WO2007039984A1 - 光触媒含有有機材 - Google Patents

光触媒含有有機材 Download PDF

Info

Publication number
WO2007039984A1
WO2007039984A1 PCT/JP2006/315878 JP2006315878W WO2007039984A1 WO 2007039984 A1 WO2007039984 A1 WO 2007039984A1 JP 2006315878 W JP2006315878 W JP 2006315878W WO 2007039984 A1 WO2007039984 A1 WO 2007039984A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
organic material
silicon oxide
resin
containing organic
Prior art date
Application number
PCT/JP2006/315878
Other languages
English (en)
French (fr)
Inventor
Nobuhiko Horiuchi
Takashi Nabeta
Satoru Miyazoe
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to EP20060782664 priority Critical patent/EP1955767A1/en
Priority to JP2007538653A priority patent/JPWO2007039984A1/ja
Priority to US12/088,527 priority patent/US20090275464A1/en
Publication of WO2007039984A1 publication Critical patent/WO2007039984A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a photocatalyst-containing organic material in which a photocatalyst is contained in a member made of an organic substance.
  • Metal oxide semiconductors such as titanium and zinc oxide exhibit the property of absorbing light having energy corresponding to the bandwidth.
  • the metal oxide semiconductor is used as a “photocatalyst” for water purification, antifouling, antibacterial, deodorizing, air purification. Attempts have been made to apply it to environmental cleanups such as firewood.
  • the functions of water purification, air purification, and deodorization are the effects of decomposing pollutants and odorous substances by the redox action of the photocatalyst.
  • voc environmental hormones, nitrogen oxides, ammonia
  • Applications are being promoted for the decomposition of amines, aldehydes, lower fatty acids, hydrogen sulfide, mercaptans, and the like.
  • the function of antifouling utilizes the effect of removing dirt by decomposing organic substances such as oil into carbon dioxide and water.
  • the function of antibacterial is the effect of suppressing reproduction by killing or dormant bacteria and the like by the action of decomposition of the photocatalyst.
  • the photocatalyst when the photocatalyst is simply combined with the member, if the member is made of an organic material such as resin, fiber, wood, paper, etc., the photocatalyst is decomposed in the member itself, resulting in cracks and cracks. As a result, the photocatalyst peels off and the member itself deteriorates and becomes brittle.
  • a film material having a photocatalytic function in which photocatalyst particles partially coated on the surface of the photocatalyst with ceramics that are inert as a photocatalyst are supported on the surface of the plastic film has also been proposed. It is difficult to partially cover the surface of the photocatalyst with ceramics to sufficiently suppress the influence on the member.
  • organohydrodiene polysiloxane is supplied to the photocatalyst in the gas phase to form a silica-based coating, and that even when coated, the bactericidal activity under light irradiation conditions is higher than the activity of the original photocatalyst. (See Patent Document 4).
  • the photocatalyst described in this document has a core composed of titanium oxide particles having photocatalytic activity and a silica hydrate coating layer surrounding the core. This coating layer is said to function to enhance the basic gas removal capability of the entire photocatalyst by selectively adsorbing basic gas and efficiently supplying it to the active sites of the titanium oxide core.
  • the photocatalysts described in Patent Documents 4 and 5 have sufficient photolytic performance for organic substances, and the photocatalyst described in Patent Document 5 has an adsorption capacity for harmful gases other than basic gases. It was insufficient. It is considered that this is due to the fact that the structure of the photocatalyst obtained by the method described in Patent Document 5 or the mechanical strength and durability of the coating layer of silica hydrate are insufficient.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 09-182782
  • Patent Document 2 Japanese Patent Laid-Open No. 09-225321
  • Patent Document 3 Japanese Patent No. 3484470
  • Patent Document 4 Japanese Patent Laid-Open No. 62-260717
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2002-159865
  • the present invention has been made in view of such circumstances, and the object of the present invention is to contact the photocatalyst while maintaining a photocatalytic function capable of satisfying demands such as antifouling, deodorization, and antibacterial. It is to provide a photocatalyst-containing organic material in which an organic material contains a photocatalyst that suppresses the decomposition and deterioration of the organic material.
  • the porous silica-coated photocatalyst hardly deteriorates the organic material, but the photocatalytic activity is insufficient, and the low activity is caused by the scattering of light by the porous film. It is assumed that light is difficult to reach the core metal compound semiconductor, and that the above problem can be solved by coating with a silica film having no pores. It was.
  • the photocatalyst-containing organic material characterized in that the alkali metal content of the photocatalyst is 1 ppm or more and 1000 ppm or less is excellent in photocatalytic activity and hardly deteriorates the equipment and completes the invention. I came to let you.
  • a photocatalyst-containing organic material comprising an organic material and a photocatalyst contained in the member
  • the photocatalyst is a photocatalyst
  • a photocatalyst-containing organic material characterized in that the photocatalyst has an alkali metal content of not less than 1 ppm and not more than lOOOppm. is there.
  • the photocatalyst-containing organic material of the present invention comprises a member made of an organic substance and a photocatalyst contained in the member.
  • This photocatalyst is provided with a substrate having photocatalytic activity and an acid-silicon silicon film that covers the substrate and has substantially no pores, and has an alkali metal content of lppm or more and lOOOppm or less.
  • silicon oxide-coated photocatalyst means a substrate in which the surface of a substrate having a photocatalytic function is coated with a film made of silicon oxide.
  • the photocatalyst formed in the presence of silicon oxide later which is manufactured by immobilizing the photocatalyst on silicon oxide, and the composite formed by forming silicon oxide and photocatalyst in parallel in the same container are included. I can't.
  • the mode in which the silicon oxide film covers the substrate is not particularly limited, and includes either a mode in which a part of the substrate is coated or a mode in which the whole is coated, but the organic material is less likely to deteriorate. It is preferable that the surface of the body is uniformly coated with a film made of silicon oxide silicon.
  • the silicon oxide film includes both an unfired film and a fired film. In the present invention, a fired film of silicon oxide after firing is preferred.
  • a metal compound optical semiconductor As the substrate having photocatalytic activity (hereinafter abbreviated as “substrate” as appropriate), a metal compound optical semiconductor can be used.
  • metal compound optical semiconductors include titanium oxide, zinc oxide, tungsten oxide, and strontium titanate. Of these, titanium oxide, which is excellent in photocatalytic activity, is harmless, and has excellent stability. preferable.
  • acid titan include amorphous, anatase type, rutile type, brookite type and the like. Of these, anatase type or rutile type, which are excellent in photocatalytic activity, or a mixture thereof is more preferable.
  • one or more transition metals added to a metal compound photo-semiconductor one or more typical elements of group 14, 15, and Z or group 16 added to a metal compound photo-semiconductor, two types
  • a photo-semiconductor having the above-mentioned metal compound power and a mixture of two or more metal compound photo-semiconductors can also be used.
  • the specific surface area of the substrate is preferably 30 m 2 / g or more, more preferably 120 m 2 / g or more 400 m 2. It is preferably Zg or less, and most preferably contains a metal compound optical semiconductor of 120 m 2 Zg or more and 300 m 2 Zg or less. When the specific surface area of the substrate is within the above range, good catalytic activity can be maintained.
  • the specific surface area of the substrate can be calculated by a general BET method. Otherwise, the specific surface area of the substrate can be calculated by X-ray diffraction analysis and the Sierra equation, or the primary particle observation power using an electron microscope. Based on the next particle size, calculate the “surface area” in terms of a sphere, and the diffraction analysis of X-rays and electron beams also grasps the crystal phase, and the true density of the crystal phase and the sphere-converted force can be obtained. The specific surface area can be determined by calculating the “weight” from the above.
  • the primary particle size is preferably from 1 nm to 50 nm, more preferably from 2 nm to 30 nm. When the primary particle size of the substrate is within this range, good catalytic activity can be maintained.
  • examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium, and francium. These alkali metals may contain one kind or two or more kinds. Of these, sodium is preferred, with sodium and Z or potassium being preferred.
  • the alkali metal content in the photocatalyst can be quantified using an atomic absorption photometer (AA), an inductively coupled plasma emission analyzer (ICP), a fluorescent X-ray analyzer (XRF), or the like.
  • the alkali metal content in the silicon oxide-coated photocatalyst is preferably 1 ppm or more, more preferably 1 Oppm or more. If it is 1 ppm or more, the effect of improving the photolytic activity is obtained, and if it is 10 ppm or more, the effect of improving the photolytic activity becomes remarkable.
  • the reason why the photodegradation activity is improved by containing a predetermined amount of alkali metal is not necessarily clear, but is thought to be due to an improvement in the adsorption rate of the decomposition target.
  • the upper limit of the alkali metal content is preferably lOOOOppm or less, more preferably 500ppm or less, and even more preferably 200ppm or less. By setting it to lOOOppm or less, elution of the silicon oxide film can be suppressed.
  • the alkali metal content in the silicon oxide film is preferably 1 ppm to 500 ppm, more preferably 1 ppm to 200 ppm.
  • “Substantially free of pores” means a substrate having a photocatalytic activity used as a raw material when a photocatalyst coated with an oxide silicon film is produced, and a substrate having this photocatalytic activity.
  • the pore size distribution was compared in the region of 20 angstroms or more and 500 angstroms or less with the photocatalyst coated with the silicon oxide film prepared for It means that there are substantially no pores.
  • the pore size distribution of a photocatalytic substrate coated with a photocatalytic activity and a photocatalyst coated with a silicon oxide film is ascertained by pore distribution measurement such as a nitrogen adsorption method, and the results are compared with each other. It can be determined whether the membrane is substantially free of pores.
  • the grasping method in the nitrogen adsorption method can determine the presence or absence of pores in the silicon oxide film by the following methods (1) to (4).
  • the following methods (1) to (4) an example in which photocatalyst particles are used as the substrate will be described.
  • the log differential pore volume distribution curve in the region from 20 angstroms to 500 angstroms is obtained.
  • the presence or absence of pores in the silicon oxide film can be substantially determined.
  • the two log differential pore volume distribution curves are compared, and the log differential pore volume force of the photocatalyst coated with a silicon oxide film in the region of 10 angstroms or more and 1000 angstroms or less is larger than the log differential pore volume of the photocatalyst particles. More preferably, no region larger than lmlZg exists.
  • the silicon oxide film has pores, it is difficult to improve the photolytic activity.
  • the presence of pores facilitates light scattering and reflection at the silicon oxide film, reducing the amount of ultraviolet light that reaches the photocatalytic substrate and reducing the amount of light. This is presumably due to a decrease in the amount of holes and electrons generated by catalyst excitation.
  • those with pores have photocatalytic activity as a result of increasing the thickness of the silicon oxide film by the volume of the pores compared to those without pores. Since the physical distance between the substrate and the organic substance to be decomposed becomes large, it is assumed that sufficient photolytic activity cannot be obtained.
  • Silicon supported amount per surface area lm 2 of silicon oxide coated photocatalyst according to the present invention, a silicon content containing silicon oxide coated photocatalyst is calculated value calculated from the surface area of the silicon oxide coated photocatalyst.
  • Sani ⁇ containing silicon supported amount per surface area lm 2 of the coated optical catalyst, the surface area of 1 m 2 per silicon supporting amount 0. LOmg above, 2. is a Omg less, preferably 0. 12 mg or more on, 1. 5 mg or less, more preferably 0.16 mg or more, 1.25 mg or less, further preferably 0.18 mg or more, 1.25 mg or less. If it is less than lOmg, the effect of improving the photocatalytic activity by the silicon oxide film is small.
  • the surface area of the substrate and the silicon oxide-coated photocatalyst is measured using a BET specific surface area measuring device by nitrogen adsorption / desorption after heat treatment at 150 ° C for 15 minutes under a dry gas flow with a dew point of 195.8 ° C or less. be able to.
  • the pH of a mixed solution containing both the substrate and the silicate is determined. Is maintained at 5 or less.
  • the aqueous medium water or a mixed liquid containing water as a main component and containing an organic solvent that is soluble in water among aliphatic alcohols, aliphatic ethers, and the like.
  • the aqueous medium include water and mixed liquids of water and methyl alcohol, water and ethyl alcohol, water and isopropanol, and the like. Of these, water is preferred.
  • these water and mixed liquid can be used individually by 1 type or in combination of 2 or more types.
  • an organic solvent that can be dissolved in water and aliphatic amines
  • Aliphatic polyethers and Surfactants such as gelatin and gelatin can also be mixed.
  • silicate silicic acid and salt of Z or oligomer thereof may be used, and two or more kinds may be mixed and used.
  • Sodium salt and potassium salt are more preferable because they can be easily obtained from an industrial point of view because a preferable dissolution step can be omitted.
  • a coating method comprising a step of mixing at least one set of the above and a step of aging the mixed solution. In the aging step, the coating of the silicon oxide film on the substrate gradually proceeds.
  • the pH of the aqueous medium containing both the substrate and the silicate it is necessary to maintain the pH of the aqueous medium containing both the substrate and the silicate at 5 or less, and it is more preferable to set the pH to 4 or less.
  • the pH is maintained at 5 or less in the absence of the substrate, the condensate of silicic acid compound is difficult to precipitate alone from silicic acid, silicic acid ions and Z or oligomers thereof.
  • the surface of the substrate acts as a condensation catalyst for the silicate compound, and a silicon oxide film is rapidly formed only on the surface of the substrate. That is, the acidic region having a pH of 5 or less is a region in which a solution containing a silicate compound can be stably present and silicon oxide can be formed in a film shape on the surface of the substrate.
  • any acid can be used.
  • Mineral acids such as hydrochloric acid, nitric acid and sulfuric acid are preferably used. Only one acid may be used, or two or more acids may be mixed and used. Of these, hydrochloric acid and nitric acid are preferred.
  • sulfuric acid is used, if a large amount of sulfur remains in the photocatalyst, the adsorption efficiency may deteriorate over time.
  • the sulfur content in the photocatalyst is preferably 0.5% by weight or less, more preferably 0.4% by weight or less, based on the total weight of the photocatalyst.
  • any base can be used.
  • alkali metal hydroxides such as potassium hydroxide and sodium hydroxide are preferably used.
  • the reaction conditions such as the reaction temperature and reaction time when the mixed solution is aged and the silicon oxide film is coated on the substrate are not particularly limited as long as they do not adversely affect the production of the target silicon oxide-coated photocatalyst. It is not limited.
  • the reaction temperature is preferably 10 ° C or higher and 200 ° C or lower, more preferably 20 ° C or higher and 80 ° C or lower.
  • silicic acid compounds that is, silicon oxide fine particles and Z or gel, etc. are likely to be formed, so that the silicon oxide film becomes porous or locally oxidized on the substrate surface. Silicon may be formed.
  • the aging time is preferably 10 minutes or more and 500 hours or less. 1 hour or more, 100 hours More preferably, it is less than or equal to. If it is less than 10 minutes, the coating with the silicon oxide silicon film does not proceed sufficiently, and the effect of improving the photolytic activity by the coating may not be sufficiently obtained. If it is longer than 500 hours, the substrate having the photocatalytic function is sufficiently covered with the silicon oxide film and the photodecomposing function is improved, but the productivity of the silicon oxide-coated photocatalyst may be deteriorated.
  • the concentration of the substrate having photocatalytic activity contained in the mixed solution is preferably 1 wt% or more and 50 wt% or less, more preferably 5 wt% or more and 30 wt% or less. If it is less than 1% by weight, the productivity of the silicon oxide-coated photocatalyst will be deteriorated. If the concentration is higher than 50% by weight, the coating of the silicon oxide film on the substrate will not proceed uniformly, and the effect of improving the photolysis activity will be improved. It may not be obtained sufficiently.
  • the concentration of silicon contained in the mixed solution is preferably 0.05 to 5% by weight, more preferably 0.1 to 3% by weight.
  • the silicon concentration is less than 0.05% by weight, the condensation of the silicate compound is delayed, and the substrate may not be sufficiently covered with the silicon oxide film. If the silicon concentration is higher than 5% by weight, the coating of the silicon oxide film on the substrate may not proceed uniformly.
  • the ratio of the amount of the substrate having photocatalytic activity and the amount of silicate used is 0.0 as silicon atoms per surface area lm 2 of the substrate. It is preferably 1 mgZm 2 or more and 0.50 mgZm 2 or less. If it is manufactured at a ratio within this range, a step of forming a silicon oxide film on the surface of the substrate, that is, an aqueous medium containing the substrate and a silicate, an aqueous medium containing a silicate, the substrate, and the substrate is included.
  • a desired silicon oxide film can be formed on the surface of the substrate, and it is not condensed on the surface of the substrate. Since the amount of silicic acid, silicate ions, and Z or their oligomers remaining in the reaction can be reduced, a silicon oxide film having pores is rarely formed. In the range of 0. 50 mgZm 2 or more and 5. OmgZm 2 or less, as the ratio increases, the amount of unreacted substances increases and a silicon oxide film having pores may be formed. However, condensation of unreacted substances may occur. It is possible to avoid the generation of pores by advancing the processing time.
  • the method for producing the silicon oxide-coated photocatalyst of the present invention includes, for example, (step a) an aqueous medium containing a substrate and a silicate, an aqueous medium containing a silicate, a substrate, and a substrate. Mixing at least one set of an aqueous medium containing silicate and an aqueous medium containing silicate;
  • Step c A step of separating and washing the silicon oxide-coated photocatalyst from the aqueous medium without neutralizing the mixed solution ,
  • Step d consisting of a step of drying and Z or calcining the oxysilicon-coated photocatalyst, and maintaining the pH of the aqueous medium containing both the substrate and the silicate at 5 or less in Step a and Step b
  • a manufacturing method is mentioned.
  • the method for separating the silicon oxide-coated photocatalyst from the liquid mixture is not particularly limited, but known methods such as a natural filtration method, a vacuum filtration method, a pressure filtration method, and a centrifugal separation method can be suitably used.
  • the method for cleaning the silicon oxide-coated photocatalyst is not particularly limited, and for example, redispersion into pure water and repeated filtration, desalting cleaning by ion exchange treatment, and the like can be suitably used.
  • the washing step can be omitted.
  • the method for drying the silicon oxide-coated photocatalyst is not particularly limited. For example, air drying, vacuum drying, heat drying, spraying Drying can be suitably used. Further, depending on the use of the silicon oxide-coated photocatalyst, the drying step can be omitted. [0032]
  • the firing method of the silicon oxide-coated photocatalyst is not particularly limited!
  • firing can be carried out at a temperature of 200 ° C to 1200 ° C, but 400 ° C to 1000 ° C is preferred, and 400 ° C to 800 ° C is more preferred. If the firing temperature is less than 200 ° C., a desired silicon oxide film is not formed on the surface of the substrate, resulting in an unstable structure. Furthermore, since a large amount of water is present in the vicinity of oxysilicon, the gas adsorption performance is not sufficiently exhibited, and at the same time, sufficient photolytic activity cannot be obtained. If the firing temperature is higher than 1200 ° C, the sintering of the silicon oxide-coated photocatalyst proceeds and sufficient photolytic activity cannot be obtained.
  • the water content contained in the silicon oxide-coated photocatalyst is preferably 7% by weight or less. 5% by weight or less is more preferable 4% by weight or less is most preferable. When the water content is more than 7% by weight, a large amount of water is present in the vicinity of silicon dioxide, so that the adsorption performance to gas cannot be fully exhibited, and at the same time, sufficient photolytic activity cannot be obtained.
  • the thus obtained silicon oxide-coated photocatalyst can adsorb both acidic gases such as acetic acid, basic gases such as ammonia, and nonpolar gases such as toluene, and is excellent in photocatalytic performance.
  • the method for producing a silicon oxide-coated photocatalyst according to the present invention has a low pH, a silicate concentration, and a substrate concentration in order to obtain a silicon oxide film having substantially no pores. It is important to appropriately select conditions such as the acidic solution to be used, the firing temperature after film formation, and the firing time.
  • the photocatalyst-containing organic material of the present invention comprises a member made of an organic substance and the silicon oxide-coated photocatalyst contained in the member.
  • the shape of the photocatalyst-containing organic material containing the silicon oxide-coated photocatalyst of the present invention may be any of various shapes such as a plate shape, a film shape, a net shape, a film shape, a fiber shape, and a sheet shape.
  • the form in which the silicon oxide-coated photocatalyst of the present invention is contained in a dispersed state over the entire member, or the form in which it is unevenly distributed in the vicinity of the surface of the member may be a misalignment. Examples of the unevenly distributed form include a form in which a coating layer containing a photocatalyst is held on the surface of an organic material that does not contain any photocatalyst.
  • the photocatalyst-containing organic material The silicon oxide-coated photocatalyst present on the surface mainly exhibits a photocatalytic function.
  • the surface of the photocatalyst-containing organic material means an exposed surface of the photocatalyst-containing organic material, which can come into contact with harmful substances and odor components.
  • the member is not particularly limited as long as it is an organic substance, and examples thereof include the following.
  • Polyolefin resins such as polyethylene, polypropylene, and polybutene, polymethacrylic resins such as polymethyl methacrylate (PMMA), polyacrylic resins such as polymethyl acrylate, polystyrene, polyester ether, polybutyl alcohol Polysalt Bulle copolymer, polybulecetal, polybulupetital, polybuluformal, polymethylpentene, maleic anhydride styrene copolymer, polycarbonate, polyacetal, polyphenylene ether, polyetheretherketone, polybutylene terephthalate, polyethylene terephthalate , Polyester resin such as polyethylene naphthalate, polybutylene terephthalate, unsaturated polyester resin, polyamide, polyimide
  • Natural polymers such as starch, cellulose, chitin, chitosan, protein, dulten, gelatin;
  • biodegradable fats and oils polyhydroxypropylate, polylactic acid, polyglutamic acid, poly strength prolatamine;
  • rubber natural rubber, isoprene rubber, styrene butadiene rubber, butadiene rubber, ethylene-propylene rubber, ethylene-acrylic rubber, butinole rubber, chloroprene rubber, nitrile rubber, acrylic rubber, epichlorohydrin rubber, chlorinated polyethylene rubber, chlorosnorephony ⁇ Polyethylene rubber, urethane rubber;
  • Natural products such as wood, cotton, silk, and plant fibers.
  • the applied member is different, but the photocatalyst-containing organic material having a photocatalytic function is formed by dispersing the silicon oxide-coated photocatalyst in a member made of an organic material, or in some cases unevenly distributed in the vicinity of the member surface.
  • the photocatalyst-containing organic material of the present invention is used as a plate, film, fiber, paper, adhesive, or paint, the following materials are preferably used as raw materials.
  • Plates or films include polyacetal, polyethylene, polypropylene, polyethylene terephthalate, polyetheretherketone, polyetherimide, polyamideimide, poly (vinylidene fluoride), polyetherimide, polyimide, poly (phenylene sulfite), my Strengthened polytetrafluoroethylene, polybenzimidazole, aromatic polyester, phenolic resin, polyacrylic resin, polymethacrylic resin, polyvinyl chloride, nylon, polycarbonate resin, polyvinylidene fluoride, ABS Fats, styrene-grafted polyethylene-polyether ethers, amorphous polyesters and the like are used.
  • cotton, kapok, flax, cannabis, ramie, jute, manila hemp, sisal hemp, palm areca, plant fiber such as seaweed, wool, alpaca, cashmere, moja, silk thread, spider silk, Animal fiber like shell silk, norp, cellulosic (rayon, ki Regenerated fibers such as alginic acid, acetate cellulose, ethyl cellulose, semi-synthetic fibers such as chlorinated rubber, acrylic, acetate, aramid, novoloid, viscose rayon, fluorine-based, polyamide (nylon), Synthetic fibers such as polybulal alcohol, poly (vinyl acetate), poly (vinylidene) polyvinyl chloride, polyacrylonitrile, polyester, polyethylene, polypropylene, polyurethane, polyblue vinylidene and polyfluoroethylene are used.
  • plant fiber such as seaweed, wool, alpaca, cashmere, moja, silk thread, spider silk, Animal
  • Adhesive applications include urea resin, melamine resin, phenol resin, resorcin, a-olefin resin, aqueous polymer isocyanate, butyl acetate emulsion, acrylic resin, chloroprene rubber, nitrile rubber , Natural rubber (polyisoprene), polybutadiene, SBR, epoxy resin, polyurethane, styrene isoprene styrene block copolymer, styrene butadiene styrene block copolymer, styrene-ethylene butadiene styrene block copolymer, polychloroprene Butynolegome, polyisobutylene, acrylonitrile-butadiene copolymer, and recycled rubber are used.
  • alkyd resin alkyd resin, amino alkyd resin, acrylic resin, amino resin, polyurethane resin, epoxy resin, acrylic silicon resin, unsaturated polyester resin, UV curable resin, phenol resin Butyl chloride resin, synthetic resin emulsion, petroleum resin, chlorinated polyolefin resin, coumarone resin, and salty rubber are used.
  • a silicon oxide-coated photocatalyst is contained in a member made of an organic substance
  • various methods can be used.
  • the organic material is used in a mixer such as a mill, for example, at 100 ° C or higher and 300 ° C or lower. Once melted by applying temperature, the powder of silicon oxide-coated photocatalyst is added to and dispersed in the organic material, and after cooling, a photocatalyst-containing organic material having a photocatalytic function is obtained.
  • This pulverized organic material containing photocatalyst is melted again at a temperature of about 100 ° C to about 300 ° C and press-molded, stretched, spun, etc., and contains photocatalyst such as a plate, film or fiber having photocatalytic function.
  • Equipment can be formed.
  • the production method is not particularly limited, but for example, it is produced by the following method. Weighing the resin and the resin containing 1% to 30% by weight of silicon oxide-coated photocatalyst under the conditions of spinning temperature 150 ° C to 300 ° C. After melt blending, it is discharged from the nozzle nozzle ( ⁇ ⁇ . 1 to 0.5mm) and spinning speed is over lOOOOmZmin. Spin at 5000 mZmin or less to obtain semi-drawn yarn. For example, the semi-drawn yarn is drawn and heat-set at a drawing temperature of 85 ° C., a heat setting temperature of 130 ° C. and a magnification of 1.8 times to obtain a drawn yarn. The drawn yarn is knitted and dyed. By such a method, 0.1% or less of photocatalyst TiO is added to the resin fiber.
  • the production method is not particularly limited, but it is produced by the following method, for example.
  • the first paper-making process to make a paper layer the second paper-making process to further combine the paper layer with the paper layer, and the functional paper layer forming process to form the functional paper layer by adding photocatalyst particles to the paper layer Manufactured.
  • a circular net type paper machine is used, and a fixing agent such as a pulp of 5% by weight to 30% by weight and polyacrylamide resin is 0.1% by weight to 5% by weight, and a dispersing agent as necessary.
  • a paper stock containing water (water solvent) is supplied, and a paper layer is made by a circular net.
  • a paper layer (wet paper-like) is laminated on the paper layer by the second circular mesh.
  • the photocatalyst particle dispersion is supplied to the formed wet paper-like paper layer, and the photocatalyst particles are contained in the wet paper. Subsequently, it is dried with a dryer to obtain a paper having a photocatalytic function.
  • the photocatalyst content in the paper is preferably from 0.1% by weight to 30% by weight, particularly preferably from 0.5% by weight to 10% by weight. Less than 1% by weight, photocatalytic effectiveness is poor. Above 30% by weight, the strength is not practical.
  • the basis weight of the paper layer in the case with a photocatalyst-containing paper as the surface layer is not good be suitably set within a range of 20GZm 2 more 80GZm 2 or less.
  • a liquid mixture of an organic material and a photocatalyst is used as an adhesive or a paint and fixed on the surface of a member as a coating film, a paint containing a photocatalyst is once formed, and this is applied to various member surfaces such as a resin.
  • a film having a photocatalytic function is formed by applying the film to a coating film by drying or the like.
  • An organic material is dissolved in a polar solvent such as water, ethanol, or a nonpolar solvent such as toluene, and a photocatalyst is mixed therewith.
  • organic binders such as xanthan gum, methyl cellulose, polyethylene oxide, polyvinyl alcohol, and organic inorganic binders such as silicone resin One can be used as appropriate.
  • a colorant and other fillers may be appropriately contained.
  • Various methods can be applied, such as spray coating, dip coating, spin coating, roll coating, brush coating, depending on the type of binder or solvent, the viscosity of the coating agent, etc.
  • a film having a photocatalytic function can be formed on a photocatalyst-containing organic material by applying it to the surface of the member by a conventionally known method such as electrodeposition coating and then heating to a temperature at which the organic material is dried at room temperature or the organic material is not softened. .
  • the thickness of the film having a photocatalytic function is preferably 50 nm or more and 2 m or less. More preferably, it is 50 nm or more and 1 ⁇ m or less. If the film is thinner than 50 nm, the photocatalytic function is not sufficiently exhibited, and if it is thicker than 2 m, the efficiency of the photocatalyst is low, or cracking or peeling of the film is likely to occur.
  • the content of the silicon oxide-coated photocatalyst is preferably 0.01 to 30% by weight with respect to the whole photocatalyst-containing organic material. 0.1 to 20% by weight % Or less is more preferable 0.3 to 10% by weight is more preferable. When the amount is less than 01% by weight, the photocatalytic function is insufficient. When the amount is more than 30% by weight, the compatibility with other components in the photocatalyst-containing organic material becomes poor, and the photocatalyst-containing organic material cannot be formed well.
  • the silicon oxide-coated photocatalyst of the present invention retains the catalytic activity of oxidative decomposition of a pollutant organic substance, while at the same time suppressing the degradation and degradation of the organic material. It is suitable as a photocatalyst used for imparting a photocatalytic function.
  • the silicon oxide-coated photocatalyst comes into contact with harmful substances such as nitrogen oxides (NOx), organic chlorine compounds, VOC and ammonia, and odor components. It can be oxidatively decomposed to achieve purification, antifouling action, antibacterial action and sterilization action of contaminated air or liquid.
  • NOx nitrogen oxides
  • the silicon oxide-coated photocatalyst present on the surface of the photocatalyst-containing organic material suppresses degradation and degradation of the organic material as compared with the conventional titanium oxide, so that problems such as powder peeling are prevented. The effect lasts for a long time. Further, in the case of organic substances that inherently show degradation and degradation by ultraviolet rays, the silicon oxide-coated photocatalyst contained near the surface is used. When the medium absorbs the ultraviolet rays, the ultraviolet rays reaching the member are reduced, and as a result, if the light resistance and the ultraviolet resistance are improved, a wrinkle effect may be obtained.
  • the photocatalyst-containing organic material of the present invention can be used for the following uses. However, the described use is an applicable example and does not limit the present invention.
  • Antibacterial purposes include car seats, seat covers, carpets, handles, handle covers, shift knobs, dashboards, room lamps, train straps, net racks, linings, instrument panels, door knobs, and inner walls.
  • Floor materials such as floors, ceilings, indoor flooring, tatami mats, blinds, roll screens, furniture, decorative panels, blinds, bathroom components, handrails, table cloths, wallpaper, wall materials, rock wool and other ceiling materials, bran, shoji , Refrigerators, cookers, hand dryers, electronic products such as PCs, mice, keyboards, eyeglass members, artificial foliage plants, medical equipment, fluorescent lamp covers for lighting equipment, sealing materials, plastering materials such as building rubber , Curtains, cloth, clothing, bedding, rugs, upholstery, goodwill, yarn, cloth, ropes, nets and other textile products, outerwear, pants, shirts, Lower clothing, bed sheets, futons, blankets and other bedding, strength, seat covers, handkerchiefs, towels, calligraphy paper, shoji paper, newsprint, uncoated printing paper (
  • the organic material may contain a photocatalyst directly, or adhesives such as phenol resin, bur resin, epoxy resin, paint, ink, coating agent, wallpaper surface finish.
  • the photocatalyst may be mixed with a paint such as an agent, a ceiling building material finish, etc., and then the photocatalyst layer may be coated on each equipment.
  • Photocatalysts were prepared and their properties were evaluated. First, the evaluation method will be explained.
  • Sodium content was measured as alkali metal content.
  • sodium content was quantified using an atomic absorption photometer ( ⁇ -5000, Hitachi, Ltd.).
  • the detection limit is lppm. Therefore, “sodium cannot be detected” means that it does not contain sodium, or indicates that its content is less than lppm!
  • the silicon content was quantified using X-ray fluorescence analysis (LAB CENTER XRE-1700, Shimadzu Corporation).
  • the specific surface area was measured with a BET specific surface area measuring device.
  • the photocatalyst shown below has a structure in which the raw material titanium dioxide is coated by silicon oxide film formation, except for the photocatalyst 27. That is, a silicon oxide precursor film is formed on the surface of the raw material titanium dioxide and then fired to form a silicon oxide fired film.
  • the liquid A was kept at 35 ° C. and stirred, and the liquid B was added dropwise at 2 mlZ to obtain a liquid mixture C.
  • the pH of the mixture C was 2.3.
  • Stirring was continued for 3 days while maintaining the mixture C at 35 ° C.
  • the mixture C was filtered under reduced pressure, and the obtained filtrate was washed by repeating redispersion in 500 mL of water and vacuum filtration four times, and then allowed to stand at room temperature for 2 days.
  • the obtained solid was pulverized in a mortar and then subjected to a baking treatment at 600 ° C. for 3 hours to obtain a photocatalyst 1.
  • Photocatalyst 2 was obtained in the same manner as in photocatalyst 1, except that the amount of titanium dioxide was 82. lg and the pH of mixture C was 4.0. This photocatalyst 2 had a sodium content of 56 ppm, a silicon content of 2.4% by weight, and a specific surface area of 133.8 m 2 Zg. Therefore, silicon supported amount per surface area of 1 m 2 of photocatalytic 2 was 0. 18 mg.
  • Photocatalyst 3 was obtained in the same manner as photocatalyst 1, except that the amount of titanium dioxide was 38.9 g and the pH of mixture C was 2.8. This photocatalyst 3 had a sodium content of 85 ppm, a silicon content of 4.6% by weight and a specific surface area of 194.9 m 2 Zg. Therefore, the amount of silicon supported per 1 m 2 of the surface area of the photocatalyst 3 was 0.24 mg.
  • Photocatalyst 4 was obtained in the same manner as in photocatalyst 1, except that the amount of titanium dioxide was 12.2 g and the pH of mixture C was 2.5. This photocatalyst 4 had a sodium content of 160 ppm, a silicon content of 9.6% by weight, and a specific surface area of 244.2 m 2 Zg. Therefore, the amount of silicon supported per surface area lm 2 of photocatalyst 4 was 0.39 mg.
  • Photocatalyst 6 was obtained in the same manner as photocatalyst 1, except that the pH was 3.8 and that mixture C was aged by stirring for 16 hours. This photocatalyst 6 had a sodium content of 12 ppm, a silicon content of 2.2 wt%, a sulfur content of 0.19 wt%, and a specific surface area of 127.8 m 2 Zg. Therefore, the amount of silicon supported per surface area lm 2 of photocatalyst 6 was 0.18 mg.
  • the photocatalyst 7 was obtained in the same manner as the photocatalyst 6 production method, except that the value became 2.4.
  • This photocatalyst 7 had a sodium content of 17 ppm, a silicon content of 5.5% by weight, a sulfur content of 0.07% by weight, and a specific surface area of 207.2 m 2 Zg. Therefore, the amount of silicon supported per surface area lm 2 of photocatalyst 7 was 0.27 mg.
  • TKP-101 (Tika Co., anatase type, adsorbed water content 11%, specific surface area 300m 2 Zg by BET specific surface area measuring device) 25.Og was used as titanium dioxide dioxide, pH of liquid mixture C
  • the photocatalyst 8 was obtained in the same manner as the photocatalyst 6 production method, except that the ratio was 2.1.
  • This photocatalyst 8 had a sodium content of 50 ppm, a silicon content of 6.7 wt%, a sulfur content of 0.38 wt% and a specific surface area of 194.2 m 2 Zg. Therefore, the amount of silicon supported per surface area lm 2 of photocatalyst 8 was 0.34 mg.
  • Photocatalyst 9 was obtained in the same manner as in photocatalyst 1, except that mixture C was aged by stirring for 16 hours.
  • This photocatalyst 9 had a sodium content of 180 ppm, a silicon content of 5.7 wt%, and a specific surface area of 246.2 m 2 Zg. Therefore, the amount of silicon supported per surface area lm 2 of the photocatalyst 9 was 0.23 mg.
  • the photocatalyst 10 was obtained in the same manner as in the production method of the medium 8.
  • This photocatalyst 10 had a sodium content of 120 ppm, a silicon content of 5.7 wt%, and a specific surface area of 231.4 m 2 Zg. Therefore, the amount of silicon supported per surface area lm 2 of photocatalyst 10 was 0.25 mg.
  • Photocatalyst 11 was obtained in the same manner as in the production of photocatalyst 8, except that it was washed by redispersion in 500 mL of water and filtration under reduced pressure once.
  • This photocatalyst 11 had a sodium content of 210 ppm, a silicon content of 5.7 wt%, and a specific surface area of 231.4 m 2 Zg. Therefore, the amount of silicon supported per surface area lm 2 of photocatalyst 11 was 0.24 mg.
  • Photocatalyst 12 was obtained in the same manner as in the production method of Photocatalyst 1, except that the baking treatment was performed at 400 ° C. for 3 hours.
  • This photocatalyst 12 had a sodium content of 93 ppm, a silicon content of 6.9% by weight, and a specific surface area of 255.5 m 2 Zg. Therefore, the amount of silicon supported per surface area lm 2 of photocatalyst 12 was 0.27 mg.
  • Photocatalyst 13 was obtained in the same manner as Photocatalyst 1 except that the baking treatment was performed at 800 ° C. for 3 hours.
  • This photocatalyst 13 had a sodium content of 98 ppm, a silicon content of 6.9% by weight, and a specific surface area of 15.7 m 2 Zg. Therefore, the amount of silicon supported per surface area lm 2 of photocatalyst 13 was 0.46 mg &).
  • Photocatalyst 14 was obtained in the same manner as Photocatalyst 1 except that the calcination treatment was performed at 900 ° C. for 3 hours.
  • This photocatalyst 14 had a sodium content of 96 ppm, a silicon content of 6.9% by weight, and a specific surface area of 108.2 m 2 Zg. Therefore, the amount of silicon supported per surface area lm 2 of the photocatalyst 14 was 0.64 mg &).
  • Photocatalyst 15 was obtained in the same manner as in the production method of Photocatalyst 1, except that the baking treatment was performed at 1000 ° C. for 3 hours.
  • This photocatalyst 15 had a sodium content of 92 ppm, a silicon content of 6.9% by weight, and a specific surface area of 55.3 m 2 Zg. Therefore, the amount of silicon supported per surface area lm 2 of photocatalyst 15 was 1.25 mg.
  • Photocatalyst 16 was obtained in the same manner as photocatalyst 9 except that the same amount of 1N nitric acid aqueous solution was used instead of 1N hydrochloric acid aqueous solution and that the pH of mixture C was 3.2. It was.
  • This photocatalyst 16 had a sodium content of 480 ppm, a silicon content of 6.7% by weight, and a specific surface area of 207.4 m 2 Zg. Therefore, the amount of silicon supported per surface area lm 2 of photocatalyst 16 is 0.32 mg.
  • 11.7 nitric acid aqueous solution 81.7g was used instead of 16.9 hydrochloric acid aqueous solution 66.9g, sodium silicate aqueous solution of different composition (SiO content 29.1 wt%, Na 2 O content 9.5 wt%
  • Photocatalyst 17 was obtained in the same manner as the photocatalyst 9 except that 3g was used. This photocatalyst 17 has a sodium content of 150 ppm and a silicon content of
  • Photocatalyst 18 was obtained in the same manner as in photocatalyst 2, except that the calcination temperature was changed to 200 ° C instead of 600 ° C.
  • This photocatalyst 18 has a sodium content of 56 ppm and a silicon content of 2.
  • Photocatalyst 19 was obtained in the same manner as the photocatalyst 17 production method, except that 8g was used.
  • the sodium and potassium contents of this photocatalyst 19 were quantified with an atomic absorption photometer (Z-5000, Hitachi, Ltd.), the sodium content was 74 ppm and the potassium content was 90 ppm.
  • the silicon content of this photocatalyst 19 was quantified by fluorescent X-ray analysis (LAB CENTER X RE-1700, Shimadzu Corporation). The silicon content was 4.9% by weight, and the specific surface area was compared with the BET method.
  • Photocatalyst 19 Figure 4 shows the measurement results of the pore distribution.
  • This photocatalyst 20 has a sodium content of 1400 ppm and a specific surface area of 214.3 m 2
  • the photocatalyst 5 contained sodium in the fired silicon oxide film
  • the photocatalyst 19 contained potassium in the fired silicon oxide film.
  • Photocatalysts 22 to 26 were prepared in order to confirm the difference in performance depending on the presence or absence of pores derived from the silicon oxide film in the sodium content or in the region of 20 to 500 angstroms.
  • This photocatalyst 24 had a sodium content of 1400000 ppm, a silicon content of 3.4% by weight, and a specific surface area of 126.lm 2 Zg. Therefore, the amount of silicon supported per surface area lm 2 of the photocatalyst 24 was 0.27 mg.
  • Fig. 7 shows the measurement results of the pore distribution of photocatalyst 24.
  • the obtained solid was pulverized in a mortar and then subjected to a baking treatment at 600 ° C. for 3 hours to obtain a photocatalyst 25.
  • This photocatalyst 25 has a sodium content. 2500 ppm, the silicon content 13.0 wt 0/0, specific surface area 68. 4m g "C there were. Therefore, the amount of silicon supported per surface area lm 2 of photocatalyst 25 was 1.90 mg.
  • the obtained solid was pulverized in a mortar and then subjected to a baking treatment at 600 ° C. for 3 hours to obtain a photocatalyst 26.
  • This photocatalyst 26 had a sodium content of 5900 ppm, a silicon content of 12.0% by weight, and a specific surface area of 258.3 m 2 / g. Therefore, the amount of silicon supported per surface area lm 2 of photocatalyst 26 was 0.47 mg.
  • the result of measuring the pore distribution of the photocatalyst 26 is shown in FIG.
  • Example 1 of Patent Document 5 a titanyl sulfate aqueous solution was thermally hydrolyzed to prepare a metatitanic acid slurry having a crystal particle diameter of 6 nm.
  • This metatitanic acid slurry (IOOgZD lOOml in terms of TiO was heated to 40 ° C, Si
  • photocatalyst 27 was obtained by the following photocatalyst 27.
  • This photocatalyst 27 had a sodium content of 210 ppm, a silicon content of 5.1% by weight, and a specific surface area of 140.Om 2Zg. Therefore, the amount of silicon supported per surface area lm 2 of photocatalyst 27 was 0.36 mg.
  • the properties of the obtained photocatalyst 27 are summarized in Table 1.
  • Photocatalysts 1-27 were suspended in a methylene blue aqueous solution. Thereafter, light irradiation was performed, and the photodegradation activity was tested by quantifying the concentration of methylene blue in the liquid by spectroscopic analysis.
  • the detailed test operation method is as follows.
  • Standard suspension cell made of quartz with 3.5 cc of suspension after pre-adsorption treatment and pre-filled with a fluororesin stirrer (Tosohichi Quartz Co., Ltd., outer dimensions 12.5 X 12.5 X 45 mm
  • the optical path width was 10 mm
  • the optical path length was 10 mm
  • the volume was 4.5 cc
  • the mixture was stirred with a magnetic stirrer.
  • light was irradiated for 5 minutes from the lateral Z direction of the spectroscopic cell. Light irradiation was performed through a quartz filter container filled with pure water using the light source device SX-UI 151XQ (Ushio Corporation, 150 W xenon short arc lamp) as a light source.
  • the amount of irradiation light was 5.
  • UVD-365PD Ushio Corporation, test wavelength 365 nm.
  • a membrane filter (Toyo Roshi Kaisha, Ltd., DISMIC-13HP) was attached to an all plastic lOcc syringe. The sample suspension before and after the light irradiation was put into this, respectively, and extruded with a piston to remove the photocatalyst. At that time, the first half of the filtrate was discarded, and the latter half of the filtrate was collected in a semi-micro type disposable cell for visible light analysis (made of polystyrene, optical path width 4 mm, optical path length 10 mm, volume 1.5 cc). Then, using an ultraviolet-visible spectrophotometer (UV-2500, Shimadzu Corporation), the absorbance at a wavelength of 680 nanometers was measured, The blue concentration was calculated.
  • UV-2500 ultraviolet-visible spectrophotometer
  • the photolytic activity was evaluated based on the methylene blue concentration after light irradiation with respect to the methylene blue concentration before light irradiation.
  • Table 1 shows the methylene blue removal rate as a photolytic activity. Also
  • the methylene blue adsorption rate was calculated from the methylene blue concentration before light irradiation, and is shown in Table 1.
  • the presence or absence of pores derived from the silicon oxide silicon film of the photocatalysts 1 to 27 was determined. Specifically, the log differential pore volume distribution curves of the photocatalyst used as a raw material and the photocatalyst coated with an oxide silicon film prepared using this photocatalyst as a base (base catalyst) were compared. The presence or absence of pores derived from an oxy-silica film was determined.
  • Table 1 shows the presence or absence of pores derived from the silicon oxide film in the region of 20 to 500 angstroms of photocatalysts 1 to 27.
  • Photocatalyst 2 7 8.9 For some of the photocatalysts obtained above, a resin molded body was prepared and evaluated.
  • Photocatalyst 17 was heated and press-molded using PMMA resin in the same manner as in Example 1 to obtain a plate-shaped molded body (molded body 4).
  • Example 5 A plate-like molded product was obtained by hot press molding in the same manner as in Example 1 except that polypropylene (PP) resin was used instead of PMMA resin (molded product 5).
  • PP polypropylene
  • a plate-like molded body was obtained by hot press molding in the same manner as in Example 1 using only PMMA resin (molded body 6).
  • the photocatalyst 20 was heated and press-molded in the same manner as in Example 1 using PMMA resin to obtain a plate-shaped molded body (molded body 7).
  • the photocatalyst 21 was heated and press-molded in the same manner as in Example 1 using PMMA resin to obtain a plate-shaped molded body (molded body 8).
  • the photocatalyst 24 was heated and press-molded using PMMA resin in the same manner as in Example 1 to obtain a plate-shaped molded body (molded body 9).
  • a plate-like molded product was obtained by hot press molding in the same manner as in Comparative Example 1 except that PP resin was used instead of PMMA resin (molded product 10).
  • a plate-like molded body was obtained by hot press molding in the same manner as in Comparative Example 2 except that PP resin was used instead of PMMA resin (molded body 11).
  • the compacts 1 to 9 were placed in an aqueous methylene blue solution and irradiated with light, and the photodegradation activity was tested by quantifying the concentration of methylene blue in the solution by spectroscopic analysis.
  • the detailed test operation method is as follows.
  • UV-visible spectrophotometer UV-2500, Shimadzu Corporation
  • UV-2500 UV-visible spectrophotometer
  • the absorbance at a wavelength of 680 nanometers was measured and the methylene blue concentration was calculated for the sample before and after light irradiation.
  • the photolytic activity is shown in Table 3 as the methylene blue removal rate from the methylene blue concentration after light irradiation, based on the methylene blue concentration before light irradiation.
  • weight loss rate is obtained by the following formula:
  • the weight reduction rate was small for the photocatalysts 3, 4, 6 to 16, 18, and 19 as well as the powers obtained by producing molded articles for the photocatalysts 1, 2, 5, and 17. Was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

 光触媒機能を保持しながら、光触媒と接触する有機材の分解、劣化を抑制した光触媒含有有機材を提供することにある。  有機物からなる部材と、該部材に含有された光触媒からなる有機材であって、前記光触媒は、触媒活性を有する基体と、該基体を被覆する、実質的に細孔を有さない酸化珪素膜と、を備え、前記光触媒のアルカリ金属含有量が1ppm以上1000ppm以下であることを特徴とする光触媒含有有機材。

Description

明 細 書
光触媒含有有機材
技術分野
[0001] 本発明は、有機物からなる部材に光触媒を含有させた光触媒含有有機材に関する ものである。
背景技術
[0002] チタ-ァ、酸化亜鉛などの金属酸化物半導体は、そのバンド幅に相当するェネル ギーを有する光を吸収する性質を示す。近年になって、光照射によって励起して発 生する正孔と電子による高い反応性が着目され、前記金属酸化物半導体を「光触媒 」として、水質浄化、防汚、抗菌、脱臭、大気浄ィ匕などの環境浄ィ匕へ応用することが 試みられている。ここで、水質浄化、大気浄化、あるいは脱臭という機能は、汚染物 質や臭気物質を光触媒の酸化還元作用で分解する効果であり、具体的には voc、 環境ホルモン類、窒素酸化物、アンモニア、アミン類、アルデヒド類、低級脂肪酸、硫 化水素、メルカブタン類、などの分解に応用が進められている。防汚という機能は、 油等の有機物を二酸ィ匕炭素と水にまで分解して汚れを消す効果を利用したものであ る。抗菌という機能は、光触媒の分解作用で細菌等を死滅あるいは休眠させることで 、繁殖を抑制する効果である。
[0003] また、分解作用のみならず、光照射によって水に対する親和性が著しく向上するこ とも知られており、セルフクリーニング材料や防曇材料としての応用が提案されている
[0004] このように光触媒は、光を吸収することで種々の優れた機能を示すので、各種部材 に光触媒を含有させた複合材の応用展開が進められている。
[0005] しかし単に光触媒を部材に複合化すると、部材が、榭脂、繊維、木材、紙等の有機 物よりなる場合には、部材自体を光触媒が分解してしまい、ひび割れ、き裂が生じて 光触媒が部材力 剥離したり、部材自体の劣化脆化を招 、てしまう。
[0006] こうした問題に対して、既に改良方法が提案されている。例えば、多孔質無機物で コーティングした酸ィ匕チタン光触媒を、臭気物質 ·酸素ガス及び光透過性榭脂に配 合してなる消臭シート (特許文献 1を参照)、多孔質マイクロカプセル状光触媒体を含 有した榭脂組成物 (特許文献 2を参照)、が挙げられる。しかしこれらは酸化チタンの ような光触媒粒子を多孔質無機物で厚く被覆しており光触媒の本来の性能を大きく 低下させてしまう。
またプラスチックフィルムの表面に、光触媒として不活性なセラミックスで光触媒の 表面を部分的に被覆した光触媒粒子が担持された光触媒機能を有するフィルム素 材 (特許文献 3を参照)も提案されているが、セラミックスを光触媒の表面に部分的に 被覆しており部材への影響を十分抑制できるとは 、難 、。
オルガノハイドロジエンポリシロキサンを、気相で光触媒に供給してシリカ系被膜を 形成することや、被覆しても光照射条件での殺菌活性が、もとの光触媒の活性よりも 高まることが開示されている (特許文献 4を参照)。
アンモニアガス、アミン系ガスなどの塩基性ガスを選択的に除去する酸ィ匕チタン光 触媒が記載されている (特許文献 5を参照)。同文献記載の光触媒は、光触媒活性を 有する酸ィ匕チタン粒子よりなるコアと、該コアを取り巻くシリカ水和物の被覆層を有し ている。この被覆層は、塩基性ガスを選択的に吸着し、これを酸ィ匕チタンコアの活性 サイトへ効率的に供給することによって光触媒全体の塩基性ガス除去能力を高める ように機能するとされている。
し力しながら、特許文献 4、 5に記載されている光触媒では、有機物質に対する光 分解性能も十分でなぐ特許文献 5に記載されている光触媒では塩基性ガス以外の 有害なガスに対する吸着能力が不十分であった。これは、特許文献 5に記載の方法 で得られた光触媒の構造またはシリカ水和物の被膜層の機械的強度や耐久性が不 十分であること〖こよるちのと考免られる。
特許文献 1:特開平 09 - 182782号公報
特許文献 2:特開平 09— 225321号公報
特許文献 3:特許 3484470号公報
特許文献 4:特開昭 62— 260717号公報
特許文献 5 :特開 2002— 159865号公報
発明の開示 [0008] 本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、防 汚、脱臭、抗菌等の要求を満足できる光触媒機能を保持しながら、光触媒と接触す る有機材の分解、劣化を抑制した、有機材に光触媒を含有させた光触媒含有有機 材を提供することにある。
[0009] 本発明者らは、多孔質シリカ被覆光触媒は有機材を劣化させにくいが、光触媒活 性が不十分である点に着目し、その低活性の原因が、多孔質膜によって光が散乱さ れてしまい、核となっている金属化合物半導体にまで光が届きにくくなつていること、 によるものと推測し、細孔を有さないシリカ膜で被覆すれば、前記課題を解決可能と 考えた。そして、鋭意努力の末、有機物からなる部材と、該部材に光触媒を含有し、 前記光触媒が、光触媒活性を有する基体と、該基体を被覆する、実質的に細孔を有 さない酸化珪素膜と、を備え、前記光触媒のアルカリ金属含有量が lppm以上 1000 ppm以下であることを特徴とする光触媒含有有機材が、光触媒活性に優れ、且つ有 機材を劣化しにくいことを見出し、発明を完成させるに至った。
すなわち、本発明は、
有機物からなる部材と、該部材に含有された光触媒からなる光触媒含有有機材であ つて、
前記光触媒は、
光触媒活性を有する基体と、
該基体を被覆する、実質的に細孔を有さない酸化珪素膜と、を備え、 前記光触媒のアルカリ金属含有量が lppm以上 lOOOppm以下であることを特徴と する光触媒含有有機材、に関するものである。
[0010] 本発明によれば、必要な光触媒活性を保持しつつ、有機材の分解、劣化が抑制で きる。
図面の簡単な説明
[0011] 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実 施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
[図 1]光触媒 1の log微分細孔容積分布曲線 (実線)と、この光触媒の基体に該当する 酸化珪素膜を有しな 、光触媒 (光触媒 20)の log微分細孔容積分布曲線 (点線)とを 示す図である。
[図 2]光触媒 5の log微分細孔容積分布曲線 (実線)と、この光触媒の基体に該当する 酸化珪素膜を有しな 、光触媒 (光触媒 21)の log微分細孔容積分布曲線 (点線)とを 示す図である。
[図 3]光触媒 15の log微分細孔容積分布曲線 (実線)と、この光触媒の基体に該当す る酸化珪素膜を有しな 、光触媒 (光触媒 20)の log微分細孔容積分布曲線 (点線)と を示す図である。
[図 4]光触媒 19の log微分細孔容積分布曲線 (実線)と、この光触媒の基体に該当す る酸化珪素膜を有しな 、光触媒 (光触媒 20)の log微分細孔容積分布曲線 (点線)と を示す図である。
[図 5]光触媒 22の log微分細孔容積分布曲線 (実線)と、この光触媒の基体に該当す る酸化珪素膜を有しな 、光触媒 (光触媒 20)の log微分細孔容積分布曲線 (点線)と を示す図である。
[図 6]光触媒 23の log微分細孔容積分布曲線 (実線)と、この光触媒の基体に該当す る酸化珪素膜を有しな 、光触媒 (光触媒 21)の log微分細孔容積分布曲線 (点線)と を示す図である。
[図 7]光触媒 24の log微分細孔容積分布曲線 (実線)と、この光触媒の基体に該当す る酸化珪素膜を有しな 、光触媒 (光触媒 20)の log微分細孔容積分布曲線 (点線)と を示す図である。
[図 8]光触媒 26の log微分細孔容積分布曲線 (実線)と、この光触媒の基体に該当す る酸化珪素膜を有しな 、光触媒 (光触媒 20)の log微分細孔容積分布曲線 (点線)と を示す図である。
発明を実施するための最良の形態
本発明の光触媒含有有機材は、有機物からなる部材と、該部材に含有された光 触媒からなるものである。この光触媒は、光触媒活性を有する基体と、該基体を被覆 する、実質的に細孔を有さない酸ィ匕珪素膜と、を備え、且つアルカリ金属含有量が、 lppm以上 lOOOppm以下である光触媒 (以下、適宜「酸化珪素被覆光触媒」と略記 する)であり、本発明の特徴をなしている。 [0013] 前記酸化珪素被覆光触媒とは、光触媒機能を有する基体の表面を酸化珪素から なる膜で被覆したものを意味する。したがって、酸化珪素の存在下で後から光触媒を 形成して製造される、酸化珪素に光触媒を固定化したものや、酸化珪素と光触媒を 同一容器中で並行して形成させた複合体は、含まれない。
酸化珪素膜が基体を被覆する態様は特に制限されず、基体の一部を被覆する態 様、全部を被覆する態様のいずれかを含むが、有機材が劣化しにくい点カゝらは、基 体の表面が酸ィ匕珪素からなる膜で一様に被覆されていることが好ましい。ここで、酸 化珪素膜とは、未焼成の膜および焼成後の膜の両方を含む。本発明においては焼 成後の酸化珪素の焼成膜が好まし 、。
光触媒活性を有する基体 (以下、適宜「基体」と略記する。)としては、金属化合物 光半導体を用いることができる。金属化合物光半導体としては、例えば、酸化チタン 、酸化亜鉛、酸ィ匕タングステンおよびチタン酸ストロンチウムなどがあり、このうち、光 触媒活性に優れており、無害かつ安定性にも優れる酸ィ匕チタンが好ましい。酸ィ匕チ タンとしては、例えば、非晶質、アナターゼ型、ルチル型、ブルッカイト型等が挙げら れる。このうち、光触媒活性に優れているアナターゼ型あるいはルチル型、または、こ れらの混合物がより好ましぐこれらに非晶質が少量含まれていても力まわない。 基体として、金属化合物光半導体に 1種以上の遷移金属を添加したもの、金属化 合物光半導体に 14族、 15族、および Zまたは 16族の典型元素を 1種以上添加した もの、 2種以上の金属化合物力 なる光半導体、 2種以上の金属化合物光半導体の 混合物も使用できる。
[0014] さらに、基体としては、金属化合物光半導体の粒子を用いることが好ましいが、また 、基体の比表面積は、 30m2/g以上が好ましぐより好ましくは 120m2/g以上 400 m2Zg以下であり、最も好ましくは 120m2Zg以上 300m2Zg以下の金属化合物光 半導体を含有するものが好ましい。基体の比表面積が上記範囲内にある場合、良好 な触媒活性が維持され得る。
なお、基体が粒子として明確に認識できる場合、基体の比表面積は、一般的な BE T法により算出することができる。そうでない場合、基体の比表面積は、 X線回折分析 とシエラー式による算出、あるいは電子顕微鏡を用いた一次粒子の観察力 求まる一 次粒子径を元にして、球形換算で「表面積」を算出し、かつ、 X線や電子線の回折分 析カも結晶相を把握してその結晶相の真密度と前記球形換算力も求まる体積とから 「重量」を算出することによって、比表面積を求めることが可能である。
基体が粒子である場合、その一次粒子径は lnm以上 50nm以下が好ましぐ 2nm 以上 30nm以下がより好ましい。基体の一次粒子径がこの範囲内にある場合、良好 な触媒活性が維持され得る。
[0015] 本発明において、アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、 セシウム、フランシウムが挙げられる。これらのアルカリ金属は 1種を含んでいてもよく 、これらを 2種以上含んでいても良い。このうち、ナトリウムおよび Zまたはカリウムが 好ましぐナトリウムがより好ましい。
[0016] 光触媒中のアルカリ金属含有量は、原子吸光光度計 (AA)、誘導結合プラズマ発 光分析装置 (ICP)、蛍光 X線分析装置 (XRF)等を用いて定量可能である。酸化珪 素被覆光触媒中のアルカリ金属含有量は lppm以上が好ましぐ lOppm以上がより 好ましい。 lppm以上であれば、光分解活性の向上効果が得られ、 lOppm以上であ れば、この光分解活性の向上効果が顕著となる。アルカリ金属を所定量含有すること により光分解活性が向上する理由については必ずしも明らかではないが、分解目的 物の吸着率が向上することによるものと考えられる。一方、アルカリ金属含有量の上 限については、 lOOOppm以下が好ましぐ 500ppm以下がより好ましぐ 200ppm以 下がさらに好ましい。 lOOOppm以下とすることにより、酸化珪素膜の溶出を抑制でき る。また、 500ppm以下とすることで、 800°Cをこえる温度領域における焼成処理で の光触媒の焼結の発生を抑制でき、 200ppm以下とすることで光触媒の焼結をさら に進行しにくくできる。
また、酸ィ匕珪素膜に含まれるアルカリ金属含有量は lppm以上 500ppm以下が好 ましく、 lppm以上 200ppm以下力より好まし!/ヽ。
[0017] 「実質的に細孔を有さない」とは、酸ィ匕珪素膜で被覆された光触媒を製造した際に 原料として使用する光触媒活性を有する基体と、この光触媒活性を有する基体を用 いて調製した酸ィ匕珪素膜で被覆された光触媒とについて、 20オングストローム以上 5 00オングストローム以下の領域で細孔径分布を比較した場合に、酸ィ匕珪素膜に細 孔が実質的に存在しないことを意味する。
具体的には、光触媒活性を有する基体、並びに、酸化珪素膜で被覆された光触媒 の細孔径分布を、窒素吸着法等の細孔分布測定によって把握し、これらを比較する ことによって酸ィ匕珪素膜に細孔が実質的に存在しないか否かを判定できる。
[0018] 窒素吸着法での把握方法をより具体的に述べると、以下の(1)〜 (4)の手法によつ て酸ィ匕珪素膜の細孔の有無を判定することができる。ここでは、基体として、光触媒 粒子を用いる例を挙げて説明する。
(1)光触媒粒子を、 200°Cで乾燥した後、脱着過程での N吸着等温線を測定する。
2
(2)酸化珪素膜で被覆された光触媒の脱着過程での N吸着等温線を測定する。
2
(3) BJH (Barrett—Joyner—Halenda)法で、前記二つの N吸着等温線を解析し
2
て、 20オングストローム以上 500オングストローム以下の領域の log微分細孔容積分 布曲線を求める。
(4)二つの log微分細孔容積分布曲線を比較し、酸化珪素膜で被覆された光触媒の log微分細孔容積が、光触媒粒子の log微分細孔容積よりも 0. lmlZg以上大きい 領域が存在しない場合には、酸ィ匕珪素膜に細孔が実質的にないと判定し、 0. lml Zg以上大きい領域が存在する場合には、酸化珪素膜に細孔が有ると判定する。な お、 0. lmlZg以上とするのは、窒素吸着法による細孔分布測定では、 log微分細孔 容積値で約 0. lmlZg幅の測定誤差が生じることが多 、ためである。
20オングストローム以上 500オングストローム以下の範囲で 2つの log微分細孔容 積分布曲線を比較すれば、酸化珪素膜の細孔の有無を実質的に判定することがで きる。
なお、二つの log微分細孔容積分布曲線を比較し、 10オングストローム以上 1000 オングストローム以下の領域で酸化珪素膜で被覆された光触媒の log微分細孔容積 力 光触媒粒子の log微分細孔容積よりも 0. lmlZg以上大きい領域が存在しないこ とがより好ましい。
[0019] ここで、酸化珪素膜に細孔が存在する場合、光分解活性が向上し難い。この理由 は必ずしも明らかではないが、細孔の存在によって酸ィ匕珪素膜での光の散乱や反射 が起こりやすくなり、光触媒活性を有する基体に到達する紫外線の光量が減少し、光 触媒励起による正孔と電子の生成量が減少することによるものと推察される。また、同 じ酸ィ匕珪素量で被覆した場合、細孔有りのものは、細孔無しのものに比べ、細孔の 容積の分だけ酸化珪素膜の厚さが増す結果、光触媒活性を有する基体と分解対象 物である有機物との物理的距離が大きくなるため、充分な光分解活性が得られない ものと推察される。
[0020] 本発明に係る酸化珪素被覆光触媒の表面積 lm2当りの珪素担持量は、酸化珪素 被覆光触媒が含有する珪素量と、酸化珪素被覆光触媒の表面積から算出される計 算値である。酸ィ匕珪素被覆光触媒の表面積 lm2当りの珪素担持量は、その表面積 1 m2当りの珪素担持量が 0. lOmg以上、 2. Omg以下であり、好ましくは 0. 12mg以 上、 1. 5mg以下、より好ましくは 0. 16mg以上、 1. 25mg以下、さらに好ましくは 0. 18mg以上、 1. 25mg以下である。 0. lOmg未満では、酸化珪素膜による光触媒活 性向上効果が小さい。一方、 2. Omgを超えると、酸化珪素被覆光触媒に占める基体 の割合が低下しすぎるので、光触媒機能がほとんど向上しない。珪素担持量を上記 範囲とすることで、酸ィ匕珪素膜による光触媒活性向上効果が顕著になる。
基体および酸化珪素被覆光触媒の表面積は、露点 195. 8°C以下の乾燥ガス気 流下、 150°Cで 15分加熱処理した後に、窒素吸脱着による BET法比表面積測定装 置を用いて測定することができる。
[0021] 本発明の酸化珪素被覆光触媒の製造方法は、水系媒体中に存在させた基体に珪 酸塩を用いて酸化珪素膜を被覆する際、基体と珪酸塩の両方を含む混合液の pHを 5以下に維持することを特徴とする。
[0022] 上記製造方法にお!、て、水系媒体としては、水、あるいは水を主成分とし、脂肪族 アルコール類、脂肪族エーテル類等のうち、水に溶解可能な有機溶媒を含む混合 液が挙げられる。水系媒体を具体的に例示するとすれば、水、並びに、水とメチルァ ルコール、水とエチルアルコール、水とイソプロパノール等の混合液が挙げられる。こ れらの中では水が好ましい。また、これらの水および混合液は、 1種単独で、または 2 種以上組み合わせて用いることができる。更に、水系媒体には、光触媒の分散性あ るいは溶解性を向上させるために、脂肪族アルコール類、脂肪族エーテル類等のう ち、水に溶解可能な有機溶媒、並びに脂肪族ァミン類、脂肪族ポリエーテル類およ びゼラチン類等の界面活性剤を混ぜることもできる。
珪酸塩としては、珪酸および Zまたはそのオリゴマーの塩を用い、 2種以上を混合 して用いても良い。ナトリウム塩およびカリウム塩は、工業的に入手容易である点から 好ましぐ溶解工程を省略できるので珪酸ナトリウム水溶液 (JIS K1408"水ガラス〃) 力 Sさらに好ましい。
水系媒体中に存在させた基体に珪酸塩を用いて酸化珪素膜を被覆する際には、 水系媒体、基体、および珪酸塩を混合し、続けてこの混合液を熟成する。
具体的に示すと、
(0基体を含む水系媒体と珪酸塩、
(ii)珪酸塩を含む水系媒体と基体、および
(iii)基体を含む水系媒体と珪酸塩を含む水系媒体、
の少なくとも ヽずれか一組を混合する工程、並びにこの混合液を熟成する工程から なる被覆方法である。熟成する工程では、基体に対する酸化珪素膜の被覆が徐々に 進むこととなる。
この際、基体および珪酸塩の両方を含む水系媒体の pHを 5以下に維持することが 必要であり、 pH4以下の酸性領域とすることがより好ましい。基体の非存在下で pH5 以下を維持した場合、珪酸、珪酸イオンおよび Zまたはこれらのオリゴマーから、珪 酸ィ匕合物の縮合物が単独では析出しにくい。一方、基体の存在下で pH5以下を維 持した場合、基体の表面が珪酸化合物の縮合触媒として作用し、酸化珪素膜が基 体の表面にのみ速やかに生成される。すなわち、 pHが 5以下の酸性領域は、珪酸ィ匕 合物を含む溶液を安定に存在させることができ、かつ、基体の表面に酸化珪素を膜 状に形成可能な領域である。
pHl l以上の塩基性領域においても、 pH5以下の酸性領域と同様に珪酸、珪酸ィ オンおよび Zまたはこれらのオリゴマーを含む液を熟成した際に、珪酸ィ匕合物の縮 合物は析出しにくい。また、用いた珪酸塩のうちの一部しか酸ィ匕珪素膜を形成しない ので、好ましくない。また、 pH6〜: L 1の領域は、珪酸化合物の縮合物、すなわち、酸 化珪素微粒子および Zまたはゲル等が生じやす 、ため、酸ィ匕珪素膜が多孔質とな つたり、基体の表面上で局所的に酸ィ匕珪素が形成されるので好ましくない。 水系媒体中にアルコール等の有機媒体が存在する場合には、水用の pH電極では pHを正確に測定できな 、ので、有機媒体を含む水溶液用の pH電極を用いて測定 する。別途、有機媒体を同体積の水で置き換えて pHを測定することも可能である。
[0024] 基体と珪酸塩の両方を含む混合液を、 pH5以下に維持する方法としては、基体、 珪酸塩、水系溶媒の混合および熟成を行う際、水系媒体の pHを常時測定し、適宜、 酸および塩基を加えて調整する方法でも構わない。しかし、製造に用いる珪酸塩に 含まれる塩基成分の総量を中和した上で pH5以下となるに十分な量の酸を予め水 系媒体中に存在させておくことが簡便である。
[0025] 酸は、どのような酸でも使用可能である力 塩酸、硝酸、硫酸等の鉱酸が好適に用 いられる。酸は、 1種のみを用いても、 2種以上を混合して用いても良い。この中で塩 酸、硝酸が好ましい。硫酸を使用する場合、光触媒中の硫黄含有量が多く残存する と、吸着効率が経時劣化することがある。光触媒中の硫黄含有量は、光触媒の全重 量を基準として、 0. 5重量%以下が好ましぐ 0. 4重量%以下がより好ましい。
塩基は、珪酸塩に含まれる塩基成分の総量を中和した上で pH5以下となるのに十 分な量の酸を予め水系媒体中に存在させておく前述した方法を使用する場合には、 特に別途用いる必要は無い。しかしながら、塩基を用いる場合は、どのような塩基で も使用可能である。なかでも、水酸ィ匕カリウム、水酸ィ匕ナトリウム等のアルカリ金属水 酸化物が好適に用いられる。
混合溶液を熟成し、基体に対して酸化珪素膜を被覆する際の反応温度および反 応時間等の反応条件は、目的とする酸化珪素被覆光触媒の生成に悪影響を与えな い条件であれば特に限定されない。反応温度は 10°C以上 200°C以下であることが 好ましぐ 20°C以上 80°C以下であることがより好ましい。
10°C未満であると、珪酸化合物の縮合が進行し難くなることにより、酸化珪素膜の 生成が著しく遅延し、酸化珪素被覆光触媒の生産性の悪化を招くことがある。
200°Cより高温であると、珪酸化合物の縮合物、すなわち、酸化珪素微粒子および Zまたはゲル等が生じやすいため、酸ィ匕珪素膜が多孔質となったり、基体表面上で 局所的に酸ィ匕珪素が形成されてしまうことがある。
[0026] 熟成時間は、 10分以上、 500時間以下であることが好ましぐ 1時間以上、 100時 間以下であることがより好ましい。 10分未満であると、酸ィ匕珪素膜による被覆が充分 に進行せず、被膜による光分解活性の向上効果が充分に得られない場合がある。 5 00時間より長時間であると、光触媒機能を有する基体は、酸ィ匕珪素膜により充分に 被覆され、光分解機能も向上するが、酸化珪素被覆光触媒の生産性が悪化すること がある。
[0027] また、混合液中に含まれる光触媒活性を有する基体の濃度は 1重量%以上 50重 量%以下であることが好ましぐ 5重量%以上 30重量%以下であることがより好ましい 。 1重量%未満であると、酸化珪素被覆光触媒の生産性が悪くなり、 50重量%より高 濃度であると基体に対する酸化珪素膜の被覆が均一に進行せず、光分解活性の向 上効果が充分に得られないことがある。混合液中に含まれる珪素の濃度は 0. 05重 量%以上 5重量%以下であることが好ましぐ 0. 1重量%以上 3重量%以下であるこ とがより好ましい。珪素濃度が 0. 05重量%未満であると、珪酸化合物の縮合が遅延 し、基体に対する酸ィ匕珪素膜の被覆が充分でなくなることがある。珪素濃度が 5重量 %より高濃度であると、基体に対する酸ィ匕珪素膜の被覆が均一に進行しないことがあ る。
[0028] 本発明の酸化珪素被覆光触媒の製造方法にお!ヽて、光触媒活性を有する基体お よび珪酸塩の使用量の比率は、前記基体の表面積 lm2当りの珪素原子として、 0. 0 lmgZm2以上、 0. 50mgZm2以下であることが好ましい。この範囲の比率で製造 すれば、前記基体の表面に酸化珪素膜を形成する工程、すなわち、前記基体を含 む水系媒体と珪酸塩、珪酸塩を含む水系媒体と前記基体、および前記基体を含む 水系媒体と珪酸塩を含む水系媒体、の少なくともいずれか一組を混合し熟成するェ 程において、基体の表面に所望の酸ィ匕珪素膜を形成できると共に、基体の表面で縮 合せずに未反応で残った、珪酸、珪酸イオン、および Zまたはこれらのオリゴマーの 量を少なく抑えられるので、細孔を有する酸化珪素膜が形成されることが少ない。 0. 50mgZm2以上、 5. OmgZm2以下の範囲では、比率が大きくなるほど、未反応物 の量が増え、細孔を有する酸化珪素膜が形成されることがあるが、未反応物の縮合 が進行して細孔が生じることに対して、処理時間を短くすることで回避することが可能 である。 [0029] 本発明の酸化珪素被覆光触媒の製造方法をより具体的に示すとすれば、例えば、 (工程 a)基体を含む水系媒体と珪酸塩、珪酸塩を含む水系媒体と基体、および基体 を含む水系媒体と珪酸塩を含む水系媒体、の少なくともいずれか一組を混合するェ 程、
(1Mb)この混合液を熟成し、前記基体に対して酸化珪素膜を被覆する工程、 (工程 c)混合液を中和せずに、酸化珪素被覆光触媒を水系媒体から分離および洗 浄する工程、
(工程 d)酸ィヒ珪素被覆光触媒を乾燥および Zまたは焼成する工程、からなり、 かつ、工程 a並びに工程 bにおいて、前記基体および珪酸塩の両方を含む水系媒体 の pHを 5以下に維持する製造方法が挙げられる。
[0030] 水系媒体から酸化珪素被覆光触媒を分離する際に、中和すると、洗浄工程でのァ ルカリ金属分の低減効率が悪くなる点、並びに水系媒体中に溶解したまま残った珪 素化合物が縮合、ゲルイ匕して多孔質シリカ膜が形成される点が問題となる。予め珪 酸塩溶液を脱アルカリし、この脱アルカリした液を調製して製造に用いること、並びに 光触媒機能を有する基体および珪酸塩の使用量の比率を小さくすること、によって 上記の問題を回避あるいは極小化することも可能である。しかしながら、中和せずに 酸化珪素被覆光触媒を水系媒体から分離すると、上記問題を回避でき、かつ製法が 簡便なので好ましい。
[0031] 酸化珪素被覆光触媒の混合液からの分離方法は特に限定されないが、例えば、自 然濾過法、減圧濾過法、加圧濾過法、遠心分離法などの公知の方法が好適に利用 できる。
酸化珪素被覆光触媒の洗浄方法は特に限定されないが、例えば、純水への再分 散化とろ過の繰り返し、イオン交換処理による脱塩洗浄、などが好適に利用できる。 また、酸ィ匕珪素被覆光触媒の用途によっては、洗浄工程を省略することも可能である 酸ィ匕珪素被覆光触媒の乾燥方法は特に限定されないが、例えば、風乾、減圧乾 燥、加熱乾燥、噴霧乾燥、などが好適に利用できる。また、酸化珪素被覆光触媒の 用途によっては、乾燥工程を省略することも可能である。 [0032] 酸化珪素被覆光触媒の焼成方法は特に限定されな!、が、例えば、減圧焼成、空 気焼成、窒素焼成等が好適に利用できる。通常、焼成は 200°C以上 1200°C以下の 温度で実施できるが、 400°C以上 1000°C以下が好ましぐ 400°C以上 800°C以下が より好ましい。焼成温度が 200°C未満であると、基体表面上に所望の酸化珪素の焼 成膜が生成せず、不安定な構造となってしまう。さらに、多量の水が酸ィヒ珪素周辺に 存在することにより、ガスに対する吸着性能が充分に発揮されず、同時に充分な光分 解活性も得られない。焼成温度が 1200°Cより高温であると、酸化珪素被覆光触媒の 焼結が進行し、充分な光分解活性が得られない。
酸化珪素被覆光触媒に含有される水分含有量は、 7重量%以下であることが好ま しい。 5重量%以下がさらに好ましぐ 4重量%以下が最も好ましい。水分含有量が 7 重量%より多いと、多量の水が酸ィ匕珪素周辺に存在することにより、ガスに対する吸 着性能が充分に発揮されず、同時に充分な光分解活性も得られな ヽ。
このようにして得られた酸ィ匕珪素被覆光触媒は、酢酸等の酸性ガス、アンモニア等 の塩基性ガス、トルエン等の非極性ガスいずれも吸着でき、光触媒性能にも優れて いる。
上記のように、本発明の酸化珪素被覆光触媒の製造方法は、実質的に細孔を有さ ない酸ィ匕珪素膜を得るために、 pHを低くするとともに、珪酸塩の濃度、基体の濃度、 使用する酸性溶液、膜形成後の焼成温度、焼成時間等の条件を適宜選択すること が重要となる。
[0033] 次に、酸化珪素被覆光触媒を含有する光触媒含有有機材につ!ヽて説明する。
本発明の光触媒含有有機材は、有機物からなる部材と、該部材に含有される前記 酸化珪素被覆光触媒からなる。
本発明の酸化珪素被覆光触媒を含有する光触媒含有有機材の形状は、板状、膜 状、網状、フィルム状、繊維状、シート状等種々の形状の何れであっても構わない。 前記本発明の酸化珪素被覆光触媒を、部材全体に分散状態で含有する形態、ある いは部材の表面近傍に偏在して含有する形態の!/、ずれであっても良!、。偏在して含 有する形態としては、光触媒を全く含まない有機材の表面に、光触媒を含有するコ 一ティング層が保持された形態が例示できる。何れにしても、該光触媒含有有機材 の表面に存在する、前記酸化珪素被覆光触媒が、主として光触媒機能を発現する。 ここで光触媒含有有機材の表面とは、光触媒含有有機材の露出された表面であって 、有害物質や臭気成分と接触し得る表面をいう。
前記部材は、有機物であれば特に限定されな 、が、例えば次のようなものが挙げら れる。
合成樹脂として、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフイン榭脂、 ポリメタクリル酸メチル (PMMA)等のポリメタクリル樹脂、ポリアクリル酸メチル等のポ リアクリル榭脂、ポリスチレン、ポリエステルエーテル、ポリビュルアルコール ポリ塩 化ビュル共重合体、ポリビュルァセタール、ポリビュルプチラール、ポリビュルホルマ ール、ポリメチルペンテン、無水マレイン酸 スチレン共重合体、ポリカーボネート、 ポリアセタール、ポリフエ二レンエーテル、ポリエーテルエーテルケトン、ポリブチレン テレフテレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレン テレフタレート等のポリエステル樹脂、不飽和ポリエステル榭脂、ポリアミド、ポリイミド
、ポリアミドイミド、ポリエーテルイミド、エポキシ榭脂(ビスフエノール A型、臭素化ビス フエノール A型、ォクソクレゾ一ルノボラック型、脂環式エポキシ)、フエノール榭脂、ュ リア榭脂、メラミン榭脂、ジァリルフタレート榭脂、ジシクロペンタジェン榭脂、スチレン 系エラストマ一、ポリオレフイン系エラストマ一、ポリウレタン系エラストマ一、ポリエステ ル系エラストマ一、ポリアミド系エラストマ一、アイオノマー、ァミノポリアクリルアミド、ィ ソブチレン無水マレイン酸コポリマー、 ABS、 ACS, AES、 AS、 ASA、 MBS、ェチ レン一塩化ビュルコポリマー、エチレン一酢酸ビュルコポリマー、エチレン一酢酸ビ 二ルー塩化ビュルグラフトポリマー、エチレン ビュルアルコールコポリマー、塩素化 ポリ塩ィ匕ビュル、塩素化ポリエチレン、塩素化ポリプロピレン、カルボキシビュルポリマ 一、ケトン樹脂、非晶性コポリエステル、ノルボルネン榭脂、フッ素プラスチック、ポリ テトラフルォロエチレン、フッ素化工チレンポリプロピレン、 PFA、ポリクロ口フルォロェ チレン、エチレンテトラフルォロエチレンコポリマー、ポリフッ化ビ-リデン、ポリフツイ匕 ビュル、ポリアリレート、熱可塑性ポリイミド、ポリ塩ィ匕ビユリデン、ポリ塩化ビニル、ポリ 酢酸ビュル、ポリサルホン、ポリパラビュルフエノール、ポリパラメチルスチレン、ポリア リルァミン、ポリビュルエーテル、ポリフエ-レンサルファイド、ポリメチルペンテン、液 晶ポリマー、オリゴエステルアタリレート、キシレン榭脂、グアナミン榭脂、ジァリルフタ レート榭脂、 DFK榭脂、ビニルエステル榭脂、フラン榭脂、マレイン酸榭脂、あるいは FRP (ファイバー強化形榭脂)、合成紙、合成パルプ、発泡プラスチックス、合成木材 、写真感光材料 (フィルム、印画紙)、セロハン等の二次カ卩ェ品;
天然高分子として、デンプン、セルロース、キチン、キトサン、たんぱく質、ダルテン 、ゼラチン;
生分解性榭脂として、ポリヒドロキシプチレート、ポリ乳酸、ポリグルタミン酸、ポリ力 プロラタ卜ン;
ゴムとして、天然ゴム、イソプレンゴム、スチレン ブタジエンゴム、ブタジエンゴム、 エチレン一プロピレンゴム、エチレン一アクリルゴム、ブチノレゴム、クロロプレンゴム、 二トリルゴム、アクリルゴム、ェピクロルヒドリンゴム、塩素化ポリエチレンゴム、クロロス ノレホンィ匕ポリエチレンゴム、ウレタンゴム;
天然物として、木材、綿、絹、植物繊維、など。
用いる分野により、適用される部材は異なるが、有機物からなる部材中に酸化珪素 被覆光触媒を分散させる、ある ヽは部材表面近傍に偏在させることで光触媒機能を 有する光触媒含有有機材を形成する。
本発明の光触媒含有有機材を、板、フィルム、繊維、紙、接着剤、塗料として用いる 際には、それぞれ、次のようなものを原料とすることが好ましい。
板あるいはフィルムとしては、ポリアセタール系、ポリエチレン系、ポリプロピレン系、 ポリエチレンテレフタレート、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミ ドイミド系、ポリフッ化ビ-リデン、ポリエーテルイミド系、ポリイミド、ポリフエ-レンサル ファイト、マイ力強化ポリ四フッ化工チレン、ポリべンゾイミダゾール、芳香族ポリエステ ル、フエノール榭脂、ポリアクリル榭脂、ポリメタクリル樹脂、ポリ塩化ビニル、ナイロン 系、ポリカーボネート榭脂、ポリフッ化ビニリデン、 ABS系榭脂、スチレングラフトイ匕ポリ フエ-レンエーテル系榭脂、非晶性ポリエステル等が用いられる。
繊維あるいは紙用途としては、綿、カポック、亜麻、大麻、ラミー、ジユート、マニラ麻 、サイザル麻、ヤシ、ビンロウジュ、海藻のような植物繊維、羊毛、アルパカ、カシミヤ 、モへャ、蚕糸、くも絹、貝絹のような動物繊維、ノ ルプ、セルロース系(レーヨン、キ ュブラ、ニトロセルロース)、アルギン酸のような再生繊維、アセテートセルロース、ェ チルセルロース、塩化ゴムのような半合成繊維、アクリル、アセテート、ァラミド、ノボロ イド、ビスコースレーヨン、フッ素系、ポリアミド(ナイロン)、ポリビュルアルコール、ポリ 酢酸ビュル、ポリ塩ィ匕ビユリデン、ポリ塩化ビニル、ポリアクリロニトリル、ポリエステル、 ポリエチレン、ポリプロピレン、ポリウレタン、ポリ青化ビ-リデン、ポリフルォロエチレン のような合成繊維が用いられる。
接着剤用途としては、ユリア榭脂、メラミン榭脂、フエノール榭脂、レゾルシン系、 a ーォレフイン榭脂、水性高分子 イソシァネート系、酢酸ビュル榭脂ェマルジヨン、ァ クリルェマルジヨン、クロロプレンゴム系、二トリルゴム系、天然ゴム(ポリイソプレン)、 ポリブタジエン、 SBR系、エポキシ榭脂系、ポリウレタン系、スチレン イソプレンース チレンブロック共重合体、スチレン ブタジエン スチレンブロック共重合体、スチレ ンーエチレン ブタジエン スチレンブロック共重合体、ポリクロ口プレン、ブチノレゴ ム、ポリイソブチレン、アクリロニトリル—ブタジエン共重合体、再生ゴムが用いられる。 塗料用途として、アルキド榭脂、アミノアルキド榭脂、アクリル榭脂、アミノ榭脂、ポリ ウレタン榭脂、エポキシ榭脂、アクリルシリコン榭脂、不飽和ポリエステル榭脂、紫外 線硬化榭脂、フエノール榭脂、塩化ビュル榭脂、合成樹脂エマルシヨン、石油榭脂、 塩素系ポリオレフイン榭脂、クマロン榭脂、塩ィ匕ゴムが用いられる。
[0035] 有機物からなる部材に酸化珪素被覆光触媒を含有させる場合、種々の方法をとる ことができるが、例えば、ミル等の混合機中で有機材を例えば 100°C以上 300°C以 下の温度をかけて一旦溶融し、これに酸化珪素被覆光触媒の粉末を有機材に対し て添加し分散させ、冷却後、光触媒機能を有する光触媒含有有機材を得る。この光 触媒含有有機材を粉砕したものを再度 100°C以上 300°C以下程度の温度で溶融し プレス成形、延伸、紡糸等を行い、光触媒機能を有する板、フィルムあるいは繊維等 の光触媒含有有機材を形成することができる。
[0036] 繊維の場合、製法に関して特に制限はないが、例えば次のような方法で製造される 。紡糸温度 150°C以上 300°C以下の条件下、榭脂と、酸化珪素被覆光触媒を 1重量 %以上 30重量%以下含有した榭脂とを、 50 : 50〜90 : 10となるよう各々計量し、溶 融ブレンド後口金ノズル(φ θ. 1〜0. 5mm)より吐出させて紡速 lOOOmZmin以上 5000mZmin以下で紡糸し、半延伸糸を得る。この半延伸糸を例えば延伸温度 85 °C、熱セット温度 130°C、倍率 1. 8倍で延伸熱セットし、延伸糸を得る。この延伸糸を 筒編みし、染色を施す。このような方法により、榭脂繊維中に光触媒 TiOを 0. 1%以
2 上 15%以下含有し、光触媒機能を有し、経時による布帛の着色および質感の変化 力 い繊維製品が得られる。
[0037] また部材が紙の場合、製法に関して特に制限はな 、が、例えば次のような方法で 製造される。紙層を抄紙する第 1抄紙工程と、紙層に紙層をさらに抄き合わせる第 2 抄紙工程と、その紙層に光触媒粒子を含有させて機能紙層を形成する機能紙層形 成工程により製造される。この製造方法では例えば円網式抄紙機が使用され、パル プ 5重量%以上 30重量%以下およびポリアクリルアミド榭脂等の定着剤 0. 1重量% 以上 5重量%以下、必要に応じ分散剤等を含有する紙料 (水溶媒)が供給され、円 網により紙層が抄紙される。また、さらに第 2円網によって紙層上に紙層(湿紙状)が 積層される。形成された湿紙状紙層に光触媒粒子分散液が供給され、湿紙に光触 媒粒子が含有される。続いて、ドライヤにて乾燥され、光触媒機能を有する紙が得ら れる。紙中の光触媒含有量は、 0. 1重量%以上 30重量%以下が好ましぐ 0. 5重量 %以上 10重量%以下が特に好ましい。 0. 1重量%未満では光触媒の実効性に乏し ぐ 30重量%超では強度的に実用的でない。光触媒含有紙を表面層として有する場 合における紙層の坪量は 20gZm2以上 80gZm2以下の範囲で適宜設定すればよ い。
[0038] 有機材と光触媒の混合した液を接着剤あるいは塗料として用い、部材表面に塗布 膜状で固定化する場合、光触媒を含有する塗料を一旦形成し、これを榭脂等種々の 部材表面に塗布し乾燥等により塗膜にして光触媒機能を有する膜を形成する。 接着剤あるいは塗料の製法として、特に制限はないが、例えば次のような方法で製 造される。水、エタノール等の極性溶媒、あるいはトルエン等の非極性溶媒に有機材 を溶解し、これに光触媒を混合する。この際、光触媒の分散性をよくするために、ペイ ントシエ一力一等を用いて混合することが好まし 、。またバインダーとして上記接着剤 系の有機材に加えキサンタンガム、メチルセルロース、ポリエチレンォキシド、ポリビ- ルアルコール等有機系バインダーまたはシリコン系榭脂等の有機 無機系バインダ 一を適宜使用することができる。
[0039] 上記の酸ィ匕珪素被覆光触媒及びバインダーの他に、必要に応じて溶剤、また塗料 として用いる場合には更に着色剤、その他の充填剤を適宜含有させてもよい。塗布 する方法としては種々の方法が可能であるが例えば、バインダーや溶剤の種類、被 覆剤の粘度等に応じて、スプレーコーティング法、ディップコーティング法、スピンコ 一ティング法、ロールコーティング法、刷毛塗り、電着塗装等の従来より公知の方法 により部材表面に、塗布した後、室温乾燥あるいは有機材が軟化しない温度までカロ 熱し、光触媒機能を有する膜を光触媒含有有機材上に形成することができる。 光触媒機能を有する膜の厚さは、 50nm以上 2 m以下にすることが好ましい。 50 nm以上 1 μ m以下にすることがさらに好ましい。膜が 50nmより薄いと光触媒機能が 十分に発現せず、 2 mより厚いと光触媒の効率が低い、あるいは膜の亀裂、剥離等 が発生しやすくなり好ましくな 、。
[0040] また前記酸化珪素被覆光触媒の含有量につ!ヽては、光触媒含有有機材全体に対 して 0. 01重量%以上 30重量%以下が好ましぐ 0. 1重量%以上 20重量%以下が より好ましぐ 0. 3重量%以上 10重量%以下がさらに好ましい。 0. 01重量%よりも少 ないと光触媒機能が不十分であり、 30重量%より多い場合、光触媒含有有機材中の その他の成分とのなじみが悪くなりうまく光触媒含有有機材を形成できない。
[0041] 以上のように、本発明の酸化珪素被覆光触媒は、汚染性有機物質の酸化分解とい う触媒活性を保持しつつ、一方で有機材の分解劣化を抑制できるので、有機物から なる部材に光触媒機能を付与するために用いられる光触媒として好適である。
[0042] 本発明の光触媒含有有機材に紫外線照射すると、前記酸化珪素被覆光触媒が、 窒素酸ィ匕物 (NOx)、有機塩素化合物、 VOCやアンモニア等の有害物質や臭気成 分と接触して酸化分解し、汚染空気または液体の浄化や防汚作用、抗菌及び殺菌 作用を達成できる。
[0043] 一方、光触媒含有有機材表面に存在する前記酸化珪素被覆光触媒は、従来の酸 化チタンと比較して有機材の分解劣化が抑制されて 、るので、粉末剥離等の不具合 が防止され、長期にわたりその効果が持続する。また本来、紫外線により分解劣化を 示すような有機物の場合には、表面近傍に含有されている前記酸化珪素被覆光触 媒が紫外線を吸収することにより、部材に到達する紫外線が減じられ、結果として、 耐光性、耐紫外線性が改善されると ヽぅ効果が得られる場合もある。
[0044] 本発明の光触媒含有有機材は、次のような用途に用いることが可能である。但し、 記載した用途は、適用可能な例であって、本発明を限定するものではない。
抗菌性を目的とするものとしては、自動車のシート地、シートカバー、カーペット、ハ ンドル、ハンドルカバー、シフトノブ、ダッシュボード、ルームランプ、電車のつり革、網 棚、内張り、メーターパネル、ドアノブ、内壁、床、天井、室内のフローリング等床材、 畳、ブラインド、ロールスクリーン、家具、化粧板、すだれ、浴室用部材、手すり、テー ブルクロス、壁紙、壁材、ロックウール等の天井材、ふすま、障子、冷蔵庫、調理器、 手乾燥器、パソコン、マウス、キーボード等の電ィ匕製品、めがね部材、人工観葉植物 、医療用器具、照明器具の蛍光灯カバー、シーリング材、建築用ゴム等の左官材料 、カーテン、クロス、衣類、寝具、敷物、椅子張り、のれん、糸、布、ロープ、網等の繊 維製品、上着、ズボン、シャツ、靴下等の衣類、シーツ、ふとん、毛布等の寝具類、力 一テン、シートカバー、ハンカチ、タオル、書道用紙、障子紙、新聞用紙、非塗工印 刷用紙 (上級印刷紙、中級印刷紙、下級印刷紙、薄葉印刷紙)、塗工印刷用紙 (ァ ート紙、コート紙、軽量コート紙など)、特殊印刷用紙 (色上質紙、その他特殊印刷用 紙)、情報用紙 (コピー用紙、ノーカーボンペーパーなど)、包装用紙 (未晒し包装紙 、晒し包装紙)、衛生用紙 (ティシュペーパー、ちり紙など)、雑種紙 (工業用雑種紙、 家庭用雑種紙)等へ適用することができる。また、防汚を目的として自動車、電車のラ ンプカバー、自動二輪メーター、ヘルメットシールド、外装用サイジング材として適用 することができる。上記の用途には、有機材に直接光触媒を含有させても良いし、あ るいは、フエノール榭脂、ビュル榭脂、エポキシ榭脂等の接着剤や、ペンキ、インク、 コート剤、壁紙表面仕上げ剤、天井用建材仕上げ剤、等の塗料に光触媒を混合させ た後、各機材に光触媒層を被覆させて用いても良い。
[0045] 以下、本発明を実施例、比較例によって更に詳述するが、本発明はこれによって限 定されるものではない。
[光触媒の調製]
光触媒を作製し、その性状を評価した。 はじめに評価方法にっ 、て説明する。
ωアルカリ金属含有量
アルカリ金属含有量としてナトリウム含有量を計測した。
ナトリウム含有量は、原子吸光光度計 (Ζ— 5000, 日立製作所)を用いて定量した 。検出限界は lppmである。従って、「ナトリウムを検出できない」とは、すなわちナトリ ゥムを含まな 、か、ある 、は含有量が lppm未満であることを示して!/、る。
(ii)珪素含有量
珪素含有量は、蛍光 X線分析法 (LAB CENTER XRE— 1700,島津製作所) を用いて定量した。
(iii)比表面積
比表面積は BET法比表面積測定装置により測定した。
以下、光触媒の製造例について説明する。
なお、以下に示す光触媒は、光触媒 27を除き、原料二酸化チタンを酸化珪素の焼 成膜により被覆した構造を有するものである。すなわち、原料二酸ィ匕チタンの表面に 酸化珪素前駆体膜を形成した後、焼成を行い、酸化珪素焼成膜を形成したものであ る。
(光触媒 1)
ガラスフラスコに水 200gと 1N塩酸水溶液 66. 9gを加え、二酸化チタン(ST— 01、 石原産業株式会社、吸着水分量 9重量%、 BET法比表面積測定装置による比表面 積 300m2/g) 24. 5gを分散させて、 A液とした。ビーカー内に水 lOOgと水ガラス 1 号 (SiO含有量 35重量%以上 38重量%以下、 JIS— K1408) 10. 7gを加え、攪拌
2
し B液とした。 A液を 35°Cに保持し、攪拌しているところに、 B液を 2mlZ分で滴下し、 混合液 Cを得た。この時点における混合液 Cの pHは 2. 3であった。混合液 Cを 35°C に保持したまま 3日間攪拌を継続した。この後、混合液 Cを減圧ろ過し、得られた濾 物を、 500mLの水への再分散化、および減圧ろ過を 4回繰り返して洗浄した後、室 温で 2日間放置した。得られた固形物を乳鉢で粉砕した後、 600°C、 3時間焼成処理 を施し、光触媒 1を得た。この光触媒 1のナトリウム含有量を原子吸光光度計 (Z— 50 00, 日立製作所)にて定量したところ、ナトリウム含有量は 87ppmであった。また、こ の光触媒 1の珪素含有量、硫黄含有量を蛍光 X線分析法 (LAB CENTER XRE - 1700,島津製作所)にて定量したところ、珪素含有量 6. 9重量%、硫黄含有量 0 . 06重量%であった。比表面積を BET法比表面積測定装置により測定したところ、 2 12. 8m2Zgであった。よって、光触媒 1の表面積 lm2当りの珪素担持量は 0. 33mg であった。光触媒 1の細孔分布を測定した結果を図 1に示す。
[0046] (光触媒 2)
二酸ィ匕チタンの量を 82. lgとし、混合液 Cの pHが 4. 0となった以外は、光触媒 1の 製法と同様にして、光触媒 2を得た。この光触媒 2は、ナトリウム含有量 56ppm、珪素 含有量 2. 4重量%、比表面積 133. 8m2Zgであった。よって、光触媒 2の表面積 1 m2当りの珪素担持量は 0. 18mgであった。
[0047] (光触媒 3)
二酸化チタンの量を 38. 9gとし、混合液 Cの pHが 2. 8となった以外は、光触媒 1の 製法と同様にして、光触媒 3を得た。この光触媒 3は、ナトリウム含有量 85ppm、珪素 含有量 4. 6重量%、比表面積 194. 9m2Zgであった。よって、光触媒 3の表面積 1 m2当りの珪素担持量は 0. 24mgであった。
[0048] (光触媒 4)
二酸化チタンの量を 12. 2gとし、混合液 Cの pHが 2. 5となった以外は、光触媒 1の 製法と同様にして、光触媒 4を得た。この光触媒 4は、ナトリウム含有量 160ppm、珪 素含有量 9. 6重量%、比表面積 244. 2m2Zgであった。よって、光触媒 4の表面積 lm2当りの珪素担持量は 0. 39mgであった。
[0049] (光触媒 5)
二酸化チタンとして、 P25 (日本ァエロジル株式会社、アナターゼ:ルチル比が 8 : 2 の混合体、純度 99. 5%、 BET法比表面積測定装置による比表面積 50m2Zg)を 7 5. Og使用したこと、珪酸ナトリウム水溶液を 6. 5g使用したこと、混合液 Cの pHが 2. 6となった以外は、光触媒 1の製法と同様にして、光触媒 5を得た。この光触媒 5は、 ナトリウム含有量 34ppm、珪素含有量 1. 4重量%、硫黄含有量は検出されず、比表 面積 61. lm2Zgであった。よって、光触媒 5の表面積 lm2当りの珪素担持量は 0. 2 2mgであった。光触媒 5の細孔分布を測定した結果を図 2に示す。 [0050] (光触媒 6)
二酸ィ匕チタンとして、 PC— 102 (チタン工業株式会社、アナターゼ型、吸着水分量 5%、 BET法比表面積測定装置による比表面積 137m2Zg)を 70. 5g使用したこと、 混合液 Cの pHが 3. 8となったこと、そして混合液 Cを 16時間攪拌して熟成した他は、 光触媒 1と同様にして、光触媒 6を得た。この光触媒 6は、ナトリウム含有量 12ppm、 珪素含有量 2. 2重量%、硫黄含有量 0. 19重量%、比表面積 127. 8m2Zgであつ た。よって、光触媒 6の表面積 lm2当りの珪素担持量は 0. 18mgであった。
[0051] (光触媒 7)
二酸ィ匕チタンとして、 AMT— 100 (ティカ株式会社、アナターゼ型、吸着水分量 11 %、 BET法比表面積測定装置による比表面積 290m2Zg)を 25. Og使用したこと、 混合液 Cの pHが 2. 4となった他は、光触媒 6の製法と同様にして、光触媒 7を得た。 この光触媒 7は、ナトリウム含有量 17ppm、珪素含有量 5. 5重量%、硫黄含有量 0.0 7重量%、比表面積 207. 2m2Zgであった。よって、光触媒 7の表面積 lm2当りの珪 素担持量は 0. 27mgであった。
[0052] (光触媒 8)
二酸ィ匕チタンとして、 TKP— 101 (ティカ株式会社、アナターゼ型、吸着水分量 11 %、 BET法比表面積測定装置による比表面積 300m2Zg)を 25. Og使用したこと、 混合液 Cの pHが 2. 1となった他は、光触媒 6の製法と同様にして、光触媒 8を得た。 この光触媒 8は、ナトリウム含有量 50ppm、珪素含有量 6. 7重量%、硫黄含有量 0. 38重量%、比表面積 194. 2m2Zgであった。よって、光触媒 8の表面積 lm2当りの 珪素担持量は 0. 34mgであった。
(光触媒 9)
混合液 Cを 16時間攪拌して熟成した他は、光触媒 1の製法と同様にして、光触媒 9 を得た。この光触媒 9は、ナトリウム含有量 180ppm、珪素含有量 5. 7重量%、比表 面積 246. 2m2Zgであった。よって、光触媒 9の表面積 lm2当りの珪素担持量は 0. 23mgであった。
[0053] (光触媒 10)
500mLの水への再分散化および減圧ろ過を 7回繰り返して洗浄した以外は、光触 媒 8の製法と同様にして、光触媒 10を得た。この光触媒 10は、ナトリウム含有量 120 ppm、珪素含有量 5. 7重量%、比表面積 231. 4m2Zgであった。よって、光触媒 10 の表面積 lm2当りの珪素担持量は 0. 25mgであった。
[0054] (光触媒 11)
500mLの水への再分散化および減圧ろ過を 1回行うことで洗浄した以外は、光触 媒 8の製法と同様にして、光触媒 11を得た。この光触媒 11は、ナトリウム含有量 210 ppm、珪素含有量 5. 7重量%、比表面積 231. 4m2Zgであった。よって、光触媒 11 の表面積 lm2当りの珪素担持量は 0. 24mgであった。
[0055] (光触媒 12)
400°C、 3時間焼成処理を施した他は、光触媒 1の製法と同様にして、光触媒 12を 得た。この光触媒 12は、ナトリウム含有量 93ppm、珪素含有量 6. 9重量%、比表面 積 255. 5m2Zgであった。よって、光触媒 12の表面積 lm2当りの珪素担持量は 0. 2 7mgで&)つた。
[0056] (光触媒 13)
800°C、 3時間焼成処理を施した他は、光触媒 1の製法と同様にして、光触媒 13を 得た。この光触媒 13は、ナトリウム含有量 98ppm、珪素含有量 6. 9重量%、比表面 積 150. 7m2Zgであった。よって、光触媒 13の表面積 lm2当りの珪素担持量は 0. 4 6mgで&)つた。
[0057] (光触媒 14)
900°C、 3時間焼成処理を施した他は、光触媒 1の製法と同様にして、光触媒 14を 得た。この光触媒 14は、ナトリウム含有量 96ppm、珪素含有量 6. 9重量%、比表面 積 108. 2m2Zgであった。よって、光触媒 14の表面積 lm2当りの珪素担持量は 0. 6 4mgで&)つた。
[0058] (光触媒 15)
1000°C、 3時間焼成処理を施した他は、光触媒 1の製法と同様にして、光触媒 15 を得た。この光触媒 15は、ナトリウム含有量 92ppm、珪素含有量 6. 9重量%、比表 面積 55. 3m2Zgであった。よって、光触媒 15の表面積 lm2当りの珪素担持量は 1. 25mgであった。光触媒 15の細孔分布を測定した結果を図 3に示す。 [0059] (光触媒 16)
1規定塩酸水溶液の代わりに同量の 1規定硝酸水溶液を用いたこと、混合液 Cの p Hが 3. 2になったことの他は、光触媒 9の製法と同様にして、光触媒 16を得た。この 光触媒 16は、ナトリウム含有量 480ppm、珪素含有量 6. 7重量%、比表面積 207. 4m2Zgであった。よって、光触媒 16の表面積 lm2当りの珪素担持量は 0. 32mgで めつに。
[0060] (光触媒 17)
1規定塩酸水溶液 66. 9gの代わりに 1規定硝酸水溶液 81. 7gを用いたこと、異な る組成の珪酸ナトリウム水溶液 (SiO含有量 29. 1重量%、Na O含有量 9. 5重量%
2 2
、JIS K1408"水ガラス 3号") 13. 3gを用いたこと、の他は、光触媒 9の製法と同様 にして、光触媒 17を得た。この光触媒 17は、ナトリウム含有量 150ppm、珪素含有量
3. 4重量%、比表面積 210. 5m2Zgであった。よって、光触媒 17の表面積 lm2当り の珪素担持量は 0. 16mgであった。
[0061] (光触媒 18)
焼成温度を 600°Cの代わりに 200°Cにしたこと、の他は、光触媒 2の製法と同様に して、光触媒 18を得た。この光触媒 18は、ナトリウム含有量 56ppm、珪素含有量 2.
4重量%、比表面積 237. 3m2Zgであった。よって、光触媒 18の表面積 lm2当りの 珪素担持量は 0. 10mgであった。
[0062] (光触媒 19)
水ガラス 3号の代わりにケィ酸カリウム溶液 (和光純薬工業、 SiO含有量 28重量%
2
) 13. 8gを用いたことの他は、光触媒 17の製法と同様の方法で、光触媒 19を得た。 この光触媒 19のナトリウム、カリウム含有量を原子吸光光度計 (Z— 5000, 日立製作 所)にて定量したところ、ナトリウム含有量は 74ppm、カリウム含有量は 90ppmであつ た。この結果、光触媒 19は、その酸ィ匕珪素膜中にカリウムを含有していることが確認 された。また、この光触媒 19の珪素含有量を蛍光 X線分析法 (LAB CENTER X RE- 1700,島津製作所)にて定量したところ、珪素含有量は 4. 9重量%であり、比 表面積を BET法比表面積測定装置により測定したところ 193. 9m2Zgであった。よ つて、光触媒 19の表面積 lm2当りの珪素担持量は 0. 25mgであった。光触媒 19の 細孔分布を測定した結果を図 4に示す。
[0063] (光触媒 20)
市販の二酸化チタン (石原産業株式会社、 ST—01)を 200°C、 3時間乾燥し、光 触媒 20を得た。この光触媒 20は、ナトリウム含有量 1400ppm、比表面積 214. 3m2
/ gであつ 7こ。
[0064] (光触媒 21)
市販の二酸ィ匕チタン(日本ァエロジル株式会社、 P25)を 200°C、 3時間乾燥し、光 触媒 21を得た。この光触媒 21のナトリウム含有量は検出できな力つた。比表面積は 5
0. 2m2Zgであった。
この結果、光触媒 5は、その焼成酸ィ匕珪素膜中にナトリウムを、光触媒 19はその焼 成酸化珪素膜中にカリウムを含有して ヽることが確認された。
[0065] ナトリウム含有量あるいは 20オングストローム以上 500オングストローム以下の領域 における、酸ィ匕珪素膜由来の細孔の有無による性能の差異を確認するために光触 媒 22〜26の調製を行った。
(光触媒 22)
特許文献 4 (特開昭 62— 260717号)の実施例の (製造例 1)に則して、二酸化チタ ンとして ST— 01 (石原産業株式会社、吸着水分量 9重量%、比表面積 300m2/g) を用いて実施し、光触媒 22を得た。この光触媒 22は、ナトリウム含有量 1200ppm、 珪素含有量 5. 8重量%、比表面積 187. 3m2Zgであった。よって、光触媒 22の表 面積 lm2当りの珪素担持量は 0. 31mgであった。光触媒 22の細孔分布を測定した 結果を図 5に示す。
[0066] (光触媒 23)
特許文献 4 (特開昭 62— 260717号)の実施例の (製造例 1)に則して、二酸化チタ ンとして P25 (日本ァエロジル株式会社、純度 99. 5%、比表面積 50. 8m2Zg)を用 いて実施し、光触媒 23を得た。この光触媒 23のナトリウム含有量は検出できなかつ た。また、この光触媒 23は、珪素含有量 2. 2重量%、比表面積 38. 7m2Zgであつ た。よって、光触媒 23の表面積 lm2当りの珪素担持量は 0. 56mgであった。光触媒 23の細孔分布を測定した結果を図 6に示す。 [0067] (光触媒 24)
ガラスフラスコに水 250gと 0. 1N水酸化ナトリウム水溶液 0. 05gをカロえ、二酸化チ タン (ST— 01、石原産業株式会社、吸着水分量 9重量%、比表面積 300m2Zg) 24 . 5gを分散させて、 A液とした。ビーカー内に水 lOOgと珪酸ナトリウム水溶液 (SiO
2 含有量 36. 1重量%、Na O含有量 17. 7重量%、JIS K1408"水ガラス 1号つ 10.
2
7gをカ卩え、攪拌し B液とした。 A液を 35°Cに保持し、攪拌しているところに、 B液を 2m 1Z分で滴下し、混合液 Cを得た。この時点における混合液 Cの pHは 11. 5であった 。混合液 Cを 35°Cに保持したまま 3日間攪拌を継続した。この後、混合液 Cを減圧ろ 過し、得られた濾物を、 500mLの水への再分散化、および減圧ろ過を 4回繰り返し て洗浄した後、室温で 2日間放置した。得られた固形物を乳鉢で粉砕した後、 600°C 、 3時間焼成処理を施し、光触媒 24を得た。この光触媒 24は、ナトリウム含有量 140 00ppm、珪素含有量 3. 4重量%、比表面積 126. lm2Zgであった。よって、光触媒 24の表面積 lm2当りの珪素担持量は 0. 27mgであった。光触媒 24の細孔分布を測 定した結果を図 7に示す。
[0068] (光触媒 25)
ガラスフラスコに水 100gを入れ、二酸化チタン(P— 25、日本ァエロジル株式会社 、純度 99. 5%、 BET法比表面積測定装置による比表面積 50. 8m g) 10. Ogを 分散させて、 A液とした。これに 4規定水酸ィ匕ナトリウム水溶液を滴下して pHを 10. 5 に調整した。そして、液温 75°Cまで加熱し、 75°Cを維持したまま、珪酸ナトリウム水溶 液(SiO含有量 29. 1重量%、 Na O含有量 9. 5重量%、 JIS K1408"水ガラス 3号
2 2
") 14. 8gを加え、攪拌し B液とした。 B液を 90°Cまで加熱し、 90°Cを維持したまま、 1 規定の硫酸水溶液を 2mlZ分の速度で滴下し、 C液とした。硫酸水溶液の滴下に伴 い、混合液の pHは 10. 5から少しずつ酸性側へ低下し、最終的に C液の pHは 5とな つた。その後、 C液を 90°Cに保持したまま 1時間攪拌を継続して熟成した。次に、熟 成後の C液を減圧ろ過し、得られた濾物を、 250mLの水への再分散化、および減圧 ろ過を 4回繰り返して洗浄した後、 120°Cで 3時間乾燥した。得られた固形物を乳鉢 で粉砕した後、 600°C、 3時間焼成処理を施し、光触媒 25を得た。この光触媒 25は 、ナトリウム含有量 2500ppm、珪素含有量 13. 0重量0 /0、比表面積 68. 4m g"C あった。よって、光触媒 25の表面積 lm2当りの珪素担持量は 1. 90mgであった。
[0069] (光触媒 26)
ガラスフラスコに水 lOOgを入れ、二酸ィ匕チタン (ST— 01、石原産業株式会社、吸 着水分量 9重量%、 BET法比表面積測定装置による比表面積 300m2Zg) 4. 2gを 分散させて、 A液とした。ビーカー内に水 43gと珪酸ナトリウム水溶液 (SiO含有量 2
2
9. 1重量%、 Na O含有量 9. 5重量%、JIS K1408"水ガラス 3号 5. 6gを加え、
2
攪拌し B液とした。次に、 A液を 35°Cに保持し、攪拌しているところに、 B液を 2mlZ 分の速度で滴下した。この時、混合液の pHが 6以上 8以下になるように、適宜 1規定 硝酸水溶液を滴下した。 B液の滴下完了時における混合液の pHは 7. 0であった。そ の後、混合液を 35°Cに保持したまま 16時間攪拌を継続して熟成した。この後、混合 液を減圧ろ過し、得られた濾物を、 250mLの水への再分散化、および減圧ろ過を 4 回繰り返して洗浄した後、 120°Cで 3時間乾燥した。得られた固形物を乳鉢で粉砕し た後、 600°C、 3時間焼成処理を施し、光触媒 26を得た。この光触媒 26は、ナトリウ ム含有量 5900ppm、珪素含有量 12. 0重量%、比表面積 258. 3m2/gであった。 よって、光触媒 26の表面積 lm2当りの珪素担持量は 0. 47mgであった。光触媒 26 の細孔分布を測定した結果を図 8に示す。
[0070] (光触媒 27)
シリカ水和物被膜との差異を確認するために特許文献 5の実施例 1を参考にして、 硫酸チタニル水溶液を熱加水分解して結晶粒子径 6nmのメタチタン酸スラリーを作 成した。このメタチタン酸スラリー(TiO換算で lOOgZD lOOmlを 40°C〖こ昇温し、 Si
2
Oとして 200gZlのケィ酸ナトリウム水溶液 5ml (SiO /TiO重量比 =0. 1)を一定
2 2 2
速度で 10分を要して添加した。添加後、水酸ィ匕ナトリウムで pH4. 0に調節し、 40°C を維持しながら 30分攪拌した。その後スラリーを濾過、水洗し、得られたケーキを 11 0°Cで 12時間乾燥した後、サンプルミルを用いて粉砕し、光触媒 27を得た。この光 触媒 27は、ナトリウム含有量 210ppm、珪素含有量 5. 1重量%、比表面積 140. Om 2Zgであった。よって、光触媒 27の表面積 lm2当りの珪素担持量は 0. 36mgであつ た。得られた光触媒 27の特性をまとめて表 1に示す。
[0071] <光触媒 1〜27の評価 > [1.メチレンブルー光分解活性評価]
光触媒 1〜27を、メチレンブルー水溶液に懸濁させた。その後、光照射を行い、液 中のメチレンブルー濃度を分光分析で定量することにより、光分解活性を試験した。 詳細な試験操作方法は、次のとおりである。
[0072] (光触媒懸濁液の調製)
あらカゝじめフッ素榭脂製攪拌子を入れた lOOccポリエチレン製広口びんに、濃度 4 O X 10_6molZLのメチレンブルー水溶液を 45g量りこんだ。次に、マグネチックスタ 一ラーによる攪拌下、 lOmgの光触媒を加えた。そして、 5分間激しく攪拌した後に、 液が飛び散らな ヽ程度に攪拌強度を調整し、攪拌を継続した。
[0073] (予備吸着処理)
光触媒を加え終わった瞬間を起点として、 60分間、光照射せずに、攪拌し続けた。 60分経過後、懸濁液を 3. Occ採取し、光照射前サンプルとした。
[0074] (光分解処理)
予備吸着処理後の懸濁液を 3. 5cc抜き出し、あらかじめフッ素榭脂製攪拌子を入 れた石英製標準分光セル (東ソ一 ·クォーツ株式会社、外寸 12. 5 X 12. 5 X 45mm 、光路幅 10mm、光路長 10mm、容積 4. 5cc)に入れ、マグネチックスターラーで攪 拌した。次に、分光セルの外部 Z横方向から光を 5分間照射した。光照射は、光源 装置 SX— UI 151XQ (ゥシォ電機株式会社、 150Wクセノンショートアークランプ)を 光源として、純水を満たした石英製フィルター容器越しに行った。照射光量は、紫外 線照度計 UVD— 365PD (ゥシォ電機株式会社、試験波長 365nm)で、 5. OmW/ cm2であった。照射後、分光セル内の懸濁液を回収し、光照射後サンプルとした。
[0075] (メチレンブルーの定量)
オールプラスチックス製 lOccシリンジにメンブレンフィルター (東洋濾紙株式会社、 DISMIC— 13HP)を装着した。これに、光照射前後のサンプル懸濁液をそれぞれ 入れ、ピストンで押出して光触媒を除去した。その際、前半量のろ液は廃棄し、後半 量のろ液を、可視光分析用セミマイクロ型ディスポセル (ポリスチレン製、光路幅 4m m、光路長 10mm、容積 1. 5cc)に採取した。そして、紫外可視分光分析装置 (UV — 2500、島津製作所)を使用して、波長 680ナノメートルの吸光度を測定し、メチレ ンブルー濃度を算定した。
光分解活性は、光照射前のメチレンブルー濃度に対する光照射後のメチレンブル 一濃度で評価した。光分解活性としてのメチレンブルー除去率を表 1に示した。また
、メチレンブルーの仕込濃度 (光触媒を加える前のメチレンブルーの濃度)を基準とし て、光照射前のメチレンブルー濃度から、メチレンブルー吸着率を算出し、表 1に併 曰じした。
[0076] [2.細孔分布測定による酸化珪素膜由来の細孔有無の判定]
オートソープ (カンタクローム社製)を使用し、液体窒素下(77K)における脱着過程 での光触媒 1〜27の窒素吸着等温線を測定した。
各光触媒の前処理として、 100°Cでの真空脱気を行った。次に各光触媒の測定結 果を BJH法で解析し、 log微分細孔容積分布曲線を求めた。
次に、光触媒 1〜27の酸ィ匕珪素膜由来の細孔の有無を判定した。具体的には、原 料として使用した光触媒と、この光触媒を基体 (ベース触媒)として用いて調製した、 酸ィ匕珪素膜で被覆された光触媒の log微分細孔容積分布曲線を比較して、酸ィ匕珪 素膜由来の細孔の有無を判定した。
光触媒 1〜27の 20オングストローム以上 500オングストローム以下の領域における 、酸ィ匕珪素膜由来の細孔の有無を表 1に示す。
[0077] (表 1)
表 1
基体に対す
光触媒 る珪素仕込 ナトリウム 酸化珪素
No. み 珪素担持量 含有量 吸着率 除去率 膜由来の
(mg/n I2) (π ig/ m2) (ppm) (%) ( %) 細孔
1 0. 24 0. 33 87 40. 8 56. 1 無
2 0. 07 0. 18 56 6. 6 51. 9
ο d 無
3 0. l C 1v 5 0. 24 85 21. 52. 5 無
4 0. 48 0. 39 160 45. 5 46. 7 ίΕΕ
5 0. 29 0. 22 34 8. 8 69. 2 無
6 0. 20 0. 18 12 9. 3 56. 1 ίΕΕ
7 0. 28 0. 27 17 30. 7 54. 5 flE
8 0. 28 0. 34 50 22. 5 59. 4 flE
9 0. 24 0. 23 180 43. 2 57. 9 ίΕΕ
10 0. 25 120 53. 8
11 0. 24 0. 24 210 44. 9 51. 9 無
12 0. 27 93 31. 7 51. 0 tiff
13 0. 24 0. 46 98 45. 0 54. 1 ίΕΕ
14 0. 24 0. 64 96 48. 0
15 0. 24 1. 25 92 16. 4 43. 2 無
16 0. 24 0. 32 480 39. 4 59. 9 無
D o C
17 0. 24 0. 16 150 29. 5 55. 9 無
18 0. 07 0. 10 56 12. 1 46. 0 無
19 0. 36 0. 25 74 23. 6 49. 2 無
20 0. 00 1400 0. 5 11. 8
21 0. 00 検出無 0. 5 45. 0
22 0. 31 1200 57. 8 31. 0 無
23 0. 56 検出無 17. 5 31. 5 無
24 0. 24 0. 27 14000 47. 1 36. 2 有
25 3. 99 1. 90 2500 11. 0 22. 0 有
26 0. 59 0. 47 5900 56. 8 38. 7 有
27 0. 50 0. 36 210 3. 5 2. 2
光触媒 1 19は、良好な触媒活性を示すことが確認された。
[示差熱天秤分析]
酸化珪素被覆光触媒の水分含有量を調べるために、示差熱天秤分析 (サーモプラ ス TG8120、リガク)を行った。流量 50mlZ分の空気気流中、室温から 600°Cまで、 10°CZ分で昇温し、その際の重量減少率を測定した。
各試料は乾燥あるいは焼成後の水分吸着の影響をできるだけ排除するため、乾燥 あるいは焼成し冷却 lh後に測定した。光触媒 1 5 18 27の水分含有量を表 2に 示す。 (表 2) 表 2
重暈減少率 (%) 光触媒 1 0 . 9
光触媒 5 0 . 6
光触媒 1 8 4 . 5
光触媒 2 7 8 . 9 上記で得られた光触媒のうちの一部について、榭脂成形体を作製し、評価を行つ た。
[0078] (実施例 1)
ラボプラストミルを 200°Cに保持した後に攪拌しながらポリメタクリル酸メチル (PMM A)榭脂 48. Ogを投入し溶融後、光触媒 1を 1. 70g (二酸ィ匕チタンとして PMMA榭 脂に対して 3%)を添加し混合した。冷却後この組成物を粉砕した後、 200°Cで加熱 プレス成形し 1. 5cm X 8cm、厚さ 1mmの板状成形体を得た (成形体 1)。
[0079] (実施例 2)
光触媒 2と PMMA榭脂を用 ヽて実施例 1と同じ方法で加熱プレス成形し板状成形 体を得た (成形体 2)。
[0080] (実施例 3)
光触媒 5と PMMA榭脂を用いて実施例 1と同じ方法で加熱プレス成形し板状成形 体を得た (成形体 3)。
[0081] (実施例 4)
光触媒 17を PMMA榭脂を用 ヽて実施例 1と同じ方法で加熱プレス成形し板状成 型体を得た (成形体 4)
[0082] (実施例 5) PMMA榭脂の代わりにポリプロピレン (PP)榭脂を用いた以外は実施例 1と同じ方 法で加熱プレス成形し板状成形体を得た (成形体 5)。
[0083] (比較例 1)
ブランク実験として、 PMMA榭脂のみで実施例 1と同じ方法で加熱プレス成形し板 状成型体を得た (成型体 6)。
(比較例 2)
光触媒 20を PMMA榭脂を用 ヽて実施例 1と同じ方法で加熱プレス成形し板状成 型体を得た (成型体 7)。
(比較例 3)
光触媒 21を PMMA榭脂を用 ヽて実施例 1と同じ方法で加熱プレス成形し板状成 型体を得た (成型体 8)。
(比較例 4)
光触媒 24を PMMA榭脂を用 ヽて実施例 1と同じ方法で加熱プレス成形し板状成 型体を得た (成型体 9)。
(比較例 5)
PMMA榭脂の代わりに PP榭脂を用いた以外は比較例 1と同じ方法で加熱プレス 成形し板状成形体を得た (成型体 10)。
(比較例 6)
PMMA榭脂の代わりに PP榭脂を用いた以外は比較例 2と同じ方法で加熱プレス 成形し板状成形体を得た (成型体 11)。
[0084] [光分解活性評価]
成形体 1〜9を、メチレンブルー水溶液中に置き光照射を行い、液中のメチレンブ ルー濃度を分光分析で定量することにより、光分解活性を試験した。詳細な試験操 作方法は、次のとおりである。
(試料の調製)
あらかじめ内径 4cmのシャーレに、濃度 40 X 10_6molZLのメチレンブルー水溶 液を 3g量りこんだ。次に、成形体を縦横 1. 5cmの大きさに切り出しシャーレ内に設 し 7こ。 (予備吸着処理)
成形体を加え終わった瞬間を起点として、 60分間、光照射せずに放置した。 60分 経過後の液を回収し、光照射前サンプルとした。
(光分解処理)
上記と同様の操作で予備吸着処理を行なった後、光照射を、ブラックライト (三共電 気株式会社、 27W)を光源として行った。照射光量は、紫外線照度計 UVD— 365P D (ゥシォ電機株式会社、試験波長 365nm)で、 1. OmWZcm2であった。ブラックラ イトを 24h照射した後、ガラス容器中の液を回収し光照射後サンプルとした。
(メチレンブルーの定量)
上記光照射前サンプルおよび光照射後サンプルにつ!、て紫外可視分光光度計( UV— 2500、島津製作所)を使用して、波長 680ナノメートルの吸光度を測定し、メ チレンブルー濃度を算定した。
光分解活性は、光照射前のメチレンブルー濃度を基準として、光照射後のメチレン ブルー濃度から、メチレンブルー除去率として表 3に示した。
(表 3)
表 3
Figure imgf000034_0001
[耐候性加速劣化試験] サンシャインウエザーメーター(光源:サンシャインカーボンアーク(25mWZcm2)、 照射温度 63°C)を用い、成形体 1〜9に 500時間光照射を行った。その際の劣化に よる成形体の重量減少率を表 4に示す。
ここで重量減少率は、以下の式により求められる:
重量減少率 (%) =
(光照射前の成形体重量一光照射後の成形体重量) Z光照射前の成形体重量 X
100
(表 4)
表 4
Figure imgf000035_0001
上記実施例では、光触媒 1、 2、 5、 17について成形体を作製して評価を行った力 光触媒 3、 4、 6〜16、 18、 19についても、上記と同様に重量減少率が小さいことが 確認された。

Claims

請求の範囲
[I] 有機物からなる部材と、該部材に含有された光触媒からなる光触媒含有有機材であ つて、
前記光触媒は、
光触媒活性を有する基体と、
該基体を被覆する、実質的に細孔を有さない酸化珪素膜と、を備え、 前記光触媒のアルカリ金属含有量が lppm以上 lOOOppm以下である ことを特徴とする光触媒含有有機材。
[2] 前記酸化珪素膜が、酸ィ匕珪素の焼成膜であることを特徴とする、請求項 1に記載の 光触媒含有有機材。
[3] 前記酸化珪素膜が、 200°C以上 1200°C以下の温度で焼成して得られる焼成膜であ ることを特徴とする、請求項 2に記載の光触媒含有有機材。
[4] 前記アルカリ金属含有量が lOppm以上 lOOOppm以下であることを特徴とする請求 項 1〜3のいずれか 1項に記載の光触媒含有有機材。
[5] 窒素吸着法による 20オングストローム以上、 500オングストローム以下の領域の細孔 径分布測定において、酸ィ匕珪素膜由来の細孔がないことを特徴とする請求項 1〜4 の 、ずれか 1項に記載の光触媒含有有機材。
[6] 前記基体が、アナターゼ型、ルチル型、あるいはこれらの混合物を含む酸化チタンで あることを特徴とする請求項 1〜5のいずれか 1項に記載の光触媒含有有機材。
[7] 前記アルカリ金属が、ナトリウムおよび Zまたはカリウムであることを特徴とする請求項
1〜6のいずれか 1項に記載の光触媒含有有機材。
[8] 前記基体が粒子であることを特徴とする請求項 1〜7の 、ずれ力 1項に記載の光触 媒含有有機材。
[9] 前記光触媒の表面積 lm2あたりの珪素担持量力 0. lOmg以上、 2. Omg以下であ ることを特徴とする請求項 1〜8のいずれか 1項に記載の光触媒含有有機材。
[10] 前記光触媒の表面積 lm2あたりの珪素担持量力 0. 16mg以上、 1. 25mg以下であ ることを特徴とする請求項 9に記載の光触媒含有有機材。
[II] 前記基体の比表面積が 120m2/g以上、 400m2/g以下であることを特徴とする請 求項 10に記載の光触媒含有有機材。
[12] 硫黄元素の含有量が、光触媒の全体重量を基準として、 0. 5重量%以下であること を特徴とする請求項 1〜11のいずれ力 1項に記載の光触媒含有有機材。
[13] 前記酸ィ匕珪素膜にアルカリ金属が含まれることを特徴とする、請求項 1〜12のいず れか 1項に記載の光触媒含有有機材。
[14] 前記酸化珪素膜に含まれるアルカリ金属の含有量が、光触媒の全体重量を基準とし て、 lppm以上 200ppm以下であることを特徴とする、請求項 13に記載の光触媒含 有有機材。
[15] 前記有機物が、ポリオレフイン榭脂、ポリウレタン榭脂、ポリエステル榭脂、ポリアタリ ル榭脂、ポリメタクリル樹脂、ポリアミド榭脂、ビュル化合物(共)重合体、ホルムアル デヒド榭脂、ァリル榭脂、エポキシ榭脂、フエノール榭脂、シリコン榭脂、セルロース、 およびへミセルロース力もなる群力 選ばれる少なくとも 1種以上を含むことを特徴と する請求項 1〜14のいずれ力 1項に記載の光触媒含有有機材。
PCT/JP2006/315878 2005-09-30 2006-08-10 光触媒含有有機材 WO2007039984A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20060782664 EP1955767A1 (en) 2005-09-30 2006-08-10 Photocatalyst-containing organic material
JP2007538653A JPWO2007039984A1 (ja) 2005-09-30 2006-08-10 光触媒含有有機材
US12/088,527 US20090275464A1 (en) 2005-09-30 2006-08-10 Photocatalyst-containing organic material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-287643 2005-09-30
JP2005287643 2005-09-30

Publications (1)

Publication Number Publication Date
WO2007039984A1 true WO2007039984A1 (ja) 2007-04-12

Family

ID=37906029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315878 WO2007039984A1 (ja) 2005-09-30 2006-08-10 光触媒含有有機材

Country Status (6)

Country Link
US (1) US20090275464A1 (ja)
EP (1) EP1955767A1 (ja)
JP (1) JPWO2007039984A1 (ja)
KR (1) KR20080050625A (ja)
CN (1) CN101272858A (ja)
WO (1) WO2007039984A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652646B2 (en) * 2007-08-22 2014-02-18 Renolit Ag Film having a photocatalytic active surface
KR20110120910A (ko) 2009-02-26 2011-11-04 바스프 에스이 자가-세정 중합체
WO2012062295A2 (de) * 2010-06-29 2012-05-18 Sachtleben Chemie Gmbh Alkaliarmes katalysatormaterial und verfahren zu dessen herstellung
US8696998B2 (en) * 2010-07-14 2014-04-15 Green Bubble Technologies Llc Biooptical and biofunctional properties, applications and methods of polylactic acid films
EP2595750A2 (en) 2010-07-22 2013-05-29 Green Bubble Technologies LLC Biooptical and biofunctional properties, applications and methods of polylactic acid films
CN102000607B (zh) * 2010-11-05 2012-07-25 江南大学 负载纳米ZnO麻纤维预氧丝光催化剂的制备方法
WO2014097309A1 (en) 2012-12-17 2014-06-26 Asian Paints Ltd. Stimuli responsive self cleaning coating
CN109482167A (zh) * 2018-11-09 2019-03-19 宁波水熊环保科技有限公司 一种光催化剂喷雾及其制备方法
CN109603919B (zh) * 2018-12-13 2021-10-15 西南林业大学 一种能够循环使用的高效光催化降解材料及其制备方法
CN111019173B (zh) * 2019-12-31 2021-05-04 江南大学 一种可降解聚乳酸-羟基乙酸复合材料的制备方法
KR102376465B1 (ko) * 2020-06-30 2022-03-21 전남대학교산학협력단 질소산화물 저감용 탄소-탄소질화물 촉매 제조방법 및 질소산화물 저감용 탄소-탄소질화물 촉매

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132075A (ja) * 1994-11-10 1996-05-28 Ishihara Sangyo Kaisha Ltd アンモニアおよび/またはアンモニウムイオンを含有した水溶液の処理方法
JPH10130527A (ja) * 1996-10-28 1998-05-19 Ishihara Sangyo Kaisha Ltd 二酸化チタン顔料及びその製造方法
JP2002159865A (ja) * 2000-11-27 2002-06-04 Tayca Corp 塩基性ガス除去用酸化チタン光触媒
WO2003068871A1 (fr) * 2002-02-15 2003-08-21 Asahi Glass Company, Limited Compositions servant a creer un film photocatalytique et substrat pourvu de ce film photocatalytique
JP2005281557A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 塗料及びそれを用いた触媒成形体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2776944B1 (fr) * 1998-04-03 2000-05-12 Ahlstrom Paper Group Research Composition photocatalytique
EP1166871A1 (en) * 2000-06-21 2002-01-02 Fuji Photo Film B.V. Photocalytic sheet of film and its manufacturing process
US7378371B2 (en) * 2001-12-21 2008-05-27 Show A Denko K.K. Highly active photocatalyst particles, method of production therefor, and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132075A (ja) * 1994-11-10 1996-05-28 Ishihara Sangyo Kaisha Ltd アンモニアおよび/またはアンモニウムイオンを含有した水溶液の処理方法
JPH10130527A (ja) * 1996-10-28 1998-05-19 Ishihara Sangyo Kaisha Ltd 二酸化チタン顔料及びその製造方法
JP2002159865A (ja) * 2000-11-27 2002-06-04 Tayca Corp 塩基性ガス除去用酸化チタン光触媒
WO2003068871A1 (fr) * 2002-02-15 2003-08-21 Asahi Glass Company, Limited Compositions servant a creer un film photocatalytique et substrat pourvu de ce film photocatalytique
JP2005281557A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 塗料及びそれを用いた触媒成形体

Also Published As

Publication number Publication date
JPWO2007039984A1 (ja) 2009-04-16
EP1955767A1 (en) 2008-08-13
US20090275464A1 (en) 2009-11-05
KR20080050625A (ko) 2008-06-09
CN101272858A (zh) 2008-09-24

Similar Documents

Publication Publication Date Title
WO2007039984A1 (ja) 光触媒含有有機材
Moafi et al. The comparison of photocatalytic activity of synthesized TiO2 and ZrO2 nanosize onto wool fibers
Fujiwara et al. Fabrication of photocatalytic paper using TiO2 nanoparticles confined in hollow silica capsules
US20070149397A1 (en) Photocatalytic composite material, method for producing the same and application thereof
Wang et al. Preparation of carbon foam-loaded nano-TiO2 photocatalyst and its degradation on methyl orange
Fukahori et al. Effect of void structure of photocatalyst paper on VOC decomposition
WO2007023558A1 (ja) 酸化タングステン系光触媒及びその製造方法並びに消臭・防汚機能を有する繊維布帛
US20210114893A1 (en) NITROGEN-DOPED TiO2 NANOPARTICLES AND THE USE THEREOF IN PHOTOCATALYSIS
KR102265903B1 (ko) 가시광선용 광촉매를 포함하는 코팅용 조성물 및 이를 포함한 제품
Gao et al. Photocatalytic properties of polyoxometalate–thionine composite films immobilized onto microspheres under sunlight irradiation
JP4566586B2 (ja) 光触媒体の製造方法
Enriquez et al. Mechanistic implications of the effect of TiO2 accessibility in TiO2–SiO2 coatings upon chlorinated organics photocatalytic removal in water
EP2352584B1 (en) Photocatalytic device with mixed photocatalyst/silica structure
Sboui et al. Hybrid paper–TiO 2 coupled with a Cu 2 O heterojunction: an efficient photocatalyst under sun-light irradiation
Monteiro et al. Synthesis and characterization of N-modified titania nanotubes for photocatalytic applications
JP2010075898A (ja) 光触媒、光触媒の製造方法、光触媒機能性組成物
JP5358433B2 (ja) 複合体及びその製造方法並びにそれを含む組成物
JP2004305947A (ja) アナターゼ形酸化チタン光触媒担持シリカゲル及びその製法
KR20210014472A (ko) 가시광 활성 광촉매를 포함하는 공기정화용 창호
JP2000225349A (ja) フィルター
WO2008018178A1 (fr) Photocatalyseur, son procédé de production, dispersion de photocatalyseur contenant le photocatalyseur et composition de revêtement de photocatalyseur
JPH105598A (ja) 光触媒粉体およびそれを用いた光触媒体ならびにそれらの製造方法、それらを用いた環境浄化方法
JP2006007156A (ja) 機能性コーティング膜およびその製造方法
JP2008044850A (ja) 酸化珪素膜で被覆された光触媒を含む抗菌消臭噴霧液
JP2006116449A (ja) 光触媒繊維、それから誘導される多孔性光触媒繊維

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680035429.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007538653

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12088527

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006782664

Country of ref document: EP

Ref document number: 1020087009615

Country of ref document: KR