WO2007034693A1 - 新規なエンドリボヌクレアーゼ - Google Patents

新規なエンドリボヌクレアーゼ Download PDF

Info

Publication number
WO2007034693A1
WO2007034693A1 PCT/JP2006/317858 JP2006317858W WO2007034693A1 WO 2007034693 A1 WO2007034693 A1 WO 2007034693A1 JP 2006317858 W JP2006317858 W JP 2006317858W WO 2007034693 A1 WO2007034693 A1 WO 2007034693A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
sequence
nucleic acid
seq
present
Prior art date
Application number
PCT/JP2006/317858
Other languages
English (en)
French (fr)
Inventor
Masamitsu Shimada
Masanori Takayama
Kiyozo Asada
Ikunoshin Kato
Original Assignee
Takara Bio Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Bio Inc. filed Critical Takara Bio Inc.
Priority to US12/067,769 priority Critical patent/US7745190B2/en
Priority to EP06797712A priority patent/EP1947177A4/en
Priority to CN2006800346234A priority patent/CN101268186B/zh
Priority to JP2007536449A priority patent/JP4889647B2/ja
Publication of WO2007034693A1 publication Critical patent/WO2007034693A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Definitions

  • the present invention relates to a novel sequence-specific endoribonuclease useful in the field of genetic engineering.
  • mK is an endoribonuclease that recognizes a specific base of UAH (H is C, A or U) and cleaves mRNA (Patent Document 1, Non-Patent Document 10).
  • RelE and PemK family toxins may be endoribonucleases that cleave mRNA in a base-specific manner.
  • the PemK family of toxins may be endoribonucleases that recognize specific bases and cleave mRNAs independently of ribosomes.
  • Many PemK family toxins are present in prokaryotes, and their sequence comparison has been well studied (Non-patent Documents 1 and 11).
  • Patent Document 1 Pamphlet of International Publication No. 2004Z113498
  • Non-Patent Document 1 Journal 'Ob' Battereriol. (J. Bacteriol.), 182, p5 61-572 (2000)
  • Non-Patent Document 2 Science, 301st, pl496-1499 (2003)
  • Non-patent Document 3 Molecular Microbiol., 48th, pl389-1400 (2003)
  • Non-Patent Document 4 Cell, 122, 131-140 (2003)
  • Non-Patent Document 5 Journal 'Ob' Molequila 'Biology. Mol. Biol.), No. 332, p809-819 (2003)
  • Non-Patent Document 6 Molecular One's Microbiology, No. 51, pl705-1717 (2004)
  • Non-Patent Document 7 Molecular Cell, No. 12, p913-920, 200 3)
  • Non-Patent Document 8 Journal 'Ob' Biological 'Chemistry (J. Biol. Chem.), No. 280, p3143-3150 (2005)
  • Non-Patent Document 9 FEBS Letters, No. 567, p316-320 (2004)
  • Non-Patent Document 10 Journal 'Ob' Biological 'Chemistry, Vol. 279, p20678 -20684 (2004)
  • Non-Patent Document 11 Journal ⁇ Bob ⁇ Molequila 'Microbiology' and Biotechnology (J. Mol. Microbiol. Biotechnol.), No. 1, p295-302 (1999)
  • Non-patent document 12 Genome Biology, IV, R81 (2003)
  • Non-patent document 13 Nucleic Acids Research, Vol. 33, p966-976 (2005)
  • Non-Patent Document 14 Method in Enzymology, No. 3 41, p28-41 (2001)
  • An object of the present invention is to provide a novel sequence-specific endoribonuclease in view of the above prior art, and the specificity of the novel sequence-specific endoribonuclease cleavage sequence. Is to provide and use for genetic engineering.
  • the present inventors screened a sequence-specific endoribonuclease, and the polypeptide encoded by PHI 182 gene of Pyrococc us horikoshii was a novel sequence-specific It was found to be an endoribonuclease. Furthermore, the specificity of the cleavage sequence of the enzyme was identified to complete the present invention.
  • the present invention provides:
  • amino acid sequence shown in SEQ ID NO: 1 in the sequence listing or an amino acid sequence having at least one deletion, addition, insertion or substitution of one or more amino acid residues in the sequence, and the sequence A polypeptide having specific endoribonuclease activity,
  • nucleic acid according to [2] having the base sequence described in SEQ ID NO: 2 in the sequence listing
  • nucleic acid according to [2] or [3] can be subjected to stringency and hybridization under stringent conditions.
  • a method for producing a single-stranded RNA degradation product comprising the step of allowing the polypeptide of [1] to act on single-stranded RNA, and
  • a method for degrading single-stranded RNA comprising the step of allowing the polypeptide of [1] to act on single-stranded RNA,
  • the polypeptide of the present invention has the amino acid sequence set forth in SEQ ID NO: 1, or at least one of deletion, addition, insertion or substitution of one or more amino acid residues in the amino acid sequence. It is characterized by exhibiting a sequence-specific endoribonuclease activity.
  • the activity of the polypeptide of the present invention is a single-stranded RNA-specific endoribonuclease activity, and the activity of ribonucleotides in a single-stranded nucleic acid containing ribonucleotides as a constituent base.
  • the phosphodiester bond on the side can be hydrolyzed.
  • the nucleic acid hydrolyzed by the activity has a 3 ′ end having a hydroxyl group and a 5 ′ end having a phosphate group, a 3 ′ end having a phosphate group and a 5 ′ end having a hydroxyl group, or a 2 ′ or 3 ′ site. This produces a 5 'end with click phosphate and hydroxyl groups.
  • the substrate of the polypeptide of the present invention may be a nucleic acid having at least one molecule of ribonucleotide, such as RNA, RNA containing deoxyribonucleotide, DNA containing ribonucleotide, and the like. It is not limited to these.
  • the substrate contains a nucleotide different from that contained in a normal nucleic acid within a range not inhibiting the action of the polypeptide of the present invention, such as deoxyinosine, deoxyuridine, hydroxymethyldeoxyuridine and the like. Well, okay.
  • the polypeptide of the present invention specifically acts on a single-stranded nucleic acid.
  • Double-stranded nucleic acids such as double-stranded RNA, RNA-DNA nobled, etc. cannot be cleaved! /.
  • the polypeptide of the present invention is characterized by having an activity of cleaving a nucleic acid in a specific base sequence.
  • the present invention is not particularly limited, but 5′-UGG-3 ′, 5′-UUG 3 ′, 5, —UGA-3, 5, —AGG-3 ′ or 5, one AAG-3, If the sequence is present, it hydrolyzes the 3 'phosphodiester bond of the first residue of the sequence.
  • This activity is, for example, an activity of hydrolyzing a phosphate ester bond between the 7th and 8th bases of the oligoribonucleotide using DGC 001, which is an oligoribonucleotide having the base sequence shown in SEQ ID NO: 7, as a substrate.
  • DGC 001 which is an oligoribonucleotide having the base sequence shown in SEQ ID NO: 7, as a substrate.
  • the single-stranded RNA-specific endoribonuclease activity of the polypeptide of the present invention can be measured, for example, using single-stranded RNA as a substrate.
  • single-stranded RNA transcribed by RNA polymerase in the shape of a DNA or single-stranded DNA synthesized chemically. It can be measured by allowing the polypeptide whose activity is to be measured to act on RNA and examining whether RNA cleavage occurs.
  • RNA degradation can be confirmed, for example, by electrophoresis (agarose gel, acrylamide gel, etc.). If a suitable label (for example, a radioisotope, a fluorescent substance, etc.) is attached to RNA as a substrate, it becomes easy to detect degradation products after electrophoresis.
  • a suitable label for example, a radioisotope, a fluorescent substance, etc.
  • the polypeptide of the present invention has one or more amino acids in the amino acid sequence described in SEQ ID NO: 1 in the sequence listing as long as it exhibits endoribonuclease activity that hydrolyzes single-stranded RNA in a sequence-specific manner. It includes a polypeptide represented by an amino acid sequence having at least one of deletion, addition, insertion or substitution of residues.
  • a polypeptide having such a mutation for example, a polypeptide having 50% or more homology to the polypeptide of SEQ ID NO: 1, preferably a polypeptide having 70% or more homology, particularly preferably 90% A polypeptide having the above homology is exemplified. Even if the polypeptide having these mutations recognizes and cleaves a sequence different from the polypeptide having the amino acid sequence described in SEQ ID NO: 1, it is encompassed in the present invention.
  • the polypeptide may have a peptide region that is essential for its activity! /,
  • a peptide for improving the efficiency of translation, and purification of the polypeptide is easy.
  • Single-stranded RNA-specific RNA cleavage even if added with a peptide that improves expression efficiency, such as histidine tag, dartathione S transferase, maltose-binding protein, etc. As long as it shows activity, it is included in the polypeptide of the present invention.
  • the present invention provides a nucleic acid encoding a polypeptide that exhibits sequence-specific endoribonuclease activity.
  • the present invention is not particularly limited as the nucleic acid, the amino acid sequence described in SEQ ID NO: 1 in the sequence listing, or deletion or addition of one or more, for example, 1 to 10 amino acid residues in the sequence, Examples thereof include those which are represented by an amino acid sequence having at least one of insertion and substitution and encode a polypeptide having the above-mentioned sequence-specific endoribonuclease activity.
  • the amino acid sequence described in SEQ ID NO: 1 has at least one of deletion, addition, insertion or substitution of one or more amino acid residues.
  • an amino acid sequence for example, an amino acid sequence having 50% or more homology in the polypeptide of SEQ ID NO: 1, preferably an amino acid sequence having 70% or more homology, particularly preferably 90% or more homology An amino acid sequence is exemplified.
  • the nucleic acid of the present invention includes a nucleic acid that can hybridize to the above-mentioned nucleic acid under stringent conditions and encodes a polypeptide having sequence-specific endoribonuclease activity.
  • the stringent conditions are as follows: 1989, Cold 'Spring' Nova One 'Laboratory published, edited by J. Sambrook et al., Molecular ⁇ ⁇ ⁇ Cloning:' Laboratory ⁇ ⁇ ⁇ Examples include conditions described in the second edition of the manual (Molecular Cloning: A Laboratory Manual 2nd ed.). Specifically, for example, conditions of incubation with a probe at 65 ° C.
  • the nucleic acid hybridized to the probe can be detected after removing non-specifically bound probe by washing at 37 ° C. in 0.1 ⁇ SSC containing 0.5% SDS, for example.
  • nucleic acid encoding the polypeptide of the present invention can be obtained, for example, by the following means.
  • a gene having homology in the amino acid sequence to a toxin such as MazF or PemK that has endoribonuclease activity that recognizes a specific base sequence and cleaves mRNA is a polypeptide having sequence-specific ribonuclease activity.
  • Candidate nucleic acids to encode. Such candidate genes can be found, for example, from the bacterial genome. In Pyroco ecus horikoshii, a PemK family of toxins has been found.
  • Candidate genes can also be isolated from bacterial genomic strength by PCR using primers designed based on nucleotide sequence information, for example. If the entire base sequence is known, the entire sequence of the candidate gene can be synthesized using a DNA synthesizer.
  • Protein expression with candidate gene ability can be carried out in an appropriate host transformed with an expression vector incorporating the candidate gene, for example, E. coli.
  • Expression of sequence-specific ribonucleases that degrade host RNA may be lethal to the host, and the expression of candidate genes must be strictly suppressed until induction.
  • T7 polymerase It is preferable to use an expression system such as a pET system (manufactured by NOVAGEN) or a cold shock expression control system pCold system (manufactured by TAKARA BIO INC.).
  • a peptide such as the histidine tag
  • an expression vector containing such a peptide coding region may be used.
  • the measurement of endoribonuclease activity can be carried out by the above-described method using single-stranded RNA as a substrate.
  • the cleavage site can be identified by a primer extension using a cleaved RNA as a saddle and a primer complementary to the RNA and reverse transcriptase. Since the extension reaction stops at the cleavage site in the primer extension, the cleavage site can be identified by determining the length of the extended strand by electrophoresis.
  • an oligoribonucleotide having an arbitrary sequence is chemically synthesized, the candidate gene expression product is allowed to act, and then cleaved by denaturing acrylamide gel electrophoresis or the like. What is necessary is just to determine the presence or absence.
  • the polypeptide of the present invention is, for example, (1) purified from a culture of a microorganism producing the polypeptide of the present invention, or (2) capable of culturing a transformant containing a nucleic acid encoding the polypeptide of the present invention. It can be produced by a method such as purification.
  • the microorganism producing the polypeptide of the present invention is not particularly limited, and examples thereof include bacteria belonging to the genus Pyrococcus.
  • the polypeptide of the present invention can be obtained from Pyrococcus horiko shii, particularly preferably from P. horikoshii ATCC700860 strain.
  • the microorganism may be cultured under conditions suitable for the growth of the microorganism.
  • the desired polypeptide produced in the bacterial cells or the culture solution can be obtained by methods commonly used for protein purification, such as disruption of bacterial cells, fractionation by precipitation (such as ammonium sulfate salting-out), and various chromatography ( It can be purified by ion exchange chromatography, affinity chromatography, hydrophobic chromatography, molecular sieve chromatography, etc., or a combination thereof.
  • the above-described recombinant DNA containing a nucleic acid encoding the polypeptide of the present invention is transformed.
  • the polypeptide of the present invention can be obtained from the obtained transformant.
  • the recombinant DNA is preferably provided with a suitable promoter operably connected upstream of the nucleic acid encoding the polypeptide. Since the polypeptide of the present invention may have a lethal effect on the host, the above promoter and the expression system including the promoter can transcribe nucleic acid that encodes the polypeptide of the present invention. It is preferable that it is strictly controllable. Examples of such a system include the pET system and the p Cold system.
  • the above recombinant DNA may be introduced as it is into a host cell, and may be introduced by being inserted into an appropriate vector such as a plasmid vector, a phage vector, or a virus vector. Furthermore, the above recombinant DNA may be integrated into the host chromosome. There are no particular limitations on the host to be transformed, such as Escherichia coli, Bacillus subtilis, yeast, filamentous fungi, plants, animals, plant culture cells, animal culture cells, and other hosts that are commonly used in the field of recombinant DNA. It is done.
  • the polypeptide of the present invention produced by these transformants can be purified using the purification method as described above.
  • the nucleic acid encoding the polypeptide of the present invention encodes a polypeptide to which a peptide for facilitating the purification of the polypeptide is added, purification becomes very easy.
  • a purification method according to the added peptide for example, using a metal chelate resin for histidine-tag and a dartathione-fixed resin for daltathione S-transferase, respectively, A pure polypeptide can be obtained by a simple operation.
  • RNA degradation product By using the polypeptide of the present invention, single-stranded RNA can be degraded to produce an RNA degradation product. Since the polypeptide of the present invention can cleave RNA in a base sequence-specific manner, the average chain length of the generated RNA degradation product correlates with the appearance frequency of the base sequence recognized by the polypeptide. That is, the present invention provides an RNA degradation product having a certain chain length distribution. Furthermore, it is possible to excise a specific region in RNA using its sequence specificity.
  • single-stranded RNA can be selectively degraded by the polypeptide of the present invention.
  • protein synthesis systems for example, cell-free translation systems and mRNAs in transformants can be degraded with the polypeptide of the present invention to inhibit protein synthesis.
  • the mRNA encoding the desired protein which is artificially prepared so as not to contain the base sequence recognized by the polypeptide of the present invention, is allowed to exist in the above system, so that only the mRNA is degraded.
  • the desired protein is specifically produced in the system. This embodiment is particularly useful for producing highly pure protein.
  • Example 1 Isolation of 1 3 111182 from P. horikoshii Yawaji 700860 strain and construction of expression plasmid
  • P. horikoshii 8 1 ⁇ From the 700860 strain! 3
  • the amino acid sequence and nucleotide sequence of the polypeptide encoded by 111182 gene were obtained from the NCBI database (accession No. NP-143082 and NC-000961). From the base information of PHI 182 lj information, primer PH 1182—F (SEQ ID NO: 3) and primer PH 1182—R (SEQ ID NO: 4) can be used to amplify DNA in the region encoding the entire polypeptide by PCR. Were synthesized respectively.
  • Genomic DNA of P. horikoshii ATCC700860 strain was obtained from ATCC (ATCC).
  • PCR was performed using 50 ng of P. horikoshii ATCC700860 genomic DNA, primers PH1182-F and PH1182-R, and Pyrobest DNA polymeras e (manufactured by Takara Bio Inc.) to obtain an amplified DNA fragment of 437 bp. .
  • This amplified fragment was digested with restriction enzymes Ndel and Xhol and subjected to agarose electrophoresis, and a 416 bp DNA fragment was recovered from the gel after the electrophoresis.
  • the expression vector was constructed using pCold TF (manufactured by Takara Bio Inc.). PHI 182 heredity
  • pCold TF DNA was digested with restriction enzymes Xhol and Xbal to introduce a stop codon immediately after the Xhol site at the 3 'end of the gene.
  • pCold TFb was digested with restriction enzymes Ndel and Xhol, and Escherichia coli JM109 strain was transformed with the recombinant plasmid obtained by ligating the above 416 bp DNA fragment.
  • a plasmid was prepared from the thus obtained colony of the transformant, its nucleotide sequence was confirmed, and the expression vector was designated as pCold TF-PHI 182.
  • the base sequence encoding the PHI 182 polypeptide derived from the P. horikoshii ATCC7000086 strain inserted into the expression vector pCold TF—PHI 182 is SEQ ID NO: 2, and the amino acid sequence of the polypeptide is SEQ ID NO: 1, respectively.
  • the 488 amino acid residue strength including 6-residue histidine and 432-amino acid trigger factor polypeptide at the N-terminus of the polypeptide having the amino acid sequence of SEQ ID NO: 1 And a polypeptide having a Leu-Glu 2-amino acid residue added to the C-terminus is expressed.
  • Example 2 Preparation of 1 3 111182 Polypeptide from P. horikoshii Yawaji 700860 Strain E. coli 81 ⁇ 21 (DE3) strain (manufactured by Novagen) with the expression vector pCold TF-111182 obtained in Example 1 ) was transformed to obtain Escherichia coli pCold TF-PH11 82 / BL21 (DE3) for expression.
  • E. coli 81 ⁇ 21 (DE3) strain manufactured by Novagen
  • 300 ⁇ 1 lysis buffer 50 mM NaHPO, 300 mM NaCl, lOmM imidazole, pH 8.0
  • the cells were crushed using a crusher (Handy sonic, manufactured by Tommy). 20 ⁇ l of Ni-NTA agarose (Qiagen) was added to the supernatant collected by centrifugation and left at 4 ° C for 30 minutes. The precipitate collected by centrifugation was washed twice with 100 ⁇ l of washing buffer (50 mM NaH2P04, 300 mM NaCl, 20 mM imidazole, pH 8.0). For precipitation after washing 20 1 elution buffer (50 mM NaH PO, 300 mM NaCl, 250 mM imidazo
  • PH1182 polypeptide was found to be 5, — UGG-3, 5, 5, UUG-3, 5, —UGA-3 ′, 5′—AGG-3 ′ or 5′—AAG—. It was revealed that the 3 'sequence was preferentially recognized and the phosphodiester bond on the 3' side of the first residue of the sequence was hydrolyzed.
  • the PH1182 polypeptide was found to be an endoribonuclease having a nucleotide sequence specificity completely different from that of MazF.
  • MR 1002 (5) AACG-Cleavage site: The cleaved site is indicated by 1 Industrial applicability
  • the present invention provides a novel sequence-specific endoribonuclease. Since the enzyme can recognize and cleave a specific sequence in RNA, analysis of RNA molecules, preparation of RNA fragments, control of cells through RNA cleavage in cells (for example, inhibition of protein production), etc. Useful for.
  • SEQ ID NO: 4 PCR primer PH1182— R to amplify a DNA fragment encoding PHI 182 protein.
  • SEQ ID NO: 10 Oligoribonucleotide MRI023.
  • SEQ ID NO: ll Oligoribonucleotide MRI002.
  • SEQ ID NO: 12 Oligoribonucleotide MRI014.
  • SEQ ID NO: 13 Oligoribonucleotide MRI027.
  • SEQ ID NO: 14 Oligoribonucleotide MRI031.
  • SEQ ID NO: 15 Oligoribonucleotide ABC001.
  • SEQ ID NO: 16 Oligoribonucleotide ABC017.
  • SEQ ID NO: 17 Oligoribonucleotide ABC018.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 新規なエンドリボヌクレアーゼ活性を有するポリペプチド、当該ポリペプチドをコードする核酸、当該核酸を含んでなる組換えDNA、当該組換えDNAにより形質転換されてなる形質転換体、当該形質転換体を培養する工程および培養物中より上記ポリペプチドを採取する工程を包含することを特徴とする上記ポリペプチドの製造方法、一本鎖RNAに上記ポリペプチドを作用させる工程を包含することを特徴とする一本鎖RNA分解物の製造方法および一本鎖RNAの分解方法。

Description

明 細 書
新規なエンドリボヌクレアーゼ
技術分野
[0001] 本発明は、遺伝子工学分野において有用な、新規な配列特異的エンドリボヌクレア ーゼに関する。
背景技術
[0002] V、くつかの原核生物のプラスミドは、宿主でのプラスミドを維持するためにプラスミド が脱落した宿主を殺す post— segregation killing (PSK)の機能を有することが報 告されている。これらのプラスミドにはトキシン アンチトキシン遺伝子が存在している 。アンチトキシンは細胞内でトキシンと結合しトキシンを不活性ィ匕している力 アンチト キシンはプロテアーゼに対して分解されやすく、アンチトキシンがプロテアーゼにより 分解されると安定なトキシンが活性化される (非特許文献 1)。このようなトキシンーァ ンチトキシン遺伝子はほとんどの原核生物のクロモソームにも存在し、さまざまなスト レスに対応し、 Programmed Cell Deathの機能を担っている。これらのトキシンの 機能はまだすべて明らかになっていないが、 CcdBおよび ParEは DNA gyraseをタ 一ゲットとして複製を制御し、 RelEおよび Docは転写を制御して 、る可能性が示唆さ れている (非特許文献 1、 2)。
[0003] 大腸菌においては、 RelE、 ChpAK (MazF)、 ChpBK、 YoeB、 YafQの少なくとも 5つのトキシンが存在する(非特許文献 2)。 Christensenらは、 RelEがリボソーム依 存的に 3塩基の特定のコドンを認識して mRNAを切断するエンドリボヌクレアーゼで あることを報告している(非特許文献 3、 4)。また Christensenらは、 ChpA :、 ChpB Kおよび YoeBも同様にリボソームおよびコドン依存的に mRNAを切断するエンドリ ボヌクレアーゼであることを報告して 、る(非特許文献 5、 6)。
[0004] 一方、井上らは、 MazF (ChpAK)は、リボソーム非依存的に ACAの特定の塩基を 認識して mRNAを切断するエンドリボヌクレアーゼであることを証明して ヽる(非特許 文献 7、 8)。また、 Munoz— Gomezらは、 mazFの RNA切断の特異性は NACであ ると報告している(非特許文献 9)。さらに、井上らは、プラスミド R100に存在する Pe mKが UAH (Hは C, Aまたは U)の特定の塩基を認識して mRNAを切断するエンド リボヌクレアーゼであることを証明している(特許文献 1、非特許文献 10)。以上のよう に、 RelEや PemKファミリーのトキシンは塩基特異的に mRNAを切断するエンドリボ ヌクレアーゼである可能性が示唆されてきた。特に PemKファミリーのトキシンは、リボ ソーム非依存的に特定の塩基を認識して mRNAを切断するエンドリボヌクレアーゼ である可能性がある。 PemKファミリーのトキシンは、原核生物に多く存在し、その配 列の比較はよく研究されて 、る (非特許文献 1、 11)。
[0005] また、 Anantharamanらは、トキシンの遺伝子情報およびゲノム解析が終了した生 物の遺伝子情報をもとに Gene neighborhood analysisを行い、トキシンを系統的 に分類し、さらに未知の機能のタンパクについてもトキシン様プロテインを予測した( 非特許文献 12)。さらに解析を通して、 RelEや PemKのみならず、 Docファミリーお よび PINドメインを有するタンパクがリボヌクレアーゼ活性を有する可能性を示唆して いる。 Pyrococcus horikoshiiには 1種の PemKファミリーのトキシンが見出されて いる (非特許文献 13)。
[0006] 核酸を配列特異的に切断する酵素としては、二本鎖 DNAを切断する制限酵素は 数多く見出されており、遺伝子工学分野で広く利用されている。一本鎖 RNAを配列 特異的に切断する酵素は、 G塩基を特異的に切断するリボヌクレアーゼ T1が見出さ れており、遺伝子工学で利用されているが(非特許文献 14)、一本鎖 RNA内の複数 の塩基を認識して特異的に切断する酵素は未だ数少なぐ遺伝子工学分野ではそ のようなエンドリボヌクレアーゼの開発が望まれている。 MazFのような 3塩基配列ある いはそれ以上の塩基数を特異的に認識して切断するエンドリボヌクレアーゼが発見 されれば、遺伝子工学分野で有用な酵素となると考えられる。
[0007] 特許文献 1:国際公開第 2004Z113498号パンフレット
非特許文献 1 :ジャーナル'ォブ 'バタテリォロジ一 (J. Bacteriol. )、第 182卷、 p5 61 - 572 (2000)
非特許文献 2 :サイエンス(Science)、第 301卷、 pl496— 1499 (2003) 非特許文献 3 :モレキュラ^ ~·マイクロバイオロジー(Molecular Microbiol. )、第 48 卷、 pl389— 1400 (2003) 非特許文献 4:セル(Cell)、第 122, 131— 140(2003)
非特許文献 5:ジャーナル'ォブ 'モレキユラ一'バイオロジーお Mol. Biol. )、第 332卷、 p809-819(2003)
非特許文献 6:モレキユラ一'マイクロバイオロジー、第 51卷、 pl705— 1717(2004) 非特許文献 7:モレキユラ一 ·セル(Molecular Cell)、第 12卷、 p913— 920, 200 3)
非特許文献 8:ジャーナル'ォブ 'バイオロジカル 'ケミストリー (J. Biol. Chem. )、 第 280卷、 p3143-3150(2005)
非特許文献 9:フエブス'レターズ (FEBS Letters)、第 567卷、 p316— 320(2004 )
非特許文献 10:ジャーナル'ォブ 'バイオロジカル 'ケミストリー、第 279卷、 p20678 -20684(2004)
非特許文献 11:ジャーナル ·ォブ ·モレキユラ一'マイクロバイオロジ一'アンド.バイオ テクノロジー(J. Mol. Microbiol. Biotechnol. )、第 1卷、 p295— 302(1999 )
非特許文献 12:ゲノム'バイオロジー(Genome Biology)、第 4卷、 R81(2003) 非特許文献 13:ヌクレイック'アシッド'リサーチ(Nucleic Acids Research)、第 33 卷、 p966-976(2005)
非特許文献 14:メソッズ'イン'ェンザィモロジ一(Method in Enzymology)、第 3 41卷、 p28-41(2001)
発明の開示
発明が解決しょうとする課題
[0008] 本発明の目的は、上記従来技術を鑑みたものであり、新規な配列特異的エンドリボ ヌクレアーゼを見出すことであり、その新規な配列特異的エンドリボヌクレア一ゼの切 断配列の特異性を同定し、遺伝子工学への利用を提供することにある。
課題を解決するための手段
[0009] 本発明者らは、配列特異的なエンドリボヌクレアーゼをスクリーニングし、 Pyrococc us horikoshiiの PHI 182遺伝子にコードされるポリペプチドが新規な配列特異的 エンドリボヌクレアーゼであることを見出した。さらに該酵素の切断配列の特異性を同 定し、本発明を完成させた。
[0010] すなわち、本発明は、
〔1〕配列表の配列番号 1記載のアミノ酸配列、または該配列において 1個以上のアミ ノ酸残基の欠失、付加、挿入もしくは置換の少なくとも 1つを有するアミノ酸配列で示 され、かつ配列特異的なエンドリボヌクレアーゼ活性を有するポリペプチド、
〔2〕 〔1〕のポリペプチドをコードする核酸、
〔3〕配列表の配列番号 2記載の塩基配列を有することを特徴とする〔2〕の核酸、 〔4〕 〔2〕または〔3〕の核酸にストリンジェントな条件でノ、イブリダィズ可能であり、かつ 配列特異的なエンドリボヌクレアーゼ活性を有するポリペプチドをコードする核酸、 〔5〕 〔2〕〜〔4〕 V、ずれ力 1項に記載の核酸を含んでなる組換え DNA、
〔6〕 [5]の組換え DNAにより形質転換されてなる形質転換体、
〔7〕 〔6〕の形質転換体を培養する工程、および該培養物中より配列特異的な RNA 切断活性を有するポリペプチドを採取する工程を包含することを特徴とする〔1〕のポ リペプチドの製造方法、
〔8〕一本鎖 RNAに〔1〕のポリペプチドを作用させる工程を包含することを特徴とする 、一本鎖 RNA分解物の製造方法、および
〔9〕一本鎖 RNAに〔1〕のポリペプチドを作用させる工程を包含することを特徴とする 、一本鎖 RNAの分解方法、
に関する。
発明の効果
[0011] 本発明により、新規な配列特異的エンドリボヌクレアーゼを見出し、その新規な配列 特異的エンドリボヌクレアーゼの切断配列の特異性を同定し、遺伝子工学への利用 を提供することが可能となる。
発明を実施するための最良の形態
[0012] 1.本発明のポリペプチド
本発明のポリペプチドは、配列番号 1記載のアミノ酸配列、又は該アミノ酸配列にお いて 1個以上のアミノ酸残基の欠失、付加、挿入若しくは置換の少なくとも 1つを有す るアミノ酸配列で示され、かつ配列特異的なエンドリボヌクレアーゼ活性を示すことを 特徴とする。
[0013] 本発明のポリペプチドが有している活性は、一本鎖 RNA特異的なエンドリボヌタレ ァーゼ活性であり、構成塩基としてリボヌクレオチドを含有する一本鎖核酸中の、リボ ヌクレオチドの 3 '側のリン酸ジエステル結合を加水分解することができる。前記活性 により加水分解された核酸は、水酸基を有する 3 '末端とリン酸基を有する 5'末端、リ ン酸基を有する 3'末端と水酸基を有する 5'末端、もしくは 2' , 3'サイクリックホスフエ ートと水酸基を有する 5'末端を生じる。
[0014] 本発明のポリペプチドの基質としては、少なくとも 1分子のリボヌクレオチドを有する 核酸であればよぐ例えば RNA、デォキシリボヌクレオチドを含有する RNA、リボヌク レオチドを含有する DNA等が例示される力 これらに限定されるものではない。前記 の基質は、本発明のポリペプチドの作用を阻害しない範囲で通常の核酸中に含有さ れているものとは異なるヌクレオチド、例えばデォキシイノシン、デォキシゥリジン、ヒド ロキシメチルデォキシゥリジン等を含有して 、てもよ 、。
[0015] また、本願発明のポリペプチドは一本鎖核酸に特異的に作用する。二本鎖核酸、 例えば二本鎖 RNA、 RNA— DNAノヽイブリツド等は切断することができな!/、。
[0016] 本発明のポリペプチドは核酸をその塩基配列特異的に切断する活性を有すること を特徴とする。本発明を特に限定するものではないが、 5'—UGG— 3'、 5' -UUG 3'、 5,—UGA—3,、 5,—AGG— 3'または 5,一 AAG— 3,の配列が存在した場 合、当該配列の 1番目の残基の 3'側のリン酸ジエステル結合を加水分解する。この 活性は、例えば配列番号 7に示される塩基配列のオリゴリボヌクレオチドである DGC 001を基質とし、前記オリゴリボヌクレオチドの 7番目と 8番目の塩基の間のリン酸ジェ ステル結合を加水分解する活性として確認することができる。本発明のポリペプチド のエンドリボヌクレアーゼ活性はリボソームの共存なしに発現されることから、前記活 性はリボソーム非依存性である。
[0017] 本発明のポリペプチドが有する一本鎖 RNA特異的なエンドリボヌクレアーゼ活性 は、例えば一本鎖 RNAを基質として測定することができる。具体的には、 RNAポリメ ラーゼにより DNAを铸型として転写された一本鎖 RNAやィ匕学的に合成した一本鎖 RNAに活性を測定しょうとするポリペプチドを作用させ、 RNAの切断が生じるかどう かを調べることで測定することができる。 RNAの分解は、例えば電気泳動(ァガロー スゲル、アクリルアミドゲル等)により確認することができる。基質とする RNAに適当な 標識 (例えば放射性同位体、蛍光物質等)を付しておけば電気泳動後の分解産物の 検出が容易となる。
[0018] 本発明のポリペプチドは、配列特異的に一本鎖 RNAを加水分解するエンドリボヌク レアーゼ活性を示す限りにお 、て、配列表の配列番号 1記載のアミノ酸配列に 1個以 上のアミノ酸残基の欠失、付加、挿入もしくは置換の少なくとも 1つがなされたアミノ酸 配列で示されるポリペプチドを包含する。このような変異を有するポリペプチドとして は、例えば配列番号 1記載のポリペプチドに 50%以上のホモロジ一を有するポリべ プチド、好ましくは 70%以上のホモロジ一を有するポリペプチド、特に好ましくは 90 %以上のホモロジ一を有するポリペプチドが例示される。これらの変異を有するポリ ペプチドは、配列番号 1記載のアミノ酸配列のポリペプチドとは異なる配列を認識、 切断するものであっても、本発明に包含される。
[0019] さらに、前記のポリペプチドはその活性には必須でな 、ペプチド領域を有して!/、て もよい、例えば翻訳の効率を向上させるためのペプチドや、前記ポリペプチドの精製 を容易とするためのペプチド (例えばヒスチジン タグ、ダルタチオン S トランスフ エラーゼ、マルトース結合タンパク質等)、シャペロンなど発現効率を向上させるタン ノ クが付加されたものであっても、一本鎖 RNA特異的な RNA切断活性を示す限り 本発明のポリペプチドに包含される。
[0020] 2.本発明のポリペプチドをコードする核酸
本発明は、配列特異的なエンドリボヌクレアーゼ活性を示すポリペプチドをコードす る核酸を提供する。前記核酸としては、本発明を特に限定するものではないが、配列 表の配列番号 1記載のアミノ酸配列、または該配列において 1個以上、例えば 1〜10 個のアミノ酸残基の欠失、付加、挿入もしくは置換の少なくとも 1つを有するアミノ酸 配列で示され、かつ前記の配列特異的なエンドリボヌクレアーゼ活性を有するポリべ プチドをコードするものが挙げられる。ここで、配列番号 1記載のアミノ酸配列におい て 1個以上のアミノ酸残基の欠失、付加、挿入もしくは置換の少なくとも 1つを有する アミノ酸配列としては、例えば配列番号 1記載のポリペプチドに 50%以上のホモロジ 一を有するアミノ酸配列、好ましくは 70%以上のホモロジ一を有するアミノ酸配列、特 に好ましくは 90%以上のホモロジ一を有するアミノ酸配列が例示される。
[0021] さらに、本発明の核酸は、前記の核酸にストリンジェントな条件でハイブリダィズ可 能であり、かつ配列特異的なエンドリボヌクレアーゼ活性を有するポリペプチドをコー ドする核酸を包含する。前記のストリンジェントな条件としては、 1989年、コールド'ス プリング'ノヽーバ一'ラボラトリー発行、 J. サムブルック (J. Sambrook)ら編集、モ レキユラ^ ~ ·クロー-ング:ァ 'ラボラトリ^ ~ ·マニュアル第 2版(Molecular Cloning : A Laboratory Manual 2nd ed. )等に記載された条件が例示される。具体的 には、例えば 0. 5% SDS、 5 Xデンハルツ溶液、 0. 01% 変性サケ精子 DNAを 含む 6 X SSC中、プローブとともに 65°Cにて 12〜20時間インキュベートする条件が 挙げられる。プローブにハイブリダィズした核酸は、例えば 0. 5% SDSを含む 0. 1 X SSC中、 37°Cで洗浄して非特異的に結合したプローブを除去した後に検出する ことができる。
[0022] 本発明のポリペプチドをコードする核酸は、例えば下記のような手段により取得する ことができる。
[0023] 特定の塩基配列を認識して mRNAを切断するエンドリボヌクレアーゼ活性を有する MazFや PemKのようなトキシンにアミノ酸配列上でホモロジ一を有する遺伝子は、 配列特異的なリボヌクレアーゼ活性を有するポリペプチドをコードする核酸の候補で ある。このような候補遺伝子は、例えば細菌のゲノムより見出すことができる。 Pyroco ecus horikoshiiには 1種の PemKファミリーのトキシンが見出されている。
[0024] 候補遺伝子は、例えば塩基配列情報を基に設計されたプライマーを用いた PCRに より細菌ゲノム力も単離することができる。全塩基配列が既知であれば DNA合成機 を用いて候補遺伝子の全配列を合成することもできる。
[0025] 候補遺伝子力 のタンパク発現は、候補遺伝子を組み込んだ発現ベクターで形質 転換した適当な宿主、例えば大腸菌で実施することができる。宿主の RNAを分解す る配列特異的リボヌクレアーゼの発現は宿主には致死的である可能性があり、誘導 前まで候補遺伝子の発現は厳密に抑制される必要がある。例えば、 T7ポリメラーゼ のプロモーターを利用する pETシステム(ノバジェン社製)、コールドショック発現制御 系 pColdシステム (タカラバイオ社製)のような発現システムを利用することが好適で ある。候補遺伝子からの発現産物を簡便に精製するためには、その精製を容易とす るために前記のヒスチジン タグのようなペプチドを発現産物に付加しておくことが有 利である。そのためには、発現ベクターとしてこのようなペプチドのコード領域を含む ものを使用すればよい。
[0026] エンドリボヌクレアーゼの活性の測定は、前記の、一本鎖 RNAを基質とする方法に より実施することができる。切断部位は、切断した RNAを铸型とし、該 RNAに相補的 なプライマーと逆転写酵素を用いたプライマー ·エクステンションにより同定することが できる。前記のプライマー ·エクステンションでは切断部位で伸長反応が停止するた め、伸長鎖の鎖長を電気泳動により決定すれば切断部位を同定することができる。さ らに塩基配列特異性を厳密に同定するには、任意の配列を有するオリゴリボヌクレオ チドを化学的に合成し、候補遺伝子の発現産物を作用させた後、変性アクリルアミド ゲル電気泳動等によって切断の有無を判定すればよい。
[0027] 3.本発明のポリペプチドの製造方法
本発明のポリペプチドは、例えば、(1)本発明のポリペプチドを生産する微生物の 培養物からの精製、(2)本発明のポリペプチドをコードする核酸を含有する形質転換 体の培養物力もの精製、等の方法により製造することができる。
[0028] 本発明のポリペプチドを生産する微生物としては、本発明を特に限定するものでは ないが、 Pyrococcus属に属する細菌が例示される。例えば、 Pyrococcus horiko shii、特に好適には P. horikoshii ATCC700860株より本発明のポリペプチドを 取得することができる。前記微生物の培養はその微生物の生育に適した条件で行え ばよい。菌体あるいは培養液中に生産された目的のポリペプチドは、通常のタンパク 質の精製に用いられる方法、例えば菌体の破砕、沈殿法 (硫安塩析等)による分画、 各種のクロマトグラフィー(イオン交換クロマトグラフィー、ァフィ-テイク口マトグラフィ 一、疎水クロマトグラフィー、分子ふるいクロマトグラフィー)等、あるいはこれらを組み 合わせて精製することができる。
[0029] 前記の、本発明のポリペプチドをコードする核酸を含む組換え DNAで形質転換さ れた形質転換体より、本発明のポリペプチドを取得することができる。前記の組換え DNAは、好ましくはポリペプチドをコードする核酸の上流に機能的に接続された適 切なプロモーターが配置されている。なお、本発明のポリペプチドは宿主に対して致 死的な作用を示すことがあるので、前記のプロモーター、ならびにプロモーターを含 めた発現システムは本発明のポリペプチドをコードする核酸力 の転写を厳密に制 御しうるものであることが好ましい。このようなシステムとして、前記の pETシステム、 p Coldシステムが例示される。
[0030] 宿主となる細胞へは前記の組換え DNAがそのまま導入されてもよぐ適切なベクタ 一、例えばプラスミドベクター、ファージベクター、ウィルスベクターに挿入されて導入 されてもよい。さら〖こ、前記の組換え DNAが宿主の染色体に組み込まれていても構 わない。形質転換される宿主には特に限定はなぐ例えば、大腸菌、枯草菌、酵母、 糸状菌、植物、動物、植物培養細胞、動物培養細胞等、組換え DNAの分野で通常 使用されている宿主が挙げられる。
[0031] これらの形質転換体で産生された本発明のポリペプチドは、前記のような精製手法 を利用して精製することができる。本発明のポリペプチドをコードする核酸が、前記ポ リペプチドの精製を容易とするためのペプチドが付加されたポリペプチドをコードする ものであった場合には、精製は非常に容易となる。付加されたペプチドに応じた精製 手法、例えば、ヒスチジン—タグに対しては金属キレート榭脂を、ダルタチオン S— トランスフェラーゼに対してはダルタチオン固定ィ匕榭脂を、それぞれ使用することによ り、高純度のポリペプチドを簡便な操作で得ることができる。
[0032] 4.本発明のポリペプチドを用いた一本鎖 RNAの分解
本発明のポリペプチドを用いることにより、一本鎖 RNAを分解し、 RNA分解物を製 造することができる。本発明のポリペプチドは塩基配列特異的に RNAを切断しうるこ とから、生成する RNA分解物の平均の鎖長は前記ポリペプチドに認識される塩基配 列の出現頻度に相関する。すなわち、本発明によりある鎖長分布を有する RNA分解 物が提供される。さらに、その配列特異性を利用して RNA中の特定の領域を切り出 すことも可能である。
[0033] さらに、本発明のポリペプチドにより一本鎖 RNAを選択的に分解することができる。 本発明の一つの態様として、タンパク質合成系、例えば無細胞翻訳系や形質転換体 中の mRN Aを本発明のポリペプチドで分解し、タンパク質の合成を阻害することがで きる。この際、本発明のポリペプチドに認識される塩基配列を含有しないように人為 的に作製した、所望のタンパク質をコードする mRNAを前記の系に存在させておくこ とにより、当該 mRNAのみが分解を免れ、系内では所望のタンパク質が特異的に生 成される。本態様は、特に高純度のタンパク質の製造に有用である。
実施例
[0034] 以下に実施例を挙げて本発明を更に具体的に説明する力 本発明は以下の実施 例のみに限定されるものではない。
[0035] また、本明細書に記載の操作のうち、基本的な操作については 2001年、コールド スプリング ハーバー ラボラトリー発行、 J.サムブルック (J. Sambrook)ら編集、モ レキユラ一 クロー-ング:ァ ラボラトリー マニュアル第 3版(Molecular Cloning
: A Laboratory Manual, 3rd ed. )に記載の方法によった。
[0036] 実施例 1 P. horikoshii 八1^じ700860株由来13111182の単離と発現プラスミド の構築
P. horikoshii 八1^。700860株由来!3111182遺伝子にっぃて、そこにコードさ れて 、るポリペプチドのアミノ酸配列および塩基配列を NCBI データベースより入手 した(accession No. NP— 143082および NC— 000961)。 PHI 182の塩基酉己歹 lj 情報より、ポリペプチド全長をコードする領域の DNAを PCRで増幅できるように、プ ライマー PH 1182— F (配列番号 3)およびプライマー PH 1182— R (配列番号 4)を それぞれ合成した。
[0037] P. horikoshii ATCC700860株のゲノム DNAは ATCCより入手した (ATCC
No. 700860D)。 50ngの P. horikoshii ATCC700860株ゲノム DNA、プラ イマ一 PH1182— F および PH1182— Rを使用し、 Pyrobest DNA polymeras e (タカラバイオ社製)を用いた PCRを実施して 437bpの増幅 DNA断片を得た。この 増幅断片を制限酵素 Ndelおよび Xholで消化してァガロース電気泳動に供し、泳動 後のゲルより 416bpの DNA断片を回収した。
[0038] 発現ベクターは、 pCold TF (タカラバイオ社製)を用いて構築した。 PHI 182遺伝 子をクロー-ングする際、前記遺伝子の 3'末端の Xhol部位のすぐ後ろに終止コドン を導入するため、 pCold TF DNAを制限酵素 Xholおよび Xbalで消化した後、合 成したオリゴヌクレオチド STPU1 (配列番号 5)および STPL2 (配列番号 6)の 2つの オリゴヌクレオチドで構成されたリンカ一をライゲーシヨンにより挿入し pCold TFbを 作製した。次に pCold TFbを制限酵素 Ndelおよび Xholで消化し、上記の 416bp の DNA断片を接続して得られた組換えプラスミドで大腸菌 JM 109株をトランスフォ 一メーシヨンした。こうして得られた形質転換体のコロニーよりプラスミドを調製し、そ の塩基配列を確認したうえ、発現ベクター pCold TF— PHI 182と命名した。
[0039] 発現ベクター pCold TF— PHI 182に挿入された P. horikoshii ATCC70086 0株由来 PHI 182ポリペプチドをコードする塩基配列を配列番号 2に、該ポリべプチ ドのアミノ酸配列を配列番号 1にそれぞれ示す。なお、前記の発現ベクター pCold TF— PH1182によれば配列番号 1のアミノ酸配列のポリペプチドの N末端に 6残基 のヒスチジンおよび 432アミノ酸残基のトリガーファクターポリペプチドを含む 488アミ ノ酸残基力もなるポリペプチドが付加され、さらに C末端に Leu— Gluの 2アミノ酸残 基が付加されたポリペプチドが発現される。
[0040] 実施例 2 P. horikoshii 八1^じ700860株由来13111182ポリぺプチドの調製 実施例 1で得られた発現ベクター pCold TF— 111182で大腸菌81^21 (DE3) 株 (ノバジェン社製)をトランスフォーメーションし、発現用大腸菌 pCold TF-PH11 82/BL21 (DE3)を得た。前記の大腸菌を 100 μ gZmlのアンピシリンを含む 5ml の LB培地中、 37°Cで培養し、 OD600nm =0. 5になったところで、 15°C、 30分間 インキュベーションした後、 IPTG (タカラバイオ社製)を最終濃度 ImMになるように 加えてポリペプチドの発現を誘導し、 15°C、 24時間培養した。 24時間後に培養を終 了し、菌体を遠心分離により回収した。菌体を 300 μ 1のリシスバッファー(50mM N aH PO、 300mM NaCl、 lOmM イミダゾール、 pH8. 0)に懸濁した後、超音波
2 4
破砕機 (Handy sonic,トミー社製)を用いて菌体を破砕した。遠心分離により回収 した上清に 20 μ 1の Ni— NTA agarose (キアゲン社製)を加え、 4°C、 30分間放置 した。遠心分離して回収した沈澱を 100 μ 1の洗浄バッファー(50mM NaH2P04、 300mM NaCl、 20mM イミダゾール、 pH8. 0)で 2回洗浄した。洗浄後の沈殿に 20 1の溶出バッファー(50mM NaH PO、 300mM NaCl、 250mM イミダゾ
2 4
ール、 pH8. 0)を加えて懸濁し、遠心して上清を回収した。同じ溶出操作をさらに 2 回繰り返し、合計 60 1の PH1182ポリペプチドを含む試料を得た。この試料の一部 を SDS— PAGEに供して予想されるサイズのポリペプチドが含有されていることを確 認した。また、試料中の PH1182タンパク濃度は約 25ngZ 1であった。
[0041] 実施例 3 オリゴリボヌクレオチドを基質とした PH1182ポリペプチドの塩基配列特異 性の同定
実施例 2で得られた PH1182ポリペプチドのリボヌクレアーゼ活性の塩基配列特異 性を調べるために、オリゴリボヌクレオチドを合成し、切断アツセィを行った。
[0042] 基質として、配列番号 7〜17に示したオリゴリボヌクレオチド 11種を合成した。 10 M オリゴリボヌクレオチド、 5ngZ w lの実施例 2で得た PH1182ポリペプチド、 10m M Tris-HCl (pH7. 5)からなる 5 1の反応液を 37°C、 30分間インキュベートした 。反応物を 20%変性アクリルアミドゲル(20%アクリルアミド、 7M尿素、 0. 5 XTBE ノ ッファー)電気泳動に供し、 SYBR GREEN II (タカラバィォ社製)で染色した後 、蛍光イメージアナライザー FMBIOII Multiview (タカラバイオ社製)を用いて、蛍 光画像を解析した。各オリゴリボヌクレオチドの切断の状況を表 1に示す。
[0043] さらに、それぞれのオリゴリボヌクレオチドの切断の有無から、切断部位周辺の塩基 配列を比較し、配列の特異性を評価した。この結果を表 2に示す。
[0044] 以上の結果から、 PH1182ポリペプチドは、 5,— UGG— 3,、 5,— UUG— 3,、 5, —UGA—3 '、 5'—AGG— 3'または 5'—AAG— 3'の配列を優先的に認識して当 該配列の 1番目の残基の 3'側のリン酸ジエステル結合を加水分解することが明らか になった。 PH1182ポリペプチドは、 MazFとは全く異なる塩基配列特異性を有する エンドリボヌクレアーゼであることが明らかになった。
[0045] [表 1] 名称 塩基配列および切断部位 切断 ( 1 は切断された部位を示す) PH 1182
DGCOOl GCA / GGUU / GGUUUACAUUAAUU + 匿 1017 GUU / UGUUAUGUUUCUUA U / GGUUCUU +
ABC007 UAU 1 GMUAU / GAUCUCAAAUUU + 匿 1023 AUCUACA 1 GGGAUCUCCUAUCUACUAU / GGGG + 置 1002 AA ダ AGUCUAAACGCUA / AGCUCUAAAA + 置 1014 GGACUCGCC GGAA CUC UGCACU / UGA + 匿 1027 GGGGCUCGCCUUACA / AGCGAU / U / GGG + 匿 1031 GUGUGUUCCUUUAUU / UGUGUUACUU / U / GGGC +
ABCOOl GCAGAGUUCMA / AGCCCUUUU +
ABC017 G GAGUC GUAG CUG CAGUAUUU
ABC018 AUACUG CAGCUAC GACUC CUU [表 2-1]
名称 塩基配列 切断
PH1182
DGCOOl (1) U U/G G +
MR I017 {1) A U/G G +
MR 1023 (1) A U/G G +
MR 1027 (1) U/U/G G +
MR I03K1) U/U/G G +
MR 1017 (2) U U/U G +
MR I014 {1) C U/U G +
MR 1031 (2) U U/U G +
ABC007 (1) A U/G A +
ABC007 (2) A U/G A +
DGCOOl (2) C A/G G +
MR 1023 (2) C A/G G +
MR 1002 (1) A A/A G +
MR 1002 (2) U A/A G +
MR 1027 (2) C A/A G +
ABCOOl (1) A A/A G +
MR 1014 (2) C C G G
MR 1027 (3) G G G G
MR 1017 (3) U A U G
ABC018 (1) A C U G
[表 2-2] MR I031 (3) U G U G -
MR I014 (3) c u e G -
ABC017 (1) G U A G -
ABC017 {2) C U G C -
MR I017 {4) A U G U -
ABC007 (3) A U U U -
MR I017 (5) U U U C -
MR I017 {6) C U U A -
ABC018 (2) A C G A -
MR 1014 (4) C G G A -
ABC001 (2) C A G A -
ABC018 (3) G C A G -
ABC017 O) G G A G -
MR 1002 (3) U A A A -
ABC007 (4) A A A U -
MR 1002 (4) A A A C -
MR 1002 (5) A A C G - 切断部位:切断された部位は、 ノ 1 で示した。 産業上の利用可能性
[0047] 本発明により、新規な配列特異的エンドリボヌクレアーゼが提供される。前記酵素 は RNA中の特定の配列を認識して切断することができることから、 RNA分子の解析 、 RNA断片の作成、細胞内での RNA切断を介した細胞の制御(例えばタンパク質 生成の阻害)等に有用である。
配列表フリーテキスト
[0048] SEQ ID NO:3; PCR primer PHI 182— F to amplify a DNA fragment encoding PHI 182 protein.
SEQ ID NO:4; PCR primer PH1182— R to amplify a DNA fragment encoding PHI 182 protein.
SEQ ID NO: :5; Oligonucleotide STPU1 to modify pCold TF.
SEQ ID NO: :6; Oligonucleotide STPL2 to modify pCold TF.
SEQ ID NO: :7; Oligoribonucleotide DGC001.
SEQ ID NO: :8; Oligoribonucleotide MRI017.
SEQ ID NO: :9; Oligoribonucleotide ABC007.
SEQ ID NO: :10; Oligoribonucleotide MRI023. SEQ ID NO:ll; Oligoribonucleotide MRI002. SEQ ID NO:12; Oligoribonucleotide MRI014. SEQ ID NO:13; Oligoribonucleotide MRI027. SEQ ID NO :14; Oligoribonucleotide MRI031. SEQ ID NO :15; Oligoribonucleotide ABC001. SEQ ID NO:16; Oligoribonucleotide ABC017. SEQ ID NO:17; Oligoribonucleotide ABC018.

Claims

請求の範囲
[1] 配列表の配列番号 1記載のアミノ酸配列、または該配列において 1個以上のァミノ 酸残基の欠失、付加、挿入もしくは置換の少なくとも 1つを有するアミノ酸配列で示さ れ、かつ配列特異的なエンドリボヌクレアーゼ活性を有するポリペプチド。
[2] 請求項 1記載のポリペプチドをコードする核酸。
[3] 配列表の配列番号 2記載の塩基配列を有することを特徴とする請求項 2記載の核 酸。
[4] 請求項 3記載の核酸にストリンジェントな条件でノ、イブリダィズ可能であり、かつ配 列特異的なエンドリボヌクレアーゼ活性を有するポリペプチドをコードする核酸。
[5] 請求項 2〜4 、ずれ力 1項に記載の核酸を含んでなる組換え DNA。
[6] 請求項 5記載の組換え DNAにより形質転換されてなる形質転換体。
[7] 請求項 6記載の形質転換体を培養する工程、および該培養物中より配列特異的な
RNA切断活性を有するポリペプチドを採取する工程を包含することを特徴とする請 求項 1のポリペプチドの製造方法。
[8] 一本鎖 RNAに請求項 1記載のポリペプチドを作用させる工程を包含することを特 徴とする、一本鎖 RNA分解物の製造方法。
[9] 一本鎖 RNAに請求項 1記載のポリペプチドを作用させる工程を包含することを特 徴とする、一本鎖 RNAの分解方法。
PCT/JP2006/317858 2005-09-21 2006-09-08 新規なエンドリボヌクレアーゼ WO2007034693A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/067,769 US7745190B2 (en) 2005-09-21 2006-09-08 Endoribonuclease
EP06797712A EP1947177A4 (en) 2005-09-21 2006-09-08 INNOVATIVE ENDORIBONUCLEASE
CN2006800346234A CN101268186B (zh) 2005-09-21 2006-09-08 新的内切核糖核酸酶
JP2007536449A JP4889647B2 (ja) 2005-09-21 2006-09-08 新規なエンドリボヌクレアーゼ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-274017 2005-09-21
JP2005274017 2005-09-21

Publications (1)

Publication Number Publication Date
WO2007034693A1 true WO2007034693A1 (ja) 2007-03-29

Family

ID=37888744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317858 WO2007034693A1 (ja) 2005-09-21 2006-09-08 新規なエンドリボヌクレアーゼ

Country Status (5)

Country Link
US (1) US7745190B2 (ja)
EP (1) EP1947177A4 (ja)
JP (1) JP4889647B2 (ja)
CN (1) CN101268186B (ja)
WO (1) WO2007034693A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130079420A (ko) * 2010-05-10 2013-07-10 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 엔도리보뉴클레아제 조성물들 및 이들의 사용 방법들
CN104491833A (zh) * 2014-12-01 2015-04-08 覃启红 一种治疗Ebola病毒的药物及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115477A2 (en) 2004-04-13 2005-12-08 Quintessence Biosciences, Inc. Non-natural ribonuclease conjugates as cytotoxic agents
EP2049151A4 (en) 2006-07-17 2010-03-24 Quintessence Biosciences Inc METHOD AND COMPOSITIONS FOR THE TREATMENT OF CANCER
WO2010039985A1 (en) * 2008-10-01 2010-04-08 Quintessence Biosciences, Inc. Therapeutic Ribonucleases

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866365A (en) * 1997-06-05 1999-02-02 Smithkline Beecham Corporation RNC polynucleotides
US8183011B2 (en) 2003-06-13 2012-05-22 University Of Medicine And Dentistry Of New Jersey RNA interferases and methods of use thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] XP003010829, accession no. NCBI Database accession no. (NC_000961) *
DATABASE GENPEPT [online] XP003010830, accession no. NCBI Database accession no. (NP_143082) *
DNA RES., vol. 5, no. 2, 1998, pages 147 - 155 *
See also references of EP1947177A4 *
ZHANG Y. ET AL.: "Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase", J. BIOL. CHEM., vol. 280, no. 5, February 2005 (2005-02-01), pages 3143 - 3150, XP003001718 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130079420A (ko) * 2010-05-10 2013-07-10 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 엔도리보뉴클레아제 조성물들 및 이들의 사용 방법들
JP2013528372A (ja) * 2010-05-10 2013-07-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア エンドリボヌクレアーゼ組成物およびその使用方法
US9708646B2 (en) 2010-05-10 2017-07-18 The Regents Of The University Of California Endoribonuclease compositions and methods of use thereof
KR101867359B1 (ko) * 2010-05-10 2018-07-23 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 엔도리보뉴클레아제 조성물들 및 이들의 사용 방법들
CN104491833A (zh) * 2014-12-01 2015-04-08 覃启红 一种治疗Ebola病毒的药物及其制备方法

Also Published As

Publication number Publication date
EP1947177A4 (en) 2008-11-19
US20090047709A1 (en) 2009-02-19
JP4889647B2 (ja) 2012-03-07
CN101268186B (zh) 2011-08-03
CN101268186A (zh) 2008-09-17
US7745190B2 (en) 2010-06-29
EP1947177A1 (en) 2008-07-23
JPWO2007034693A1 (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
US7067298B2 (en) Compositions and methods of using a synthetic Dnase I
Curiel et al. The pURI family of expression vectors: a versatile set of ligation independent cloning plasmids for producing recombinant His-fusion proteins
WO2007034693A1 (ja) 新規なエンドリボヌクレアーゼ
JP4857260B2 (ja) 低温性微生物由来エンドヌクレアーゼ
US8017356B2 (en) Endoribonuclease
CA2559345C (en) Mutant endonuclease
JP4974891B2 (ja) 新規なエンドリボヌクレアーゼ
WO2007010740A1 (ja) 新規なエンドリボヌクレアーゼ
JPWO2006123537A1 (ja) 新規なエンドリボヌクレア−ゼ
CN109735516B (zh) 受核苷酸片段引导具有特异核酸内切酶活性的piwi蛋白
JP2009517059A (ja) 原核生物におけるマリナー可動性遺伝因子の活性かつ安定なトランスポゼースの製造方法
US20090259035A1 (en) Method for producing recombinant RNase A
WO2022210748A1 (ja) 新規なガイドrnaとの複合体形成能を有するポリペプチド
WO2023248870A1 (ja) エンドリボヌクレアーゼ、タンパク質、ポリヌクレオチド、発現ベクター、形質転換体、複合体、rna分解物の製造方法、rnaの切断方法及び細胞制御方法
CN117417919A (zh) 一种热敏感尿嘧啶dna糖苷酶及其应用
JP5787335B2 (ja) アセチルコリンエステラーゼ遺伝子
CN116496379A (zh) 一种热稳定性Rnase inhibator突变体、制备方法及应用
JP2019170225A (ja) エンドリボヌクレアーゼ、およびその阻害物質
US20080032377A1 (en) Uracil-DNA nuclease: protein enzyme possessing nuclease activity specific for uracil containing nucleic acid, process for its preparation and methods of use
JP2000228986A (ja) アミノペプチダーゼ前駆体をプロセッシングする酵素遺伝子、該遺伝子を含むベクター及び形質転換体
JP2006042643A (ja) 無細胞タンパク質合成法を用いる新規ヌクレアーゼのスクリーニング方法
PL222512B1 (pl) Endorybonukleaza przecinająca nić RNA w hybrydach DNA-RNA

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034623.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006797712

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007536449

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12067769

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE