WO2007036096A1 - Agent de modification de la plastification pour le traitement de poly(chlorure de vinyle) et procédé de préparation et utilisation de celui-ci - Google Patents

Agent de modification de la plastification pour le traitement de poly(chlorure de vinyle) et procédé de préparation et utilisation de celui-ci Download PDF

Info

Publication number
WO2007036096A1
WO2007036096A1 PCT/CN2006/000842 CN2006000842W WO2007036096A1 WO 2007036096 A1 WO2007036096 A1 WO 2007036096A1 CN 2006000842 W CN2006000842 W CN 2006000842W WO 2007036096 A1 WO2007036096 A1 WO 2007036096A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
polyvinyl chloride
reactor
intrinsic viscosity
Prior art date
Application number
PCT/CN2006/000842
Other languages
English (en)
French (fr)
Inventor
Dongri Zhao
Xiaojun Zheng
Original Assignee
Dongri Zhao
Xiaojun Zheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36783687&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007036096(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dongri Zhao, Xiaojun Zheng filed Critical Dongri Zhao
Priority to US11/992,864 priority Critical patent/US8415440B2/en
Publication of WO2007036096A1 publication Critical patent/WO2007036096A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters

Definitions

  • the present invention relates to the field of modifying additives for processing polyvinyl chloride, and more particularly to an effective improvement of processing properties of polyvinyl chloride, particularly plasticizing properties.
  • Molecular polymer BACKGROUND OF THE INVENTION
  • Polyvinyl chloride (PVC) is a general-purpose thermoplastic with excellent properties and is one of the largest varieties of plastics in China.
  • Polyvinyl chloride has poor processing and forming properties, and must be added with processing modifiers to improve its plasticizing processability.
  • Acrylate processing modifiers are the most excellent of the three modifiers currently widely used in China. 0 ⁇
  • the intrinsic viscosity of the acrylate processing performance modifier is generally less than 6.0.
  • the reaction temperature is generally above 65 °C, and the reactants are added in steps or in batches to prevent the reaction of excessive materials or excessive reaction temperature. Intensified, causing reactor damage or reaction accidents.
  • the intrinsic viscosity of the processing aid for polyvinyl chloride modification with the highest intrinsic viscosity is below 8.0, and the processed properties of the modified polyvinyl chloride are not satisfactory.
  • the Chinese patent application No. 200510079818. 8 filed on June 29, 2005 by the present applicant describes a polyvinyl chloride processing plasticization modifier, which comprises from 0 to 100 parts by weight of alkyl methacrylate, The intrinsic viscosity obtained by copolymerizing 0-40 parts by weight of the alkyl acrylate, 0 - 85 parts by weight of the styrene monomer and 0 to 35 parts by weight of the acrylonitrile monomer in a total weight of 100 7.
  • An object of the present invention is to provide a modifier for improving the processing properties of polyvinyl chloride, particularly plasticizing properties, and a preparation method and application thereof having an intrinsic viscosity greater than 7.5.
  • a polyvinyl chloride processing plasticizing modifier characterized in that it is a single component of 100 parts by weight of 60-100 parts by weight of alkyl methacrylate and 0-40 parts by weight of alkyl acrylate.
  • the polymer having an intrinsic viscosity of greater than 7.5.
  • the high molecular weight polymer having an intrinsic viscosity greater than 7.5 is prepared by the following method:
  • 100-250 parts by weight of water is added to the reactor, and a total weight of 100 parts consisting of 60-100 parts by weight of decyl methacrylate and 0-40 parts by weight of alkyl acrylate is used, 0 1-1. 5 parts by weight of surfactant and 0. 001-0. 2 parts by weight of free radical initiator added to the reactor in one or two or three times, stirring at 50-500 rpm
  • the temperature is raised to 40-60 ° C, and the reaction temperature is controlled below 65 Torr, and the reaction is carried out for 10-25 hours to obtain a polymer emulsion, which is then dried to obtain a polyvinyl chloride processing plasticizing modifier.
  • a polyvinyl chloride processing plasticization modifier characterized in that it is a single weight component of 100 parts consisting of 60-95 parts by weight of alkyl methacrylate and 5-40 parts by weight of alkyl acrylate.
  • the polymer copolymer having an intrinsic viscosity greater than 7.5.
  • the polymer copolymer having an intrinsic viscosity greater than 7.5 is prepared by the following method:
  • the alkyl methacrylate is one, two or more kinds of decyl methacrylate having an alkyl group having 1 to 8 carbon atoms, and the decyl acrylate is an alkyl group.
  • the surfactant is sodium dodecylbenzenesulfonate, sodium dodecylsulfonate, sodium lauryl sulfate, sodium stearate or potassium lauryl sulfate, the free radical initiator It is potassium persulfate or ammonium persulfate.
  • the intrinsic viscosity is a viscosity value measured by an Ubbelohde viscometer.
  • 100-250 parts by weight of water is added to the reactor at a time, 100 parts by weight of a monomer mixture consisting of 60-100 parts by weight of alkyl methacrylate and 0-40 parts by weight of alkyl acrylate, 0. 1-1. 5 parts by weight of surfactant and 0. 001-0. 2 parts by weight of free radical initiator added to the reactor in one or two or three times, at a stirring speed of 50-500 rpm
  • the temperature is raised to 40-60 ° C, and the reaction temperature is controlled below 65 ° C, and the reaction is carried out for 10-25 hours to obtain a polymer emulsion, which is then dried to obtain a polyvinyl chloride processing plasticizing modifier.
  • 100-250 parts by weight of water is added to the reactor at a time, a composition comprising 60-95 parts by weight of decyl methacrylate and 5-40 parts by weight of alkyl acrylate in a total weight of 100, 0. 1-1. 5 parts by weight of surfactant and 0. 001-0. 2 parts by weight of free radical initiator added to the reactor once or twice or three times, at a stirring speed of 50-500 rpm
  • the temperature is raised to 40-50 ° C, and the reaction temperature is controlled below 55 ° C, and the reaction is carried out for 10 - 25 hours to obtain a polymer emulsion, which is then dried to obtain a desired polyvinyl chloride processing plasticizing modifier.
  • the weight percent of the polyvinyl chloride processing plasticizer is 0.1% - 10% by weight of the polyvinyl chloride.
  • the modification effect of polyvinyl chloride processing plasticizing modifier increases with the intrinsic viscosity coefficient, especially the acrylate processing plasticizing modifier is subject to this rule. The impact is most obvious.
  • the intrinsic viscosity coefficient of the polyvinyl chloride processing plasticizing modifier used in the industry is less than 7.5, and it is generally recognized by those skilled in the art that the intrinsic viscosity is not directly related to the modification effect of the processing plasticizing modifier.
  • the inventors also found in experiments and research that the intrinsic viscosity of the polyvinyl chloride processing plasticizing modifier is greatly affected by the polymerization conditions of the modifying agent, especially the feeding mode, reaction time and reaction of the constituent monomers of the copolymer. temperature.
  • the intrinsic viscosity coefficient of the polymer is maximized by one-time feeding. The more the number of times of feeding, that is, the smaller the amount of each feeding, the smaller the viscosity coefficient; under the same feeding times, the lower the control reaction temperature is.
  • the intrinsic viscosity coefficient is larger; at the same time, the lower the reaction temperature, the longer the reaction time, the larger the intrinsic viscosity coefficient.
  • the inventors found that in the polymerization reaction for preparing the acrylate-based processing plasticizing modifier, when the reaction temperature is controlled to be 65 ° C or lower, the viscosity values of the polymer obtained by one feeding are both Above 10.5, the viscosity of the polymer obtained by the secondary feeding is between 9.0 and 10.0, and the viscosity of the polymer obtained by the three-time addition is 7.5-9.0, and the polymer obtained by the four feedings is high. The viscosity values are all below 7.5.
  • the monomer or monomer mixture having the above composition ratio and the surfactant and the initiator are simultaneously introduced into the polymerization reaction at the same time or in two or three times, and the characteristics can be obtained under the condition that the control temperature and the reaction time meet the above requirements.
  • the modifier polymer having a viscosity coefficient greater than 7.5.
  • the polymerization reaction is an exothermic reaction, and the reaction temperature must be above 65 ° C.
  • the reaction rate is intensified as the reaction temperature increases, the number of polymerization additions must be strictly controlled to prevent Accidental polymerization caused by a sharp increase in polymerization temperature to ensure the safe operation of the polymerization reactor and the personal safety of the operator, to prevent accidents, so it is necessary to add more than three times at 65 °C.
  • Into the reactor If all materials are added in one or two portions, not only will the polymer not be obtained, but it will also be dangerous.
  • the inventors have overcome the shortcomings of the skilled person in the industry, and all the monomer components are put into the reactor once or twice or three times, and the entire polymerization temperature can be controlled to be 65 ° C while accelerating the heat dissipation rate of the reactor.
  • a plastic processing modifier of polyvinyl chloride having an intrinsic viscosity of more than 7.5 Elected When the reaction temperature is below 65 °C, the reaction rate may be difficult to control, but the modifier of the high viscosity coefficient polymer can still be polymerized.
  • the method for determining the intrinsic viscosity of the present invention is as follows: firstly, the processing modifier is placed in a 65 ° C incubator for 10 h, and after cooling, the balance is accurately weighed with 0. 075 g into a 25 ml volumetric flask, and then added. Soak about 20 ml of chloroform and let it stand for 24 hours. After it is completely dissolved, put it in a constant temperature water tank of 25 ⁇ 0.1 ° C, keep it at a constant temperature for 15 min, then dilute it to 25 ml with chloroform, and use No. 3 The core funnel was filtered and then to be measured, and then the viscosity was measured with a Ubbelohde viscometer, and the viscosity of chloroform was measured.
  • t is the time the modifier solution flows through the capillary, to is the time the solvent chloroform flows through the same capillary, and c is the concentration of the solution (g/100 ml).
  • n r is the relative viscosity
  • n sp is the specific viscosity
  • is the intrinsic viscosity
  • the invention has the beneficial effects that the inventors have broken through the limitations and misunderstandings in the industry, and the acrylate polymer having a simple monomer composition and an intrinsic viscosity greater than 7.5 is used as an improved plasticizing property of the polyvinyl chloride.
  • the modifier provides a preparation method of the modifier, which can be polymerized at a lower reaction temperature to obtain an acrylate-modified polymer having a high intrinsic viscosity coefficient, which is high in the prior art.
  • the understanding of molecular polymerization has for the first time proposed a scientific theory of the objective relationship between the viscosity coefficient of the modifier and the modification effect.
  • the modifier can effectively improve the smoothness of the PVC rheological block and improve it significantly. Plasticizing properties of PVC.
  • Example 1 and Comparative Example 1-2 are composed of the same monomer components, and the same reaction time and temperature are controlled to increase the test results. Comparability. However, the invention is not limited to these embodiments.
  • Example 1 120 parts by weight of water, 85 parts by weight of methyl methacrylate, 15 parts by weight of butyl acrylate, 1.1 parts by weight of sodium lauryl sulfate, 0.01 parts by weight of potassium persulfate Put it into the reactor at one time and raise the temperature to 50 at a stirring speed of 200 rpm. V, and the temperature was maintained at 55 Torr or less for 20 hours to obtain an emulsion of an acrylate copolymer, which was dried to obtain an acrylate-based copolymer having an intrinsic viscosity of 12.
  • Example 2 120 parts by weight of water, 85 parts by weight of methyl methacrylate, 15 parts by weight of butyl acrylate, 1.1 parts by weight of sodium lauryl sulfate, 0.01 parts by weight of potassium persulfate The mixture was placed in a reactor twice, heated to 50 ° C at a stirring speed of 200 rpm, and the temperature was maintained at 55 Torr for 22 hours to obtain an emulsion of an acrylate copolymer, which was dried to obtain an acrylate. 5 ⁇ The intrinsic viscosity of the copolymer was 9.7.
  • Example 3 The same as Example 2 except that the reaction mixture was added to the reactor in three portions to obtain an acrylate-based copolymer having an intrinsic viscosity of 8.0.
  • the acrylate copolymer having an intrinsic viscosity of 7.3 is added to the second monomer after the first monomer is reacted, and the acrylate copolymer having an intrinsic viscosity of 7.3 is obtained. Things.
  • Comparative Example 2 Same as Example 1, except that a mixture of 85 parts by weight of methyl methacrylate and 15 parts by weight of butyl acrylate was added to the reactor in five portions, after the first monomer was reacted. A second batch of monomer was added and the third batch was added after the completion of the second batch of reactions. An acrylate copolymer having an intrinsic viscosity of 6 was obtained in the same manner.
  • Evaluation of the processing properties of modified polyvinyl chloride Determination of polyvinyl chloride by modified plasticizing modifiers with different intrinsic viscosities by RM-200 torque rheometer (manufactured by Harbin Institute of Technology, Harbin) The highest torque and balance torque, in order to compare the processing plasticization performance, the highest torque and the highest balance torque of PVC processing performance.
  • the evaluation conditions were a rotor speed of 35 rpm and a set temperature of 165 °C.
  • the aliquot of the formula is: 100 parts of polyvinyl chloride, 5 parts of calcium carbonate, 3 parts of dibasic lead phosphite, chlorinated polyethylene wax 0. 15 parts, stearic acid 0.2 parts, chlorinated polyethylene 9 5 ⁇ Leading stearic acid 1. 5 parts, lead stearate 1. 5 parts.
  • the finish can be seen from Table 1.
  • the end-capping agent is added at the same time as the reaction, the intrinsic viscosity value of the prepared plasticizing modifier is also affected, but the modification effect of the plasticizing modifier is only related to the value of the intrinsic viscosity value, and other factors affecting the molecular weight of the polymerization. The factors are irrelevant
  • Example 4 150 parts by weight of water, 70 parts by weight of methyl methacrylate, 25 parts by weight of ethyl methacrylate, 5 parts by weight of propyl acrylate, 0.1 parts by weight of dodecylbenzene sulfonate Sodium salt, 0.1 parts by weight of potassium persulfate was placed in the reactor at a time, and the temperature was raised to 50 ° C at a stirring speed of 500 rpm, and the temperature was maintained at 55 ° C or lower for 15 hours to obtain copolymerization. The emulsion of the material was dried to obtain a polymer copolymer having an intrinsic viscosity of 1.25.
  • Example 5 200 parts by weight of water, 70 parts by weight of methyl methacrylate, 25 parts by weight of butyl methacrylate, 5 parts by weight of amyl acrylate, and 1.5 parts by weight of potassium dodecyl sulfate 0.1 parts by weight of ammonium persulfate was placed in the reactor at a time, and the temperature was raised to 50 ° C at a stirring speed of 50 rpm, and the temperature was maintained at 55 ° C or lower for 15 hours to obtain a copolymer. The acrylate copolymer having an intrinsic viscosity of 10.6 was obtained after drying.
  • Example 6 180 parts by weight of water, 70 parts by weight of methyl methacrylate, 25 parts by weight of butyl methacrylate, 5 parts by weight of octyl acrylate, 1.0 parts by weight of ten Sodium dialkyl sulfonate, 0.01 parts by weight of potassium persulfate was placed in the reactor twice, and the temperature was raised to 50 ° C at a stirring speed of 300 rpm, and the temperature was kept below 55 ° C. The polymer copolymer having an intrinsic viscosity of 9.5 is obtained.
  • the modification test of polyvinyl chloride was carried out by using the plasticizing modifiers obtained in Examples 4, 5 and 6.
  • the test formulation and the plastication evaluation method were the same as those in Examples 1 and 2.
  • the test results showed that the plasticization with the higher intrinsic viscosity value
  • the plasticity improvement of the modifier on the polyvinyl chloride is more obvious.
  • the plasticizing modifier provided in the embodiment 4 has the best effect, and the modification effect of the plasticizing modifier provided in the embodiment 6 is lower than that provided in the embodiment 5.
  • Plasticizing modifier, but the modification effects of the above three plasticizing modifiers are significantly higher than those of the existing modifiers.
  • Example 7 120 parts by weight of water, 60 parts by weight of methyl methacrylate, 20 parts by weight of octyl methacrylate, 20 parts by weight of octyl acrylate, 1.2 parts by weight of sodium stearate, 0 05 parts by weight of potassium persulfate was placed in the reactor at a time, and the temperature was raised to 50 ° C at a stirring speed of 100 rpm, and the temperature was maintained at 55 ° C or lower for 22 hours to obtain an emulsion of the copolymer. The acrylate copolymer having an intrinsic viscosity of 12.0 was obtained after drying.
  • Example 8 The same as Example 7, except that the reactant was added to the reactor in three portions to obtain an acrylate-based copolymer having an intrinsic viscosity of 7.7.
  • Example 005 100 parts by weight of water, 60 parts by weight of heptyl methacrylate, 40 parts by weight of methyl methacrylate, 1.5 parts by weight of sodium dodecylbenzenesulfonate, 0.005 parts by weight
  • the potassium persulfate was placed in the reactor at a time, and the temperature was raised to 50 ° C at a stirring speed of 400 rpm, and the temperature was maintained at 55 ° C or lower for 20 hours to obtain an emulsion of the copolymer, which was dried to obtain characteristics. 5 ⁇ acrylic polymer.
  • the acrylate copolymer having an intrinsic viscosity of 9.3 is obtained in the same manner as in Example 9, except that the reactant was added to the reactor in three portions.
  • the acrylate copolymer having an intrinsic viscosity of 5.5 was obtained.
  • the acrylate copolymer having an intrinsic viscosity of 5.5 was obtained.
  • the processing modifiers obtained in Examples 9, 10 and Comparative Example 4 were subjected to plasticization modification experiments on polyvinyl chloride.
  • the experimental methods and evaluation methods were the same as those in Examples 1 and 2.
  • the results showed that the intrinsic viscosity of the acrylate copolymer was higher. Large, the more obvious the processing modification effect, the modification effect of the processing modifier provided in Example 9 is better than that in Example 10, and the modification effect of the processing modifier provided in Examples 9 and 10 is obviously better than the comparative example. 4.
  • Example 11 250 parts by weight of water, 20 parts by weight of hexyl acrylate, 50 parts by weight of methyl methacrylate, 30 parts by weight of amyl methacrylate, 1.5 parts by weight of sodium stearate, 0 2 parts by weight of ammonium persulfate was placed in the reactor at a time, and the temperature was raised to 50 ° C at a stirring speed of 50 rpm, and the temperature was maintained at 55 ° C or lower for 18 hours to obtain an emulsion of the copolymer. The acrylate copolymer having an intrinsic viscosity of 10.5 was obtained.
  • Example 12 180 parts by weight of water, 80 parts by weight of hexyl methacrylate, 20 parts by weight of methyl acrylate, 0.5 parts by weight of sodium lauryl sulfate, 0.08 parts by weight of potassium persulfate It was placed in a reactor at a time, and the temperature was raised to 50 ° C at a stirring speed of 240 rpm, and the temperature was kept below 50 ° C for 10 hours to obtain an emulsion of the copolymer, which was dried to obtain an intrinsic viscosity of 13.
  • Example 13 200 parts by weight of water, 40 parts by weight of methyl methacrylate, 40 parts by weight of propyl methacrylate, 20 parts by weight of heptyl acrylate, 0.3 parts by weight of potassium lauryl sulfate 0. 01 parts by weight of potassium persulfate was placed in the reactor three times, heated to 50 Torr at a stirring speed of 120 rpm, and the temperature was maintained at 55 ° C or lower for 15 hours to obtain a copolymer. The acrylate copolymer having an intrinsic viscosity of 11.2 was obtained.
  • Example 14 180 parts by weight of water, 50 parts by weight of methyl methacrylate,
  • Example 15 200 parts by weight of water, 80 parts by weight of methyl methacrylate, 20 parts by weight of butyl acrylate, 0.5 parts by weight of sodium lauryl sulfate, 0.02 parts by weight of potassium persulfate were placed in the reactor twice, and the temperature was raised to 200 rpm. The acrylate copolymer was obtained after the reaction was carried out at 60 ° C, and the temperature was maintained at 65 ° C for 15 hours.
  • Example 16 100 parts by weight of water, 20 parts by weight of methyl methacrylate,
  • Example 15 150 parts by weight of water, 60 parts by weight of methyl methacrylate, 20 parts by weight of hexyl methacrylate, 20 parts by weight of octyl methacrylate, 0.5 parts by weight of dodecyl group Sodium benzenesulfonate, 0.2 parts by weight of potassium persulfate were placed in the reactor three times, and the temperature was raised to 50 ° C at a stirring speed of 100 rpm, and the temperature was maintained at 65 °! The following reaction was carried out for 25 hours to obtain an emulsion of the copolymer, which was dried to obtain an acrylate-based polymer having an intrinsic viscosity of 7.6.
  • Example 18 200 parts by weight of water, 70 parts by weight of butyl methacrylate, 10 parts by weight of butyl acrylate, 10 parts by weight of hexyl acrylate, 10 parts by weight of octyl acrylate, 0.1 parts by weight Potassium lauryl sulfate, 0.01 parts by weight of ammonium persulfate was placed in the reactor at a time, and the temperature was raised to 60 ° C at a stirring speed of 200 rpm, and the temperature was maintained below 65 ° C. The acrylate copolymer having an intrinsic viscosity of 9.8 was obtained.
  • Example 19 160 parts by weight of water, 80 parts by weight of amyl methacrylate, 20 parts by weight of amyl acrylate, 0.8 parts by weight of sodium lauryl sulfate, 0.002 parts by weight of potassium persulfate
  • the reactor was placed in two reactors, heated to 50 ° C at a stirring speed of 400 rpm, and maintained at a temperature below 65 ° C for 12 hours to obtain an emulsion of an acrylate copolymer, which was dried to obtain an intrinsic viscosity. It is an acrylate copolymer of 8.3.
  • Example 20 180 parts by weight of water, 20 parts by weight of butyl methacrylate, 20 parts by weight of hexyl methacrylate, 20 parts by weight of amyl methacrylate, 20 parts by weight of propyl methacrylate, 20 parts by weight of hexyl acrylate, 1.5 parts by weight of twelve hydrazine Sodium sulphate and 0.05 parts by weight of potassium persulfate were placed in the reactor at a time, and the temperature was raised to 50 ° C at a stirring speed of 300 rpm, and the temperature was maintained at 65 ° C or lower for 10 hours to obtain an acrylate. The emulsion of the copolymer was dried to obtain an acrylate-based copolymer having an intrinsic viscosity of 10.5.
  • Example 21 220 parts by weight of water, 40 parts by weight of butyl methacrylate,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

聚氯乙烯加工塑化改性剂及其制备方法及其应用 技术领域 本发明属于聚氯乙烯加工用改性助剂领域,尤其涉及一种有效改 进聚氯乙烯加工性能特别是塑化性能的高分子聚合物。 背景技术 聚氯乙烯 (PVC ) 是一种性能优良的通用型热塑性塑料, 是我国 产量最大的塑料品种之一。 聚氯乙烯的加工成形性能较差, 必须加入 加工改性剂以改善其塑化加工性能,丙烯酸酯类加工改性剂是我国目 前普遍采用的三种改性剂中性能最为优良的一种,但目前所有的丙烯 酸酯类加工性能改性剂的特性粘度一般小于 6. 0。 在制造丙烯酸酯类 聚氯乙烯加工塑化改性剂时, 反应温度一般在 65 °C以上, 反应物是 分步或者分批的加入,以防止物料过多或反应温度过高的情况下反应 加剧, 造成反应器的损坏或反应事故发生。 现在特性粘度最大的聚氯 乙烯改性用加工助剂的特性粘度均在 7. 0以下,经改性后的聚氯乙烯 的加工性能却不够理想。 在现有技术中, 对于特性粘度和聚氯乙烯加 工性能改进剂之间存在什么关系并无相关的记载。
另外对于聚合反应特别是制备丙烯酸酯类聚氯乙烯加工塑化改 性剂的聚合反应的控制, 几乎所有的本领域技术人员都认为: 因反应 过程是放热反应, 为了防止暴聚反应, 必须将反应单体逐渐或分批的 加入到反应器中, 并保证较高的反应温度才能顺利进行, 较低的反应 温度下聚合反应几乎不能进行。
本发明申请人于 2005 年 6 月 29 日提出的中国专利申请 200510079818. 8 记载了一种聚氯乙烯加工塑化改性剂, 其中涉及了 由 0-100重量份的甲基丙烯酸烷基酯、 0-40重量份的丙烯酸烷基酯、 0 - 85重量份的苯乙烯类单体和 0-35重量份的丙烯腈类单体组成的总 重量份为 100的组分共聚得到的特性粘度大于 7. 5的高分子聚合物, 并提供了这种聚氯乙烯加工塑化改性剂的制备方法,申请人在此基础 上经过近一步的实验发现在组成和制备方法不同于上述申请的情况 下, 也可得到性能良好的加工塑化改性剂。 发明内容 本发明的目的是提供一种特性粘度大于 7. 5的用于改进聚氯乙烯 加工性能特别是塑化性能的改性剂及其制备方法和应用。
本发明采用的技术方案如下:
1
一种聚氯乙烯加工塑化改性剂, 其特征在于它是由 60-100 重量 份的甲基丙烯酸烷基酯和 0-40重量份的丙烯酸烷基酯组成的总重量 份为 100 的单体组合物共聚得到的特性粘度大于 7. 5 的高分子聚合 物。
该特性粘度大于 7. 5的高分子聚合物由下述方法制备:
将 100-250重量份的水加入到反应器中, 将由 60-100重量份的 甲基丙烯酸垸基酯和 0-40重量份的丙烯酸烷基酯组成的总重量份为 100的组合物、 0. 1-1. 5重量份的表面活性剂和 0. 001-0. 2重量份自 由基引发剂一次性或分两次或分三次加入到反应器中,在 50-500转 / 分的搅拌速度下升温至 40-60 °C, 并将反应温度控制在 65 Ό以下, 反 应 10-25小时, 得到聚合物乳液, 再经干燥得到聚氯乙烯加工塑化改 性剂。
一种聚氯乙烯加工塑化改性剂, 其特征在于它是由 60-95重量份 的甲基丙烯酸烷基酯和 5-40重量份的丙烯酸烷基酯组成的总重量份 为 100的单体组合物共聚得到的特性粘度大于 7. 5的高分子共聚物。
该特性粘度大于 7. 5的高分子共聚物由下述方法制备:
将 100-250的重量份的水一次性加入反应器中、 再将由 60-95重 量份的甲基丙烯酸烷基酯和 5-40重量份的丙烯酸烷基酯组成的总重 量份为 100的组合物、 0. 1- 1. 5重量份的表面活性剂和 0. 001-0. 2重 量份自由基引发剂一次性或分两次或分三次加入到反应器中, 在 50-500转 /分的搅拌速度下升温至 40-60 °C, 将反应温度控制在 55 °C 以下, 反应 10- 25小时, 得到聚合物乳液, 再经干燥得到聚氯乙烯加 工塑化改性剂。
所述的甲基丙烯酸烷基酯为烷基碳原子数为 1 -8的甲基丙烯酸垸 基酯中的一种、 两种或两种以上的混合物, 所述的丙烯酸垸基酯为烷 基碳原子数为 2-8 的丙烯酸烷基中的一种、 两种或两种以上的混合 物。
所述的表面活性剂为十二烷基苯磺酸钠、 十二垸基磺酸钠、 十二 烷基硫酸钠、 硬脂酸钠或十二烷基硫酸钾, 所述的自由基引发剂为过 硫酸钾或过硫酸铵。
所述的特性粘度为采用乌氏粘度计测定的粘度值。
该聚氯乙烯加工塑化改性剂的制备方法, 其特征在于制备方法如 下:
将 100-250重量份的水一次性加入反应器中, 由 60-100重量份 的甲基丙烯酸烷基酯和 0-40重量份的丙烯酸烷基酯组成的单体混合 物 100重量份、 0. 1-1. 5重量份的表面活性剂和 0. 001-0. 2重量份自 由基引发剂一次性或分两次或分三次加入到反应器中,在 50-500转 / 分的搅拌速度下升温至 40- 60 °C, 并将反应温度控制在 65 °C以下, 反 应 10- 25小时, 得到聚合物乳液, 再经干燥得到聚氯乙烯加工塑化改 性剂。
另一种聚氯乙烯加工塑化改进剂的制备方法, 其特征在于制备方 法如下:
将 100-250重量份的水一次性加入反应器中, 由 60-95重量份的 甲基丙烯酸垸基酯和 5-40重量份的丙烯酸烷基酯组成的总重量份为 100的组合物、 0. 1-1. 5重量份的表面活性剂和 0. 001-0. 2重量份自 由基引发剂一次性或两次或三次加入到反应器中,在 50-500转 /分的 搅拌速度下升温至 40- 50 °C, 并将反应温度控制在 55 °C以下, 反应 10 - 25小时, 得到聚合物乳液, 再经干燥得到所要的聚氯乙烯加工塑 化改性剂。
该聚氯乙烯加工塑化改性剂的添加重量百分比为聚氯乙烯重量 的 0. 1%- 10%。
发明人在实验中发现, 聚氯乙烯加工塑化改性剂或助剂的改性性 能与其特性粘度值密切相关, 特性粘度值越大, 经过改性的聚氯乙烯 加工塑化性能越好,提高聚氯乙烯混合物的加工性能的有效方式是制 备并使用特性粘度更高的改性剂。发明人经过多次试验后得出如下结 论:聚氯乙烯加工塑化改性剂的改性效果随着其特性粘度系数的而增 大, 特别是丙烯酸酯类加工塑化改性剂受该规律的影响最明显。 但目 前行业内所使用的聚氯乙烯加工塑化改进剂的特性粘度系数均小于 7. 5, 而且本领域技术人员普遍认为特性粘度和加工塑化改性剂的改 性效果无直接联系。
发明人在实验和研究中还发现聚氯乙烯加工塑化改性剂的特性 粘度受改性剂的聚合反应条件的影响很大,特别是共聚物的组成单体 的加料方式、 反应时间和反应温度。 在一定的反应温度下, 一次性加 料得到聚合物的特性粘度系数最大, 加料次数越多, 即每次加料量越 小, 粘度系数越小; 在同样的加料次数下, 控制反应温度越低, 其特 性粘度系数越大; 同时反应温度越低, 反应时间越长, 则特性粘度系 数越大。在研究中发明人发现, 在制备丙烯酸酯类加工塑化改性剂的 聚合反应中, 将反应温度控制在 65 °C或 55 °C以下时, 一次加料得到 的高分子聚合物的粘度值均在 10.5 以上, 二次加料得到的高分子聚 合物的粘度值在 9.0- 10.0之间,三次加料得到的高分子聚合物的粘度 值为 7.5-9.0 ,四次加料时得到的高分子聚合物的粘度值均在 7.5以下。 以上述组成配比的单体或单体混合物和表面活性剂、引发剂一次性同 时投入或分两次、 三次投入进行聚合反应, 在控制温度和反应时间符 合上述要求的条件下,可以得到特性粘度系数大于 7. 5的改性剂聚合 物。但本领域的技术人员普遍认为该聚合反应是放热反应, 且反应温 度必须在 65 °C以上才能进行, 由于反应速度随着反应温度的增高而 加剧, 必须严格控制聚合反应加料次数, 才能防止因聚合反应温度的 急剧升高而引发的暴聚反应,以保证聚合反应器的安全运行和操作人 员的人身安全, 防止事故的发生, 因此必须在 65 °C以上将各种物料 分三次以上加入到反应器中。如果一次性或分两次加入所有物料不仅 得不到聚合物, 而且还会发生危险。 发明人克服了业内技术人员的认 识缺陷, 将所有单体组分一次性或两次、 三次投入反应器, 在加快反 应器的散热速度情况下, 能够控制整个聚合反应温度使其在 65 °C或 55 °C以下, 得到特性粘度大于 7. 5的聚氯乙烯加工塑化改性剂。 当选 择反应温度在 65 °C以下范围时, 反应的速度可能比较难以控制, 但 仍然可以聚合得到高粘度系数聚合物的改性剂。
本发明测定特性粘度的方法是:先将加工改性剂放入 65 °C恒温箱 中保持 10h, 冷却后用万分之一的天平准确称量 0. 075g放入 25ml容 量瓶中, 然后加入 20毫升左右的三氯甲烷使之溶解, 放置 24小时, 待全部溶解后, 放入 25 ± 0. 1 °C的恒温水槽内, 恒温 15min, 再用三 氯甲烷稀释至 25ml刻度, 用 3号砂芯漏斗过滤后待测定, 然后用乌 式粘度计测定其粘度, 同时测定三氯甲烷的粘度。
计算方法-
Figure imgf000006_0001
式中: t是改性剂溶液流经毛细管的时间, to 是溶剂三氯甲烷流 经同一毛细管的时间, c是溶液的浓度 (g/100ml )。
n r是相对粘度, n sp是增比粘度, η是特性粘度。
本发明的有益效果在于, 发明人突破了行业领域内的认识局限性 和误区, 采用单体组分简单、特性粘度大于 7. 5的丙烯酸酯类高分子 聚合物作为改进聚氯乙烯塑化性能的改性剂并提供了该改性剂的制 备方法,该制备方法能够在较低的反应温度条件下聚合得到高特性粘 度系数的丙烯酸酯类改性聚合物,突破了现有技术人员对于高分子聚 合反应的认识,第一次提出了改性剂粘度系数和改性效果之间的存在 客观联系的科学理论,该改性剂能够有效的改善聚氯乙烯流变块的光 洁度, 明显的提高聚氯乙烯的塑化性能。 该改性剂可以广泛的应用于 聚氯乙烯塑料或含聚氯乙烯复合材料的加工塑化性能的改进。 本发明的实施例 下面用具体的实施例和比较例对本发明作进一步的说明, 实施 例 1和比较例 1-2采用同样的单体组分组成,控制相同的反应时间和 温度以增加试验结果的可比性。 但本发明并不局限于这些实施例。
实施例 1 将 120重量份的水、 85重量份的甲基丙烯酸甲酯、 15 重量份的丙烯酸丁酯、 1. 1重量份的十二烷基硫酸钠、 0. 01重量份的 过硫酸钾一次性放入反应器中, 在 200转 /分的搅拌转速下升温至 50 V, 并将温度保持在 55 Ό以下反应 20小时, 得到丙烯酸酯共聚物的 乳液, 干燥后得到特性粘度为 12的丙烯酸酯类共聚物。
实施例 2 将 120重量份的水、 85重量份的甲基丙烯酸甲酯、 15 重量份的丙烯酸丁酯、 1. 1重量份的十二烷基硫酸钠、 0. 01重量份的 过硫酸钾分两次放入反应器中, 在 200转 /分的搅拌转速下升温至 50 °C, 并将温度保持在 55 Ό以下反应 22小时, 得到丙烯酸酯共聚物的 乳液, 干燥后得到丙烯酸酯类共聚物的特性粘度为 9. 7。
实施例 3 同实施例 2,只是将反应混合物分三次加入反应器中, 得到特性粘度为 8. 0的丙烯酸酯类共聚物。
比较例 1 同实施例 1, 只是将 85 重量份的甲基丙烯酸甲酯和
15 重量份的丙烯酸丁酯的混合物分四次加入到反应器中, 加入的顺 序是在第一单体反应完后加入第二批单体,依次类推得到特性粘度为 7. 3的丙烯酸酯共聚物。
比较例 2 同实施例 1, 只是将 85 重量份的甲基丙烯酸甲酯和 15 重量份的丙烯酸丁酯的混合物分五次加入到反应器中, 加入的顺 序是在第一单体反应完后加入第二批单体,第三批在第二批反应完成 后加入。 依此类推得到特性粘度为 6的丙烯酸酯共聚物。
对改性后聚氯乙烯加工性能的测评:通过 RM- 200转矩流变仪(哈 尔滨理工大学哈斯特公司制造)测定不同特性粘度的加工塑化改性剂 改性后的聚氯乙烯的最高扭矩和平衡扭矩,以比较加工塑化性能的不 同, 最高扭矩和最高平衡扭矩的聚氯乙烯的加工性能最好。 测评的条 件是转子转速 35rpm, 设定温度为 165 °C。 评价重量份配方为: 聚氯 乙烯 100份、 碳酸钙 5份、 二盐基性亚磷酸铅 3份、 氯化聚乙烯蜡 0. 15 份、 硬脂酸 0. 2份、 氯化聚乙烯 9份、 本发明实施例 1、 2、 3 和对比例 1、 2提供的加工塑化改性剂 2份、 硬脂酸钙 0. 7份、 硬脂 酸铅 1. 5份。
用 RM- 200 转矩流变仪测试经各种不同特性粘度的加工塑化改性 剂改性的上述配方的聚氯乙烯, 其对比结果见表 1。 表 1加工塑化改性剂对聚氯乙烯流变块光洁度影响情况的对比
Figure imgf000008_0001
表中聚氯乙烯流变块光洁度的表示关系如下:
00000 0000 000 00 0
好 < >
光 洁 度 由表 1可以看出在聚合单体组成相同的情况下, 加料次数越少改 性剂的特性粘度越大, 改性后的聚氯乙烯的平衡扭矩和最高扭矩越 高, 流变块的光洁度越好, 从而证明改性后的聚氯乙烯的塑化效果越 好。如果在反应的同时加入封端剂也会影响所制备的塑化改性剂的特 性粘度值, 但塑化改性剂的改性效果只与其特性粘度值的大小有关, 与其它影响聚合分子量的因素无关。
实施例 4 将 150重量份的水、 70重量份的甲基丙烯酸甲酯, 25 重量份的甲基丙烯酸乙酯、 5重量份的丙烯酸丙酯、 0. 1重量份的十 二烷基苯磺酸钠、 0. 1重量份的过硫酸钾一次性放入反应器中,在 500 转 /分的搅拌转速下升温至 50 °C, 并将温度保持在 55 °C以下反应 15 小时, 得到共聚物的乳液, 干燥后得到特性粘度为 1 1. 5的高分子共 聚物。
实施例 5 将 200重量份的水、 70重量份的甲基丙烯酸甲酯、 25 重量份的甲基丙烯酸丁酯, 5重量份的丙烯酸戊酯、 1. 5重量份的十 二垸基硫酸钾、 0. 1 重量份的过硫酸铵一次性放入反应器中, 在 50 转 /分的搅拌转速下升温至 50 °C, 并将温度保持在 55 °C以下反应 15 小时, 得到共聚物的乳液, 千燥后得到特性粘度为 10. 6的丙烯酸酯 类共聚物。
实施例 6 将 180重量份的水、 70重量份的甲基丙烯酸甲酯, 25 重量份的甲基丙烯酸丁酯、 5重量份的丙烯酸辛酯、 1. 0重量份的十 二烷基磺酸钠、 0. 01重量份的过硫酸钾分两次放入反应器中, 在 300 转 /分的搅拌转速下升温至 50 °C, 并将温度保持在 55 °C以下反应 25 小时, 得到共聚物的乳液, 干燥后得到特性粘度为 9. 5的高分子共聚 物。
用实施例 4、 5和 6得到的塑化改性剂对聚氯乙烯进行改性试验, 试验配方和塑化测评方法同实施例 1和 2, 试验结果表明, 特性粘度 值越大的塑化改性剂对聚氯乙烯的塑性改善越明显,实施例 4提供的 塑化改性剂的使用效果最优,实施例 6提供的塑化改性剂的改性效果 低于实施例 5提供的塑化改性剂,但上述三种塑化改性剂的改性效果 均明显高于组成相同的现有改性剂的改性效果。
实施例 7 将 120重量份的水、 60重量份的甲基丙烯酸甲酯、 20 重量份的甲基丙烯酸辛酯, 20重量份的丙烯酸辛酯、 1. 2重量份的硬 脂酸钠、 0. 05重量份的过硫酸钾一次性放入反应器中, 在 100转 /分 的搅拌转速下升温至 50 °C, 并将温度保持在 55 °C以下反应 22小时, 得到共聚物的乳液, 干燥后得到特性粘度为 12. 0的丙烯酸酯类共聚 物。
实施例 8 同实施例 7, 只是反应物分三次加入反应器, 得到特 性粘度为 7. 7的丙烯酸酯类共聚物。
比较例 3 同实施例 7, 只是反应物分五次加入, 得到特性粘度 为 5. 2的丙烯酸酯类共聚物。
用实施例 7, 8和比较例 3得到的加工改性剂对聚氯乙烯进行塑 化改性实验, 实验方法和测评方法与实施例 1、 2相同, 结果表明, 特性粘度值越大, 塑化改性效果越明显。 实施例 7, 8提供的加工改 性剂的改性效果明显的高于比较例 3。
实施例 9 将 100重量份的水、 60重量份的甲基丙烯酸庚酯、 40 重量份的甲基丙烯酸甲酯, 1. 5 重量份的十二烷基苯磺酸钠、 0. 005 重量份的过硫酸钾一次性放入反应器中, 在 400转 /分的搅拌转速下 升温至 50 °C, 并将温度保持在 55 °C以下反应 20小时, 得到共聚物的 乳液, 干燥后得到特性粘度为 12. 5的丙烯酸酯类聚合物。
实施例 10 同实施例 9, 只是反应物分三次加入反应器中, 得到 特性粘度为 9. 3的丙烯酸酯类共聚物。 比较例 4 同实施例 10, 只是将反应温度保持在 70- 80 °C, 得 到特性粘度为 5. 5的丙烯酸酯类共聚物。
将实施例 9, 10和比较例 4得到的加工改性剂对聚氯乙烯进行塑 化改性实验, 实验方法和测评方法与实施例 1、 2相同, 结果表明丙 烯酸酯共聚物的特性粘度越大, 加工改性效果越明显, 实施例 9提供 的加工改性剂的改性效果好于实施例 10, 实施例 9, 10提供的加工 改性剂的改性效果要明显的好于比较例 4。
实施例 11 将 250重量份的水、 20重量份的丙烯酸己酯、 50重 量份的甲基丙烯酸甲酯、 30重量份的甲基丙烯酸戊酯, 1. 5重量份的 硬脂酸钠、 0. 2重量份的过硫酸铵一次性放入反应器中, 在 50转 /分 的搅拌转速下升温至 50 °C, 并将温度保持在 55 °C以下反应 18小时, 得到共聚物的乳液, 干燥后得到特性粘度为 10. 5 的丙烯酸酯类共聚 物。
实施例 12 将 180重量份的水、 80重量份的甲基丙烯酸己酯、 20 重量份的丙烯酸甲酯、 0. 5重量份的十二烷基硫酸钠、 0. 08 重量 份的过硫酸钾一次性放入反应器中, 在 240转 /分的搅拌转速下升温 至 50 °C ,并将温度保持在 50 °C以下反应 10小时,得到共聚物的乳液, 干燥后得到特性粘度为 13. 0的丙烯酸酯类共聚物。
实施例 13 将 200重量份的水、 40重量份的甲基丙烯酸甲酯、 40重量份的甲基丙烯酸丙酯、 20 重量份的丙烯酸庚酯, 0. 3重量份 的十二烷基硫酸钾、 0. 01重量份的过硫酸钾分三次性放入反应器中, 在 120转 /分的搅拌转速下升温至 50 Ό,并将温度保持在 55 °C以下反 应 15小时, 得到共聚物的乳液, 干燥后得到特性粘度为 11. 2的丙烯 酸酯类共聚物。
实施例 14 将 180重量份的水、 50重量份的甲基丙烯酸甲酯,
40重量份的甲基丙烯酸乙酯、 10 重量份的丙烯酸庚酯、 1. 2重量份 的硬脂酸钠、 0. 05 重量份的过硫酸钾一次性放入反应器中, 在 100 转 /分的搅拌转速下升温至 50 °C, 并将温度保持在 55 °C以下反应 16 小时, 得到共聚物的乳液, 干燥后得到特性粘度为 1 1. 8的丙烯酸酯 类共聚物。
实施例 15 将 200重量份的水, 80重量份的甲基丙烯酸甲酯, 20重量份的丙烯酸丁酯, 0. 5 重量份的十二烷基硫酸钠, 0. 02重量 份的过硫酸钾分两次性放入反应器中, 在 200转 /分的转速下升温至 60 °C, 并将温度保持在 65 °C以下反应 15小时, 得到共聚物乳液, 干 燥后得到特性粘度为 9. 5丙烯酸酯共聚物。
实施例 16 将 100重量份的水、 20重量份的甲基丙烯酸甲酯、
20重量份的甲基丙烯酸丙酯、 20重量份的甲基丙烯酸戊酯、 10重量 份的丙烯酸乙酯、 20重量份的丙烯酸戊酯、 10重量份的丙烯酸丙酯、 1. 3重量份的十二垸基硫酸钠、 0. 15重量份的过硫酸钾一次性放入反 应器中, 在 80转 /分的搅拌转速下升温至 50 °C, 并将温度保持在 65 °( 以下反应 10小时,得到共聚物的乳液,干燥后得到特性粘度为 10. 1 的丙烯酸酯类共聚物。
实施例 17 将 150重量份的水、 60重量份的甲基丙烯酸甲酯、 20 重量份的甲基丙烯酸己酯、 20 重量份的甲基丙烯酸辛酯、 0. 5 重 量份的十二烷基苯磺酸钠、 0. 2重量份的过硫酸钾分三次性放入反应 器中, 在 100 转 /分的搅拌转速下升温至 50 °C, 并将温度保持在 65 !以下反应 25小时,得到共聚物的乳液,干燥后得到特性粘度为 7. 6 的丙烯酸酯类聚合物。
实施例 18 将 200重量份的水、 70重量份的甲基丙烯酸丁酯、 10重量份的丙烯酸丁酯、 10重量份的丙烯酸己酯、 10重量份的丙烯 酸辛酯、 0. 1重量份的十二烷基硫酸钾、 0. 01重量份的过硫酸铵一次 性放入反应器中, 在 200转 /分的搅拌转速下升温至 60 °C, 并将温度 保持在 65 °C以下反应 16小时, 得到共聚物的乳液, 干燥后得到特性 粘度为 9. 8的丙烯酸酯类共聚物。
实施例 19 将 160重量份的水、 80重量份的甲基丙烯酸戊酯、 20重量份的丙烯酸戊酯、 0. 8重量份的十二烷基硫酸钠、 0. 002重量 份的过硫酸钾分两次放入反应器中, 在 400转 /分的搅拌转速下升温 至 50 °C, 并将温度保持在 65 °C以下反应 12小时, 得到丙烯酸酯共聚 物的乳液, 干燥后得到特性粘度为 8. 3的丙烯酸酯类共聚物。
实施例 20 将 180重量份的水、 20重量份的甲基丙烯酸丁酯、 20重量份的甲基丙烯酸己酯、 20重量份的甲基丙烯酸戊酯、 20重量 份的甲基丙烯酸丙酯、 20重量份的丙烯酸己酯、 1. 5重量份的十二垸 基硫酸钠、 0.05重量份的过硫酸钾一次性放入反应器中, 在 300转 / 分的搅拌转速下升温至 50°C,并将温度保持在 65°C以下反应 10小时, 得到丙烯酸酯共聚物的乳液, 干燥后得到特性粘度为 10.5的丙烯酸 酯类共聚物。
实施例 21 将 220重量份的水、 40重量份的甲基丙烯酸丁酯、
25重量份的甲基丙烯酸己酯、 15重量份的丙烯酸丙酯、 20重量份的 丙烯酸辛酯、 1.0重量份的十二烷基硫酸钠、 0.1重量份的过硫酸钾 分三次放入反应器中, 在 50 转 /分的搅拌转速下升温至 55°C, 并将 温度保持在 65°C以下反应 20小时, 得到丙烯酸酯共聚物的乳液, 干 燥后得到特性粘度为 7.8的丙烯酸酯类共聚物。

Claims

权 利 要 求 书
1 . 一种聚氯乙烯加工塑化改性剂, 其特征在于它是由 60- 100重 量份的甲基丙烯酸烷基酯和 1 -40重量份的丙烯酸烷基酯组成的总重 量份为 100 的单体组合物共聚得到的特性粘度大于 7.5 的高分子聚 合物。
2. 一种聚氯乙烯加工塑化改性剂, 其特征在于它是由 60-95重 量份的甲基丙烯酸烷基酯和 5-40重量份的丙烯酸烷基酯组成的总重 量份为 100 的单体组合物共聚得到的特性粘度大于 7.5 的高分子共 聚物。
3 . 权利要求 1所述的聚氯乙烯加工塑化改性剂, 其特征在于特 性粘度大于 7.5的高分子聚合物由下述方法制备:
将 100-250重量份的水加入到反应器中, 将由 60- 100重量份的 甲基丙烯酸垸基酯和 0-40重量份的丙烯酸烷基酯组成的总重量份为 100的组合物、 0. 1 - 1.5重量份的表面活性剂和 0.001 -0.2重量份自由 基引发剂一次性或分两次或分三次加入到反应器中, 在 50-500 转 / 分的搅拌速度下升温至 40-60 °C, 并将反应温度控制在 65 °C以下, 反 应 10-25 小时, 得到聚合物乳液, 再经干燥得到聚氯乙烯加工塑化 改性剂。
4. 权利要求 2所述的聚氯乙烯加工塑化改性剂, 其特征在于特 性粘度大于 7.5的高分子共聚物由下述方法制备':
将 100-250的重量份的水一次性加入反应器中、再将由 60-95重 量份的甲基丙烯酸垸基酯和 5-40重量份的丙烯酸烷基酯组成的总重 量份为 100的组合物、 0.1 - 1.5重量份的表面活性剂和 0.001 -0.2重量 份自由基引发剂一次性或分两次或分三次加入到反应器中, 在 50-500转 /分的搅拌速度下升温至 40-60 °C, 将反应温度控制在 55 °C 以下, 反应 10-25 小时, 得到聚合物乳液, 再经干燥得到聚氯乙烯 加工塑化改性剂。
5 . 根据权利要求 1或 2所述的聚氯乙烯加工塑化改性剂, 其特 征在于所述的甲基丙烯酸烷基酯为烷基碳原子数为 1 -8 的甲基丙烯 酸垸基酯中的一种、两种或两种以上的混合物, 所述的丙烯酸烷基酯 为垸基碳原子数为 2-8的丙烯酸垸基中的一种、两种或两种以上的混 合物。
6. 根据权利要求 3或 4所述的聚氯乙烯加工塑化改性剂, 其特 征在于所述的表面活性剂为十二烷基苯磺酸钠、十二垸基磺酸钠、十 二垸基硫酸钠、硬脂酸钠或十二垸基硫酸钾, 所述的自由基引发剂为 过硫酸钾或过硫酸铵。
7. 根据权利要求 1 或 2所述的聚氯乙烯加工塑化改性剂, 其特 征在于所述的特性粘度为采用乌氏粘度计测定的粘度值。
8. 权利要求 1 所述的聚氯乙烯加工塑化改性剂的制备方法, 其 特征在于制备方法如下:
将 100-250重量份的水一次性加入反应器中, 由 60- 100重量份 的甲基丙烯酸烷基酯和 0-40重量份的丙烯酸垸基酯组成的单体混合 物 100重量份、 0. 1- 1. 5重量份的表面活性剂和 0. 001-0. 2重量份自 由基引发剂一次性或分两次或分三次加入到反应器中,在 50-500转 / 分的搅拌速度下升温至 40- 60 °C, 并将反应温度控制在 65 Ό以下, 反 应 10- 25小时, 得到聚合物乳液, 再经干燥得到聚氯乙烯加工塑化改 性剂。
9.权利要求 2所述的聚氯乙烯加工塑化改进剂的制备方法, 其特 征在于制备方法如下:
将 100-250重量份的水一次性加入反应器中, 由 60-95重量份的 甲基丙烯酸烷基酯和 5-40重量份的丙烯酸烷基酯组成的总重量份为 100的组合物、 0. 1 -1. 5重量份的表面活性剂和 0. 001 -0. 2重量份自 由基引发剂一次性或两次或三次加入到反应器中,在 50-500转 /分的 搅拌速度下升温至 40-50 °C, 并将反应温度控制在 55 °C以下, 反应 10 - 25小时, 得到聚合物乳液, 再经干燥得到所要的聚氯乙烯加工塑 化改性剂。
10. 权利要求 1、 2 所述的聚氯乙烯加工塑化改性剂的应用, 其 特征在于该聚氯乙烯加工塑化改性剂的添加重量百分比为聚氯乙烯 重量的 0. 1%- 10%。
PCT/CN2006/000842 2005-09-30 2006-04-28 Agent de modification de la plastification pour le traitement de poly(chlorure de vinyle) et procédé de préparation et utilisation de celui-ci WO2007036096A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/992,864 US8415440B2 (en) 2005-09-30 2006-04-28 Plasticization modifying agent for polyvinyl chloride processing and preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2005101052767A CN100393793C (zh) 2005-09-30 2005-09-30 聚氯乙烯加工塑化改性剂、制备方法及其应用
CN200510105276.7 2005-09-30

Publications (1)

Publication Number Publication Date
WO2007036096A1 true WO2007036096A1 (fr) 2007-04-05

Family

ID=36783687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/000842 WO2007036096A1 (fr) 2005-09-30 2006-04-28 Agent de modification de la plastification pour le traitement de poly(chlorure de vinyle) et procédé de préparation et utilisation de celui-ci

Country Status (3)

Country Link
US (1) US8415440B2 (zh)
CN (1) CN100393793C (zh)
WO (1) WO2007036096A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009076375A1 (en) * 2007-12-10 2009-06-18 E. I. Du Pont De Nemours And Company Multi-product dispensing system for granular materials
US7672545B2 (en) 2005-05-23 2010-03-02 Lxdata Inc. Methods and apparatuses for obtaining information regarding sensors in optical paths
JP2018526502A (ja) * 2015-08-31 2018-09-13 ローム アンド ハース カンパニーRohm And Haas Company 発泡成形用の加工助剤、これを含む塩化ビニル樹脂系発泡成形組成物、及び発泡成形製品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832325B (zh) * 2017-03-16 2019-11-26 宁波工程学院 一种支化多功能助剂及制备方法
CN112014269A (zh) * 2020-08-24 2020-12-01 安徽万朗磁塑股份有限公司 转矩流变仪在检测软质pvc门封材料加工性能中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357435A (en) * 1971-04-23 1982-11-02 Rohm And Haas Company Novel polymers of alkyl methacrylates
US4511699A (en) * 1982-06-21 1985-04-16 The General Tire & Rubber Company Flexible thermoplastic vinyl chloride polymers and acrylate terpolymers
CN1046918A (zh) * 1989-05-04 1990-11-14 纳幕尔杜邦公司 用于聚氯乙烯的聚合型增塑剂
US4983760A (en) * 1989-01-27 1991-01-08 Basf Aktiengesellschaft Low molecular weight polymers of acrylic esters
CN1426440A (zh) * 2000-04-28 2003-06-25 东亚合成株式会社 增塑剂

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833686A (en) * 1969-10-09 1974-09-03 Rohm & Haas Sequentially produced alkyl acrylate polymers blended with poly(vinyl halides)
US3673283A (en) * 1970-03-23 1972-06-27 Japanese Geon Co Ltd Vinyl chloride polymer blended with a nitrile-methacrylate-acrylate terpolymer
US4547550A (en) * 1982-06-21 1985-10-15 The General Tire & Rubber Company Acrylate terpolymers and flexible thermoplastic vinyl chloride polymers
JP3631361B2 (ja) * 1997-12-04 2005-03-23 株式会社カネカ 塩化ビニル系樹脂組成物
MY129262A (en) * 1998-08-28 2007-03-30 Kaneka Corp Processing aid for vinyl chloride resin and vinyl chloride resin composition
EP1153936B1 (en) * 2000-05-12 2004-08-04 Rohm And Haas Company Plastics additives, improved process, products, and articles containing same
CN1552949A (zh) * 2003-05-27 2004-12-08 江西省恒润实业发展有限公司 泡沫铁镍铬钴四元合金的制造方法
CN1244631C (zh) * 2003-07-24 2006-03-08 赵东日 聚氯乙烯丙烯酸酯类抗冲改性剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357435A (en) * 1971-04-23 1982-11-02 Rohm And Haas Company Novel polymers of alkyl methacrylates
US4511699A (en) * 1982-06-21 1985-04-16 The General Tire & Rubber Company Flexible thermoplastic vinyl chloride polymers and acrylate terpolymers
US4983760A (en) * 1989-01-27 1991-01-08 Basf Aktiengesellschaft Low molecular weight polymers of acrylic esters
CN1046918A (zh) * 1989-05-04 1990-11-14 纳幕尔杜邦公司 用于聚氯乙烯的聚合型增塑剂
CN1426440A (zh) * 2000-04-28 2003-06-25 东亚合成株式会社 增塑剂

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672545B2 (en) 2005-05-23 2010-03-02 Lxdata Inc. Methods and apparatuses for obtaining information regarding sensors in optical paths
WO2009076375A1 (en) * 2007-12-10 2009-06-18 E. I. Du Pont De Nemours And Company Multi-product dispensing system for granular materials
US8584714B2 (en) 2007-12-10 2013-11-19 E I Du Pont De Nemours And Company Multi-product dispensing system for granular materials
JP2018526502A (ja) * 2015-08-31 2018-09-13 ローム アンド ハース カンパニーRohm And Haas Company 発泡成形用の加工助剤、これを含む塩化ビニル樹脂系発泡成形組成物、及び発泡成形製品

Also Published As

Publication number Publication date
US20090264597A1 (en) 2009-10-22
US8415440B2 (en) 2013-04-09
CN1786069A (zh) 2006-06-14
CN100393793C (zh) 2008-06-11

Similar Documents

Publication Publication Date Title
JP2007327073A (ja) アクリロニトリルおよびオレフィン性不飽和モノマーから調製される高ニトリルマルチポリマーの製造方法
US10106678B2 (en) Acrylic processing aid and vinyl chloride resin composition comprising the same
WO2007036096A1 (fr) Agent de modification de la plastification pour le traitement de poly(chlorure de vinyle) et procédé de préparation et utilisation de celui-ci
JP4901468B2 (ja) アクリル共重合体組成物、アクリル共重合体の調製方法、及びアクリル共重合体を含む塩化ビニル樹脂組成物
JP6348615B2 (ja) アクリル系加工助剤及びこれを含む塩化ビニル系樹脂組成物
US10703839B2 (en) Method for preparing acrylic copolymer, acrylic copolymer and resin composition comprising the copolymer
KR101056931B1 (ko) 염화비닐계 수지 조성물의 가공조제용 아크릴계 공중합체,이의 제조방법 및 이를 포함하는 염화비닐계 수지 조성물
JP2515014B2 (ja) 塩化ビニル系樹脂組成物
KR20180103949A (ko) 용융 강도 및 선명성 공정 조제로서 아크릴 코폴리머를 함유하는 열가소성 조성물
US11795258B2 (en) Method for preparing core-shell copolymer, core-shell copolymer prepared therefrom and resin composition including the same
JP5128736B2 (ja) 加工性改良剤およびそれを含む塩化ビニル系樹脂組成物
KR100659455B1 (ko) 염화비닐수지용 첨가제 및 이를 포함하는 염화비닐계 수지 조성물
KR101997521B1 (ko) 아크릴계 가공조제, 이의 제조방법 및 이를 포함하는 염화비닐계 수지 조성물
CN100393794C (zh) 聚氯乙烯加工改性剂及其制备方法和应用
IE58806B1 (en) Vinyl chloride polymer resin compsition
KR101229158B1 (ko) 라텍스 안정성이 개선된 아크릴계 공중합체의 제조방법
CN103183768B (zh) 纳米碳酸钙改性丙烯酸酯类线型高分子聚合物及制法
CN103183769B (zh) 纳米二氧化硅改性丙烯酸酯类线型高分子聚合物及制法
CN102964506B (zh) 纳米二氧化锌抗冲改性丙烯酸酯类高分子聚合物及其制法
CN103012659B (zh) 纳米碳酸钙抗冲改性丙烯酸酯类高分子聚合物及其制法
CN103183770B (zh) 纳米二氧化钛改性丙烯酸酯类线型高分子聚合物及制法
KR102006725B1 (ko) 아크릴계 가공조제 및 이를 포함하는 염화비닐계 수지 조성물
US4486569A (en) Polyvinyl chloride composition
CN113135999B (zh) 一种制备聚氯乙烯用的增韧改性剂、聚氯乙烯组合物及应用
CN103183767B (zh) 纳米二氧化铈改性丙烯酸酯类线型高分子聚合物及制法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11992864

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06722419

Country of ref document: EP

Kind code of ref document: A1