WO2007032470A1 - 円錐ころ軸受 - Google Patents

円錐ころ軸受 Download PDF

Info

Publication number
WO2007032470A1
WO2007032470A1 PCT/JP2006/318353 JP2006318353W WO2007032470A1 WO 2007032470 A1 WO2007032470 A1 WO 2007032470A1 JP 2006318353 W JP2006318353 W JP 2006318353W WO 2007032470 A1 WO2007032470 A1 WO 2007032470A1
Authority
WO
WIPO (PCT)
Prior art keywords
tapered roller
pocket
small
cage
roller bearing
Prior art date
Application number
PCT/JP2006/318353
Other languages
English (en)
French (fr)
Inventor
Takashi Tsujimoto
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005270349A external-priority patent/JP4823624B2/ja
Priority claimed from JP2005278591A external-priority patent/JP4717574B2/ja
Priority claimed from JP2005295367A external-priority patent/JP4975293B2/ja
Priority claimed from JP2005295354A external-priority patent/JP4994630B2/ja
Priority claimed from JP2005295369A external-priority patent/JP4975294B2/ja
Priority claimed from JP2005304933A external-priority patent/JP5031219B2/ja
Priority claimed from JP2005304935A external-priority patent/JP5031220B2/ja
Priority claimed from JP2005305776A external-priority patent/JP4987278B2/ja
Priority claimed from JP2005305772A external-priority patent/JP4987277B2/ja
Priority claimed from JP2005310314A external-priority patent/JP4987280B2/ja
Priority claimed from JP2005310321A external-priority patent/JP4987281B2/ja
Priority claimed from JP2005311647A external-priority patent/JP2007120575A/ja
Priority claimed from JP2005314605A external-priority patent/JP2007120648A/ja
Application filed by Ntn Corporation filed Critical Ntn Corporation
Publication of WO2007032470A1 publication Critical patent/WO2007032470A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • F16C33/4676Details of individual pockets, e.g. shape or roller retaining means of the stays separating adjacent cage pockets, e.g. guide means for the bearing-surface of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances
    • F16C33/565Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • F16C2240/82Degree of filling, i.e. sum of diameters of rolling elements in relation to PCD
    • F16C2240/84Degree of filling, i.e. sum of diameters of rolling elements in relation to PCD with full complement of balls or rollers, i.e. sum of clearances less than diameter of one rolling element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6696Special parts or details in view of lubrication with solids as lubricant, e.g. dry coatings, powder

Definitions

  • the present invention relates to a tapered roller bearing, and, for example, to a tapered roller bearing that can be applied to a bearing that supports a power transmission shaft such as a differential gear or a transmission of a mobile vehicle.
  • a tapered roller bearing has an inner ring provided with a small ridge and a large ridge on both sides of a raceway surface of an outer diameter surface, an outer ring provided with a raceway surface on the inner diameter surface, and an arrangement between the inner ring and the raceway surface of the outer ring
  • the cage consists of a plurality of conical cones and a cage that holds and holds these conical rollers in a pocket, and the cage includes a small annular portion connected on the small diameter end face side of the conical rollers and a large diameter of the conical rollers.
  • the pocket consists of a large annular part continuing on the end face side and a plurality of pillar parts that connect these annular parts, and the pocket accommodates the small diameter side of the tapered roller at the narrow side and the large diameter side at the wide side.
  • the one formed into a trapezoidal shape on the side is used.
  • a conical roller bearing for supporting a power transmission shaft such as a differential gear of an automobile vehicle or a transmission is used with the lower portion immersed in an oil bath, and oil of the oil bath becomes moist with its rotation. It flows into the bearing as oil.
  • the lubricating oil flows into the small diameter side bearing of the tapered rollers, and the lubricating oil flowing from the outer diameter side of the cage along the raceway surface of the outer ring.
  • Lubricating oil that passes to the large diameter side of the tapered roller and flows in from the inner diameter side of the cage passes to the large diameter side of the tapered roller along the raceway surface of the inner ring.
  • the tapered roller bearing used for the part where the lubricating oil flows into the external force is provided with a notch in the pocket of the cage, and divided into the outer diameter side and the inner diameter side of the cage to flow in Some lubricating oil is allowed to pass through this notch to improve the flow of the lubricating oil inside the bearing (see Patent Documents 1 and 2).
  • a notch 10d is provided at the center of the column 8 between the pockets 9 of the cage 5 so that foreign matter mixed in the lubricating oil does not stay inside the bearing. It is like that.
  • Patent Document 2 as shown in FIG.
  • notches 10e are provided in the small annular portion 6 and the large annular portion 7 at both axial ends of the pocket 9 of the cage 5, and the outside of the cage is obtained.
  • Lubricant that flows in also on the radial side goes to the inner ring side I try to be easy to flow.
  • Each dimension of the pocket 9 described in each figure is a value of one used in a comparative example in a torque measurement test described later.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 09-32858 (FIG. 3)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11 201149 (FIG. 2)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 09-096352
  • Patent Document 4 Japanese Patent Application Laid-Open No. 11 0210765
  • Patent document 5 Unexamined-Japanese-Patent No. 2003-343552
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2003-28165
  • the ratio of the lubricating oil flowing into the inner ring side from the inner diameter side of the cage is It was important that the torque loss increased as it increased. The reason is considered as follows.
  • the lubricating oil flowing from the outer diameter side of the cage to the outer ring side has no obstacle on the inner diameter surface of the outer ring, it smoothly passes along the raceway surface to the large diameter side of the tapered roller.
  • the lubricating oil that flows out from the inside of the bearing but flows from the inner diameter side of the cage to the inner ring side has a large diameter on the outer diameter surface of the inner ring, so along the raceway surface to the large diameter side of the tapered roller When passing, it is blocked by a gutter and tends to stay inside the bearing.
  • An object of the present invention is to provide a tapered roller bearing capable of increasing the number of rollers accommodated therein without reducing the rigidity of the cage and reducing the torque.
  • Fig. 14 shows the rigidity ratio (--1) and torque ratio (101) when the roller pitch diameter (PCD) is changed in the tapered roller bearing.
  • PCD roller pitch diameter
  • Fig. 14 when PCD is made smaller, the torque of the bearing is significantly reduced. The result is that the bearing stiffness does not decrease much, as a result of calculating and confirming the elastic deformation of the roller. Therefore, the torque can be reduced without decreasing the rigidity by reducing the PCD while reducing or increasing the number of rollers.
  • an inner ring, an outer ring, a plurality of tapered rollers rollably disposed between the inner ring and the outer ring, and a tapered roller held in a pocket at predetermined circumferential intervals And a plurality of column portions connecting the large and small annular portions, the small annular portion continuing on the small end face side of the tapered roller, the large annular portion continuing on the large end face side of the tapered roller, and Between the adjacent pillars, the pocket is formed in a trapezoidal shape in which the portion for storing the small diameter side of the tapered roller is narrow side and the portion for storing the large diameter side is wide side.
  • the cage is made of an engineering plastic that is excellent in mechanical strength, oil resistance and heat resistance, and a notch is provided in a column portion on the narrow side of the pocket, and a window angle of the pocket To be 55 ° or more and 80 ° or less, and the roller coefficient be 0.94 or more A.
  • Engineering 'plastic cages are characterized in that they are self-lubricating with a lighter weight and have a smaller coefficient of friction than iron plate cages. Therefore, combined with the effect of the lubricating oil present in the bearing, the occurrence of wear due to contact with the outer ring is suppressed, which is effective in reducing torque loss and cage wear at the time of bearing activation.
  • the window angle is the angle between the guide surface of the column that contacts the circumferential surface of one roller. By setting this window angle in the range of 55 ° to 80 °, a caged tapered roller bearing with a roller coefficient of 0.94 or more is enabled.
  • the roller factor is usually less than 0.94.
  • roller coefficient ⁇ filling ratio of the roller
  • roller coefficient ⁇ ( ⁇ ⁇ DA) ⁇ ( ⁇ ⁇ PCD)
  • Z number of rollers
  • DA average roller diameter
  • PCD diameter of roller pitch circle.
  • the window angle is 25 ° to 50 ° in a normal cage.
  • the tapered roller bearing of the present invention has a notch in the narrow side pillar portion of the trapezoidal pocket of the cage.
  • the following effects can be obtained by this notch. That is, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be quickly released to the outer ring side through this notch. As a result, the amount of lubricating oil reaching the weirs along the raceway surface of the inner ring decreases, and the amount of lubricating oil staying inside the bearing decreases. Therefore, torque loss due to lubricating oil flow resistance is reduced.
  • a second feature of the present invention is that the small annular portion on the narrow side of the pocket is also provided with a notch. Ru.
  • a third feature of the present invention is that a notch is provided in at least a column portion on the wide side of the pocket.
  • a fourth feature of the present invention is that the total area of the notches provided on the narrow side of the pocket is larger than the total area of the notches provided on the wide side of the pocket.
  • a fifth feature of the present invention is that a radially inward facing collar is provided on the axially outer side of the small annular portion of the cage, facing the outer diameter surface of the inner ring small diameter, and the inner diameter surface of the collar
  • the upper limit of the gap between the inner ring and the outer diameter surface of the inner ring gutter is 2.0% of the outer diameter of the small gutter.
  • a sixth feature of the present invention is that, at least on the surface of the tapered roller, indents of micro concave shape are provided innumerably on the random surface, and the surface roughness parameter Ryni of the surface provided with this indentation is 0.4 ⁇ m. ⁇ ⁇ Ryni ⁇ l. O / z m and the Sk value is less than or equal to one-sixteen.
  • the parameter Ryni is an average value of the maximum height per reference length, that is, the roughness curve force is also extracted by the reference length in the direction of the average line, and the distance between the peak line and the valley bottom line of this extraction portion is Measured in the direction of the longitudinal magnification of the curve (ISO 4287: 1997).
  • the Sk value is a value representing the skewness of the roughness curve, ie, the asymmetry of the unevenness distribution of the roughness (ISO 4287: 1997), and the Sk value is close to 0 in a symmetrical distribution such as a Gaussian distribution. It becomes a negative value when the convex part of the unevenness is deleted, and a positive value when the concave part is deleted.
  • Sk value control Can be selected by selecting the rotation speed of the barrel polishing machine, the processing time, the amount of work input, the type and size of the polishing tip, etc. By setting the Sk value to 1.6 or less, an infinite number of micro concave shapes can be obtained. Lubricating oil can be retained evenly in the hollow of the shape.
  • Each of the above-described tapered roller bearings is suitable for supporting the power transmission shaft of a mobile vehicle
  • An eighth feature of the present invention is an inner ring, an outer ring, a plurality of tapered rollers rollably disposed between the inner ring and the outer ring, and a cage for holding the tapered rollers at a predetermined circumferential interval.
  • the roller coefficient ⁇ exceeds 0.94 and the cage connects the small annular portion continued on the small end face side of the tapered roller, the large annular portion connected on the large end face side of the tapered roller, and these annular portions
  • a trapezoidal pocket is formed between a plurality of adjacent pillars, with the part housing the smaller diameter side of the tapered roller narrow and the part housing the larger diameter side wider. A notch was made in the column on the narrow side of the pocket.
  • the roller coefficient ⁇ (the filling ratio of the roller) is a parameter represented by (the number of rollers x the average diameter of the rollers) ⁇ ( ⁇ x PCD), and when the average diameter of the rollers is constant, the value of ⁇ is The larger the number, the greater the number of rollers.
  • the roller coefficient ⁇ is usually designed to be 0.94 or less, and therefore, the fact that the roller coefficient ⁇ exceeds 0.94 is better than in the past. This means that the roller filling rate is high and the bearing rigidity is high.
  • the following operation can be obtained.
  • the lubricating oil that has flowed into the inner radius side inner ring side of the cage can be quickly released to the outer ring side through the notch.
  • the amount of lubricating oil reaching the large brims along the raceway surface of the inner ring decreases, and the amount of lubricating oil retained inside the bearing decreases. Therefore, the torque loss due to the flow resistance of the lubricating oil is reduced.
  • a ninth feature of the present invention is that a notch is also provided in the small annular portion on the narrow side of the pocket.
  • a tenth feature of the present invention is that a notch is provided in at least a column portion on the wide side of the pocket. Ru.
  • An eleventh feature of the present invention is that the total area of the notches provided on the narrow side of the pocket is larger than the total area of the notches provided on the wide side of the pocket.
  • a twelfth feature of the present invention is that a radially inward facing collar is provided on the axially outer side of the small annular portion of the cage, facing the outer diameter surface of the small collar of the inner ring,
  • the upper limit of the gap between the inner ring and the outer diameter surface of the inner ring is set to 2.0% of the outer diameter of the small ring.
  • a thirteenth feature of the present invention is that, at least on the surface of the tapered roller, indents of micro concave shape are provided innumerably on the random surface, and the surface roughness parameter Ryni of the surface provided with this indentation is 0.4 ⁇ m. ⁇ ⁇ Ryni ⁇ l. O / z m and the Sk value is less than or equal to one-sixteen.
  • the inner diameter side of the cage can be moved to the inner ring side. Since the lubricating oil that has flowed in can be quickly released to the outer ring side through this notch, the amount of lubricating oil reaching the large brims along the raceway surface of the inner ring is reduced, and the amount of lubricating oil retained inside the bearing The torque loss due to the flow resistance of the lubricating oil is reduced.
  • the roller coefficient ⁇ to be greater than 0.94, it is possible to prevent the reduction in rigidity.
  • the present invention makes it possible to set the roller coefficient ⁇ to ⁇ > 0.94 by setting the cage size so as to avoid contact between the outer ring and the cage only during rotation. That is, the fourteenth feature of the present invention is to hold the tapered rollers in the pocket at a predetermined circumferential interval, with the inner ring, the outer ring, and the plurality of tapered rollers rollably disposed between the inner ring and the outer ring.
  • the tapered roller bearing formed in a trapezoidal shape that becomes the wide side, a notch is provided in the column on the narrow side of the pocket, and the outer diameter of the cage is maintained by moving the cage in the radial direction.
  • the outer peripheral surface of the cage contacts the outer ring raceway surface, during rotation of the bearing, the cage center is moved to the axial center to form a gap between the cage outer peripheral surface and the outer ring raceway surface, and The coefficient is 0.94 or more.
  • roller coefficient ⁇ filling ratio of the roller
  • roller coefficient ⁇ ( ⁇ ⁇ DA) ⁇ ( ⁇ ⁇ PCD)
  • Z number of rollers
  • DA average roller diameter
  • PCD diameter of roller pitch circle.
  • a notch is formed in the narrow side pillar portion of the trapezoidal pocket of the cage.
  • the following effects can be obtained by this notch. That is, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be quickly released to the outer ring side through this notch. As a result, the amount of lubricating oil reaching the weirs along the raceway surface of the inner ring decreases, and the amount of lubricating oil staying inside the bearing decreases. Therefore, torque loss due to lubricating oil flow resistance is reduced.
  • the retainer may be made of steel plate or resin, ie, made of engineering plastic. Since the resin cage is characterized by a self-lubricating property in which the cage weight is lighter than that made of iron plate and the coefficient of friction force S is smaller, combined with the effect of the lubricating oil present in the bearing, It is possible to suppress the occurrence of wear due to the contact of In addition, since the resin cage is light in weight and has a small coefficient of friction, it is suitable for reducing torque loss and cage wear at the start of the bearing.
  • a fifteenth feature of the present invention is that the small annular portion on the narrow side of the pocket is also provided with a notch.
  • a sixteenth feature of the present invention is that a notch is provided in at least a column portion on the wide side of the pocket It is. By adopting such a configuration, it is possible to bring the tapered rollers into contact with the column portion in a balanced manner.
  • a seventeenth feature of the present invention is that the total area of the notches provided on the narrow side of the pocket is larger than the total area of the notches provided on the wide side of the pocket.
  • a radially inward facing collar which is opposed to the outer diameter surface of the inner ring small diameter, on the axially outer side of the small annular portion of the cage.
  • the upper limit of the gap between the inner ring and the outer diameter surface of the inner ring gutter is 2.0% of the outer diameter of the small gutter.
  • the surface roughness parameter Ryni of the surface provided with the depressions is 0.4 ⁇ m. ⁇ ⁇ Ryni ⁇ l. O / z m and the Sk value is less than or equal to one-sixteen.
  • the present invention it is possible to realize a reduction in torque without decreasing the bearing rigidity. That is, by setting the roller coefficient ⁇ of the tapered roller bearing to ⁇ > 0.94, it is possible to reduce the maximum contact pressure on the raceway surface. It can be prevented.
  • the lubricating oil flowing to the inner radius side of the cage and the inner ring side is Since it is possible to quickly escape to the outer ring side through the notch, the amount of the lubricating oil leading to the large weir along the raceway surface of the inner ring decreases, and the amount of the lubricating oil staying inside the bearing decreases. Torque loss due to flow resistance is reduced.
  • a twentieth feature of the present invention is an inner ring, an outer ring, a plurality of tapered rollers rollably disposed between the inner ring and the outer ring, and a cage for holding the tapered rollers at a predetermined circumferential interval. And a cage with a roller coefficient ⁇ of 0.94 or more at the small diameter end face of the tapered roller.
  • a trapezoidal shaped pocket is formed in which the part is the narrow side and the part accommodating the large diameter side is the wide side, and a notch is provided in the narrow side pillar of the pocket.
  • the following operation can be obtained. That is, the lubricating oil that has flowed to the inner radius side inner ring side of the cage can be quickly released to the outer ring side through this notch.
  • a twenty-first feature of the present invention is that a notch is also provided in the small annular portion on the narrow side of the pocket.
  • a twenty-second feature of the present invention is that a notch is provided in at least a column portion on the wide side of the pocket.
  • a twenty-third feature of the present invention is that the total area of the notches provided on the narrow side of the pocket is larger than the total area of the notches provided on the wide side of the pocket.
  • a twenty-fourth feature of the present invention is that a radially inward facing collar is provided on the axially outer side of the small annular portion of the cage, facing the outer diameter surface of the small collar of the inner ring, The upper limit of the gap between the inner ring and the outer diameter surface of the inner ring is set to 2.0% of the outer diameter of the small ring.
  • At least the surface of the tapered roller is provided with innumerably indents of micro-concave shape on the random surface, and the surface roughness parameter Ryni of the surface provided with this indentation is 0.4 ⁇ m. ⁇ ⁇ Ryni ⁇ l. O / z m and the Sk value is 1.6 or less.
  • the roller coefficient ⁇ can be increased. This PCD can be reduced while increasing. As a result, torque reduction can be realized without lowering the bearing rigidity. Also, by increasing the number of rollers, it is possible to reduce the maximum contact pressure on the raceway surface which is not only increased in load capacity, so to prevent surface-originated exfoliation at extremely short life under severe lubrication conditions. Can. Therefore, it can contribute to the miniaturization of the differential and the extension of the life.
  • the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be rapidly made to the outer ring side through this notch. Since it can escape, the amount of lubricating oil reaching the large brims along the raceway surface of the inner ring decreases, the amount of lubricating oil staying inside the bearing decreases, and torque loss due to the flow resistance of the lubricating oil Reduce.
  • the tapered rollers can be in sliding contact with the column portion in a balanced manner.
  • a radially inward facing collar facing the outer diameter surface of the small collar of the inner ring is provided on the ring direction outer side of the small annular portion of the cage, and the inner diameter surface of the ring of the opposite small annular portion
  • Indented microconcave shapes are provided innumerably at least on the surface of the tapered roller at least, and the surface roughness parameter Ryni of the surface provided with the indentations is 0.4 m ⁇ Ryni ⁇ l. 0 m, And, by setting the Sk value to 1.6 or less, the lubricating oil is kept evenly on the surface of the tapered roller. Even if the amount of lubricating oil retained inside the bearing is reduced by holding it, the contact portion between the tapered roller and the inner and outer rings can be sufficiently lubricated.
  • a twenty-sixth feature of the present invention is an inner ring, an outer ring, a plurality of tapered rollers rollably disposed between the inner ring and the outer ring, and a cage for holding the tapered rollers at a predetermined circumferential interval. And a large annular portion in which the roller coefficient ⁇ exceeds 0.94 and the cage is connected on the small diameter end face side of the tapered roller and on the large diameter end face side of the tapered roller. And a plurality of pillars connecting these annular parts, the portion for accommodating the smaller diameter side of the tapered roller between the adjacent pillar portions is the narrower side, and the portion for accommodating the larger diameter side is the wider side.
  • a trapezoidal pocket is formed, and a notch is provided in the narrow-width column of the pocket.
  • the following operation can be obtained. That is, the lubricating oil that has flowed to the inner radius side inner ring side of the cage can be quickly released to the outer ring side through this notch.
  • a twenty-seventh feature of the present invention is that the small annular portion on the narrow side of the pocket is also provided with a notch.
  • a twenty-eighth feature of the present invention is that a notch is provided in at least a column portion on the wide side of the pocket.
  • a twenty-ninth feature of the present invention is that the total area of the notches provided on the narrow side of the pocket is larger than the total area of the notches provided on the wide side of the pocket.
  • a radially inward facing collar is provided on the axially outer side of the small annular portion of the cage, facing the outer diameter surface of the small collar of the inner ring,
  • the upper limit of the gap between the inner ring and the outer diameter surface of the inner ring is set to 2.0% of the outer diameter of the small ring.
  • At least the surface of the tapered roller is provided with innumerably indents of micro-concave shape on the random surface, and the surface roughness parameter Ryni of the surface provided with this indentation is 0.4 ⁇ m. ⁇ ⁇ Ryni ⁇ l. O / z m and the Sk value is 1.6 or less.
  • the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be rapidly made to the outer ring side through this notch. Because it can escape, the amount of lubricating oil reaching the large collar along the raceway surface of the inner ring decreases. The amount of lubricating oil staying inside the bearing is reduced, and torque loss due to lubricating oil flow resistance is reduced.
  • the tapered rollers can be in sliding contact with the column portion in a balanced manner.
  • a radially inward facing collar facing the outer diameter surface of the small collar of the inner ring is provided on the ring direction outer side of the small ring portion of the cage, and the inner diameter surface of the ring of the facing small ring portion and
  • At least the surface of the tapered roller is provided with an infinite number of micro-concave recesses at random, and the surface roughness parameter Ryni of the surface provided with the recesses is 0.4 m ⁇ Ryni ⁇ l. 0 m, And, by making the Sk value 1.6 or less, the lubricating oil is held evenly on the surface of the tapered roller, and the contact between the tapered roller and the inner and outer rings is reduced even if the amount of lubricating oil retained inside the bearing is reduced.
  • the parts can be sufficiently lubricated.
  • a thirty-second feature of the present invention is an inner ring, an outer ring, a plurality of tapered rollers rollably disposed between the inner ring and the outer ring, and a cage for holding the tapered rollers at a predetermined circumferential interval.
  • the roller coefficient ⁇ exceeds 0.94 and at least the surface of the tapered roller is provided with innumerably micro concave-shaped depressions in the random surface, and the surface roughness parameter Ryni of the surface provided with the depressions is 0 .
  • the above-mentioned cage is a small annular portion continued on the small end face side of the cone and the large end face side of the tapered roller
  • the large annular part A trapezoid that consists of a plurality of pillars that connect the annular parts of a ring, and the part that accommodates the small diameter side of the tapered roller is narrow on the narrow side and the part that accommodates the large diameter is wide on the narrow side between adjacent pillars.
  • the pocket on the narrow side of the pocket is provided with a notch.
  • the surface roughness parameter Ryni of the surface provided with the concaves is randomly provided at least on the surface of the tapered roller at random, and the surface roughness parameter Ryni of the concaved surface is set to 0.4, um ⁇ Ryni ⁇ 1. O / zm.
  • the Sk value 1.6 or less the lubricating oil is uniformly held on the surface of the tapered roller, and the contact between the tapered roller and the inner and outer rings is reduced even if the amount of lubricating oil retained inside the bearing is reduced. Do you have enough club? It can be slippery.
  • the Sk value As described above, by setting the Sk value to 1.6 or less in both the width direction and the circumferential direction, the micro-concave depressions become oil reservoirs, and the lubricating oil can be evenly held. Therefore, even when compressed, oil leaks in the sliding direction and in the perpendicular direction are excellent in forming a small oil film, the state of forming an oil film is good, and the surface damage can be minimized.
  • the following operation can be obtained. That is, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be quickly released to the outer ring side through this notch. As a result, the amount of lubricating oil reaching the large brims along the raceway surface of the inner ring decreases, and the amount of lubricating oil retained inside the bearing decreases. Therefore, the torque loss due to the flow resistance of the lubricating oil is reduced.
  • a thirty-third feature of the present invention is that a surface roughness parameter Rymax of the surface provided with the recesses is in the range of 0.4 to 1.0.
  • the parameter Rymax is the maximum value of the maximum height per reference length (IS04287: 1997).
  • the axial surface roughness Rqni (L) and the circumferential surface roughness Rqni (C) when the surface roughness of the surface provided with the recesses is indicated by a parameter Rqni.
  • the ratio of Rqni (L) / R qni (C) is less than 1.0.
  • the parameter Rqni is the square root of the value obtained by integrating the square of the height deviation up to the roughness curve in the section of the measurement length and averaging over that section, also known as the root-mean-square root.
  • Rqni is obtained by numerical calculation from the cross-sectional curve and roughness curve recorded, and it measures by moving the stylus of the roughness meter in the width direction and the circumferential direction.
  • a thirty-fifth feature of the present invention is characterized in that the window angle of the pocket of the retainer is 55 ° or more and 80 ° or less Is Rukoto.
  • the window angle is an angle formed by the side surface of the column portion in contact with the rolling surface of the roller. Window corner
  • the reason why the window angle is set to 80 ° or less is that, if the window angle becomes larger, the pressing force in the radial direction becomes larger, and there is a risk that smooth rotation can not be obtained even with a self-lubricating resin material.
  • the In addition, the window angle is 25 ° to 50 ° in a normal cage.
  • a thirty-sixth feature of the present invention is that the retainer is formed of an engineering 'plastic having excellent mechanical strength, oil resistance and heat resistance.
  • the weight of the cage is lighter than that of an iron plate cage, and it has the characteristics of being self-lubricating and having a smaller coefficient of friction. Combined with the effect, it is possible to suppress the occurrence of wear due to contact with the outer ring.
  • These resins are lighter in weight and smaller in coefficient of friction than steel plates, so they are suitable for reducing torque loss and cage wear at the start of bearings.
  • a thirty-seventh feature of the present invention is that the small annular portion on the narrow side of the pocket is also provided with a notch.
  • a thirty-eighth feature of the present invention is that a notch is provided in at least a column portion on the wide side of the pocket.
  • the thirty-ninth feature of the present invention is that the total area of the notches provided on the narrow side of the pocket is larger than the total area of the notches provided on the wide side of the pocket.
  • a radially inward facing collar which is opposed to the outer diameter surface of the small collar of the inner ring on the axially outer side of the small annular portion of the cage.
  • the upper limit of the clearance between the inner diameter surface and the outer diameter surface of the inner ring is to be 2.0% of the outer diameter of the small ring.
  • torque reduction can be realized without lowering the bearing rigidity. That is, by forming a notch cut through from the outer diameter side to the inner diameter side in the narrow column of the trapezoidal pocket of the cage, lubricating oil flowing to the inner radius side of the cage and the inner ring side is obtained. As the outer ring side can be quickly released through this notch, the amount of lubricating oil leading to the large collar along the raceway surface of the inner ring decreases, and the amount of lubricating oil remaining inside the bearing decreases, and the lubricating oil Torque loss due to fluid flow resistance.
  • roller coefficient ⁇ By setting the roller coefficient ⁇ to be larger than 0.94, a decrease in rigidity can be prevented. Also, by setting the roller coefficient ⁇ to be greater than 0.94, it is possible to reduce the maximum contact pressure on the raceway surface, which increases with increasing load capacity.
  • the oil film forming ability is improved, and the oil film thickness is extremely thin under low viscosity / diluted lubrication. Long life can be obtained even under dry conditions.
  • the surface roughness parameter Ryni of the surface on which the recess is provided within the range of 0.4 ⁇ ⁇ 1. It is possible to prevent breakage, and it is possible to obtain long life even under extremely thin oil film thickness conditions compared to conventional products.
  • the shape and distribution of the surface recessed portion of ⁇ 1.6 or less is an advantageous range for oil film formation depending on the processing conditions.
  • a forty-first feature of the present invention is an inner ring, an outer ring, a plurality of tapered rollers rollably disposed between the inner ring and the outer ring, and a cage for holding the tapered rollers at a predetermined circumferential interval.
  • the roller coefficient ⁇ exceeds 0.94 and at least one member of the inner ring, the outer ring and the rolling element has a nitrogen-rich layer, and austenite crystals in the nitrogen-rich layer
  • the particle size number of the particles is in the range exceeding 10
  • the cage is a small annular portion continuous on the small end face side of the tapered roller, a large annular portion continuous on the large end face side of the tapered roller, and these annular portions
  • a trapezoidal pocket is formed between multiple adjacent pillars, with the part that accommodates the small diameter side of the tapered roller on the narrow side and the part that accommodates the large diameter on the wide side. It has a notch on the narrow side pillar of the bokeh.
  • the nitrogen-rich layer is a layer with an increased nitrogen content formed on the surface layer of the bearing ring (the outer ring or the inner ring) or the rolling element, and is formed, for example, by a process such as carbonitriding, nitriding or nitriding. It can be done.
  • the nitrogen content in the nitrogen-rich layer is preferably in the range of 0.1% to 0.7% (the 42nd feature of the present invention).
  • the nitrogen content is less than 0.1%, the effect is lost, and in particular, the rolling life under foreign matter mixing conditions is reduced. If the nitrogen content is more than 0.7%, voids called “voids” will be formed, or the residual austenite will be too much, resulting in short hardness due to lack of hardness.
  • the nitrogen content is the value in the surface layer 50 m of the raceway surface after grinding and should be measured with, for example, PMA (wavelength dispersive X-ray microanalyzer) Can.
  • the rolling fatigue life can be significantly improved. If the grain size number of the austenite grain size is 10 or less, the rolling fatigue life will not be greatly improved, so it is in the range exceeding # 10. Usually, 11 or more.
  • the austenite grain size is preferably as fine as possible, but it is usually difficult to obtain a grain size number greater than 13.
  • the austenite grains of the above bearing components do not change either in the surface layer portion having the nitrogen-rich layer or in the inner side than the surface layer portion. Therefore, the target position of the above range of grain size number is the surface layer and the inside.
  • the austenite crystal grains for example, have traces of austenite grain boundaries immediately before quenching after being subjected to quenching treatment.
  • the following operation can be obtained.
  • the lubricating oil that has flowed into the inner radius side inner ring side of the cage can be quickly released to the outer ring side through the notch.
  • the amount of lubricating oil reaching the large brims along the raceway surface of the inner ring decreases, and the amount of lubricating oil retained inside the bearing decreases. Therefore, the torque loss due to the flow resistance of the lubricating oil is reduced.
  • a forty-third feature of the present invention is that the window angle of the pocket is 55 ° or more and 80 ° or less.
  • the window angle is an angle formed by the side surface of the column portion in contact with the rolling surface of the roller.
  • the window angle of 55 ° or more is to ensure a good contact with the rollers.
  • the window angle is less than 80 ° If it is larger than this range, the pressing force in the radial direction becomes large, and there is a risk that smooth rotation can not be obtained even with a self-lubricating resin material.
  • the window angle is 25 ° to 50 ° in the case of a conventional holder.
  • a forty-fourth feature of the present invention is that the cage is formed of an engineering plastic excellent in mechanical strength, oil resistance and heat resistance.
  • the cage weight is lighter than that of an iron plate cage, and it has the characteristics of being self-lubricating and having a smaller coefficient of friction. Together with this, it is possible to reduce the occurrence of wear due to contact with the outer ring.
  • These resins are lighter in weight and smaller in coefficient of friction than steel plates, so they are suitable for reducing torque loss and cage wear at the start of bearings.
  • a forty-fifth feature of the present invention is that the small annular portion on the narrow side of the pocket is also provided with a notch.
  • a forty-sixth feature of the present invention is that a notch is provided in at least a column portion on the wide side of the pocket.
  • a forty-seventh feature of the present invention is that the total area of the notches provided on the narrow side of the pocket is larger than the total area of the notches provided on the wide side of the pocket.
  • a forty-eighth feature of the present invention is that a radially inward facing collar facing the outer diameter surface of the small collar of the inner ring is provided on the axially outer side of the small annular portion of the cage.
  • the upper limit of the clearance between the inner diameter surface and the outer diameter surface of the inner ring's small collar is 2.0% of the outer diameter dimension of the small collar.
  • At least the surface of the tapered roller is provided with innumerably indents of micro-concave shapes on the random surface, and the surface roughness parameter Ryni of the surface provided with the indentations is 0.
  • the above-described tapered roller bearing is suitable as a bearing for supporting a power transmission shaft of a motor vehicle (fifth feature of the present invention).
  • torque reduction can be realized without lowering the bearing rigidity. That is, by forming a notch cut through from the outer diameter side to the inner diameter side in the narrow column of the trapezoidal pocket of the cage, lubricating oil flowing to the inner radius side of the cage and the inner ring side is obtained. As the outer ring side can be quickly released through this notch, the amount of lubricating oil leading to the large collar along the raceway surface of the inner ring decreases, and the amount of lubricating oil remaining inside the bearing decreases, and the lubricating oil Torque loss due to fluid flow resistance.
  • roller coefficient ⁇ When the roller coefficient ⁇ is set to exceed 0.94, it is possible to prevent the reduction in rigidity. In addition, by setting the roller coefficient ⁇ to ⁇ > 0.94, the maximum contact pressure on the raceway surface can be reduced by the increase in load capacity, so the extremely short life under severe lubrication conditions It is possible to prevent surface-originated peeling in life.
  • the tapered roller bearing of the present invention is excellent in rolling fatigue life greatly because the austenite grain size is refined to 11 or more in grain size number after forming the nitrogen-rich layer. It is possible to obtain crack resistance and age-resistant dimensional change.
  • a fifty-first feature of the present invention is an inner ring, an outer ring, a plurality of tapered rollers rollably disposed between the inner ring and the outer ring, and a cage for holding the tapered rollers at a predetermined circumferential interval.
  • a conical ring bearing having a small annular portion connected on the small diameter end face side of the tapered roller, a large annular portion connected on the large diameter end face side of the tapered roller, and a plurality of annular portions connecting these annular portions Between the adjacent pillars, a trapezoidal pocket is formed between the adjacent pillars, in which the part housing the small diameter side of the tapered roller is narrow and the part housing the large diameter side is wide.
  • a notch is made in the column on the narrow side of the pocket, and the roller coefficient exceeds 0.94 and the contact width of the roller on the pocket cylindrical surface is This means that 10% or more of the pocket length is secured at the central position in the pocket axial direction for both left and right.
  • the contact width of the roller of the pocket cylindrical surface is secured at least 10% of the pocket length with respect to the central position in the pocket axial direction for both left and right, so that the load acting on the cage locally concentrates or biases the roller force. In addition, abnormal wear and damage due to stress concentration are prevented from occurring due to stress applied. As a result, it becomes possible to set the roller coefficient ⁇ to ⁇ > 0.94.
  • the roller PCD can be reduced while increasing the number of rollers by setting the roller coefficient ⁇ to exceed 0.94. As a result, torque reduction can be realized without lowering the bearing rigidity. Also, by increasing the number of rollers, it is possible to reduce the maximum contact pressure on the raceway surface which is equal to the increase in load capacity.
  • the fifty-second feature of the present invention is that a notch is also provided in the small annular portion on the narrow side of the pocket.
  • a fifty-third feature of the present invention is that a notch is provided in at least a column portion on the wide side of the pocket.
  • the fifty-fourth feature of the present invention is that the total area of the notches provided on the narrow side of the pocket is larger than the total area of the notches provided on the wide side of the pocket.
  • a fifty-fifth characteristic feature of the present invention is that a radially inward facing collar facing the outer diameter surface of the small collar of the inner ring is provided axially outside the small annular portion of the cage, and the inner diameter surface of the collar The upper limit of the gap between the inner ring and the outer diameter surface of the inner ring is set to 2.0% of the outer diameter of the small ring.
  • a fifty-sixth feature of the present invention is that, at least on the surface of the tapered roller, indents of micro concave shape are provided innumerably on the random surface, and the surface roughness parameter Ryni of the surface provided with this indentation is 0.4 ⁇ m. ⁇ ⁇ Ryni ⁇ l. O / z m and the Sk value is 1.6 or less.
  • the fifty-seventh feature of the present invention is the outer diameter of the cage and the outer ring when the cage is positioned at the axial center. There is a gap between the raceways. By making the cage dimensions such that there is a gap, almost no contact between the outer ring and the cage occurs during operation of the bearing.
  • the roller coefficient ⁇ to exceed 0.94, it is possible to make the PCD smaller while increasing the number of rollers. As a result, torque reduction can be realized without lowering the bearing rigidity. Also, by increasing the number of rollers, it is possible to reduce the maximum contact pressure on the raceway surface which is not only increased in load capacity, so to prevent surface-originated exfoliation at extremely short life under severe lubrication conditions. Can.
  • the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be rapidly made to the outer ring side through this notch. Since it can escape, the amount of lubricating oil reaching the large brims along the raceway surface of the inner ring decreases, the amount of lubricating oil staying inside the bearing decreases, and torque loss due to the flow resistance of the lubricating oil Reduce.
  • the tapered roller By providing a notch in at least the column portion on the wide side of the pocket, the tapered roller can be in sliding contact with the column portion in a balanced manner.
  • a radially inward facing collar facing the outer diameter surface of the small collar of the inner ring is provided on the ring direction outer side of the small annular portion of the cage, and the inner diameter surface of the ring of the opposite small annular portion
  • At least the surface of the tapered roller is provided with innumerably indents of micro concave shape at random.
  • the surface roughness parameter Ryni of the surface provided with this depression to 0.4 m ⁇ Ryni ⁇ l. 0 m and setting the Sk value to 1.6 or less, the lubricating oil is evenly distributed on the surface of the tapered roller. Even if the amount of lubricating oil retained inside the bearing is reduced by maintaining the same, the contact portion between the tapered roller and the inner and outer rings can be sufficiently lubricated.
  • a fifty-eighth characteristic of the present invention is an inner ring, an outer ring, a plurality of tapered rollers rollably disposed between the inner ring and the outer ring, and a cage for holding the tapered rollers at a predetermined circumferential distance.
  • the roller coefficient y exceeds 0.94 and the cage includes a small annular portion continuing on the small end face side of the tapered roller, a large annular portion continuing on the large end face side of the cone, and these annular portions
  • the trapezoid pocket has a plurality of pillars that connect the two adjacent pillars, and the part that accommodates the small diameter side of the tapered roller is narrow and the part that accommodates the large diameter is wide.
  • a notch is formed in the column portion on the narrow side of the pocket, and the cage is in contact with the outer ring without contact with the outer ring in the neutral state, and contacts the outer ring when moved in the radial direction.
  • the following operation can be obtained.
  • the lubricating oil that has flowed into the inner radius side inner ring side of the cage can be quickly released to the outer ring side through the notch.
  • the amount of lubricating oil reaching the large brims along the raceway surface of the inner ring decreases, and the amount of lubricating oil retained inside the bearing decreases. Therefore, the torque loss due to the flow resistance of the lubricating oil is reduced.
  • the fifty-ninth feature of the present invention is that a notch is also provided in the small annular portion on the narrow side of the pocket.
  • a sixtieth feature of the present invention is that a notch is provided in at least a column portion on the wide side of the pocket. By adopting such a configuration, it is possible to bring the tapered rollers into contact with the column portion in a balanced manner.
  • the sixty-first feature of the present invention is that the total area of the notches provided on the narrow side of the pocket is larger than the total area of the notches provided on the wide side of the pocket. By adopting such a configuration, it is possible to further reduce the torque loss due to the flow resistance of the lubricating oil by further reducing the amount of lubricating oil reaching the large collar along the raceway surface of the inner ring.
  • the sixty-second feature of the present invention is characterized in that a radially inward facing collar is provided on the axially outer side of the small annular portion of the cage, facing the outer diameter surface of the small collar of the inner ring,
  • the upper limit of the gap between the inner ring and the outer diameter surface of the inner ring is set to 2.0% of the outer diameter of the small ring.
  • At least the surface of the tapered roller is provided with innumerably indents of micro concave shape on the random surface, and the surface roughness parameter Ryni of the surface provided with this indentation is 0.4 ⁇ m. ⁇ ⁇ Ryni ⁇ l. O / z m and the Sk value is less than or equal to one-sixteen.
  • the present invention it is possible to realize a reduction in torque without decreasing the bearing rigidity. That is, by forming a notch cut through from the outer diameter side to the inner diameter side in the narrow column of the trapezoidal pocket of the cage, lubricating oil flowing to the inner radius side of the cage and the inner ring side is obtained. As the outer ring side can be quickly released through this notch, the amount of lubricating oil leading to the large collar along the raceway surface of the inner ring decreases, and the amount of lubricating oil remaining inside the bearing decreases, and the lubricating oil Torque loss due to fluid flow resistance.
  • roller coefficient ⁇ By setting the roller coefficient ⁇ to be larger than 0.94, it is possible to prevent a decrease in rigidity. In addition, by setting the roller coefficient to 0.94 or more, the maximum contact pressure on the raceway surface of the conical roller bearing can be reduced without increasing the load capacity, so under severe lubrication conditions It is possible to prevent surface origin peeling in an extremely short life.
  • the sixty-fourth feature of the present invention is an inner ring, an outer ring, a plurality of tapered rollers rollably disposed between the inner ring and the outer ring, and a cage for holding the tapered rollers at a predetermined circumferential distance.
  • this distance on the PCD is less than (roller diameter ⁇ number of rollers) in a conical roller bearing equipped with
  • the tapered rollers are uniformly disposed, and the cage is formed by a small annular portion continuing on the small diameter end face side of the tapered rollers, a large annular portion continuing on the large diameter end face side of the conical rollers, and a plurality of columns connecting these annular portions
  • a trapezoidal pocket is formed between adjacent column parts, with the part to accommodate the small diameter side of the tapered roller on the narrow side and the part to accommodate the large diameter side on the wide side, forming a narrow pocket It is having provided the notch in the side pillar part.
  • the PCD can be reduced while the number of rollers is increased by evenly arranging the tapered rollers so that the interval on the PCD is less than (the number of roller diameters Z).
  • the load capacity can be increased by increasing the number of rollers, and it is possible to prevent an early failure due to excessive contact pressure on the raceway surface.
  • the following operation can be obtained. That is, the lubricating oil that has flowed to the inner radius side inner ring side of the cage can be quickly released to the outer ring side through this notch.
  • a sixty-fifth feature of the present invention is that a notch is also provided in the small annular portion on the narrow side of the pocket.
  • the sixty-sixth feature of the present invention is that a notch is provided in at least a column portion on the wide side of the pocket.
  • the seventy-seventh feature of the present invention is that the total area of the notches provided on the narrow side of the pocket is larger than the total area of the notches provided on the wide side of the pocket.
  • a radially inward facing collar is provided on the axially outer side of the small annular portion of the cage, facing the outer diameter surface of the small collar of the inner ring,
  • the upper limit of the gap between the inner ring and the outer diameter surface of the inner ring is set to 2.0% of the outer diameter of the small ring.
  • At least the surface of the tapered roller is provided with innumerably indents of micro-concave shape on the random surface, and the surface roughness parameter Ryni of the surface provided with this indentation is 0.4 ⁇ m. ⁇ ⁇ Ryni ⁇ l. O / z m and the Sk value is 1.6 or less.
  • the tapered rollers are uniformly arranged such that the distance on the PCD is less than (the number of roller diameters Z), the PCD is decreased while the number of rollers is increased. it can. As a result, it is possible to realize a reduction in torque without lowering the bearing rigidity. Also, By increasing the number of rollers, as the load capacity increases, the maximum contact pressure on the raceway surface can be reduced by force, so surface exfoliation at extremely short life under severe lubrication conditions is prevented. be able to.
  • the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be rapidly made to the outer ring side through this notch. Since it can escape, the amount of lubricating oil reaching the large brims along the raceway surface of the inner ring decreases, the amount of lubricating oil staying inside the bearing decreases, and torque loss due to the flow resistance of the lubricating oil Reduce.
  • the tapered roller By providing a notch in at least the column portion on the wide side of the pocket, the tapered roller can be in sliding contact with the column portion in a balanced manner.
  • a radially inward facing collar facing the outer diameter surface of the small collar of the inner ring is provided on the ring direction outer side of the small ring portion of the cage, and the inner diameter surface of the ring of the facing small ring portion and
  • Indented microconcave shapes are provided innumerably at least on the surface of the tapered roller at least, and the surface roughness parameter Ryni of the surface provided with the indentations is 0.4 m 0Ryni ⁇ l. 0 m, And, by making the Sk value 1.6 or less, the lubricating oil is held evenly on the surface of the tapered roller, and the contact between the tapered roller and the inner and outer rings is reduced even if the amount of lubricating oil retained inside the bearing is reduced.
  • the parts can be sufficiently lubricated.
  • a seventy feature of the present invention is an inner ring, an outer ring, a plurality of tapered rollers rollably disposed between the inner ring and the outer ring, and a cage for holding the tapered rollers at a predetermined circumferential interval. (Circumferential direction length on PCD)-(roller diameter x number of rollers) diameter of the roller, and the retainer is connected with the small annular portion connected on the small diameter end face side of the tapered roller
  • a large annular portion continuing on the large diameter end face side of the tapered roller and a plurality of column portions connecting the annular portions, and a portion for accommodating the smaller diameter side of the tapered roller is narrow between adjacent column portions.
  • a trapezoidal pocket is formed with the wide side and the large diameter side being the wide side, and the notch on the narrow side of the pocket is cut out.
  • FIG. 14 shows the stiffness ratio ( ⁇ ⁇ ⁇ ) and torque ratio ( ⁇ ⁇ ) when the roller pitch diameter (PCD) is changed in the tapered roller bearing.
  • PCD roller pitch diameter
  • the roller PCD can be reduced while increasing the number of rollers by making the difference between the circumferential length on the roller pitch circle and the product of the number of roller diameters and the number smaller than the roller diameter. As a result, it is possible to realize a reduction in torque without lowering the bearing rigidity. In addition, by increasing the number of rollers, it is possible to reduce the maximum contact pressure on the raceway surface that is increased by the increase in load capacity.
  • the following operation can be obtained. That is, the lubricating oil that has flowed to the inner radius side inner ring side of the cage can be quickly released to the outer ring side through this notch.
  • a seventy-first feature of the present invention is that a notch is also provided in the small annular portion on the narrow side of the pocket.
  • a seventy-second feature of the present invention is that a notch is provided in at least a column portion on the wide side of the pocket.
  • a seventy-third feature of the present invention relates to the total area of the notches provided on the narrow side of the pocket The total area of the notches provided on the wide side of
  • a seventy-fourth feature of the present invention is that a radially inward facing collar is provided on the axially outer side of the small annular portion of the cage, facing the outer diameter surface of the small collar of the inner ring,
  • the upper limit of the gap between the inner ring and the outer diameter surface of the inner ring is set to 2.0% of the outer diameter of the small ring.
  • a seventy-fifth feature of the present invention is that, at least on the surface of the tapered roller, indents of micro concave shape are provided innumerably on the random surface, and the surface roughness parameter Ryni of the surface provided with this indentation is 0.4 ⁇ m. ⁇ ⁇ Ryni ⁇ l. O / z m and the Sk value is 1.6 or less.
  • the present invention since the difference between the circumferential length on the roller pitch circle and the product of the number of roller diameters is smaller than the diameter of rollers, this PCD can be reduced while the number of rollers is increased. As a result, it is possible to realize a reduction in torque without lowering the bearing rigidity.
  • the maximum contact pressure on the raceway surface can be reduced by increasing the load capacity, so exfoliation of the surface starting point with extremely short life under severe lubrication conditions can be achieved. It can be prevented.
  • the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be rapidly made to the outer ring side through this notch. Since it can escape, the amount of lubricating oil reaching the large brims along the raceway surface of the inner ring decreases, the amount of lubricating oil staying inside the bearing decreases, and torque loss due to the flow resistance of the lubricating oil Reduce.
  • the tapered rollers can be brought into sliding contact with the column portion in a balanced manner.
  • a radially inward facing collar facing the outer diameter surface of the small collar of the inner ring is provided on the ring direction outer side of the small annular portion of the cage, and the inner diameter surface of the ring of the opposite small annular portion and
  • At least the surface of the tapered roller is provided with an infinite number of micro-concave recesses at random, and the surface roughness parameter Ryni of the surface provided with the recesses is 0.4 m ⁇ Ryni ⁇ l. ⁇ m.
  • the Sk value 1.6 or less the lubricating oil is uniformly held on the surface of the tapered roller, and the contact between the tapered roller and the inner and outer rings is reduced even if the amount of lubricating oil retained inside the bearing is reduced.
  • the parts can be sufficiently lubricated.
  • the seventy-sixth characteristic feature of the present invention is that the inner ring, the outer ring, the plurality of tapered rollers rollably disposed between the inner ring and the outer ring, and the tapered rollers are retained in the pocket at predetermined circumferential intervals. And a plurality of pillars connecting the large and small annular portions.
  • the small annular portion is connected to the small end face of the tapered roller, and the large annular portion is connected to the large end face of the tapered roller.
  • the pocket is formed in a trapezoidal shape in which the portion for storing the small diameter side of the tapered roller is narrow and the portion for storing the large diameter side is trapezoidal.
  • a notch is provided in the narrow-width side pillar of the bokeh, and the outer diameter surface of the cage is convex toward the inner diameter surface of the outer ring, and between the inner diameter surface of the outer ring and the outer ring.
  • a plurality of projections forming micro clearances are formed at predetermined circumferential intervals.
  • the following operation can be obtained. That is, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be quickly released to the outer ring side through this notch. As a result, the amount of lubricating oil leading to the gutter along the raceway surface of the inner ring decreases, and the amount of lubricating oil retained inside the bearing decreases. Therefore, the torque loss due to the flow resistance of the lubricating oil is reduced.
  • the outer diameter surface of the cage can be brought close without contacting the inner diameter surface of the outer ring as much as possible. It is possible to reduce the maximum surface pressure generated on the inner ring raceway surface by increasing the number of rollers accommodated in the cage without increasing the bearing torque and without reducing the bearing rigidity.
  • a seventy-seventh feature of the present invention is that a notch is also provided in the small annular portion on the narrow side of the pocket.
  • a seventy-seventh feature of the present invention is that a notch is provided in at least a column portion on the wide side of the pocket.
  • the seventy-ninth feature of the present invention is that the total area of the notches provided on the narrow side of the pocket is larger than the total area of the notches provided on the wide side of the pocket.
  • a radially inward facing collar is provided on the axially outer side of the small annular portion of the cage, facing the outer diameter surface of the inner ring small diameter, and the inner diameter surface of the collar
  • the upper limit of the gap between the inner ring and the outer diameter surface of the inner ring gutter is 2.0% of the outer diameter of the small gutter.
  • the surface roughness parameter Ryni of the surface provided with innumerable micro-concave recesses on the surface of at least the surface of the tapered roller is at 0.
  • torque reduction can be realized without lowering the bearing rigidity. That is, cut from the outer diameter side to the inner diameter side of the narrow side pillar portion of the trapezoidal pocket of the cage
  • the lubricating oil that has flowed to the inner radius side of the cage and the inner ring side can be quickly released to the outer ring side through this notch, so a large diameter along the raceway surface of the inner ring
  • the amount of lubricating oil leading to the above decreases, the amount of lubricating oil staying inside the bearing decreases, and the torque loss due to the flow resistance of the lubricating oil is reduced.
  • the outer peripheral surface of the cage is the outer peripheral surface of the outer peripheral ring. Even if the number of rollers accommodated is increased by bringing them into close proximity to each other, a good lubricating action can be obtained by the wedge-shaped oil film between the projections and the inner peripheral surface of the outer ring.
  • the maximum contact pressure on the inner and outer ring raceways can be reduced by increasing the number of rollers without lowering the bearing rigidity without deteriorating the torque characteristics of the bearing, and the high oil temperature, the small oil amount, and the preload loss Even in the case where severe conditions such as occurrence occur due to overlapping conditions and severe lubrication conditions occur, it is possible to prevent extremely short-lived surface origin separation from occurring especially on the inner ring raceway surface.
  • the eighty-second characteristic of the present invention is to accommodate the inner ring, the outer ring, a plurality of tapered rollers rollably disposed between the inner ring and the outer ring, and the tapered rollers at a predetermined circumferential interval. And a cage having a pocket, wherein the cage includes a small annular portion continuing on the small diameter side of the tapered roller, a large annular portion continuing on the large diameter side of the conical roller, and a plurality of columns connecting these annular portions.
  • the pocket is formed in a trapezoidal shape in which the portion for storing the small diameter side of the tapered roller is narrow and the portion for storing the large diameter side is wide.
  • the rib extends radially from the end edge of the small annular portion, and the tip of the rib is bent inward in the axial direction, and a pillar portion on the narrow side of the trapezoidal pocket of the cage. It is characterized in that it has a notch.
  • the tapered roller will be more unstable because the portion of the roller that is caught in the pocket will be smaller, and the tapered roller will tilt in the circumferential direction, making assembly difficult. Also, by increasing the number of tapered rollers, the flow resistance due to the lubricating oil inside the bearing increases, and the rotational torque increases.
  • the present invention aims to improve the assemblability of tapered roller bearings and to reduce the rotational torque.
  • the rib tip end portion of the cage is bent inward in the axial direction.
  • the tapered roller is supported by the small annular portion of the cage and the tip of the rib when the small diameter end face of the tapered roller is engaged with the pocket.
  • the tapered rollers are held in a stable posture, so the tapered rollers can be assembled smoothly without tilting in the circumferential direction.
  • the circulation of the lubricating oil is improved, and the amount of the lubricating oil staying inside the bearing can be reduced.
  • the torque due to the flow resistance of the lubricating oil is reduced.
  • the small annular portion on the narrow side of the trapezoidal pocket is provided with a notch, the circulation of the lubricating oil in the bearing is further improved, and the torque reduction effect can be increased.
  • the tapered roller can be balanced and contact with the column.
  • the assemblability of the tapered roller bearing can be improved, and the rotational torque can be reduced.
  • the present invention it is possible to realize a reduction in torque without decreasing the bearing rigidity.
  • the cage engineering 'plastic' it is possible to realize the weight reduction of the cage and the low friction due to the self-lubricity, and by setting the window angle of the pocket to 55 ° or more and 80 ° or less, the roller coefficient ⁇
  • the roller coefficient ⁇ By setting ⁇ to 0.94 or less, the maximum contact pressure on the raceway surface can be reduced, and surface-originated exfoliation with extremely short life under severe lubrication conditions can be prevented.
  • the tapered roller bearing 1 of the embodiment shown in FIG. 1 and FIG. IB is composed of an inner ring 2, an outer ring 3, a tapered roller 4 and a cage 5.
  • the inner ring 2 has a conical raceway 2a on the outer periphery
  • the outer race 3 has a conical raceway 3a on the inner periphery.
  • a plurality of tapered rollers 4 are rotatably interposed between the raceway surface 2 a of the inner ring 2 and the raceway surface 3 a of the outer ring 3.
  • the tapered roller 4 is accommodated in a pocket formed in the cage 5. Movement of each tapered roller 4 in the axial direction is restricted by small ridges 2 b and large ridges 2 c provided on both sides of the raceway surface 2 a of the inner ring 2.
  • the cage 5 has a small annular portion 6 continuous with the small end face of the tapered roller 4, a large annular portion 7 continuous with the large end face of the conical roller 4, and these small annular portions It includes a plurality of column portions 8 connecting the portion 6 and the large annular portion 7. Then, as shown in FIG. 2, the pockets 9 are formed between the adjacent pillars 8.
  • the pocket 9 of the cage 5 has a trapezoidal shape, and the portion for housing the small diameter side of the tapered roller 4 is the narrow side, and the portion for housing the large diameter side is the wide side.
  • two notches 10a and 10b are provided respectively on the pillars 8 on both sides, which are cut from the outer diameter side to the inner diameter side.
  • Each of the notches 10a and 10b has a depth of 1. O mm and a width of 4.6 mm.
  • the notches 10a and 10b illustrated in the drawings are in the form of grooves which are cut in the radial direction of the cage 5, the inner and outer diameters of the cage 5 are connected to communicate the lubricating oil.
  • the shape and size are arbitrary as long as the smooth passage of H can be permitted.
  • the retainer 5 is integrally formed of, for example, super engineering plastic such as PPS, PEEK, PA, PPA, PAI and the like.
  • super engineering plastic such as PPS, PEEK, PA, PPA, PAI and the like.
  • the cage weight is lighter compared with the steel plate cage. Therefore, combined with the effect of the lubricating oil present in the bearing, it is possible to suppress the occurrence of wear due to contact with the outer ring.
  • these resins are lighter in weight and smaller in coefficient of friction than steel plates, so they are suitable for reducing torque loss and cage wear at the start of bearings.
  • Engineering 'plastics' includes general-purpose engineering' plastics and super 'engineering' plastics. Note that super engineering plastics such as PPS, PEEK, PA, PPA, and PAI are listed as examples of retainer materials. If necessary, these resin materials or other engineering plastics should be used to increase strength.
  • the lower limit window angle ⁇ min is 55 ° as shown in FIG. 3A
  • the upper limit window angle ⁇ ma X is 80 ° as shown in FIG. 3B.
  • the window angle is as large as about 50 ° in a typical caged tapered roller bearing where the cage is separated from the outer ring.
  • the reason why the lower limit window angle ⁇ min is 55 ° or more is to ensure a good contact state with the roller, and when the window angle is less than 55 °, the contact state with the roller becomes worse. That is, in order to set ⁇ > 0.94 after securing the cage strength, a good contact state can not be secured unless the window angle is 55 ° or more.
  • the upper limit window angle ⁇ max is set to 80 ° or less, the radial pressing force increases if it is larger than this, and there is a risk that smooth rotation can not be obtained even with a self-lubricating resin material. It is because it arises.
  • FIG 4A shows the result of bearing life test.
  • the bearing I is a typical conventional tapered roller bearing in which the cage and the outer ring are separated.
  • the bearing ⁇ is the conventional tapered roller bearing described in Patent Document 1.
  • the bearing cage is the tapered roller bearing of the present invention.
  • the test was conducted under severe lubrication and overload conditions.
  • the bearing III according to the present invention has a rolling coefficient of 0.96, which is the same as that of the bearing II, but the life time is about 5 times longer than that of the bearing II.
  • the dimensions of bearing I III are ⁇ 45 x ⁇ 81 x 16 (unit mm), the number of rollers is 24 (bearing I), 27 (bearing ⁇ , III),
  • the oil film parameter ⁇ is 0.2.
  • FIGS. 5 and 6 show modified examples of the notches of the retainer 5.
  • a notch 10 c is provided also in the small annular portion 6 on the narrow side of the pocket 9.
  • the total area of the three notches 10a and 10c on the narrow side is larger than the total area of the two notches 10b on the wide side.
  • the notch 10c has a depth of 1. Omm and a width of 5.7mm.
  • each notch 10a of the narrow side pillar portion 8 is 1.5 mm, which is narrower than each notch 10b of the wide side pillar portion 8.
  • the total area of the wide side notches 10a is larger than the total area of the wide side notches 10b.
  • a radially inward facing collar 11 facing the outer diameter surface of the small collar 2b of the inner ring 2 is provided on the axially outer side of the small annular portion 6 of the cage 5.
  • the gap ⁇ between the inner diameter surface of the collar 11 and the outer diameter surface of the small ring 2b of the inner ring 2 is set to be as narrow as 2.0% or less of the outer diameter of the small ring 2b.
  • micro concave-shaped depressions are provided in random on the entire surface of the tapered roller 4.
  • the surface on which this recess is provided has a surface roughness parameter Ryni of 0.4 ⁇ m ⁇ Ryni .l.O ⁇ m and a Sk value of 1.6 or less.
  • FIG. 8 exemplifies the configuration of a vehicle differential that may use the above-described tapered roller bearing.
  • the differential gear is connected to a propeller shaft (not shown), and the drive gear 22 inserted into the differential case 21 engages with the ring gear 24 mounted on the differential gear case 23, and the differential gear case 23 A gear 25 mounted inside the gear engages with a side gear 26 coupled with a drive shaft (not shown) whose left and right forces are also inserted into the differential gear case 23 to drive the engine from the propeller shaft. It is transmitted to the shaft.
  • a drive shaft 22 as a power transmission shaft and a differential gear case 23 are respectively supported by a pair of tapered roller bearings la and 1b.
  • the differential case 21 is sealed by seal members 27a, 27b and 27c, and lubricating oil is stored inside.
  • Each tapered roller bearing la, lb rotates with its lower part immersed in the oil bath of this lubricating oil.
  • the tapered roller bearing 1 (la, lb) is configured as described above, so each tapered roller bearing la, When lb rotates at a high speed and the lower part dips into the oil bath, the lubricating oil of the oil bath flows from the small diameter side of tapered roller 4 to the outer diameter side and inner diameter side of cage 5 as shown by the arrow in FIG. Lubricant oil that has divided into the bearing and flows into the inside of the bearing and flows into the outer ring 3 of the cage 5 passes along the raceway surface 3a of the outer ring 3 to the large diameter side of the tapered roller 4 and flows out into the bearing. Do.
  • the amount of lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring 2 is far less than the lubricating oil flowing from the outer diameter side of the cage 5, and most of the lubricating oil
  • the notch is provided on the narrow column part 8 of the pocket 9
  • a protrusion 5 a may be formed on the outer diameter surface of the cage 5.
  • a projection 5a can be easily formed by integrally forming the cage 5 of engineering plastic.
  • the protrusion 5 a has a convex shape on the outer diameter surface of the column 8 of the cage 5 toward the raceway surface 3 a of the outer ring 3.
  • the projection 5 a has an arc-shaped cross-sectional profile in the cross-sectional direction of the column 8. The radius of curvature R of this arc
  • the radius 2 is smaller than the radius R of the raceway surface 3 a of the outer ring 3. This is for the purpose of forming a favorable bowl-like oil film between the projection 5a and the raceway surface 3a of the outer ring 3.
  • the curvature radius R of the projection 5a is the radius R of the raceway surface 3a of the outer ring 3. It is good to form about 70 to 90% of the 70% not
  • the width W of the projection 5 a is desirably formed to be 50% or more of the width W of the column portion 8 (preferably
  • the height of the The radius R of the raceway surface 3a of the outer ring 3 is continuously changed to the large diameter side force and the small diameter side, so the curvature radius R of the projection 5a is adjusted accordingly.
  • the large radius of curvature R force of the large annular portion 7 The small radius of curvature R of the small annular portion 6 is continuous to
  • the projections 5 a can be formed not only on the outer diameter surface of the column 8 but also on the outer diameter surfaces of the small annular portion 6 and the large annular portion 7 of the cage 5.
  • FIG. 11 exemplifies the configuration of a transmission of a car that can use the above-described tapered roller bearing.
  • This transmission is of the synchronous type, and in the figure, the left direction is the engine side and the right direction is the drive wheel side.
  • a tapered roller bearing 43 is interposed between the main shaft 41 and the main drive gear 42.
  • the outer ring raceway surface of the tapered roller bearing 43 is formed directly on the inner periphery of the main drive gear 42.
  • the main drive gear 42 is rotatably supported by a tapered roller bearing 44 with respect to the casing 45.
  • a clutch gear 46 is engaged with and coupled to the main drive gear 42, and a synchro mechanism 47 is disposed in the vicinity of the clutch gear 46.
  • Synchro mechanism 47 has a sleeve 48 that moves in the axial direction (left and right direction in the same figure) by the operation of a selector (not shown), and a sink mouth izer key axially movably mounted on the inner periphery of sleeve 48. 49, a hub 50 engaged with the outer periphery of the main shaft 41, a synchronizer ring 51 slidably mounted on the outer periphery (cone portion) of the clutch gear 46, a sink opening key 49 of the sleeve 48 A presser pin 52 and a spring 53 are provided to elastically press the inner circumference.
  • a tapered roller bearing (Example 1) using the cage shown in FIG. 2 and a tapered roller bearing (Example 2) using the cage shown in FIG. 5 were prepared.
  • a tapered roller bearing (comparative example 1) using a cage having no notch in the pocket and a conical roller bearing using a cage shown in FIG. 13A and FIG. 13B (comparative examples 2 and 3) Prepared.
  • the dimensions of each tapered roller bearing are 100 mm in outer diameter, 45 mm in inner diameter, and 27.25 mm in width, and the parts other than the notch in the pocket are the same.
  • Rotation speed 300 to 2000 rpm (lOOrpm pitch)
  • Lubrication conditions Oil bath lubrication (Lubricant: 75 W-90)
  • Figure 12 shows the test results.
  • the vertical axis of the graph in the same figure represents the torque reduction rate with respect to the torque of Comparative Example 1 in which the pocketless holder is used.
  • the torque reduction effect is also observed in Comparative Example 2 in which a notch is provided in the center of the column of the pocket and in Comparative Example 3 in which a notch is provided in the small annular portion and the large annular portion of the pocket.
  • Example 1 in which the side pillar portion is provided with a notch, a torque reduction effect superior to those of the comparative examples is recognized, and a notch is provided in the narrow annular portion on the narrow side, and the notch on the narrow side is formed.
  • Example 2 in which the total area of is wider than that of the wide side, a further excellent torque reduction effect is recognized.
  • the torque reduction rate at 2000 rpm which is the maximum rotational speed in the test, is 9.5% in Example 1 and 11.5% in Example 2.
  • the high rotational speed of the differential gear, transmission, etc. Excellent torque reduction effect can be obtained even under the use conditions of
  • the torque reduction rates at the rotational speed of 2000 rpm in Comparative Example 2 and Comparative Example 3 are 8.0% and 6.5%, respectively.
  • the left and right side surfaces of the column portion of the cage 5 constitute a cylindrical surface for pressing the tapered roller 4.
  • the window angle ⁇ ⁇ formed by the right and left cylindrical faces pressing one conical roller 4 is, for example, 25 ° to 50 °.
  • At least one of the rolling surface and the end surface of the tapered roller and the raceway surface of the inner and outer rings (and the large flange surface for the inner ring of the tapered roller bearing) Indented shapes can be formed randomly and innumerably to be micro-roughened. ..
  • the minute roughened surface, a surface roughness parameter Rqni of the surface having the indentations is in the range of 0. 4 i um ⁇ Rqni ⁇ l 0 m, and, Sk value is -1 6 or less, preferably - It is in the range of 4. 9 to 1.
  • the surface roughness parameter Rymax of the surface provided with the recesses is 0.4 to 1.0.
  • the ratio of the axial surface roughness Rqni (L) to the circumferential surface roughness Rqni (C) is less than 1.0.
  • Surface treatment to obtain such a micro rough surface For example, force shot or the like which can obtain a desired finished surface by special barrel grinding may be used.
  • the rolling surface of the tapered roller 4 makes rolling contact with the races of the inner ring 2 and the outer ring 3 during operation, and the large end face of the tapered roller 4 is the inner ring 2 Sliding contact with the inner surface of large scale 2c. Therefore, in the case of the tapered roller 4, it is possible to randomly and innumerably form micro-concave recesses on the large end face as well as the rolling surface. Similarly, in the case of the inner ring 2, micro concave-shaped depressions may be randomly formed innumerably not only on the raceway surface but also on the inner surface of the gauze 2c.
  • the parameters Ryni, Rymax, Sk, and Rqni are measured as follows. When the surface characteristics represented by these parameters are measured for the rolling element, rolling ring and other components of a rolling bearing, even a single measured value can be relied on as a representative value, for example, facing in the diameter direction. It is good to measure two places.
  • Measuring device surface roughness measuring instrument Surfcom 1400A (Tokyo Seimitsu Co., Ltd.)
  • conventional tapered roller bearings A and B (comparative example) in which the rolling surface of the tapered roller is finished to a smooth surface, and a bearing in which innumerable micro concave recesses are randomly formed on the rolling surface of the tapered roller.
  • the life tests conducted for C to E (comparative examples) and bearings F and G (examples) will be described (see Table 1).
  • the used bearings A to G are all tapered roller bearings with an outer diameter of 81 mm and an inner diameter force of 45 mm.
  • the rolling surface of the rollers in the bearings A and B of the comparative example is subjected to a super finish (super finish) after grinding and is not dented.
  • roller bearings C to E and the bearings F and G of the example are randomly formed into innumerable micro concave-shaped depressions by barrel grinding special processing. Note that R For qni (LZC), roller bearings C to G are less than 1.0, and roller bearings A and B are before and after 1.0.
  • a peeling test was conducted using a two-cylinder tester shown in FIG. 17 to evaluate the metal contact ratio.
  • the drive side cylinder 32 (D cylinder: Driver) and the driven side cylinder 34 (F cylinder: Follower) are attached to one end of each rotation shaft, and the two rotation shafts 36 and 38 are pulleys respectively.
  • the shaft 36 on the D cylinder 32 side is driven by a motor, and the F cylinder 34 is free-rolled to be driven by the D cylinder 32.
  • the F-cylinder 34 two types of surface treatment were prepared: a comparative example and an example. The test conditions and other details are as shown in Table 2.
  • Comparative data of the metal contact ratio is shown in FIG.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the metal contact ratio.
  • FIG. 18A shows the metal contact ratio of the rolling surface of the roller in the comparative example
  • FIG. 18B shows the rolling of the roller in the example bearing.
  • the metal contact ratio of the surface is shown respectively.
  • a tapered roller bearing (Example 1) using the cage shown in FIG. 2 and a tapered roller bearing (Example 2) using the cage shown in FIG. 5 were prepared.
  • a tapered roller bearing (comparative example 1) using a cage having no notch in the pocket and a tapered roller bearing using a cage shown in FIGS. 13A and 13B (comparative examples 2 and 3) Prepared.
  • the dimensions of each tapered roller bearing are 100 mm in outer diameter, 45 mm in inner diameter, and 27.25 mm in width, and the parts other than the notch in the pocket are the same.
  • a torque measurement test using a vertical torque tester was performed. The test conditions are as follows.
  • Rotation speed 300 to 2000 rpm (lOOrpm pitch)
  • Lubrication conditions Oil bath lubrication (Lubricant: 75 W-90)
  • the test results are as shown in FIG.
  • the vertical axis of the graph in the same figure represents the torque reduction rate with respect to the torque of Comparative Example 1 in which the cage having no notch in the pocket is used.
  • Comparative Example 2 in which the notch is provided at the center of the column of the pocket, and in Comparative Example 3 in which the notches are provided in the small annular portion and the large annular portion of the pocket, the torque reduction effect is observed.
  • Example 1 in which a notch is provided in the column on the side, a torque reduction effect superior to those of the comparative examples is recognized, and a notch is also provided in the small annular part on the narrow side.
  • Example 2 in which the total area of the notch is wider than that of the wide side, a further excellent torque reduction effect is recognized.
  • the torque reduction rate at 2000 rpm which is the maximum rotational speed in the test, is 9.5% in Example 1 and 11.5% in Example 2, and high speed rotation in differential gear, transmission, etc. Excellent torque reduction effect can be obtained even under the use conditions of
  • the torque reduction rates at the rotational speed of 2000 rpm in Comparative Example 2 and Comparative Example 3 are 8.0% and 6.5%, respectively.
  • At least one bearing component may have a nitrogen-rich layer.
  • a heat treatment including carbonitriding will be described as a specific example of the treatment for forming the nitrogen-rich layer.
  • FIG. 19 is a view for explaining a heat treatment method of the rolling bearing in the embodiment of the present invention
  • FIG. 20 is a view for explaining a modified example thereof.
  • FIG. 19 is a heat treatment pattern showing a method of performing primary hardening and secondary hardening
  • FIG. 20 is a method of cooling the material to below the A1 transformation temperature during hardening, and then reheating to finally harden it.
  • the temperature is higher than the A1 transformation temperature and lower than the treatment T1, and oil quenching is applied from there.
  • the rolling bearing of the present invention manufactured by the heat treatment pattern of FIG. 19 or FIG. 20 has a microstructure in which the grain size of austenite grains is less than or equal to a half of the conventional one.
  • the bearing parts subjected to the above heat treatment have a long life against rolling fatigue, and can improve the cracking strength and reduce the dimensional change rate over time. Since the amount of retained austenite decreases in the surface layer and in the interior because of the heat treatment step to lower the secondary quenching temperature to refine the crystal grains, it is possible to obtain excellent crack resistance and dimensional change in age.
  • FIG. 21 is a view showing the microstructure of a bearing component, in particular, austenite grains.
  • FIG. 21A is a bearing component of an example of the present invention
  • FIG. 21B is a conventional bearing component. That is, the austenite grain size of the race of the rolling bearing according to the embodiment of the present invention to which the heat treatment pattern shown in FIG. 19 is applied is shown in FIG. 21A. Also, for comparison, the austenite grain size of the bearing steel by the conventional heat treatment method is shown in FIG. 21B.
  • FIGS. 22A and 22B show austenite grain sizes illustrating FIGS. 21A and 21B. From the structure showing these austenite grain sizes, the conventional austenite grain size is No. 10 in the grain size number according to the JIS standard, and according to the heat treatment method according to FIG. 19 or FIG. 20, No. 12 fine grains can be obtained.
  • the average particle size in FIG. 21A was 5.6 m as measured by the intercept method.
  • Example 2 of the present invention will be described.
  • Fracture stress value-2840 27 S0 2650 2650 2700 2330
  • the manufacturing history of each sample is as follows.
  • Samples A to D Carbonitriding at 850 ° C., holding time for 150 minutes.
  • the atmosphere was a mixed gas of RX gas and ammonia gas.
  • the primary quenching is performed from the carbonitriding temperature of 850 ° C., and the next !, lower than the carbonitriding temperature at a temperature range of 780 ° C. to 830 ° C. Hardened.
  • sample A at the secondary quenching temperature of 7800C was not subjected to the test because of insufficient quenching.
  • Samples E and F (comparative example): The carbonitriding treatment is performed in the same history as that of the invention examples A to D, and the secondary quenching temperature is set to 850 ° C. to 870 ° at 850 ° C. or higher. I went in C.
  • Conventional carbonitriding product carbonitriding treatment 850 ° C., holding time 150 minutes.
  • the atmosphere was a mixed gas of RX gas and ammonia gas. Quenching was performed as it was from the carbonitriding temperature, and secondary quenching was not performed.
  • Normal quenched product (comparative example): The secondary quenching, which was carried out by heating to 850 ° C. without performing carbonitriding, was not conducted.
  • the amount of hydrogen the amount of non-diffusible hydrogen in the steel was analyzed by a DHCO type 103 hydrogen analyzer manufactured by LECO. The amount of diffusible hydrogen was not measured. This LECO DH-103 type hydrogen content
  • the specifications of the analyzer are as follows.
  • Carrier gas nitrogen gas
  • gas dosing gas hydrogen gas
  • all gases are 99. 99% or more in purity
  • pressure 40 psi 2.8 kgf / cm 2
  • the outline of the measurement procedure is as follows. Insert the sample collected by the dedicated sampler into the above hydrogen analyzer together with the sampler. The diffusible hydrogen inside is led to the thermal conductivity detector by the nitrogen carrier gas. This diffusible hydrogen is not measured in this example. Next, the sample is taken out of the sampler, heated in a resistance heating furnace, and non-diffusible hydrogen is introduced to the thermal conductivity detector by the nitrogen carrier gas. The amount of non-diffusible hydrogen can be known by measuring the thermal conductivity with a thermal conductivity detector.
  • the measurement of the grain size was performed based on the austenite grain size test method of steel according to JIS G 0551.
  • the Charpy impact test was performed based on the Charpy impact test method of the metal material of JIS Z 2242.
  • a test piece As a test piece, a U-notch test piece (JIS No. 3 test piece) indicated in JIS Z 2202 was used.
  • FIG. 23 is a view showing test pieces of the static crush strength test (measurement of fracture stress value). Load in the direction of P in the figure and measure the load until failure. After that, the obtained fracture load is converted to a stress value by the following stress calculation formula for curved beams.
  • the test pieces are not limited to the test pieces shown in Fig. 23, but test pieces of other shapes may be used. [0227]
  • the fiber stress on the convex surface of the test piece in Fig. 23 is ⁇ , and the fiber stress on the concave surface is ⁇ .
  • represents the axial force of the cross section including the axis of the annular test piece
  • represents the cross sectional area
  • e represents the outer radius
  • e represents the inner radius
  • is the cross section coefficient of the curved beam.
  • FIG. 24 is a schematic view of a rolling fatigue life tester
  • FIG. 24A is a front view
  • FIG. 24B is a side view.
  • the rolling fatigue life test piece 18 is driven by the drive roll 12 and rotates in contact with the ball 16.
  • the ball 16 is a 3Z4 inch ball and is guided to the guide roll 14 and rolls while exerting a high surface pressure with the rolling fatigue life test piece 18.
  • the conventional carbonitriding products that have been carbonitrided have a very high value of 0.72 ppm. This is due to the decomposition of ammonia (NH 2) contained in the carbonitriding atmosphere.
  • NH 2 ammonia
  • the austenite grains are significantly refined to grain size numbers 11 to 12 in the case of samples B to D. It is done.
  • the austenite grains of the samples E and F and the conventionally carbonitriding-treated article and the commonly hardened article have a grain size number of 10, and are coarser grains than the samples B to D of the example of the present invention.
  • the Charpy impact value of conventional carbonitriding products is 5. 33 jZ cm 2
  • the Charpy impact value of Samples B to D of the inventive example is as high as 6.30 to 6.65 jZ cm 2 .
  • the Charpy impact value of normally hardened products is as high as 6. 70 jZ cm 2 .
  • the above-mentioned fracture stress value corresponds to the crack resistance.
  • the conventional carbonitrided product has a fracture stress value of 2330 MPa.
  • the fracture stress value of samples B to D is improved to 2650 to 2840 MPa.
  • the fracture stress value of a normally quenched product is 2770 MPa, and the improved cracking resistance of samples B to D is estimated to be a great effect due to the reduction of the hydrogen content as well as the austenite grain refinement. .
  • rolling fatigue life L is the lowest, reflecting the fact that normally quenched products do not have a carbonitrided layer in the surface layer. Compared with this, the rolling fatigue life of the conventional carbonitrided product is 3
  • the hydrogen content decreases, the austenite grain size is refined to 11 or more, and the Charpy impact value, the crack resistance strength, and the rolling fatigue life Is also improved.
  • Example 3 A series of tests were conducted on the following materials X, Y and Z.
  • JIS standard SUJ2 material 1.0 wt% C-0.25 wt% Si-0.4 wt% Mn-1.5 wt% Cr
  • the manufacturing history of materials X to Z is as follows.
  • Material X (comparative example): Normal hardening only (without carbonitriding)
  • Y material (comparative example): quenching after carbonitriding as it is (conventional carbonitriding quenching). Carbonitriding temperature 845 ° C, holding time 150 minutes. The atmosphere of the carbonitriding treatment was RX gas + an amine moisture gas.
  • Z material (invention example): Bearing steel having the heat treatment pattern shown in FIG. Carbonitriding temperature 845 ° C, holding time 150 minutes. The atmosphere for carbonitriding was RX gas + ammonia gas . The final hardening temperature was 800 ° C.
  • Table 5 shows the results of this rolling fatigue life test.
  • the Y material of the comparative example is the L life of the X material similarly subjected to only normal hardening in the comparative example.
  • the life of one of them is 3.1 times as long as it is broken, and the effect of prolonging the life by carbonitriding can be observed.
  • the Z material of the invention example shows 1.74 times longer life than the B material and 5.4 times longer than the X material. The main cause of this improvement is considered to be the miniaturization of the microstructure.
  • the Charpy impact test was performed using the U-notch test piece according to the method according to JIS Z 2242 described above. The test results are shown in Table 6.
  • the Charpy impact value of the carbonized and carbonized Y material (comparative example) is not higher than that of the normally quenched X material (comparative example), but the Z material has the same value as the X material. It was obtained.
  • FIG. 25 is a figure which shows the test piece of a static fracture toughness test. After introducing a preliminary row of about 1 mm into the notch portion of this test piece, a static load by 3-point bending was applied, and the breaking load P was determined. The following equation (I) was used to calculate the fracture toughness value (Klc value). Also, the test results are shown in Table 7. There is no difference between the X material and the Y material of the comparative example because the precrack depth is larger than the carbonitrided layer depth. However, the Z material of the inventive example could obtain a value of about 1.2 times that of the comparative example.
  • Klc (PL ⁇ a / BW 2 ) ⁇ 5.8— 9.2 (a / W) +
  • the static crushing strength test used the one having the shape shown in FIG. 25 as described above. A load was applied in the P direction in the figure, and the static pressure crush strength test was performed. The test results are shown in Table 8.
  • the carbon-nitrided Y material has a slightly lower value than the normally quenched X material. While doing this, the present invention
  • the Z material of the bright example has improved static crushing strength than the Y material, and a level comparable to the X material is obtained.
  • the measurement results of the dimensional change with age at a holding temperature of 130 ° C. and a holding time of 500 hours are shown in Table 9 together with the surface hardness and the residual austenite BR amount (50 m depth). Compared to the dimensional change of the Y material having a large amount of residual austenite, it is found that the Z material of the example of the present invention is suppressed to 1/2 or less.
  • Ball bearings 6206 were used to evaluate rolling fatigue life in the presence of foreign matter mixed with a predetermined amount of standard foreign matter.
  • the test conditions are shown in Table 10, and the test results are shown in Table 11.
  • the conventional carbon nitrided Y material is about 2.5 times longer than the X material, and the Z material of the example of the present invention has a long life of about 2.3 times.
  • the amount of retained austenite in the Z material of the present invention example is smaller than that of the Y material of the comparative example !, almost the same long life is obtained due to the infiltration of nitrogen and the influence of the refined microstructure.
  • the rolling fatigue life prolongation which was difficult in the conventional carbonitriding treatment the improvement of the cracking strength, and the reduction of the dimensional change rate over time are three items. I was able to be satisfied at the same time.
  • Table 12 shows the results of tests conducted on the relationship between the nitrogen content and the rolling life under foreign matter mixing conditions.
  • Comparative Example 1 is a standard quenched product
  • Comparative Example 2 is a standard carbonitrided product.
  • the comparative example 3 is the case where only the amount of nitrogen is excessive although the same treatment as in the example of the present invention is performed.
  • the test conditions are as follows.
  • Test bearing Conical roller bearing 30206 (for both inner Z outer ring and rollers, made of JIS high carbon chromium bearing steel Class 2 (SUJ2))
  • FIGS. 26 to 29 show another modified example of the present invention, showing a pocket viewed from the inner diameter side of the cage 5.
  • the contact of the roller is indicated by a two-dot chain line on the pocket cylindrical surface 5b (the side surface of the column).
  • the contact width of the roller of the pocket cylindrical surface 5b is secured at 10% or more of the pocket center position, ie, the axial center position of the pocket 9, ie, the pocket center position force.
  • the roller force is also concentrated or localized load applied to the cage 5 locally. is there.
  • the notch 10a and the like are omitted.
  • the roller contact width and the pocket center position force are also secured on both sides in the axial direction over 10% or more of the pocket length. Therefore, the roller contact width at the center of the pocket is at least 20% of the pocket length.
  • the roller contact is on the left side in the drawing! /, But the pocket center position force also has a roller contact width of 10% or more of the pocket length on the right side.
  • the roller contact is on the right side of the drawing as opposed to Fig. 27! / But pocket center position force Pocket length also on the left side 10% or more of the roller contact width is secured.
  • the pocket center position force is also at least the pocket length 10% or more of the roller contact width is secured.
  • the roller coefficient ⁇ to exceed 0.94, it is possible to make the PCD smaller while increasing the number of rollers. As a result, the torque can be reduced without lowering the bearing rigidity.
  • the load capacity can be increased, and the maximum contact pressure on the raceway surface can be reduced by force, so surface-originated exfoliation with extremely short life under severe lubrication conditions can be achieved. It can be prevented.
  • the lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring side is As it is possible to quickly escape to the outer ring side through the notch 10, the amount of lubricating oil reaching the large diameter 2c along the raceway surface 2a of the inner ring 2 decreases, and the amount of lubricating oil staying inside the bearing decreases. Torque loss due to lubricating oil flow resistance.
  • the lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring side is extracted from the notch 10 c of the small annular portion 6.
  • the torque loss due to the flow resistance of the lubricating oil can be further reduced by escaping to the outer ring 3 side and further reducing the amount of the lubricating oil reaching the large rim 2c along the raceway surface 2a of the inner ring 2.
  • the conical cone 4 can be welded in a well-balanced manner.
  • a radially inward facing collar 11 facing the outer diameter surface of the small collar 2 b of the inner ring 2 is provided on the ring direction outer side of the small annular portion 6 of the cage 5, and the small annular portion 6 facing this is provided.
  • the clearance ⁇ between the inner diameter surface of the collar 11 and the outer diameter surface of the small collar 2b of the inner ring 2 is equal to or less than 2.0% of the outer diameter of the small collar 2c of the inner ring 2.
  • the surface roughness parameter Ryni of the surface provided with the microconcave shape randomly and innumerably on the surface of at least the tapered roller 4 is 0.4, um ⁇ Ryni ⁇ 1. 0 Even if the lubricating oil is held evenly on the surface of the tapered roller 4 by setting ⁇ m and the Sk value is 1.6 or less, the tapered roller 4 and the tapered roller 4 can be retained even if the amount of lubricating oil retained inside the bearing is reduced.
  • the contact portion with the inner and outer rings 2 and 3 can be sufficiently lubricated.
  • this distance on the PC D is less than (the number of rollers having a diameter of Z).
  • the cage 5 includes a small annular portion 6 continuous with the small diameter end face of the tapered roller 4, a large annular portion 7 continuous with the large diameter end face of the conical roller 4, and the small annular portion 6 and the large annular portion 7 And a plurality of columns 8 and 8 connecting the two. Then, as shown in FIG. 2, pockets 9 are formed between adjacent pillars 8.
  • the pocket 9 of the cage 5 has a trapezoidal shape, and the portion for storing the small diameter side of the tapered roller 4 is the narrow side, and the portion for storing the large diameter side is the wide side.
  • two notches 10a and 10b are respectively provided in the pillars 8 on both sides and cut from the outer diameter side to the inner diameter side.
  • each notch 10a, 10b are 1. O mm in depth and 4.6 mm in width.
  • the notches 10a and 10b illustrated in the drawings are in the form of grooves cut in the radial direction of the cage 5, the inner diameter side and the outer diameter side of the cage 5 communicate with each other to make the lubricating oil smooth.
  • the shape and dimensions are arbitrary as long as the passage can be permitted. For example, as shown in FIG. 5 and FIG.
  • a radially inward facing collar 11 is provided facing the outer diameter surface of the small ring 2b of the inner ring 2,
  • the gap ⁇ between the inner diameter surface of the collar 11 and the outer diameter surface of the small ring 2b of the inner ring 2 is set to be as narrow as 2.0% or less of the outer diameter of the small ring 2b.
  • a micro-concave-shaped depression is a lander.
  • the surface on which this recess is provided has a surface roughness parameter Ryni of 0.4 ⁇ myRyni ⁇ l.O ⁇ m and a Sk value of 1.6 or less.
  • this interval on the roller PCD is less than (the number of roller diameter Z rollers)
  • the PCD can be made smaller while the number of rollers is increased.
  • the load capacity can be increased, and the maximum contact pressure on the raceway surface can be reduced by force. Therefore, surface-originated exfoliation with extremely short life under severe lubrication conditions Can be prevented.
  • the lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring side passes through the notch 10a.
  • the outer ring 3 can be quickly released to the side, the amount of the lubricating oil leading to the large collar along the raceway surface 2a of the inner ring 2 is reduced, and the amount of the lubricating oil retained inside the bearing is reduced. Torque loss due to fluid resistance is reduced.
  • the lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring side can be extracted from the notch 10 c of the small annular portion 6.
  • the torque loss due to the flow resistance of the lubricating oil can be further reduced by escaping to the outer ring 3 side and reducing the amount of the lubricating oil reaching the large flange along the raceway surface 2a of the inner ring 2 further.
  • the conical groove 4 can be brought into sliding contact with the column portion 8 in a balanced manner.
  • the total area of the notches 10a provided on the narrow side of the pocket 9 is made wider than the total area of the notches 10b provided on the wide side of the trapezoidal pocket 9, It is possible to further reduce the torque loss due to the flow resistance of the lubricating oil by further reducing the amount of the lubricating oil reaching the rail 2c along the raceway surface.
  • a radially inward facing collar 11 facing the outer diameter surface of the small collar of the inner ring 2 is provided on the ring direction outer side of the small annular portion 6 of the cage 5, and the opposed small annular portion 6 is
  • the clearance ⁇ between the inner diameter surface of the collar 11 and the outer diameter surface of the small collar of the inner ring 2 should be 2.0% or less of the outer diameter of the small rod 2b of the inner ring 2
  • At least the surface of the tapered roller 4 is provided with innumerably innumerable micro concave-shaped depressions, and the surface roughness parameter Ryni of the surface provided with the depressions is 0.4, um ⁇ Ryni 0 1. 0
  • ⁇ m and Sk value 1.6 or less the lubricating oil is held evenly on the surface of the tapered roller, and even if the amount of lubricating oil retained inside the bearing is reduced, the tapered roller and the inner and outer ring It can sufficiently lubricate the contact portion with it.
  • FIG. 4B shows the result of bearing life test.
  • "Comparative Example 1" in the “Bearing” column is a typical conventional tapered roller bearing in which the cage and the outer ring are separated
  • “Example 1” is a circular roller bearing of the present invention
  • the test was conducted under severe lubrication and overload conditions.
  • the “example 1” has a long life twice as long as or more than the “comparative example”. Furthermore, the bearing of “Example 2” has a life time of about 5 times or more than that of "Example 1".
  • Example 1 has a long life twice or more that of the “comparative example”. Furthermore, the bearing of “Example 2” has a lifetime of about 5 times or more that of “Example 1”.
  • the cage 5 is convex toward the raceway surface 3a side of the outer ring 3 on the outer diameter surface of the column portion 8 of the cage 5 integrally molded of engineering plastic.
  • the protrusion 5a may be formed.
  • a wedge-shaped oil film is formed between the outer ring raceway surface and the protrusion 5 a of the cage 5. Since this bowl-like oil film generates a dynamic pressure substantially proportional to the rotational speed of the bearing 1, the bearing 1 can be obtained even if the pitch diameter (PCD) of the cage 5 is made larger than in the prior art to make it closer to the raceway surface 3a of the outer ring 3. It is possible to rotate the shaft without causing significant wear or torque loss, and it is possible to increase the number of rollers without difficulty.
  • PCD pitch diameter
  • the torque reduction rate at 2000 rpm which is the maximum rotational speed of the test, is 9.5% in Example A and 11.5% in Example B, and high speed rotation in differential gear, transmission, etc. Excellent torque reduction effect can be obtained even under the use conditions of The torque reduction rates at the rotational speed of 2000 rpm for Comparative Example B and Comparative Example C are 8.0% and 6.5%, respectively.
  • the tapered roller bearing 1 of this modification satisfies the relationship of (roller length in the circumferential direction on the PCD)-(roller diameter ⁇ number of rollers) and roller diameter.
  • the concave surface of the micro concave shape is provided innumerably at random on the entire surface of the tapered roller 4.
  • the surface on which this recess is provided has a surface roughness parameter Ryni of 0.4 ⁇ m ⁇ Ryni .l.O ⁇ m and a Sk value of 1.6 or less.
  • the window angle ⁇ of the column face 5b For the window angle ⁇ of the column face 5b, the lower limit window angle ⁇ min is 55 ° as shown in FIG. 3A, and the upper limit window angle ⁇ max is 80 ° as shown in FIG. 3B.
  • the window angle is the angle formed by the guide surface of the column portion 8 in contact with the circumferential surface of one roller 4.
  • the window angle is as large as about 50 ° for a typical caged conical roller bearing in which the cage 72 is spaced from the outer ring 71.
  • the window angle by setting the window angle larger, the difference between the roller pitch circle diameter and the product of the roller diameter and the number is smaller than the roller diameter ⁇ (Circumferential length on PCD )-(Roller diameter x number of rollers) Roller diameter ⁇ .
  • the lower limit window angle ⁇ min is set to 55 ° or more in order to secure a good contact with the roller, and when the window angle is less than 55 °, the contact with the roller becomes worse. That is, when the window angle is 55 ° or more, the cage strength is secured, and (circumferential length on PCD) (roller diameter X number of rollers) roller diameter, and good contact state is secured. It is possible.
  • the reason why the upper limit window angle ⁇ max is set to 80 ° or less is that the radial pressing force becomes large if it is larger than this, and even if it is a self-lubricating resin material, there is a danger that smooth rotation can not be obtained. Sexuality occurs Ruka.
  • the present invention since the difference between the circumferential length on the roller pitch circle and the product of the number of roller diameters is smaller than the diameter of rollers, this PCD can be reduced while the number of rollers is increased. As a result, it is possible to realize a reduction in torque without lowering the bearing rigidity.
  • the maximum contact pressure on the raceway surface can be reduced by increasing the load capacity, so exfoliation of the surface starting point with extremely short life under severe lubrication conditions can be achieved. It can be prevented.
  • lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring side is As it is possible to quickly escape to the outer ring side through the notch 10, the amount of lubricating oil reaching the large diameter 2c along the raceway surface 2a of the inner ring 2 decreases, and the amount of lubricating oil staying inside the bearing decreases. Torque loss due to lubricating oil flow resistance.
  • the lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring side can be extracted from the notch 10 c of the small annular portion 6.
  • the torque loss due to the flow resistance of the lubricating oil can be further reduced by escaping to the outer ring 3 side and further reducing the amount of the lubricating oil reaching the large rim 2c along the raceway surface 2a of the inner ring 2.
  • the conical cone 4 can be welded in a well-balanced manner.
  • a radially inward facing collar 11 facing the outer diameter surface of the small collar 2 b of the inner ring 2 is provided on the ring direction outside of the small annular portion 6 of the cage 5, and the small annular portion 6 facing this is provided.
  • the clearance ⁇ between the inner diameter surface of the collar 11 and the outer diameter surface of the small collar 2b of the inner ring 2 is equal to or less than 2.0% of the outer diameter of the small collar 2c of the inner ring 2.
  • At least the surface of the tapered roller 4 is provided with innumerably indents of micro concave shape at random.
  • the surface roughness parameter Ryni of the surface provided with this depression is 0.4, um ⁇ Ryni ⁇ 1. 0 ⁇ m, and the Sk value is 1.6 or less. Even when the lubricating oil is uniformly held to reduce the amount of lubricating oil remaining inside the bearing, the contact portion between the tapered roller 4 and the inner and outer rings 2 and 3 can be sufficiently lubricated.
  • Fig. 4C shows the result of bearing life test.
  • “Comparative Example 1” in the “Bearing” column is a typical conventional tapered roller bearing in which the cage and the outer ring are separated
  • “Example 1” is a circle of the present invention.
  • Length in circumferential direction on PCD) roller diameter x number of rollers
  • Example 2 shows (circumferential length on PCD) (roller diameter x number of rings) 2.)
  • a circular roller bearing according to the present invention in which the roller diameter is established and the window angle is in the range of 55 ° to 80 °. The test was conducted under severe lubrication and overload conditions.
  • the “example 1” has a long life twice as long as or more than the “comparative example”. Furthermore, the bearing of “Example 2” has a lifetime of about 5 times or more than that of "Example 1".
  • “Comparative Example 1” in the “Bearing” column is a typical conventional tapered roller bearing in which the cage and the outer ring are separated
  • “Example 1” is the tapered roller bearing of the present invention.
  • (a circumferential length on the PCD) roller diameter x number of rollers) conical roller bearing with only the roller diameter established
  • “Example 2” circumferential length on ⁇ CD) (roller diameter x It is a tapered roller bearing of the present invention in which the number of rollers) diameter is established and the window angle force is in the range of 5 ° to 80 °. The test was conducted under severe lubrication and over load conditions.
  • Example 1 has a life twice as long as or more than the “comparative example”. Furthermore, the bearing of “Example 2” has a lifetime of about 5 times or more that of “Example 1”.
  • the dimensions of “Comparative Example 1”, “Example 1” and “Example 2” are ⁇ 45 ⁇ 81 ⁇ 16 (unit mm), the number of rollers is 24 (“Comparative Example 1”), 27 (“Comparative Example 1”).
  • Example 1 ′ ′, “Example 2”), the oil film parameter ⁇ 0.2.
  • the cage 5 is convex toward the raceway surface 3a of the outer ring 3 on the outer diameter surface of the column portion 8 of the cage 5 integrally molded of engineering plastic. It may be formed with a projecting portion 5a having a shape.
  • a wedge-shaped oil film is formed between the outer ring raceway surface and the projection 5 a of the cage 5. . Since this bowl-like oil film generates a dynamic pressure substantially proportional to the rotational speed of the bearing 1, the bearing 1 can be obtained even if the pitch diameter (PCD) of the cage 5 is made larger than in the prior art to make it closer to the raceway surface 3a of the outer ring 3. It is possible to rotate the shaft without causing significant wear or torque loss, and it is possible to increase the number of rollers without difficulty.
  • PCD pitch diameter
  • a tapered roller bearing (Example A) using the cage shown in Fig. 2 and a tapered roller bearing (Example B) using the cage shown in Fig. 5 were prepared.
  • a tapered roller bearing (comparative example A) using a cage having no notch in the pocket and a conical roller bearing using a cage shown in FIGS. 13A and 13B (comparative examples B and C) Prepared.
  • the dimensions of each tapered roller bearing are 100 mm in outer diameter, 45 mm in inner diameter, and 27.25 mm in width, and the parts other than the notch in the pocket are the same.
  • a torque measurement test using a vertical torque tester was performed on the tapered roller bearings of the example and the comparative example.
  • the test conditions are as follows.
  • Rotation speed 300 to 2000 rpm (lOOrpm pitch)
  • Lubrication conditions Oil bath lubrication (Lubricant: 75 W-90)
  • Example A in which the side pillar portion is provided with a notch, a torque reduction effect superior to those of the comparative examples is recognized, and a notch is provided also in the narrow annular portion on the narrow side, and the notch on the narrow side is formed.
  • Example B in which the total area of is larger than that of the wide side, a further excellent torque reduction effect is recognized.
  • the torque reduction rate at 2000 rpm which is the maximum rotational speed in the test, is 9.5% in Example A and 11.5% in Example B, and high speed rotation in differential gear, transmission, etc. Excellent torque reduction effect can be obtained even under the use conditions of The torque reduction rates at the rotational speed of 2000 rpm for Comparative Example B and Comparative Example C are 8.0% and 6.5%, respectively.
  • the retainer 5 is integrally formed of, for example, super engineering plastic such as PPS, PEEK, PA, PPA, PAI or the like.
  • a protrusion 5a is formed on the outer diameter surface of the cage 5.
  • a projection 5a can be easily formed by integrally forming the cage 5 of engineering plastic.
  • the protruding portion 5a has a convex shape toward the raceway surface 3a side of the outer ring 3 on the outer diameter surface of the column portion 8 of the cage 5.
  • the cross-sectional profile of the column 8 in the transverse direction has an arc shape.
  • the arc-like radius of curvature R2 is smaller than the radius R1 of the raceway surface 3a of the outer ring 3.
  • the curvature radius R2 of the projection 5a is the radius R1 of the raceway surface 3a of the outer ring 3. It is good to form about 70 to 90% of the If it is less than 70%, the inlet opening angle of the scaly oil film becomes too large, and the dynamic pressure decreases. If it exceeds 90%, the inlet angle of the oil film becomes too small and the dynamic pressure similarly decreases. Further, the width W2 of the projection 5a is desirably 50% or more of the width W1 of the column 8 (W2 0 0.5 XW).
  • the height of the projections 5a sufficient to form a good scaly oil film can not be secured. Since the radius R1 of the raceway surface 3a of the outer ring 3 continuously changes from the large diameter side to the small diameter side, the curvature radius R2 of the projection 5a is also matched with the large curvature radius R2 of the large annular portion 7 It is made to change continuously to small curvature radius R2 of small annular part 6.
  • the entire surface of the tapered roller 4 is provided with a micro-concave depression.
  • Innumerably provided in the The surface on which this recess is provided has a surface roughness parameter Ryni of 0.4 ⁇ myRyni ⁇ l.O ⁇ m and a Sk value of 1.6 or less.
  • the tapered roller bearing l (la, lb) is configured as described above, so when the cage 1 (la, lb) rotates and the cage 5 starts to rotate, the outer ring raceway surface and the cage A cocoon-like oil film is formed between the five projections 5a. Since this bowl-like oil film generates a dynamic pressure almost in proportion to the rotational speed of the bearing 1, the bearing can be made even if the pitch diameter (PCD) of the cage 5 is made larger than before and brought closer to the raceway surface 3 a of the outer ring 3. 1 can be rotated without causing significant wear or torque loss, and the number of rollers can be increased without difficulty.
  • PCD pitch diameter
  • the projection 5 a can be formed not only on the outer diameter surface of the column 8 but also on the outer diameter surface of the small annular portion 6 of the cage 5 or the large annular portion 7. Further, as described above, most of the lubricating oil, which also receives the clearance ⁇ force in FIG. 7, passes through the notch 10a provided in the narrow side pillar portion 8 of the bokeh 9 to the outer diameter side of the cage 5. As it moves, the amount of lubricating oil stagnating inside the bearing is significantly reduced. As a result, it is possible to reduce the torque without lowering the bearing rigidity.
  • Fig. 13 shows the test results.
  • the vertical axis of the graph in the same figure represents the torque reduction rate with respect to the torque of Comparative Example 1 in which the pocketless holder is used.
  • the torque reduction effect is also observed in Comparative Example 2 in which a notch is provided in the center of the column of the pocket and in Comparative Example 3 in which a notch is provided in the small annular portion and the large annular portion of the pocket.
  • Example 1 in which the side pillar portion is provided with a notch, a torque reduction effect superior to those of the comparative examples is recognized, and a notch is provided in the narrow annular portion on the narrow side, and the notch on the narrow side is formed.
  • Example 2 in which the total area of is wider than that of the wide side, a further excellent torque reduction effect is recognized.
  • the torque reduction rate at 2000 rpm which is the maximum rotational speed in the test, is 9.5% in Example 1 and 11.5% in Example 2.
  • the high rotational speed of differential gear, transmission, etc. Excellent torque reduction effect can be obtained even under the use conditions of
  • the torque reduction rates at the rotational speed of 2000 rpm in Comparative Example 2 and Comparative Example 3 are 8.0% and 6.5%, respectively.
  • FIG. The tapered roller bearing 1 in the embodiment shown in FIG. 31 has an outer ring 3 having a conical raceway 3a and a conical raceway 2a, and the small diameter end of the raceway 2a is a small rod 2b, With large diameter 2c at large diameter end A plurality of tapered rollers 4 rotatably disposed between the inner ring 2, the raceway surface 3a of the outer ring 3 and the raceway surface 2a of the inner ring 2, and a cage 5 for holding the tapered rollers 4 at regular intervals in the circumferential direction And have.
  • the tapered roller bearing 1 has a shaft (not shown) coaxially attached to the inner ring 2 and an outer ring 3 attached to the inner diameter of a housing (not shown), for example, for supporting the shaft of an automobile transmission It is assembled to the part.
  • the cage 5 is a pressed product formed by pressing from a steel plate (steel pipe) such as SPCC steel plate, and as shown in FIG. 32, a small annular portion 5f, a large annular portion 5e, and a small annular A plurality of column portions 5c axially connecting the portion 5f and the large annular portion 5e, and a plurality of pockets 9 provided between the column portions 5c adjacent in the circumferential direction and rotatably accommodating the tapered rollers 4 Is equipped.
  • a steel plate such as SPCC steel plate
  • Boket 9 is formed in a trapezoidal shape in which the portion for accommodating the small diameter side of the tapered roller is narrow side and the portion for accommodating the large diameter side is wide side, and the narrow side pillar portion and small annular portion
  • the notches 10a, 10c, and 10b are provided on the wide-side pillars, respectively.
  • the small annular portion 5f is provided with a rib extended also at the end thereof and has a shape obtained by bending the rib tip 5d axially inward.
  • a projection 5a that is convex toward the outer ring raceway surface side is formed on the body.
  • the projection 5a has an arc shape in the cross-sectional contour in the transverse direction of the column 5c, and the radius of curvature R2 of the arc is smaller than the radius R1 of the outer ring raceway surface 3a.
  • the radius of curvature R2 of the projection 5a is 70% of the radius R1 of the outer ring raceway 3a. It is good to form about -90%.
  • the width W2 of the protrusion 5a is desirably 50% or more of the width W1 of the column 5c (W2 W 0.5 X Wl). If it is less than 50%, the height of the projections 5a sufficient to form a good scaly oil film can not be secured. Since the radius R1 of the outer ring raceway surface 3a continuously changes from the large diameter side to the small diameter side, the curvature radius R2 of the projection 5a is also matched with the large curvature radius R2 of the large diameter side annular portion 5e.
  • the tapered roller bearing 1 is often used with the lower part immersed in a lubricating oil bath.
  • the lubricating oil of the oil bath is the small diameter end face of the tapered roller 4 It divides into the side and the inner diameter side and flows into the inside of the bearing.
  • the lubricating oil flowing from the outer diameter side of the cage 5 to the outer ring 3 has no obstacle on the raceway surface 3a of the outer ring 3, so along the raceway surface 3a to the large diameter end face 4b of the tapered roller 4 Pass smoothly and flow out from inside the bearing.
  • the lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring 2 side is blocked by the gutter 2 c of the inner ring 2 and tends to stay inside the bearing.
  • the stagnant lubricating oil acts as a flow resistance to the bearing rotation to increase the rotational torque.
  • the lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring 2 side is set by narrowing the gap ⁇ between the rib tip 5 d of the cage 5 and the small ridges 2 b of the inner ring 2.
  • the notch 10c is also provided in the small annular portion 5f on the narrow side of the pocket 6, the lubricating oil flowing into the inner ring 2 can be further moved to the outer ring 3 side, and the rotational torque Further reduction of Also, by setting the total area of the notches 10a and 10c provided on the narrow side of the pocket 6 wider than the total area of the notches 10b provided on the wide side, it is possible to The amount of lubricating oil can be reduced, and the rotational torque can be reduced.
  • the conical groove 4 can be brought into sliding contact with the column 5c in a well-balanced manner.
  • the surface of the cage 5, in particular the outer diameter surface of the cage 5, should be as smooth as possible. That is, while the tapered roller bearing 1 is rotating, a wedge-shaped oil film is formed between the protrusion 5a of the outer diameter surface of the cage 5 and the outer ring raceway surface 3a and the dynamic pressure action causes the protrusion of the outer diameter surface of the cage 5 Although the portion 5a does not contact the outer ring raceway surface 3a, it is low immediately after the tapered roller bearing 1 starts rotating. Because of the number of revolutions, a sufficient scaly oil film can not be formed, and when severe lubrication conditions occur, the projections 5a on the outer diameter surface of the cage 5 may come in contact with the outer ring raceway surface 3a. In preparation for such a case, the outer diameter surface of the cage 5 is coated with, for example, a molybdenum-dioxide-molybdenum (MOS) -based coating
  • MOS molybdenum-dioxide-molybdenum
  • the cage 5 may be made of resin other than steel plate pressed products.
  • resin when assuming use in automobile transmissions, it is desirable to use super engineering plastic such as PPS, PEEK, PPA or polyamide resin in consideration of oil resistance.
  • the resin cage is lighter in weight and has a smaller coefficient of friction than the cage 5 made of steel plate press.
  • the tapered roller bearing 1 of the present invention is configured as described above, and when the bearing 1 rotates and the cage 5 starts to rotate, the space between the outer ring raceway surface 3 a and the projection 5 a of the cage 5 A scaly oil film is formed on the Since this bowl-like oil film generates a dynamic pressure almost in proportion to the rotational speed of the bearing 1, even if the pitch circle diameter of the cage 5 is increased to bring it close to the outer ring raceway surface, It becomes possible to rotate without causing it, and it becomes possible to increase the number of conical rollers without difficulty. As a result, the maximum contact pressure on the raceway surface is reduced, and the failure due to the surface origin peeling can be avoided. If the diameter of the cage 5 can be sufficiently expanded without the above-described dynamic pressure action, it is not necessary to provide the projection 5a.
  • the flow resistance due to the lubricating oil in the bearing may be increased, and the rotational torque may be increased.
  • the notches 10a and 10c are provided in the narrow column portion 5c and the small annular portion 5f of the pocket 6, so that the lubricating oil in the inner portion of the tapered roller bearing 1 circulates well, and the inside of the bearing is improved. Can reduce the amount of lubricating oil accumulated in the Thus, the torque due to the flow resistance of the lubricating oil is reduced.
  • the cage 5 When assembling the tapered roller 4 to the cage 5, the cage 5 is installed with its small annular portion 5f facing downward, and as shown in FIG. 34, the small diameter end face 4a of the tapered roller 4 is directed downward. Then lower it from above and insert an inner force into the pocket 6 as well. Next, as shown in FIG. 35, the small diameter end face 4a of the conical roller 4 is hooked on the edge of the pocket 6, and the tapered roller 4 is inclined radially outward (in the direction indicated by the arrow).
  • the tapered roller bearing 1 having the above configuration, assembly can be performed efficiently and rotational torque can be reduced even if the diameter of the cage 5 is enlarged.
  • the present invention can be variously modified without being limited to the above embodiment. For example, even if there is no notch 10c in the small annular portion 5f of the pocket 6, if the torque reduction effect can be sufficiently obtained, or if there is no notch 10b in the column 5c on the wide side of the pocket 6, the tapered rollers are balanced. By sliding contact with the column 5c
  • FIG. 1A is a cross-sectional view of a tapered roller bearing showing an embodiment of the present invention.
  • FIG. 1B A longitudinal sectional view of the same bearing.
  • FIG. 2 is an exploded plan view of a cage in the tapered roller bearing of FIG.
  • FIG. 3A A partially enlarged sectional view of a tapered roller bearing having a lower window angle.
  • FIG. 3B A partially enlarged cross-sectional view of a tapered roller bearing with an upper window angle.
  • FIG. 4A A diagram showing the results of a life test of a bearing.
  • FIG. 4B A diagram showing the results of a life test of a bearing.
  • FIG. 4C A diagram showing the results of the life test of the bearing.
  • Fig. 5 is a developed plan view similar to Fig. 2 showing a modification of the cage.
  • Fig. 6 is a developed plan view similar to Fig. 2 showing another modified example of the cage.
  • FIG. 7 A partially enlarged view of Fig. 1 (B).
  • FIG. 8 A sectional view of a differential gear using the tapered roller bearing of FIG.
  • ⁇ 9 A partial cross-sectional view of a tapered roller bearing showing a modified example of a cage.
  • FIG. 10 An enlarged sectional view of a column portion of a cage in the bearing of FIG.
  • FIG. 13A An exploded plan view of a cage showing a prior art.
  • FIG. 13B is an exploded plan view of a cage showing the prior art.
  • FIG. 14 is a graph showing the relationship between torque ratio and rigidity ratio, relative to the pitch diameter ratio.
  • FIG. 15A A sectional view of a cage before axial movement.
  • FIG. 15B A sectional view of a cage after axial movement.
  • FIG. 16A Side view of cage of tapered roller bearing at rest.
  • FIG. 18A is a graph showing the metal contact ratio of the comparative example.
  • FIG. 18B is a graph showing the metal contact rate of the example.
  • ⁇ 19 A diagram illustrating a heat treatment method of a tapered roller bearing.
  • [21 A] A microstructure showing the microstructure of the bearing component of the example of the present invention, in particular, austenite grain boundaries.
  • FIG. 21B A microstructure showing a conventional bearing component, in particular, an austenite grain boundary.
  • FIG. 22A A structural view showing austenite grain boundaries illustrating FIG. 21A.
  • FIG. 22B is a structural view showing austenite grain boundaries illustrating FIG. 21B.
  • FIG. 23 A diagram showing a test piece of the static crush strength test (measurement of fracture stress value).
  • FIG. 24A is a schematic view of a rolling fatigue life tester.
  • FIG. 26 A simplified view of the pocket of the cage.
  • ⁇ 31 A sectional view of a conical roller bearing 1 according to the present invention.
  • FIG. 33 A sectional view showing the flow of lubricating oil to the inside of the bearing of the tapered roller bearing 1.
  • Fig. 33 A sectional view for explaining how to insert a tapered roller in a cage.
  • Fig. 35 A sectional view for explaining how to insert a tapered roller into a cage. Explanation of sign

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 本発明は、保持器剛性を低下させることなくころ収容本数を増大可能であって、しかも低トルク化が可能な円錐ころ軸受を提供する。本発明の円錐ころ軸受は、内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと、円錐ころを円周所定間隔にポケット内で保持する保持器とを備える。保持器が、円錐ころの小端面側で連なる小環状部と、円錐ころの大端面側で連なる大環状部と、これら大小環状部を連結する複数の柱部とを有する。隣接する柱部間で、ポケットは、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側となる台形状である。保持器のころ係数は0.94以上とする。

Description

明 細 書
円錐ころ軸受
技術分野
[0001] 本発明は円錐ころ軸受に係り、例えば自走車両のデフアレンシャルやトランスミツシ ヨン等の動力伝達軸を支持する軸受に適用することができる円錐ころ軸受に関する。 背景技術
[0002] 円錐ころ軸受は、外径面の軌道面の両側に小鍔と大鍔が設けられた内輪と、内径 面に軌道面が設けられた外輪と、内輪と外輪の軌道面間に配列された複数の円錐こ ろと、これらの円錐ころをポケットに収納して保持する保持器とからなり、保持器には、 円錐ころの小径端面側で連なる小環状部と、円錐ころの大径端面側で連なる大環状 部と、これらの環状部を連結する複数の柱部とからなり、ポケットが、円錐ころの小径 側を収納する部分が狭幅側、大径側を収納する部分が広幅側となる台形状に形成さ れたものが用いられて 、る。
[0003] 自走車両のデフアレンシャルやトランスミッション等の動力伝達軸を支持する円錐こ ろ軸受は、下部が油浴に漬カつた状態で使用され、その回転に伴って油浴の油が潤 滑油として軸受内部に流入する。このような用途に使用される円錐ころ軸受では、潤 滑油が円錐ころの小径側カゝら軸受内部に流入し、保持器よりも外径側から流入する 潤滑油は外輪の軌道面に沿って円錐ころの大径側へ通過し、保持器よりも内径側か ら流入する潤滑油は内輪の軌道面に沿って円錐ころの大径側へ通過する。
[0004] このように潤滑油が外部力 流入する部位に使用される円錐ころ軸受には、保持器 のポケットに切欠きを設けて、保持器の外径側と内径側とに分かれて流入する潤滑 油がこの切欠きを通過するようにし、軸受内部での潤滑油の流通を向上させるように したものがある(特許文献 1, 2参照)。特許文献 1に記載されたものでは、図 13Aに 示すように、保持器 5のポケット 9間の柱部 8の中央部に切欠き 10dを設け、潤滑油に 混入する異物が軸受内部に滞留しないようにしている。また、特許文献 2に記載され たものでは、図 13Bに示すように、保持器 5のポケット 9の軸方向両端の小環状部 6と 大環状部 7に切欠き 10eを設け、保持器の外径側力も流入する潤滑油が内輪側へ 流れやすくなるようにしている。なお、各図中に記入したポケット 9の各寸法は、後述 するトルク測定試験における比較例に用いたものの値である。
特許文献 1:特開平 09— 32858号公報 (第 3図)
特許文献 2:特開平 11 201149号公報 (第 2図)
特許文献 3:特開平 09— 096352号公報
特許文献 4:特開平 11 0210765公報
特許文献 5:特開 2003 - 343552号公報
特許文献 6:特開 2003 - 28165号公報
発明の開示
発明が解決しょうとする課題
[0005] 上述したように潤滑油が保持器の外径側と内径側とに分かれて軸受内部へ流入す る円錐ころ軸受では、保持器の内径側から内輪側へ流入する潤滑油の割合が多くな ると、トルク損失が大きくなることが分力つた。この理由は、以下のように考えられる。
[0006] すなわち、保持器の外径側から外輪側へ流入する潤滑油は、外輪の内径面には 障害物がないので、その軌道面に沿って円錐ころの大径側へスムーズに通過して軸 受内部から流出するが、保持器の内径側から内輪側へ流入する潤滑油は、内輪の 外径面には大鍔があるので、その軌道面に沿って円錐ころの大径側へ通過したとき に大鍔で堰き止められ、軸受内部に滞留しやすくなる。このため、保持器の内径側か ら内輪側へ流入する潤滑油の割合が多くなると、軸受内部に滞留する潤滑油の量が 多くなり、この滞留する潤滑油が軸受回転に対する流動抵抗となってトルク損失が増 大するものと考えられる。
[0007] したがって、軸受内部に潤滑油が流入する円錐ころ軸受における潤滑油の流動抵 抗によるトルク損失を低減させる必要がある。以上が低トルク化のために油の流動抵 抗を減少させる方法であるが、大幅な低トルク化を行うためには、ころがり粘性抵抗が 低下するように軸受諸元を変更することが必要である。しかしながら、従来の低トルク 化手法 (特許文献 3〜5参照)では、定格荷重を低下させな!/、低トルク化は可能であ る力 軸受剛性はいくらか低下する。
[0008] 一方、ころ直径を減少させな!/、でころ本数を増やすために、保持器を外輪内径面 に接するまで寄せた円錐ころ軸受がある (特許文献 6参照)。この円錐ころ軸受では、 保持器の柱部の外径面に引きずりトルクを抑制するため凹所を形成する。しかし、柱 部に凹所があると板厚が必然的に薄くなつて保持器の剛性が低下する。
[0009] 本発明の目的は、保持器剛性を低下させることなくころ収容本数を増大可能であつ て、し力も低トルク化が可能な円錐ころ軸受を提供することにある。
課題を解決するための手段
[0010] 本発明は、ころ本数を減らさず、あるいは増加させつつ、 PCDを小さくすることによ つて、課題を解決したものである。図 14は円錐ころ軸受においてころピッチ径 (PCD )を変化させた時の剛性比(ー參一)およびトルク比(一〇一)を表したものである。図 14に示すように、 PCDを小さくすると軸受のトルクは大幅に低下する力 軸受剛性は あまり低下しないことが、ころの弾性変形量を計算確認した結果として得られた。そこ で、ころ本数を減らさないか増加させつつ、 PCDを小さくすることによって、剛性を低 下させずにトルクを低減させることができる。
[0011] 本発明の第 1の特徴は、内輪と、外輪と、内輪と外輪との間に転動自在に配された 複数の円錐ころと、円錐ころを円周所定間隔にポケット内で保持する保持器とを備え 、保持器が、円錐ころの小端面側で連なる小環状部と、円錐ころの大端面側で連な る大環状部と、これら大小環状部を連結する複数の柱部とからなり、前記隣接する柱 部間で、前記ポケットが、円錐ころの小径側を収納する部分が狭幅側、大径側を収 納する部分が広幅側となる台形状に形成された円錐ころ軸受において、前記保持器 を、機械的強度、耐油性および耐熱性に優れたエンジニアリング 'プラスチックで構 成し、前記ポケットの狭幅側の柱部に切欠きを設けるとともに、そのポケットの窓角を 55° 以上 80°以下にし、かつ、ころ係数を 0. 94以上としたことである。
[0012] エンジニアリング 'プラスチック製の保持器は、鉄板製保持器に比べ、保持器重量 が軽ぐ自己潤滑性があり、摩擦係数が小さいという特徴がある。このため、軸受内に 介在する潤滑油の効果と相俟って、外輪との接触による磨耗の発生を抑え、軸受起 動時のトルク損失や保持器摩耗の低減に効果がある。
[0013] 以下にエンジニアリング 'プラスチックの代表的なものを掲げる。これらは例示であつ て、エンジニアリング 'プラスチックが以下のものに限定されるものではない。 〔汎用エンジニアリング 'プラスチック〕ポリカーボネート (PC)、ポリアミド 6 (PA6)、ポリ アミド 66 (PA66)、ポリアセタール(POM)、変性ポリフエ-レンエーテル(m— PPE) 、ポリブチレンテレフタレート(PBT)、 GF強化ポリエチレンテレフタレート(GF— PET )、超高分子量ポリエチレン(UHMW— PE)
〔スーパ一'エンジニアリング 'プラスチック〕ポリサルホン(PSF)、ポリエーテルサルホ ン(PES)、ポリフエ-レンサルファイド(PPS)、ポリアリレート(PAR)、ポリアミドイミド( PAI)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマ 一 (LCP)、熱可塑性ポリイミド(TPI)、ポリべンズイミダゾール(PBI)、ポリメチルベン テン (TPX)、ポリ 1, 4—シクロへキサンジメチレンテレフタレート(PCT)、ポリアミド 46 (PA46)、ポリアミド 6T(PA6T)、ポリアミド 9T(PA9T)、ポリアミド 11, 12 (PA11, 12)、フッ素榭脂、ポリフタルアミド (PPA)
窓角とは一つのころの周面に当接する柱部の案内面のなす角度を 、う。この窓角 を 55° 〜80° の範囲とすることにより、ころ係数が 0. 94超の保持器付き円錐ころ軸 受を可能にする。ころ係数は、通常、 0. 94以下である。
ころ係数 γ (ころの充填率)は、次式で定義される。
ころ係数 Ύ = (Ζ · DA) Ζ ( π · PCD)
ここで、 Z :ころ本数、 DA:ころ平均径、 PCD :ころピッチ円径。
[0014] 窓角を 55° 以上としたのは、ころとの良好な接触状態を確保するためであり、 80° 以下としたのは、これ以上大きくなると半径方向への押し付け力が大きくなり、自己潤 滑性の榭脂材であっても円滑な回転が得られなくなる危険性が生じるカゝらである。な お、通常の保持器では窓角は 25° 〜50° である。
[0015] 本発明の円錐ころ軸受は、保持器の台形状ポケットの狭幅側の柱部に切欠きを設 けている。この切欠きによって次のような作用が得られる。すなわち、保持器の内径 側から内輪側へ流入した潤滑油を、この切欠きを通して外輪側へ速やかに逃がすこ とができる。その結果、内輪の軌道面に沿って大鍔に至る潤滑油の量が少なくなり、 軸受内部に滞留する潤滑油の量が減少する。したがって、潤滑油の流動抵抗による トルク損失が低減する。
[0016] 本発明の第 2の特徴は、ポケットの狭幅側の小環状部にも切欠きを設けたことであ る。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤 滑油をこの切欠き力 も外輪側へ逃がしてやることができる。したがって、内輪の軌道 面に沿って大鍔に至る潤滑油の量がより少なくなり、潤滑油の流動抵抗によるトルク 損失がさらに低減する。
[0017] 本発明の第 3の特徴は、ポケットの広幅側の少なくとも柱部に切欠きを設けたことで ある。このような構成を採用することにより、円錐ころをバランスよく柱部に接触させる ことができる。
[0018] 本発明の第 4の特徴は、ポケットの狭幅側に設けた切欠きの合計面積を、ポケット の広幅側に設けた切欠きの合計面積よりも広くしたことである。このような構成を採用 することにより、内輪の軌道面に沿って大鍔に至る潤滑油の量をより少なくして、潤滑 油の流動抵抗によるトルク損失をさらに低減させることができる。
[0019] 本発明の第 5の特徴は、保持器の小環状部の軸方向外側に、内輪の小鍔の外径 面に対向させた径方向内向きのつばを設け、前記つばの内径面と内輪の小鍔の外 径面との間のすきまの上限を小鍔の外径寸法の 2. 0%としたことである。このような構 成を採用することにより、保持器の内径側から内輪側へ流入する潤滑油の量を少なく し、潤滑油の流動抵抗によるトルク損失をより低減させることができる。
[0020] 本発明の第 6の特徴は、少なくとも円錐ころの表面に、微小凹形形状のくぼみをラ ンダムに無数に設け、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 μ ηι≤ Ryni≤l . O /z mとし、かつ、 Sk値を一 1. 6以下としたことである。このような構成を採 用することにより、円錐ころの表面に満遍なく潤滑油を保持させて、軸受内部に滞留 する潤滑油の量を減らしても、円錐ころと内外輪との接触部を十分に潤滑することが できる。
[0021] パラメータ Ryniは、基準長毎最大高さの平均値、すなわち、粗さ曲線力もその平均 線の方向に基準長さだけ抜き取り、この抜き取り部分の山頂線と谷底線との間隔を粗 さ曲線の縦倍率の方向に測定した値である(ISO 4287 : 1997)。また、 Sk値は粗さ 曲線のひずみ度、すなわち、粗さの凹凸分布の非対称性を表す値であり(ISO 428 7 : 1997)、ガウス分布のように対称な分布では Sk値は 0に近くなり、凹凸の凸部を削 除した場合は負の値、逆に凹部を削除した場合は正の値となる。 Sk値のコントロール は、バレル研磨機の回転速度、加工時間、ワーク投入量、研磨チップの種類と大きさ 等を選ぶことにより行うことができ、 Sk値を 1. 6以下とすることにより、無数の微小 凹形形状のくぼみに満遍なく潤滑油を保持することができる。
[0022] 上述した各円錐ころ軸受は、自走車両の動力伝達軸を支持するものに好適である
(本発明の第 7の特徴)。
[0023] 本発明の第 8の特徴は、内輪と、外輪と、内輪と外輪との間に転動自在に配された 複数の円錐ころと、円錐ころを円周所定間隔に保持する保持器とを備え、ころ係数 γ が 0. 94を越え、保持器が、円錐ころの小端面側で連なる小環状部と、円錐ころの大 端面側で連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接 する柱部間に、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分 が広幅側となる台形状のポケットが形成され、ポケットの狭幅側の柱部に切欠きを設 けたことである。
[0024] ころ係数 γ (ころの充填率)は (ころ本数 Xころ平均径) Ζ ( π X PCD)で表されるパ ラメータであって、ころ平均径が一定とした場合、 γの値が大きいほどころ本数が多 いことを意味する。従来の典型的な保持器付き円錐ころ軸受では、ころ係数 γを、通 常 0. 94以下にして設計しているので、ころ係数 γが 0. 94を越えるということは、従 来と比較して、ころ充填率ひ 、ては軸受剛性が高 、ことを意味する。
[0025] また、保持器の台形状ポケットの狭幅側の柱部に切欠きを設けることにより、次のよ うな作用が得られる。すなわち、保持器の内径側カゝら内輪側へ流入した潤滑油を、こ の切欠きを通して外輪側へ速やかに逃がすことができる。その結果、内輪の軌道面 に沿って大つばに至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が 減少する。したがって、潤滑油の流動抵抗によるトルク損失が低減する。
[0026] 本発明の第 9の特徴は、ポケットの狭幅側の小環状部にも切欠きを設けたことであ る。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤 滑油をこの切欠き力 も外輪側へ逃がしてやることができる。したがって、内輪の軌道 面に沿って大つばに至る潤滑油の量がより少なくなり、潤滑油の流動抵抗によるトノレ ク損失がさらに低減する。
[0027] 本発明の第 10の特徴は、ポケットの広幅側の少なくとも柱部に切欠きを設けたであ る。このような構成を採用することにより、円錐ころをバランスよく柱部に接触させること ができる。
[0028] 本発明の第 11の特徴は、ポケットの狭幅側に設けた切欠きの合計面積を、ポケット の広幅側に設けた切欠きの合計面積よりも広くしたことである。このような構成を採用 することにより、内輪の軌道面に沿って大つばに至る潤滑油の量をより少なくして、潤 滑油の流動抵抗によるトルク損失をさらに低減させることができる。
[0029] 本発明の第 12の特徴は、保持器の小環状部の軸方向外側に、内輪の小つばの外 径面に対向させた径方向内向きのつばを設け、前記つばの内径面と内輪の小つば の外径面との間のすきまの上限を小つばの外径寸法の 2. 0%としたことである。この ような構成を採用することにより、保持器の内径側から内輪側へ流入する潤滑油の量 を少なくし、潤滑油の流動抵抗によるトルク損失をより低減させることができる。
[0030] 本発明の第 13の特徴は、少なくとも円錐ころの表面に、微小凹形形状のくぼみをラ ンダムに無数に設け、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 μ ηι≤ Ryni≤l . O /z mとし、かつ、 Sk値を一 1. 6以下としたことである。このような構成を採 用することにより、円錐ころの表面に満遍なく潤滑油を保持させて、軸受内部に滞留 する潤滑油の量を減らしても、円錐ころと内外輪との接触部を十分に潤滑することが できる。
[0031] この発明によれば、保持器の台形状ポケットの狭幅側の柱部に外径側から内径側 まで切り通した切欠きを設けることにより、保持器の内径側カゝら内輪側へ流入した潤 滑油を、この切欠きを通して外輪側へ速やかに逃がすことができるため、内輪の軌道 面に沿って大つばに至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量 が減少して、潤滑油の流動抵抗によるトルク損失が低減する。また、ころ係数 γが 0. 94を越える設定とすることにより剛性の低下を防止することができる。
[0032] 本発明は、外輪と保持器との接触を回転中のみ避けるような保持器寸法とすること により、ころ係数 γを γ > 0. 94とすることを可能にする。すなわち、本発明の第 14の 特徴は、内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと 、円錐ころを円周所定間隔にポケット内で保持する保持器とを備え、保持器が、円錐 ころの小端面側で連なる小環状部と、円錐ころの大端面側で連なる大環状部と、これ ら大小環状部を連結する複数の柱部とからなり、前記隣接する柱部間で、前記ポケッ トが、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側 となる台形状に形成された円錐ころ軸受において、前記ポケットの狭幅側の柱部に 切欠きを設けるとともに、前記保持器の外径を、保持器を半径方向に移動させると保 持器外周面が外輪軌道面に当接するが、軸受回転中は保持器中心が軸中心に移 動して保持器外周面と外輪軌道面との間にすきまが形成される寸法とし、かつ、ころ 係数を 0. 94以上としたものである。
ころ係数 γ (ころの充填率)は、次式で定義される。
ころ係数 Ύ = (Ζ · DA) Ζ ( π · PCD)
ここで、 Z :ころ本数、 DA:ころ平均径、 PCD :ころピッチ円径。
[0033] 本発明の円錐ころ軸受は、保持器の台形状ポケットの狭幅側の柱部に切欠きを設 けている。この切欠きによって次のような作用が得られる。すなわち、保持器の内径 側から内輪側へ流入した潤滑油を、この切欠きを通して外輪側へ速やかに逃がすこ とができる。その結果、内輪の軌道面に沿って大鍔に至る潤滑油の量が少なくなり、 軸受内部に滞留する潤滑油の量が減少する。したがって、潤滑油の流動抵抗による トルク損失が低減する。
[0034] 保持器は鉄板製の他、榭脂製すなわちエンジニアリング 'プラスチック製としてもよ い。榭脂製保持器は鉄板製に比べ保持器重量が軽ぐ自己潤滑性があり、摩擦係数 力 S小さいという特徴があるため、軸受内に介在する潤滑油の効果と相俟って、外輪と の接触による摩耗の発生を抑えることが可能になる。また、榭脂製保持器は重量が 軽く摩擦係数が小さ 、ため、軸受起動時のトルク損失や保持器摩耗の低減に好適で ある。
[0035] 本発明の第 15の特徴は、ポケットの狭幅側の小環状部にも切欠きを設けたことであ る。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤 滑油をこの切欠き力 も外輪側へ逃がしてやることができる。したがって、内輪の軌道 面に沿って大鍔に至る潤滑油の量がより少なくなり、潤滑油の流動抵抗によるトルク 損失がさらに低減する。
[0036] 本発明の第 16の特徴は、ポケットの広幅側の少なくとも柱部に切欠きを設けたこと である。このような構成を採用することにより、円錐ころをバランスよく柱部に接触させ ることがでさる。
[0037] 本発明の第 17の特徴は、ポケットの狭幅側に設けた切欠きの合計面積を、ポケット の広幅側に設けた切欠きの合計面積よりも広くしたことである。このような構成を採用 することにより、内輪の軌道面に沿って大鍔に至る潤滑油の量をより少なくして、潤滑 油の流動抵抗によるトルク損失をさらに低減させることができる。
[0038] 本発明の第 18の特徴は、保持器の小環状部の軸方向外側に、内輪の小鍔の外径 面に対向させた径方向内向きのつばを設け、前記つばの内径面と内輪の小鍔の外 径面との間のすきまの上限を小鍔の外径寸法の 2. 0%としたことである。このような構 成を採用することにより、保持器の内径側から内輪側へ流入する潤滑油の量を少なく し、潤滑油の流動抵抗によるトルク損失をより低減させることができる。
[0039] 本発明の第 19の特徴は、少なくとも円錐ころの表面に、微小凹形形状のくぼみをラ ンダムに無数に設け、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 μ ηι≤ Ryni≤l . O /z mとし、かつ、 Sk値を一 1. 6以下としたことである。このような構成を採 用することにより、円錐ころの表面に満遍なく潤滑油を保持させて、軸受内部に滞留 する潤滑油の量を減らしても、円錐ころと内外輪との接触部を十分に潤滑することが できる。
[0040] 本発明によれば、軸受剛性を低下させることなぐ低トルク化を実現することができ る。すなわち、円錐ころ軸受のころ係数 γを γ > 0. 94にすることにより、軌道面の最 大面圧を低下させることができるため、過酷潤滑条件下での極短寿命での表面起点 剥離を防止することができる。また、保持器の台形状ポケットの狭幅側の柱部に外径 側から内径側まで切り通した切欠きを設けることにより、保持器の内径側カゝら内輪側 へ流入した潤滑油を、この切欠きを通して外輪側へ速やかに逃がすことができるため 、内輪の軌道面に沿って大鍔に至る潤滑油の量が少なくなり、軸受内部に滞留する 潤滑油の量が減少して、潤滑油の流動抵抗によるトルク損失が低減する。
[0041] 本発明の第 20の特徴は、内輪と、外輪と、内輪と外輪との間に転動自在に配され た複数の円錐ころと、円錐ころを円周所定間隔に保持する保持器とを備えた円錐こ ろ軸受において、ころ係数 γが 0. 94を越え、保持器が、円錐ころの小径端面側で連 なる小環状部と、円錐ころの大径端面側で連なる大環状部と、これらの環状部を連結 する複数の柱部とからなり、隣接する柱部間に、円錐ころの小径側を収納する部分が 狭幅側、大径側を収納する部分が広幅側となる台形状のポケットが形成され、ポケッ トの狭幅側の柱部に切欠きを設けたことである。
[0042] 前述したように、図 14に関連して、 PCDを小さくすると軸受のトルクは大幅に低下 するが、軸受剛性はあまり低下しないことが、ころの弾性変形量を計算確認した結果 として得られた。この知見を基に、ころ係数 γが 0. 94を越えるようにすることによって 、ころ本数を増加させつつころ PCDを小さくできることを着想した。これにより、軸受 剛性を低下させることなぐ低トルク化を実現できる。また、ころ本数を増加させること によって、負荷容量がアップするば力りでなぐ軌道面の最大面圧を低下させることが できる。
[0043] また、保持器の台形状のポケットの狭幅側の柱部に切欠きを設けることにより、次の ような作用が得られる。すなわち、保持器の内径側カゝら内輪側へ流入した潤滑油を、 この切欠きを通して外輪側へ速やかに逃がすことができる。
[0044] 本発明の第 21の特徴は、ポケットの狭幅側の小環状部にも切欠きを設けたことであ る。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤 滑油をこの切欠き力 も外輪側へ逃がしてやることができる。
[0045] 本発明の第 22の特徴は、ポケットの広幅側の少なくとも柱部に切欠きを設けたこと である。
[0046] 本発明の第 23の特徴は、ポケットの狭幅側に設けた切欠きの合計面積を、ポケット の広幅側に設けた切欠きの合計面積よりも広くしたことである。
[0047] 本発明の第 24の特徴は、保持器の小環状部の軸方向外側に、内輪の小つばの外 径面に対向させた径方向内向きのつばを設け、前記つばの内径面と内輪の小つば の外径面との間のすきまの上限を小つばの外径寸法の 2. 0%としたことである。
[0048] 本発明の第 25の特徴は、少なくとも円錐ころの表面に、微小凹形形状のくぼみをラ ンダムに無数に設け、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 μ ηι≤ Ryni≤l . O /z mとし、かつ、 Sk値を 1. 6以下としたことである。
[0049] この発明によれば、ころ係数 γが 0. 94を越えるようにすることによって、ころ本数を 増加させつつこの PCDを小さくできる。これにより、軸受剛性を低下させることなぐ 低トルク化を実現できる。また、ころ本数を増加させることによって、負荷容量がアップ するばかりでなぐ軌道面の最大面圧を低下させることができるため、過酷潤滑条件 下での極短寿命での表面起点剥離を防止することができる。したがって、デフアレン シャルの小型化、長寿命化に貢献できる。
[0050] また、保持器の台形状ポケットの狭幅側の柱部に切欠きを設けることにより、保持器 の内径側から内輪側へ流入した潤滑油を、この切欠きを通して外輪側へ速やかに逃 がすことができるため、内輪の軌道面に沿って大つばに至る潤滑油の量が少なくなり 、軸受内部に滞留する潤滑油の量が減少して、潤滑油の流動抵抗によるトルク損失 が低減する。
[0051] 前記ポケットの狭幅側の小環状部にも切欠きを設けることにより、保持器の内径側 から内輪側へ流入する潤滑油をこの小環状部の切欠きからも外輪側へ逃がし、内輪 の軌道面に沿って大つばまで到る潤滑油の量をより少なくして、潤滑油の流動抵抗 によるトルク損失をさらに低減することができる。
[0052] 前記ポケットの広幅側の少なくとも柱部に切欠きを設けることにより、円錐ころをバラ ンスよく柱部に摺接させることができる。
[0053] 前記ポケットの狭幅側に設けた切欠きの合計面積を、台形状ポケットの広幅側に設 けた切欠きの合計面積よりも広くすることによつても、内輪の軌道面に沿って大つば まで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク損失をさらに低 減することができる。
[0054] 前記保持器の小環状部の輪方向外側に、内輪の小つばの外径面に対向させた径 方向内向きのつばを設け、この対向させた小環状部のつばの内径面と内輪の小つ ばの外径面との隙間を、内輪の小つばの外径寸法の 2. 0%以下とすることにより、保 持器の内径側から内輪側へ流入する潤滑油の量を少なくし、潤滑油の流動抵抗によ るトルク損失をより低減することができる。
[0055] 少なくとも前記円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け 、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l. 0 mとし 、かつ、 Sk値を 1. 6以下とすることにより、円錐ころの表面に満遍なく潤滑油を保 持させて、軸受内部に滞留する潤滑油の量を減らしても、円錐ころと内外輪との接触 部を十分に潤滑することができる。
[0056] 本発明の第 26の特徴は、内輪と、外輪と、内輪と外輪との間に転動自在に配され た複数の円錐ころと、円錐ころを円周所定間隔に保持する保持器とを備えた円錐こ ろ軸受において、ころ係数 γが 0. 94を越え、保持器が、円錐ころの小径端面側で連 なる小環状部と、円錐ころの大径端面側で連なる大環状部と、これらの環状部を連結 する複数の柱部とからなり、隣接する柱部間に、円錐ころの小径側を収納する部分が 狭幅側、大径側を収納する部分が広幅側となる台形状のポケットが形成され、ポケッ トの狭幅側の柱部に切欠きを設けたことである。
[0057] また、保持器の台形状のポケットの狭幅側の柱部に切欠きを設けることにより、次の ような作用が得られる。すなわち、保持器の内径側カゝら内輪側へ流入した潤滑油を、 この切欠きを通して外輪側へ速やかに逃がすことができる。
[0058] 本発明の第 27の特徴は、ポケットの狭幅側の小環状部にも切欠きを設けたことであ る。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤 滑油をこの切欠き力 も外輪側へ逃がしてやることができる。
[0059] 本発明の第 28の特徴は、ポケットの広幅側の少なくとも柱部に切欠きを設けたこと である。
[0060] 本発明の第 29の特徴は、ポケットの狭幅側に設けた切欠きの合計面積を、ポケット の広幅側に設けた切欠きの合計面積よりも広くしたことである。
[0061] 本発明の第 30の特徴は、保持器の小環状部の軸方向外側に、内輪の小つばの外 径面に対向させた径方向内向きのつばを設け、前記つばの内径面と内輪の小つば の外径面との間のすきまの上限を小つばの外径寸法の 2. 0%としたことである。
[0062] 本発明の第 31の特徴は、少なくとも円錐ころの表面に、微小凹形形状のくぼみをラ ンダムに無数に設け、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 μ ηι≤ Ryni≤l . O /z mとし、かつ、 Sk値を 1. 6以下としたことである。
[0063] また、保持器の台形状ポケットの狭幅側の柱部に切欠きを設けることにより、保持器 の内径側から内輪側へ流入した潤滑油を、この切欠きを通して外輪側へ速やかに逃 がすことができるため、内輪の軌道面に沿って大つばに至る潤滑油の量が少なくなり 、軸受内部に滞留する潤滑油の量が減少して、潤滑油の流動抵抗によるトルク損失 が低減する。
[0064] 前記ポケットの狭幅側の小環状部にも切欠きを設けることにより、保持器の内径側 から内輪側へ流入する潤滑油をこの小環状部の切欠きからも外輪側へ逃がし、内輪 の軌道面に沿って大つばまで到る潤滑油の量をより少なくして、潤滑油の流動抵抗 によるトルク損失をさらに低減することができる。
[0065] 前記ポケットの広幅側の少なくとも柱部に切欠きを設けることにより、円錐ころをバラ ンスよく柱部に摺接させることができる。
[0066] 前記ポケットの狭幅側に設けた切欠きの合計面積を、台形状ポケットの広幅側に設 けた切欠きの合計面積よりも広くすることによつても、内輪の軌道面に沿って大つば まで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク損失をさらに低 減することができる。
[0067] 前記保持器の小環状部の輪方向外側に、内輪の小つばの外径面に対向させた径 方向内向きのつばを設け、この対向させた小環状部のつばの内径面と内輪の小つ ばの外径面との隙間を、内輪の小つばの外径寸法の 2. 0%以下とすることにより、保 持器の内径側から内輪側へ流入する潤滑油の量を少なくし、潤滑油の流動抵抗によ るトルク損失をより低減することができる。
[0068] 少なくとも前記円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け 、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l. 0 mとし 、かつ、 Sk値を 1. 6以下とすることにより、円錐ころの表面に満遍なく潤滑油を保 持させて、軸受内部に滞留する潤滑油の量を減らしても、円錐ころと内外輪との接触 部を十分に潤滑することができる。
[0069] 本発明の第 32の特徴は、内輪と、外輪と、内輪と外輪との間に転動自在に配され た複数の円錐ころと、円錐ころを円周所定間隔に保持する保持器とからなり、ころ係 数 γが 0. 94を越え、少なくとも前記円錐ころの表面に、微小凹形状のくぼみをラン ダムに無数に設け、前記くぼみを設けた表面の面粗さパラメータ Ryniが 0.
yni≤l. O /z mの範囲内で、かつ、 Sk値が 1. 6以下であり、前記保持器が、円錐こ ろの小端面側で連なる小環状部と、円錐ころの大端面側で連なる大環状部と、これら の環状部を連結する複数の柱部とからなり、隣接する柱部間に、円錐ころの小径側 を収納する部分が狭幅側、大径側を収納する部分が広幅側となった台形状のポケッ トが形成してあり、ポケットの狭幅側の柱部に切欠きが設けてあることである。
[0070] 少なくとも円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け、この くぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 ,u m≤Ryni≤ 1. O /z mとし、かつ 、 Sk値を 1. 6以下とすることにより、円錐ころの表面に満遍なく潤滑油を保持させ て、軸受内部に滞留する潤滑油の量を減らしても、円錐ころと内外輪との接触部を十 分〖こ?閏滑することができる。
[0071] 前述のように、 Sk値を幅方向、円周方向とも 1. 6以下とすることにより、微小凹形 状のくぼみが油溜りとなり、満遍なく潤滑油を保持することができる。したがって、圧縮 されても滑り方向、直角方向への油のリークは少なぐ油膜形成に優れ、油膜形成状 況は良好で、表面損傷を極力抑える効果がある。
[0072] 保持器の台形状ポケットの狭幅側の柱部に切欠きを設けることにより、次のような作 用が得られる。すなわち、保持器の内径側から内輪側へ流入した潤滑油を、この切 欠きを通して外輪側へ速やかに逃がすことができる。その結果、内輪の軌道面に沿 つて大つばに至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が減少 する。したがって、潤滑油の流動抵抗によるトルク損失が低減する。
[0073] 本発明の第 33の特徴は、前記くぼみを設けた面の面粗さパラメータ Rymaxが 0. 4 〜1. 0の範囲内であることである。パラメータ Rymaxは基準長毎最大高さの最大値で ある(IS04287 : 1997)。
[0074] 本発明の第 34の特徴は、前記くぼみを設けた面の面粗さをパラメータ Rqniで表示 したとき、軸方向面粗さ Rqni (L)と円周方向面粗さ Rqni (C)との比の値 Rqni (L) /R qni (C)が 1. 0以下であることである。パラメータ Rqniは、粗さ中心線力も粗さ曲線ま での高さの偏差の自乗を測定長さの区間で積分し、その区間で平均した値の平方根 であり、別名自乗平均平方根ともいう。 Rqniは拡大記録した断面曲線、粗さ曲線から 数値計算で求められ、粗さ計の触針を幅方向および円周方向に移動させて測定す る。
[0075] 本発明の第 35の特徴は、前記保持器のポケットの窓角が 55° 以上 80° 以下であ ることである。窓角とは、ころの転動面と接する柱部の側面がなす角度をいう。窓角を
55° 以上としたのは、ころとの良好な接触状態を確保するためである。窓角を 80° 以下としたのは、これ以上大きくなると半径方向への押し付け力が大きくなり、自己潤 滑性の榭脂材であっても円滑な回転が得られなくなる危険性が生じるカゝらである。な お、通常の保持器では窓角は 25° 〜50° となっている。
[0076] 本発明の第 36の特徴は、前記保持器を機械的強度、耐油性および耐熱性に優れ たエンジニアリング 'プラスチックで形成したことである。保持器に榭脂材を使用するこ とにより、鉄板製保持器に比べ、保持器重量が軽ぐ自己潤滑性があり、摩擦係数が 小さいという特徴があるため、軸受内に介在する潤滑油の効果と相俟って、外輪との 接触による摩耗の発生を抑えることが可能になる。これらの榭脂は鋼板と比べると重 量が軽く摩擦係数が小さいため、軸受起動時のトルク損失や保持器摩耗の低減に好 適である。
[0077] 本発明の第 37の特徴は、ポケットの狭幅側の小環状部にも切欠きが設けてあること である。このような構成を採用することにより、保持器の内径側から内輪側へ流入する 潤滑油をこの切欠き力 も外輪側へ逃がしてやることができる。したがって、内輪の軌 道面に沿って大つばに至る潤滑油の量がより少なくなり、潤滑油の流動抵抗によるト ルク損失がさらに低減する。
[0078] 本発明の第 38の特徴は、ポケットの広幅側の少なくとも柱部に切欠きが設けてある ことである。このような構成を採用することにより、円錐ころをバランスよく柱部に接触さ せることができる。
[0079] 本発明の第 39の特徴は、ポケットの狭幅側に設けた切欠きの合計面積が、ポケット の広幅側に設けた切欠きの合計面積よりも広いことである。このような構成を採用す ることにより、内輪の軌道面に沿って大つばに至る潤滑油の量をより少なくして、潤滑 油の流動抵抗によるトルク損失をさらに低減させることができる。
[0080] 本発明の第 40の特徴は、保持器の小環状部の軸方向外側に、内輪の小つばの外 径面に対向させた径方向内向きのつばが設けてあり、前記つばの内径面と内輪の小 つばの外径面との間のすきまの上限を小つばの外径寸法の 2. 0%であることである 。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤滑 油の量を少なくし、潤滑油の流動抵抗によるトルク損失をより低減させることができる
[0081] この発明によれば、軸受剛性を低下させることなぐ低トルク化を実現することができ る。すなわち、保持器の台形状ポケットの狭幅側の柱部に外径側から内径側まで切り 通した切欠きを設けることにより、保持器の内径側カゝら内輪側へ流入した潤滑油を、 この切欠きを通して外輪側へ速やかに逃がすことができるため、内輪の軌道面に沿 つて大つばに至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が減少 して、潤滑油の流動抵抗によるトルク損失が低減する。
[0082] ころ係数 γが 0. 94を越える設定とすることにより剛性の低下を防止することができ る。また、ころ係数 γが 0. 94を越える設定とすることにより、負荷容量がアップするば 力りでなぐ軌道面の最大面圧を低下させることがで
きるため、過酷潤滑条件での極短寿命での表面起点剥離を防止することができる。
[0083] さらに、少なくとも円錐ころの表面に、微小凹形状のくぼみをランダムに無数に設け ること〖こよって、油膜形成能力が向上し、低粘度 ·希薄潤滑下で極端に油膜厚さが薄 い条件下でも長寿命を得ることができる。とくに、くぼみを設けた面の面粗さパラメ一 タ Ryniを 0. 4 ^ πι≤Κγηί≤1. O /z mの範囲内に設定し、従来よりも小さく抑えたこと により、希薄潤滑下でも油膜切れを防ぐことが可能で、従来品に比べ、極端に油膜厚 さが薄い条件下でも長寿命を得ることができる。 Sk値については、—1. 6以下が表 面凹部の形状、分布が加工条件により油膜形成に有利な範囲である。
[0084] 本発明の第 41の特徴は、内輪と、外輪と、内輪と外輪との間に転動自在に配され た複数の円錐ころと、円錐ころを円周所定間隔に保持する保持器とからなり、ころ係 数 γが 0. 94を越え、前記内輪、外輪および転動体のうち少なくともいずれか一つの 部材が、窒素富化層を有し、かつ、前記窒素富化層におけるオーステナイト結晶粒 の粒度番号が 10番を越える範囲にあり、前記保持器が、円錐ころの小端面側で連な る小環状部と、円錐ころの大端面側で連なる大環状部と、これらの環状部を連結する 複数の柱部とからなり、隣接する柱部間に、円錐ころの小径側を収納する部分が狭 幅側、大径側を収納する部分が広幅側となる台形状のポケットが形成してあり、ボケ ットの狭幅側の柱部に切欠きが設けてあることである。 [0085] 窒素富化層は、軌道輪 (外輪もしくは内輪)または転動体の表層に形成された窒素 含有量が増加した層であって、たとえば浸炭窒化、窒化、浸窒などの処理によって形 成させることができる。窒素富化層における窒素含有量は、好ましくは 0. 1%〜0. 7 %の範囲である(本発明の第 42の特徴)。
[0086] 窒素含有量が 0. 1%より少ないと効果がなぐとくに異物混入条件での転動寿命が 低下する。窒素含有量が 0. 7%より多いと、ボイドと呼ばれる空孔ができたり、残留ォ ーステナイトが多くなりすぎて硬度が出なくなったりして短寿命になる。軌道輪に形成 された窒素富化層については、窒素含有量は、研削後の軌道面の表層 50 mにお ける値であって、たとえば PMA (波長分散型 X線マイクロアナライザ)で測定すること ができる。
[0087] また、オーステナイト結晶粒の粒度番号が 10番を越えるほどオーステナイト粒径が 微細であることにより、転動疲労寿命を大幅に改良することができる。オーステナイト 粒径の粒度番号が 10番以下では、転動疲労寿命は大きく改善されないので、 10番 を越える範囲とする。通常、 11番以上とする。オーステナイト粒径は細かいほど望ま しいが、通常、 13番を越える粒度番号を得ることは難しい。なお、上記の軸受部品の オーステナイト粒は、窒素富化層を有する表層部でも、それより内側の内部でも変化 しない。したがって、上記の結晶粒度番号の範囲の対象となる位置は、表層部およ び内部とする。オーステナイト結晶粒は、たとえば焼入れ処理を行った後も焼入れ直 前のオーステナイト結晶粒界の痕跡が残っており、その痕跡に基づいた結晶粒をい
[0088] また、保持器の台形状ポケットの狭幅側の柱部に切欠きを設けることにより、次のよ うな作用が得られる。すなわち、保持器の内径側カゝら内輪側へ流入した潤滑油を、こ の切欠きを通して外輪側へ速やかに逃がすことができる。その結果、内輪の軌道面 に沿って大つばに至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が 減少する。したがって、潤滑油の流動抵抗によるトルク損失が低減する。
[0089] 本発明の第 43の特徴は、ポケットの窓角が 55° 以上 80° 以下であることである。
窓角とは、ころの転動面と接する柱部の側面がなす角度をいう。窓角を 55° 以上とし たのは、ころとの良好な接触状態を確保するためである。窓角を 80° 以下としたのは 、これ以上大きくなると半径方向への押し付け力が大きくなり、自己潤滑性の榭脂材 であっても円滑な回転が得られなくなる危険性が生じるからである。なお、通常の保 持器では窓角は 25° 〜50° となっている。
[0090] 本発明の第 44の特徴は、前記保持器が機械的強度、耐油性および耐熱性に優れ たエンジニアリング ·プラスチックで形成してあることである。保持器に榭脂材を使用 することにより、鉄板製保持器に比べ、保持器重量が軽ぐ自己潤滑性があり、摩擦 係数が小さいという特徴があるため、軸受内に介在する潤滑油の効果と相俟って、外 輪との接触による摩耗の発生を抑えることが可能になる。これらの榭脂は鋼板と比べ ると重量が軽く摩擦係数が小さいため、軸受起動時のトルク損失や保持器摩耗の低 減に好適である。
[0091] 本発明の第 45の特徴は、ポケットの狭幅側の小環状部にも切欠きが設けてあること である。このような構成を採用することにより、保持器の内径側から内輪側へ流入する 潤滑油をこの切欠き力 も外輪側へ逃がしてやることができる。したがって、内輪の軌 道面に沿って大つばに至る潤滑油の量がより少なくなり、潤滑油の流動抵抗によるト ルク損失がさらに低減する。
[0092] 本発明の第 46の特徴は、ポケットの広幅側の少なくとも柱部に切欠きが設けてある ことである。このような構成を採用することにより、円錐ころをバランスよく柱部に接触さ せることができる。
[0093] 本発明の第 47の特徴は、ポケットの狭幅側に設けた切欠きの合計面積が、ポケット の広幅側に設けた切欠きの合計面積よりも広いことである。このような構成を採用す ることにより、内輪の軌道面に沿って大つばに至る潤滑油の量をより少なくして、潤滑 油の流動抵抗によるトルク損失をさらに低減させることができる。
[0094] 本発明の第 48の特徴は、保持器の小環状部の軸方向外側に、内輪の小つばの外 径面に対向させた径方向内向きのつばが設けてあり、前記つばの内径面と内輪の小 つばの外径面との間のすきまの上限が小つばの外径寸法の 2. 0%であることである 。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤滑 油の量を少なくし、潤滑油の流動抵抗によるトルク損失をより低減させることができる [0095] 本発明の第 49の特徴は、少なくとも円錐ころの表面に、微小凹形状のくぼみをラン ダムに無数に設け、このくぼみを設けた表面の面粗さパラメータ Ryniが 0.
yni≤l. O /z mで、かつ、 Sk値が 1. 6以下であることである。このような構成を採用 することにより、円錐ころの表面に満遍なく潤滑油を保持させて、軸受内部に滞留す る潤滑油の量を減らしても、円錐ころと内外輪との接触部を十分に潤滑することがで きる。
[0096] 上述の円錐ころ軸受は自走車両の動力伝達軸を支持する軸受として好適である( 本発明の第 50の特徴)。
[0097] この発明によれば、軸受剛性を低下させることなぐ低トルク化を実現することができ る。すなわち、保持器の台形状ポケットの狭幅側の柱部に外径側から内径側まで切り 通した切欠きを設けることにより、保持器の内径側カゝら内輪側へ流入した潤滑油を、 この切欠きを通して外輪側へ速やかに逃がすことができるため、内輪の軌道面に沿 つて大つばに至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が減少 して、潤滑油の流動抵抗によるトルク損失が低減する。
[0098] ころ係数 γが 0. 94を越える設定とすることにより剛性の低下を防止することができ る。また、ころ係数 γを γ >0. 94にすることにより、負荷容量がアップするば力りでな ぐ軌道面の最大面圧を低下させることができるため、過酷潤滑条件下での極短寿 命での表面起点剥離を防止することができる。
[0099] さらに、この発明の円錐ころ軸受は、窒素富化層を形成した上で、オーステナイト粒 径を粒度番号で 11番以上に微細化したため、転動疲労寿命が大きく改善され、優 れた耐割れ強度や耐経年寸法変化を得ることができる。
[0100] 本発明の第 51の特徴は、内輪と、外輪と、内輪と外輪との間に転動自在に配され た複数の円錐ころと、円錐ころを円周所定間隔に保持する保持器とを備えた円錐こ ろ軸受において、保持器が、円錐ころの小径端面側で連なる小環状部と、円錐ころ の大径端面側で連なる大環状部と、これらの環状部を連結する複数の柱部とからなり 、隣接する柱部間に、円錐ころの小径側を収納する部分が狭幅側、大径側を収納す る部分が広幅側となる台形状のポケットが形成されるとともに、ポケットの狭幅側の柱 部に切欠きを設け、さらにころ係数が 0. 94を越え、ポケット柱面のころの当たり幅が 左右共にポケット軸方向中央位置に対しポケット長さの 10%以上確保されていること である。
[0101] ポケット柱面のころの当たり幅を、左右共にポケット軸方向中央位置に対しポケット 長さの 10%以上確保して、ころ力も保持器に作用する荷重が局部的に集中したり、 偏って負荷されたりすることによって、異常な摩耗が発生したり、応力集中による破損 が発生したりしないようにしてある。これらにより、ころ係数 γを γ > 0. 94とすることが 可能となった。
[0102] 本発明では、ころ係数 γが 0. 94を越えるようにすることによって、ころ本数を増加さ せつつころ PCDを小さくできる。これにより、軸受剛性を低下させることなぐ低トルク 化を実現できる。また、ころ本数を増加させることによって、負荷容量がアップするば 力りでなぐ軌道面の最大面圧を低下させることができる。
[0103] また、保持器の台形状のポケットの狭幅側の柱部に切欠きを設けることにより、保持 器の内径側から内輪側へ流入した潤滑油を、この切欠きを通して外輪側へ速やかに 逃がすことができる。
[0104] 本発明の第 52の特徴は、ポケットの狭幅側の小環状部にも切欠きを設けたことであ る。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤 滑油をこの切欠き力 も外輪側へ逃がしてやることができる。
[0105] 本発明の第 53の特徴は、ポケットの広幅側の少なくとも柱部に切欠きを設けたこと である。
[0106] 本発明の第 54の特徴は、ポケットの狭幅側に設けた切欠きの合計面積を、ポケット の広幅側に設けた切欠きの合計面積よりも広くしたことである。
[0107] 本発明の第 55の特徴は、保持器の小環状部の軸方向外側に、内輪の小つばの外 径面に対向させた径方向内向きのつばを設け、前記つばの内径面と内輪の小つば の外径面との間のすきまの上限を小つばの外径寸法の 2. 0%としたことである。
[0108] 本発明の第 56の特徴は、少なくとも円錐ころの表面に、微小凹形形状のくぼみをラ ンダムに無数に設け、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 μ ηι≤ Ryni≤l . O /z mとし、かつ、 Sk値を 1. 6以下としたことである。
[0109] 本発明の第 57の特徴は、保持器が軸中心に位置した状態では保持器外径と外輪 軌道面間にすきまが存在していることである。すきまが存在する保持器寸法とするこ とにより、軸受運転中には外輪と保持器との接触が殆ど発生しな 、ようにして 、る。
[0110] この発明によれば、ころ係数 γが 0. 94を越えるようにすることによって、ころ本数を 増加させつつこの PCDを小さくできる。これにより、軸受剛性を低下させることなぐ 低トルク化を実現できる。また、ころ本数を増加させることによって、負荷容量がアップ するばかりでなぐ軌道面の最大面圧を低下させることができるため、過酷潤滑条件 下での極短寿命での表面起点剥離を防止することができる。
[0111] また、保持器の台形状ポケットの狭幅側の柱部に切欠きを設けることにより、保持器 の内径側から内輪側へ流入した潤滑油を、この切欠きを通して外輪側へ速やかに逃 がすことができるため、内輪の軌道面に沿って大つばに至る潤滑油の量が少なくなり 、軸受内部に滞留する潤滑油の量が減少して、潤滑油の流動抵抗によるトルク損失 が低減する。
[0112] 前記ポケットの狭幅側の小環状部にも切欠きを設けることにより、保持器の内径側 から内輪側へ流入する潤滑油をこの小環状部の切欠きからも外輪側へ逃がし、内輪 の軌道面に沿って大つばまで到る潤滑油の量をより少なくして、潤滑油の流動抵抗 によるトルク損失をさらに低減することができる。
[0113] 前記ポケットの広幅側の少なくとも柱部に切欠きを設けることにより、円錐ころをバラ ンスよく柱部に摺接させることができる。
[0114] 前記ポケットの狭幅側に設けた切欠きの合計面積を、台形状ポケットの広幅側に設 けた切欠きの合計面積よりも広くすることによつても、内輪の軌道面に沿って大つば まで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク損失をさらに低 減することができる。
[0115] 前記保持器の小環状部の輪方向外側に、内輪の小つばの外径面に対向させた径 方向内向きのつばを設け、この対向させた小環状部のつばの内径面と内輪の小つ ばの外径面との隙間を、内輪の小つばの外径寸法の 2. 0%以下とすることにより、保 持器の内径側から内輪側へ流入する潤滑油の量を少なくし、潤滑油の流動抵抗によ るトルク損失をより低減することができる。
[0116] 少なくとも前記円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け 、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l. 0 mとし 、かつ、 Sk値を 1. 6以下とすることにより、円錐ころの表面に満遍なく潤滑油を保 持させて、軸受内部に滞留する潤滑油の量を減らしても、円錐ころと内外輪との接触 部を十分に潤滑することができる。
[0117] 保持器が軸中心に位置した状態では保持器外径と外輪軌道面間にすきまが存在 しているので、軸受運転中には外輪と保持器との接触が殆ど発生せず、接触による 弓 Iきずりトルクの増大や摩耗を抑制することができる。
[0118] 本発明の第 58の特徴は、内輪と、外輪と、内輪と外輪との間に転動自在に配され た複数の円錐ころと、円錐ころを円周所定間隔に保持する保持器とを備え、ころ係数 yが 0. 94を越え、前記保持器が、円錐ころの小端面側で連なる小環状部と、円錐こ ろの大端面側で連なる大環状部と、これらの環状部を連結する複数の柱部とからなり 、隣接する柱部間に、円錐ころの小径側を収納する部分が狭幅側、大径側を収納す る部分が広幅側となる台形状のポケットが形成され、ポケットの狭幅側の柱部に切欠 きが設けてあり、前記保持器が、中立状態では外輪と非接触で、径方向に動かすと 外輪と接触することである。
[0119] また、保持器の台形状ポケットの狭幅側の柱部に切欠きを設けることにより、次のよ うな作用が得られる。すなわち、保持器の内径側カゝら内輪側へ流入した潤滑油を、こ の切欠きを通して外輪側へ速やかに逃がすことができる。その結果、内輪の軌道面 に沿って大つばに至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が 減少する。したがって、潤滑油の流動抵抗によるトルク損失が低減する。
[0120] 本発明の第 59の特徴は、ポケットの狭幅側の小環状部にも切欠きを設けたことであ る。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤 滑油をこの切欠き力 も外輪側へ逃がしてやることができる。したがって、内輪の軌道 面に沿って大つばに至る潤滑油の量がより少なくなり、潤滑油の流動抵抗によるトノレ ク損失がさらに低減する。
[0121] 本発明の第 60の特徴は、ポケットの広幅側の少なくとも柱部に切欠きを設けたこと である。このような構成を採用することにより、円錐ころをバランスよく柱部に接触させ ることがでさる。 [0122] 本発明の第 61の特徴は、ポケットの狭幅側に設けた切欠きの合計面積を、ポケット の広幅側に設けた切欠きの合計面積よりも広くしたことである。このような構成を採用 することにより、内輪の軌道面に沿って大つばに至る潤滑油の量をより少なくして、潤 滑油の流動抵抗によるトルク損失をさらに低減させることができる。
[0123] 本発明の第 62の特徴は、保持器の小環状部の軸方向外側に、内輪の小つばの外 径面に対向させた径方向内向きのつばを設け、前記つばの内径面と内輪の小つば の外径面との間のすきまの上限を小つばの外径寸法の 2. 0%としたことである。この ような構成を採用することにより、保持器の内径側から内輪側へ流入する潤滑油の量 を少なくし、潤滑油の流動抵抗によるトルク損失をより低減させることができる。
[0124] 本発明の第 63の特徴は、少なくとも円錐ころの表面に、微小凹形形状のくぼみをラ ンダムに無数に設け、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 μ ηι≤ Ryni≤l . O /z mとし、かつ、 Sk値を一 1. 6以下としたことである。このような構成を採 用することにより、円錐ころの表面に満遍なく潤滑油を保持させて、軸受内部に滞留 する潤滑油の量を減らしても、円錐ころと内外輪との接触部を十分に潤滑することが できる。
[0125] この発明によれば、軸受剛性を低下させることなぐ低トルク化を実現することができ る。すなわち、保持器の台形状ポケットの狭幅側の柱部に外径側から内径側まで切り 通した切欠きを設けることにより、保持器の内径側カゝら内輪側へ流入した潤滑油を、 この切欠きを通して外輪側へ速やかに逃がすことができるため、内輪の軌道面に沿 つて大つばに至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が減少 して、潤滑油の流動抵抗によるトルク損失が低減する。
[0126] ころ係数 γが 0. 94を越える設定とすることにより剛性の低下を防止することができ る。また、ころ係数が 0. 94を越える設定とすることにより、負荷容量がアップするばか りでなぐ円錐ころ軸受の軌道面の最大面圧を低下させることができるため、過酷潤 滑条件下での極短寿命での表面起点剥離を防止することができる。
[0127] 本発明の第 64の特徴は、内輪と、外輪と、内輪と外輪との間に転動自在に配され た複数の円錐ころと、円錐ころを円周所定間隔に保持する保持器とを備えた円錐こ ろ軸受において、 PCD上におけるこの間隔が(ころ径 Ζころ本数)未満になるように 均等に前記円錐ころが配置され、保持器が、円錐ころの小径端面側で連なる小環状 部と、円錐ころの大径端面側で連なる大環状部と、これらの環状部を連結する複数 の柱部とからなり、隣接する柱部間に、円錐ころの小径側を収納する部分が狭幅側、 大径側を収納する部分が広幅側となる台形状のポケットが形成され、ポケットの狭幅 側の柱部に切欠きを設けたことである。
[0128] 本発明では、 PCD上におけるこの間隔が(ころ径 Zころ本数)未満になるように均 等に前記円錐ころを配置することによって、ころ本数を増加させつつこの PCDを小さ くできる。また、ころ本数を増カロさせることによって、本数を増やすことによって負荷容 量を増カロし軌道面の面圧過大による早期破損を防止することができる。
[0129] また、保持器の台形状のポケットの狭幅側の柱部に切欠きを設けることにより、次の ような作用が得られる。すなわち、保持器の内径側カゝら内輪側へ流入した潤滑油を、 この切欠きを通して外輪側へ速やかに逃がすことができる。
[0130] 本発明の第 65の特徴は、ポケットの狭幅側の小環状部にも切欠きを設けたことであ る。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤 滑油をこの切欠き力 も外輪側へ逃がしてやることができる。
[0131] 本発明の第 66の特徴は、ポケットの広幅側の少なくとも柱部に切欠きを設けたこと である。
[0132] 本発明の第 67の特徴は、ポケットの狭幅側に設けた切欠きの合計面積を、ポケット の広幅側に設けた切欠きの合計面積よりも広くしたことである。
[0133] 本発明の第 68の特徴は、保持器の小環状部の軸方向外側に、内輪の小つばの外 径面に対向させた径方向内向きのつばを設け、前記つばの内径面と内輪の小つば の外径面との間のすきまの上限を小つばの外径寸法の 2. 0%としたことである。
[0134] 本発明の第 69の特徴は、少なくとも円錐ころの表面に、微小凹形形状のくぼみをラ ンダムに無数に設け、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 μ ηι≤ Ryni≤l . O /z mとし、かつ、 Sk値を 1. 6以下としたことである。
[0135] この発明によれば、 PCD上におけるこの間隔が(ころ径 Zころ本数)未満になるよう に均等に前記円錐ころが配置されるので、ころ本数を増カロさせつつこの PCDを小さ くできる。これにより、軸受剛性を低下させることなぐ低トルク化を実現できる。また、 ころ本数を増加させることによって、負荷容量がアップするば力りでなぐ軌道面の最 大面圧を低下させることができるため、過酷潤滑条件下での極短寿命での表面起点 剥離を防止することができる。
[0136] また、保持器の台形状ポケットの狭幅側の柱部に切欠きを設けることにより、保持器 の内径側から内輪側へ流入した潤滑油を、この切欠きを通して外輪側へ速やかに逃 がすことができるため、内輪の軌道面に沿って大つばに至る潤滑油の量が少なくなり 、軸受内部に滞留する潤滑油の量が減少して、潤滑油の流動抵抗によるトルク損失 が低減する。
[0137] 前記ポケットの狭幅側の小環状部にも切欠きを設けることにより、保持器の内径側 から内輪側へ流入する潤滑油をこの小環状部の切欠きからも外輪側へ逃がし、内輪 の軌道面に沿って大つばまで到る潤滑油の量をより少なくして、潤滑油の流動抵抗 によるトルク損失をさらに低減することができる。
[0138] 前記ポケットの広幅側の少なくとも柱部に切欠きを設けることにより、円錐ころをバラ ンスよく柱部に摺接させることができる。
[0139] 前記ポケットの狭幅側に設けた切欠きの合計面積を、台形状ポケットの広幅側に設 けた切欠きの合計面積よりも広くすることによつても、内輪の軌道面に沿って大つば まで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク損失をさらに低 減することができる。
[0140] 前記保持器の小環状部の輪方向外側に、内輪の小つばの外径面に対向させた径 方向内向きのつばを設け、この対向させた小環状部のつばの内径面と内輪の小つ ばの外径面との隙間を、内輪の小つばの外径寸法の 2. 0%以下とすることにより、保 持器の内径側から内輪側へ流入する潤滑油の量を少なくし、潤滑油の流動抵抗によ るトルク損失をより低減することができる。
[0141] 少なくとも前記円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け 、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l. 0 mとし 、かつ、 Sk値を 1. 6以下とすることにより、円錐ころの表面に満遍なく潤滑油を保 持させて、軸受内部に滞留する潤滑油の量を減らしても、円錐ころと内外輪との接触 部を十分に潤滑することができる。 [0142] 本発明の第 70の特徴は、内輪と、外輪と、内輪と外輪との間に転動自在に配され た複数の円錐ころと、円錐ころを円周所定間隔に保持する保持器とを備えた円錐こ ろ軸受において、(PCD上の円周方向長さ) - (ころ径 Xころ本数)くころ径とし、保 持器が、円錐ころの小径端面側で連なる小環状部と、円錐ころの大径端面側で連な る大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部間に 、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側とな る台形状のポケットが形成され、ポケットの狭幅側の柱部に切欠きを設けたことである
[0143] ところで、図 14は円錐ころ軸受においてころピッチ径 (PCD)を変化させたときの剛 性比(-參 -)およびトルク比(-〇-)を表したものである。図 14に示すように、 PC Dを小さくすると軸受のトルクは大幅に低下する力 軸受剛性はあまり低下しないこと 力 ころの弾性変形量を計算確認した結果として得られた。そこで、ころ本数を減らさ な!、か増加させつつ PCDを小さくすれば、剛性を低下させずにトルクを低減させるこ とがでさる。
[0144] 本発明では、ころピッチ円上の周方向長さと、ころ径ところ本数の積との差が、ころ 径より小さくすることによって、ころ本数を増カロさせつつころ PCDを小さくできる。これ により、軸受剛性を低下させることなぐ低トルク化を実現できる。また、ころ本数を増 カロさせることによって、負荷容量がアップするば力りでなぐ軌道面の最大面圧を低 下させることができる。
[0145] また、保持器の台形状のポケットの狭幅側の柱部に切欠きを設けることにより、次の ような作用が得られる。すなわち、保持器の内径側カゝら内輪側へ流入した潤滑油を、 この切欠きを通して外輪側へ速やかに逃がすことができる。
[0146] 本発明の第 71の特徴は、ポケットの狭幅側の小環状部にも切欠きを設けたことであ る。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤 滑油をこの切欠き力 も外輪側へ逃がしてやることができる。
[0147] 本発明の第 72の特徴は、ポケットの広幅側の少なくとも柱部に切欠きを設けたこと である。
[0148] 本発明の第 73の特徴は、ポケットの狭幅側に設けた切欠きの合計面積を、ポケット の広幅側に設けた切欠きの合計面積よりも広くしたことである。
[0149] 本発明の第 74の特徴は、保持器の小環状部の軸方向外側に、内輪の小つばの外 径面に対向させた径方向内向きのつばを設け、前記つばの内径面と内輪の小つば の外径面との間のすきまの上限を小つばの外径寸法の 2. 0%としたことである。
[0150] 本発明の第 75の特徴は、少なくとも円錐ころの表面に、微小凹形形状のくぼみをラ ンダムに無数に設け、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 μ ηι≤ Ryni≤l . O /z mとし、かつ、 Sk値を 1. 6以下としたことである。
[0151] この発明によれば、ころピッチ円上の周方向長さと、ころ径ところ本数の積との差が 、ころ径より小さいので、ころ本数を増加させつつこの PCDを小さくできる。これにより 、軸受剛性を低下させることなぐ低トルク化を実現できる。また、ころ本数を増加させ ることによって、負荷容量がアップするば力りでなぐ軌道面の最大面圧を低下させる ことができるため、過酷潤滑条件下での極短寿命での表面起点剥離を防止すること ができる。
[0152] また、保持器の台形状ポケットの狭幅側の柱部に切欠きを設けることにより、保持器 の内径側から内輪側へ流入した潤滑油を、この切欠きを通して外輪側へ速やかに逃 がすことができるため、内輪の軌道面に沿って大つばに至る潤滑油の量が少なくなり 、軸受内部に滞留する潤滑油の量が減少して、潤滑油の流動抵抗によるトルク損失 が低減する。
[0153] 前記ポケットの狭幅側の小環状部にも切欠きを設けることにより、保持器の内径側 から内輪側へ流入する潤滑油をこの小環状部の切欠きからも外輪側へ逃がし、内輪 の軌道面に沿って大つばまで到る潤滑油の量をより少なくして、潤滑油の流動抵抗 によるトルク損失をさらに低減することができる。
[0154] 前記ポケットの広幅側の少なくとも柱部に切欠きを設けることにより、円錐ころをバラ ンスよく柱部に摺接させることができる。
[0155] 前記ポケットの狭幅側に設けた切欠きの合計面積を、台形状ポケットの広幅側に設 けた切欠きの合計面積よりも広くすることによつても、内輪の軌道面に沿って大つば まで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク損失をさらに低 減することができる。 [0156] 前記保持器の小環状部の輪方向外側に、内輪の小つばの外径面に対向させた径 方向内向きのつばを設け、この対向させた小環状部のつばの内径面と内輪の小つ ばの外径面との隙間を、内輪の小つばの外径寸法の 2. 0%以下とすることにより、保 持器の内径側から内輪側へ流入する潤滑油の量を少なくし、潤滑油の流動抵抗によ るトルク損失をより低減することができる。
[0157] 少なくとも前記円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け 、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l . Ο μ mとし、かつ、 Sk値を 1. 6以下とすることにより、円錐ころの表面に満遍なく潤滑油 を保持させて、軸受内部に滞留する潤滑油の量を減らしても、円錐ころと内外輪との 接触部を十分に潤滑することができる。
[0158] 本発明の第 76の特徴は、内輪と、外輪と、内輪と外輪との間に転動自在に配され た複数の円錐ころと、円錐ころを円周所定間隔にポケット内で保持する保持器とを備 え、保持器が、円錐ころの小端面側で連なる小環状部と、円錐ころの大端面側で連 なる大環状部と、これら大小環状部を連結する複数の柱部とからなり、前記隣接する 柱部間で、前記ポケットが、円錐ころの小径側を収納する部分が狭幅側、大径側を 収納する部分が広幅側となる台形状に形成された円錐ころ軸受において、前記ボケ ットの狭幅側の柱部に切欠きを設けるとともに、前記保持器の外径面に、前記外輪の 内径面に向力つて凸状をなし外輪の内径面との間に微小隙間を形成する突起部を 円周所定間隔で複数形成したことである。
[0159] 保持器の台形状ポケットの狭幅側の柱部に切欠きを設けることにより、次のような作 用が得られる。すなわち、保持器の内径側から内輪側へ流入した潤滑油を、この切 欠きを通して外輪側へ速やかに逃がすことができる。その結果、内輪の軌道面に沿 つて大鍔に至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が減少す る。したがって、潤滑油の流動抵抗によるトルク損失が低減する。
[0160] また、保持器の外径面に突起部を形成することにより、円錐ころ軸受の回転時に突 起部と外輪内径面との間に形成される楔状油膜の動圧により保持器と外輪との間の 微小隙間が維持され、両者の接触に伴うトルク損失や保持器ないし外輪軌道面の損 傷が防止される。従って保持器外径面を可及的に外輪内径面に接することなく近接 させることが可能となり、軸受トルクを増大させることなぐかつ、軸受剛性を低下させ ずに、保持器のころ収容本数を増大させて内輪軌道面に生じる最大面圧を抑制する ことができる。
[0161] 本発明の第 77の特徴は、ポケットの狭幅側の小環状部にも切欠きを設けたことであ る。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤 滑油をこの切欠き力 も外輪側へ逃がしてやることができる。したがって、内輪の軌道 面に沿って大鍔に至る潤滑油の量がより少なくなり、潤滑油の流動抵抗によるトルク 損失がさらに低減する。
[0162] 本発明の第 78の特徴は、ポケットの広幅側の少なくとも柱部に切欠きを設けたこと である。このような構成を採用することにより、円錐ころをバランスよく柱部に接触させ ることがでさる。
[0163] 本発明の第 79の特徴は、ポケットの狭幅側に設けた切欠きの合計面積を、ポケット の広幅側に設けた切欠きの合計面積よりも広くしたことである。このような構成を採用 することにより、内輪の軌道面に沿って大鍔に至る潤滑油の量をより少なくして、潤滑 油の流動抵抗によるトルク損失をさらに低減させることができる。
[0164] 本発明の第 80の特徴は、保持器の小環状部の軸方向外側に、内輪の小鍔の外径 面に対向させた径方向内向きのつばを設け、前記つばの内径面と内輪の小鍔の外 径面との間のすきまの上限を小鍔の外径寸法の 2. 0%としたことである。このような構 成を採用することにより、保持器の内径側から内輪側へ流入する潤滑油の量を少なく し、潤滑油の流動抵抗によるトルク損失をより低減させることができる。
[0165] 本発明の第 81の特徴、少なくとも円錐ころの表面に、微小凹形形状のくぼみをラン ダムに無数に設け、このくぼみを設けた表面の面粗さパラメータ Ryniを 0.
yni≤l. O /z mとし、かつ、 Sk値を 1. 6以下としたことである。このような構成を採 用することにより、円錐ころの表面に満遍なく潤滑油を保持させて、軸受内部に滞留 する潤滑油の量を減らしても、円錐ころと内外輪との接触部を十分に潤滑することが できる。
[0166] 本発明によれば、軸受剛性を低下させることなぐ低トルク化を実現することができ る。すなわち、保持器の台形状ポケットの狭幅側の柱部に外径側から内径側まで切り 通した切欠きを設けることにより、保持器の内径側カゝら内輪側へ流入した潤滑油を、 この切欠きを通して外輪側へ速やかに逃がすことができるため、内輪の軌道面に沿 つて大鍔に至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が減少し て、潤滑油の流動抵抗によるトルク損失が低減する。
[0167] また、円錐ころ軸受の保持器の外周面に外輪の内周面に向力つて凸状をなす突起 部を円周所定間隔で複数形成したので、保持器外径面を外輪内径面に近接させて ころ収容本数を増大させても、突起部と外輪内周面との間で楔状油膜による良好な 潤滑作用が得られる。従って、軸受のトルク特性を損なうことなぐかつ、軸受剛性を 低下させることなぐころ本数増大によって内外輪軌道面の最大面圧を低減させるこ とができ、高油温、少油量、および予圧抜け発生など悪条件が重なって過酷潤滑条 件となった場合でも、極短寿命の表面起点剥離がとりわけ内輪軌道面に発生するの を防止することができる。
[0168] 本発明の第 82の特徴は、内輪と、外輪と、前記内輪と外輪との間に転動自在に配 された複数の円錐ころと、前記円錐ころを円周所定間隔に収納するポケットを有する 保持器とを備え、前記保持器が、前記円錐ころの小径側で連なる小環状部と、円錐 ころの大径側で連なる大環状部と、これらの環状部を連結する複数の柱部とからなり 、前記ポケットが、前記円錐ころの小径側を収納する部分が狭幅側、大径側を収納 する部分が広幅側となる台形状に形成された円錐ころ軸受において、前記保持器の 小環状部の端縁から径方向にリブを延在させ、そのリブの先端部を軸方向内側に屈 曲させた形状とし、且つ、前記保持器の台形状ポケットの狭幅側の柱部に切り欠きを 設けたことを特徴とする。
[0169] 例えば特許文献 6に示されている円錐ころ軸受では、保持器の外径面に突起部が 設けられている。これにより、円錐ころ軸受の回転時には、突起部と外輪内径面との 間に形成される楔状油膜の動圧により保持器と外輪との間の微小隙間が維持され、 両者の接触に伴うトルク損失や保持器ないし外輪軌道面の損傷が防止される。従つ て保持器外径面を可及的に外輪内径面に接することなく近接させることが可能となり 、保持器のピッチ円を拡径できる。
[0170] し力しながら、上記のように保持器のピッチ円を拡径することにより、円錐ころを保持 器への組付ける際に以下のような不具合を生じる。円錐ころの保持器への組付けは 、保持器を小環状部が下方になるように設置し、円錐ころを上方力 小径端面を下に して保持器のポケット (小環状部)に引っ掛かるまで降下させ、円錐ころを径方向外側 に傾斜させることにより行われる。円錐ころの小径端面がポケットに引っ掛力つたとき は、円錐ころが保持器の小環状部のみによって支持されているため、非常に不安定 である。保持器のピッチ面を拡径すると、円錐ころがポケットに引っ掛力る部分が小さ くなることでさらに不安定になり、円錐ころが円周方向に傾倒してしまい、組立が困難 となる。また、円錐ころの本数を増やすことにより、軸受内部の潤滑油による流動抵抗 が増し、回転トルクは増大する。
[0171] 本発明は、円錐ころ軸受の組付け性を向上し、且つ回転トルクを低減することを目 的とする。
[0172] 上記のように、本発明では、保持器のリブ先端部を軸方向内側に屈曲させた形状と する。これにより、円錐ころを保持器に組付ける際、円錐ころの小径端面がポケットに 引っ掛力つたときに、円錐ころが保持器の小環状部とリブの先端部とで支持される。 これにより、円錐ころが安定した姿勢に保持されるため、円錐ころが円周方向に傾倒 することなくスムーズに組付けられる。
[0173] また、保持器の台形状ポケットの狭幅側の柱部に切り欠きを設けることにより、潤滑 油の循環が良好になり、軸受内部に滞留する潤滑油の量を減らすことができる。よつ て、潤滑油の流動抵抗によるトルクが低減される。
[0174] 台形状ポケットの狭幅側の小環状部にも切欠きを設けると、軸受内の潤滑油の循 環がさらに良好になり、トルク低減効果を増すことができる。
•BR〉@台形状ポケットの広幅側の少なくとも柱部に切り欠きを設けると、円錐ころをバ ランスよく柱部〖こ措接させることができる。
[0175] 台形状ポケットの狭幅側に設けた切り欠きの合計面積を、広幅側に設けた切り欠き の合計面積よりも広く設定することによつても、軸受内部に滞留する潤滑油の量を減 らすことができる。
[0176] 以上のように、本発明によると、円錐ころ軸受の組付け性が向上し、且つ、回転トル クを低減することがでさる。 発明の効果
[0177] 本発明によれば、軸受剛性を低下させることなぐ低トルク化を実現することができ る。また、保持器をエンジニアリング 'プラスチック製にすることにより、保持器の軽量 化と自己潤滑性による低摩擦を実現することができるとともに、ポケットの窓角を 55° 以上 80°以下にしてころ係数 γを γ >0. 94にすることにより、軌道面の最大面圧を 低下させることができるため、過酷潤滑条件下での極短寿命での表面起点剥離を防 止することができる。また、保持器の台形状ポケットの狭幅側の柱部に外径側から内 径側まで切り通した切欠きを設けることにより、保持器の内径側から内輪側へ流入し た潤滑油を、この切欠きを通して外輪側へ速やかに逃がすことができるため、内輪の 軌道面に沿って大鍔に至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の 量が減少して、潤滑油の流動抵抗によるトルク損失が低減する。
発明を実施するための最良の形態
[0178] 以下、図面に従って本発明の実施の形態を説明する。図 1Α、図 IBに示す実施の 形態の円錐ころ軸受 1は、内輪 2と、外輪 3と、円錐ころ 4と、保持器 5とで構成されて いる。内輪 2は外周に円錐状の軌道面 2aを有し、外輪 3は内周に円錐状の軌道面 3 aを有する。複数の円錐ころ 4が、内輪 2の軌道面 2aと外輪 3の軌道面 3aとの間に転 動自在に介在させてある。円錐ころ 4は保持器 5に形成されたポケット内に収容され ている。各円錐ころ 4は、内輪 2の軌道面 2aの両側に設けた小鍔 2bと大鍔 2cとで軸 方向への移動を規制されている。
[0179] 保持器 5は、図 1Bに示すように、円錐ころ 4の小端面側で連なる小環状部 6と、円 錐ころ 4の大端面側で連なる大環状部 7と、これらの小環状部 6と大環状部 7を連結 する複数の柱部 8とを含んでいる。そして、図 2に示すように、隣り合った柱部 8間にポ ケット 9が形成される。保持器 5のポケット 9は台形状で、円錐ころ 4の小径側を収納す る部分が狭幅側、大径側を収納する部分が広幅側となる。ポケット 9の狭幅側と広幅 側には、それぞれ両側の柱部 8に 2つずつ、外径側から内径側まで切り通した切欠き 10a, 10bが設けてある。各切欠き 10a, 10bの寸法は、いずれも深さ 1. Omm,幅 4 . 6mmとされている。なお、図面に例示した切欠き 10a, 10bは、保持器 5の半径方 向に切り通した溝の形態をして ヽるが、保持器 5の内径側と外径側を連絡して潤滑油 の円滑な通過を許容することができる限り、形状や寸法は任意である。
[0180] 保持器 5は、例えば PPS、 PEEK, PA、 PPA、 PAI等のスーパーエンプラで一体 成形される。保持器に、機械的強度、耐油性および耐熱性に優れたエンジニアリング •プラスチックを使用することにより、鉄板製保持器に比べ、保持器重量が軽ぐ自己 潤滑性があり、摩擦係数が小さいという特徴があるため、軸受内に介在する潤滑油の 効果と相俟って、外輪との接触による摩耗の発生を抑えることが可能になる。また、こ れらの榭脂は鋼板と比べると重量が軽く摩擦係数が小さいため、軸受起動時のトルク 損失や保持器摩耗の低減に好適である。エンジニアリング 'プラスチックは、汎用ェン ジニアリング 'プラスチックとスーパ一'エンジニアリング 'プラスチックを含む。なお、保 持器材料の例として PPS、 PEEK, PA、 PPA、 PAI等のスーパーエンプラを挙げた 力 必要に応じて、強度増強のため、これら榭脂材料またはその他のエンジニアリン グ ·プラスチックに、ガラス繊維または炭素繊維などを配合したものを使用してもよい。
[0181] 柱面 5bの窓角 Θは、下限窓角 Θ minが図 3Aのように 55° であり、上限窓角 Θ ma Xが図 3Bのように 80° である。窓角は、保持器が外輪から離間している典型的な保 持器付き円錐ころ軸受では、大きくて約 50° である。本発明では窓角を大きめに設 定することにより、ころ係数 γを 0. 94以上にすることが可能になった。下限窓角 Θ mi nを 55° 以上としたのは、ころとの良好な接触状態を確保するためであり、窓角 55° 未満ではころとの接触状態が悪くなる。すなわち、保持器強度を確保した上で γ >0 . 94とするためには、窓角を 55° 以上としないと良好な接触状態を確保できないの である。また上限窓角 Θ maxを 80° 以下としたのは、これ以上大きくなると半径方向 への押し付け力が大きくなり、自己潤滑性の榭脂材であっても円滑な回転が得られ なくなる危険性が生じるからである。
[0182] 図 4Aに軸受の寿命試験の結果を示す。軸受 Iが、保持器と外輪とが離れた典型的 な従来の円錐ころ軸受である。軸受 Πが、特許文献 1記載の従来の円錐ころ軸受で ある。軸受 ΠΙが、本発明の円錐ころ軸受である。試験は、過酷潤滑、過大負荷条件 下で行なった。同図より明らかなように、本発明に係る軸受 IIIはころ係数が軸受 IIと 同じ 0. 96であるが、寿命時間は軸受 IIの約 5倍以上にもなる。なお、軸受 I IIIの寸 法は φ 45 X φ 81 X 16 (単位 mm)、ころ本数は 24本(軸受 I)、 27本(軸受 Π、 III)、 油膜パラメータ Λ =0. 2である。
[0183] 図 5および図 6に保持器 5の切欠きの変形例を示す。図 5に示す変形例は、ポケット 9の狭幅側の小環状部 6にも切欠き 10cを設けたものである。そして、狭幅側の 3つの 切欠き 10a, 10cの合計面積力 広幅側の 2つの切欠き 10bの合計面積よりも広くな つている。なお、切欠き 10cは深さ 1. Omm、幅 5. 7mmとしてある。
[0184] 図 6に示す切欠きの変形例は、狭幅側の柱部 8の各切欠き 10aの深さが 1. 5mmと 広幅側の柱部 8の各切欠き 10bよりも深ぐ狭幅側の各切欠き 10aの合計面積が、広 幅側の各切欠き 10bの合計面積よりも広くなつている。
[0185] 図 7に示すように、保持器 5の小環状部 6の軸方向外側には、内輪 2の小鍔 2bの外 径面に対向させた径方向内向きのつば 11が設けてあり、このつば 11の内径面と内 輪 2の小鍔 2bの外径面との間のすきま δは、小鍔 2bの外径寸法の 2. 0%以下に狭 く設定してある。
[0186] また、図示は省略するが、円錐ころ 4の全表面には微小凹形形状のくぼみがランダ ムに無数に設けてある。このくぼみを設けた表面は、面粗さパラメータ Ryniが 0. 4 μ m≤Ryni≤l . O ^ m,かつ、 Sk値が 1. 6以下としてある。
[0187] 図 8は、上述の円錐ころ軸受を使用し得る自動車のデフアレンシャルの構成を例示 したものである。このデフアレンシャルは、プロペラシャフト(図示省略)に連結され、デ ファレンシャルケース 21内に挿入したドライブピ-オン 22が差動歯車ケース 23に取 り付けたリングギヤ 24とかみ合い、差動歯車ケース 23の内部に取り付けたピ-オンギ ャ 25が、差動歯車ケース 23に左右力も挿入されるドライブシャフト(図示省略)と結合 するサイドギヤ 26とかみ合って、エンジンの駆動力をプロペラシャフトから左右のドラ イブシャフトに伝達するようになっている。このデフアレンシャルでは、動力伝達軸で あるドライブピ-オン 22と差動歯車ケース 23が、それぞれ一対の円錐ころ軸受 la, 1 bで支持してある。
[0188] デフアレンシャルケース 21はシール部材 27a, 27b, 27cで密封され、内部にており 潤滑油が貯留される。各円錐ころ軸受 la, lbはこの潤滑油の油浴に下部が漬かつ た状態で回転する。
[0189] 円錐ころ軸受 1 (la, lb)は以上のように構成されているため、各円錐ころ軸受 la, lbが高速で回転してその下部が油浴に漬かると、図 7に矢印で示すように、油浴の 潤滑油が円錐ころ 4の小径側から保持器 5の外径側と内径側とに分かれて軸受内部 へ流入し、保持器 5の外径側力 外輪 3へ流入した潤滑油は、外輪 3の軌道面 3a〖こ 沿って円錐ころ 4の大径側へ通過して軸受内部力 流出する。一方、保持器 5の内 径側から内輪 2側へ流入する潤滑油は、保持器 5の外径側から流入する潤滑油より も遥かに少なぐかつ、このすきま δ力も流入する潤滑油の大半は、ポケット 9の狭幅 側の柱部 8に設けた切欠き
10aを通過して、保持器 5の外径側へ移動する。したがって、そのまま内輪 2の軌道 面 2aに沿って大鍔 2cに至る潤滑油の量は非常に少なくなり、軸受内部に滞留する 潤滑油の量を減らすことができる。
[0190] 保持器 5の外径面に、図 9および図 10に示すように突起部 5aを形成してもよい。こ のような突起部 5aは、保持器 5をエンジニアリング 'プラスチックで一体成形すること により容易に形成できる。突起部 5aは、保持器 5の柱部 8の外径面に、外輪 3の軌道 面 3a側に向けて凸状を成す。詳しくは、突起部 5aは図 10に示すように、柱部 8の横 断方向の断面輪郭形状が円弧状を成す。この円弧状の曲率半径 R
2は外輪 3の軌道 面 3aの半径 Rより小さく形成されている。これは突起部 5aと外輪 3の軌道面 3aとの 間に良好な楔状油膜が形成されるようにするためであり、望ましくは突起部 5aの曲率 半径 Rは外輪 3の軌道面 3aの半径 Rの 70〜90%程度に形成するとよい。 70%未
2 1
満であると楔状油膜の入口開き角度が大きくなりすぎて却って動圧が低下する。 90 %を超えると楔状油膜の入口角度が小さくなりすぎて同様に動圧が低下する。また、 突起部 5aの横幅 Wは望ましくは柱部 8の横幅 Wの 50%以上となるように形成する(
2 1
W≥0. 5 X W)。 50%未満では良好な楔状油膜を形成するための充分な突起部 5a
2
の高さが確保できなくなるためである。なお、外輪 3の軌道面 3aの半径 Rは大径側 力 小径側へと連続的に変化しているので、突起部 5aの曲率半径 Rもそれに合わ
2
せて大環状部 7の大きな曲率半径 R力 小環状部 6の小さな曲率半径 Rへと連続
2 2 的に変化するようにする。
[0191] 以上のような突起部 5aを形成した場合、軸受 1 (la, lb)が回転して保持器 5が回 転し始めると、外輪軌道面と保持器 5の突起部 5aとの間に楔状油膜が形成される。こ の楔状油膜は軸受 1の回転速度にほぼ比例した動圧を発生するので、保持器 5のピ ツチ径 (PCD)を従来よりも大きくして外輪 3の軌道面 3aに近接させても、軸受 1を大 きな摩耗ないしトルク損失を生じることなく回転させることが可能となり、無理なくころ 本数を増加させることが可能となる。したがって、高油温、少油量、および予圧抜け発 生など悪条件が重なって過酷潤滑条件となった場合でも、極短寿命の表面起点剥 離がとりわけ内輪軌道面に発生するのを防止することができる。なお、突起部 5aは柱 部 8の外径面に形成する他、保持器 5の小環状部 6ゃ大環状部 7の外径面にも形成 することができる。
[0192] 図 11は、上述の円錐ころ軸受を使用し得る自動車のトランスミッションの構成を例 示したものである。このトランスミッションは同期嚙合式のもので、同図で左方向がェ ンジン側、右方向が駆動車輪側である。メインシャフト 41とメインドライブギヤ 42との 間に円錐ころ軸受 43が介装される。この例では、メインドライブギヤ 42の内周に円錐 ころ軸受 43の外輪軌道面が直接形成されている。メインドライブギヤ 42は、円錐ころ 軸受 44でケーシング 45に対して回転自在に支持される。メインドライブギヤ 42にクラ ツチギヤ 46が係合連結され、クラッチギヤ 46に近接してシンクロ機構 47が配設され る。
[0193] シンクロ機構 47は、セレクタ(図示省略)の作動によって軸方向(同図で左右方向) に移動するスリーブ 48と、スリーブ 48の内周に軸方向移動自在に装着されたシンク 口ナイザーキー 49と、メインシャフト 41の外周に係合連結されたハブ 50と、クラッチギ ャ 46の外周(コーン部)に摺動自在に装着されたシンクロナイザーリング 51と、シンク 口ナイザーキー 49をスリーブ 48の内周に弹性的に押圧する押えピン 52及びスプリン グ 53とを備えている。
[0194] 同図に示す状態では、スリーブ 48及びシンクロナイザーキー 49が押えピン 52によ つて中立位置に保持されている。この時、メインドライブギヤ 42はメインシャフト 41に 対して空転する。一方、セレクタの作動により、スリーブ 48が同図に示す状態力 例 えば軸方向左側に移動すると、スリーブ 48に従動してシンクロナイザーキー 49が軸 方向左側に移動し、シンクロナイザーリング 51をクラッチギヤ 46のコーン部の傾斜面 に押し付ける。これにより、クラッチギヤ 46の回転速度が落ち、逆にシンクロ機構 47 側の回転速度が高められる。そして、両者の回転速度が同期した頃、スリーブ 48がさ らに軸方向左側に移動して、クラッチギヤ 46とかみ合い、メインシャフト 41とメインドラ イブギヤ 42との間がシンクロ機構 47を介して連結される。これにより、メインシャフト 4 1とメインドライブギヤ 42とが同期回転する。
実施例 1
[0195] 実施例として、図 2に示した保持器を用いた円錐ころ軸受 (実施例 1)と、図 5に示し た保持器を用いた円錐ころ軸受 (実施例 2)を用意した。また、比較例として、ポケット に切欠きのない保持器を用いた円錐ころ軸受(比較例 1)と、図 13A、図 13Bに示し た保持器を用いた円錐ころ軸受 (比較例 2, 3)を用意した。なお、各円錐ころ軸受は 、寸法が外径 100mm、内径 45mm、幅 27. 25mmであり、ポケットの切欠き以外の 部分は同じである。
[0196] 実施例と比較例の円錐ころ軸受について、縦型トルク試験機を用いたトルク測定試 験を行った。試験条件は以下のとおりである。
アキシァノレ荷重: 300kgf
回転速度: 300〜2000rpm (lOOrpmピッチ)
潤滑条件:油浴潤滑 (潤滑油: 75W- 90)
図 12に試験結果を示す。同図のグラフの縦軸は、ポケットに切欠きのない保持器を 用 、た比較例 1のトルクに対するトルク低減率を表す。ポケットの柱部中央部に切欠 きを設けた比較例 2や、ポケットの小環状部と大環状部に切欠きを設けた比較例 3も 、トルク低減効果が認められるが、ポケットの狭幅部側の柱部に切欠きを設けた実施 例 1は、これらの比較例よりも優れたトルク低減効果が認められ、狭幅側の小環状部 にも切欠きを設け、狭幅側の切欠きの合計面積を広幅側のそれよりも広くした実施例 2は、さらに優れたトルク低減効果が認められる。
[0197] また、試験の最高回転速度である 2000rpmにおけるトルク低減率は、実施例 1が 9 . 5%、実施例 2が 11. 5%であり、デフアレンシャルやトランスミッション等における高 速回転での使用条件でも優れたトルク低減効果を得ることができる。なお、比較例 2と 比較例 3の回転速度 2000rpmにおけるトルク低減率は、それぞれ 8. 0%と 6. 5%で ある。 [0198] 次に、本発明の変形例を図 15と図 16に基づき説明する。この変形例に係る円錐こ ろ軸受の保持器直径は、図 15Aの状態力も同図に矢印で示すように保持器 5を軸方 向小径側に移動させ(図 15B)、次に図 16Aのように径方向下側に移動させると、外 輪 3と保持器 5が接触し、軸受が回転して図 16Cのように保持器 5がセンタリングされ ると、保持器 5と外輪 3が全周にわたり所定すきまをあけて非接触となるような寸法に 設定してある。言い換えれば、そのような寸法とは、保持器 5が軸中心に配置され、図 15Bのように保持器 5が小径側に寄った状態では保持器 5と外輪 3の間にすきまが存 在するが、保持器 5を軸中心から径方向に移動させると外輪 3と保持器 5が接触する ような寸法である。これにより、運転初期(図 16B)には外輪 3と保持器 5は接触するが 、運転中(図 16C)は非接触となることから、接触による引きずりトルクの増大や摩耗を 抑帘 Uすることができる。
[0199] 保持器 5の柱部の左右両側面は、円錐ころ 4を押える柱面を構成する。 1つの円錐 ころ 4を押える左右の柱面が成す窓角 Θは、例えば 25° 〜50° である。
[0200] なお、鉄板製保持器の場合は底広げや加締め作業が必要であつたが、榭脂製保 持器の場合は不要となるため、発明品に必要な寸法精度を確保することが容易であ る。ここで「底広げ」とは、ころを組込んだ保持器 5を内輪に組付ける時、ころが内輪小 鍔を乗り越えるように保持器 5小径側の柱部の径を大きく拡げることを ヽぅ。「加締め 作業」とは、前述のように大きく拡げた保持器 5小径部の柱部を外側力 型で押して 元に戻すことをいう。
[0201] 上述の各実施の形態の円錐ころ軸受では、円錐ころの転動面および端面ならびに 内外輪の軌道面(さらに円錐ころ軸受の内輪については大つば面)の少なくとも一つ に、微小凹形状のくぼみをランダムに無数に形成して微小粗面化することができる。 この微小粗面は、くぼみを設けた面の面粗さパラメータ Rqniが 0. 4 iu m≤Rqni≤l. 0 mの範囲内であり、かつ、 Sk値が—1. 6以下、好ましくは—4. 9〜一 1. 6の範囲 である。また、くぼみを設けた面の面粗さパラメータ Rymaxが 0. 4〜1. 0である。さら に、面粗さを各表面の軸方向と円周方向のそれぞれで求めてパラメータ Rqniで表示 したとき、軸方向面粗さ Rqni (L)と円周方向面粗さ Rqni (C)の比の値 Rqni (L) /Rq ni (C)が 1. 0以下になっている。このような微小粗面を得るための表面カ卩ェ処理とし ては、特殊なバレル研摩によって、所望の仕上げ面を得ることができる力 ショット等 を用いてもよい。
[0202] 円錐ころ軸受の場合、図 1Bから理解できるように、運転中、円錐ころ 4の転動面が 内輪 2および外輪 3の軌道と転がり接触するほか、円錐ころ 4の大端面が内輪 2の大 鍔 2cの内側面と滑り接触する。したがって、円錐ころ 4の場合、転動面のほか大端面 にも微小凹形状のくぼみをランダムに無数に形成させてもよい。同様に、内輪 2の場 合、軌道面のほか大鍔 2cの内側面にも微小凹形状のくぼみをランダムに無数に形 成させてもよい。
[0203] パラメータ Ryni, Rymax, Sk, Rqniの測定方法、条件を例示するならば次のとおり である。なお、これらのパラメータで表される表面性状を、転がり軸受の転動体ゃ軌 道輪といった構成要素について測定する場合、一ヶ所の測定値でも代表値として信 頼できるが、たとえば直径方向に対向する二ケ所を測定するとよい。
パラメータ算出規格: JIS B 0601: 1994 (サーフコム JIS 1994)
測定長さ: 5 λ
カットオフ種另 U :ガウシアン
測定倍率: X 10000
測定速度: 0. 30mm/s
測定箇所:ころ中央部
測定数: 2
測定装置:面粗さ測定器サーフコム 1400A (東京精密株式会社)
次に、円錐ころの転動面を滑らかな面に仕上げた従来の円錐ころ軸受 A, B (比較 例)と、円錐ころの転動面に微小凹形状のくぼみをランダムに無数に形成した軸受 C 〜E (比較例)ならびに軸受 F, G (実施例)につ 、て行った寿命試験につ!、て説明す る(表 1参照)。使用した軸受 A〜Gはいずれも、外輪の外径が 81mm、内輪の内径 力 S45mmの円錐ころ軸受である。なお、比較例の軸受 A, Bにおけるころの転動面は 、研削後にスーパーフィニッシュ (超仕上げ)を施してカ卩ェされ、くぼみ力卩ェを施して ない。比較例の軸受 C〜Eならびに実施例の軸受 F, Gのころの転動面は、バレル研 摩特殊加工によって微小凹形状のくぼみがランダムに無数に形成してある。なお、 R qni (LZC)については、ころ軸受 C〜Gは 1. 0以下であり、ころ軸受 A, Bは 1. 0前 後である。
[0204] [表 1]
Figure imgf000042_0001
[0205] 図 17に示す 2円筒試験機を使用してピーリング試験を行い、金属接触率を評価し た。同図において、駆動側円筒 32 (D円筒: Driver)と従動側円筒 34 (F円筒: Followe r)は各々の回転軸の片端に取り付けられ、 2本の回転軸 36, 38はそれぞれプーリ 4 0を介して別々のモータで駆動できるようになつている。 D円筒 32側の軸 36をモータ で駆動し、 F円筒 34は D円筒 32に従動させる自由転がりにした。 F円筒 34は、表面 処理に関して比較例と実施例の 2種類を用意した。試験条件等詳細は表 2のとおりで ある。
[0206] [表 2]
試験機 . 2円筒試験機 (囡 1 3)
駆動側円筒 (D円筒) 4 0 X L 1 2 , 副曲率 R 6 0
S U J 2標準品 +外«面超仕上
従動側円倩 (F円筒) φ 4 0 X L 1 2 , ス トレート
SU J 2標準品 +外径面超仕上
表 面 処 理 比棚 実細
平均面積( 2) 1 4 5 8 3 '
R yni (μ m) 1. 2 1 0. 7 3
面積率 (°/。) 2 0 1 5
回転数 2 0 0 0 0 r p m
荷重 2 1 5 6 N ( 2 2 0 k g f )
最大面圧 P max 2 , 3 GP a
接触楕円 (2aX2b) 2. 3 4mmX 0. 7 2 mm
負荷回数 2. 4 X 1 O 5回 (2 h)
雰囲気温度 常温
給油方法 フェルトパッド給油
潤滑油 JOMO HI SPEED FLUID (VG 1.5)
[0207] 金属接触率の比較データを図 18に示す。同図は横軸が経過時間、縦軸が金属接 触率を表し、図 18Aは比較例の軸受におけるころの転動面の金属接触率を、図 18B は実施例の軸受におけるころの転動面の金属接触率を、それぞれ示す。これらの図 を対比すれば、比較例に比べて実施例では金属接触率が改善されていることを明瞭 に確認できる。言い換えれば、油膜形成率( = 100%—金属接触率)が、実施例の 軸受の方が比較例の軸受に比べて、運転開始時で 10%程度、試験終了時 (2時間 後)で 2%程度、向上している。
[0208] 別の実施例として、図 2に示した保持器を用いた円錐ころ軸受(実施例 1)と、図 5に 示した保持器を用いた円錐ころ軸受 (実施例 2)を用意した。また、比較例として、ポ ケットに切欠きのない保持器を用いた円錐ころ軸受 (比較例 1)と、図 13A、図 13Bに 示した保持器を用いた円錐ころ軸受 (比較例 2, 3)を用意した。なお、各円錐ころ軸 受は、寸法が外径 100mm、内径 45mm、幅 27.25mmであり、ポケットの切欠き以 外の部分は同じである。 [0209] 実施例と比較例の円錐ころ軸受について、縦型トルク試験機を用いたトルク測定試 験を行った。試験条件は以下のとおりである。
アキシァノレ荷重: 300kgf
回転速度: 300〜2000rpm (lOOrpmピッチ)
潤滑条件:油浴潤滑 (潤滑油: 75W- 90)
試験結果は図 12と同様になつた。同図のグラフの縦軸は、ポケットに切欠きのない 保持器を用 ヽた比較例 1のトルクに対するトルク低減率を表す。ポケットの柱部中央 部に切欠きを設けた比較例 2や、ポケットの小環状部と大環状部に切欠きを設けた比 較例 3も、トルク低減効果が認められるが、ポケットの狭幅部側の柱部に切欠きを設け た実施例 1は、これらの比較例よりも優れたトルク低減効果が認められ、狭幅側の小 環状部にも切欠きを設け、狭幅側の切欠きの合計面積を広幅側のそれよりも広くした 実施例 2は、さらに優れたトルク低減効果が認められる。
[0210] また、試験の最高回転速度である 2000rpmにおけるトルク低減率は、実施例 1が 9 . 5%、実施例 2が 11. 5%であり、デフアレンシャルやトランスミッション等における高 速回転での使用条件でも優れたトルク低減効果を得ることができる。なお、比較例 2と 比較例 3の回転速度 2000rpmにおけるトルク低減率は、それぞれ 8. 0%と 6. 5%で ある。
[0211] 上述の円錐ころ軸受 1の内輪 2、外輪 3および円錐ころ 4のうち、少なくとも一つの軸 受部品は、窒素富化層を有するものにしてよい。窒素富化層を形成させるための処 理の具体例として浸炭窒化処理を含む熱処理について説明する。
[0212] 図 19は、この発明の実施の形態における転がり軸受の熱処理方法を説明する図で あり、図 20はその変形例を説明する図である。図 19は一次焼入れおよび二次焼入 れを行う方法を示す熱処理パターンであり、図 20は焼入れ途中で材料を A1変態点 温度未満に冷却し、その後、再加熱して最終的に焼入れする方法を示す熱処理バタ ーンである。これらの図において、処理 T1では鋼の素地に炭素や窒素を拡散させた まま炭素の溶け込みを十分に行った後、 A1変態点未満に冷却する。次に、図中の 処理 T2において、 A1変態点温度以上かつ処理 T1よりも低温に再加熱し、そこから 油焼入れを施す。 [0213] 上記の熱処理により、従来の浸炭窒化焼入れすなわち浸炭窒化処理に引き続いて そのまま 1回焼入れするよりも、表層部分を浸炭窒化しつつ、割れ強度を向上させ、 経年寸法変化率を減少させることができる。上記図 19または図 20の熱処理パターン によって製造されたこの発明の転がり軸受は、オーステナイト結晶粒の粒径が従来の 2分の 1以下となるミクロ組織を有している。上記の熱処理を受けた軸受部品は、転動 疲労に対して長寿命であり、割れ強度を向上させ、経年寸法変化率も減少させること ができる。結晶粒の微細化のために二次焼入れ温度を下げる熱処理工程をとるため 、残留オーステナイト量が表層および内部で減少する結果、すぐれた耐割れ強度や 耐経年寸法変化を得ることができるのである。
[0214] 図 21は、軸受部品のミクロ組織、とくにオーステナイト粒を示す図である。図 21Aは 本発明例の軸受部品であり、図 21Bは従来の軸受部品である。すなわち、図 19に示 す熱処理パターンを適用したこの発明の実施の形態である転がり軸受の軌道輪のォ ーステナイト結晶粒度を図 21Aに示す。また、比較のため、従来の熱処理方法による 軸受鋼のオーステナイト結晶粒度を図 21Bに示す。図 22Aおよび図 22Bに、上記図 21Aおよび図 21Bを図解したオーステナイト結晶粒度を示す。これらオーステナイト 結晶粒度を示す組織より、従来のオーステナイト粒径 «JIS規格の粒度番号で 10番 であり、図 19または図 20による熱処理方法によれば 12番の細粒を得ることができる 。図 21Aの平均粒径は、切片法で測定した結果、 5. 6 mであった。
実施例 2
[0215] 次に、この発明の実施例 2ついて説明する。
(実施例 2)
JIS規格 SUJ2材(1. 0重量%C— 0. 25重量%Si— 0. 4重量%Mn— 1. 5重量% Cr)を用いて、(1)水素量の測定、(2)結晶粒度の測定、(3)シャルピー衝撃試験、 ( 4)破壊応力値の測定、(5)転動疲労試験の各試験を行った。表 3にその結果を示す
[0216] [表 3] 試料 A B C D E F 従栾 炭 醬通焼入
晝化 れ
二次焼入れ 780 800 815 830 850 870
温度(。c)
水素量 ― 0. 37 0. 40 0, 3S 0. 42' 0. 40 0- 72 0. 38
(ppra)
結晶粒度 ― 12 11. 5 11 10 10 10 10
(JIS)
シャルピー^^ 6. 40 6. 30
6. 65 6. 20 6, 30 5. 33 6. 70
値 (J/cm2)
破壊応力値 ― 2840 27S0 2650 2650 2700 2330
2770
(MPa)
転動疲労寿命 ■ 5. 4 4. 2 3. 5 2. 9 2. 8 3. 1
1
比(し 10)
[0217] 各試料の製造履歴は次のとおりである。
[0218] 試料 A〜D (本発明例):浸炭窒化処理 850°C、保持時間 150分間。雰囲気は、 RX ガスとアンモニアガスとの混合ガスとした。図 19に示す熱処理パターンにおいて、浸 炭窒化処理温度 850°Cから一次焼入れを行!、、次!、で浸炭窒化処理温度より低 、 温度域 780°C〜830°Cに加熱して二次焼入れを行った。ただし、二次焼入れ温度 7 80°Cの試料 Aは焼入れ不足のため試験の対象力 外した。
[0219] 試料 E, F (比較例):浸炭窒化処理は、本発明例 A〜Dと同じ履歴で行い、二次焼 入れ温度を浸炭窒化処理温度 850°C以上の 850°C〜870°Cで行った。
[0220] 従来浸炭窒化処理品 (比較例):浸炭窒化処理 850°C、保持時間 150分間。雰囲 気は、 RXガスとアンモニアガスとの混合ガスとした。浸炭窒化処理温度からそのまま 焼入れを行い、二次焼入れは行わなかった。
[0221] 普通焼入れ品(比較例):浸炭窒化処理を行わずに、 850°Cに加熱して焼入れした 二次焼入れは行わな力つた。
[0222] 次に、試験方法について説明する。
[0223] (1)水素量の測定
水素量は、 LECO社製 DH— 103型水素分析装置により、鋼中の非拡散性水素量 を分析した。拡散性水素量は測定していない。この LECO社製 DH—103型水素分 析装置の仕様は次のとおりである。
分析範囲: 0. 01〜50. OOppm
分析精度: ±0. lppmまたは ± 3%H (いずれか大なる方)
分析感度:0. Olppm
検出方式:熱伝導度法
試料重量サイズ: 1 Omg〜 35mg (最大:直径 12mm X長さ 1 OOmm)
加熱炉温度範囲: 50°C〜1100°C
試薬:アンハイドロン Mg (ClO ) 、 ァスカライト NaOH
4 2
キャリアガス:窒素ガス、ガスドージングガス:水素ガス、いずれのガスも純度 99. 99 %以上、圧力 40psi (2. 8kgf/cm2)
測定手順の概要は以下のとおりである。専用のサンプラーで採取した試料をサンプ ラーごと上記の水素分析装置に挿入する。内部の拡散性水素は窒素キャリアガスに よって熱伝導度検出器に導かれる。この拡散性水素は本実施例では測定しない。次 に、サンプラーから試料を取り出し、抵抗加熱炉内で加熱し、非拡散性水素を窒素キ ャリアガスによって熱伝導度検出器に導く。熱伝導度検出器において熱伝導度を測 定することによって非拡散性水素量を知ることができる。
[0224] (2)結晶粒度の測定
結晶粒度の測定は、 JIS G 0551の鋼のオーステナイト結晶粒度試験方法に基 づいて行った。
[0225] (3)シャルピー衝撃試験
シャルピー衝撃試験は、 JIS Z 2242の金属材料のシャルピー衝撃試験方法に 基づいて行った。試験片は、 JIS Z 2202に示された Uノッチ試験片 (JIS 3号試験 片)を用いた。
[0226] (4)破壊応力値の測定
図 23は、静圧壊強度試験 (破壊応力値の測定)の試験片を示す図である。図中の P方向に荷重を負荷して破壊されるまでの荷重を測定する。その後、得られた破壊荷 重を、下記の曲がり梁の応力計算式により応力値に換算する。なお、試験片は図 23 に示す試験片に限られず、他の形状の試験片を用いてもょ 、。 [0227] 図 23の試験片の凸表面における繊維応力を σ 、凹表面における繊維応力を σ と
1 2 すると、 σ および σ は下記の式によって求められる (機械工学便覧 Α4編材料力学
1 2
Α4— 40)。ここで、 Νは円環状試験片の軸を含む断面の軸力、 Αは横断面積、 eは 外半径、 eは内半径を表す。また、 κは曲がり梁の断面係数である。
2
σ =(N/A) + {M/(A )}[l + e /{ K (p +e )}]
1 0 1 0 1
σ =(N/A) + {M/(A )}[l-e /{ κ (ρ -e )}]
0 2
Figure imgf000048_0001
(5)転動疲労寿命
転動疲労寿命試験の試験条件を表 4に示す。また、図 24は、転動疲労寿命試験 機の概略図であって、図 24Aは正面図、図 24Bは側面図である。図 24Aおよび図 2 4Bにおいて、転動疲労寿命試験片 18は、駆動ロール 12によって駆動され、ボール 16と接触して回転する。ボール 16は 3Z4インチのボールであり、案内ロール 14にガ イドされて転動疲労寿命試験片 18との間で高い面圧を及ぼし合いながら転動する。
[0228] 表 3に示した実施例 2の試験結果を説明すると次のとおりである。
[0229] [水素量]
浸炭窒化処理したままの従来浸炭窒化処理品は、 0. 72ppmと非常に高い値とな つている。これは、浸炭窒化処理の雰囲気に含まれるアンモニア (NH )が分解して
3
水素が鋼中に浸入したためと考えられる。これに対し、試料 B〜Dは、水素量は 0. 3 7〜0.40ppmと半分近くまで減少している。この水素量は普通焼入れ品と同レベル である。
[0230] [結晶粒度]
結晶粒度は二次焼入れ温度が、浸炭窒化処理時の焼入れ (一次焼入れ)の温度よ り低い場合、すなわち試料 B〜Dの場合、オーステナイト粒は、結晶粒度番号 11〜1 2と顕著に微細化されて ヽる。試料 Eおよび Fならびに従来浸炭窒化処理品および普 通焼入れ品のオーステナイト粒は、結晶粒度番号 10であり、本発明例の試料 B〜D より粗大な結晶粒となっている。
[0231] [シャルビー衝撃試験]
表 3によれば、従来浸炭窒化処理品のシャルピー衝撃値は 5. 33jZcm2であるの に対して、本発明例の試料 B〜Dのシャルピー衝撃値は 6. 30〜6. 65jZcm2と高 い値が得られている。この中でも、二次焼入れ温度が低い方がシャルピー衝撃値が 高くなる傾向を示す。普通焼入れ品のシャルピー衝撃値は 6. 70jZcm2と高い。
[0232] (4)破壊応力値の測定
上記破壊応力値は、耐割れ強度に相当する。表 3によれば、従来浸炭窒化処理品 は 2330MPaの破壊応力値となっている。これに比して、試料 B〜Dの破壊応力値は 2650〜2840MPaと改善された値が得られて 、る。普通焼入れ品の破壊応力値は 2770MPaであり、試料 B〜Dの改良された耐割れ強度は、オーステナイト結晶粒の 微細化と並んで、水素含有率の低減による効果が大き!、と推定される。
[0233] (5)転動疲労試験
表 3によれば、普通焼入れ品は浸炭窒化層を表層部に有しないことを反映して、転 動疲労寿命 L は最も低い。これに比して従来浸炭窒化処理品の転動疲労寿命は 3
10
. 1倍となる。試料 B〜Dの転動疲労寿命は従来浸炭窒化処理品より大幅に向上する 。試料 E, Fは、従来浸炭窒化処理品とほぼ同等である。
[0234] 上記をまとめると、本発明例の試料 B〜Dは、水素含有率が低下し、オーステナイト 結晶粒度が 11番以上に微細化され、シャルピー衝撃値、耐割れ強度および転動疲 労寿命も改善される。
実施例 3
[0235] 次に、実施例 3について説明する。下記の X材、 Y材および Z材について、一連の 試験を行った。熱処理用素材には、 JIS規格 SUJ2材(1. 0重量%C— 0. 25重量% Si— 0. 4重量%Mn—l. 5重量%Cr)を用い、 X材〜 Z材に共通とした。 X材〜 Z材 の製造履歴は次のとおりである。
X材 (比較例):普通焼入れのみ (浸炭窒化処理せず)
Y材 (比較例):浸炭窒化処理後にそのまま焼入れ (従来の浸炭窒化焼入れ)。浸炭 窒化処理温度 845°C、保持時間 150分間。浸炭窒化処理の雰囲気は、 RXガス +ァ ンモユアガスとした。
Z材 (本発明例):図 19の熱処理パターンを施した軸受鋼。浸炭窒化処理温度 845 °C、保持時間 150分間。浸炭窒化処理の雰囲気は、 RXガス +アンモニアガスとした 。最終焼入れ温度は 800°Cとした。
[0236] (1)転動疲労寿命
転動疲労寿命の試験条件および試験装置は、上述したように、表 4および図 24に 示すとおりである。この転動疲労寿命試験の結果を表 5に示す。表 5によれば、比較 例の Y材は、同じく比較例で普通焼入れのみを施した X材の L 寿命 (試験片 10個中
10
の 1個が破損する寿命)の 3. 1倍を示し、浸炭窒化処理による長寿命化の効果が認 められる。これに対して、本発明例の Z材は、 B材の 1. 74倍、また X材の 5. 4倍の長 寿命を示している。この改良の主因はミクロ組織の微細化によるものと考えられる。
[0237] [表 4]
Figure imgf000050_0001
[0238] [表 5]
Figure imgf000050_0002
(2)シャルピー衝撃試験
シャルピー衝撃試験は、 Uノッチ試験片を用いて、上述の JISZ2242に準じた方法 により行った。試験結果を表 6に示す。浸炭窒化処理を行った Y材 (比較例)のシャル ピー衝撃値は、普通焼入れの X材 (比較例)より高くないが、 Z材は X材と同等の値が 得られた。
[0240] [表 6]
Figure imgf000051_0001
[0241] (3)静的破壊靭性値の試験
図 25は、静的破壊靭性試験の試験片を示す図である。この試験片のノッチ部に、 予き列を約 lmm導入した後、 3点曲げによる静的荷重を加え、破壊荷重 Pを求めた 。破壊靭性値 (Klc値)の算出には次に示す (I)式を用いた。また、試験結果を表 7 に示す。予き裂深さが浸炭窒化層深さよりも大きくなつたため、比較例の X材と Y材と には違いはない。しかし、本発明例の Z材は比較例に対して約 1.2倍の値を得ること ができた。
Klc= (PL^a/BW2) {5.8— 9.2(a/W) +
43.6(a/W)2-75.3(a/W)3+77.5(a/W)4} ······ (I)
[0242] [表 7]
Figure imgf000051_0002
(4)静圧壊強度試験
静圧壊強度試験は、上述のように図 25に示す形状のものを用いた。図中、 P方向 に荷重を負荷して、静圧壊強度試験を行った。試験結果を表 8に示す。浸炭窒化処 理を行っている Y材は普通焼入れの X材よりもやや低い値である。し力しながら、本発 明例の Z材は、 Y材よりも静圧壊強度が向上し、 X材と遜色ないレベルが得られてい る。
[0244] [表 8]
Figure imgf000052_0001
[0245] (5)経年寸法変化率
保持温度 130°C、保持時間 500時間における経年寸法変化率の測定結果を、表 面硬度、残留オーステ 'BR〉Iイト量(50 m深さ)と併せて表 9に示す。残留オーステ ナイト量の多い Y材の寸法変化率に比べて、本発明例の Z材は 2分の 1以下に抑制さ れていることがわ力る。
[0246] [表 9]
Figure imgf000052_0002
[0247] (6)異物混入下における転動寿命試験
玉軸受 6206を用い、標準異物を所定量混入させた異物混入下での転動疲労寿 命を評価した。試験条件を表 10に、試験結果を表 11に示す。 X材に比べ、従来の浸 炭窒化処理を施した Y材は約 2. 5倍になり、また、本発明例の Z材は約 2. 3倍の長 寿命が得られた。本発明例の Z材は、比較例の Y材に比べて残留オーステナイト量 が少な!/、ものの、窒素の浸入と微細化されたミクロ組織の影響でほぼ同等の長寿命 が得られている。
[0248] [表 10] 荷重 F r = 6. 86 kN
接触面圧 Pmax= 3. 2GP a
回転速度 2000 r p m.
潤滑 ターピン 56 油浴給油
異物量 0. 4 g/1000 c c
異物 粒径 100〜180 μιη、 硬さ Hv S O O
[0249] [表 11]
Figure imgf000053_0001
[0250] 上記の結果より、 Z材すなわち本発明例は、従来の浸炭窒化処理では困難であつ た転動疲労寿命の長寿命化、割れ強度の向上、経年寸法変化率の低減の 3項目を 同時に満足することができることがわ力つた。
実施例 4
[0251] 表 12に、窒素含有量と異物混入条件下の転動寿命との関係について行った試験 の結果を示す。なお、比較例 1は標準焼入れ品、比較例 2は標準の浸炭窒化品であ る。比較例 3はこの発明実施例と同様の処理を施したものの窒素量のみ過多の場合 である。試験条件は次のとおりである。
供試軸受:円錐ころ軸受 30206 (内 Z外輪、ころ共に JISによる高炭素クロム軸受鋼 2 種 (SUJ2)製)
ラジアル荷重: 17.64kN
アキシァノレ荷重: 1.47kN
回転速度: 2000rpm
硬質の異物混入 lgZL
[0252] [表 12]
Figure imgf000054_0001
[0253] 表 12より、実施例 1〜5に関しては、窒素含有量と異物寿命はほぼ比例関係にある ことがわかる。ただし、窒素含有量が 0. 72の比較例 3では異物混入下の転動寿命が 極端に低下していることに照らし、窒素含有量は 0. 7を上限とするのがよい。
[0254] ここに開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。この発明の範囲は上記した説明ではなく請求の範囲によつ て示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれること が意図される。
[0255] 図 26〜図 29は本発明の別の変形例を示すもので、保持器 5の内径側から見たポ ケットを示す。ポケット柱面 5b (柱の側面)に、ころの当たりを二点差線で示してある。 いずれの場合も、ポケット柱面 5bのころの当たり幅を、ポケット 9の軸方向中央位置す なわちポケット中央位置力もポケット長さの 10%以上確保してある。ころ力も保持器 5 に作用する荷重が局部的に集中したり、偏って負荷されたりすることによって、異常 な摩耗が発生したり、応力集中による破損が発生したりしな 、ようにするためである。 なお、図 26〜図 29においては、切欠き 10a等を省略している。
[0256] 具体的には、図 26の場合、ころ当たり幅は、ポケット中央位置力も軸方向両側にそ れぞれポケット長さの 10%以上にわたって確保されている。したがって、ポケット中央 位置でのころ当たり幅はポケット長さの 20%以上となっている。図 27の場合は、ころ の当たりが図中の左側寄りになって!/、るが、ポケット中央位置力 右側にもポケット長 さの 10%以上のころ当たり幅が確保されている。図 28の場合は、図 27と逆にころの 当たりが図中の右側寄りになって!/、るが、ポケット中央位置力 左側にもポケット長さ の 10%以上のころ当たり幅が確保されている。図 29は、図中上側のポケット柱面 5b と図中下側のポケット柱面 5bとでころの当たりが逆方向に片寄っている場合であるが 、いずれも、ポケット中央位置力も少なくともポケット長さの 10%以上のころ当たり幅 が確保されている。
[0257] この発明によれば、ころ係数 γが 0. 94を越えるようにすることによって、ころ本数を 増加させつつこの PCDを小さくできる。これにより、これにより、軸受剛性を低下させ ることなく、低トルク化を実現できる。また、ころ本数を増加させることによって、負荷容 量がアップするば力りでなぐ軌道面の最大面圧を低下させることができるため、過酷 潤滑条件下での極短寿命での表面起点剥離を防止することができる。
[0258] また、保持器 5の台形状のポケット 9の狭幅側の柱部 8に切欠き 10を設けることによ り、保持器 5の内径側から内輪側へ流入した潤滑油を、この切欠き 10を通して外輪 側へ速やかに逃がすことができるため、内輪 2の軌道面 2aに沿って大鍔 2cに至る潤 滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が減少して、潤滑油の流動 抵抗によるトルク損失が低減する。
[0259] 前記ポケット 9の狭幅側の小環状部 6にも切欠き 10cを設けることにより、保持器 5の 内径側から内輪側へ流入する潤滑油をこの小環状部 6の切欠き 10cからも外輪 3側 へ逃がし、内輪 2の軌道面 2aに沿って大鍔 2cまで到る潤滑油の量をより少なくして、 潤滑油の流動抵抗によるトルク損失をさらに低減することができる。
[0260] 前記ポケット 9の広幅側の少なくとも柱部 8に切欠き 10bを設けることにより、円錐こ ろ 4をバランスよく柱部〖こ措接させることができる。
[0261] 前記ポケット 9の狭幅側に設けた切欠き 10aの合計面積を、台形状のポケット 9の広 幅側に設けた切欠き 10bの合計面積よりも広くすることによつても、内輪 2の軌道面に 沿って大鍔 2cまで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク 損失をさらに低減することができる。
[0262] 前記保持器 5の小環状部 6の輪方向外側に、内輪 2の小鍔 2bの外径面に対向させ た径方向内向きのつば 11を設け、この対向させた小環状部 6のつば 11の内径面と 内輪 2の小鍔 2bの外径面とのすきま δを、内輪 2の小つば 2cの外径寸法の 2. 0% 以下とすることにより、保持器 5の内径側から内輪側へ流入する潤滑油の量を少なく し、潤滑油の流動抵抗によるトルク損失をより低減することができる。
[0263] 少なくとも前記円錐ころ 4の表面に、微小凹形形状のくぼみをランダムに無数に設 け、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 ,u m≤Ryni≤ 1. 0 ^ m とし、かつ、 Sk値を 1. 6以下とすることにより、円錐ころ 4の表面に満遍なく潤滑油 を保持させて、軸受内部に滞留する潤滑油の量を減らしても、円錐ころ 4と内外輪 2、 3との接触部を十分に潤滑することができる。
[0264] 保持器が軸中心に位置した状態では保持器外径と外輪軌道面間にすきまが存在 しているので、軸受運転中には外輪と保持器との接触が殆ど発生しない。このため、 保持器の接触による引きずりトルクの発生を抑制することができ、保持器ポケット部の 摩耗も最小限とすることができる。
[0265] 次に、本発明のさらに別の変形例を説明する。この変形例の円錐ころ軸受 1は、 PC D上におけるこの間隔が(ころ径 Zころ本数)未満になつて 、る。
[0266] 保持器 5は、円錐ころ 4の小径端面側で連なる小環状部 6と、円錐ころ 4の大径端面 側で連なる大環状部 7と、これらの小環状部 6と大環状部 7を連結する複数の柱部 8と を含んでいる。そして、図 2に示すように、隣り合った柱部 8間にポケット 9が形成され る。保持器 5のポケット 9は台形状で、円錐ころ 4の小径側を収納する部分が狭幅側、 大径側を収納する部分が広幅側となる。ポケット 9の狭幅側と広幅側には、それぞれ 両側の柱部 8に 2つずつ、外径側から内径側まで切り通した切欠き 10a、 10bが設け てある。各切欠き 10a、 10bの寸法は、いずれも深さ 1. Omm、幅 4. 6mmとされてい る。なお、図面に例示した切欠き 10a、 10bは、保持器 5の半径方向に切り通した溝 の形態をして ヽるが、保持器 5の内径側と外径側を連絡して潤滑油の円滑な通過を 許容することができる限り、形状や寸法は任意であって、例えば図 5、図 6のようにす ることがでさる。
[0267] 保持器 5の小環状部 6の軸方向外側には、図 7に示すように内輪 2の小鍔 2bの外 径面に対向させた径方向内向きのつば 11が設けてあり、このつば 11の内径面と内 輪 2の小鍔 2bの外径面との間のすきま δは、小鍔 2bの外径寸法の 2. 0%以下に狭 く設定してある。
[0268] また、図示は省略するが、円錐ころ 4の全表面には微小凹形形状のくぼみがランダ ムに無数に設けてある。このくぼみを設けた表面は、面粗さパラメータ Ryniが 0. 4 μ m≤Ryni≤l . O ^ m,かつ、 Sk値が 1. 6以下としてある。
[0269] この発明によれば、ころ PCD上におけるこの間隔を (ころ径 Zころ本数)未満とした ので、ころ本数を増加させつつこの PCDを小さくできる。これにより、軸受剛性を低下 させることなく、低トルク化を実現できる。また、ころ本数を増カロさせることによって、負 荷容量がアップするば力りでなぐ軌道面の最大面圧を低下させることができるため、 過酷潤滑条件下での極短寿命での表面起点剥離を防止することができる。
[0270] また、保持器 5の台形状ポケット 9の狭幅側の柱部に切欠き 10aを設けることにより、 保持器 5の内径側から内輪側へ流入した潤滑油を、この切欠き 10aを通して外輪 3側 へ速やかに逃がすことができるため、内輪 2の軌道面 2aに沿って大つばに至る潤滑 油の量が少なくなり、軸受内部に滞留する潤滑油の量が減少して、潤滑油の流動抵 抗によるトルク損失が低減する。
[0271] 前記ポケット 9の狭幅側の小環状部 6にも切欠き 10cを設けることにより、保持器 5の 内径側から内輪側へ流入する潤滑油をこの小環状部 6の切欠き 10cからも外輪 3側 へ逃がし、内輪 2の軌道面 2aに沿って大つばまで到る潤滑油の量をより少なくして、 潤滑油の流動抵抗によるトルク損失をさらに低減することができる。
[0272] 前記ポケット 9の広幅側の少なくとも柱部 8に切欠き 10bを設けることにより、円錐こ ろ 4をバランスよく柱部 8に摺接させることができる。
[0273] 前記ポケット 9の狭幅側に設けた切欠き 10aの合計面積を、台形状ポケット 9の広幅 側に設けた切欠き 10bの合計面積よりも広くすることによつても、内輪 2の軌道面に沿 つて大鍔 2cまで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク損 失をさらに低減することができる。
[0274] 前記保持器 5の小環状部 6の輪方向外側に、内輪 2の小つばの外径面に対向させ た径方向内向きのつば 11を設け、この対向させた小環状部 6のつば 11の内径面と 内輪 2の小つばの外径面とのすきま δを、内輪 2の小鍔 2bの外径寸法の 2. 0%以下 とすること
により、保持器 5の内径側から内輪側へ流入する潤滑油の量を少なくし、潤滑油の流 動抵抗によるトルク損失をより低減することができる。 [0275] 少なくとも前記円錐ころ 4の表面に、微小凹形形状のくぼみをランダムに無数に設 け、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 ,u m≤Ryni≤ 1. 0 ^ m とし、かつ、 Sk値を 1. 6以下とすることにより、円錐ころの表面に満遍なく潤滑油を 保持させて、軸受内部に滞留する潤滑油の量を減らしても、円錐ころと内外輪との接 触部を十分に潤滑することができる。
[0276] 図 4Bに軸受の寿命試験の結果を示す。同図中、「軸受」の欄における「比較例 1」 が保持器と外輪とが離れた典型的な従来の円すいころ軸受、「実施例 1」が本発明の 円す 、ころ軸受のうち従来品に対してころ PCD上におけるこの間隔を (ころ径 Zころ 本数)未満とした円すいころ軸受、「実施例 2」がころ PCD上におけるこの間隔を (ころ 径 Zころ本数)未満で、かつ、窓角が 55° 〜80° の範囲の本発明の円すいころ軸 受である。試験は、過酷潤滑、過大負荷条件下で行なった。同図より明らかなように、 「実施例 1」は「比較例」の 2倍以上の長寿命となる。さらに、「実施例 2」の軸受は、寿 命時間は「実施例 1」の約 5倍以上にもなる。なお、「比較例 1」、「実施例 1」および「 実施例 2」の寸法は φ 45 X φ 81 X 16 (単位 mm)、ころ本数は 24本(「比較例 1」)、 2 7本(「実施例 1」、「実施例 2」)、油膜パラメータ Λ =0. 2である。
[0277] 図 4Β中、「軸受」の欄における「比較例 1」が保持器と外輪とが離れた典型的な従 来の円錐ころ軸受、「実施例 1」が本発明の円錐ころ軸受のうち従来品に対してころ Ρ CD上におけるこの間隔を (ころ径 Ζころ本数)未満とした円錐ころ軸受、「実施例 2」 力 ろ PCD上におけるこの間隔を (ころ径/ころ本数)未満で、かつ、窓角が 55° 〜 80° の範囲の本発明の円錐ころ軸受である。試験は、過酷潤滑、過大負荷条件下 で行なった。
[0278] 同図より明らかなように、「実施例 1」は「比較例」の 2倍以上の長寿命となる。さらに 、「実施例 2」の軸受は、寿命時間は「実施例 1」の約 5倍以上にもなる。なお、「比較 例 1」、「実施例 1」および「実施例 2」の寸法は φ 45 X φ 81 X 16 (単位 mm)、ころ本 数は 24本(「比較例 1」)、 27本(「実施例 1」、「実施例 2」)、油膜パラメータ Λ =0. 2 である。
[0279] 保持器 5は前述の図 9および図 10に示すように、エンジニアリング 'プラスチックで 一体成形した保持器 5の柱部 8の外径面に、外輪 3の軌道面 3a側に向けて凸状を成 す突起部 5aを形成したものであってもよい。この場合、軸受 1が回転して保持器 5が 回転し始めると、外輪軌道面と保持器 5の突起部 5aとの間に楔状油膜が形成される 。この楔状油膜は軸受 1の回転速度にほぼ比例した動圧を発生するので、保持器 5 のピッチ径 (PCD)を従来よりも大きくして外輪 3の軌道面 3aに近接させても、軸受 1 を大きな摩耗ないしトルク損失を生じることなく回転させることが可能となり、無理なく ころ本数を増加させることが可能となる。
[0280] また、試験の最高回転速度である 2000rpmにおけるトルク低減率は、実施例 Aが 9 . 5%、実施例 Bが 11. 5%であり、デフアレンシャルやトランスミッション等における高 速回転での使用条件でも優れたトルク低減効果を得ることができる。なお、比較例 B と比較例 Cの回転速度 2000rpmにおけるトルク低減率は、それぞれ 8. 0%と 6. 5% である。
[0281] 次に、本発明の他の変形例を説明する。この変形例の円錐ころ軸受 1は、(PCD上 の円周方向長さ) - (ころ径 Xころ本数)くころ径となる関係を満たしたものである。
[0282] また、図示は省略するが、円錐ころ 4の全表面には微小凹形形状のくぼみがランダ ムに無数に設けてある。このくぼみを設けた表面は、面粗さパラメータ Ryniが 0. 4 μ m≤Ryni≤l . O ^ m,かつ、 Sk値が 1. 6以下としてある。
[0283] 柱面 5bの窓角 Θは、図 3Aに示すように下限窓角 Θ minが 55° であり、図 3Bに示 すように上限窓角 Θ maxが 80° である。窓角とは、一つのころ 4の周面に当接する柱 部 8の案内面のなす角度をいう。窓角は、保持器 72が外輪 71から離間している典型 的な保持器付き円錐ころ軸受では、大きくて約 50° である。ここでは窓角を大きめに 設定することにより、ころピッチ円径の長さと、ころ径ところ本数の積との差が、ころ径 より小さくなるようにしてある { (PCD上の円周方向長さ) - (ころ径 Xころ本数)くころ 径}。下限窓角 Θ minを 55° 以上としたのは、ころとの良好な接触状態を確保するた めであり、窓角 55° 未満ではころとの接触状態が悪くなる。すなわち、窓角を 55° 以上にすると、保持器強度を確保した上で (PCD上の円周方向長さ) (ころ径 Xこ ろ本数)くころ径として、かつ、良好な接触状態を確保できるのである。また、上限窓 角 Θ maxを 80° 以下としたのは、これ以上大きくなると半径方向への押し付け力が大 きくなり、自己潤滑性の榭脂材であっても円滑な回転が得られなくなる危険性が生じ るカゝらである。
[0284] この発明によれば、ころピッチ円上の周方向長さと、ころ径ところ本数の積との差が 、ころ径より小さいので、ころ本数を増加させつつこの PCDを小さくできる。これにより 、軸受剛性を低下させることなぐ低トルク化を実現できる。また、ころ本数を増加させ ることによって、負荷容量がアップするば力りでなぐ軌道面の最大面圧を低下させる ことができるため、過酷潤滑条件下での極短寿命での表面起点剥離を防止すること ができる。
[0285] また、保持器 5の台形状のポケット 9の狭幅側の柱部 8に切欠き 10を設けることによ り、保持器 5の内径側から内輪側へ流入した潤滑油を、この切欠き 10を通して外輪 側へ速やかに逃がすことができるため、内輪 2の軌道面 2aに沿って大鍔 2cに至る潤 滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が減少して、潤滑油の流動 抵抗によるトルク損失が低減する。
[0286] 前記ポケット 9の狭幅側の小環状部 6にも切欠き 10cを設けることにより、保持器 5の 内径側から内輪側へ流入する潤滑油をこの小環状部 6の切欠き 10cからも外輪 3側 へ逃がし、内輪 2の軌道面 2aに沿って大鍔 2cまで到る潤滑油の量をより少なくして、 潤滑油の流動抵抗によるトルク損失をさらに低減することができる。
[0287] 前記ポケット 9の広幅側の少なくとも柱部 8に切欠き 10bを設けることにより、円錐こ ろ 4をバランスよく柱部〖こ措接させることができる。
[0288] 前記ポケット 9の狭幅側に設けた切欠き 10aの合計面積を、台形状のポケット 9の広 幅側に設けた切欠き 10bの合計面積よりも広くすることによつても、内輪 2の軌道面に 沿って大鍔 2cまで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク 損失をさらに低減することができる。
[0289] 前記保持器 5の小環状部 6の輪方向外側に、内輪 2の小鍔 2bの外径面に対向させ た径方向内向きのつば 11を設け、この対向させた小環状部 6のつば 11の内径面と 内輪 2の小鍔 2bの外径面とのすきま δを、内輪 2の小つば 2cの外径寸法の 2. 0% 以下とすることにより、保持器 5の内径側から内輪側へ流入する潤滑油の量を少なく し、潤滑油の流動抵抗によるトルク損失をより低減することができる。
[0290] 少なくとも前記円錐ころ 4の表面に、微小凹形形状のくぼみをランダムに無数に設 け、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 ,u m≤Ryni≤ 1. 0 ^ m とし、かつ、 Sk値を 1. 6以下とすることにより、円錐ころ 4の表面に満遍なく潤滑油 を保持させて、軸受内部に滞留する潤滑油の量を減らしても、円錐ころ 4と内外輪 2、 3との接触部を十分に潤滑することができる。
[0291] 図 4Cに軸受の寿命試験の結果を示す。同図中、「軸受」の欄における「比較例 1」 が保持器と外輪とが離れた典型的な従来の円すいころ軸受、「実施例 1」が本発明の 円す 、ころ軸受のうち(PCD上の円周方向長さ) (ころ径 Xころ本数) <ころ径のみ が成立した円すいころ軸受、「実施例 2」が (PCD上の円周方向長さ) (ころ径 Xこ ろ本数)くころ径が成立しており、かつ、窓角が 55° 〜80° の範囲の本発明の円す いころ軸受である。試験は、過酷潤滑、過大負荷条件下で行なった。同図より明らか なように、「実施例 1」は「比較例」の 2倍以上の長寿命となる。さらに、「実施例 2」の軸 受は、寿命時間は「実施例 1」の約 5倍以上にもなる。なお、「比較例 1」、「実施例 1」 および「実施例 2」の寸法は φ 45 X φ 81 X 16 (単位 mm)、ころ本数は 24本(「比較 例 1」)、 27本(「実施例 1」、「実施例 2」)、油膜パラメータ Λ =0. 2である。
[0292] 図 4C中、「軸受」の欄における「比較例 1」が保持器と外輪とが離れた典型的な従 来の円錐ころ軸受、「実施例 1」が本発明の円錐ころ軸受のうち(PCD上の円周方向 長さ) (ころ径 Xころ本数)くころ径のみが成立した円錐ころ軸受、「実施例 2」が (Ρ CD上の円周方向長さ) (ころ径 Xころ本数)くころ径が成立しており、かつ、窓角 力 5° 〜80° の範囲の本発明の円錐ころ軸受である。試験は、過酷潤滑、過大負 荷条件下で行なった。同図より明らかなように、「実施例 1」は「比較例」の 2倍以上の 長寿命となる。さらに、「実施例 2」の軸受は、寿命時間は「実施例 1」の約 5倍以上に もなる。なお、「比較例 1」、「実施例 1」および「実施例 2」の寸法は φ 45 X 81 Χ 16 (単位 mm)、ころ本数は 24本(「比較例 1」)、 27本(「実施例 1」、「実施例 2」)、油膜 パラメータ Λ =0. 2である。
[0293] 保持器 5は前述の図 9および図 10に示すように、エンジニアリング 'プラスチックで 一体成形した保持器 5の柱部 8の外径面に、外輪 3の軌道面 3a側に向けて凸状を成 す突起部 5aを形成したものであってもよい。この場合、軸受 1が回転して保持器 5が 回転し始めると、外輪軌道面と保持器 5の突起部 5aとの間に楔状油膜が形成される 。この楔状油膜は軸受 1の回転速度にほぼ比例した動圧を発生するので、保持器 5 のピッチ径 (PCD)を従来よりも大きくして外輪 3の軌道面 3aに近接させても、軸受 1 を大きな摩耗ないしトルク損失を生じることなく回転させることが可能となり、無理なく ころ本数を増加させることが可能となる。
実施例 5
[0294] 実施例として、図 2に示した保持器を用いた円錐ころ軸受 (実施例 A)と、図 5に示し た保持器を用いた円錐ころ軸受 (実施例 B)を用意した。また、比較例として、ポケット に切欠きのない保持器を用いた円錐ころ軸受(比較例 A)と、図 13A、図 13Bに示し た保持器を用いた円錐ころ軸受 (比較例 B、 C)を用意した。なお、各円錐ころ軸受は 、寸法が外径 100mm、内径 45mm、幅 27. 25mmであり、ポケットの切欠き以外の 部分は同じである。
[0295] 実施例と比較例の円錐ころ軸受について、縦型トルク試験機を用いたトルク測定試 験を行った。試験条件は以下のとおりである。
アキシァノレ荷重: 300kgf
回転速度: 300〜2000rpm (lOOrpmピッチ)
潤滑条件:油浴潤滑 (潤滑油: 75W- 90)
試験結果は図 12と同様であった。同図のグラフの縦軸は、ポケットに切欠きのない 保持器を用 ヽた比較例 Aのトルクに対するトルク低減率を表す。ポケットの柱部中央 部に切欠きを設けた比較例 Bや、ポケットの小環状部と大環状部に切欠きを設けた 比較例 Cも、トルク低減効果が認められるが、ポケットの狭幅部側の柱部に切欠きを 設けた実施例 Aは、これらの比較例よりも優れたトルク低減効果が認められ、狭幅側 の小環状部にも切欠きを設け、狭幅側の切欠きの合計面積を広幅側のそれよりも広 くした実施例 Bは、さらに優れたトルク低減効果が認められる。
[0296] また、試験の最高回転速度である 2000rpmにおけるトルク低減率は、実施例 Aが 9 . 5%、実施例 Bが 11. 5%であり、デフアレンシャルやトランスミッション等における高 速回転での使用条件でも優れたトルク低減効果を得ることができる。なお、比較例 B と比較例 Cの回転速度 2000rpmにおけるトルク低減率は、それぞれ 8. 0%と 6. 5% である。 [0297] 保持器 5は、例えば PPS、 PEEK, PA、 PPA、 PAI等のスーパーエンプラで一体 成形される。保持器に、機械的強度、耐油性および耐熱性に優れたエンジニアリング •プラスチックを使用することにより、鉄板製保持器に比べ、保持器重量が軽ぐ自己 潤滑性があり、摩擦係数が小さいという特徴があるため、軸受内に介在する潤滑油の 効果と相俟って、外輪との接触による摩耗の発生を抑えることが可能になる。また、こ れらの榭脂は鋼板と比べると重量が軽く摩擦係数が小さいため、軸受起動時のトルク 損失や保持器摩耗の低減に好適である。エンジニアリング 'プラスチックは、汎用ェン ジニアリング 'プラスチックとスーパ一'エンジニアリング 'プラスチックを含む。なお、保 持器材料の例として PPS、 PEEK, PA、 PPA、 PAI等のスーパーエンプラを挙げた 力 必要に応じて、強度増強のため、これら榭脂材料またはその他のエンジニアリン グ ·プラスチックに、ガラス繊維または炭素繊維などを配合したものを使用してもよい。
[0298] 保持器 5の外径面には、突起部 5aが形成してある。このような突起部 5aは、保持器 5をエンジニアリング 'プラスチックで一体成形することにより容易に形成できる。突起 部 5aは、図 9〜図 10に示すように、保持器 5の柱部 8の外径面に、外輪 3の軌道面 3 a側に向けて凸状を成す。詳しくは、突起部 5aは図 10に示すように、柱部 8の横断方 向の断面輪郭形状が円弧状を成す。この円弧状の曲率半径 R2は外輪 3の軌道面 3 aの半径 R1より小さく形成されている。これは突起部 5aと外輪 3の軌道面 3aとの間に 良好な楔状油膜が形成されるようにするためであり、望ましくは突起部 5aの曲率半径 R2は外輪 3の軌道面 3aの半径 R1の 70〜90%程度に形成するとよい。 70%未満で あると楔状油膜の入口開き角度が大きくなりすぎて却って動圧が低下する。 90%を 超えると楔状油膜の入口角度が小さくなりすぎて同様に動圧が低下する。また、突起 部 5aの横幅 W2は望ましくは柱部 8の横幅 W1の 50%以上となるように形成する(W2 ≥0. 5 XW)。 50%未満では良好な楔状油膜を形成するための充分な突起部 5aの 高さが確保できなくなるためである。なお、外輪 3の軌道面 3aの半径 R1は大径側か ら小径側へと連続的に変化しているので、突起部 5aの曲率半径 R2もそれに合わせ て大環状部 7の大きな曲率半径 R2から小環状部 6の小さな曲率半径 R2へと連続的 に変化するようにする。
[0299] また、図示は省略するが、円錐ころ 4の全表面には微小凹形形状のくぼみがランダ ムに無数に設けてある。このくぼみを設けた表面は、面粗さパラメータ Ryniが 0. 4 μ m≤Ryni≤l . O ^ m,かつ、 Sk値が 1. 6以下としてある。
[0300] 円錐ころ軸受 l (la, lb)は以上のように構成されているため、軸受 1 (la, lb)が回 転して保持器 5が回転し始めると、外輪軌道面と保持器 5の突起部 5aとの間に楔状 油膜が形成される。この楔状油膜は軸受 1の回転速度にほぼ比例した動圧を発生す るので、保持器 5のピッチ径 (PCD)を従来よりも大きくして外輪 3の軌道面 3aに近接 させても、軸受 1を大きな摩耗ないしトルク損失を生じることなく回転させることが可能 となり、無理なくころ本数を増加させることが可能となる。なお、突起部 5aは柱部 8の 外径面に形成する他、保持器 5の小環状部 6ゃ大環状部 7の外径面にも形成するこ とができる。また前述したように、図 7のすきま δ力も流入した潤滑油の大半は、ボケ ット 9の狭幅側の柱部 8に設けた切欠き 10aを通過して保持器 5の外径側へ移動する から、軸受内部に滞留する潤滑油の量が大幅に低下する。この結果、軸受剛性を低 下させることなく低トルク化を図ることができる。
[0301] 図 13に試験結果を示す。同図のグラフの縦軸は、ポケットに切欠きのない保持器を 用 、た比較例 1のトルクに対するトルク低減率を表す。ポケットの柱部中央部に切欠 きを設けた比較例 2や、ポケットの小環状部と大環状部に切欠きを設けた比較例 3も 、トルク低減効果が認められるが、ポケットの狭幅部側の柱部に切欠きを設けた実施 例 1は、これらの比較例よりも優れたトルク低減効果が認められ、狭幅側の小環状部 にも切欠きを設け、狭幅側の切欠きの合計面積を広幅側のそれよりも広くした実施例 2は、さらに優れたトルク低減効果が認められる。
[0302] また、試験の最高回転速度である 2000rpmにおけるトルク低減率は、実施例 1が 9 . 5%、実施例 2が 11. 5%であり、デフアレンシャルやトランスミッション等における高 速回転での使用条件でも優れたトルク低減効果を得ることができる。なお、比較例 2と 比較例 3の回転速度 2000rpmにおけるトルク低減率は、それぞれ 8. 0%と 6. 5%で ある。
[0303] 以下に本発明の変形例を図 31〜図 35に基づいて説明する。図 31に示す実施形 態における円錐ころ軸受 1は、円錐状の軌道面 3aを有する外輪 3と、円錐状の軌道 面 2aを有し、この軌道面 2aの小径側端部に小鍔 2b、大径側端部に大鍔 2cを有する 内輪 2と、外輪 3の軌道面 3aと内輪 2の軌道面 2aとの間に転動自在に配された複数 の円錐ころ 4と、円錐ころ 4を円周方向等間隔に保持する保持器 5とを備えている。こ の円錐ころ軸受 1は、内輪 2に軸(図示せず)が同軸的に挿着され、外輪 3がハウジン グ(図示せず)の内径に取り付けられることにより、例えば自動車のトランスミッションの 軸支持部に組み付けられる。
[0304] 保持器 5は、例えば SPCC鋼板等の鋼板 (鋼管)からプレス加工によって成形され たプレス加工品で、図 32に示すように、小環状部 5fと、大環状部 5eと、小環状部 5fと 大環状部 5eとを軸方向に連結する複数の柱部 5cと、円周方向に隣接する柱部 5c間 に設けられ、円錐ころ 4を転動自在に収容する複数のポケット 9とを備えている。ボケ ット 9は、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広 幅側となる台形状に形成され、狭幅側の柱部及び小環状部と、広幅側の柱部には、 それぞれ切り欠き 10a、 10c、 10bが設けられる。小環状部 5fには、その端部カも延 在されたリブが備えられ、そのリブ先端部 5dを軸方向内側に屈曲させた形状を有す る。
[0305] 柱部 5cの外径面には図 9、図 10に示すように外輪軌道面側に向けて凸状を成す 突起部 5aがー体に形成されている。この突起部 5aは、柱部 5cの横断方向の断面輪 郭形状が円弧状を成しており、この円弧状の曲率半径 R2は外輪軌道面 3aの半径 R 1より小さく形成されている。これは突起部 5aと外輪軌道面 3aとの間に良好な楔状油 膜が形成されるようにするためであり、望ましくは突起部 5aの曲率半径 R2は外輪軌 道面 3aの半径 R1の 70〜90%程度に形成するとよい。 70%未満であると楔状油膜 の入口開き角度が大きくなり過ぎて却って動圧が低下する。また 90%を超えると楔状 油膜の入口角度が小さくなり過ぎて同様に動圧が低下する。また、突起部 5aの横幅 W2は望ましくは柱部 5cの横幅 W1の 50%以上となるように形成する(W2≥0. 5 X Wl)。 50%未満では良好な楔状油膜を形成するための充分な突起部 5aの高さが 確保できなくなるためである。なお、外輪軌道面 3aの半径 R1は大径側から小径側へ と連続的に変化しているので、突起部 5aの曲率半径 R2もそれに合わせて大径側環 状部 5eの大きな曲率半径 R2から小径側環状部 5fの小さな曲率半径 R2へと連続的 に変化するようにする。 [0306] 保持器 5のポケット 6に、図 32に示すような切り欠きを設ける理由は以下のとおりで ある。円錐ころ軸受 1は、下部が潤滑油の油浴に漬カつた状態で使用されることが多 い。円錐ころ 1が、下部が油浴に漬カつた状態で高速回転すると、図 33に矢印で示 すように、油浴の潤滑油が円錐ころ 4の小径端面 4a側力 保持器 5の外径側と内径 側とに分かれて軸受内部へ流入する。保持器 5の外径側から外輪 3側へ流入する潤 滑油は、外輪 3の軌道面 3aには障害物がないため、その軌道面 3aに沿って円錐ころ 4の大径端面 4b側へスムーズに通過して軸受内部から流出する。しかし、保持器 5の 内径側から内輪 2側へ流入する潤滑油は、内輪 2の大鍔 2cによりせき止められ、軸 受内部に滞留しやすくなる。この滞留する潤滑油が、軸受回転に対する流動抵抗と なって回転トルクを増大させる。
[0307] 保持器 5の内径側から内輪 2側へ流入する潤滑油は、保持器 5のリブ先端部 5dと 内輪 2の小鍔 2bとの隙間 δを狭く設定することにより、保持器 5の外径側から流入す る潤滑油よりもはるかに少なくなり、さらに、この隙間 δから流入する潤滑油の大半は 、ポケット 6の狭幅側の柱部 5cに設けられた切り欠き 10aを通過して、保持器 5の外径 側へ移動する。したがって、そのまま内輪 2の軌道面 2aに沿って大鍔 3cまでいたる 潤滑油の量は非常に少なくなり、軸受内部に滞留する潤滑油の量を減らすことがで きるため、回転トルクを低減できる。本実施形態では、ポケット 6の狭幅側の小環状部 5fにも切り欠き 10cが設けられているため、内輪 2側に流入した潤滑油をさらに外輪 3 側へ移動させることができ、回転トルクのさらなる低減が期待できる。また、ポケット 6 の狭幅側に設けた切り欠き 10a、 10cの合計面積を、広幅側に設けた切り欠き 10bの 合計面積よりも広く設定することによつても、内輪 2の大鍔 2cまで至る潤滑油の量を 減らすことができ、回転トルクを低減できる。
[0308] また、ポケット 6の広幅側の柱部 5cにも切り欠き 10bを設けられているため、円錐こ ろ 4をバランスよく柱部 5cに摺接させることができる。
[0309] 保持器 5の表面、特に保持器 5の外径面は、できるだけ滑らかな表面にしておくの がよい。すなわち、円錐ころ軸受 1の回転中は保持器 5外径面の突起部 5aと外輪軌 道面 3aとの間に楔状油膜が形成されてその動圧作用で保持器 5の外径面の突起部 5aが外輪軌道面 3aに接触することはないが、円錐ころ軸受 1の回転開始直後は低 回転数のため、十分な楔状油膜が形成されず、過酷な潤滑条件が発生すると保持 器 5の外径面の突起部 5aが外輪軌道面 3aに接触する可能性がある。このような場合 に備えて、保持器 5の外径面を例えば二硫ィ匕モリブデン (MOS )系のコーティング
2
処理をしたり、またはバレル研磨仕上げ等を行なうことにより可及的に摩擦係数を低 減する処置をしておくのがょ 、。
[0310] 保持器 5は鋼板プレス製品のほか、榭脂製としてもよい。榭脂の種類として、自動車 トランスミッションでの使用を前提する場合は、耐油性を考慮して PPS、 PEEK, PPA 等のスーパーエンプラ又はポリアミド樹脂とするのが望まし 、。榭脂製の保持器は鋼 板プレス製保持器 5と比べると重量が軽く摩擦係数が小さ ヽと ヽぅ特徴を有する。
[0311] 本発明の円錐ころ軸受 1は以上にように構成されており、軸受 1が回転して保持器 5 が回転し始めると、外輪軌道面 3aと保持器 5の突起部 5aとの間に楔状油膜が形成さ れる。この楔状油膜は軸受 1の回転速度にほぼ比例した動圧を発生するので、保持 器 5のピッチ円直径を大きくして外輪軌道面に近接させても、軸受 1を大きな摩耗な いしトルク損失を生じることなく回転させることが可能となり、無理なく円錐ころの本数 を増加させることが可能となる。これにより、軌道面の最大面圧が低減され、表面起点 剥離による不具合を回避できる。なお、上記のような動圧作用がなくても保持器 5を 十分に拡径できる場合は、突起部 5aを設ける必要はな 、。
[0312] 上記のように円錐ころの本数を増やした場合、軸受内部の潤滑油による流動抵抗 が増し、回転トルクが増大する恐れがある。この対策として、ポケット 6の狭幅側の柱 部 5c及び小環状部 5fに、切り欠き 10a、 10cが設けられることで、円錐ころ軸受 1内 部の潤滑油の循環が良好になり、軸受内部に滞留する潤滑油の量を減らすことがで きる。よって、潤滑油の流動抵抗によるトルクが低減される。
[0313] また、円錐ころの本数を増やすために保持器 5を拡径すると、以下のような不具合も 生じる。保持器 5に円錐ころ 4を組付ける際には、保持器 5をその小環状部 5fを下向 きにした状態で設置し、図 34に示すように円錐ころ 4をその小径端面 4aを下向きにし て上方から降下させ、ポケット 6内に内側力も挿入する。次に、図 35に示すように円 錐ころ 4の小径端面 4aがポケット 6の端縁部に引っ掛かり、その円錐ころ 4が径方向 外側 (矢印で示す方向)に傾倒して、円錐ころ 4が保持器 5に設置される。保持器 5の リブの先端部 5dを径方向と平行に形成すると、円錐ころ 4の小径端面 4aがポケット 6 の端縁部に引っ掛かる時に、その円錐ころ 4は、ポケット 6の端縁部のみで支持される ことになり、非常に不安定な状態となる。特に、上記のように、保持器 5を拡径した場 合、円錐ころ 4の小径端面 4aがポケット 6の端縁部に引っ掛力る部分が小さくなるた め、さらに不安定になり、円錐ころ 4が円周方向に傾倒するおそれがある。
[0314] 図 34、図 35に示すように、保持器 5のリブの先端部 5dを軸方向内側に屈曲させた 形状とすると、円錐ころ 4の小径端面 4aがポケット 6に引っ掛力つたときに、円錐ころ 4 が保持器 5の小環状部 5fとリブの先端部 5dとで支持される。これにより、円錐ころ 4が 安定した姿勢に保持されるため、上記の不具合を回避できる。
[0315] 円錐ころ軸受 1が以上の構成を有することにより、保持器 5を拡径しても、組み付け が効率よく行われ、且つ、回転トルクを低減させることができる。本発明は、上記の実 施形態に限定されることなぐ種々の変形が可能である。例えば、ポケット 6の小環状 部 5fの切り欠き 10cが無くてもトルク低減効果が十分に得られる場合や、ポケット 6の 広幅側の柱部 5cの切り欠き 10bが無くても円錐ころがバランスよく柱部 5cに摺接する ことがで
さる場合は、これらを省略することがでさる。
図面の簡単な説明
[0316] [図 1A]本発明の実施の形態を示す円錐ころ軸受の横断面図。
[図 1B]同軸受の縦断面図。
[図 2]図 1の円錐ころ軸受における保持器の展開平面図。
[図 3A]窓角が下限の円錐ころ軸受の部分拡大断面図。
[図 3B]窓角が上限の円錐ころ軸受の部分拡大断面図。
[図 4A]軸受の寿命試験の結果を示す図。
[図 4B]軸受の寿命試験の結果を示す図。
[図 4C]軸受の寿命試験の結果を示す図。
[図 5]保持器の変形例を示す図 2と類似の展開平面図。
[図 6]保持器の別の変形例を示す図 2と類似の展開平面図。
[図 7]図 1 (B)の部分拡大図。 [図 8]図 1の円錐ころ軸受を使用したデフアレンシャルの断面図。
圆 9]保持器の変形例を示す円錐ころ軸受の部分横断面図。
[図 10]図 9の軸受における保持器の柱部の拡大断面図。
圆 11]一般的な自動車トランスミッションの断面図。
[図 12]トルク測定試験の結果を示すグラフ。
[図 13A]従来の技術を示す保持器の展開平面図。
[図 13B]従来の技術を示す保持器の展開平面図。
[図 14]ピッチ径比に対する、トルク比と剛性比の相関グラフ図。
[図 15A]軸方向移動前の保持器の断面図。
[図 15B]軸方向移動後の保持器の断面図。
[図 16A]静止時の円錐ころ軸受の保持器側面図。
圆 16B]回転初期の円錐ころ軸受の保持器側面図。
圆 16C]回転中の円錐ころ軸受の保持器側面図。
圆 17] 2円筒試験機の全体概略図。
[図 18A]比較例の金属接触率を示すグラフ。
[図 18B]実施例の金属接触率を示すグラフ。
圆 19]円錐ころ軸受の熱処理方法を説明する図。
圆 20]円錐ころ軸受の熱処理方法の変形例を示す図。
圆 21A]本発明例の軸受部品のミクロ組織、とくにオーステナイト粒界を示す組織図。
[図 21B]従来の軸受部品のミクロ組織、とくにオーステナイト粒界を示す組織図。
[図 22A]図 21 Aを図解したオーステナイト粒界を示す組織図。
[図 22B]図 21Bを図解したオーステナイト粒界を示す組織図。
[図 23]静圧壊強度試験 (破壊応力値の測定)の試験片を示す図。
[図 24A]転動疲労寿命試験機の概略図。
圆 24B]転動疲労寿命試験機の側面図。
圆 25]静的破壊靭性試験の試験片を示す図。
[図 26]保持器のポケットの簡略図。
圆 27]保持器のポケットの簡略図。 圆 28]保持器のポケットの簡略図。
圆 29]保持器のポケットの簡略図。
圆 30]保持器の部分斜視図。
圆 31]本発明に係る円錐ころ軸受 1の断面図。
圆 32]本発明に係る円錐ころ軸受 1の部分断面図。
[図 33]円錐ころ軸受 1の軸受内部への潤滑油の流れを示す断面図。 圆 34]保持器に円錐ころを挿入する要領を説明するための断面図。 圆 35]保持器に円錐ころを挿入する要領を説明するための断面図。 符号の説明
1, la, lb 円錐ころ軸受
2 内輪
2a 軌道面
2b 小鍔
2c 大鍔
3 外輪
3a 軌道面
4 円錐ころ
5 保持器
5a 突起部
5b 柱面 6
7 大環状部
8 柱部
9 ポケット
10a 〜: LOe
11 つば

Claims

請求の範囲
[1] 内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと、円錐 ころを円周所定間隔にポケット内で保持する保持器とを備え、保持器が、円錐ころの 小端面側で連なる小環状部と、円錐ころの大端面側で連なる大環状部と、これら大 小環状部を連結する複数の柱部とからなり、前記隣接する柱部間で、前記ポケットが 、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側とな る台形状に形成された円錐ころ軸受において、
前記保持器のころ係数を 0. 94以上としたことを特徴とする円錐ころ軸受。
[2] 前記保持器を、機械的強度、耐油性および耐熱性に優れたエンジニアリング'ブラ スチックで構成し、前記ポケットの狭幅側の柱部に切欠きを設けるとともに、そのボケ ットの窓角を 55° 以上 80°以下にしたことを特徴とする請求項 1に記載の円錐ころ軸 受。
[3] 前記台形状ポケットの狭幅側の小環状部にも切欠きを設けたことを特徴とする請求 項 1に記載の円錐ころ軸受。
[4] 前記台形状ポケットの広幅側の少なくとも柱部に切欠きを設けたことを特徴とする請 求項 1または 3に記載の円錐ころ軸受。
[5] 前記台形状ポケットの狭幅側に設けた切欠きの合計面積を、前記台形状ポケットの 広幅側に設けた切欠きの合計面積よりも広くしたことを特徴とする請求項 3に記載の 円錐ころ軸受。
[6] 前記保持器の小環状部の軸方向外側に、前記内輪の小鍔の外径面に対向させた 径方向内向きの鍔を設け、この対向させた小環状部の鍔の内径面と前記内輪の小 鍔の外径面との隙間を、前記内輪の小鍔の外径寸法の 2. 0%以下としたことを特徴 とする請求項 1から 4のいずれかの円錐ころ軸受。
[7] 少なくとも前記円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け 、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l. 0 mとし 、かつ、 Sk値を一 1. 6以下としたことを特徴とする請求項 1から 5のいずれかの円錐 ころ軸受。
[8] 内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと、円錐 ころを円周所定間隔に保持する保持器とを備え、
ころ係数 Ύが 0. 94を越え、
保持器が、円錐ころの小端面側で連なる小環状部と、円錐ころの大端面側で連な る大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部間に 、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側とな る台形状のポケットが形成され、
ポケットの狭幅側の柱部に切欠きを設けたことを特徴とする円錐ころ軸受。
[9] ポケットの狭幅側の小環状部にも切欠きを設けたことを特徴とする請求項 8の円錐 ころ軸受。
[10] ポケットの広幅側の少なくとも柱部に切欠きを設けたことを特徴とする請求項 8また は 9の円錐ころ軸受。
[11] ポケットの狭幅側に設けた切欠きの合計面積を、ポケットの広幅側に設けた切欠き の合計面積よりも広くしたことを特徴とする請求項 10の円錐ころ軸受。
[12] 保持器の小環状部の軸方向外側に、内輪の小つばの外径面に対向させた径方向 内向きのつばを設け、前記つばの内径面と内輪の小つばの外径面との間のすきまの 上限を小つばの外径寸法の 2. 0%としたことを特徴とする請求項 8な ヽし 11の 、ず れかの円錐ころ軸受。
[13] 少なくとも円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け、この くぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l. 0 mとし、力 つ、 Sk値を 1. 6以下としたことを特徴とする請求項 8ないし 12のいずれかの円錐こ ろ軸受。
[14] 内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと、円錐 ころを円周所定間隔にポケット内で保持する保持器とを備え、保持器が、円錐ころの 小端面側で連なる小環状部と、円錐ころの大端面側で連なる大環状部と、これら大 小環状部を連結する複数の柱部とからなり、前記隣接する柱部間で、前記ポケットが 、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側とな る台形状に形成された円錐ころ軸受において、
前記ポケットの狭幅側の柱部に切欠きを設けるとともに、前記保持器の外径を、保 持器を半径方向に移動させると保持器外周面が外輪軌道面に当接するが、軸受回 転中は保持器中心が軸中心に移動して保持器外周面と外輪軌道面との間にすきま が形成される寸法とし、かつ、ころ係数を 0. 94以上としたことを特徴とする円錐ころ 軸受。
[15] 前記台形状ポケットの狭幅側の小環状部にも切欠きを設けたことを特徴とする請求 項 14の円錐ころ軸受。
[16] 前記台形状ポケットの広幅側の少なくとも柱部に切欠きを設けたことを特徴とする請 求項 14または 15の円錐ころ軸受。
[17] 前記台形状ポケットの狭幅側に設けた切欠きの合計面積を、前記台形状ポケットの 広幅側に設けた切欠きの合計面積よりも広くしたことを特徴とする請求項 16の円錐こ ろ軸受。
[18] 前記保持器の小環状部の軸方向外側に、前記内輪の小鍔の外径面に対向させた 径方向内向きの鍔を設け、この対向させた小環状部の鍔の内径面と前記内輪の小 鍔の外径面との隙間を、前記内輪の小鍔の外径寸法の 2. 0%以下としたことを特徴 とする請求項 14乃至 17の 、ずれかの円錐ころ軸受。
[19] 少なくとも前記円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け 、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l. 0 mとし 、かつ、 Sk値を— 1. 6以下としたことを特徴とする請求項 14乃至 18のいずれかの円 錐ころ軸受。
[20] 内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと、円錐 ころを円周所定間隔に保持する保持器とを備えた円錐ころ軸受において、 ころ係数 Ύが 0. 94を越え、
保持器が、円錐ころの小径端面側で連なる小環状部と、円錐ころの大径端面側で 連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部 間に、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅 側となる台形状のポケットが形成され、
ポケットの狭幅側の柱部に切欠きを設けたことを特徴とするデフアレンシャル用円錐 ころ軸受。
[21] ポケットの狭幅側の小環状部にも切欠きを設けたことを特徴とする請求項 20のデフ アレンシャル用円錐ころ軸受。
[22] ポケットの広幅側の少なくとも柱部に切欠きを設けたことを特徴とする請求項 20また は 21のデフアレンシャル用円錐ころ軸受。
[23] ポケットの狭幅側に設けた切欠きの合計面積を、ポケットの広幅側に設けた切欠き の合計面積よりも広くしたことを特徴とする請求項 22のデフアレンシャル用円錐ころ 軸受。
[24] 保持器の小環状部の軸方向外側に、内輪の小つばの外径面に対向させた径方向 内向きのつばを設け、前記つばの内径面と内輪の小つばの外径面との間のすきまの 上限を小つばの外径寸法の 2. 0%としたことを特徴とする請求項 20ないし 23のいず れかのデフアレンシャル用円錐ころ軸受。
[25] 少なくとも円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け、この くぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l. 0 mとし、力 つ、 Sk値を 1. 6以下としたことを特徴とする請求項 20ないし 24のいずれかのデフ アレンシャル用円錐ころ軸受。
[26] 内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと、円錐 ころを円周所定間隔に保持する保持器とを備えた円錐ころ軸受において、
ころ係数 Ύが 0. 94を越え、
保持器が、円錐ころの小径端面側で連なる小環状部と、円錐ころの大径端面側で 連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部 間に、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅 側となる台形状のポケットが形成され、
ポケットの狭幅側の柱部に切欠きを設けたことを特徴とするトランスミッション用円錐 ころ軸受。
[27] ポケットの狭幅側の小環状部にも切欠きを設けたことを特徴とする請求項 26のトラ ンスミツション円錐ころ軸受。
[28] ポケットの広幅側の少なくとも柱部に切欠きを設けたことを特徴とする請求項 26また は 27のトランスミッション用円錐ころ軸受。
[29] ポケットの狭幅側に設けた切欠きの合計面積を、ポケットの広幅側に設けた切欠き の合計面積よりも広くしたことを特徴とする請求項 28のトランスミッション用円錐ころ軸 受。
[30] 保持器の小環状部の軸方向外側に、内輪の小つばの外径面に対向させた径方向 内向きのつばを設け、前記つばの内径面と内輪の小つばの外径面との間のすきまの 上限を小つばの外径寸法の 2. 0%としたことを特徴とする請求項 26ないし 29のいず れかのトランスミッション円用すいころ軸受。
[31] 少なくとも円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け、この くぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l. 0 mとし、力 つ、 Sk値を一 1. 6以下としたことを特徴とする請求項 26ないし 30のいずれかのトラ ンスミッション用円錐ころ軸受。
[32] 内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと、円錐 ころを円周所定間隔に保持する保持器とからなり、
ころ係数 Ύが 0. 94を越え、
少なくとも前記円錐ころの表面に、微小凹形状のくぼみをランダムに無数に設け、 前記くぼみを設けた表面の面粗さパラメータ Ryniが 0. 4 m≤Ryni≤l. 0 mの範 囲内で、かつ、 Sk値が 1. 6以下であり、
前記保持器が、円錐ころの小端面側で連なる小環状部と、円錐ころの大端面側で 連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部 間に、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅 側となった台形状のポケットが形成してあり、狭幅側の柱部に切欠きが設けてあること を特徴とする円錐ころ軸受。
[33] 前記くぼみを設けた面の面粗さパラメータ Rymaxが 0. 4〜1. 0の範囲内であること を特徴とする請求項 32の円錐ころ軸受。
[34] 前記くぼみを設けた面の面粗さをパラメータ Rqniで表示したとき、軸方向面粗さ Rq ni (L)と円周方向面粗さ Rqni (C)との比の値 Rqni (L) ZRqni (C)が 1. 0以下である ことを特徴とする請求項 32または 33の円錐ころ軸受。
[35] 前記保持器のポケットの窓角が 55° 以上 80° 以下であることを特徴とする請求項 32な!、し 34の!、ずれかの円錐ころ軸受。
[36] 前記保持器が機械的強度、耐油性および耐熱性に優れたエンジニアリング 'プラス チックで形成してあることを特徴とする請求項 32な 、し 35の 、ずれかの円錐ころ軸 受。
[37] ポケットの狭幅側の小環状部にも切欠きが設けてあることを特徴とする請求項 32な
Vヽし 36の!、ずれかの円錐ころ軸受。
[38] ポケットの広幅側の少なくとも柱部に切欠きが設けてあることを特徴とする請求項 32 な!、し 37の!、ずれかの円錐ころ軸受。
[39] ポケットの狭幅側に設けた切欠きの合計面積力 ポケットの広幅側に設けた切欠き の合計面積よりも広 、ことを特徴とする請求項 38の円錐ころ軸受。
[40] 保持器の小環状部の軸方向外側に、内輪の小つばの外径面に対向させた径方向 内向きのつばが設けてあり、前記つばの内径面と内輪の小つばの外径面との間のす きまの上限が小つばの外径寸法の 2. 0%であることを特徴とする請求項 32ないし 39 の!、ずれかの円錐ころ軸受。
[41] 内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと、円錐 ころを円周所定間隔に保持する保持器とからなり、
ころ係数 Ύが 0. 94を越え、
前記内輪、外輪および転動体のうち少なくともいずれか一つの部材が、窒素富化 層を有し、かつ、前記窒素富化層におけるオーステナイト結晶粒の粒度番号が 10番 を越える範囲にあり、
前記保持器が、円錐ころの小端面側で連なる小環状部と、円錐ころの大端面側で 連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部 間に、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅 側となる台形状のポケットが形成してあり、ポケットの狭幅側の柱部に切欠きが設けて あることを特徴とする円錐ころ軸受。
[42] 窒素富化層における窒素含有量が 0. 1%〜0. 7%の範囲である請求項 41の円錐 ころ軸受。
[43] ポケットの窓角が 55° 以上 80° 以下であることを特徴とする請求項 41または 42の 円錐ころ軸受。
[44] 前記保持器が機械的強度、耐油性および耐熱性に優れたエンジニアリング 'プラス チックで形成してあることを特徴とする請求項 41な 、し 43の 、ずれかの円錐ころ軸 受。
[45] ポケットの狭幅側の小環状部にも切欠きが設けてあることを特徴とする請求項 41な
Vヽし 44の!、ずれかの円錐ころ軸受。
[46] ポケットの広幅側の少なくとも柱部に切欠きが設けてあることを特徴とする請求項 41 な!、し 45の!、ずれかの円錐ころ軸受。
[47] ポケットの狭幅側に設けた切欠きの合計面積力 ポケットの広幅側に設けた切欠き の合計面積よりも広 、ことを特徴とする請求項 46の円錐ころ軸受。
[48] 保持器の小環状部の軸方向外側に、内輪の小つばの外径面に対向させた径方向 内向きのつばが設けてあり、前記つばの内径面と内輪の小つばの外径面との間のす きまの上限が小つばの外径寸法の 2. 0%であることを特徴とする請求項 41ないし 47 の!、ずれかの円錐ころ軸受。
[49] 少なくとも円錐ころの表面に、無数の微小凹形状のくぼみがランダムに設けてあり、 このくぼみを設けた表面の面粗さパラメータ Ry が 0. 4 ^ πι≤Κγηί≤1. O /z mで、 かつ、 Sk値が 1. 6以下であることを特徴とする請求項 41ないし 48のいずれかの 円錐ころ軸受。
[50] 内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと、円錐 ころを円周所定間隔に保持する保持器とを備えた円錐ころ軸受において、
保持器が、円錐ころの小径端面側で連なる小環状部と、円錐ころの大径端面側で 連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部 間に、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅 側となる台形状のポケットが形成されるとともに、ポケットの狭幅側の柱部に切欠きを 設け、さらにころ係数が 0. 94を越え、ポケット柱面のころの当たり幅が左右共にボケ ット軸方向中央位置に対しポケット長さの 10%以上確保されていることを特徴とする 円錐ころ軸受。
[51] ポケットの狭幅側の小環状部にも切欠きを設けたことを特徴とする請求項 50の円錐 ころ軸受。
[52] ポケットの広幅側の少なくとも柱部に切欠きを設けたことを特徴とする請求項 50また は 51の円錐ころ軸受。
[53] ポケットの狭幅側に設けた切欠きの合計面積を、ポケットの広幅側に設けた切欠き の合計面積よりも広くしたことを特徴とする請求項 52の円錐ころ軸受。
[54] 保持器の小環状部の軸方向外側に、内輪の小つばの外径面に対向させた径方向 内向きのつばを設け、前記つばの内径面と内輪の小つばの外径面との間のすきまの 上限を小つばの外径寸法の 2. 0%としたことを特徴とする請求項 50ないし 53のいず れかの円錐ころ軸受。
[55] 少なくとも円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け、この くぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l. 0 mとし、力 つ、 Sk値を一 1. 6以下としたことを特徴とする請求項 50ないし 54のいずれかの円錐 ころ軸受。
[56] 保持器が軸中心に位置した状態では保持器外径と外輪軌道面間にすきまが存在 して 、ることを特徴とする請求項 50な 、し 55の 、ずれかの円錐ころ軸受。
[57] 内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと、円錐 ころを円周所定間隔に保持する保持器とを備え、ころ係数 γが 0. 94を越え、前記保 持器が、円錐ころの小端面側で連なる小環状部と、円錐ころの大端面側で連なる大 環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部間に、円 錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側となる台 形状のポケットが形成され、ポケットの狭幅側の柱部に切欠きが設けてあり、前記保 持器が、中立状態では外輪と非接触で、径方向に動かすと外輪と接触する、ことを特 徴とする円錐ころ軸受。
[58] ポケットの狭幅側の小環状部にも切欠きを設けたことを特徴とする請求項 57の円錐 ころ軸受。
[59] ポケットの広幅側の少なくとも柱部に切欠きを設けたことを特徴とする請求項 57また は 58のいずれかの円錐ころ軸受。
[60] ポケットの狭幅側に設けた切欠きの合計面積を、ポケットの広幅側に設けた切欠き の合計面積よりも広くしたことを特徴とする請求項 59の円錐ころ軸受。
[61] 保持器の小環状部の軸方向外側に、内輪の小つばの外径面に対向させた径方向 内向きのつばを設け、前記つばの内径面と内輪の小つばの外径面との間のすきまの 上限を小つばの外径寸法の 2. 0%としたことを特徴とする請求項 57ないし 60のいず れかの円錐ころ軸受。
[62] 少なくとも円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け、この くぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 ,u m≤Ryni≤ 1. O /z mとし、かつ 、 Sk値を一 1. 6以下としたことを特徴とする請求項 57ないし 61のいずれかの円錐こ ろ軸受。
[63] 内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと、円錐 ころを円周所定間隔に保持する保持器とを備えた円錐ころ軸受において、
PCD上におけるこの間隔が(ころ径 Zころ本数)未満になるように均等に前記円錐 ころが配置され、
保持器が、円錐ころの小径端面側で連なる小環状部と、円錐ころの大径端面側で 連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部 間に、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅 側となる台形状のポケットが形成され、
ポケットの狭幅側の柱部に切欠きを設けたことを特徴とする円錐ころ軸受。
[64] ポケットの狭幅側の小環状部にも切欠きを設けたことを特徴とする請求項 63の円錐 ころ軸受。
[65] ポケットの広幅側の少なくとも柱部に切欠きを設けたことを特徴とする請求項 63また は 64の円錐ころ軸受。
[66] ポケットの狭幅側に設けた切欠きの合計面積を、ポケットの広幅側に設けた切欠き の合計面積よりも広くしたことを特徴とする請求項 65の円錐ころ軸受。
[67] 保持器の小環状部の軸方向外側に、内輪の小つばの外径面に対向させた径方向 内向きのつばを設け、前記つばの内径面と内輪の小つばの外径面との間のすきまの 上限を小つばの外径寸法の 2. 0%としたことを特徴とする請求項 63ないし 66のいず れかの円錐ころ軸受。
[68] 少なくとも円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け、この くぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l. 0 mとし、力 つ、 Sk値を一 1. 6以下としたことを特徴とする請求項 63ないし 67のいずれかの円錐 ころ軸受。
[69] 内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと、円錐 ころを円周所定間隔に保持する保持器とを備えた円錐ころ軸受において、
(PCD上の円周方向長さ) - (ころ径 Xころ本数)くころ径とし、
保持器が、円錐ころの小径端面側で連なる小環状部と、円錐ころの大径端面側で 連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部 間に、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅 側となる台形状のポケットが形成され、ポケットの狭幅側の柱部に切欠きを設けたこと を特徴とする円錐ころ軸受。
[70] ポケットの狭幅側の小環状部にも切欠きを設けたことを特徴とする請求項 69の円錐 ころ軸受。
[71] ポケットの広幅側の少なくとも柱部に切欠きを設けたことを特徴とする請求項 69また は 70の円錐ころ軸受。
[72] ポケットの狭幅側に設けた切欠きの合計面積を、ポケットの広幅側に設けた切欠き の合計面積よりも広くしたことを特徴とする請求項 71の円錐ころ軸受。
[73] 保持器の小環状部の軸方向外側に、内輪の小つばの外径面に対向させた径方向 内向きのつばを設け、前記つばの内径面と内輪の小つばの外径面との間のすきまの 上限を小つばの外径寸法の 2. 0%としたことを特徴とする請求項 69ないし 72のいず れかの円錐ころ軸受。
[74] 少なくとも円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け、この くぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l. 0 mとし、力 つ、 Sk値を一 1. 6以下としたことを特徴とする請求項 69ないし 73のいずれかの円錐 ころ軸受。
[75] 内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円錐ころと、円錐 ころを円周所定間隔にポケット内で保持する保持器とを備え、保持器が、円錐ころの 小端面側で連なる小環状部と、円錐ころの大端面側で連なる大環状部と、これら大 小環状部を連結する複数の柱部とからなり、前記隣接する柱部間で、前記ポケットが 、円錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側とな る台形状に形成された円錐ころ軸受において、
前記ポケットの狭幅側の柱部に切欠きを設けるとともに、前記保持器の外径面に、 前記外輪の内径面に向かって凸状をなし外輪の内径面との間に微小隙間を形成す る突起部を円周所定間隔で複数形成したことを特徴とする円錐ころ軸受。
[76] 前記台形状ポケットの狭幅側の小環状部にも切欠きを設けたことを特徴とする請求 項 75の円錐ころ軸受。
[77] 前記台形状ポケットの広幅側の少なくとも柱部に切欠きを設けたことを特徴とする請 求項 75または 76の円錐ころ軸受。
[78] 前記台形状ポケットの狭幅側に設けた切欠きの合計面積を、前記台形状ポケットの 広幅側に設けた切欠きの合計面積よりも広くしたことを特徴とする請求項 77の円錐こ ろ軸受。
[79] 前記保持器の小環状部の軸方向外側に、前記内輪の小鍔の外径面に対向させた 径方向内向きの鍔を設け、この対向させた小環状部の鍔の内径面と前記内輪の小 鍔の外径面との隙間を、前記内輪の小鍔の外径寸法の 2. 0%以下としたことを特徴 とする請求項 75乃至 78の 、ずれかの円錐ころ軸受。
[80] 少なくとも前記円錐ころの表面に、微小凹形形状のくぼみをランダムに無数に設け 、このくぼみを設けた表面の面粗さパラメータ Ryniを 0. 4 m≤Ryni≤l. 0 mとし 、かつ、 Sk値を— 1. 6以下とした請求項 75乃至 79のいずれかの円錐ころ軸受。
[81] 内輪と、外輪と、前記内輪と外輪との間に転動自在に配された複数の円錐ころと、 前記円錐ころを円周所定間隔に収納するポケットを有する保持器とを備え、前記保 持器が、前記円錐ころの小径側で連なる小環状部と、円錐ころの大径側で連なる大 環状部と、これらの環状部を連結する複数の柱部とからなり、前記ポケットが、前記円 錐ころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側となる台 形状に形成された円錐ころ軸受において、
前記保持器の小環状部の端縁から径方向にリブを延在させ、そのリブの先端部を 軸方向内側に屈曲させた形状とし、且つ、前記保持器の台形状ポケットの狭幅側の 柱部に切り欠きを設けたことを特徴とする円錐ころ軸受。
[82] 前記台形状ポケットの狭幅側の小環状部にも切欠きを設けたことを特徴とする請求 項 81記載の円錐ころ軸受。
[83] 前記台形状ポケットの広幅側の少なくとも柱部に切り欠きを設けたことを特徴とする 請求項 81記載の円錐ころ軸受。
[84] 前記台形状ポケットの狭幅側に設けた切り欠きの合計面積を、前記台形状ポケット の広幅側に設けた切り欠きの合計面積よりも広くしたことを特徴とする請求項 81記載 の円錐ころ軸受。
[85] 前記円錐ころ軸受が、自走車両の動力伝達軸を支持するものであることを特徴とす る請求項 1乃至 84のいずれかの円錐ころ軸受。
PCT/JP2006/318353 2005-09-16 2006-09-15 円錐ころ軸受 WO2007032470A1 (ja)

Applications Claiming Priority (26)

Application Number Priority Date Filing Date Title
JP2005-270349 2005-09-16
JP2005270349A JP4823624B2 (ja) 2005-09-16 2005-09-16 円錐ころ軸受及びその組立方法
JP2005278591A JP4717574B2 (ja) 2005-09-26 2005-09-26 円すいころ軸受
JP2005-278591 2005-09-26
JP2005-295367 2005-10-07
JP2005-295354 2005-10-07
JP2005295354A JP4994630B2 (ja) 2005-10-07 2005-10-07 円錐ころ軸受
JP2005295369A JP4975294B2 (ja) 2005-10-07 2005-10-07 円錐ころ軸受
JP2005-295369 2005-10-07
JP2005295367A JP4975293B2 (ja) 2005-10-07 2005-10-07 円錐ころ軸受
JP2005-304935 2005-10-19
JP2005304933A JP5031219B2 (ja) 2005-10-19 2005-10-19 円すいころ軸受
JP2005-304933 2005-10-19
JP2005304935A JP5031220B2 (ja) 2005-10-19 2005-10-19 円すいころ軸受
JP2005305776A JP4987278B2 (ja) 2005-10-20 2005-10-20 トランスミッション用円すいころ軸受
JP2005305772A JP4987277B2 (ja) 2005-10-20 2005-10-20 デファレンシャル用円すいころ軸受
JP2005-305776 2005-10-20
JP2005-305772 2005-10-20
JP2005310314A JP4987280B2 (ja) 2005-10-25 2005-10-25 円すいころ軸受
JP2005-310314 2005-10-25
JP2005310321A JP4987281B2 (ja) 2005-10-25 2005-10-25 円すいころ軸受
JP2005-310321 2005-10-25
JP2005311647A JP2007120575A (ja) 2005-10-26 2005-10-26 円すいころ軸受
JP2005-311647 2005-10-26
JP2005314605A JP2007120648A (ja) 2005-10-28 2005-10-28 円すいころ軸受
JP2005-314605 2005-10-28

Publications (1)

Publication Number Publication Date
WO2007032470A1 true WO2007032470A1 (ja) 2007-03-22

Family

ID=37865053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318353 WO2007032470A1 (ja) 2005-09-16 2006-09-15 円錐ころ軸受

Country Status (1)

Country Link
WO (1) WO2007032470A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235752A (ja) * 2001-02-07 2002-08-23 Nsk Ltd ころ軸受用保持器
JP2005069421A (ja) * 2003-08-27 2005-03-17 Koyo Seiko Co Ltd 円すいころ軸受
JP2005188738A (ja) * 2003-12-02 2005-07-14 Ntn Corp 円すいころ軸受

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235752A (ja) * 2001-02-07 2002-08-23 Nsk Ltd ころ軸受用保持器
JP2005069421A (ja) * 2003-08-27 2005-03-17 Koyo Seiko Co Ltd 円すいころ軸受
JP2005188738A (ja) * 2003-12-02 2005-07-14 Ntn Corp 円すいころ軸受

Similar Documents

Publication Publication Date Title
US8152383B2 (en) Tapered roller bearing
EP1770294B1 (en) Tapered roller bearing
EP1614917B1 (en) Tapered roller bearing
US20070116393A1 (en) Needle roller bearing, crank shaft supporting structure, and split method of outer ring of needle roller bearing
JP2008121706A (ja) 円すいころ軸受
JP2008051276A (ja) 車輪用軸受装置
JP4987281B2 (ja) 円すいころ軸受
WO2007032470A1 (ja) 円錐ころ軸受
JP2008051308A (ja) 車輪用軸受装置
JP2000161349A (ja) 車両用歯車軸支持装置
WO2007046263A1 (ja) ころ軸受
JP2008051274A (ja) 車輪用軸受装置
JP2007056940A (ja) スラスト針状ころ軸受
JP2008150687A (ja) 車輪支持用転がり軸受装置
JP2006112559A (ja) 円すいころ軸受
JP2008164105A (ja) 円すいころ軸受
JP2008095926A (ja) スラスト針状ころ軸受およびその製造方法
JP2019066038A (ja) 円錐ころ軸受
JP2008196594A (ja) 円すいころ軸受
JP2007127218A (ja) 円すいころ軸受
WO2008023787A1 (fr) Roulement à billes à contact oblique
JP4994638B2 (ja) 円すいころ軸受
JP2009156322A (ja) 樹脂製保持器及び転がり軸受
JP4987280B2 (ja) 円すいころ軸受
JP2001317551A (ja) 円すいころ軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798016

Country of ref document: EP

Kind code of ref document: A1