WO2007036978A1 - ピーク抑圧機能を有する無線送信装置 - Google Patents

ピーク抑圧機能を有する無線送信装置 Download PDF

Info

Publication number
WO2007036978A1
WO2007036978A1 PCT/JP2005/017693 JP2005017693W WO2007036978A1 WO 2007036978 A1 WO2007036978 A1 WO 2007036978A1 JP 2005017693 W JP2005017693 W JP 2005017693W WO 2007036978 A1 WO2007036978 A1 WO 2007036978A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
suppression
unit
threshold
level
Prior art date
Application number
PCT/JP2005/017693
Other languages
English (en)
French (fr)
Inventor
Kazuo Nagatani
Hiroyoshi Ishikawa
Nobukazu Fudaba
Hajime Hamada
Tokuro Kubo
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to EP20050787756 priority Critical patent/EP1940058B1/en
Priority to JP2007537479A priority patent/JP4409603B2/ja
Priority to PCT/JP2005/017693 priority patent/WO2007036978A1/ja
Publication of WO2007036978A1 publication Critical patent/WO2007036978A1/ja
Priority to US12/076,825 priority patent/US7804914B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2623Reduction thereof by clipping
    • H04L27/2624Reduction thereof by clipping by soft clipping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70706Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation with means for reducing the peak-to-average power ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA

Definitions

  • Wireless transmission device having peak suppression function
  • the present invention relates to a radio transmission apparatus having a peak suppression function in multicarrier transmission such as W-CDMA, and more particularly to a radio transmission apparatus having a plurality of peak suppression apparatuses.
  • a multi-carrier transmission scheme such as W—CDMA enables data transmission with high transmission efficiency by multiplex transmission using a plurality of subcarriers (carrier waves).
  • PAPR Peak-to-Average Power Ratio
  • the transmission power amplifier has high linearity over a wide dynamic range in order to prevent nonlinear distortion of the transmitted signal during signal amplification and power leakage to the nearby channel.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless transmission device including a conventional peak suppressing device.
  • peak suppression is performed in two stages.
  • the input transmission signal is input via the delay unit 10 to the suppression unit 12 that performs the first-stage peak suppression processing. Further, a part of the transmission signal is branched before being input to the delay unit 10, and a suppression coefficient necessary for the first stage peak suppression processing in the suppression unit 12 is obtained.
  • the replica generation unit 14 generates a replica signal similar to the modulation signal by oversampling the transmission signal, converting the frequency through a band limiting filter, and combining a plurality of subcarriers.
  • the peak detection unit 16 determines an envelope (Envelope: envelope amplitude) of the output signal (replica signal) from the replica generation unit 14 for each predetermined section (one symbol or a plurality of symbols). Compared with threshold A, if there is an envelope exceeding threshold A, coefficient calculator 18 obtains a suppression coefficient for suppressing the maximum peak to threshold A. For example, the suppression coefficient is determined as the value AZ maximum peak Pmax. If there is no envelope exceeding the threshold! /, Value A, 1 is output as the suppression coefficient.
  • the suppression unit 12 that performs the first-stage peak suppression processing multiplies the transmission signal by the suppression coefficient obtained by the coefficient calculation unit 18 to suppress the peak of the transmission signal.
  • FIG. 2 is a diagram showing a transmission signal with peak suppression.
  • FIG. 2 (a) is an example of a transmission signal in a predetermined section in which the peak is suppressed in the preceding stage
  • FIG. 2 (b) is an example of a transmission signal in the predetermined section in which peak suppression is performed in the subsequent stage. As shown in Fig.
  • the transmission signal of the predetermined section is multiplied by the suppression coefficient, so that the entire transmission signal of the predetermined section Amplitude level, ie, all envelopes EnvO to Env3 within a given interval are compressed based on the maximum peak (peak value of Env3)
  • the output signal from the suppression unit 12 is input to the modulation signal generation unit 20, and a modulation signal (QPSK signal) is generated.
  • the modulated signal is input via the delay unit 30 to the suppression unit 32 that performs second-stage peak suppression.
  • a part of the modulation signal is branched before being input to the delay unit 30, and a suppression coefficient necessary for second-stage peak suppression in the suppression unit 32 is obtained.
  • the peak detector 34 compares the envelope of the modulated signal with a predetermined threshold B, and if there is an envelope exceeding the threshold B, the coefficient calculator 36 determines that peak as the threshold B.
  • the suppression coefficient for suppressing is obtained. Note that threshold value B is lower than threshold value A.
  • the second-stage peak suppression suppresses only envelopes exceeding threshold B, a suppression coefficient for each envelope is obtained.
  • the suppression unit 32 that performs the second-stage peak suppression processing applies the suppression coefficient obtained by the coefficient calculation unit 36 to each envelope of the transmission signal. Multiply the loop to suppress the peak of the transmission signal.
  • the output signal from the suppression unit 32 is input to the DA conversion 40, subjected to amplification processing by a power amplifier (not shown), and transmitted from the antenna.
  • peak suppression processing is performed before the transmission signal is modulated, the frequency spectrum of the transmission signal does not widen, but the EVM (Error Vector Magniude), which indicates a deviation from the ideal waveform on the IQ plane, deteriorates.
  • EVM Error Vector Magniude
  • peak suppression processing is performed after signal modulation, the degradation of EVM is suppressed.
  • an object of the present invention is to provide a wireless transmission device capable of performing a plurality of stages of peak suppression processing with a simpler circuit configuration.
  • a first configuration of the wireless transmission device of the present invention for achieving the object of the present invention is a radio transmission device having a peak suppression function for performing peak suppression processing on an input signal in at least two stages. For a plurality of envelopes included in a predetermined section of the input signal, a first peak detector that detects the first peak that is the maximum of the peaks that exceed the first threshold, and the input signal A second peak detector for detecting a second peak exceeding a second threshold value for each envelope, and the input based on the first peak.
  • a first peak suppression unit that suppresses the predetermined section of the force signal by a first level
  • a modulation signal generation unit that generates a modulation signal obtained by modulating the input signal suppressed by the first peak suppression unit
  • a second peak suppression unit configured to suppress the second peak by a second level for each envelope of the modulation signal based on the first level and the second peak.
  • a second configuration of the wireless communication apparatus is the above first configuration, wherein the first threshold is higher than the second threshold.
  • One peak is a suppression level for ensuring that the first threshold does not exceed the value
  • the second level is each of the modulation signals after being suppressed by the first suppression unit. It is a suppression level for preventing the peak of the envelope from exceeding the second threshold value.
  • the second peak suppressing unit may generate the second peak based on the first level. Correction is performed, and a suppression level for the corrected second peak not exceeding the value of the second threshold is obtained as the second level.
  • the second peak suppression unit is configured such that the corrected second peak exceeds the second threshold. If not, the corrected second peak is not suppressed.
  • the second peak detection unit does not detect the second peak, The operation of the second peak suppressing unit is stopped.
  • a sixth configuration of the wireless communication apparatus of the present invention includes a power measurement unit that measures the power of the input signal in any of the first to fourth configurations, wherein the power measurement unit includes: When the measured power does not exceed a predetermined threshold, the operations of the first peak suppressing unit and the second peak suppressing unit are stopped.
  • a seventh configuration of the wireless communication apparatus of the present invention includes a power measurement unit that measures power of the modulated signal in any of the first to fourth configurations, wherein the power measurement unit includes: When the measured power does not exceed a predetermined threshold, the first peak suppressor and the first peak suppressor The operation of the second peak suppressor is stopped.
  • the present invention it is possible to combine multiple stages of peak suppression processing into one circuit configuration, and to simplify the configuration of the peak suppression device.
  • multiple stages of peak processing can be performed with multiple stages of delay processing using one stage of delay processing, enabling high-speed processing.
  • the power consumption can be reduced by stopping the operation of the peak suppressor.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless transmission device including a conventional peak suppressing device.
  • FIG. 2 is a diagram showing a peak-suppressed transmission signal.
  • FIG. 3 is a diagram showing a first configuration example of a wireless transmission device including a peak suppression device in an embodiment of the present invention.
  • FIG. 4 is a diagram showing a second configuration example of a wireless transmission device including a peak suppression device in an embodiment of the present invention.
  • FIG. 5 is a diagram showing a third configuration example of a wireless transmission device including a peak suppression device in an embodiment of the present invention.
  • 10 delay unit
  • 12 suppression unit
  • 14 replica generation unit
  • 16 peak detection unit
  • 16 ' envelope detection unit
  • 17A threshold A comparison unit
  • 17B threshold B comparison
  • 18 Coefficient calculation unit
  • 19 Comparison determination unit
  • 20 Modulation signal generation unit
  • 30 Delay unit
  • 32 Suppression unit
  • 34 Peak detection unit
  • 36 Coefficient calculation unit
  • 36 ' Coefficient correction unit
  • 40 DA converter
  • 50 Power measurement unit
  • FIG. 3 is a diagram illustrating a first configuration example of a radio transmission apparatus including a peak suppression apparatus according to an embodiment of the present invention. 3, the same or similar components as those in FIG. 1 are denoted by the same reference numerals.
  • the input transmission signal is input via the delay unit 10 to the suppression unit 12 that performs the first-stage peak suppression processing. A part of the transmission signal is branched before being input to the delay unit 10 and input to the replica generation unit 14. Similar to the configuration of FIG. 1, the replica generation unit 14 generates a replica signal similar to the modulation signal by oversampling the transmission signal and performing frequency conversion through a band limiting filter.
  • the envelope detection unit 16 ' is a function of the peak detection unit 16 in FIG. 1, and obtains an envelope included in a transmission signal in a predetermined section.
  • the obtained envelopes are compared with the threshold A comparison unit 17A and the value B comparison unit 17B, respectively, with the threshold value A and the comparison value B.
  • Threshold A and threshold B are higher than threshold B as shown in Figure 2.
  • the threshold A comparison unit 17A detects an envelope whose peak is larger than the threshold A
  • the threshold B comparison unit 17B detects an envelope whose peak is larger than the threshold B.
  • the envelope detection unit 16 ′ and the threshold A comparison unit 17A realize the same function as the peak detection unit 16 for peak suppression in the first stage in FIG.
  • the envelope 16 and the threshold B comparison unit 17B are similar to the function of the peak detection unit 34 for second-stage peak suppression in FIG. 1, but the peak detection unit 34 in FIG. Compared with the threshold! / Threshold value B for the peak-suppressed signal in the first stage, the peak exceeding the threshold value B is detected.
  • the first stage peak suppression processing is performed, and the difference is that the threshold for the signal is compared with the value B to detect the peak. A characteristic configuration of the present invention resulting from this difference will be described later.
  • the coefficient calculator 18A suppresses the maximum peak and suppresses it to the value A. Ask for.
  • the suppression coefficient is obtained, for example, as the threshold AZ maximum peak Pmax. If there is no envelope exceeding the threshold A, 1 is output as the suppression coefficient. That is, the coefficient calculation unit 18A in FIG. 3 has the same function as the coefficient calculation unit 18 in FIG. Then, the suppression unit 12 that performs the first-stage peak suppression processing multiplies the transmission signal by the suppression coefficient obtained by the coefficient calculation unit 18A, and suppresses the peak of the transmission signal.
  • the coefficient calculation unit 18B in FIG. 3 and the coefficient calculation unit 36 in FIG. 1 are both similar in that they obtain a suppression coefficient for an envelope that exceeds the threshold B, and the threshold A comparison described above. Similarly to the difference between the unit 17A and the threshold B comparison unit 17B, the coefficient calculation unit 36 in FIG. 1 obtains the suppression coefficient of the envelope after the peak suppression in the first stage, whereas in FIG. The difference is that the coefficient calculation unit 18B calculates the suppression coefficient of the envelope before the peak suppression processing in the first stage. In the configuration of the present invention in FIG. 3, the coefficient calculation unit 18B obtains the suppression coefficient for the envelope before the first-stage peak suppression processing, whereby the next comparison judgment unit 19 and suppression coefficient correction unit 36 ′ Processing is required.
  • the suppression coefficient for the second-stage peak suppression processing must be obtained with respect to the envelope of the transmission signal subjected to the first-stage peak suppression processing. Therefore, the coefficient calculation unit 18B in FIG. For the obtained suppression coefficient, take into account the peak suppression in the first stage and provide a correction. For example, the suppression coefficient correction unit 36 ′ uses the suppression coefficient obtained by the coefficient calculation unit 18B.
  • the threshold V and the value B are exceeded before the first-stage peak suppression processing, but the threshold is exceeded after the first-stage peak suppression processing.
  • the coefficient calculation unit 18 obtains the suppression coefficient BZP ′ 2 for the peak P ′ 2 of Env2, and the above ( Suppression corrected by equation (1) The peak is suppressed by the pressure coefficient.
  • the comparison / determination unit 19 determines whether or not each envelope is suppressed to a threshold value B or less by the first peak suppression process.
  • the comparison / determination unit 19 instructs the suppression coefficient correction unit 36 ′ to obtain a suppression coefficient for the corrected threshold value ⁇ ⁇ ⁇ based on the above equation (1).
  • the peak after the first peak suppression processing is threshold and exceeds the value ⁇ , so there is no need to suppress the peak. Accordingly, the comparison / determination unit 19 instructs the suppression coefficient correction unit 36 ′ to set the suppression coefficient to 1 with the suppression coefficient set to 1.
  • the left side and the right side are values obtained by the coefficient calculation units 18A and 18B, respectively. Accordingly, the comparison / determination unit 19 compares the suppression coefficients obtained by the coefficient calculation units 18A and 18B, and determines the necessity of the second-stage peak suppression process.
  • the suppression coefficient obtained by the suppression coefficient correction unit 36 ′ in FIG. 3 is the same as that of the coefficient calculation unit 36 in FIG. Then, the suppression unit 32 that performs the second-stage peak suppression processing multiplies each envelope of the transmission signal by the suppression coefficient obtained by the suppression coefficient correction unit 36 ′, and suppresses the peak of the transmission signal.
  • the calculation circuit for the suppression coefficient for each of the first peak suppression processing and the second peak suppression processing can be combined into one, and the envelope Since the detector 16 ′ can be shared, the circuit configuration for peak suppression processing can be reduced in size.
  • the delay part for the second peak suppression process (reference numeral 30 in FIG. 1) is not required, and the delay for the second peak suppression process can be reduced, reducing the circuit scale and transmitting process. High speed is achieved.
  • FIG. 4 is a diagram showing a second configuration example of the wireless transmission device including the peak suppression device in the embodiment of the present invention.
  • the configuration example shown below exemplifies a configuration in which the operation is stopped when peak suppression is not necessary in order to reduce the power consumption of the peak suppression device.
  • Fig 4 The second configuration example shown in FIG. 3 is surrounded by a dotted line in the first configuration example shown in FIG. 3 when the threshold B comparison unit 17B force S threshold is not detected and a peak exceeding the value B is not detected. Stop the operation of the components of the peak suppressor included in part F. Specifically, the clock supply to each component is stopped and the operation is stopped.
  • threshold B comparison 17B does not detect a peak exceeding threshold B, it means that the transmitted signal before peak suppression is threshold and does not have a peak exceeding value B. There is no need to suppress the peak. In other words, the power consumption can be reduced by stopping the operation of other components for calculating the suppression coefficient that does not need to be calculated.
  • FIG. 5 is a diagram showing a third configuration example of the wireless transmission device including the peak suppression device in the embodiment of the present invention.
  • the power measuring unit 50 power is obtained by measuring the power of the transmission signal itself. If the measured power is lower than the predetermined threshold value, it is included in the portion G surrounded by the dotted line in the figure. The operation of the peak suppressor component is stopped. Similar to the second configuration example, the clock supply to each component is preferably stopped.
  • the size of the peak can be roughly determined by measuring the power of the transmission signal.
  • a power threshold corresponding to a peak that does not reliably exceed threshold B shown in Figure 2 is set in advance, and if the measured power is lower than the threshold, the peak exceeding threshold B is detected. Judgment is not made and the operation of the components of the peak suppressor is stopped. As a result, the power consumption can be reduced as in the second configuration example.
  • 5A shows the case where the power measurement unit 50 measures the power of the transmission signal before the peak suppression processing
  • FIG. 5B shows the case where the power of the transmission signal after the peak suppression processing is measured. This is an example of the configuration.
  • the transmission signal (modulated signal) after peak suppression processing is peak suppressed, so the power that the peak suppression power is decreasing is small, and the decrease is small. It is also possible to determine the presence or absence of peaks that exceed threshold B by measuring power.
  • the present invention can be applied to a radio transmission apparatus of a multicarrier transmission scheme, and the power efficiency of the radio transmission apparatus can be improved, and power leakage outside the band can be prevented.

Abstract

 本発明の無線送信装置は、入力信号に対するピーク抑圧処理を少なくとも2段階で実施するピーク抑圧機能を有する無線送信装置であって、入力信号の所定区間に含まれる複数のエンベロープに対して、第一のしきい値を超えるピークのうちの最大ピークである第一のピークを検出する第一のピーク検出部と、入力信号のエンベロープ毎に第二のしきい値を超える第二のピークを検出する第二のピーク検出部と、第一のピークに基づいて入力信号の所定区間を第一のレベルだけ抑圧する第一のピーク抑圧部と、第一のピーク抑圧部により抑圧された入力信号を変調した変調信号を生成する変調信号生成部と、第一のレベルと前記第二のピークに基づいて、変調信号の各エンベロープ毎に第二のピークを第二のレベルだけ抑圧する第二のピーク抑圧部とを備える。

Description

明 細 書
ピーク抑圧機能を有する無線送信装置
技術分野
[0001] 本発明は、 W— CDMAのようなマルチキャリア伝送におけるピーク抑圧機能を有す る無線送信装置に関し、特に、ピーク抑圧装置を複数持つ無線送信装置に関する。 背景技術
[0002] W— CDMAのようなマルチキャリア伝送方式は、複数のサブキャリア (搬送波)を用 いた多重伝送により、高い伝送効率によるデータ送信が可能となる。このとき、複数 のサブキャリアの位相が一致すると、 PAPR(Peak- to- Average Power Ratio)が大きく なり、すなわち平均送信電力と比較してピーク送信電力が著しく大きくなつてしまう。 P APRの大き 、信号を送信する場合、信号増幅における送信信号の非線形歪みや近 接チャネルへの電力漏洩を防止するために、送信電力増幅器に対して、広いダイナ ミックレンジにわたる高 、線形性が要求される。
[0003] しかし、増幅器の線形性と効率は一般に相反する特性であり、広 、ダイナミックレン ジにわたつて高い線形性を確保すると、電力効率が下がり、通信装置の消費電力が 増大する。そのため、従来から、 PAPRを抑制するために、ピーク送信電力を抑圧す るピーク抑圧処理が実施されて 、る。
[0004] 図 1は、従来のピーク抑圧装置を含む無線送信装置の構成例を示す図である。図 1の構成では、 2段階でピーク抑圧を実施する。具体的には、入力される送信信号は 、遅延部 10を介して第一段階のピーク抑圧処理を実施する抑圧部 12に入力される 。また、送信信号の一部は、遅延部 10に入力される前に分岐され、抑圧部 12での第 一段階ピーク抑圧処理に必要な抑圧係数が求められる。具体的には、レプリカ生成 部 14は、送信信号をオーバーサンプリングし、帯域制限フィルタを通して周波数変 換し、サブキャリアを複数合成するなどにより、変調信号と同様のレプリカ信号を生成 する。
[0005] ピーク検出部 16は、レプリカ生成部 14からの出力信号 (レプリカ信号)のェンベロ ープ (Envelope:包絡線振幅)を所定区間(1シンボル又は複数シンボル)毎に所定し きい値 Aと比較し、係数演算部 18は、しきい値 Aを超えるエンベロープがある場合は 、その最大ピークをしきい値 Aまで抑圧するための抑圧係数を求める。抑圧係数は、 例えばしき 、値 AZ最大ピーク Pmaxとして求められる。しき!/、値 Aを超えるェンベロ ープがない場合は、抑圧係数として 1が出力される。第一段階のピーク抑圧処理を実 施する抑圧部 12は、係数演算部 18により求められた抑圧係数を送信信号に乗算し 、送信信号のピークを抑圧する。
[0006] 図 2は、ピーク抑圧された送信信号を示す図である。図 2 (a)は、前段のピーク抑圧 された所定区間の送信信号の例、図 2 (b)は、後段でピーク抑圧された所定区間の 送信信号の例である。図 2 (a)〖こ示すように、複数のエンベロープ EnvO〜Env3のう ち、第一段階のピーク抑圧処理により、しきい値 Aを超えるエンベロープ (EnvO、 En vl、 Env3)のピーク(PO、 Pl、 P3)うちの最大ピーク Pmaxを有するエンベロープ(En v3)がしきい値 Aを超えないように、所定区間の送信信号に抑圧係数が乗算されるこ とにより、所定区間の送信信号全体の振幅レベル、すなわち、所定区間内のェンべ ロープ EnvO〜Env3すべてが最大ピーク(Env3のピーク値)に基づいて圧縮される
[0007] 抑圧部 12から出力信号は変調信号生成部 20に入力され、変調信号 (QPSK信号 )が生成される。変調信号は、遅延部 30を介して第二段階のピーク抑圧を実施する 抑圧部 32に入力される。変調信号の一部は、遅延部 30に入力される前に分岐され 、抑圧部 32での第二段階ピーク抑圧に必要な抑圧係数が求められる。具体的には、 ピーク検出部 34は、変調信号のエンベロープを所定しきい値 Bと比較し、係数演算 部 36は、しきい値 Bを超えるエンベロープがある場合は、そのピークをしきい値 Bまで 抑圧するための抑圧係数を求める。なお、しきい値 Bはしきい値 Aより低い。また、第 二段階のピーク抑圧は、しきい値 Bを超えるエンベロープのみを抑圧するため、ェン ベロープ毎の抑圧係数が求められる。抑圧係数は、エンベロープ毎に、例えばしき い値 BZピーク Piとして求められる(i=0、 1、 2· ··、第一段階のピーク抑圧された後の EnvO〜Env3の各ピークをピーク PO〜P3とする)。しき!/、値 Bを超えな!/、ェンベロー プについては、抑圧係数として 1が出力される。第二段階のピーク抑圧処理を実施す る抑圧部 32は、係数演算部 36により求められた抑圧係数を送信信号の各ェンベロ ープに乗算し、送信信号のピークを抑圧する。
[0008] 図 2 (b)に示されるように、第二段階のピーク抑圧処理により、しきい値 Bを超えるェ ンべロープのみについて、そのピークがしきい値 Bを超えないように、ピーク抑圧され る。しきい値 Bを超えるエンベロープ EnvO、 Envl、 Env3について、エンベロープ毎 に抑圧係数が求められ、それぞれのピーク PO、 Pl、 P3がしきい値 Bまで抑圧される
[0009] 抑圧部 32からの出力信号は、 DA変翻40に入力され、図示されない電力増幅 器による増幅処理などが施された後、アンテナより送信される。
送信信号の変調前にピーク抑圧処理すると、送信信号の周波数スペクトラムは広が らないが、 IQ平面上における理想波形からのずれを示す EVM(Error Vector Magnit ude)が劣化するという特性があり、送信信号の変調後にピーク抑圧処理すると、 EV Mの劣化は抑えられる力 周波数スペクトラムが広がるという特性がある。このため、 両者の特性を考慮し、ピーク抑圧の配分を最適化するため、上述したように、ピーク 抑圧処理を 2段階で行って ヽる。
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、図 2の従来構成では、複数回のピーク抑圧処理を独立で実施してい るため、複数回のピーク検出処理など重複した処理を行う必要があり、また、複数回 の遅延処理により送信信号の出力遅延を招く。
[0011] そこで、本発明の目的は、より簡単な回路構成により、複数段階のピーク抑圧処理 を実施できる無線送信装置を提供することにある。
課題を解決するための手段
[0012] 本発明の目的を達成するための本発明の無線送信装置の第一の構成は、入力信 号に対するピーク抑圧処理を少なくとも 2段階で実施するピーク抑圧機能を有する無 線送信装置において、入力信号の所定区間に含まれる複数のエンベロープに対し て、第一のしきい値を超えるピークのうちの最大ピークである第一のピークを検出す る第一のピーク検出部と、入力信号のエンベロープ毎に第二のしきい値を超える第 二のピークを検出する第二のピーク検出部と、前記第一のピークに基づいて前記入 力信号の前記所定区間を第一のレベルだけ抑圧する第一のピーク抑圧部と、前記 第一のピーク抑圧部により抑圧された入力信号を変調した変調信号を生成する変調 信号生成部と、前記第一のレベルと前記第二のピークに基づいて、前記変調信号の 各エンベロープ毎に前記第二のピークを第二のレベルだけ抑圧する第二のピーク抑 圧部とを備えることを特徴とする。
[0013] 本発明の無線通信装置の第二の構成は、上記第一の構成において、前記第一の しきい値は前記第二のしきい値より高ぐ前記第一のレベルは、前記第一のピークが 前記第一のしき 、値を超えな 、ようにするための抑圧レベルであり、前記第二のレべ ルは、前記第一の抑圧部により抑圧された後の変調信号の各エンベロープのピーク が前記第二のしき 、値を超えな 、ようにするための抑圧レベルであることを特徴とす る。
[0014] 本発明の無線通信装置の第三の構成は、上記第一又は第二の構成において、前 記第二のピーク抑圧部は、前記第一のレベルに基づいて前記第二のピークを補正し 、当該補正された第二のピークが前記第二のしき 、値を超えな 、ための抑圧レベル を前記第二のレベルとして求めることを特徴とする。
[0015] 本発明の無線通信装置の第四の構成は、上記第三の構成において、前記第二の ピーク抑圧部は、前記補正された第二のピークが前記第二のしきい値を超えていな い場合は、当該補正された第二のピークを抑圧しないことを特徴とする。
[0016] 本発明の無線通信装置の第五の構成は、上記第一乃至第四の構成のいずれかに おいて、前記第二のピーク検出部は、前記第二のピークを検出しない場合、前記第 二のピーク抑圧部の動作を停止させることを特徴とする。
[0017] 本発明の無線通信装置の第六の構成は、上記第一乃至第四の構成のいずれかに おいて、前記入力信号の電力を測定する電力測定部を備え、前記電力測定部は、 測定電力が所定のしきい値を超えない場合、前記第一のピーク抑圧部及び前記第 二のピーク抑圧部の動作を停止させることを特徴とする。
[0018] 本発明の無線通信装置の第七の構成は、上記第一乃至第四の構成のいずれかに おいて、前記変調信号の電力を測定する電力測定部を備え、前記電力測定部は、 測定電力が所定のしきい値を超えない場合、前記第一のピーク抑圧部及び前記第 二のピーク抑圧部の動作を停止させることを特徴とする。
発明の効果
[0019] 本発明によれば、複数段のピーク抑圧処理を一つの回路構成にまとめることができ 、ピーク抑圧装置の構成を簡略ィ匕することができる。また、複数段の遅延処理を 1段 階の遅延処理で複数段のピーク抑圧処理が可能となり、高速処理が可能となる。
[0020] さらに、ピークが検出されない場合は、ピーク抑圧装置の動作を停止させることで消 費電力の低減することができる。
図面の簡単な説明
[0021] [図 1]従来のピーク抑圧装置を含む無線送信装置の構成例を示す図である。
[図 2]ピーク抑圧された送信信号を示す図である。
[図 3]本発明の実施の形態例におけるピーク抑圧装置を含む無線送信装置の第一 の構成例を示す図である。
[図 4]本発明の実施の形態例におけるピーク抑圧装置を含む無線送信装置の第二 の構成例を示す図である。
[図 5]本発明の実施の形態例におけるピーク抑圧装置を含む無線送信装置の第三 の構成例を示す図である。
符号の説明
[0022] 10 :遅延部、 12 :抑圧部、 14 :レプリカ生成部、 16 :ピーク検出部、 16':ェンベロ ープ検出部、 17A:しきい値 A比較部、 17B :しきい値 B比較部、 18 :係数演算部、 1 9 :比較判定部、 20 :変調信号生成部、 30 :遅延部、 32 :抑圧部、 34 :ピーク検出部 、 36 :係数演算部、 36':係数補正部、 40 : DA変換器、 50 :電力測定部
発明を実施するための最良の形態
[0023] 以下、図面を参照して本発明の実施の形態について説明する。しかしながら、かかる 実施の形態例が、本発明の技術的範囲を限定するものではない。
[0024] 図 3は、本発明の実施の形態例におけるピーク抑圧装置を含む無線送信装置の第 一の構成例を示す図である。図 3の各構成要素について、図 1の構成要素と同一又 は類似の構成要素については、同一の参照符号が付される。 [0025] 入力される送信信号は、遅延部 10を介して第一段階のピーク抑圧処理を実施する 抑圧部 12に入力される。また、送信信号の一部は、遅延部 10に入力される前に分 岐され、レプリカ生成部 14に入力される。レプリカ生成部 14は、図 1の構成と同様に 、送信信号をオーバーサンプリングし、帯域制限フィルタを通して周波数変換するな どして、変調信号と同様のレプリカ信号を生成する。
[0026] エンベロープ検出部 16 'は、図 1のピーク検出部 16の一機能であって、所定区間 の送信信号に含まれるエンベロープを求める。求められたエンベロープは、しきい値 A比較部 17Aとしき 、値 B比較部 17Bにお 、て、それぞれしき 、値 Aとしき 、値 Bと 比較される。しきい値 A及びしきい値 Bは、図 2に示されたように、しきい値 Aはしきい 値 Bより高い。
[0027] しきい値 A比較部 17Aは、ピークがしきい値 Aより大きいエンベロープを検出し、し きい値 B比較部 17Bは、ピークがしきい値 Bより大きいエンベロープを検出する。すな わち、エンベロープ検出部 16'としきい値 A比較部 17Aとにより、図 1における第一段 階のピーク抑圧のためのピーク検出部 16と同等の機能が実現される。一方、ェンべ ロープ 16,としきい値 B比較部 17Bとは、図 1における第二段階のピーク抑圧のため のピーク検出部 34の機能に類似するが、図 1のピーク検出部 34は、第一段階のピー ク抑圧された信号に対するしき!/ヽ値 Bとの比較を行 ヽ、しき ヽ値 Bを超えるピークを検 出するのに対し、図 3のしきい値 B比較部 17は、第一段階のピーク抑圧処理が実施 されて 、な 、信号に対するしき 、値 Bとの比較を行 、、ピークを検出する点で相違す る。この相違点に起因する本発明の特徴的な構成については後述する。
[0028] 係数演算部 18Aは、しきい値 A比較部 17Aのピーク検出に基づいて、しきい値 Aを 超えるエンベロープがある場合は、その最大ピークをしき 、値 Aまで抑圧するための 抑圧係数を求める。抑圧係数は、例えばしきい値 AZ最大ピーク Pmaxとして求めら れる。しきい値 Aを超えるエンベロープがない場合は、抑圧係数として 1が出力される 。すなわち、図 3の係数演算部 18Aは、図 1の係数演算部 18と同一の機能を有する 。そして、第一段階のピーク抑圧処理を実施する抑圧部 12は、係数演算部 18Aが 求めた抑圧係数を送信信号に乗算し、送信信号のピークを抑圧する。
[0029] 係数演算部 18Bは、しきい値 B比較部 17Bのピーク検出に基づいて、しきい値 Bを 超えるエンベロープそれぞれに対する抑圧係数を演算する。抑圧係数は、図 1のェ ンべロープ毎に、例えばしきい値 BZピーク P,iとして求められる(i=0、 1、 2· ··、第一 段階のピーク抑圧される前の EnvO〜Env3の各ピークをピーク P,0〜P,3とする)。 また、しきい値 Bを超えないエンベロープについては、抑圧係数として 1が出力される
[0030] 図 3の係数演算部 18Bと図 1の係数演算部 36は、ともにしきい値 Bを超えるェンべ ロープに対する抑圧係数を求める点で類似している力 上述のしきい値 A比較部 17 Aとしきい値 B比較部 17Bとの相違と同様に、図 1の係数演算部 36が第一段階のピ ーク抑圧された後のエンベロープの抑圧係数を求めるのに対し、図 3の係数演算部 1 8Bが第一段階のピーク抑圧処理される前のエンベロープの抑圧係数を求める点で 相違する。図 3の本発明の構成において、係数演算部 18Bが、第一段階のピーク抑 圧処理される前のエンベロープに対する抑圧係数を求めることにより、次の比較判定 部 19及び抑圧係数補正部 36 'の処理が必要となる。
[0031] 本来、第二段階のピーク抑圧処理のための抑圧係数は、第一段階のピーク抑圧処 理された送信信号のエンベロープに対して求めなければならないため、図 3の係数 演算部 18Bにより求められた抑圧係数に対して、第一段階のピーク抑圧分を考慮し て、補正をカ卩える。抑圧係数補正部 36'は、例えば、係数演算部 18Bが求めた抑圧 係数を
B/ (P' i X (AZPmax) )…(: L)
として求める。すなわち、第一段階のピーク抑圧処理前のピーク値 P' iに第一段階の 抑圧係数 (AZPmax)を乗算することで、第一段階のピーク抑圧処理後のピーク値 Pi に補正し、抑圧係数を修正する。
[0032] さらに、図 2のエンベロープ Env2のように、第一段階のピーク抑圧処理前ではしき V、値 Bを超えて 、るが、第一段階のピーク抑圧処理後ではしき 、値 Bを超えな 、ェン ベロープについて、本来、第二のピーク抑圧処理では、ピーク抑圧する必要はなぐ 抑圧係数として 1を出力する必要がある。しかしながら、第一段階のピーク抑圧処理 前ではしきい値 Bを超えているため、係数演算部 18は、抑圧係数を Env2のピーク P ' 2に対する抑圧係数 BZP' 2を求めてしまい、さらに上記(1)式により補正された抑 圧係数により、ピーク抑圧されてしまう。
[0033] このような不都合を回避するために、比較判定部 19は、各エンベロープが第一のピ ーク抑圧処理によりしきい値 B以下に抑圧されたかどうかを判定する。具体的には、
P' iX (A/Pmax) >Β · '· (2)
が成立すれば、第一のピーク抑圧処理後のピークがしきい値 Βを超えていることにな る。従って、比較判定部 19は、抑圧係数補正部 36'に、上記(1)式に基づいて、補 正されたしきい値 Βに対する抑圧係数を求めるよう指示する。上記(2)式が成立しな V、場合は、第一のピーク抑圧処理後のピークがしき 、値 Βを超えて 、な 、ことになる ので、ピーク抑圧する必要がない。従って、比較判定部 19は、抑圧係数は 1として、 抑圧係数補正部 36 'に、抑圧係数を 1とするように指示する。
[0034] 上記(2)式は、
A/Pmax>B/P' i · '· (3)
と変形でき、左辺及び右辺はそれぞれ係数演算部 18 A、 18Bが求める値である。従 つて、比較判定部 19は、係数演算部 18A、 18Bそれぞれが求める抑圧係数の大き さを比較し、第二段階のピーク抑圧処理の必要性を判定する。
[0035] 図 3の抑圧係数補正部 36'が求める抑圧係数は、図 1の係数演算部 36と同様とな る。そして、第二段階のピーク抑圧処理を実施する抑圧部 32は、抑圧係数補正部 3 6'により求められた抑圧係数を送信信号の各エンベロープに乗算し、送信信号のピ ークを抑圧する。
[0036] 上述した図 3の構成にすることにより、第一のピーク抑圧処理と第二のピーク抑圧処 理それぞれのための抑圧係数の演算回路を一つにまとめることでき、また、ェンベロ ープ検出部 16'を共通化することができるので、ピーク抑圧処理のための回路構成 を小型化することができる。また、第二のピーク抑圧処理のための遅延部(図 1の参 照符号 30)が不要となり、第二のピーク抑圧処理のための遅延を軽減することができ 、回路規模の縮小及び送信処理の高速化が達成される。
[0037] 図 4は、本発明の実施の形態例におけるピーク抑圧装置を含む無線送信装置の第 二の構成例を示す図である。以下に示す構成例は、ピーク抑圧装置の低消費電力 化のために、ピーク抑圧する必要ない場合は、動作を停止する構成を例示する。図 4 に示す第二の構成例は、上記図 3の第一の構成例において、しきい値 B比較部 17B 力 Sしき 、値 Bを超えるピークを検出しな ヽ場合に、図中点線で囲まれる部分 Fに含ま れるピーク抑圧装置の構成要素の動作を停止させる。具体的には、各構成要素に対 するクロック供給を停止し、動作を停止させる。しきい値 B比較 17Bがしきい値 Bを超 えるピークを検出しな 、と 、うことは、ピーク抑圧される前の送信信号がしき 、値 Bを 超えるピークを有していないことであり、ピーク抑圧する必要がない。すなわち、抑圧 係数を演算する必要がなぐ抑圧係数を演算するための他の構成要素の動作を停 止させることで、消費電力を低減させることができる。
[0038] 図 5は、本発明の実施の形態例におけるピーク抑圧装置を含む無線送信装置の第 三の構成例を示す図である。図 5に示す第三の構成例においては、電力測定部 50 力 送信信号の電力そのものを測定により求め、測定電力が所定のしきい値より低い 場合は、図中点線で囲まれる部分 Gに含まれるピーク抑圧装置の構成要素の動作を 停止させる。第二の構成例と同様に、好ましくは、各構成要素に対するクロック供給 が停止される。
[0039] 送信信号の電力はピーク値と相関するので、送信信号の電力を測定することで、ピ ークの大きさをおおよそ判別することができる。図 2に示すしきい値 Bを確実に超えな いピークに対応する電力のしきい値をあらかじめ設定し、測定電力が当該しきい値よ り低い場合は、しきい値 Bを超えるピークは検出されないと判断し、ピーク抑圧装置の 構成要素の動作を停止させる。これにより、第二の構成例と同様に、消費電力の低 減を図ることができる。なお、図 5 (a)は、電力測定部 50は、ピーク抑圧処理前の送 信信号の電力を測定し、図 5 (b)は、ピーク抑圧処理後の送信信号の電力を測定す る場合の構成例である。図 5 (b)において、ピーク抑圧処理後の送信信号 (変調信号 )は、ピーク抑圧されているので、ピーク抑圧分電力は低下している力 その低下分 はわずかであり、ピーク抑圧処理後の電力を測定することによつても、しきい値 Bを超 えるピークの有無を判定可能である。
産業上の利用可能性
[0040] 本発明は、マルチキャリア伝送方式の無線送信装置に適用可能であり、無線送信 装置の電力効率向上が実現され、帯域外への電力漏洩を防止することができる。

Claims

請求の範囲
[1] 入力信号に対するピーク抑圧処理を少なくとも 2段階で実施するピーク抑圧機能を 有する無線送信装置において、
入力信号の所定区間に含まれる複数のエンベロープに対して、第一のしき ヽ値を 超えるピークのうちの最大ピークである第一のピークを検出する第一のピーク検出部 と、
入力信号のエンベロープ毎に第二のしきい値を超える第二のピークを検出する第 二のピーク検出部と、
前記第一のピークに基づいて前記入力信号の前記所定区間を第一のレベルだけ 抑圧する第一のピーク抑圧部と、
前記第一のピーク抑圧部により抑圧された入力信号を変調した変調信号を生成す る変調信号生成部と、
前記第一のレベルと前記第二のピークに基づいて、前記変調信号のエンベロープ 毎に前記第二のピークを第二のレベルだけ抑圧する第二のピーク抑圧部とを備える ことを特徴とする無線送信装置。
[2] 請求項 1において、
前記第一のしきい値は前記第二のしきい値より高ぐ
前記第一のレベルは、前記第一のピークが前記第一のしき 、値を超えな 、ように するための抑圧レベルであり、
前記第二のレベルは、前記第一の抑圧部により抑圧された後の変調信号の各ェン ベロープのピークが前記第二のしき 、値を超えな 、ようにするための抑圧レベルであ ることを特徴とする無線送信装置。
[3] 請求項 1又は 2において、
前記第二のピーク抑圧部は、前記第一のレベルに基づいて前記第二のピークを補 正し、当該補正された第二のピークが前記第二のしきい値を超えないための抑圧レ ベルを前記第二のレベルとして求めることを特徴とする無線送信装置。
[4] 請求項 3において、
前記第二のピーク抑圧部は、前記補正された第二のピークが前記第二のしきい値 を超えて 、な 、場合は、当該補正された第二のピークを抑圧しな 、ことを特徴とする 無線通信装置。
[5] 請求項 1乃至 4のいずれかにおいて、
前記第二のピーク検出部は、前記第二のピークを検出しない場合、前記第二のピ ーク抑圧部の動作を停止させることを特徴とする無線通信装置。
[6] 請求項 1乃至 4のいずれかにおいて、
前記入力信号の電力を測定する電力測定部を備え、
前記電力測定部は、測定電力が所定のしきい値を超えない場合、前記第一のピー ク抑圧部及び前記第二のピーク抑圧部の動作を停止させることを特徴とする無線通 信装置。
[7] 請求項 1乃至 4のいずれかにおいて、
前記変調信号の電力を測定する電力測定部を備え、
前記電力測定部は、測定電力が所定のしきい値を超えない場合、前記第一のピー ク抑圧部及び前記第二のピーク抑圧部の動作を停止させることを特徴とする無線通 信装置。
PCT/JP2005/017693 2005-09-27 2005-09-27 ピーク抑圧機能を有する無線送信装置 WO2007036978A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20050787756 EP1940058B1 (en) 2005-09-27 2005-09-27 Radio transmission device having peak suppression function
JP2007537479A JP4409603B2 (ja) 2005-09-27 2005-09-27 ピーク抑圧機能を有する無線送信装置
PCT/JP2005/017693 WO2007036978A1 (ja) 2005-09-27 2005-09-27 ピーク抑圧機能を有する無線送信装置
US12/076,825 US7804914B2 (en) 2005-09-27 2008-03-24 Radio transmission apparatus having peak suppression function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/017693 WO2007036978A1 (ja) 2005-09-27 2005-09-27 ピーク抑圧機能を有する無線送信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/076,825 Continuation US7804914B2 (en) 2005-09-27 2008-03-24 Radio transmission apparatus having peak suppression function

Publications (1)

Publication Number Publication Date
WO2007036978A1 true WO2007036978A1 (ja) 2007-04-05

Family

ID=37899417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017693 WO2007036978A1 (ja) 2005-09-27 2005-09-27 ピーク抑圧機能を有する無線送信装置

Country Status (4)

Country Link
US (1) US7804914B2 (ja)
EP (1) EP1940058B1 (ja)
JP (1) JP4409603B2 (ja)
WO (1) WO2007036978A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047874A1 (fr) * 2006-10-19 2008-04-24 Nec Corporation Dispositif de génération de signal, procédé et son programme dans un système de transmission par hyperfréquences
JP2008103881A (ja) * 2006-10-18 2008-05-01 Hitachi Communication Technologies Ltd ピークファクタ低減装置およびベースバンド信号処理装置
JP2010016626A (ja) * 2008-07-03 2010-01-21 Fujitsu Ltd ピーク抑圧復元方法、送信装置、受信装置、およびピーク抑圧復元システム
JP2010530678A (ja) * 2007-06-20 2010-09-09 アルカテル−ルーセント 側波帯およびアップサンプリングを使用するofdmクリッピング
US10904060B2 (en) 2018-08-31 2021-01-26 Fujitsu Limited Peak suppression circuit, peak suppression method, and transmitter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197181B2 (en) 2008-05-12 2015-11-24 Broadcom Corporation Loudness enhancement system and method
US9373339B2 (en) 2008-05-12 2016-06-21 Broadcom Corporation Speech intelligibility enhancement system and method
JP5849677B2 (ja) * 2011-12-15 2016-02-03 船井電機株式会社 音声出力装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168931A (ja) * 2001-12-04 2003-06-13 Nec Corp 歪補償回路
EP1391996A2 (en) 2002-08-22 2004-02-25 Nec Corporation Amplitude limiting circuit and CDMA communication apparatus
JP2004064711A (ja) * 2002-07-31 2004-02-26 Matsushita Electric Ind Co Ltd マルチキャリア送信信号のピーク抑圧方法、ピーク抑圧機能をもつマルチキャリア送信信号生成回路、適応ピークリミッタ、ベースバンド信号処理用lsiおよび無線送信装置
WO2004019540A2 (en) 2002-08-26 2004-03-04 Texas Instruments Incorporated Crest factor reduction processor for wireless communications
JP2004349941A (ja) * 2003-05-21 2004-12-09 Nec Saitama Ltd 送信装置、無線基地局及びクリッピング方法
JP2005294996A (ja) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd マルチキャリア信号送信装置、無線通信装置及びマルチキャリア信号送信方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6535846B1 (en) * 1997-03-19 2003-03-18 K.S. Waves Ltd. Dynamic range compressor-limiter and low-level expander with look-ahead for maximizing and stabilizing voice level in telecommunication applications
US6236864B1 (en) * 1998-11-27 2001-05-22 Nortel Networks Limited CDMA transmit peak power reduction
US6449302B2 (en) * 2000-04-19 2002-09-10 Powerwave Technologies, Inc. System and method for peak power reduction in spread spectrum communications systems
US6888393B2 (en) * 2002-09-04 2005-05-03 Hitachi Kokusai Electric, Inc. Amplitude limiting apparatus and multi-carrier signal generating apparatus
JP4287225B2 (ja) * 2003-09-18 2009-07-01 株式会社日立国際電気 送信機
US7542736B2 (en) * 2005-07-26 2009-06-02 M/A-Com, Inc. Techniques to decrease signal amplitude peak-to-average ratio in a wireless communications system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168931A (ja) * 2001-12-04 2003-06-13 Nec Corp 歪補償回路
JP2004064711A (ja) * 2002-07-31 2004-02-26 Matsushita Electric Ind Co Ltd マルチキャリア送信信号のピーク抑圧方法、ピーク抑圧機能をもつマルチキャリア送信信号生成回路、適応ピークリミッタ、ベースバンド信号処理用lsiおよび無線送信装置
EP1391996A2 (en) 2002-08-22 2004-02-25 Nec Corporation Amplitude limiting circuit and CDMA communication apparatus
WO2004019540A2 (en) 2002-08-26 2004-03-04 Texas Instruments Incorporated Crest factor reduction processor for wireless communications
JP2004349941A (ja) * 2003-05-21 2004-12-09 Nec Saitama Ltd 送信装置、無線基地局及びクリッピング方法
JP2005294996A (ja) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd マルチキャリア信号送信装置、無線通信装置及びマルチキャリア信号送信方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103881A (ja) * 2006-10-18 2008-05-01 Hitachi Communication Technologies Ltd ピークファクタ低減装置およびベースバンド信号処理装置
WO2008047874A1 (fr) * 2006-10-19 2008-04-24 Nec Corporation Dispositif de génération de signal, procédé et son programme dans un système de transmission par hyperfréquences
US8218521B2 (en) 2006-10-19 2012-07-10 Nec Corporation Signal generation device and signal generation method and program thereof in wireless transmission system
JP5168584B2 (ja) * 2006-10-19 2013-03-21 日本電気株式会社 無線伝送システムにおける信号生成装置及び方法並びにそのプログラム
JP2010530678A (ja) * 2007-06-20 2010-09-09 アルカテル−ルーセント 側波帯およびアップサンプリングを使用するofdmクリッピング
JP2010016626A (ja) * 2008-07-03 2010-01-21 Fujitsu Ltd ピーク抑圧復元方法、送信装置、受信装置、およびピーク抑圧復元システム
US10904060B2 (en) 2018-08-31 2021-01-26 Fujitsu Limited Peak suppression circuit, peak suppression method, and transmitter

Also Published As

Publication number Publication date
EP1940058B1 (en) 2013-11-13
JPWO2007036978A1 (ja) 2009-04-02
US20080200133A1 (en) 2008-08-21
JP4409603B2 (ja) 2010-02-03
EP1940058A4 (en) 2012-01-25
EP1940058A1 (en) 2008-07-02
US7804914B2 (en) 2010-09-28

Similar Documents

Publication Publication Date Title
WO2007036978A1 (ja) ピーク抑圧機能を有する無線送信装置
US7518445B2 (en) Systems, methods, and apparatuses for linear envelope elimination and restoration transmitters
JP4283294B2 (ja) ドハティ増幅器
US8536940B2 (en) Method for amplifying a signal by a power amplifier, power amplifier system, device, computer program product, and digital storage medium thereof
US20140355718A1 (en) Device for modifying trajectories
CN102037699B (zh) 失真补偿电路和失真补偿方法
US7792505B2 (en) Power amplifier efficiency using error estimate and data rate
JP5433327B2 (ja) ピークファクタ低減装置および基地局
US7489907B2 (en) Transmitter for suppressing a variation in input level of a multicarrier signal
KR20070037704A (ko) 포락선 제거와 복구를 통한 신호 증폭 방법 및 시스템
US8306486B2 (en) Methods and apparatus for reducing the average-to-minimum power ratio of communications signals in communications transmitters
US8145148B2 (en) Transmitter and communication apparatus
KR100605826B1 (ko) 높은 첨두전력대 평균전력비를 가지는 전력증폭기의 효율개선 장치 및 방법
JP2002044054A (ja) リミッタ回路付きキャリア合成送信回路
EP3625942B1 (en) Crest factor reduction in power amplifier circuits
US8031803B2 (en) Transmitter capable of suppressing peak of transmission signal
JP4110385B2 (ja) 電力制限器
JP2004032252A (ja) 歪補償送信装置
JP5532968B2 (ja) 信号処理回路とこの回路を有する通信装置
JP2003046480A (ja) ピークリミッタ及びマルチキャリア増幅装置
JP2013062732A (ja) ピークファクタ低減装置および基地局、無線システム
JP2003258683A (ja) ピークリミッタ及びマルチキャリア増幅装置
JP2008154286A (ja) ドハティ増幅器
JP2001251262A (ja) 信号電力ダイナミックレンジ圧縮回路及びそれを使った電力増幅回路
JP2005072959A (ja) 送信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007537479

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005787756

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005787756

Country of ref document: EP