WO2007034657A1 - 微粒子蛍光体とその製造方法 - Google Patents

微粒子蛍光体とその製造方法 Download PDF

Info

Publication number
WO2007034657A1
WO2007034657A1 PCT/JP2006/316909 JP2006316909W WO2007034657A1 WO 2007034657 A1 WO2007034657 A1 WO 2007034657A1 JP 2006316909 W JP2006316909 W JP 2006316909W WO 2007034657 A1 WO2007034657 A1 WO 2007034657A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
precursor particles
producing
fine particle
droplets
Prior art date
Application number
PCT/JP2006/316909
Other languages
English (en)
French (fr)
Inventor
Kazuya Tsukada
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2007536430A priority Critical patent/JPWO2007034657A1/ja
Publication of WO2007034657A1 publication Critical patent/WO2007034657A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • C09K11/595Chalcogenides with zinc or cadmium

Definitions

  • Fine particle phosphor Fine particle phosphor and method for producing the same
  • the present invention relates to a method for producing a fine particle phosphor and a fine particle phosphor produced by the method.
  • Phosphors irradiate excitation rays (ultraviolet rays, visible light, infrared rays, infrared rays, heat rays, electron rays, X-rays, etc.) with light (ultraviolet rays, visible rays, infrared rays, etc.). It is commonly used as a material to convert.
  • Devices using such phosphors include fluorescent lamps, electron tubes, cold cathode displays, fluorescent display tubes, plasma display panels (hereinafter also referred to as “PDP”), electoric luminescence panels, scintillators.
  • Non-Patent Document 1 examples include sillon detectors, X-ray image intensifiers, thermofluorescence dosimeters, and imaging plates (see Non-Patent Document 1, for example). O These devices all convert electrical energy into excitation energy. It is a device that converts the energy of excitation rays into light. Electronic devices in which such devices are combined with electronic circuits or device parts (lighting devices, computers, keyboards, electronic devices that do not use phosphors, etc.) are widely used as lighting devices and display devices.
  • phosphor-using articles using phosphors powdered phosphors and liquids such as water or organic solvents, substances other than phosphors such as resin, plastics, metals or ceramic materials, etc.
  • phosphor-containing materials in combination with, for example, liquid materials such as phosphor paints and paste materials, solid materials such as ashtrays, display materials such as guide plates and guidance articles, seals, etc.
  • nanostructured crystals exhibit specific optical characteristics in the ultra-fine particles typified by Si and Ge, and II-VI semiconductors such as porous silicon.
  • nanostructured crystal is Inn! This refers to a crystal grain with a particle size of ⁇ lOOnm and is generally called a nanocrystal.
  • the case where it has a nanostructure crystal exhibits good light absorption. It will show the collection characteristics and the light emission characteristics. This is thought to be due to the fact that the group VI semiconductor with nanostructure crystals has a larger band gap than the Balta-like crystal structure because the quantum size effect appears. In other words, it is thought that the band gap is widened by the quantum size effect in II-VI semiconductors with nanostructured crystals.
  • the conventional phosphor having a particle size of about several / zm was strong enough to emit light when used in a thin display. Therefore, phosphors that can be excited at a low voltage are suitable for thin displays, particularly FEDs. Examples of phosphors that satisfy such conditions include II-VI semiconductors having nanostructure crystals as described above.
  • nanostructure crystals that have been studied so far have problems such as insufficient brightness due to size distribution due to aggregation, light emission killer due to numerous crystal surface defects, and uneven brightness (for example, , See Patent Documents 1 to 4.) 0 [0009]
  • fluorescent substances emitted from organic molecules are used as labels in the study of viral and enzyme reactions or clinical tests, and emitted when irradiated with ultraviolet rays.
  • the method is used to measure the light with an optical microscope or a photodetector.
  • an antigen antibody fluorescence method is widely known.
  • an antibody (referred to as a specific binding substance) bound with an organic fluorescent substance that emits fluorescence is used.
  • Antigen Antibody reaction is very selective, so the fluorescence intensity distribution force The position of the antigen can be known.
  • inorganic phosphors are stable to ultraviolet irradiation and electron beam irradiation and have little deterioration.
  • phosphors that are industrially used for TVs or lamps are usually 1 ⁇ m or more in size, and cannot be used as they are as phosphors for antigen-antibody reactions.
  • these methods increase the proportion of the non-light-emitting layer that covers the surface of each particle. Will drop significantly.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-322468
  • Patent Document 2 JP 2005-239775 A
  • Patent Document 3 Japanese Patent Laid-Open No. 10-310770
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-104058
  • Non-Patent Document 1 “Phosphor Handbook” edited by the Society of Phosphors, Ohm, 1987 Disclosure of Invention
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a fine particle phosphor having high composition uniformity and excellent emission luminance and afterglow characteristics, and a method thereof. An object of the present invention is to provide a fine particle phosphor produced by the above method.
  • the dispersion coefficient of the precursor particles is 5% to 20%, The manufacturing method described.
  • FIG. 1 is a schematic configuration diagram of a double jet reaction crystallization apparatus.
  • nanoparticle phosphors As a result of intensive studies aimed at solving the above-mentioned problems of phosphors having nanostructure crystals (also referred to as "nanoparticle phosphors"), the present inventors have determined precursors whose particle sizes are controlled in the direction of fine particles.
  • the reaction crystallisation method is applied at the time of body preparation, and it is sprayed into fine droplets and heated while controlling the temperature in the gas flow path. And found that the particle size can be controlled to a high degree.
  • the present invention has found that the present invention is not limited to the nano-size, and that the same effect can be exhibited not only in a fine particle phosphor of 1 ⁇ m or less.
  • the reactive crystallization method is a method of producing fine particles by controlling the degree of supersaturation while stirring the two liquids that react.
  • This reactive crystallization method is the production of fine particles by other physical 'chemical methods. Compared with the method, it is useful in terms of energy saving. In addition, it is an effective method for obtaining high composition uniformity among the liquid phase methods that facilitates obtaining a monodisperse particle distribution.
  • the reaction crystallization method there is known a method of producing silver halide fine particles which are hardly soluble salts by reacting silver ions and halide ions in the apparatus. Silver halide fine particles are preferably used as photosensitive fine particles in the photographic industry and the like.
  • the particle size distribution can be obtained simply by controlling the size within a particle (3 m or less) with uniform intra-particle composition and inter-particle composition using a reaction crystallization method.
  • a highly uniform precursor can be obtained by dispersion, atomized and sprayed, and heated to “dry” to form nano-sized “high crystal grains” and improve particle size distribution.
  • the 50% volume particle size (Dv50) of the precursor particles obtained by the reactive crystallization method is 3 ⁇ m or less, preferably lm or less, and particularly preferably 0.1 ⁇ m or less. .
  • the cumulative 50% volume particle size measured by the laser scattering method was taken as 50% volume particle size (Dv50).
  • the particle size dispersion coefficient of the precursor particles is preferably 5% to 20%.
  • any means usually used in a thermal decomposition method can be used. Examples include superheated sprayers, ultrasonic sprayers, vibration sprayers, rotary desk sprayers, electrostatic sprayers, and vacuum sprayers.
  • the size and distribution of the droplets produced by the spraying means have an effect on the size and size distribution of the primary particles produced, so use them according to the target particle.
  • the droplet heat treatment step uses a carrier gas such as air, nitrogen, helium, argon or hydrogen, and is heated at an optimum flow rate in the flow path of the heating furnace.
  • a carrier gas such as air, nitrogen, helium, argon or hydrogen
  • the method for producing a fine particle phosphor of the present invention is also applicable as a method for producing a fine particle phosphor having a 50% volume particle size (Dv50) of 1 to: LOnm, that is, a so-called nanoparticle phosphor. is there.
  • Dv50 50% volume particle size
  • nanoparticle phosphor according to the present invention can be used for various purposes and applications as described in the “Background Art” section.
  • a coating method using an inkjet nozzle can be used.
  • Conventional phosphors with a size of several meters are likely to be clogged with nozzles, and the nozzle diameter needs to be sized to match the phosphor size, making it unsuitable for coating fine patterns. .
  • nanoparticles using an inkjet nozzle with a small nozzle diameter it becomes possible to apply a fine pattern.
  • Examples of such application applications include the production of fluorescent panels such as PDP'FPD, and the production of printed materials (posters, signboards, T-shirts, etc.) of fluorescent ink using nanoparticles.
  • Liquid B was prepared by dissolving sodium metasilicate so that the silicon ion concentration was 0.25 molZl in 500 ml of water.
  • the ion concentration of zinc in 500 ml of water is 0.47 mol.
  • Zr and activator (manganese) ions were dissolved in zinc nitrate and manganites so that the ion concentration would be 0.03 mol Zl.
  • reaction vessel which is a phosphor manufacturing apparatus shown in FIG.
  • Liquid A was added and maintained at 40 ° C., and stirring was performed using a stirring blade 1.
  • solutions B and C kept at 50 ° C were added from the bottom of the reaction vessel containing solution A at a constant rate of 50 ml Zmin from nozzles 2 and 2 ', and the pH of the reaction solution was controlled (described in Table 1). I went there.
  • the precursors shown in Table 1 were obtained by changing the stirring speed, the number of nozzles, and the flow rate. All precursors are stirred for 10 minutes while reducing the temperature after addition ( ⁇ 30 ° C) in order to stabilize the reaction system.
  • the particle size of the obtained precursor particles was determined by a laser scattering method (Seishin) and the results are shown in Table 1.
  • the viscosity of the precursor is adjusted so that it can be made into spray droplets, and then this liquid is put into an ultrasonic sprayer having a vibrator capable of controlling the frequency centering on 1.7 MHz to control the diameter of the droplets.
  • the droplets are introduced into a tubular reactor formed by connecting multiple tubular thermal reactors that can be temperature controlled in the range of 700 ° C to 1300 ° C using nitrogen gas containing 1% by volume of hydrogen gas as the carrier gas. Then, by changing the flow rate, the fine particle phosphor was obtained through a flow path of 2 to 5 seconds.
  • phosphors having the particle size distribution shown in Table 1 were obtained.
  • the molar ratio of zinc oxide (ZnO) and silicon oxide (SiO 2) is 2
  • magnesium oxide MgO
  • a 146nm excimer lamp (Ushio Electric) is used as the light source, a sample is set in the vacuum chamber, and it is excited by irradiating from a certain distance with a degree of vacuum of 1.33 X lOPa. Luminescence was measured with a luminance meter and the results are shown in Table 1.
  • luminance is shown as a relative value when the comparison 1 is 100%.
  • the afterglow time of the initial powder state of the phosphor was measured using a fluorescence lifetime measuring device.
  • the afterglow time is the time until the emission intensity after blocking becomes 1Z10, which is the emission intensity just before blocking.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

 本発明の目的は、組成の均一性が高く、発光輝度及び残光特性に優れた微粒子蛍光体の製造方法、及びその方法によって製造される微粒子蛍光体を提供することにあり、その製造方法、(i)蛍光体の構成金属元素を含有する水溶液を予め調製する工程、(ii)上記水溶液から反応晶析法で析出された前駆体粒子を含有する液であって、かつ、その前駆体粒子の50%体積粒径(Dv50)が3μm以下である液を調製する工程、(iii)上記前駆体粒子を含有する液を微細に液滴化させる工程、(iv)上記液滴化させた前駆体粒子を含有する液を、キャリアガスとともに、加熱炉の中に導入し、加熱処理する工程を特徴とする。

Description

明 細 書
微粒子蛍光体とその製造方法
技術分野
[0001] 本発明は微粒子蛍光体の製造方法、及びその方法によって製造される微粒子蛍 光体に関する。
背景技術
[0002] 蛍光体は、励起線 (紫外線、可視光、赤外線、熱線、電子線、及び X線等)を照射 することにより、当該励起線のエネルギーを光 (紫外線、可視光及び赤外線等)に変 換する材料として一般に使用されている。当該蛍光体を用いたデバイスとしては、蛍 光ランプ、電子管、冷陰極ディスプレイ、蛍光表示管、プラズマディスプレイパネル (P lasma Display Panel:以下において、「PDP」ともいう。)、エレクト口ルミネッセンス パネル、シンチレーシヨン検出器、 X線イメージインテンシファイア、熱蛍光線量計お よびイメージングプレート等が挙げられる(例えば、非特許文献 1参照。 ) oこれらのデ バイスは、いずれも、電気エネルギーを励起線のエネルギーに変換し、さらに、励起 線のエネルギーを光に変換するデバイスである。このようなデバイスと、電子回路また は機器部品(照明器具、コンピュータ、キーボード、蛍光体を用いていない電子機器 等)とを組み合わせた電子機器は、照明装置や表示装置等として広く用いられている
[0003] また、蛍光体を用いた蛍光体使用物品としては、粉末状の蛍光体と、水もしくは有 機溶媒等の液体、榭脂、プラスチック、金属またはセラミクス材料等の蛍光体以外の 物質とを組み合わせた蛍光体含有物があり、これらは、例えば、蛍光体塗料等の液 状物やペースト状物、灰皿などの固形物、案内板や誘導用物品等の表示物、シール
、文房具、アウトドア用品、安全標識等として広く用いられている。
[0004] 更に、上記のような用途のみならず、例えばトレーサーとしての使用など、医学分野 やバイオ分野における活用の進展も期待されている。
[0005] 一方、近年、 Siや Ge等に代表される超微粒子、ポーラスシリコン等の II VI族半導 体にぉ 、てそのナノ構造結晶が特異的な光学的特性を示すことが注目されて 、る。 ここで、ナノ構造結晶とは、 Inn!〜 lOOnm程度の粒径の結晶粒のことをいい、一般 的にナノクリスタルと呼ばれる。
[0006] Π— VI族半導体にぉ 、て、上述したようなナノ構造結晶を有する場合と、バルタ状 の結晶を有する場合とを比較すると、ナノ構造結晶を有する場合には、良好な光吸 収特性及び発光特性を示すことになる。これは、ナノ構造結晶を有する Π— VI族半導 体では、量子サイズ効果が発現するため、バルタ状の結晶構造の場合よりも大きなバ ンドギャップを有するためと考えられる。すなわち、ナノ構造結晶を有する II VI族半 導体においては、量子サイズ効果によりバンドギャップが広げられるのではないかと 考えられている。
[0007] ところで、テレビ等のディスプレイには、様々な蛍光体が用いられている。現在、テ レビ等のディスプレイに用いられて 、る蛍光体の粒径は、数ミクロン(3〜 10 m)程 度である。そして、近年、様々なディスプレイが開発され、特に薄型化という観点でプ ラズマディスプレイ(PDP)やフィーノレド ·ェミッション'ディスプレイ(FED)やエレクト口 'ルミネッセンス 'ディスプレイ(ELD)、 SED (Surface - conduction Electron— e mitter Display)が注目されて 、る。
[0008] その中でも FEDにおいては、薄型化されると電子ビームの電圧を低下させる必要 がある。し力しながら、薄型化されたディスプレイにおいて、上述したような粒径が数 μ m程度の蛍光体を用いると、電子ビームの電圧が低いために十分に発光しない。 すなわち、このような薄型化されたディスプレイでは、従来の蛍光体を十分に励起さ せることができな力つた。これは、従来の蛍光体の結晶が大きいため、照射された電 子ビームが発光体の発光する部分にまで到達することができな 、ためである。つまり
、粒径が数/ z m程度の従来の蛍光体は、薄型化されたディスプレイに用いられた場 合、十分に発光することがな力つた。従って、蛍光体としては、低電圧で励起可能な ものが、薄型化されたディスプレイ、特に FEDに適したものと言える。このような条件 を満たす蛍光体として上述したようなナノ構造結晶を有する II VI族半導体を挙げる ことができる。しかし、これまで検討されてきたナノ構造結晶においては凝集によるサ ィズ分布不良、多数の結晶表面欠陥による発光キラーが原因で輝度が充分でな力つ たり、輝度ムラが生じる問題がある (例えば、特許文献 1〜4参照。 )0 [0009] また、バイオテクノロジーの分野に於!、ては、従来からウィルスや酵素の反応の研 究あるいは臨床検査に、有機物分子からなる蛍光物質を標識として用い、紫外線照 射したときに発する蛍光を光学顕微鏡あるいは光検出器で測定する方法がとられて いる。このような方法としては、例えば、抗原 抗体蛍光法などが、広く知られている
[0010] この方法では、蛍光を発する有機蛍光体が結合した抗体 (これを特異的結合物質 と呼ぶ)が用いられる。抗原 抗体反応は非常に選択性が高いため、蛍光強度分布 力 抗原の位置を知ることができる。
[0011] ところで、この分野では、近年、 1 μ m程度より小さいものを観測し、より精密な抗体 分布を研究したいとする要求が強い。そしてこれを実現するためには、電子顕微鏡に 頼らざるを得な 、状況にある。
[0012] 電子顕微鏡による観察では、検体の電子線反射率あるいは透過率の差を利用して 像を観察する。このため、電子顕微鏡で抗体を観察する場合、現時点では原子量の 大きい鉄やオスミウムを含む分子、または 1〜: LOOnm程度の大きさの金コロイドが抗 体の標識として用いられている。例えば、金コロイドを標識として用いる場合、抗体に プロテイン Aと金コロイドとの複合体を結合させる。この抗体は、抗原—抗体反応によ り対応する抗原に結合するので、検体上の金コロイドの位置を測定することにより、抗 原の局在部位を明らかにすることができる。さらに、複数種の抗体に大きさの異なる 2 種類以上の金コロイドを結合させれば、複数の抗原を同時に観察することも可能であ る。し力しながらこの方法では、測定時にコロイドが重なる可能性もあり、コロイド数を 測定するだけでは定量的な判定が困難であると 、う欠点を有して 、る。
[0013] また、上述した有機蛍光体を標識として用い、力ソードルミネッセンス像を観察する ことも困難である。すなわち、有機蛍光体は、元来発光効率が低いことに加えて、電 子線照射により染料の分子結合が容易に破壊されて発光能力が低下するため、一 度の走査で著しく発光が弱まり、実用に耐えるものではない。また、これら有機蛍光 体は、保存時の安定性にも欠け、劣化を生じる。有機物分子からなる蛍光体としては 、分子状の有機蛍光体染料の他にも、数十 nmの粒径を有し赤色、緑色または青色 の発光を呈するポリスチレン球が知られている力 上記と全く同様な問題がある。 [0014] これに対して、無機蛍光体は、紫外線照射ならびに電子線照射に安定で劣化が少 ない。しかし、 TV用あるいはランプ用で工業ィ匕されている蛍光体は通常 1 μ m以上 の大きさであるため、抗原 -抗体反応用の蛍光体としてそのまま用 、ることはできな い。そこで粒径を小さくするために、蛍光体を粉砕する、あるいは酸でエッチングする こと等が考えられるが、これらの方法では個々の粒子表面を覆う非発光層の占める割 合が多くなるため発光効率が著しく低下してしまう。
特許文献 1:特開 2002— 322468号公報
特許文献 2:特開 2005 - 239775号公報
特許文献 3:特開平 10— 310770号公報
特許文献 4:特開 2000— 104058号公報
非特許文献 1 :蛍光体同学会編「蛍光体ハンドブック」、オーム社、 1987年 発明の開示
発明が解決しょうとする課題
[0015] 本発明は、上記事情に鑑みなされたものであり、その目的は、組成の均一性が高く 、発光輝度及び残光特性に優れた微粒子蛍光体の製造方法、及びその方法によつ て製造される微粒子蛍光体を提供することにある。
課題を解決するための手段
[0016] 本発明の上記目的は、以下の構成によって達成される。
[0017] (1)微粒子蛍光体の製造方法において、少なくとも下記の工程を経て蛍光体を製 造することを特徴とする微粒子蛍光体の製造方法。
(i)蛍光体の構成金属元素を含有する水溶液を予め調製する工程
(ii)上記水溶液力 反応晶析法で析出された前駆体粒子を含有する液であって、か つ、その前駆体粒子の 50%体積粒径 (Dv50)が 3 μ m以下である液を調製するェ 程
(iii)上記前駆体粒子を含有する液を微細に液滴化させる工程
(iv)上記液滴化させた前駆体粒子を含有する液を、キャリアガスとともに、加熱炉の 中に導入し、加熱処理する工程
(2)前記前駆体粒子の分散係数が 5%〜20%であることを特徴とする前記(1)記 載の製造方法。
[0018] (3)前記前駆体粒子の粒経に応じて、比例したサイズに液滴化させた前駆体粒子 含有液の液滴を用いることを特徴とする前記(1)又は(2)に記載の微粒子蛍光体の 製造方法。
[0019] (4)前記微粒子蛍光体の 50%体積粒径 (Dv50)が 1〜: LOnmであることを特徴と する前記(1)〜(3) 、ずれか 1項に記載の蛍光体微粒子蛍光体の製造方法。
[0020] (5)前記(1)〜 (4)の 、ずれか 1項に記載の微粒子蛍光体の製造方法により製造さ れたことを特徴とする微粒子蛍光体。
発明の効果
[0021] 本発明により、組成の均一性が高ぐ粒度分布に優れ、発光輝度に優れた微粒子 蛍光体の製造方法及び蛍光体を提供することができる。
図面の簡単な説明
[0022] [図 1]ダブルジェット反応晶析装置の概略構成図である。
[図 2]蛍光体中の賦活剤 (Mn)の濃度分布の測定結果である。
符号の説明
[0023] 1 攪拌翼
2、 2' ノズル
発明を実施するための最良の形態
[0024] 本発明者等は、ナノ構造結晶をもつ蛍光体(「ナノ粒子蛍光体」とも 、う。 )の上記課 題を解決に向け鋭意検討した結果、粒径を微粒子方向に制御した前駆体作製時に 反応晶析法をとり、それを、噴霧して微滴化した状態でガス流路中で温度コントロー ルしながら加熱することにより、ナノ構造結晶の組成を高均一に、更に粒子形態、粒 径を高度に制御できることを見出した。し力も、本発明はナノサイズに限らず、少なか らず 1 μ m以下の微粒子蛍光体においても同様な効果が発揮できることを見出した。
[0025] 以下、本発明を詳細に説明する。
[0026] 反応晶析法とは反応する二液を撹拌しながら過飽和度を制御して微粒子を生成さ せる方法である。この反応晶析法は、他の物理的'化学的手法による微粒子の製造 方法と比べて省エネルギー等の点で有用である。また、単分散な粒子分布を得やす ぐ液相法の中でも高い組成均一性を得る有効な手法である。反応晶析法の具体的 な適用例としては、銀イオンとハロゲン化物イオンとを装置内で反応させて、難溶性 塩であるハロゲン化銀微粒子を製造する方法が知られており、製造されたハロゲン化 銀微粒子は、写真工業等において感光性微粒子として好ましく使用されている。本 発明のナノ構造結晶をなす蛍光体においても反応晶析法を用い粒子内組成及び粒 子間組成が均一で、微粒化(3 m以下)にサイズコントロールすることにより、粒径分 布が単分散で高均一な前駆体を得て、次の微滴化して噴霧し、加熱'乾燥する粒子 形成工程でナノサイズ化'高結晶ィ匕 '粒度分布の向上が達成できる。
[0027] 従来、ハロゲンィ匕銀等の難溶性塩を反応晶析法で製造する場合にぉ ヽては、微粒 子が高過飽和度下で生成されることから、微粒子が過度に成長したり、微粒子相互 間で凝集を起こすことがあった。そのため、通常は、凝集抑制剤であるゼラチンを使 用して単分散微粒子の均一化を図っていた。同様に本発明においてもその目的とす る結晶の組成によっては凝集抑制剤となる分散剤 (例えばある種の界面活性剤、保 護コロイド剤、低分子グリコール etc)を添加しても良い。
[0028] 反応晶析法で得る前駆体粒子の 50%体積粒径 (Dv50)は 3 μ m以下であるが、好 ましくは lm以下であり、特に好ましくは 0. 1 μ m以下である。粒径はレーザー散乱法 により測定される累積 50%体積粒径を 50%体積粒径 (Dv50)とした。
[0029] 一次粒子 (前駆体が初期に形成される微粒子)の状態で分散液の状態であるほう が好ましいが、凝集した 2次粒子状態であっても本発明粒径範囲であればよい。なお 、記前駆体粒子の粒径分散係数(∑ [ (粒径—平均粒径) ,平均粒径] Z粒子数の 百分率)が 5%〜20%であることが好ましい。
[0030] 液滴の作製は、通常熱分解法に用いられる任意の手段を用いることができる。例え ば、過熱式噴霧器、超音波噴霧器、振動法噴霧器、回転デスク式噴霧器、静電式噴 霧器、減圧式噴霧器などがある。噴霧手段によって作製される液滴の大きさや、その 分布は作製される一次粒子の大きさ、粒度分布に影響を持つので、その目的粒子に 応じて使い分ける。
[0031] 本発明では、前記前駆体粒子の粒経に応じて、比例したサイズに液滴化させた前 駆体粒子含有液の液滴を用いることが好ま U、。
[0032] 液滴の加熱処理の工程は空気、窒素、ヘリウム、アルゴン又は水素などのキャリア ガスを用い、加熱炉の流路中で最適な流速で加熱される。加熱炉は温度制御できる ような仕様とすることにより本発明の目的とする微粒子のサイズ'分布、結晶性にコン トロールできる。
[0033] 本発明の微粒子蛍光体の製造方法は、 50%体積粒径 (Dv50)が 1〜: LOnmである 微粒子蛍光体、すなわち、いわゆるナノ粒子蛍光体を製造する方法としても適用可 能である。
[0034] なお、本発明に係るナノ粒子蛍光体は、「背景技術」の欄において述べたような種 々の目的 ·用途のために使用することができる。
[0035] 例えば、 500nm以下の微粒子乃至ナノ粒子蛍光体を塗布膜状にして使用する場 合には、インクジェットノズルを用いた塗布方法を用いることができる。従来の数 m 程度のサイズの蛍光体ではノズルが目詰まりを起こし易ぐまたノズル径を蛍光体サ ィズに見合った大きさにする必要があり、精細なパターンの塗布には不向きであった 。ナノ粒子をノズル径の小さなインクジェットノズルを用いて塗布することにより精細な パターンの塗布を行うことが可能となる。
[0036] このような、塗布の応用例としては、 PDP'FPD等の蛍光パネルの作製や、ナノ粒 子を用いた蛍光インクの印刷物(ポスター、看板、 Tシャツ等)の作製等がある。
実施例
[0037] 以下、実施例により本発明をより詳細に説明するが、本発明はこれに限定されるも のではない。
[0038] 《蛍光体の作製》
<蛍光体 (反応晶析法)の作製 >
水 1000mlを A液とした。水 500mlに珪素のイオン濃度が 0. 25molZlになるよう にメタ珪酸ナトリウムを溶解し B液とした。水 500mlに亜鉛のイオン濃度が 0. 47mol
Zl、賦活剤(マンガン)のイオン濃度が 0. 03molZlになるように硝酸亜鉛と硝酸マ ンガンを溶解し C液とした。
[0039] 図 1に示す蛍光体の製造装置であるダブルジェット反応晶析装置 (反応容器)に溶 液 Aを入れ 40°Cに保ち、攪拌翼 1を用いて攪拌を行った。その状態で 50°Cに保った 溶液 B、 Cを溶液 Aの入った反応容器下部よりノズル 2及び 2' より 50mlZminの速 度で等速添加を反応液の pHをコントロール (表 1記載)しながら行った。その際、攪 拌速度やノズルの数、流速を変更し表 1に示す前駆体を得た。いずれの前駆体も反 応系を安定化させるために添加後温度をさげつつ (→30°C) 10分間攪拌を行う。得 た前駆体粒子の粒径はレーザー散乱法 (セイシン)により求め結果を表 1に示した。
[0040] その後前駆体を噴霧液滴にできるような粘度に調整後、この液を 1. 7MHzを中心 に周波数をコントロールできる振動子を有する超音波噴霧器に入れて径を制御して 液滴を形成し、 1体積%の水素ガスを含有する窒素ガスをキャリアガスとして 700°C 〜1300°Cの範囲で温度コントロールできる管状熱反応炉を複数つなぎ形成した管 状反応炉に前記液滴を導入して流速を変化させることで 2〜5秒間の流路を経て、微 粒子蛍光体を得た。液滴径および液滴を導入した出発時点、管状内の中間点と流 路終点の温度をそれぞれ制御することにより表 1に示す粒径分布'粒径をもつ蛍光体 を得た。
[0041] <比較蛍光体(固相法)の作製 >
母体材料の原料として酸化亜鉛 (ZnO)、酸化珪素(SiO )をモル比 2
2 : 1に配合す る。次に、この混合物に対して酸化珪素に対し 1 : 0. 15比の量の酸ィ匕マンガン (Mn
2
O )、 1 : 0· 05の量の酸化マグネシウム(MgO )を添カ卩し、ボールミルで混合後、 12
3 2
50°Cで、弱還元雰囲気下 (N中)で 2時間焼成を行った。これを目的とする微粒化蛍
2
光体とするために湿式ボールミルで粉砕した。
[0042] 《蛍光体の評価》
<蛍光体中の賦活剤及び共賦活剤の濃度分布の測定 >
日東電工 (株)製 X線光電子分光分析装置 (XPS)を用いて Arイオンでエッチング を行 ヽながら図 2グラフに示す深さまでの賦活剤 (マンガン)の分析を行 ヽ、原子比( At%)で表した。結果を図 2 (マンガン)に示す。
[0043] <輝度測定 >
輝度測定は光源として 146nmのエキシマランプ (ゥシォ電機)を使用し、真空チヤ ンバー内にサンプルをセットし、真空度 1. 33 X lOPaにて一定距離から照射し励起 発光を輝度計で測定し結果を表 1に示した。
[0044] 尚、輝度を比較 1を 100%としたときの相対値で示した。
[0045] <残光評価 >
蛍光体の初期粉体状態の残光時間を蛍光寿命測定器を用いて測定した。残光時 間は遮断した後の発光強度が、遮断直前の発光強度の 1Z10になるまでの時間とし
、比較例 1を 100とした時の相対残光時間を表 1に示した。
[0046] [表 1]
Figure imgf000010_0001
液滴径 /前駆体粒径)
※2 :本合成法で得た前駆体粒径と液滴粒径の比例関係を得る基準水準 表 1に示すように本発明の態様をとることにより微粒ィ匕サイズをなす蛍光体において 輝度に大きく優れることがわかる。し力も、残光特性に優れることによりディスプレイ用 としても優位性があることがわかる。

Claims

請求の範囲
[1] 微粒子蛍光体の製造方法において、少なくとも下記の工程を経て蛍光体を製造する ことを特徴とする微粒子蛍光体の製造方法。
(i)蛍光体の構成金属元素を含有する水溶液を予め調製する工程
(ii)上記水溶液力 反応晶析法で析出された前駆体粒子を含有する液であって、か つ、その前駆体粒子の 50%体積粒径 (Dv50)が 3 μ m以下である液を調製するェ 程
(iii)上記前駆体粒子を含有する液を微細に液滴化させる工程
(iv)上記液滴化させた前駆体粒子を含有する液を、キャリアガスとともに、加熱炉の 中に導入し、加熱処理する工程
[2] 前記前駆体粒子の分散係数が 5%〜20%であることを特徴とする請求の範囲第 1項 に記載の微粒子蛍光体の製造方法。
[3] 前記前駆体粒子の粒経に応じて、比例したサイズに液滴化させた前駆体粒子含有 液の液滴を用いることを特徴とする請求の範囲第 1項又は第 2項に記載の微粒子蛍 光体の製造方法。
[4] 前記微粒子蛍光体の 50%体積粒径 (Dv50)が 1〜: LOnmであることを特徴とする請 求の範囲第 1項乃至第 3項のいずれか 1項に記載の微粒子蛍光体の製造方法。
[5] 請求の範囲第 1項乃至第 4項のいずれか 1項に記載の微粒子蛍光体の製造方法に より製造されたことを特徴とする微粒子蛍光体。
PCT/JP2006/316909 2005-09-22 2006-08-29 微粒子蛍光体とその製造方法 WO2007034657A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007536430A JPWO2007034657A1 (ja) 2005-09-22 2006-08-29 微粒子蛍光体とその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005275422 2005-09-22
JP2005-275422 2005-09-22

Publications (1)

Publication Number Publication Date
WO2007034657A1 true WO2007034657A1 (ja) 2007-03-29

Family

ID=37888710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316909 WO2007034657A1 (ja) 2005-09-22 2006-08-29 微粒子蛍光体とその製造方法

Country Status (2)

Country Link
JP (1) JPWO2007034657A1 (ja)
WO (1) WO2007034657A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032618A1 (fr) * 2006-09-15 2008-03-20 Konica Minolta Medical & Graphic, Inc. Nanoparticule semi-conductrice et procédé de production correspondant
WO2008152969A1 (ja) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. 近赤外発光蛍光体ナノ粒子、その製造方法、それを用いた生体物質標識剤
WO2008152891A1 (ja) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. 近赤外発光蛍光体ナノ粒子、その製造方法、それを用いた生体物質標識剤
WO2008152892A1 (ja) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. 近赤外発光蛍光体ナノ粒子、その製造方法、それを用いた生体物質標識剤
WO2008152868A1 (ja) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. 近赤外発光蛍光体ナノ粒子、その製造方法、及び生体物質標識剤

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261867A (ja) * 2002-03-07 2003-09-19 Konica Corp 蛍光体の製造方法
JP2003327961A (ja) * 2002-05-15 2003-11-19 Konica Minolta Holdings Inc 無機蛍光体、無機蛍光体ペースト及び無機蛍光体の製造方法
JP2004018768A (ja) * 2002-06-19 2004-01-22 Konica Minolta Holdings Inc 蛍光体の製造方法及び蛍光体前駆体生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261867A (ja) * 2002-03-07 2003-09-19 Konica Corp 蛍光体の製造方法
JP2003327961A (ja) * 2002-05-15 2003-11-19 Konica Minolta Holdings Inc 無機蛍光体、無機蛍光体ペースト及び無機蛍光体の製造方法
JP2004018768A (ja) * 2002-06-19 2004-01-22 Konica Minolta Holdings Inc 蛍光体の製造方法及び蛍光体前駆体生成装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032618A1 (fr) * 2006-09-15 2008-03-20 Konica Minolta Medical & Graphic, Inc. Nanoparticule semi-conductrice et procédé de production correspondant
JP5131195B2 (ja) * 2006-09-15 2013-01-30 コニカミノルタエムジー株式会社 半導体ナノ粒子とその製造方法
WO2008152969A1 (ja) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. 近赤外発光蛍光体ナノ粒子、その製造方法、それを用いた生体物質標識剤
WO2008152891A1 (ja) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. 近赤外発光蛍光体ナノ粒子、その製造方法、それを用いた生体物質標識剤
WO2008152892A1 (ja) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. 近赤外発光蛍光体ナノ粒子、その製造方法、それを用いた生体物質標識剤
WO2008152868A1 (ja) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. 近赤外発光蛍光体ナノ粒子、その製造方法、及び生体物質標識剤
JPWO2008152891A1 (ja) * 2007-06-13 2010-08-26 コニカミノルタエムジー株式会社 近赤外発光蛍光体ナノ粒子、その製造方法、それを用いた生体物質標識剤

Also Published As

Publication number Publication date
JPWO2007034657A1 (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
US5893999A (en) Ultrafine inorganic phosphor, specifically binding material labeled with this phosphor, and detection method using this specific binding material
WO2007102458A1 (ja) コア/シェル型微粒子蛍光体
JPH10310770A (ja) 発光体の製造方法
WO2007034657A1 (ja) 微粒子蛍光体とその製造方法
US8580150B2 (en) Submicronic barium and magnesium aluminate phosphors
Lee et al. VUV characteristics of BaAl12O19: Mn2+ phosphor particles prepared from aluminum polycation solutions by spray pyrolysis
JP3969204B2 (ja) 蛍光体前駆体製造装置及び蛍光体前駆体の製造方法
JP2007177010A (ja) コア/シェル型の微粒子蛍光体とその製造方法
JP4270500B2 (ja) ナノクリスタル蛍光体の製造方法
JP2007117937A (ja) 微粒子粉末、その製造方法および製造装置
JP5223339B2 (ja) ナノ半導体粒子の製造方法
JP4919223B2 (ja) シート状蛍光粒子及びその製造方法
JPH09328681A (ja) 蛍光体およびその製造方法
JP2004162057A (ja) 蛍光体
JP2007117936A (ja) 微粒子粉末、その製造方法および製造装置
JPWO2005087894A1 (ja) ケイ酸塩系蛍光体、ケイ酸塩系蛍光体前駆体、これらの製造方法及びケイ酸塩系蛍光体前駆体の製造装置
KR20000077178A (ko) 형광물질 및 그 제조 방법
JPWO2008152891A1 (ja) 近赤外発光蛍光体ナノ粒子、その製造方法、それを用いた生体物質標識剤
JP2002194347A (ja) 蛍光体,その製造方法および発光デバイス
JP2007119618A (ja) 無機蛍光体の製造方法及び無機蛍光体
JP2000087033A (ja) 蛍光体の製造方法
JP2004256763A (ja) 蛍光体の製造方法
JPH03207787A (ja) 希土類ケイ酸塩蛍光体およびその製法
JP2006274137A (ja) 蛍光体
JP2007106832A (ja) 蛍光体の製造方法及びその方法によって製造された蛍光体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007536430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796893

Country of ref document: EP

Kind code of ref document: A1