WO2007034768A1 - スターリング機関用熱交換器及びこれを用いるスターリング機関 - Google Patents

スターリング機関用熱交換器及びこれを用いるスターリング機関 Download PDF

Info

Publication number
WO2007034768A1
WO2007034768A1 PCT/JP2006/318483 JP2006318483W WO2007034768A1 WO 2007034768 A1 WO2007034768 A1 WO 2007034768A1 JP 2006318483 W JP2006318483 W JP 2006318483W WO 2007034768 A1 WO2007034768 A1 WO 2007034768A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
ring
stirling engine
heat
heat transfer
Prior art date
Application number
PCT/JP2006/318483
Other languages
English (en)
French (fr)
Inventor
Hideo Okada
Atsuo Yamano
Yuhsuke Haraguchi
Katsuhisa Ohta
Junzoh Kawakami
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007034768A1 publication Critical patent/WO2007034768A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/20Heat inputs using heat transfer tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2255/00Heater tubes
    • F02G2255/20Heater fins

Definitions

  • the present invention relates to heat exchange for a Stirling engine and background art relating to a Stirling engine using the same.
  • a Stirling engine uses helium, hydrogen, nitrogen, or the like as a working gas instead of Freon, and has attracted attention as a heat engine that does not cause destruction of the ozone layer.
  • a piston is reciprocated by a power source such as a linear motor, and a displacer is synchronously reciprocated with a predetermined phase difference with respect to the piston.
  • the piston and displacer move working gas back and forth between the compression space and the expansion space.
  • the working gas temperature rises in the compression space, and the working gas temperature falls in the expansion space.
  • Patent Documents 1 and 2 describe heat exchange that also has a corrugated fin force. Corrugated fins are used because they have a large heat transfer area (the area of the portion that contacts the working gas). The top of the corrugated fin is in pressure contact with the inner peripheral surface of the tubular heat transfer head, and exchanges heat with the heat transfer head at a linear contact point.
  • Patent Document 3 discloses a skive heat radiating member, which is an element technology of a heat exchanger. In the one disclosed in Patent Document 4, fins are formed radially by force extrusion which is a regenerator, not a heat exchanger.
  • Patent Document 1 JP 2002-81774 A (Page 3-5, Fig. 1-8)
  • Patent Document 2 JP 2001-91075 A (Page 3-5, Fig. 1-5)
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-326308 (Page 3-5, Fig. 1-5)
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-28214 (Page 4-5, Fig. 1-6)
  • the top force S of the corrugated fin ridge S must be within the inner peripheral surface of the heat transfer head. It is required to adhere to.
  • the envelope of the top of the corrugated fin must be a perfect circle.
  • Patent Document 3 describes heat exchange by skiving, but does not describe a structure that is optimal for a Stirling organization.
  • Patent Document 4 describes a regenerator for a staring engine in which fins are radially formed, but does not show an optimum structure for heat exchange.
  • the present invention has been made in view of the above points, and an object thereof is to provide a heat exchange for a Stirling engine having a novel structure in which heat exchange with a heat transfer head is smooth and stable. To do.
  • the aim is to provide a high-performance Stirling engine equipped with powerful heat exchange.
  • the present invention relates to a ring-shaped base in a heat exchange for a Stirling engine that transfers heat transferred between a compression space and a working gas traveling between expansion spaces to a heat transfer head.
  • the ring-shaped base has a surface that is in surface contact with the heat transfer head of the Stirling engine on the outer surface, and a plurality of flanges that extend toward the center of the ring on the inner surface. It is characterized by the formation of an inn.
  • heat transfer to and from the heat transfer head is performed through a linear portion such as a corrugated fin and a linear portion such as the top of the ridge, and thus is performed through a planar portion that is the outer periphery of the ring-shaped base.
  • heat transfer with a large heat transfer area is stable, and the amount of heat transferred can be increased.
  • the present invention is characterized in that in the heat exchanger for a Stirling engine configured as described above, the base and the fin are integrally extruded.
  • the ring-shaped base is formed by rolling a flat plate-like material in which a large number of the fins are erected with the fins inside.
  • the flat plate material on which the fins are erected is rounded to form the heat exchange, and therefore various methods can be used to erect the fins, and manufacturing is easy.
  • the diameter of the ring base can be adjusted freely by changing the length of the flat plate material.
  • the present invention is characterized in that the ring base has at least one slit having a vector component in the ring axis direction.
  • the diameter of the base itself is reduced when the force is applied to the ring-shaped base and the slit width is reduced.
  • the ring-shaped base is inserted into the heat transfer head and the force is reduced.
  • the outer peripheral surface of the ring-shaped base can be brought into close contact with the inner peripheral surface of the heat transfer head.
  • the ring-like base immediately follows the expansion or contraction of the heat transfer head due to the elasticity that exists in the slit S, and makes contact with the surface. Can keep.
  • the present invention is characterized in that the slit divides the ring-shaped base.
  • the dimension between the inner circumference of the heat transfer head and the outer circumference of the base due to the expansion and contraction of the width of the slit. Because the difference can be absorbed, it is not necessary to pursue dimensional accuracy so severely in manufacturing heat exchangers.
  • the base ring shape can be easily bent, making it easy to insert into the heat transfer head.
  • the present invention is characterized in that the slit includes a bridge portion that connects both bank portions.
  • the slit does not open too much even if the heat exchange is not supported by hand, and the ring-shaped base is kept below a certain diameter, so that handling during assembly is easy.
  • the present invention is characterized in that the ring-shaped base has at least one reduced diameter groove having a vector component in the ring axis direction. Yes.
  • the width of the diameter reducing groove is reduced by applying a force to the ring-shaped base, the diameter of the ring-shaped base itself is reduced.
  • the ring-shaped base is inserted into the heat transfer head.
  • the outer peripheral surface of the ring-shaped base can be tightly adhered to the inner peripheral surface of the heat transfer head.
  • the fin is configured such that the fin has a cross-sectional shape force as viewed from an end surface direction and tapers toward a center direction of the ring-shaped base.
  • the heat transfer of the fins increases in resistance when the cross-sectional area of the fins gradually decreases in the direction of the center of the heat exchange ⁇ .
  • the force resistance decreases. Therefore, heat tends to flow due to the direction toward the outer periphery of the heat exchanger ⁇ , increasing the amount of heat exchanged with the heat transfer head.
  • the present invention is characterized in that, in the heat exchanger for a Stirling engine configured as described above, a retaining ring is press-fitted into a cylindrical space formed between the tip ends of the fins.
  • the retaining ring presses the heat exchange in the outer peripheral direction and presses the fins strongly, so that the outer peripheral surface of the heat exchanger is pressed against the inner peripheral surface of the heat transfer head and the contact state is stable. And heat transfer efficiency is improved.
  • the present invention is the Stirling engine heat exchanger configured as described above, characterized in that the fin has a curved cross-sectional shape as viewed from the end surface direction.
  • the present invention is a Stirling engine equipped with any one of the above heat exchanges.
  • FIG. 2 End view of heat exchange according to the first embodiment
  • FIG. 3 is a perspective view of heat exchange according to the first embodiment.
  • FIG. 4 is a perspective view of a heat exchanger according to the second embodiment.
  • FIG. 5 End view of heat exchange according to the second embodiment
  • FIG. 6 is a developed plan view of the heat exchanger according to the second embodiment.
  • FIG. 7 is a developed plan view of the heat exchanger according to the third embodiment.
  • FIG. 8 is a developed plan view of the heat exchanger according to the fourth embodiment.
  • FIG. 9 is a perspective view of heat exchange according to the fifth embodiment.
  • FIG. 10 is a developed plan view of the heat exchanger according to the fifth embodiment.
  • FIG. 11 is a developed plan view of the heat exchanger according to the sixth embodiment.
  • FIG. 12 is a developed plan view of the heat exchanger according to the seventh embodiment.
  • FIG. 13 is a sectional view of the heat exchanger according to the eighth embodiment.
  • FIG. 14 is a cross-sectional view of a heat exchanger according to the ninth embodiment.
  • FIG. 15 is a perspective view of heat exchange according to the tenth embodiment.
  • FIG. 16 is a perspective view of a heat exchanger according to an eleventh embodiment.
  • FIG. 17 is a perspective view of a heat exchanger according to a twelfth embodiment.
  • FIG. 18 is a perspective view of heat exchange according to the thirteenth embodiment.
  • FIG. 19 is an end view of the heat exchanger according to the fourteenth embodiment.
  • FIG. 20 is an end view of the heat exchanger according to the fifteenth embodiment.
  • FIG. Figure 1 is a cross-sectional view of a Stirling engine.
  • the Stirling engine 1 is of a free piston type used as a refrigerator, and the cylinders 10 and 11 are the center of its assembly. The axes of cylinders 10 and 11 are on the same straight line.
  • a piston 12 is inserted into the cylinder 10, and a displacer 13 is inserted into the cylinder 11.
  • the piston 12 and the displacer 13 reciprocate without contacting the inner walls of the cylinders 10 and 11 by the gas bearing mechanism.
  • the piston 12 and the displacer 13 move with a predetermined phase difference.
  • a cup-shaped magnet holder 14 is fixed to one end of the piston 12.
  • a displacer shaft 15 protrudes from one end of the displacer 13. The displacer shaft 15 penetrates the piston 12 and the magnet holder 14 so that they can slide freely in the axial direction.
  • the cylinder 10 holds the linear motor 20 outside the portion corresponding to the operation region of the piston 12.
  • the linear motor 20 includes an outer yoke 22 provided with a coil 21, an inner yoke 23 provided so as to be in contact with the outer peripheral surface of the cylinder 10, and a ring inserted between the outer yoke 22 and the inner yoke 23.
  • the magnet 24 is fixed to the magnet holder 14.
  • the central portion of the spring 30 is fixed to the hub portion of the magnet holder 14.
  • the center portion of the spring 31 is fixed to the positioner shaft 15.
  • the outer peripheries of the springs 30 and 31 are fixed to the end bracket 27.
  • a spacer 32 is disposed between the outer peripheries of the springs 30 and 31 so that the springs 30 and 31 maintain a certain distance.
  • the springs 30 and 31 are disc-shaped materials with spiral cuts, and the displacer 13 has a predetermined phase difference (generally a phase difference of about 90 °) with respect to the piston 12. It plays the role of resonating.
  • a high temperature side heat transfer head 40 and a low temperature side heat transfer head 41 are arranged outside the portion of the cylinder 11 corresponding to the operating region of the displacer 13.
  • the high temperature side heat transfer head 40 has a ring shape
  • the low temperature side heat transfer head 41 has a cap shape, both of which are made of a metal having good heat conductivity such as copper or copper alloy.
  • a ring-shaped high-temperature side internal heat exchanger 42 is mounted on the inner peripheral surface of the high-temperature side heat transfer head 40, and a ring-shaped low-temperature side internal heat exchanger 43 is also formed on the inner peripheral surface of the low-temperature side heat transfer head 41. Installed.
  • the high temperature side internal heat exchanger 42 and the low temperature side internal heat exchanger 43 are respectively The heat of the working gas passing through the inside is transmitted to the high temperature side heat transfer head 40 and the low temperature side heat transfer head 41.
  • the structures of the high temperature side internal heat exchanger 42 and the low temperature side internal heat exchanger 43 will be described in detail later.
  • the high temperature side heat transfer head 40 and the low temperature side heat transfer head 41 are thus supported outside the cylinder 11 with the high temperature side internal heat exchange and the low temperature side internal heat exchange 43 interposed therebetween.
  • the cylinder 10 and the pressure vessel 50 are connected to the high temperature side heat transfer head 40.
  • An annular space surrounded by the high temperature side heat transfer head 40, the cylinders 10 and 11, the piston 12, the displacer 13, the displacer shaft 15, and the high temperature side internal heat exchanger 42 becomes a compression space 45.
  • a space surrounded by the low temperature side heat transfer head 41, the cylinder 11, the displacer 13, and the low temperature side internal heat exchanger 43 is an expansion space 46.
  • a regenerator 70 is disposed between the high temperature side internal heat exchanger 42 and the low temperature side internal heat exchanger 43.
  • a regenerator 47 is disposed between the internal heat exchangers 42 and 43.
  • the regenerator 47 is formed by filling a container with a filler (matrix) such as a metal mesh, or winding a thin metal plate or a synthetic resin film in a coil shape, and has a gap through which the working gas passes.
  • a regenerator tube 48 wraps the outside of the regenerator 47.
  • the regenerator tube 48 forms an airtight passage between the heat transfer heads 40 and 41.
  • the regenerator tube 48 can be made of stainless steel, for example.
  • a cylindrical pressure vessel covering the linear motor 20, the cylinder 10, and the piston 12 forms the body portion 50.
  • the interior of the body part 50 is a back pressure space 51.
  • the structure of the body portion 50 is as follows. That is, the body part 50 is divided into two parts: a ring-like part 52 joined to the high-temperature side heat transfer head 40 and a cap-like part 53 joined to the ring-like part 52. Both the ring-shaped part 52 and the cap-shaped part 53 are made of stainless steel. One end of the ring-shaped portion 52 is narrowed to a taper shape and brazed to the high temperature side heat transfer head 40.
  • the cap-shaped portion 53 has a structure in which an end plate 53a is welded to the inner surface of the pipe.
  • flange-shaped portions 54 and 55 are provided at the other end of the ring-shaped portion 52 and the open end of the cap-shaped portion 53 facing this.
  • the flange-shaped portions 54 and 55 are both formed by welding a stainless steel ring to the ring-shaped portion 52 and the cap-shaped portion 53. Finally, the flange-shaped portions 54 and 55 are welded.
  • a sealed body part 50 is formed. [0045]
  • the body portion 50 is provided with a terminal portion 28 for supplying electric power to the linear motor 20, and a pipe 50a for enclosing a working gas therein. All of these are provided so as to protrude in the radial direction of the outer peripheral surface force of the cap-shaped portion 53.
  • a dynamic vibration absorber 60 is attached to the body portion 50.
  • the dynamic vibration absorber 60 includes a base 61 fixed to the body portion 50, a plate-like spring 62 supported by the base 61, and a balance weight 63 supported by the spring 62.
  • the Stirling engine 1 operates as follows. When an alternating current is supplied to the coil 21 of the linear motor 20, a magnetic field that penetrates the magnet 24 is generated between the outer yoke 22 and the inner yoke 23, and the magnet 24 reciprocates in the axial direction. By supplying power with a frequency that matches the resonance frequency determined by the total mass of the piston system (piston 12, magnet holder 14, magnet 24, and spring 30) and the panel constant of the spring 30, the piston system is smooth. Start a reciprocating sine wave.
  • the resonance frequency determined by the total mass and the panel constant of the spring 31 is set to resonate with the driving frequency of the piston 12. .
  • the compression space 45 is repeatedly compressed and expanded.
  • the displacer 13 also reciprocates.
  • a phase difference is generated between the displacer 13 and the piston 12.
  • the displacer 13 having a free piston structure vibrates synchronously with the piston 12 with a predetermined phase difference.
  • the working gas that travels between the compression space 45 and the expansion space 46 during operation passes through the high-temperature side internal heat exchange 42 and the low-temperature side internal heat exchange 43 to transfer its heat to the high-temperature side inside.
  • the heat is transferred to the high temperature side heat transfer head 40 and the low temperature side heat transfer head 41 through the heat exchange 42 and the low temperature side internal heat exchange 43.
  • the working gas flowing from the compression space 45 to the regenerator 70 is hot. Therefore, the high temperature side heat transfer head 40 is heated, and the high temperature side heat transfer head 40 becomes a warm head. Since the working gas flowing from the expansion space 46 into the regenerator 70 is low in temperature, the low-temperature side heat transfer head 41 is cooled and the low-temperature side heat transfer head 41 is a cold head.
  • the Stirling engine 1 functions as a refrigeration engine.
  • the regenerator 70 functions to pass only the working gas without transferring the heat of the compression space 45 and the expansion space 46 to the counterpart space.
  • the hot working gas that has entered the regenerator 70 from the compression space 45 via the high-temperature side internal heat exchanger 42 gives the heat to the regenerator 70 when passing through the regenerator 70, and the expansion space in a state where the temperature has decreased.
  • the low-temperature working gas that has entered the regenerator 70 through the low-temperature side internal heat exchanger 43 from the expansion space 46 recovers heat from the regenerator 70 when passing through the regenerator 70, and the compressed space with the temperature increased. Flows into 45. That is, the regenerator 70 serves as a heat storage means.
  • Both the high-temperature side internal heat exchange 42 and the low-temperature side heat exchange 43 are constituted by the heat exchanger 100.
  • FIGS. Fig. 2 A first embodiment of the heat exchange 100 is shown in FIGS. Fig. 2 is fitted to the high temperature side heat transfer head 40 or the low temperature side heat transfer head 41 (hereinafter, the high temperature side heat transfer head 40 and the low temperature side heat transfer head 41 are collectively referred to as "heat transfer head").
  • FIG. 3 is a view of the heat exchanger 100 in a state viewed from the end face side, that is, with the line of sight coincided with the ring axis.
  • Figure 3 is a perspective view of heat exchange ⁇ 100
  • the heat exchanger 100 includes a thin ring-shaped base 101 having an outer diameter substantially the same as the inner diameter of the heat transfer head.
  • the base 101 has a surface in surface contact with the heat transfer head on the outer surface.
  • a large number of fins 102 are formed on the inner surface of the base 101 at a constant pitch extending in parallel to the axis of the ring and toward the center of the ring.
  • the width of the base 101 and the fin 102 in the ring axis direction is the same.
  • the heat exchanger 100 extrudes a metal material into the shape of a long tube, and converts it into a predetermined length. It can be manufactured by cutting. Copper, copper alloy, aluminum, aluminum alloy, etc. are used as the metal material. According to the extrusion molding, the base 101 and the fins 102 are integrated, and there is no boundary between the two to inhibit heat transfer, so that good heat transfer can be realized.
  • the molding method of the heat exchanger 100 is not limited to extrusion molding. Die-casting or cutting out material blotters can also be used. Even with these methods, the base 101 and the fin 102 can be formed integrally.
  • the heat exchanger 100 faces the inner peripheral surface of the heat transfer head on the outer peripheral surface of the base 101 and comes into surface contact therewith. In this way, heat is transferred to and from the heat transfer head through the planar portion of the outer periphery of the ring-shaped base 101, so that heat transfer with a wide heat transfer area is stable, and the amount of heat transferred itself can be increased. it can.
  • Increasing the number of fins 102 increases the contact area with the working gas, and the ventilation resistance also increases in proportion to the number of 1S fins 102 that can transfer and receive a large amount of heat. Therefore, the number of fins 102 is determined so that the contact area with the working gas and the ventilation resistance are balanced.
  • the cross-sectional shape of the fin 102 viewed from the end surface direction is tapered toward the center of the base 101. For this reason, the heat transfer of the fin 102 increases in resistance when the cross-sectional area of the fin 102 gradually decreases toward the center of the heat exchange ⁇ 100, and the force of the fin 102 increases toward the outer periphery of the heat exchange 100. As the cross-sectional area gradually increases, the force also decreases. Accordingly, the heat tends to flow in the direction toward the outer periphery of the heat exchanger 100, and the amount of heat exchanged with the heat transfer head increases.
  • the tip of the tapered fin 102 is slightly shifted in the central direction as shown in Fig. 2, so that the fin 102 is deformed when inserted into the heat transfer head and acts as a cushion. This facilitates insertion of the heat exchanger 100 into the heat transfer head.
  • a retaining ring 110 is press-fitted into a cylindrical space formed between the tips of the fins 102.
  • the retaining ring 110 may be made of stainless steel and other metals.
  • the press-fitting retaining ring 110 presses the heat exchanger ⁇ 100 in the outer circumferential direction and strongly presses the fin 102, so that the outer peripheral surface of the heat exchanger 100 is pressed against the inner peripheral surface of the heat transfer head, and the contact state is Stable and improved heat transfer efficiency.
  • the retaining ring 110 may be press-fitted after the heat exchanger 100 is inserted into the heat transfer head. First, the retaining ring 110 is press-fitted into the heat exchange ⁇ 100, and then the heat exchange ⁇ Press 100 into the heat transfer head! /, You can follow the steps!
  • the outer diameter of the heat exchanger 100 may be made slightly larger than the inner diameter of the heat transfer head so that the fitting between the two becomes an interference fit. In this way, the retaining ring 110 can be omitted.
  • the fin 102 has a curved cross-sectional shape viewed from the end surface direction. For this reason, when another member is inserted into the center of the heat exchanger 100, the fins 102 are not only compressed, but also elastically deformed such that the radius of curvature is reduced. When the inserted member comes into contact with the cushioning force of the tip of the fin 102 and there are fins that reach the member and some fins that do not reach, it is difficult for variations to occur.
  • press-fitting the retaining ring 110 the base 101 is pressed against the inner peripheral surface of the heat transfer head all around by the reaction force of the force exerted on the retaining ring 110 by the fin 102. Is stable and heat transfer efficiency is improved.
  • FIG. 4 is a perspective view of the heat exchanger 100a according to the second embodiment.
  • FIG. 5 is a view of the heat exchange 100 & when fitted to the heat transfer head as viewed from the end face side.
  • FIG. 6 is a plan development view of the heat exchanger 100a.
  • the heat exchanger 100 of the first embodiment has a ring shape from the beginning, but the heat exchanger 100a of the second embodiment does not.
  • a ring-shaped base 101 is obtained by standing a large number of fins 102 on a flat metal material 101p and rolling the metal material 101p with the fins 102 inside.
  • FIG. 6 shows a planar rectangular metal material 101p in which a large number of fins 102 are erected in parallel with the ring axis. When this metal material 10 lp is rolled, the heat exchange 100a shown in FIGS. 4 and 5 is obtained.
  • a slit 103 extending in parallel with the ring axis is formed so as to divide the base 101.
  • the slit 103 has a vector component in the ring axis direction as a matter of course in terms of geometric shape.
  • the outer peripheral surface of the base 101 can be tightly adhered to the inner peripheral surface of the heat transfer head.
  • the base 101 immediately follows the expansion or contraction of the heat transfer head by the elasticity provided by the slit 103 and maintains surface contact. be able to.
  • the slit 103 has a shape that divides the base 101, and the expansion and contraction of the width of the slit 103 can absorb the dimensional difference between the inner periphery of the heat transfer head and the outer periphery of the base 101. In other words, it is not necessary to pursue dimensional accuracy so strictly. Also, since the ring shape of the base 101 is easy to bend, it is easy to insert it into the heat transfer head.
  • the slit 10 is not used regardless of the method of rounding the metal material 101p in which the fins 102 are erected.
  • FIG. 7 shows a heat exchanger 1 according to the third embodiment.
  • FIG. 1 A first figure.
  • the fins 102 are erected in parallel with the ring axis.
  • the fins 102 of the third embodiment extend so as to intersect the ring axis at an angle ⁇ .
  • the fin 102 forms a skew angle with respect to the ring axis.
  • the length of the fin 102 is longer than that of the fin 102 of the second embodiment. Accordingly, the heat transfer area increases and the heat transfer efficiency improves.
  • FIG. 8 shows a heat exchanger according to the fourth embodiment 1
  • FIG. 1 A first figure.
  • the fin 102 extends linearly in parallel with the ring axis.
  • the fin 102 is bent into a boomerang shape.
  • the length of the fin 102 is longer than that of the fin 102 of the second embodiment. Accordingly, the heat transfer area increases and the heat transfer efficiency improves.
  • FIG. 9 is a perspective view of the heat exchanger lOOd according to the fifth embodiment
  • FIG. 10 is a plan development view of the heat exchanger 100d.
  • the fifth embodiment differs from the second embodiment in the shape of the flat metal material 101p. That is, the metal material 101p of the second embodiment is rectangular, but the metal material 101p of the fifth embodiment is a parallelogram. When this metal material 101p is rounded, as shown in FIG. 10, the slit 103 has a skew angle with respect to the ring axis. The point that the slit 103 has an outer component in the ring axis direction and the overall operation and effect are the same as in the second embodiment.
  • FIG. 11 is a developed plan view of a heat exchanger 100e according to the sixth embodiment.
  • One end of the metal material 101p of the sixth embodiment protrudes into a triangular convex portion 106, and the other end is recessed into a triangular concave portion 107.
  • the slit formed between the convex portion 106 and the concave portion 107 is bent into a boomerang shape.
  • the slit has a vector component in the ring axis direction, and the overall effect is the same as in the second embodiment.
  • FIG. 12 is a developed plan view of a heat exchanger 100f according to the seventh embodiment.
  • two metal materials 101p each having a thick one end and a thin other end are arranged so that a thick end and a thin end are arranged side by side so that a rectangle is formed as a whole. It is.
  • a cylindrical heat exchange ⁇ 100f can be obtained.
  • the fins 102 of the third and fourth embodiments can be combined with the metal material 101p of the fifth to seventh embodiments.
  • FIG. 13 is a cross-sectional view of a heat exchanger 100g according to the eighth embodiment.
  • the heat exchange ⁇ 100g has a truncated cone shape as a whole, and the inner surface of the heat transfer head is also heat exchange ⁇ 100g. It has a conical surface with the same apex angle.
  • heat exchange ⁇ lOOg When heat exchange ⁇ lOOg is pushed into the heat transfer head, the outer peripheral surface of the heat exchanger 100g comes into close contact with the inner peripheral surface of the heat transfer head, so heat transfer efficiency can be improved.
  • heat exchange ⁇ 100g does not force into the heat transfer head until it reaches a certain depth, so if you push too much heat exchange 100g, it will not work.
  • FIG. 14 is a cross-sectional view of a heat exchanger 100h according to the ninth embodiment.
  • the heat exchange 10011 has a two-stage cylindrical shape in which a thin cylindrical portion and a thick cylindrical portion are connected.
  • the inner surface of the heat transfer head that accepts heat exchange 10011 is also a two-stage cylindrical surface.
  • the heat exchange 100h When the heat exchange 100h is inserted into the heat transfer head, it acts as a step stopper between the thin and thick parts, and the heat exchange ⁇ 100h stops at a certain insertion depth. For this reason, the relative position between the heat transfer head and the heat exchanger 100h can always be determined accurately.
  • the heat exchange 100g according to the eighth embodiment and the heat exchange 100h according to the ninth embodiment can be formed by die-casting or cutting out from a material block. Moreover, it can also be formed by a method of rounding the flat metal material 101p with the fins 102 provided upright as in the second to seventh embodiments. The shape of the fin 102 and the shape of the flat metal material 101p may be the same as those in the previous embodiments.
  • FIG. 15 shows a tenth embodiment of the heat exchange 100.
  • FIG. 15 is a perspective view of a heat exchanger 100i according to the tenth embodiment.
  • the heat exchanger 100i of the tenth embodiment is formed in a ring shape by extrusion as in the first embodiment, and the slit 103 is formed by a discharge force.
  • the slit 103 extends parallel to the ring axis and has a vector component in the ring axis direction.
  • a narrow bridge portion 104 that connects both banks of the slit 103 is formed. Since the bridge part 104 is easily bent, the bridge part 104 is bent by press-fitting the heat exchange ⁇ 100b into the heat transfer head having a tight size, so that the base 101 is formed on the inner peripheral surface of the heat transfer head. The outer peripheral surface can be closely adhered.
  • FIG. 16 is a perspective view of the heat exchanger lOOj according to the eleventh embodiment.
  • the heat exchange 10 of the eleventh embodiment (in the same way as in the tenth embodiment, the force having the bridge portions 104 at both ends of the slit 103 extending parallel to the ring axis is the shape of the bridge portion 104.
  • the heat exchange 10 of the eleventh embodiment (the bridge portion 104 of the third embodiment also has a direct directional force on the outer peripheral surface of the base 101 that is not linear as in the tenth embodiment. When viewed, it has a boomerang shape, which tends to cause the bridge portion 104 to shrink, immediately, or buckle.
  • FIG. 17 is a perspective view of a heat exchanger 100k according to the twelfth embodiment.
  • the heat exchange 100k of the twelfth embodiment has a bridge portion 104 at both ends of a slit 103 extending in parallel with the ring axis.
  • the bridge portion 104 has an arcuate cross section that is concave toward the center of the base 101. This shape can be formed by forming the slit 103 having the bridge portion 104 by electric discharge machining and then press-caching the bridge portion 104. As a result, the bridge portion 104 is likely to shrink or immediately buckle.
  • FIG. 18 is a perspective view of a heat exchanger 1001 according to the thirteenth embodiment.
  • a diameter reducing groove 105 is formed in the base 101 in place of the slit.
  • the diameter-reducing groove 105 extends in parallel with the ring axis and has a beta component in the ring axis direction.
  • the cross-sectional shape of the diameter reducing groove 105 is a triangle. In this way, the diameter reduction groove 105 having a vector component in the ring axis direction is provided in the base 101, and the heat exchange ⁇ 100 1 increases the width of the diameter reduction groove 105 by applying a force to the base 101.
  • FIG. 19 shows the heat exchange according to the fourteenth embodiment.
  • a total of four diameter-reducing grooves 105 are formed at 90 ° intervals, but the number is arbitrary.
  • FIG. 20 shows a fifteenth embodiment of the heat exchange 100.
  • FIG. 20 is a diagram in which the heat exchanger 10011 according to the fifteenth embodiment is fitted to the heat transfer head and the end face side force is also seen.
  • the heat exchange 10011 of the fifteenth embodiment differs from the thirteenth and fourteenth embodiments in the shape of the diameter-reducing groove 105. That is, the diameter-reduction groove 105 of the heat exchanger 10011 of the fifteenth embodiment has an arc-shaped cross section that is concaved by the force toward the center of the base 101, and its wall surface is thinner than the base 101, and the width is reduced. It is easy to shrink.
  • the diameter-reducing groove 105 of the thirteenth to fifteenth embodiments may have an angle so as to intersect the ring axis.
  • the diameter-reduced grooves 105 having different angles may be arranged so as to intersect each other.
  • the present invention is applicable to all Stirling engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 スターリング機関はピストン及びディスプレーサにより圧縮空間と膨脹空間の間で作動ガスを行き来させる。圧縮空間と膨脹空間の間に配置され、作動ガスとの間で熱を授受した熱を高温側伝熱ヘッド及び低温側伝熱ヘッドに伝える高温側内部熱交換器と低温側内部熱交換器は、いずれも本発明に係る熱交換器により構成される。熱交換器は、リング状ベースの内面に、リングの中心方向に向かって延びる多数のフィンを形成したものである。フィンの先端同士の間に形成される円筒形の空間には留めリングが圧入される。

Description

スターリング機関用熱交換器及びこれを用いるスターリング機関 技術分野
[0001] 本発明はスターリング機関用熱交 及びこれを用いるスターリング機関に関する 背景技術
[0002] スターリング機関は、フロンでなくヘリウム、水素、窒素などを作動ガスとして用いる ので、オゾン層の破壊を招くことのない熱機関として注目を集めている。冷凍機として 用いるスターリング機関では、リニアモータなどの動力源によりピストンを往復運動さ せ、このピストンに対しディスプレーサを、所定の位相差をもって同期往復運動させる 。ピストンとディスプレーサは圧縮空間と膨脹空間の間で作動ガスを行き来させる。圧 縮空間では作動ガスの温度が上昇し、膨脹空間では作動ガスの温度が低下する。 圧縮空間(高温空間)の熱を高温伝熱ヘッドを通じて放熱して等温圧縮変化を実現 し、外部の熱を低温伝熱ヘッドを通じ膨脹空間 (低温空間)に吸収して等温膨張変化 を実現すれば、逆スターリングサイクルが形成される。
[0003] 圧縮空間(高温空間)の熱を高温伝熱ヘッドに伝え、また外部の熱を低温伝熱へッ ドを通じ膨張空間 (低温空間)に吸収するため、高温伝熱ヘッドと低温伝熱ヘッドの 内部にはそれぞれ熱交換器が配置される。このような熱交換器の熱交換効率と熱授 受効率を高めることは、これまでも当技術分野における関心事であった。
[0004] 特許文献 1、 2にはコルゲートフィン力もなる熱交^^が記載されている。コルゲート フィンは広 、伝熱面積 (作動ガスに接触する部分の面積)を有するため用いられる。 コルゲートフィンは襞の頂部が管状の伝熱ヘッドの内周面に圧接し、線状の接触箇 所により伝熱ヘッドとの間で熱授受を行う。特許文献 3には熱交換器の要素技術であ るスカイブ放熱部材が開示されている。特許文献 4に開示されたものは熱交^^で はなく再生器である力 押出成形加工によって放射状にフィンを形成している。
特許文献 1 :特開 2002— 81774号公報 (第 3— 5頁、図 1— 8)
特許文献 2:特開 2001— 91075号公報 (第 3— 5頁、図 1— 5) 特許文献 3:特開 2001— 326308号公報 (第 3— 5頁、図 1— 5)
特許文献 4:特開 2000 - 28214号公報 (第 4— 5頁、図 1— 6)
発明の開示
発明が解決しょうとする課題
[0005] 特許文献 1、 2に記載のもののような、コルゲートフィン力 なる熱交^^を伝熱へッ ドに組み合わせるにあたっては、コルゲートフィンの襞の頂部力 Sもれなく伝熱ヘッドの 内周面に密着することが求められる。そのためにはコルゲートフィンの襞の頂部の包 絡線が真円を描くことが必要となる。し力しながら、コルゲートフィンの幾何学形状を そのように正確に仕上げることは困難であり、伝熱ヘッドの内周面に接触しない頂部 が生じることがしばしばあった。伝熱ヘッドに接触すべき箇所が接触しな 、と 、う事態 が発生すると、当然のことながら熱交^^と伝熱ヘッドの間の熱授受が阻害され、ス ターリング機関の性能が低下する。そのような事態に陥らないよう、コルゲートフィンの 襞の頂部と伝熱ヘッドの内周面とをロウ付けしたり接着剤で接着したりして両者間に 隙間をつくらないようにするという対策も実施されるが、それは材料コストと加工コスト の増大を招き、好ましくない。
[0006] 特許文献 3にはスカイブ加工による熱交^^が記載されているが、スターリング機 関に最適な構造に関する記載がな ヽ。特許文献 4には放射状にフィンを形成したス ターリング機関用再生器が記載されているが、熱交^^に最適な構造を示すもので はない。
[0007] 本発明は上記の点に鑑みなされたものであり、伝熱ヘッドとの間の熱授受がスムー ズ且つ安定して ヽる新規構造のスターリング機関用熱交 を提供することを目的と する。また、力かる熱交 を搭載した高性能のスターリング機関を提供することを目 的とする。
課題を解決するための手段
[0008] 上記目的を達成するために本発明は、圧縮空間と膨脹空間を行き来する作動ガス との間で授受した熱を伝熱ヘッドに伝達するスターリング機関用熱交^^において、 リング状ベースを備え、このリング状ベースは、外面には前記スターリング機関の伝熱 ヘッドと面接触する面を有し、内面にはリングの中心方向に向かつて延びる多数のフ インが形成されて 、ることを特徴として 、る。
[0009] この構成によると、伝熱ヘッドとの間の熱授受をコルゲートフィンのように襞の頂部と いう線状の部分を通じて行うのでなぐリング状ベースの外周という面状の部分を通じ て行うから、伝熱面積が広ぐ熱授受が安定し、授受する熱量そのものも多くすること ができる。
[0010] また本発明は、上記構成のスターリング機関用熱交換器において、前記ベースとフ インを一体に押出成形することを特徴として 、る。
[0011] この構成によると、ベースとフィンの間に熱の授受を阻害する境界部がないので、 良好な熱授受を実現できる。
[0012] また本発明は、上記構成のスターリング機関用熱交換器において、前記フィンを多 数立設した平板状素材をフィンを内側にして丸めることにより、前記リング状ベースを 形成することを特徴として 、る。
[0013] この構成によると、フィンを立設した平板状素材を丸めて熱交 を形成するもの であるから、フィンを立設するのに多様な手法を用いることができ、製造が容易である 。また平板状素材の長さを変えることによりリング状ベースの直径を自由に調整できる
[0014] また本発明は、上記構成のスターリング機関用熱交換器において、前記リング状べ ースは、リング軸線方向のベクトル成分を持つスリットを少なくとも 1箇所に有すること を特徴としている。
[0015] この構成によると、リング状ベースに力をカ卩えてスリットの幅を縮めればベースの直 径自体が小さくなるので、その状態でリング状ベースを伝熱ヘッドに挿入して力 力 を緩めることにより、伝熱ヘッドの内周面にリング状ベースの外周面をぴったりと密着 させることができる。また熱交^^と伝熱ヘッドの間に急激に温度差が生じた場合で も、スリットの存在力 Sもたらす弾性でリング状ベースは伝熱ヘッドの膨張あるいは収縮 に即座に追随し、面接触を保つことができる。
[0016] また本発明は、上記構成のスターリング機関用熱交換器において、前記スリットは、 前記リング状ベースを分断するものであることを特徴としている。
[0017] この構成によると、スリットの幅の伸縮で伝熱ヘッドの内周とベースの外周との寸法 差を吸収できるから、熱交^^の製造にあたり、寸法精度をそれほど厳しく追求しな くて済む。また、ベースのリング形状をたわめやすいので伝熱ヘッドに挿入するのも 楽である。
[0018] また本発明は、上記構成のスターリング機関用熱交換器において、前記スリットは、 両岸部を連結するブリッジ部を備えることを特徴としている。
[0019] この構成によると、熱交 を手で支えなくてもスリットが開きすぎるということはなく 、リング状ベースは一定直径以下に保たれるので、組立時のハンドリングが容易であ る。
[0020] また本発明は、上記構成のスターリング機関用熱交換器において、前記リング状べ ースは、リング軸線方向のベクトル成分を持つ縮径用溝を少なくとも 1箇所に有するこ とを特徴としている。
[0021] この構成によると、リング状ベースに力を加えて縮径用溝の幅を縮めればリング状 ベースの直径自体が小さくなるので、その状態でリング状ベースを伝熱ヘッドに挿入 してから力を緩めることにより、伝熱ヘッドの内周面にリング状ベースの外周面をぴっ たりと密着させることができる。
[0022] また本発明は、上記構成のスターリング機関用熱交換器において、前記フィンは、 端面方向から見た断面形状力 前記リング状ベースの中心方向に向かい先細りとな つて 、ることを特徴として 、る。
[0023] この構成によると、フィンの熱伝達は、熱交^^の中心方向に向ってはフィンの断 面積が漸減するところ力も抵抗大となり、熱交^^の外周方向に向力つてはフィンの 断面積が漸増するところ力 抵抗小となる。従って熱交^^の外周方向に向力つて 熱が流れやすくなり、伝熱ヘッドとの間の熱授受量が増加する。
[0024] また本発明は、上記構成のスターリング機関用熱交換器において、前記フィンの先 端同士の間に形成される円筒形の空間に、留めリングを圧入することを特徴としてい る。
[0025] この構成によると、留めリングが熱交 を外周方向に圧迫し、フィンを強く押圧す るので、熱交換器の外周面が伝熱ヘッドの内周面に押し付けられて接触状態が安定 し、熱授受効率が向上する。 [0026] また本発明は、上記構成のスターリング機関用熱交換器において、前記フィンは、 端面方向から見た断面形状が曲線を描 、て 、ることを特徴として 、る。
[0027] この構成によると、熱交^^の中心に挿入される部材に対し、フィンは曲げによる弹 性で接触するから、その部材に届くフィンもあれば届かないフィンもあるといったばら つきが生じにくい。その部材が留めリングである場合、フィンが留めリングに及ぼす力 の反力でリング状ベースは全周にわたり伝熱ヘッドの内周面に押し付けられて接触 状態が安定し、熱授受効率が向上する。
[0028] また本発明は、上記のいずれかの熱交 を搭載したスターリング機関であること を特徴としている。
[0029] この構成〖こよると、熱授受性能に優れた熱交 を使用することにより、スターリン グ機関の能力あるいは運転効率を向上させることができる。
発明の効果
[0030] 本発明によると、広い伝熱面積をもって伝熱ヘッドの内周面に面接触し、安定した 熱授受が可能なスターリング機関用熱交換器を得ることができる。
図面の簡単な説明
[0031] [図 1]スターリング機関の断面図
[図 2]第 1実施形態に係る熱交翻の端面図
[図 3]第 1実施形態に係る熱交翻の斜視図
[図 4]第 2実施形態に係る熱交換器の斜視図
[図 5]第 2実施形態に係る熱交翻の端面図
[図 6]第 2実施形態に係る熱交換器の平面展開図
[図 7]第 3実施形態に係る熱交換器の平面展開図
[図 8]第 4実施形態に係る熱交換器の平面展開図
[図 9]第 5実施形態に係る熱交翻の斜視図
[図 10]第 5実施形態に係る熱交換器の平面展開図
[図 11]第 6実施形態に係る熱交換器の平面展開図
[図 12]第 7実施形態に係る熱交換器の平面展開図
[図 13]第 8実施形態に係る熱交換器の断面図 [図 14]第 9実施形態に係る熱交換器の断面図
[図 15]第 10実施形態に係る熱交翻の斜視図
[図 16]第 11実施形態に係る熱交換器の斜視図
[図 17]第 12実施形態に係る熱交換器の斜視図
[図 18]第 13実施形態に係る熱交翻の斜視図
[図 19]第 14実施形態に係る熱交換器の端面図
[図 20]第 15実施形態に係る熱交換器の端面図
符号の説明
[0032] 1 スターリング機関
12 ピストン
13 ディスプレーサ
20 リニアモータ
40 高温側伝熱ヘッド
41 低温側伝熱ヘッド
42 高温側内部熱交換器
43 低温側内部熱交換器
45 圧縮空間
46 膨脹空間
100、 100a〜100n 熱交^^
101 ベース
102 フィン
103 スリット
104 ブリッジ部
105 縮径用溝
110 留めリング
発明を実施するための最良の形態
[0033] 最初に、本発明熱交換器の使用対象であるスターリング機関の構造を図 1に基づ き説明する。図 1はスターリング機関の断面図である。 [0034] スターリング機関 1は冷凍機として用いられるフリーピストンタイプのものであり、その 組立の中心となるのはシリンダ 10、 11である。シリンダ 10、 11の軸線は同一直線上 に並ぶ。シリンダ 10にはピストン 12が挿入され、シリンダ 11にはディスプレーサ 13が 挿入される。ピストン 12及びディスプレーサ 13は、スターリング機関 1の運転中、ガス ベアリングの仕組みによりシリンダ 10、 11の内壁に接触することなく往復運動する。 ピストン 12とディスプレーサ 13は所定の位相差を備えて動く。
[0035] ピストン 12の一方の端にはカップ状のマグネットホルダ 14が固定される。ディスプレ ーサ 13の一方の端からはディスプレーサ軸 15が突出する。ディスプレーサ軸 15はピ ストン 12及びマグネットホルダ 14を軸線方向に自由にスライドできるように貫通する。
[0036] シリンダ 10はピストン 12の動作領域にあたる部分の外側にリニアモータ 20を保持 する。リニアモータ 20は、コイル 21を備えた外側ヨーク 22と、シリンダ 10の外周面に 接するように設けられた内側ヨーク 23と、外側ヨーク 22と内側ヨーク 23の間の環状空 間に挿入されたリング状のマグネット 24と、外側ヨーク 22を囲む管体 25と、外側ョー ク 22、内側ヨーク 23、及び管体 25を所定の位置関係に保持する合成樹脂製エンド ブラケット 26、 27とを備える。マグネット 24はマグネットホルダ 14に固定されている。
[0037] マグネットホルダ 14のハブの部分にはスプリング 30の中心部が固定される。デイス プレーサ軸 15にはスプリング 31の中心部が固定される。スプリング 30、 31の外周部 はエンドブラケット 27に固定される。スプリング 30、 31の外周部同士の間にはスぺー サ 32が配置されており、これによりスプリング 30、 31は一定の距離を保つ。スプリン グ 30、 31は円板形の素材にスパイラル状の切り込みを入れたものであり、ディスプレ ーサ 13をピストン 12に対し所定の位相差 (一般的には約 90°の位相差)をもたせて 共振させる役割を果たす。
[0038] シリンダ 11のうち、ディスプレーサ 13の動作領域にあたる部分の外側には高温側 伝熱ヘッド 40と低温側伝熱ヘッド 41が配置される。高温側伝熱ヘッド 40はリング状、 低温側伝熱ヘッド 41はキャップ状であって、いずれも銅や銅合金など熱伝導の良い 金属からなる。高温側伝熱ヘッド 40の内周面にはリング状の高温側内部熱交換器 4 2が装着され、低温側伝熱ヘッド 41の内周面には同じくリング状の低温側内部熱交 43が装着される。高温側内部熱交換器 42と低温側内部熱交換器 43はそれぞ れ通気性を有し、内部を通り抜ける作動ガスの熱を高温側伝熱ヘッド 40と低温側伝 熱ヘッド 41に伝える。高温側内部熱交換器 42と低温側内部熱交換器 43の構造は 後で詳細に説明する。
[0039] 高温側伝熱ヘッド 40と低温側伝熱ヘッド 41はこのように高温側内部熱交 と 低温側内部熱交 43を介在させた形でシリンダ 11の外側に支持される。そして高 温側伝熱ヘッド 40にはシリンダ 10及び圧力容器 50が連結される。
[0040] 高温側伝熱ヘッド 40、シリンダ 10、 11、ピストン 12、ディスプレーサ 13、ディスプレ ーサ軸 15、及び高温側内部熱交換器 42で囲まれる環状の空間は圧縮空間 45とな る。低温側伝熱ヘッド 41、シリンダ 11、ディスプレーサ 13、及び低温側内部熱交換 器 43で囲まれる空間は膨張空間 46となる。
[0041] 高温側内部熱交 42と低温側内部熱交 43の間には再生器 70が配置され る。内部熱交 42、 43の間には再生器 47が配置される。再生器 47は容器に金 網などの充填材 (マトリックス)を詰め込んだり、金属薄板や合成樹脂フィルムをコイル 状に巻いたりして形成したものであって、作動ガスが通る空隙を内部に有する。再生 器 47の外側を再生器チューブ 48が包む。再生器チューブ 48は伝熱ヘッド 40、 41 の間に気密通路を構成する。再生器チューブ 48は、例えばステンレス鋼で形成する ことができる。
[0042] リニアモータ 20、シリンダ 10、及びピストン 12を覆う筒状の圧力容器が胴体部 50を 形成する。胴体部 50の内部は背圧空間 51となる。
[0043] 胴体部 50の構造は次のようになって 、る。すなわち胴体部 50は、高温側伝熱へッ ド 40に接合されるリング状部 52と、このリング状部 52に接合されるキャップ状部 53と に 2分割されている。リング状部 52、キャップ状部 53ともステンレス鋼製である。リング 状部 52の一端はテーパ状に絞り込まれ、高温側伝熱ヘッド 40にロウ付けされる。キ ヤップ状部 53はパイプの内面に鏡板 53aを溶接した構造である。
[0044] リング状部 52の他端と、これに向かい合うキャップ状部 53の開口端には、フランジ 形状部 54、 55が設けられる。フランジ形状部 54、 55はいずれもステンレス鋼製のリ ングをリング状部 52とキャップ状部 53に溶接して形成されるものであり、最終的には フランジ形状部 54、 55を溶接して密閉状態の胴体部 50を形成する。 [0045] 胴体部 50には、リニアモータ 20に電力を供給するための端子部 28と、内部に作動 ガスを封入するためのパイプ 50aが配置される。これらはいずれもキャップ状部 53の 外周面力 放射方向に突出するように設けられる。
[0046] 胴体部 50には動吸振器 60が取り付けられる。動吸振器 60は、胴体部 50に固定さ れるベース 61と、ベース 61に支持される板状のスプリング 62と、スプリング 62に支持 されるバランスウェイト 63とから成る。
[0047] スターリング機関 1は次のように動作する。リニアモータ 20のコイル 21に交流電流を 供給すると外側ヨーク 22と内側ヨーク 23の間にマグネット 24を貫通する磁界が発生 し、マグネット 24は軸方向に往復する。ピストン系(ピストン 12、マグネットホルダ 14、 マグネット 24、及びスプリング 30)の総質量と、スプリング 30のパネ定数とにより定ま る共振周波数に一致する周波数の電力を供給することにより、ピストン系は滑らかな 正弦波状の往復運動を開始する。
[0048] ディスプレーサ系(ディスプレーサ 13、ディスプレーサ軸 15、及びスプリング 31)に あっては、その総質量と、スプリング 31のパネ定数とにより定まる共振周波数がピスト ン 12の駆動周波数に共振するよう設定する。
[0049] ピストン 12の往復運動により、圧縮空間 45では圧縮、膨脹が繰り返される。この圧 力の変化に伴って、ディスプレーサ 13も往復運動を行う。このとき、圧縮空間 45と膨 脹空間 46との間の流動抵抗等により、ディスプレーサ 13とピストン 12との間には位 相差が生じる。このようにしてフリーピストン構造のディスプレーサ 13はピストン 12と所 定の位相差を有して同期して振動する。
[0050] 上記の動作により、圧縮空間 45と膨脹空間 46との間に逆スターリングサイクルが形 成される。圧縮空間では作動ガスの温度が上昇し、膨脹空間 46では作動ガスの温 度が低下する。このため、圧縮空間 45の温度は上昇し、膨張空間 46の温度は下降 する。
[0051] 運転中に圧縮空間 45と膨張空間 46の間を行き来する作動ガスは、高温側内部熱 交翻 42と低温側内部熱交翻 43を通過する際に、その有する熱を高温側内部 熱交翻 42と低温側内部熱交翻 43を通じて高温側伝熱ヘッド 40と低温側伝熱 ヘッド 41に伝える。圧縮空間 45から再生器 70へ流れ込む作動ガスは高温であるた め高温側伝熱ヘッド 40は加熱され、高温側伝熱ヘッド 40はウォームヘッドとなる。膨 張空間 46から再生器 70へ流れ込む作動ガスは低温であるため低温側伝熱ヘッド 4 1は冷却され、低温側伝熱ヘッド 41はコールドヘッドとなる。高温側伝熱ヘッド 40より 熱を大気へ放散し、低温側伝熱ヘッド 41で特定空間の温度を下げることにより、スタ 一リング機関 1は冷凍機関としての機能を果たす。
[0052] 再生器 70は、圧縮空間 45と膨張空間 46の熱を相手側の空間には伝えず、作動ガ スだけを通す働きをする。圧縮空間 45から高温側内部熱交換器 42を経て再生器 70 に入った高温の作動ガスは、再生器 70を通過するときにその熱を再生器 70に与え、 温度が下がった状態で膨張空間 46に流入する。膨張空間 46から低温側内部熱交 43を経て再生器 70に入った低温の作動ガスは、再生器 70を通過するときに再 生器 70から熱を回収し、温度が上がった状態で圧縮空間 45に流入する。すなわち 再生器 70は蓄熱手段としての役割を果たす。
[0053] ピストン 12とディスプレーサ 13が往復運動し、作動ガスが移動すると、スターリング 機関 1に振動が生じる。振動抑制装置 60がこの振動を抑える。
[0054] 続いて高温側内部熱交換器 42と低温側内部熱交換器 43の構造を図 2以下の図 に基づき説明する。高温側内部熱交翻 42と低温側熱交翻 43は、共に熱交換 器 100により構成される。
[0055] 熱交翻100の第 1実施形態を図 2、 3に示す。図 2は高温側伝熱ヘッド 40又は低 温側伝熱ヘッド 41 (以下、高温側伝熱ヘッド 40と低温側伝熱ヘッド 41を合わせて単 に「伝熱ヘッド」と称する)に嵌合した状態の熱交換器 100を端面側から、すなわちリ ングの軸線に視線を一致させて見た図である。図 3は熱交^^ 100の斜視図である
[0056] 熱交^^ 100は、伝熱ヘッドの内径とほぼ同じ外径を有する薄いリング状のベース 101を備える。ベース 101は伝熱ヘッドと面接触する面を外面に有する。ベース 101 の内面には、リングの軸線と平行に、且つリングの中心方向に向かって延びるフィン 1 02が一定ピッチで多数形成されている。ベース 101とフィン 102のリング軸線方向の 幅は同一である。
[0057] 熱交翻100は、金属素材を長いチューブの形に押出成形し、それを所定長さに 切断することにより製造できる。金属素材としては銅、銅合金、アルミニウム、アルミ- ゥム合金などを用いる。押出成形によれば、ベース 101とフィン 102は一体のものとな り、両者間に熱の授受を阻害する境界部が存在しないので、良好な熱授受を実現で きる。
[0058] 熱交換器 100の成形手法は押出成形に限られない。ダイキャスト成型や素材ブロッ タカもの削り出しなども採用可能である。これらの手法でもベース 101とフィン 102を 一体化する形で成形できる。
[0059] 熱交換器 100は、伝熱ヘッドの内周面に対し、ベース 101の外周面で向かい合い 、面接触する。このようにリング状のベース 101の外周という面状の部分を通じて伝熱 ヘッドとの間の熱授受を行うから、伝熱面積が広ぐ熱授受が安定し、授受する熱量 そのものも多くすることができる。
[0060] フィン 102の数を多くすれば作動ガスとの接触面積が増し、多くの熱を授受できる 1S フィン 102の数に比例して通気抵抗も増す。そこで、作動ガスとの接触面積と通 気抵抗とのバランスがとれるようにフィン 102の数を決定する。
[0061] フィン 102は、端面方向から見た断面形状がベース 101の中心方向に向かい先細 りとなっている。このためフィン 102の熱伝達は、熱交^^ 100の中心方向に向って はフィン 102の断面積が漸減するところ力も抵抗大となり、熱交翻 100の外周方向 に向力つてはフィン 102の断面積が漸増するところ力も抵抗小となる。従って熱交換 器 100の外周方向に向力つて熱が流れやすくなり、伝熱ヘッドとの間の熱授受量が 増加する。
[0062] なお、先細りしたフィン 102の先端部を図 2に示すように僅かに中心方向力もずらし ておくことにより、伝熱ヘッドへの挿入時にフィン 102が変形し、クッションとして作用 する。これにより、熱交換器 100の伝熱ヘッドへの挿入が容易になる。
[0063] フィン 102の先端同士の間に形成される円筒形の空間には留めリング 110を圧入 する。留めリング 110にはステンレス鋼を用いる力 それ以外の金属であっても構わ ない。圧入した留めリング 110が熱交^^ 100を外周方向に圧迫し、フィン 102を強 く押圧するので、熱交換器 100の外周面が伝熱ヘッドの内周面に押し付けられて接 触状態が安定し、熱授受効率が向上する。 [0064] 留めリング 110の圧入は、熱交換器 100を伝熱ヘッドに挿入した後に行ってもよぐ 先に留めリング 110を熱交^^ 100に圧入しておいて、それから熱交^^ 100を伝 熱ヘッドに圧入すると!/、う手順を踏んでもよ!、。
[0065] 熱交換器 100の外径を伝熱ヘッドの内径よりも若干大きめにしておき、両者の嵌合 がしまりばめになるようになるようにしておいてもよい。こうすれば、留めリング 110を省 略できる。
[0066] フィン 102は、端面方向から見た断面形状が曲線を描いている。このため、熱交換 器 100の中心に他部材を挿入すると、フィン 102〖こは圧縮だけでなく、曲率半径が縮 小するという弾性変形が生じる。挿入された部材にフィン 102の先端力クッション性を もって接触することになり、その部材に届くフィンもあれば届かないフィンもあるといつ たばらつきが生じにくい。留めリング 110を圧入する場合には、フィン 102が留めリン グ 110に及ぼす力の反力でベース 101は全周にわたり伝熱ヘッドの内周面に押し付 けられるから、これによつて接触状態が安定し、熱授受効率が向上する。
[0067] 熱交換器 100の第 2実施形態を図 4〜6に示す。図 4は第 2実施形態に係る熱交換 器 100aの斜視図である。図 5は伝熱ヘッドに嵌合した状態の熱交翻100&を端面 側から見た図である。図 6は熱交換器 100aの平面展開図である。
[0068] 第 1実施形態の熱交換器 100は、最初からリング形状となっていたが、第 2実施形 態の熱交^^ 100aはそうではない。平板状の金属素材 101pに多数のフィン 102を 立設し、その金属素材 101pをフィン 102を内側にして丸めることによりリング状のベ ース 101を得るものである。図 6には平面形状矩形の金属素材 101pにリング軸線と 平行な多数のフィン 102を立設したものが示されている。この金属素材 10 lpを丸め ると図 4、 5に示される熱交翻 100aが得られる。
[0069] この製造方法によると、フィン 102を立設するのに多様な手法、例えば特許文献 3 に記載されたスカイブカ卩ェなどを用いることができるから、コスト的に有利な手法を選 んで製造することができる。また金属素材 101pの長さを変えることによりベース 101 の直径を自由に調整できる。
[0070] スカイブカ卩ェなどによってフィン 102を立設した金属素材 101pを、円筒状の型に卷 き付けるなど従来周知の加工法で丸めてリング状にすると、突合せ端同士の間に、 ベース 101を分断する形でリング軸線と平行に延びるスリット 103が形成される。スリ ット 103は、幾何学形状的に見れば、当然のことながらリング軸線方向にベクトル成 分を持つ。このようにリング軸線方向にベクトル成分を持つスリット 103がベース 101 に設けられている熱交換器 100aは、ベース 101に力を加えてスリット 103の幅を縮め ればベース 101の直径自体が小さくなるので、その状態でベース 101を伝熱ヘッドに 挿入してから力を緩めることにより、伝熱ヘッドの内周面にベース 101の外周面をぴ つたりと密着させることができる。また熱交翻 100aと伝熱ヘッドの間に急激に温度 差が生じた場合でも、スリット 103の存在力もたらす弾性でベース 101は伝熱ヘッドの 膨張あるいは収縮に即座に追随し、面接触を保つことができる。
[0071] スリット 103はベース 101を分断する形であり、スリット 103の幅の伸縮で伝熱ヘッド の内周とベース 101の外周との寸法差を吸収できるから、熱交^^ 100aの製造にあ たり、寸法精度をそれほど厳しく追求しなくて済む。また、ベース 101のリング形状を たわめやすいので伝熱ヘッドに挿入するのも楽である。
[0072] なお、フィン 102を立設した金属素材 101pを丸めるという手法によらず、スリット 10
Figure imgf000015_0001
る。
[0073] 熱交換器 100の第 3実施形態を図 7に示す。図 7は第 3実施形態に係る熱交換器 1
00bの平面展開図である。
[0074] 第 2実施形態では、フィン 102はリング軸線と平行に立設されていた。第 3実施形態 のフィン 102は、リング軸線に対し角度 Θで交差するように延びている。この金属素 材 101pを丸めると、フィン 102はリング軸線に対しスキュー角をなすことになる。
[0075] 第 3実施形態の構成では、熱交換器全体の軸線方向長さが第 2実施形態と同じで あつたとしても、フィン 102の長さが第 2実施形態のフィン 102より長くなり、それだけ 伝熱面積が増大し、熱授受効率が向上する。
[0076] 熱交換器 100の第 4実施形態を図 8に示す。図 8は第 4実施形態に係る熱交換器 1
00cの平面展開図である。
[0077] 第 2実施形態では、フィン 102はリング軸線と平行に直線状に延びて 、た。第 4実 施形態では、フィン 102はブーメラン形状に屈曲して 、る。 [0078] 第 4実施形態の構成では、熱交換器全体の軸線方向長さが第 2実施形態と同じで あつたとしても、フィン 102の長さが第 2実施形態のフィン 102より長くなり、それだけ 伝熱面積が増大し、熱授受効率が向上する。
[0079] 熱交換器 100の第 5実施形態を図 9、 10に示す。図 9は第 5実施形態に係る熱交 換器 lOOdの斜視図、図 10は熱交換器 100dの平面展開図である。
[0080] 第 5実施形態が第 2実施形態と異なる点は平板状金属素材 101pの形状である。す なわち第 2実施形態の金属素材 101pは矩形であつたが、第 5実施形態の金属素材 101pは平行四辺形となっている。この金属素材 101pを丸めると、図 10に見られるよ うに、スリット 103はリング軸線に対しスキュー角を有することになる。スリット 103がリン グ軸線方向にべ外ル成分を持つ点、また全般的な作用効果は第 2実施形態と変わ らない。
[0081] 熱交換器 100の第 6実施形態を図 11に示す。図 11は第 6実施形態に係る熱交換 器 100eの平面展開図である。
[0082] 第 6実施形態の金属素材 101pは、一端が突き出して三角形の凸部 106となり、他 端は凹んで三角形の凹部 107となっている。凸部 106と凹部 107の間に形成される スリットはブーメラン形状に屈曲する。そのスリットがリング軸線方向にベクトル成分を 持つ点、また全般的な作用効果は第 2実施形態と変わらな 、。
[0083] 熱交換器 100の第 7実施形態を図 12に示す。図 12は第 7実施形態に係る熱交換 器 100fの平面展開図である。
[0084] 第 7実施形態は、一端が太く、他端が細くなつた金属素材 101pを 2個、太い方の端 と細い方の端を並べ、全体として矩形が構成されるように組み合わせたものである。こ のように組み合わせた 2個の金属素材 101pを丸めると、円筒形の熱交^^ 100fを 得ることができる。
[0085] 第 5〜第 7実施形態の金属素材 101pに、第 3、第 4実施形態のフィン 102を組み合 わせることも可會である。
[0086] 熱交換器 100の第 8実施形態を図 13に示す。図 13は第 8実施形態に係る熱交換 器 100gの断面図である。
[0087] 熱交^^ 100gは全体が円錐台形状をなし、伝熱ヘッドの内面も熱交^^ 100gと 頂角の等しい円錐面になっている。熱交^^ lOOgを伝熱ヘッドに押し込むと熱交換 器 100gの外周面が伝熱ヘッドの内周面に密着するので、熱授受効率を高めること ができる。また熱交^^ 100gは伝熱ヘッドに一定深さまでし力入らないので、熱交 翻 100gを押し込みすぎてしまうと 、うことがな 、。
[0088] 熱交換器 100の第 9実施形態を図 14に示す。図 14は第 9実施形態に係る熱交換 器 100hの断面図である。
[0089] 熱交翻10011は、細い円筒部分と太い円筒部分を連結した 2段円筒形状を備え ている。熱交翻10011を受け入れる伝熱ヘッドの内面も 2段円筒面となっている。熱 交翻 100hを伝熱ヘッドに挿入するとき、細い部分と太い部分の間の段差力ストツ パの役割を果たし、熱交^^ 100hは一定の挿入深さできちんと止まる。このため、 伝熱ヘッドと熱交^^ 100hの相対位置を常に正確に定めることができる。
[0090] 第 8実施形態の熱交翻 100gと第 9実施形態の熱交翻 100hは、ダイキャスト成 型や素材ブロックからの削り出しなどで成形することができる。また第 2〜第 7実施形 態のようにフィン 102を立設した平板状金属素材 101pを丸める手法によっても成形 できる。フィン 102の形状や平板状金属素材 101pの形状はこれまでの実施形態に ならえばよい。
[0091] 熱交翻100の第 10実施形態を図 15に示す。図 15は第 10実施形態に係る熱交 換器 100iの斜視図である。
[0092] 第 10実施形態の熱交換器 100iは、第 1実施形態と同じく押出成形でリング形状と したうえ、放電力卩ェでスリット 103を形成したものである。スリット 103はリング軸線と平 行に延び、リング軸線方向のベクトル成分を持つ。スリット 103の長さ方向の両端部 分には、スリット 103の両岸部を連結する細いブリッジ部 104が形成される。ブリッジ 部 104は容易に挫屈するので、寸法がきつめの伝熱ヘッドの中に熱交^^ 100bを 圧入してブリッジ部 104を挫屈させることにより、伝熱ヘッドの内周面にベース 101の 外周面をぴったりと密着させることができる。
[0093] スリット 103の両岸部をブリッジ部 104が連結するから、熱交^^ 100iを手で支え なくてもスリット 103が開きすぎるということはなぐベース 101は一定直径以下に保た れる。従って、通い箱に入れて組立工場に届ける局面でも、伝熱ヘッドに圧入する局 面でも、熱交^^ 100iのハンドリングは容易である。
[0094] 熱交換器 100の第 11実施形態を図 16に示す。図 16は第 11実施形態に係る熱交 換器 lOOjの斜視図である。
[0095] 第 11実施形態の熱交翻10(¾は、第 10実施形態と同じくリング軸線と平行に延 びるスリット 103の両端にブリッジ部 104を備えるものである力 そのブリッジ部 104の 形状が第 10実施形態と異なっている。すなわち第 11実施形態の熱交翻10(¾のブ リッジ部 104は、第 10実施形態のように直線状ではなぐベース 101の外周面に直 角な方向力も見たとき、ブーメラン形状を呈している。これにより、ブリッジ部 104が縮 みやすぐあるいは挫屈が生じやすくなる。
[0096] 熱交換器 100の第 12実施形態を図 17に示す。図 17は第 12実施形態に係る熱交 換器 100kの斜視図である。
[0097] 第 12実施形態の熱交翻 100kも、第 10実施形態と同じくリング軸線と平行に延 びるスリット 103の両端にブリッジ部 104を備えるものである力 そのブリッジ部 104の
Figure imgf000018_0001
ブリッジ部 104は、ベース 101の中心に向かって凹をなす円弧状断面を有する。本 形状はブリッジ部 104を有するスリット 103を放電加工で形成した後、ブリッジ部 104 をプレスカ卩ェすることで形成できる。これにより、ブリッジ部 104が縮みやすぐあるい は挫屈が生じやすくなる。
[0098] 熱交翻100の第 13実施形態を図 18に示す。図 18は第 13実施形態に係る熱交 換器 1001の斜視図である。
[0099] 第 13実施形態の熱交換器 1001には、スリットに代え、縮径用溝 105がベース 101 に形成されている。縮径用溝 105はリング軸線と平行に延び、リング軸線方向のベタ トル成分を持つ。縮径用溝 105の断面形状は三角形である。このようにリング軸線方 向にベクトル成分を持つ縮径用溝 105がベース 101に設けられて 、る熱交^^ 100 1は、ベース 101に力をカ卩えて縮径用溝 105の幅を縮めればベース 101の直径自体 力 S小さくなるので、その状態でベース 101を伝熱ヘッドに挿入して力も力を緩めること により、伝熱ヘッドの内周面にベース 101の外周面をぴったりと密着させることができ る。 [0100] 熱交換器 100の第 14実施形態を図 19に示す。図 19は第 14実施形態に係る熱交
[0101]
Figure imgf000019_0001
図では 90°間隔で計 4個の縮径用溝 105を形成しているが、その数は任意である。
[0102] 熱交翻100の第 15実施形態を図 20に示す。図 20は第 15実施形態に係る熱交 翻10011を伝熱ヘッドに嵌合し、それを端面側力も見た図である。
[0103] 第 15実施形態の熱交翻10011は、縮径用溝 105の形状が第 13、第 14実施形態 と異なる。すなわち第 15実施形態の熱交翻10011の縮径用溝 105は、ベース 101 の中心に向力つて凹をなす円弧状断面を有するとともに、その壁面はベース 101に 比べて肉薄とされ、幅を縮めやすくなつている。
[0104] 第 13〜第 15実施形態の縮径用溝 105は、リング軸線と交差するように角度を持た せてもよい。 1個のベース 101に複数の縮径用溝 105を形成する場合、溝毎に角度 が異なっていてもよぐ異なる角度の縮径溝 105同士を互いに交差するように配置し てもよい。
[0105] 上記各実施形態の構成は排他的なものではなぐ重複実施が可能である。例えば
Figure imgf000019_0002
たり、第 13〜第 15実施形態の縮径用溝を追加するといつたことができる。その他各 種の組み合わせで重複実施することが可能である。
[0106] 以上、本発明の各実施形態につき説明したが、本発明の範囲はこれに限定される ものではなぐ発明の主旨を逸脱しない範囲で種々の変更をカ卩えて実施することがで きる。
産業上の利用可能性
[0107] 本発明は、スターリング機関全般に利用可能である。

Claims

請求の範囲
[I] 圧縮空間と膨脹空間を行き来する作動ガスとの間で授受した熱を伝熱ヘッドに伝 達するスターリング機関用熱交^^において、
リング状ベースを備え、このリング状ベースは、外面には前記スターリング機関の伝 熱ヘッドと面接触する面を有し、内面にはリングの中心方向に向かつて延びる多数の フィンが形成されていることを特徴とするスターリング機関用熱交^^。
[2] 前記ベースとフィンを一体に押出成形することを特徴とする請求項 1に記載のスタ 一リング機関用熱交換器。
[3] 前記フィンを多数立設した平板状素材をフィンを内側にして丸めることにより、前記 リング状ベースを形成することを特徴とする請求項 1に記載のスターリング機関用熱 交概
[4] 前記リング状ベースは、リング軸線方向のベクトル成分を持つスリットを少なくとも 1 箇所に有することを特徴とする請求項 1に記載のスターリング機関用熱交^^。
[5] 前記スリットは、前記リング状ベースを分断するものであることを特徴とする請求項 4 に記載のスターリング機関用熱交換器。
[6] 前記スリットは、両岸部を連結するブリッジ部を備えることを特徴とする請求項 4に記 載のスターリング機関用熱交換器。
[7] 前記リング状ベースは、リング軸線方向のベクトル成分を持つ縮径用溝を少なくとも
1箇所に有することを特徴とする請求項 1に記載のスターリング機関用熱交^^。
[8] 前記フィンは、端面方向から見た断面形状が、前記リング状ベースの中心方向に 向力 、先細りとなって 、ることを特徴とする請求項 1に記載のスターリング機関用熱交 概
[9] 前記フィンの先端同士の間に形成される円筒形の空間に、留めリングを圧入するこ とを特徴とする請求項 1に記載のスターリング機関用熱交^^。
[10] 前記フィンは、端面方向から見た断面形状が曲線を描 、て 、ることを特徴とする請 求項 1に記載のスターリング機関用熱交換器。
[II] 請求項 1〜10のいずれか 1項に記載の熱交 を搭載したことを特徴とするスター リング機関。
PCT/JP2006/318483 2005-09-22 2006-09-19 スターリング機関用熱交換器及びこれを用いるスターリング機関 WO2007034768A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-275099 2005-09-22
JP2005275099A JP2007085641A (ja) 2005-09-22 2005-09-22 スターリング機関用熱交換器及びこれを用いるスターリング機関

Publications (1)

Publication Number Publication Date
WO2007034768A1 true WO2007034768A1 (ja) 2007-03-29

Family

ID=37888812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318483 WO2007034768A1 (ja) 2005-09-22 2006-09-19 スターリング機関用熱交換器及びこれを用いるスターリング機関

Country Status (2)

Country Link
JP (1) JP2007085641A (ja)
WO (1) WO2007034768A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009000938B4 (de) * 2008-02-21 2020-09-03 Lutz Pasemann Erhitzer eines Stirlingmotors
CN111720236A (zh) * 2019-03-20 2020-09-29 内蒙古工业大学 斯特林发动机中的加热器和斯特林发动机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6275524B2 (ja) 2014-03-25 2018-02-07 住友重機械工業株式会社 スターリング冷凍機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305296A (ja) * 1988-06-03 1989-12-08 Diesel Kiki Co Ltd 熱交換器用コルゲートフィン
JP2000028214A (ja) * 1998-07-08 2000-01-28 Sharp Corp スターリング機関の再生器
JP2001091075A (ja) * 1999-09-27 2001-04-06 Sharp Corp スターリング機関用熱交換器
JP2001326308A (ja) * 2000-05-15 2001-11-22 A & A Kenkyusho:Kk スカイブ放熱部材
JP2002081774A (ja) * 2000-09-01 2002-03-22 Sharp Corp スターリング冷凍機用熱交換器及び熱交換器体
JP2002098431A (ja) * 2000-09-26 2002-04-05 Sanyo Electric Co Ltd 熱機関用シリンダブロック
JP2003013804A (ja) * 2001-06-29 2003-01-15 Sharp Corp スターリングエンジン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305296A (ja) * 1988-06-03 1989-12-08 Diesel Kiki Co Ltd 熱交換器用コルゲートフィン
JP2000028214A (ja) * 1998-07-08 2000-01-28 Sharp Corp スターリング機関の再生器
JP2001091075A (ja) * 1999-09-27 2001-04-06 Sharp Corp スターリング機関用熱交換器
JP2001326308A (ja) * 2000-05-15 2001-11-22 A & A Kenkyusho:Kk スカイブ放熱部材
JP2002081774A (ja) * 2000-09-01 2002-03-22 Sharp Corp スターリング冷凍機用熱交換器及び熱交換器体
JP2002098431A (ja) * 2000-09-26 2002-04-05 Sanyo Electric Co Ltd 熱機関用シリンダブロック
JP2003013804A (ja) * 2001-06-29 2003-01-15 Sharp Corp スターリングエンジン

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009000938B4 (de) * 2008-02-21 2020-09-03 Lutz Pasemann Erhitzer eines Stirlingmotors
CN111720236A (zh) * 2019-03-20 2020-09-29 内蒙古工业大学 斯特林发动机中的加热器和斯特林发动机

Also Published As

Publication number Publication date
JP2007085641A (ja) 2007-04-05

Similar Documents

Publication Publication Date Title
JP3773522B1 (ja) スターリング機関
US7650751B2 (en) Stirling engine
JP3619965B1 (ja) スターリング機関
WO2007034768A1 (ja) スターリング機関用熱交換器及びこれを用いるスターリング機関
US6991023B2 (en) Involute foil regenerator
TWI239381B (en) Stirling cycle engine
CN104729137A (zh) 超低温制冷机
CN102713467A (zh) 超低温制冷机
JP3667328B2 (ja) スターリング機関
JP5359606B2 (ja) スターリングエンジンの冷却器およびスターリングエンジン
JP2007285661A (ja) スターリング機関
CN214944970U (zh) 一种压缩机马达组件以及压缩机
CN102713468A (zh) 超低温制冷机
JP2003214717A (ja) 熱交換器及びこれを利用する熱機械
JP2006112690A (ja) スターリング機関用再生器及びこれを用いるスターリング機関
JP2003028527A (ja) スターリング機関用内部熱交換器及びスターリング冷凍機
JP2004124896A (ja) ピストン及びこのピストンを用いた熱機関
JP2007292325A (ja) スターリング機関用再生器及びこれを用いるスターリング機関
JP2005341691A (ja) リニアモータの推力調整方法及びリニアモータ
JP2006220367A (ja) スターリング機関用ピストン
JP2005337079A (ja) スターリング機関及びその取付け構造
JP2007046817A (ja) スターリング機関用再生器及びこれを用いるスターリング機関
JP2009092007A (ja) スターリング機関
JP2006317037A (ja) スターリング機関の再生器組付け方法及びそれが適用される再生器
JP2004069137A (ja) スターリング機関用の熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798094

Country of ref document: EP

Kind code of ref document: A1