスの分解を制御するガスを放電空間 23に供給する
[0076] ここで、原料ガスの分解を制御するガス (原料分解制御ガス)とは、分子構造中に、 活性を有する元素を含むガスのことを表し、例えば、 H、 0、 N、 S、 F、 B、 Cl、 P、 Br、 I、 As、 Seなどを含むガスがあげられる。活性を有する元素を含むガスは、単独で用 いても良ぐまた複数を混合して用いても良い。また、活性を有する元素を含むガス の分子構造中に Cを含むものでも良い。更に分子構造中に Cを含むガスと混合して 用いても良い。
[0077] また、従動ローラ 201は張力付勢手段 202により矢印方向に付勢され、基材 175に 所定の張力を掛けている。張力付勢手段 202は基材 175の掛け替え時等は張力の 付勢を解除し、容易に基材 175の掛け替え等を可能として 、る。
[0078] 第 1の電源 25は周波数 ω ΐの電圧を出力し、第 2の電源 26は周波数 ω 2の電圧を 出力し、これらの電圧により放電空間 23に周波数 ω 1と ω 2とが重畳された電界 Vを 発生する。そして、電界 Vにより放電ガスをプラズマ化して混合ガス Gに含まれる原料 ガスに応じた膜 (第 1の無機化合物層 176、第 2の無機化合物層 177)が基材 175の 表面に堆積される。
[0079] なお、複数の固定電極の内、ロール電極の回転方向下流側に位置する複数の固 定電極と混合ガス供給装置で無機化合物層を積み重ねるように堆積し、無機化合物 層の厚さを調整するようにしても良 、。 [0080] また、複数の固定電極の内、ロール電極の回転方向最下流側に位置する固定電 極と混合ガス供給装置で第 1の無機化合物層 176を堆積し、より上流に位置する他 の固定電極と混合ガス供給装置で、例えば第 1の無機化合物層 176と基材 175との 接着性を向上させる接着層等、他の層を形成しても良い。
[0081] また、第 1の無機化合物層 176と基材 175との接着性を向上させるために、第 1の 無機化合物層 176を形成する固定電極と混合ガス供給装置の上流に、窒素、へリウ ム、アルゴンや酸素、水素などのガスを供給するガス供給装置と固定電極を設けてプ ラズマ処理を行 、、基材 175の表面を活性化させるようにしても良 、。
[0082] 以上説明したように、エンドレスベルトである中間転写体を 1対のローラに張架し、 1 対のローラの内一方を 1対の電極の一方の電極とし、一方の電極としたローラの外周 面の外側に沿って他方の電極である少なくとも一つの固定電極を設け、これら 1対の 電極間に大気圧または大気圧近傍下で電界を発生させプラズマ放電を行わせ、中 間転写体表面に無機化合物の薄膜を堆積 ·形成する構成を取り、第 1の無機化合物 層 176を形成した上に第 2の無機化合物層 177を形成することにより、転写性が高く 、クリーニング性及び耐久性が高い中間転写体を得ることを可能としている。
[0083] 第 1の無機化合物層 176と第 2の無機化合物層 177の形成方法としては、第 1の無 機化合物層 176を基材 175に形成した後に第 2の無機化合物層 177を形成する方 法であれば、特に形成方法を限定するものではないが、大気圧プラズマ CVD装置 の上流側で第 1の無機化合物層 176を形成し、その下流側で、連続して、第 2の無 機化合物層 177を形成してもよい。このように連続して製膜することにより、生産性が 上がるとともに、第 1の無機化合物層 176と第 2の無機化合物層 177の密着性を上げ ることができ、更に耐久性のある中間転写体を製造することができる。
[0084] 更に他の形態として、ロール電極及び固定電極の内、一方の電極をアースに接続 して、他方の電極に電源を接続しても良い。この場合の電源は第 2の電源を使用す ることが緻密な薄膜形成を行え好ましぐ特に放電ガスにアルゴン等の希ガスを用い る場合に好ましい。
[0085] 図 4は、中間転写体を製造する第 2の製造装置の説明図である。
[0086] 中間転写体の第 2の製造装置 2bは複数の基材上に同時に第 1又は第 2の無機化 合物層を形成するもので、主として基材表面に無機化合物層を形成する複数の成膜 装置 2b 1及び 2b2より構成されている。
[0087] 第 2の製造装置 2b (ダイレクト方式の変形で、対向したロール電極間で放電と薄膜 堆積を行う方式)は、第 1の成膜装置 2blと所定の間隙を隔てて略鏡像関係に配置 された第 2の成膜装置 2b2と、第 1の成膜装置 2blと第 2の成膜装置 2b2との間に配 置された少なくとも原料ガスと放電ガスとの混合ガス Gを生成して放電空間 23bに混 合ガス Gを供給する混合ガス供給装置 24bとを有している。
[0088] 第 1の成膜装置 2blはエンドレスベルト状の中間転写体の基材 175を卷架して矢 印方向に回転するロール電極 20aと従動ローラ 201と矢印方向に従動ローラ 201を 付勢する張力付勢手段 202とロール電極 20aに接続された第 1の電源 25とを有し、 第 2の成膜装置 2b2はエンドレスベルト状の中間転写体の基材 175を卷架して矢印 方向に回転するロール電極 20bと従動ローラ 201と矢印方向に従動ローラ 201を付 勢する張力付勢手段 202とロール電極 20bに接続された第 2の電源 26とを有してい る。
[0089] また、第 2の製造装置 2bはロール電極 20aとロール電極 20bとの対向領域に放電 が行われる放電空間 23bを有している。
[0090] 混合ガス供給装置 24bは無機酸化物層、無機窒化物層、無機炭化物層から選ば れる少なくとも 1つの層の膜を形成する原料ガスと、窒素ガス或いはアルゴンガス、へ リウムガス等の希ガス、更に原料ガスの分解を制御するガスを放電空間 23bに供給 する。
[0091] 第 1の電源 25は周波数 ω ΐの電圧を出力し、第 2の電源 26は周波数 ω 2の電圧を 出力し、これらの電圧により放電空間 23bに周波数 ω 1と ω 2とが重畳された電界 Vを 発生する。そして、電界 Vにより混合ガス Gをプラズマ化 (励起)し、プラズマ化 (励起) した混合ガスを第 1の成膜装置 2blの基材 175及び第 2の成膜装置 2b2の基材 175 の表面に晒し、プラズマ化 (励起)した混合ガスに含まれる原料ガスに応じた膜 (無機 化合物層)が第 1の成膜装置 2blの基材 175及び第 2の成膜装置 2b2の基材 175の 表面に同時に堆積 ·形成される。
[0092] ここで、対向するロール電極 20aとロール電極 20bとは所定の間隙を隔てて配置さ れている。
[0093] 更に他の形態として、ロール電極 20aとロール電極 20bの内、一方のロール電極を アースに接続して、他方のロール電極に電源を接続しても良い。この場合の電源は 第 2の電源を使用することが緻密な薄膜形成を行え好ましぐ特に放電ガスに窒素ガ ス或いはアルゴンガス、ヘリウムガス等の希ガスを用いる場合に好まし 、。
[0094] 以下に基材 175上に無機化合物層を形成する大気圧プラズマ CVD装置の形態に ついて詳細に説明する。
[0095] なお、下記の図 5は図 3の第 1のプラズマ成膜装置 2において、主として破線部を抜 き出したものである。
[0096] 図 5は、プラズマにより中間転写体を製造する第 1のプラズマ成膜装置の説明図で ある。
[0097] 図 5を参照して、第 1の無機化合物層 176の形成に好適に用いられる大気圧プラズ マ CVD装置の 1例を説明する。
[0098] 大気圧プラズマ CVD装置 3は、基材を着脱可能に卷架して回転駆動させる少なく とも 1対のローラと、プラズマ放電を行う少なくとも 1対の電極とを有し、前記 1対の電 極の内、一方の電極は前記 1対のローラの内の一方のローラで、他方の電極は前記 一方のローラに前記基材を介して対向する固定電極であり、前記一方のローラと前 記固定電極との対向領域において発生するプラズマに、前記基材が晒されて前記 無機化合物層を堆積 ·形成される中間転写体の製造装置であり、例えば放電ガスと して窒素を用いる場合に一方の電源により高電圧を掛け他方の電源により高周波を 掛けることにより安定して放電を開始し且つ放電を継続するため好適に用いられる。
[0099] 大気圧プラズマ CVD装置 3は前述したように混合ガス供給装置 24、固定電極 21、 第 1の電源 25、第 1のフィルタ 25a、ロール電極 20、ロール電極を矢印方向に駆動 回転させる駆動手段 20a、第 2の電源 26、第 2のフィルタ 26aとを有しており、放電空 間 23でプラズマ放電を行わせて有機物を含む原料ガスと放電ガスを混合した混合ガ ス Gを励起させ、励起した混合ガス G1を基材表面 175aに晒し、その表面に炭素を 含有した無機化合物層を堆積'形成するものである。
[0100] そして、固定電極 21に第 1の電源 25から周波数 ω の第 1の高周波電圧が印加さ れ、ロール電極 20に第 2の電源 26から周波数 ωの高周波電圧が印加されるように
2
なっており、それにより、固定電極 21とロール電極 20との間に電界強度 Vで周波数
1 ωと電界強度 Vで周波数 ωとが重畳された電界が発生し、固定電極 21に電流 Iが
1 2 2 1 流れ、ロール電極 20に電流 Iが流れ、電極間にプラズマが発生する。
2
[0101] ここで、周波数 ω 1と周波数 ω 2の関係、及び、電界強度 Vと電界強度 Vおよび放
1 2 電ガスの放電を開始する電界強強度 IVとの関係力 ω < ωで、 V≥IV>V、また
1 2 1 2 は、 V >IV≥Vを満たし、前記第 2の高周波電界の出力密度が lWZcm2以上とな
1 2
つている。
[0102] 窒素ガスの放電を開始する電界強度 IVは 3. 7kVZmmの為、少なくとも第 1の電 源 25から印可する電界強度 Vは 3. 7kVZmm、またはそれ以上とし、第 2の電源 2
1
6から印可する電界強度 Vは 3. 7kV/mm,またはそれ未満とすることが好ましい。
2
[0103] また、第 1の大気圧プラズマ CVD装置 3に利用可能な第 1の電源 25 (高周波電源) としては、
印加電源記号 メーカー 周波数 製品名
A1 神鋼電機 3kHz SPG3 -4500
A2 神鋼電機 5kHz SPG5 -4500
A3 春日電機 15kHz AGI-023
A4 神鋼電機 50kHz SPG50-4500
A5 ハイデン研究所 100kHz水 PHF— 6k
A6 パール工業 200kHz CF- 2000 - 200k
A7 パール工業 400kHz CF- 2000 -400k
等の市販のものを挙げることが出来、何れも使用することが出来る。
[0104] また、第 2の電源 26 (高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
B1 ノ ール工業 800kHz CF- 2000 -800k
B2 パール工業 2MHz CF— 2000— 2M
B3 ノ ール工業 13. 56MHz CF— 5000— 13M
B4 ノ ール工業 27MHz CF- 2000- 27M B5 ノ ール工業 150MHz CF- 2000- 150M
等の市販のものを挙げることが出来、何れも使用することが出来る。
[0105] なお、上記電源のうち、 *印はハイデン研究所インパルス高周波電源 (連続モード で 100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。
[0106] 本発明において、第 1及び第 2の電源から対向する電極間に供給する電力は、固 定電極 21に lWZcm2以上の電力(出力密度)を供給し、放電ガスを励起してプラズ マを発生させ、薄膜を形成する。固定電極 21に供給する電力の上限値としては、好 ましくは 50W/cm2である。下限値は、好ましくは 1. 2WZcm2である。なお、放電面 積 (cm2)は、電極において放電が起こる範囲の面積のことを指す。
[0107] また、ロール電極 20にも、 lWZcm2以上の電力(出力密度)を供給することにより、 高周波電界の均一性を維持したまま、出力密度を向上させることが出来る。これによ り、更なる均一高密度プラズマを生成出来、更なる製膜速度の向上と膜質の向上が 両立出来る。好ましくは 2WZcm2以上である。ロール電極 20に供給する電力の上限 値は、好ましくは 50WZcm2である。
[0108] ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続 サイン波状の連続発振モードと、パルスモードと呼ばれる ONZOFFを断続的に行う 断続発振モード等があり、そのどちらを採用してもよいが、少なくともロール電極 20に 供給する高周波は連続サイン波の方がより緻密で良質な膜が得られるので好ましい
[0109] 固定電極 21と第 1の電源 25との間には、第 1フィルタ 25aが設置されており、第 1の 電源 25から固定電極 21への電流を通過しやすくし、第 2の電源 26からの電流をァ ースして、第 2の電源 26から第 1の電源 25への電流が通過しにくくなるようになって いる。また、ロール電極 20と第 2の電源 26との間には、第 2フィルター 26aが設置され ており、第 2の電源 26からロール電極 20への電流を通過しやすくし、第 1の電源 25 力もの電流をアースして、第 1の電源 25から第 2の電源 26への電流を通過しにくくす るようになっている。
[0110] 電極には前述したような強い電界を印加して、均一で安定な放電状態を保つことが 出来る電極を採用することが好ましぐ固定電極 21とロール電極 20には強い電界に よる放電に耐えるため少なくとも一方の電極表面には下記の誘電体が被覆されてい る。
[0111] 以上の説明において、電極と電源の関係は、固定電極 21に第 2の電源 26を接続 して、ロール電極 20に第 1の電源 25を接続しても良い。
[0112] 更に他の形態として、固定電極 21とロール電極 20との内、一方の電極をアースに 接続して、他方の電極に電源を接続しても良い。この場合の電源は第 2の電源を使 用することが緻密な薄膜形成を行え好ましぐ特に放電ガスにアルゴン等の希ガスを 用いる場合に好ましい。
[0113] 図 6は、ロール電極の一例を示す概略図である。
[0114] ロール電極 20の構成について説明すると、図 6 (a)において、ロール電極 20は、金 属等の導電性母材 200a (以下、「電極母材」ともいう。)に対しセラミックスを溶射後、 無機材料を用いて封孔処理したセラミック被覆処理誘電体 200b (以下、単に「誘電 体」ともいう。)を被覆した組み合わせで構成されている。また、溶射に用いるセラミツ クス材としては、アルミナ '窒化珪素等が好ましく用いられる力 この中でもアルミナが 加工し易いので、更に好ましく用いられる。
[0115] また、図 6 (b)に示すように、金属等の導電性母材 200Aにライニングにより無機材 料を設けたライニング処理誘電体 200Bを被覆した組み合わせでロール電極 20,を 構成してもよい。ライニング材としては、ケィ酸塩系ガラス、ホウ酸塩系ガラス、リン酸 塩系ガラス、ゲルマン酸塩系ガラス、亜テルル酸塩ガラス、アルミン酸塩ガラス、バナ ジン酸塩ガラス等が好ましく用いられる力 この中でもホウ酸塩系ガラスが加工し易 ヽ ので、更に好ましく用いられる。
[0116] 金属等の導電性母材 200a、 200Aとしては、銀、白金、ステンレス、アルミニウム、 鉄等の金属等が挙げられる力 加工の観点からステンレスが好まし 、。
[0117] 尚、本実施の形態においては、ロール電極の母材 200a、 200Aは、冷却水による 冷却手段を有するステンレス製ジャケットロール母材を使用して 、る(不図示)。
[0118] 図 7は、固定電極の一例を示す概略図である。
[0119] 図 7 (a)において、角柱或いは角筒柱の固定電極 21は上記記載のロール電極 20 と同様に、金属等の導電性母材 210cに対しセラミックスを溶射後、無機材料を用い て封孔処理したセラミック被覆処理誘電体 210dを被覆した組み合わせで構成されて いる。また、図 7 (b)に示す様に、角柱或いは角筒柱型の固定電極 21 'は金属等の 導電性母材 21 OAヘライニングにより無機材料を設けたライニング処理誘電体 21 OB を被覆した組み合わせで構成してもよ 、。
[0120] 以下に、中間転写体の製造方法の工程の内、基材 175上に無機化合物層を堆積' 形成する成膜工程の例を、図 3、 5を参照して説明する。
[0121] 図 3及び 5において、ロール電極 20及び従動ローラ 201に基材 175を張架後、張 力付勢手段 202の作動により基材 175に所定の張力を掛け、次いでロール電極 20 を所定の回転数で回転駆動する。
[0122] 混合ガス供給装置 24から混合ガス Gを生成し、放電空間 23に放出する。
[0123] 第 1の電源 25から周波数 ω 1の電圧を出力して固定電極 21に印加し、第 2の電源
26から周波数 ω 2の電圧を出力してロール電極 20に印加し、これらの電圧により放 電空間 23に周波数 ω ΐと ω 2とが重畳された電界 Vを発生させる。
[0124] 電界 Vにより放電空間 23に放出された混合ガス Gを励起しプラズマ状態にする。そ して、基材表面にプラズマ状態の混合ガス Gを晒し混合ガス G中の原料ガスにより無 機酸化物層、無機窒化物層、無機炭化物層から選ばれる少なくとも 1つの層の膜、 即ち第 1の無機化合物層 176を基材 175上に形成する。
[0125] この様にして形成される第 1の無機化合物層の上に、同様にして第 2の無機化合物 層 177を設けることができる。
[0126] 放電ガスとは上記のような条件においてプラズマ励起される気体をいい、窒素、ァ ルゴン、ヘリウム、ネオン、クリプトン、キセノン等及びそれらの混合物などがあげられ る。
[0127] 原料ガスとしては、薄膜を形成する成分を含有するものであり、例えば、有機金属 化合物、有機化合物があげられる。
[0128] 例えば、ケィ素化合物として、シラン、テトラメトキシシラン、テトラエトキシシラン (ΤΕ OS)、テトラ η プロボキシシラン、テトライソプロボキシシラン、テトラ η—ブトキシシラ ン、テトラ t ブトキシシラン、ジメチノレジメトキシシラン、ジメチノレジェトキシシラン、ジ ェチルジメトキシシラン、ジフエ二ルジメトキシシラン、メチルトリエトキシシラン、ェチル トリメトキシシラン、フエ-ルトリエトキシシラン、(3, 3, 3—トリフルォロプロピル)トリメト キシシラン、へキサメチルジシロキサン、ビス(ジメチルァミノ)ジメチルシラン、ビス(ジ メチルァミノ)メチルビ-ルシラン、ビス(ェチルァミノ)ジメチルシラン、 N, O ビス(ト リメチルシリル)ァセトアミド、ビス(トリメチルシリル)カルポジイミド、ジェチルアミノトリメ チルシラン、ジメチルアミノジメチルシラン、へキサメチルジシラザン、へキサメチルシ クロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オタタメチルシクロ テトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナ一トシラン、テトラメチ ルジシラザン、トリス(ジメチルァミノ)シラン、トリエトキシフルォロシラン、ァリルジメチ ルシラン、ァリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)ァ セチレン、 1, 4 ビストリメチルシリル 1, 3 ブタジイン、ジ tーブチルシラン、 1, 3—ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジェニルトリメチルシラン 、フエ二ルジメチルシラン、フエニルトリメチルシラン、プロパルギルトリメチルシラン、テ トラメチルシラン、トリメチルシリルアセチレン、 1— (トリメチルシリル)一 1—プロピン、ト へキサメチルジシラン、オタタメチルシクロテトラシロキサン、テトラメチルシクロテトラシ ロキサン、へキサメチルシクロテトラシロキサン、 Mシリケート 51などが挙げられるがこ れらに限定されない。
[0129] チタンィ匕合物としては、テトラジメチルァミノチタンなどの有機金属化合物、モノチタ ン、ジチタンなどの金属水素化合物、二塩ィ匕チタン、三塩ィ匕チタン、四塩化チタンな どの金属ハロゲンィ匕合物、テトラエトキシチタン、テトライソプロポキシチタン、テトラブ トキシチタンなどの金属アルコキシドなどが挙げられるがこれらに限定されない。
[0130] アルミニウム化合物としては、アルミニウム n—ブトキシド、アルミニウム s—ブトキシド 、アルミニウム tーブトキシド、アルミニウムジイソプロポキシドエチルァセトアセテート、 アルミニウムエトキシド、アルミニウムへキサフルォロペンタンジォネート、アルミニウム イソプロポキシド、アルミニウム ΠΙ2, 4 ペンタンジォネート、ジメチルアルミニウムクロ ライドなどが挙げられるがこれらに限定されない。
[0131] 亜鉛ィ匕合物としては、ジンクビス(ビス(トリメチルシリル)アミド)、ジンク 2, 4 ペンタ ンジォネート、ジンク 2, 2, 6, 6—テトラメチルー 3, 5 ヘプタンジォネートなどが挙 げられるがこれらに限定されな!、。
[0132] ジルコニウム化合物としては、ジルコニウム t—ブトキシド、ジルコニウムジイソプロボ キシドビス(2, 2, 6, 6—テトラメチルー 3, 5—ヘプタンジォネート)、ジルコニウムエト キシ、ジルコニウムへキサフルォロペンタンジォネート、ジルコニウムイソプロポキシド
、ジルコニウム 2—メチルー 2—ブトキシド、ジルコニウムトリフルォロペンタンジォネー トなどが挙げられるがこれらに限定されない。
[0133] また、これらの原料は、前記炭素含有量を有する無機化合物層を形成するもので あれば、単独で用いても良いが、 2種以上の成分を混合して使用するようにしても良 い。
[0134] 上記のような方法によって、基材表面に少なくとも 2層以上の無機化合物層を有し、 第 1の無機化合物層及びこの第 1の無機化合物層より炭素含有量が少ない第 2の無 機化合物層がこの順で設けることにより、転写性が高ぐクリーニング性及び耐久性 が高い中間転写体を提供することができる。
[0135] この無機化合物層の炭素含有量は、原料ガスの量と原料ガスの分解を制御するガ スの量とプラズマ放電処理装置の設定条件で調節することができる。
[0136] このようにして基材 175の上に形成した第 1の無機化合物層 176の炭素含有量は X PS法により測定することができる。
[0137] 次に、第 1の無機化合物層 176と同様の方法で、所定の炭素含有量に調節した第 2の無機化合物層 177を第 1の無機化合物層の上に形成する。
[0138] 本発明における第 1の無機化合物層 176の炭素含有量は 0. 1原子%以上 50原子 %以下 (XPS測定)であることが好ま 、。
[0139] また、第 2の無機化合物層 177の炭素含有量は、炭素原子を含有しないか、又は、 第 1の無機化合物層の炭素含有量より少ないものが好ましい。特に第 2の無機化合 物層の炭素含有量は、 20原子%以下 (XPS測定)であるとより好ま 、。
[0140] このような構成にすることで、炭素原子を含有しない、または、炭素原子の含有量が 少ない第 2の無機化合物層を表面に有する中間転写体 170であっても、第 2の無機 化合物層より炭素含有量の多い第 1の無機化合物層を基材と第 2の無機化合物層と の間に形成することにより、耐久使用においても膜の割れや、剥がれが無ぐかつト ナ一との離型性に優れた中間転写体 170を作製することができる。
実施例
[0141] 以下に実施例を挙げて、本発明を具体的に説明するが、本発明の実施形態はこれ に限定されるものではない。
1.試料の作製
(基材の作製)
基材を以下のように作製した。
[0142] ポリフエ-レンサルファイド榭脂 (E2180、東レネ土製) 100質量部
導電フィラー (ファーネス # 3030B、三菱化学社製) 16質量部 グラフト共重合体 (モディパー A4400、日本油脂社製) 1質量部 滑材(モンタン酸カルシウム) 0. 2質量部
上記材料を単軸押出機に投入し、溶融混練させて榭脂混合物とした。単軸押出機 の先端にはスリット状でシームレスベルト形状の吐出口を有する環状ダイスが取り付 けてあり、混練された上記榭脂混合物を、シームレスベルト形状に押し出した。押し 出されたシームレスベルト形状の榭脂混合物を、吐出先に設けた円筒状の冷却筒に 外挿させて冷却し、固化することによりシームレス円筒状の中間転写体を得た。得ら れた基材の厚さは、 120 /z mであった。
(無機化合物層の作製)
前記で得られた基材上に図 3のプラズマ CVD法による中間転写体製造装置を用 いて、第 1の無機化合物層として lOOnmを形成した。更に、その上に第 2の無機化 合物層として 300nm形成した。この時のプラズマ CVD法による中間転写体製造装 置の各電極を被覆する誘電体は対向する電極共に、セラミック溶射加工のものに片 肉で lmm被覆した。被覆後の電極間隙は、 1mmに設定した。また誘電体を被覆し た金属母材は、冷却水による冷却機能を有するステンレス製ジャケット仕様であり、 放電中は冷却水による電極温度コントロールを行いながら実施した。ここで使用する 電源は、神鋼電機製高周波電源 (50kHz)、パール工業製高周波電源(13. 56MH z)を使用した。
[0143] 各層を形成するための放電ガス条件、原料分解制御ガス条件、原料ガス条件、高 周波電源出力条件 (低周波側電源電力、高周波側電源電力)を表 1、 2記載のように し、試料 1〜8、 11〜14、 16〜19を作製した。
[0144] また、市販の真空蒸着装置を用いて、基材上に表 2記載の炭素原子含有量となる ように、炭素原子を含むガスを添加し、第 1の無機化合物層を lOOnm形成し、その 上に第2の無機化合物層を3 OOnm形成し、試料 15を作製した。
[0145] また、比較例として、表 1、 2記載の条件以外は、実施例と全く同様にして試料 9、 1
0を作製した。
2.炭素含有量の測定
XPS測定による組成分析は、 VGサイエンティフィック社製 X線光電子分光分析測 定器 (ESCALAB 200R)により測定した。
3.評価方法
(1)転写効率
プリンターにコ-カミノルタ社製 magicolor2200を用い、平均粒径 6. 5 mの重合 トナーを使用し、 2色重ねベタ画像を印字したときの 1次' 2次転写でのトナー移動性 を転写効率で評価した。 1次転写効率は、感光体上に形成されたトナー像の質量に 対する中間転写体上に転写されたトナー像の質量の割合を 、う。 2次転写効率は、 中間転写体上に形成されたトナー像の質量に対する記録紙上に転写されたトナー 像の質量の割合をいう。
〇:1次 · 2次転写効率が共に 90%以上であった;
△: 1次 · 2次転写効率の一方が 90%以上である力 片方が 90%未満であった; X : 1次 · 2次転写効率が共に 90%未満であった。
(2)クリーニング性
前記プリンターを用い、中間転写体表面をクリーニングブレードでクリーニングした 後の中間転写体の表面状態を目視観察し、トナーの付着状態を確認した。そして、ト ナ一の付着のないものを〇、僅かにあるが実用上問題のないものを△、実用上問題 があるものを Xとした。
(2)耐久性試験
上記プリンターを用い、フルカラー画像を 5枚 Z分のプリンター速度で印字し、ベル トが破壊するまでのフルカラー枚数を測定した。
〇:機種のマシンライフ越えても表面のヒビヮレ、膜ハクリなし
△:機種のマシンライフの 70%以上のプリントで表面のヒビヮレまたは膜ハクリ発生
X:機種のマシンライフの 70%未満のプリントで表面のヒビヮレまたは膜ノヽタリ発生 以上の試料 1〜 19の測定結果及び評価結果を表 2に示す。
[表 1]
〔〕〔
Figure imgf000027_0001
Figure imgf000028_0001
以上の結果から、基材上に炭素原子を含有する第 1の無機化合物層及び表面層と して炭素原子を含有しない又は前記第 1の無機化合物層よりも少ない量の炭素原子 を含有する第 2の無機化合物層を有してレ、る中間転写体を用いることにより、トナー の離型性に優れ、転写効率の向上した、長期の耐久使用においても割れの生じない 中間転写体及び中間転写体を用レ、た画像形成装置を提供することが出来た。 [0149] また、第 2の無機化合物層の炭素含有量が 20原子%以下 (XPS測定)とすることに より、より転写効率及びクリーニング性の優れた中間転写体であることが分かる。
[0150] また、第 1の無機化合物層の炭素含有量が 0. 1原子%以上 50原子%以下 (XPS 測定)とすることにより、より耐久性の優れた中間転写体であることがわかる。

Claims

請求の範囲
[1] 基材上に炭素原子を含有する第 1の無機化合物層及び表面層として炭素原子を含 有しない又は前記第 1の無機化合物層よりも少ない量の炭素原子を含有する第 2の 無機化合物層を有することを特徴とする中間転写体。
[2] 前記第 1の無機化合物層は、炭素含有量が 0. 1原子%以上 50原子%以下 (XPS測 定)であることを特徴とする請求の範囲第 1項に記載の中間転写体。
[3] 前記第 2の無機化合物層は、炭素含有量が 20原子%以下 (XPS測定)であることを 特徴とする請求の範囲第 1項または第 2項に記載の中間転写体。
[4] 前記第 1の無機化合物層または前記第 2の無機化合物層は、 Si、 Ti、 Al、 Zr及び Zn 力 選ばれる少なくとも一つの原子を含む化合物であることを特徴とする請求の範囲 第 1項乃至第 3項のいずれか 1項に記載の中間転写体。
[5] 前記第 1の無機化合物層及び前記第 2の無機化合物層は、 Si、 Ti、 Al、 Zr及び Zn から選ばれる少なくとも一つの原子を含む化合物で構成されることを特徴とする請求 の範囲第 1項乃至第 3項のいずれか 1項に記載の中間転写体。
[6] 前記第 1の無機化合物層または前記第 2の無機化合物層は、無機酸ィ匕物層であるこ とを特徴とする請求の範囲第 1項乃至第 5項の 、ずれか 1項記載の中間転写体。
[7] 前記第 1の無機化合物層及び前記第 2の無機化合物層は、無機酸化物層であること を特徴とする請求の範囲第 1項乃至第 5項のいずれか 1項記載の中間転写体。
[8] 請求の範囲第 1項乃至第 7項の何れか 1項に記載の中間転写体の製造方法にお!、 て、前記第 1の無機化合物層及び前記第 2の無機化合物層の少なくとも一方の層が 大気圧プラズマ CVD法により形成されることを特徴とする中間転写体の製造方法。
[9] 像担持体の表面力 転写されたトナー像をさらに記録媒体に転写する中間転写体を 備えてなる画像形成装置において、前記中間転写体は、請求の範囲第 1項乃至第 7 項の 、ずれか 1項に記載の中間転写体であることを特徴とする画像形成装置。
PCT/JP2006/320169 2005-10-20 2006-10-10 中間転写体、中間転写体の製造方法及び中間転写体を備えた画像形成装置 WO2007046260A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800386994A CN101292199B (zh) 2005-10-20 2006-10-10 中间转印体、中间转印体的制造方法以及具有中间转印体的图像形成装置
US12/090,280 US7862883B2 (en) 2005-10-20 2006-10-10 Intermediate transfer member, method of producing intermediate transfer member, and image forming apparatus provided with intermediate transfer member
JP2007540926A JP4380770B2 (ja) 2005-10-20 2006-10-10 中間転写体、中間転写体の製造方法及び中間転写体を備えた画像形成装置
EP06811482.6A EP1947527B1 (en) 2005-10-20 2006-10-10 Intermediate transfer medium, process for producing intermediate transfer medium, and image forming apparatus comprising intermediate transfer medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-305436 2005-10-20
JP2005305436 2005-10-20

Publications (1)

Publication Number Publication Date
WO2007046260A1 true WO2007046260A1 (ja) 2007-04-26

Family

ID=37962356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320169 WO2007046260A1 (ja) 2005-10-20 2006-10-10 中間転写体、中間転写体の製造方法及び中間転写体を備えた画像形成装置

Country Status (5)

Country Link
US (1) US7862883B2 (ja)
EP (1) EP1947527B1 (ja)
JP (1) JP4380770B2 (ja)
CN (1) CN101292199B (ja)
WO (1) WO2007046260A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145174A1 (ja) * 2008-05-26 2009-12-03 コニカミノルタビジネステクノロジーズ株式会社 中間転写体
WO2009145173A1 (ja) * 2008-05-26 2009-12-03 コニカミノルタビジネステクノロジーズ株式会社 中間転写体
JP2010002567A (ja) * 2008-06-19 2010-01-07 Konica Minolta Business Technologies Inc 中間転写体
JPWO2008105338A1 (ja) * 2007-02-26 2010-06-03 コニカミノルタビジネステクノロジーズ株式会社 中間転写体及び画像形成装置
JP2010211130A (ja) * 2009-03-12 2010-09-24 Konica Minolta Business Technologies Inc 中間転写ベルトおよび画像形成装置
EP2003516A3 (en) * 2007-06-15 2011-09-14 Konica Minolta Business Technologies, Inc. Image-forming apparatus with intermediate transfer member
US9400457B1 (en) 2015-01-16 2016-07-26 Konica Minolta, Inc. Intermediate transfer element and image formation apparatus including the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862883B2 (en) * 2005-10-20 2011-01-04 Konica Minolta Business Technologies, Inc. Intermediate transfer member, method of producing intermediate transfer member, and image forming apparatus provided with intermediate transfer member
US20090060598A1 (en) * 2007-08-27 2009-03-05 Konica Minolta Business Technologies, Inc. Image forming method
JPWO2010106973A1 (ja) * 2009-03-18 2012-09-20 コニカミノルタビジネステクノロジーズ株式会社 中間転写体
DE102009030876B4 (de) * 2009-06-29 2011-07-14 Innovent e.V., 07745 Verfahren zum Beschichten eines Substrats
JP6029336B2 (ja) 2011-06-15 2016-11-24 キヤノン株式会社 現像ローラ、プロセスカートリッジおよび電子写真装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09212004A (ja) 1996-02-06 1997-08-15 Matsushita Electric Ind Co Ltd 中間転写体および中間転写体を備えた電子写真装置
JPH1161406A (ja) 1997-08-27 1999-03-05 Sekisui Chem Co Ltd 反射・帯電防止膜の製造方法
JPH11133205A (ja) 1997-04-21 1999-05-21 Sekisui Chem Co Ltd 反射防止膜の製造方法
JP2000121804A (ja) 1998-10-09 2000-04-28 Sekisui Chem Co Ltd 反射防止フィルム
JP2000147209A (ja) 1998-09-09 2000-05-26 Sekisui Chem Co Ltd 反射防止フィルム及びその製造方法
JP2000185362A (ja) 1998-12-24 2000-07-04 Sekisui Chem Co Ltd 金属元素含有薄膜積層体の製造方法
JP2000206801A (ja) 1999-01-11 2000-07-28 Canon Inc 画像形成装置
JP2005274952A (ja) * 2004-03-24 2005-10-06 Fuji Xerox Co Ltd クリーニング装置及びこれを用いた画像形成装置並びにクリーニング部材
JP2006259581A (ja) * 2005-03-18 2006-09-28 Fuji Xerox Co Ltd 搬送ベルト及びこれを用いた画像形成装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926707A (ja) * 1995-07-12 1997-01-28 Minolta Co Ltd 中間転写体
US5985419A (en) * 1998-01-08 1999-11-16 Xerox Corporation Polyurethane and doped metal oxide transfer components
US5922440A (en) * 1998-01-08 1999-07-13 Xerox Corporation Polyimide and doped metal oxide intermediate transfer components
IL144326A0 (en) * 2001-07-15 2002-05-23 Indigo Nv Liquid toner with additives for enhancing life of intermediate transfer members
JP4486313B2 (ja) * 2003-03-31 2010-06-23 株式会社明治ゴム化成 画像転写シート
JP4674786B2 (ja) * 2003-06-24 2011-04-20 コニカミノルタビジネステクノロジーズ株式会社 画像形成装置及び画像形成方法
WO2007046218A1 (ja) * 2005-10-20 2007-04-26 Konica Minolta Business Technologies, Inc. 中間転写体、中間転写体の製造方法及び画像形成装置
US7862883B2 (en) * 2005-10-20 2011-01-04 Konica Minolta Business Technologies, Inc. Intermediate transfer member, method of producing intermediate transfer member, and image forming apparatus provided with intermediate transfer member
US20080267675A1 (en) * 2005-11-30 2008-10-30 Konica Minolta Business Technologies, Inc. Intermediate Transfer Member, Method of Manufacturing Intermediate Transfer Member, and Image Forming Apparatus
US8219011B2 (en) * 2007-02-26 2012-07-10 Konica Minolta Business Technologies, Inc. Intermediate transfer member and image formation apparatus
US20090060598A1 (en) * 2007-08-27 2009-03-05 Konica Minolta Business Technologies, Inc. Image forming method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09212004A (ja) 1996-02-06 1997-08-15 Matsushita Electric Ind Co Ltd 中間転写体および中間転写体を備えた電子写真装置
JPH11133205A (ja) 1997-04-21 1999-05-21 Sekisui Chem Co Ltd 反射防止膜の製造方法
JPH1161406A (ja) 1997-08-27 1999-03-05 Sekisui Chem Co Ltd 反射・帯電防止膜の製造方法
JP2000147209A (ja) 1998-09-09 2000-05-26 Sekisui Chem Co Ltd 反射防止フィルム及びその製造方法
JP2000121804A (ja) 1998-10-09 2000-04-28 Sekisui Chem Co Ltd 反射防止フィルム
JP2000185362A (ja) 1998-12-24 2000-07-04 Sekisui Chem Co Ltd 金属元素含有薄膜積層体の製造方法
JP2000206801A (ja) 1999-01-11 2000-07-28 Canon Inc 画像形成装置
JP2005274952A (ja) * 2004-03-24 2005-10-06 Fuji Xerox Co Ltd クリーニング装置及びこれを用いた画像形成装置並びにクリーニング部材
JP2006259581A (ja) * 2005-03-18 2006-09-28 Fuji Xerox Co Ltd 搬送ベルト及びこれを用いた画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1947527A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008105338A1 (ja) * 2007-02-26 2010-06-03 コニカミノルタビジネステクノロジーズ株式会社 中間転写体及び画像形成装置
JP4775489B2 (ja) * 2007-02-26 2011-09-21 コニカミノルタビジネステクノロジーズ株式会社 中間転写体及び画像形成装置
EP2003516A3 (en) * 2007-06-15 2011-09-14 Konica Minolta Business Technologies, Inc. Image-forming apparatus with intermediate transfer member
WO2009145174A1 (ja) * 2008-05-26 2009-12-03 コニカミノルタビジネステクノロジーズ株式会社 中間転写体
WO2009145173A1 (ja) * 2008-05-26 2009-12-03 コニカミノルタビジネステクノロジーズ株式会社 中間転写体
JP4973781B2 (ja) * 2008-05-26 2012-07-11 コニカミノルタビジネステクノロジーズ株式会社 中間転写体
JP2010002567A (ja) * 2008-06-19 2010-01-07 Konica Minolta Business Technologies Inc 中間転写体
JP2010211130A (ja) * 2009-03-12 2010-09-24 Konica Minolta Business Technologies Inc 中間転写ベルトおよび画像形成装置
US9400457B1 (en) 2015-01-16 2016-07-26 Konica Minolta, Inc. Intermediate transfer element and image formation apparatus including the same

Also Published As

Publication number Publication date
JP4380770B2 (ja) 2009-12-09
EP1947527A4 (en) 2012-08-29
EP1947527A1 (en) 2008-07-23
CN101292199B (zh) 2010-05-19
JPWO2007046260A1 (ja) 2009-04-23
US7862883B2 (en) 2011-01-04
EP1947527B1 (en) 2013-12-04
US20090123198A1 (en) 2009-05-14
CN101292199A (zh) 2008-10-22

Similar Documents

Publication Publication Date Title
WO2007046260A1 (ja) 中間転写体、中間転写体の製造方法及び中間転写体を備えた画像形成装置
EP1947526B1 (en) Intermediate transfer body, method for manufacturing intermediate transfer body, and image-forming device
JP5131199B2 (ja) 中間転写体、それを用いた画像形成方法及び画像形成装置
US8295747B2 (en) Intermediate transfer member for use in electrophotographic image forming apparatus
JP4438866B2 (ja) 中間転写体、中間転写体の製造装置、中間転写体の製造方法、及び画像形成装置
JP4775489B2 (ja) 中間転写体及び画像形成装置
WO2010103896A1 (ja) 中間転写体
JP4497205B2 (ja) 中間転写体、中間転写体の製造方法及び画像形成装置
JP2008209835A (ja) 中間転写体及び画像形成装置
JP4760935B2 (ja) 中間転写ベルトおよび画像形成装置
JPWO2008084714A1 (ja) 中間転写体、それを用いた画像形成方法及び画像形成装置
JP2008256958A (ja) 中間転写体、該中間転写体の製造方法、該中間転写体を用いる画像形成方法及び画像形成装置
JP2010039253A (ja) 中間転写体、画像形成装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038699.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007540926

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12090280

Country of ref document: US

Ref document number: 2006811482

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE