WO2007046263A1 - ころ軸受 - Google Patents

ころ軸受 Download PDF

Info

Publication number
WO2007046263A1
WO2007046263A1 PCT/JP2006/320186 JP2006320186W WO2007046263A1 WO 2007046263 A1 WO2007046263 A1 WO 2007046263A1 JP 2006320186 W JP2006320186 W JP 2006320186W WO 2007046263 A1 WO2007046263 A1 WO 2007046263A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
cage
roller bearing
bearing according
diameter
Prior art date
Application number
PCT/JP2006/320186
Other languages
English (en)
French (fr)
Inventor
Takashi Tsujimoto
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005304941A external-priority patent/JP4920236B2/ja
Priority claimed from JP2005311659A external-priority patent/JP2007120577A/ja
Priority claimed from JP2005312983A external-priority patent/JP4994636B2/ja
Priority claimed from JP2005314642A external-priority patent/JP5008856B2/ja
Priority claimed from JP2005314619A external-priority patent/JP4994637B2/ja
Priority claimed from JP2005314638A external-priority patent/JP4994638B2/ja
Priority claimed from JP2005321343A external-priority patent/JP2007127219A/ja
Priority claimed from JP2005321341A external-priority patent/JP2007127218A/ja
Priority claimed from JP2005321332A external-priority patent/JP2007127217A/ja
Priority claimed from JP2005321345A external-priority patent/JP2007127220A/ja
Priority claimed from JP2005327916A external-priority patent/JP5005209B2/ja
Priority claimed from JP2005327884A external-priority patent/JP4994643B2/ja
Application filed by Ntn Corporation filed Critical Ntn Corporation
Publication of WO2007046263A1 publication Critical patent/WO2007046263A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4605Details of interaction of cage and race, e.g. retention or centring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • F16C2240/82Degree of filling, i.e. sum of diameters of rolling elements in relation to PCD
    • F16C2240/84Degree of filling, i.e. sum of diameters of rolling elements in relation to PCD with full complement of balls or rollers, i.e. sum of clearances less than diameter of one rolling element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Definitions

  • the present invention relates to a roller bearing, and can be applied to a bearing that supports a power transmission shaft such as a differential or a transmission of a self-propelled vehicle.
  • Roller bearings such as cylindrical roller bearings and tapered roller bearings include an inner ring having a raceway on the outer periphery, an outer ring having a raceway on the inner periphery, and a plurality of rollers interposed between the races of the inner ring and the outer ring, It consists of a cage that holds these rollers at predetermined intervals in the circumferential direction.
  • the cage includes an annular portion that is continuous on one end side of the roller, an annular portion that is continuous on the other end side of the roller, and a plurality of column portions that connect these annular portions. Pockets for storing rollers are defined between adjacent pillars.
  • tapered surfaces are provided on both sides of the inner diameter surface of the column portion in contact with the rolling surface of the roller so that contact wrinkles are not generated on the rolling surface of the roller.
  • the length dimension in the width direction of this taper surface is generally 11 to 20% of the average diameter of the rollers.
  • roller bearings that support power transmission shafts such as differentials and transmissions of self-propelled vehicles are used in a state where some are immersed in an oil bath, and the oil in the oil bath is lubricated along with the rotation.
  • the oil bath is lubricated.
  • the lubricating oil that enters the wedge space formed by these surfaces is also formed between the rolling surface of the roller and the tapered surface of the inner diameter surface of the cage column. Lubricated.
  • a conventional roller bearing in which the length dimension of the columnar tapered surface of the cage is 11 to 20% of the average diameter of the roller is relatively small between the roller rolling surface and the columnar tapered surface.
  • a large wedge space is formed, and a large amount of lubricating oil enters the wedge space. Since the amount of lubricating oil entering the interface between the rolling surface of the roller and the tapered surface of the cage is limited from this wedge space, if a large amount of lubricating oil tries to enter the wedge space, there is no escape space for the lubricating oil.
  • the bearing rotation resistance There is a problem that the loss of the lux becomes large. Further, in the roller bearing in which the lubricating oil flows into the bearing as described above, the flow resistance of the lubricating oil with respect to the rotation of the cage also causes a torque loss that cannot be ignored.
  • a main object of the present invention is to realize a low torque without reducing the bearing rigidity.
  • the present invention solves the problem by reducing the roller pitch circle diameter (PCD) without decreasing or increasing the number of rollers.
  • Fig. 1 shows the rigidity ratio (- ⁇ 1) and torque ratio (101) when changing the PCD of a tapered roller bearing.
  • a roller bearing of the present invention includes an inner ring having a track on the outer periphery, an outer ring having a track on the inner periphery, a plurality of rollers interposed between the track of the inner ring and the track of the outer ring, The roller coefficient exceeds 0.94, the retainer is connected to one end of the roller, and the other end of the roller. And a plurality of pillars that connect the annular parts, and tapered surfaces that contact the rolling surfaces of the rollers are formed on both sides of the inner diameter surface of the pillars. The length dimension force in the width direction of the tapered surface is 5% or more and less than 11% of the average diameter of the roller.
  • the roller coefficient ⁇ filling ratio of the roller
  • filling ratio of the roller
  • the length dimension in the width direction of the taper surface of the column portion of the cage in contact with the rolling surface of the roller is set to 5% or more of the average diameter of the roller. If the length is less than 5%, the elastic contact area between the outer diameter surface of the roller and the tapered surface is larger than the width of the tapered surface. It is because there is a possibility of becoming large.
  • torque loss can be reduced without reducing rigidity.
  • roller coefficient in the roller bearing of the present invention, by setting the roller coefficient to exceed 0.94, it is possible to reduce the roller pitch circle diameter (PCD) without reducing or increasing the number of rollers. And low torque can be achieved without reducing the rigidity. Also, by increasing the roller coefficient from 0.94, the maximum contact pressure of the raceway can be reduced by increasing the load capacity. The origin of the surface can be prevented from peeling.
  • PCD roller pitch circle diameter
  • the length dimension in the width direction of the taper surface of the columnar portion of the cage in contact with the roller rolling surface is set to be 5% or more and less than 11% of the average diameter of the roller.
  • FIG. 1 Diagram showing changes in rigidity ratio ( ⁇ ) and torque ratio (101) when the roller pitch circle diameter (PCD) is changed in a roller or roller bearing.
  • FIG. 2 ⁇ Longitudinal section of the tapered roller bearing of Fig. 2 ⁇
  • FIG. 3A Development plan view of cage in tapered roller bearing of Fig. 2A
  • FIG. 3B B-B view of Fig. 3A
  • FIG. 8 is a partially enlarged sectional view of a tapered roller bearing showing a modification of the present invention.
  • FIG. 9 Enlarged view of the pillar part of the cage in Fig. 8
  • FIG.17 Sectional view of a conventional tapered roller bearing with the cage brought to the outer ring
  • FIG. 18A Cross section of cage before axial movement
  • FIG. 19A Schematic diagram of tapered roller bearing at rest
  • FIG. 19B Schematic diagram of tapered roller bearings at the initial stage of rotation
  • FIG. 21 A Graph showing metal contact ratio of comparative example
  • FIG. 21B is a graph showing the metal contact rate of the example.
  • FIG. 28A Microstructure of bearing parts according to the present invention, particularly a structure diagram showing austenite grain boundaries.
  • FIG. 29A Structure diagram showing austenite grain boundaries illustrating FIG. 28A
  • FIG. 29B Structure diagram showing austenite grain boundaries illustrating FIG. 28B
  • FIG. 30 is a diagram showing a test piece of a static crush strength test (measurement of fracture stress value).
  • FIG. 31A Schematic diagram of rolling fatigue life tester
  • the tapered roller bearing 1 includes an inner ring 2, an outer ring 3, a tapered roller bearing 4 and a cage 5 as main components.
  • the inner ring 2 is formed with a bowl-shaped raceway surface 2a that is rounded on the outer circumference
  • the outer ring is formed with a bowl-like raceway surface 3a that is rounded on the inner circumference.
  • a plurality of tapered rollers 4 are interposed between the raceway surface 2a of the inner ring 2 and the raceway surface 3a of the outer ring 3 so as to be freely rotatable.
  • Each tapered roller 4 is accommodated in a pocket of the cage 5, and the axial movement of the roller 4 is restricted by the small collar 2 b and the large collar 2 c of the inner ring 2.
  • the tapered roller bearing 1 has a roller coefficient ⁇ > 0.94.
  • Roller coefficient (filling ratio of roller) y is expressed by the following equation.
  • Number of rollers
  • DA Roller average diameter
  • PCD Roller pitch circle diameter
  • the conventional typical tapered roller bearing with cage retains the column width of the cage 72 while avoiding contact between the outer ring 71 and the cage 72, and appropriately retains it.
  • the roller coefficient ⁇ is usually designed with 0.94 or less.
  • reference numerals 73, 74, and 75 denote a tapered roller, a column surface, and an inner ring, respectively, and reference numeral ⁇ denotes a window angle.
  • the cage 5 includes a small-diameter side annular portion that is continuous on the small end surface side of the tapered roller 4, a large-diameter side annular portion 7 that is continuous on the large end surface side of the tapered roller 4, and these A plurality of column portions 8 that connect the annular portions 6 and 7 to each other, and a trapezoidal pocket 9 is defined between the adjacent column portions 8.
  • tapered surfaces 8 a that contact the rolling surfaces of the tapered rollers 4 are formed on both sides of the inner diameter surface of the column portion 8.
  • the length L in the width direction of the tapered surface 8a is set to 5% or more and less than 11%, preferably 9% or less, of the average diameter D of the cone 4.
  • the thickness dimension of the column portion 8 is preferably 5% or more and less than 17% of the average diameter D of the tapered rollers 4. As a result, the thickness of the column portion 8 can be reduced, the flow resistance of the lubricating oil against the rotation of the cage 5 can be reduced, and torque loss can be further reduced.
  • the thickness dimension T of the column portion 8 is set to 5% or more of the average diameter D of the tapered rollers 4 because the rigidity of the cage 8 cannot be sufficiently secured if it is less than 5%.
  • the window angle ⁇ is described.
  • the lower limit ⁇ min is 55 ° (Fig. 4), and the upper limit ⁇ The maximum is 80 ° (Fig. 5).
  • the window angle ⁇ is at most about 50 °. The reason why the lower limit ⁇ min is 55 ° is to ensure good contact with the roller, and when it is less than 55 °, the contact with the roller becomes poor.
  • the window angle is 25 ° to 50 °.
  • FIG. 7 shows the results of bearing life tests.
  • “Comparative Example 1” in the “Bearing” column is a typical conventional tapered roller bearing (see FIG. 6) in which the cage and outer ring are separated
  • “Comparative Example 2” is that of “Comparative Example 1”.
  • Tapered roller bearings with a roller coefficient ⁇ only of ⁇ > 0.94 “Example” shows that the roller coefficient ⁇ is ⁇ > 0.94 and the window angle 0 is in the range of 55 ° to 80 °. This is a tapered roller bearing.
  • the test was conducted under severe lubrication and subject load conditions.
  • “Comparative Example 2” has a lifespan more than twice that of “Comparative Example 1”.
  • the bearing of the “Example” has a coefficient of 0.96, which is the same as that of the “Comparative Example 2”, but the life time is about five times that of the “Comparative Example 2”.
  • the bearing dimensions (in mm) are!, The deviation is ⁇ 45 X ⁇ 81 X 16, and the number of rollers is 24 for “Comparative Example 1”, 27 for “Comparative Example 2” and “Example”.
  • the oil film parameter ⁇ was 0.2.
  • a torque measurement test using a vertical torque tester was performed on the tapered roller bearings of the example and the comparative example.
  • the tapered roller bearing of the example uses a cage V in which the length L of the tapered surface 8a shown in FIG. 3B is rounded, 7% of the average diameter D of the roller 4, and the comparative example of a tapered roller and roller. Bearings The length L of the tapered surface was 13% of the average diameter D of the tapered rollers.
  • the dimensions (unit: mm) of tapered roller bearings were OD100, ID45, and width 27.25. Further, the thickness dimension ⁇ of the column portion 8 of the cage was 13% of the average diameter D of the tapered roller 4 in the example and 17% of the comparative example.
  • test conditions are as follows.
  • Lubrication condition Oil bath lubrication (Lubricant: 75W—90)
  • FIG. 12 shows the test results.
  • the vertical axis of the graph in the figure represents the torque reduction rate of the embodiment with respect to the torque of the comparative example.
  • the taper surface length L is rounded.
  • the torque reduction effect of this embodiment includes the effect of reducing the flow resistance of the lubricating oil against the rotation of the cage by reducing the thickness dimension T of the column portion.
  • the cage 5 is an isosceles trapezoidal shape corresponding to the shape of the tapered roller 4 so as to accommodate the tapered roller 4 in a rollable manner as shown in FIGS. 3A and 13.
  • a plurality of pockets 9 are formed by punching at regular intervals in the circumferential direction, and a column portion 8 positioned between the pockets 9 connects the small-diameter side annular portion 6 and the large-diameter side annular portion 7.
  • FIG. 15A-15C when assembling the tapered roller 4, the tapered roller 4 is lowered with an upward force and inserted into the pocket 9 of the cage 5 as shown in Fig. 15A. Then, as shown in FIG. 15B, the small end face 4a of the tapered roller 4 is hooked on the lower end edge of the pocket 9, and the tapered roller 4 falls to the outside in the radial direction and is accommodated in the pocket 9, resulting in the state of FIG. 15C.
  • the outer diameter of the cage 5 is larger than the PCD whose diameter of the tapered roller 4 is large, the posture of the tapered roller 4 is unstable when the tapered roller 4 is inserted into the pocket 9 of the cage 5. As a result, the roller 4 does not move smoothly from the state of FIG. 15B to the state of FIG. 15C, and is rolled between the time the roller 4 is inserted and the inner ring 2 is inserted. As a result, assembly may be difficult.
  • the tapered roller when assembling the tapered roller into the cage, when the tapered roller is lowered into the pocket with the small-diameter annular portion of the cage facing downward, the tapered roller will move at both the pocket edge and the inner edge of the collar. Supported. As a result, the circular V and the roller can be held in a stable posture, and the circular roller does not tilt in the circumferential direction.
  • the cage 5 is a press-formed product made of a steel plate, and in order to accommodate the roller 4 in a rollable manner, the shape of the roller 4
  • a plurality of isosceles trapezoidal pockets 9 are punched at regular intervals in the circumferential direction, and a plurality of pillars 8 positioned between the pockets 9 are formed on the small-diameter side annular part 6 and the large-diameter side annular part.
  • 7 has a shape in which the flange portion 10 extends radially inward from the edge of the small-diameter side annular portion 6 and the inner end 1 Oa of the flange portion 10 is bent inward in the axial direction.
  • this tapered roller bearing 1 In order to prevent an excessive load between the tapered roller 4 and the small collar 2b of the inner ring 2 when the tapered roller 4 and the cage 5 are assembled to the inner ring 2, first, After forming into a shape, the bottom pressing jig 11a, l ib (see Fig. 14A) is used to expand the area around the small-diameter side annular portion 6 of the column 8 and plastically deform it, thereby expanding the inner diameter of the portion in contact with the tapered roller 4 Let me.
  • the cage 5 in which the vicinity of the small-diameter side annular portion 6 of the column portion 8 is expanded as described above is in a state where the small-diameter side annular portion 6 faces downward.
  • the roller 4 is lowered from above and inserted into the pocket 9 from the inside as shown in FIG. 16A.
  • the small end surface 4a of the tapered roller 4 is hooked on the lower end of the pocket 9, and it falls to the outside in the radial direction as shown by an arrow with the fulcrum as a fulcrum to reach the state of FIG. 16C.
  • the tapered roller 4 since the tapered roller 4 is received by both the end edge portion of the pocket 9 and the inner end 10a of the flange portion 10 which are located at predetermined intervals in the radial direction of the cage 5, it cannot be inclined in the circumferential direction. It is surely tilted radially outward and fits in the pocket 9. Thereafter, the inner ring 2 descends to the inside of the tapered roller row in the cage 5. At that time, the pillar 8 of the cage 5 is pushed outward and the inner diameter of the portion in contact with the tapered roller 4 is larger than the normal dimension, so that the small collar 2b of the inner ring 2 and the tapered roller 4 do not interfere with each other. Assembly is done without . Thereafter, the column portion 8 is urged inward by the jig 11c (see FIG. 14B).
  • the cage 5 has a shape in which the inner end 10a of the flange portion 10 of the small-diameter side annular portion 6 is bent inward in the axial direction
  • the cage 5 is assembled when the tapered roller 4 is assembled to the cage 5.
  • the tapered roller 4 is lowered into the pocket 9 with the small-diameter side annular portion 6 of 5 facing downward, the tapered roller 4 is supported by both the lower end of the pocket 9 and the inner end 10a of the flange portion.
  • the roller 4 can be held in a stable posture, and the roller 4 does not tilt in the circumferential direction.
  • the ease of assembly of the tapered roller bearing by the automatic assembly machine is improved, and the filling rate (number of rollers) of the tapered roller in the bearing can be easily increased.
  • the roller PCD can be reduced while increasing the number of rollers.
  • the torque can be reduced without reducing the bearing rigidity.
  • the maximum surface pressure of the raceway can be reduced by increasing the load capacity, preventing surface-origin separation with extremely short life under severe lubrication conditions. can do. That is, it is possible to easily and inexpensively provide a tapered roller bearing that can prevent early breakage due to excessive surface pressure of the raceway surface.
  • FIG. 17 As an example in which the cage is brought into contact with the inner surface of the outer ring, there is a circular roller bearing shown in Fig. 17 (see Japanese Patent Laid-Open No. 2003-28165).
  • the tapered roller bearing 61 guides the cage 62 by sliding the outer circumferential surface of the small-diameter side annular portion 62a of the cage 62 and the outer circumferential surface of the large-diameter side annular portion 62b against the inner surface of the outer ring 63.
  • the recess 64 is formed so as to maintain a non-contact state between the outer diameter surface of the column portion 62c and the raceway surface 63a of the outer ring 63.
  • the cage 62 is formed by connecting the small-diameter side annular portion 62a, the large-diameter side annular portion 62b, the small-diameter side annular portion 62a and the large-diameter side annular portion 62b in the axial direction to the outer diameter surface A plurality of pillar portions 62c in which recesses 64 are formed.
  • a plurality of pockets 66 for rolling the rollers 65 are provided between the column portions 62c so as to roll freely.
  • the small-diameter-side annular portion 62a is provided with a flange portion 62d that extends integrally on the inner-diameter side.
  • 73 is a tapered roller
  • 74 is a column surface or tapered surface
  • 75 is an inner ring
  • is a window angle.
  • the cage may be made of iron plate or greaves! An iron plate cage is advantageous in that it can be used without worrying about material deterioration (oil resistance) due to immersion in oil.
  • the cage made of resin is lighter than the steel plate and has a self-lubricating property and a small friction coefficient, the outer ring is combined with the effect of the lubricating oil interposed in the bearing. It is possible to suppress the occurrence of wear due to contact with the.
  • the cage made of resin is light and has a small coefficient of friction, it is advantageous in reducing torque loss and cage wear at the start of the bearing.
  • the cage made of resin does not require operations such as expanding the bottom and tightening in assembling the bearing, so that it is easy to ensure the required dimensional accuracy.
  • the cage can be formed integrally with a super engineering plastic such as PPS, PEEK, PA, PPA, or PAI. If necessary, glass fiber or carbon fiber blended with these resin materials or other engineering plastics may be used to increase strength.
  • Engineering plastics include general engineering plastics and super engineering plastics. The following are the strengths of engineering plastics. These are examples and not intended to be limiting.
  • PC Polycarbonate
  • PA6 Polyamide 6
  • PA66 Polyamide 66
  • POM Polyacetal
  • Modified polyphenylene ether m—P PE
  • PBT Polybutylene terephthalate
  • GF—PET GF reinforced polyethylene terephthalate
  • UHMW—PE ultra high molecular weight polyethylene
  • the tapered roller bearing 1 shown in Fig. 8 has a protruding portion 8b which is convex toward the outer ring raceway surface side on the outer diameter surface of the column portion 8 of the cage 5 integrally molded with engineering 'plastic'. It is formed. The rest is the same as the cage 5 described above.
  • the protrusion 8b The cross-sectional outline shape of the column part 8 in the transverse direction is arcuate.
  • the radius of curvature R of the protrusion 8g is
  • the radius of curvature R of the protrusion is about 70 to 90% of the radius R of the outer ring raceway surface. Wedge oil for less than 70%
  • the inlet opening angle of the membrane becomes too large and the dynamic pressure decreases. If it exceeds 90%, the inlet angle of the wedge-shaped oil film becomes too small, and the dynamic pressure similarly decreases.
  • the lateral width W of the protrusion 8b is desirably 50% or more of the lateral width W of the pillar 8 (W ⁇ 0
  • the tapered roller bearing 1 in FIG. 8 is configured as described above, when the bearing 1 rotates and the cage 5 begins to rotate, the space between the outer ring raceway surface and the protrusion 8b of the cage 5 is increased. A wedge-shaped oil film is formed. This wedge-shaped oil film generates a dynamic pressure that is almost proportional to the rotational speed of the bearing 1. Therefore, even if the pitch circle diameter (PCD) of the cage 5 is made larger than before and the bearing 1 is brought closer to the outer ring raceway surface, the bearing 1 It is possible to rotate without causing large wear or torque loss, and it is possible to increase the number of rollers without difficulty.
  • PCD pitch circle diameter
  • the outer peripheral surface of the small-diameter side annular portion 62a and the outer peripheral surface of the large-diameter side annular portion 62b of the cage 62 are connected to the outer ring 63 inner-diameter surface.
  • the torque is increased by that amount due to the sliding contact.
  • Such a problem is that when the outer diameter of the cage is moved in the radial direction, the outer peripheral surface of the cage comes into contact with the outer ring raceway surface. This can be solved by setting the size so that a clearance is formed between the outer peripheral surface and the outer ring raceway surface.
  • the diameter of the cage of the tapered roller bearing is such that the state force shown in Fig. 18A also moves the cage 5 to the axial small diameter side as shown in Fig. 18B, and then moves downward in the radial direction as shown in Fig. 19B. Then, the contact force between the outer ring 3 and the cage 5 begins to rotate as shown in Fig. 19B.
  • the cage 5 When the cage 5 is centered as shown in Fig. 19C, the cage 5 and the outer ring 3
  • the dimensions are set so that there is no contact at the circumference. That is, when the cage 5 is arranged at the center of the shaft and the cage 5 is close to the small diameter side as shown in FIG. 18B, there is a gap between the cage 5 and the outer ring 3. When moved in the radial direction, the dimension is set so that the outer ring 3 and the cage 5 come into contact with each other.
  • the outer ring 3 and the cage 5 are in contact in the initial stage of operation but are not in contact with each other during operation, so that an increase in drag torque and wear due to contact can be suppressed.
  • the caulking work is necessary if the bottom is widened, but in the case of a resin cage, it is not necessary, so it is easy to ensure the dimensional accuracy required for the invention. is there.
  • “opening the bottom” means that when the cage 5 incorporating the roller is assembled to the inner ring, the diameter of the pillar portion on the smaller diameter side of the cage 5 is greatly expanded so that the roller gets over the small collar of the inner ring (See Figure 14A).
  • “Caulking” refers to pushing the outer side force of the pillar part of the cage 5 small-diameter part, which has been greatly expanded as described above, with the mold (see FIG. 14B).
  • This micro-rough surface has a surface roughness parameter Rqni of the indented surface in the range of 0.4 i um ⁇ Rqni ⁇ l .O / zm and a Sk value of 1 1.6 or less, preferably — 4. 9 to — 1. 6 in the range.
  • the surface roughness parameter Rymax of the surface provided with the depression is 0.4 to 1.0.
  • the value of Rqni (L) ZRqni (C) is less than 1.0.
  • tapered roller bearings As can be understood from FIG. 2B, during operation, the rolling surface of tapered roller 4 is in rolling contact with the races of inner ring 2 and outer ring 3, and the large end surface of tapered roller 4 is the inner ring 2. In sliding contact with the inner surface of the large brim 2c. Therefore, in the case of the tapered roller 4, an infinite number of minute concave recesses may be randomly formed on the large end surface in addition to the rolling surface. Similarly, in the case of the inner ring 2, an infinite number of minute concave recesses may be formed on the inner surface of the large brim 2c in addition to the raceway surface.
  • the lubricating oil is uniformly retained on the surface of the tapered roller, and the amount of the lubricating oil staying inside the bearing is reduced. Even if it is reduced, the contact portion between the tapered roller and the inner and outer rings can be sufficiently lubricated.
  • the oil film forming ability is improved, and a long life is obtained even under extremely thin oil film conditions under low viscosity and dilute lubrication. be able to.
  • the oil film breaks even under lean lubrication. Compared to conventional products, it can provide a long service life even under extremely thin oil film conditions.
  • the Sk value a value of 1.6 or less is an advantageous range for oil film formation according to the shape and distribution of the surface recess depending on the processing conditions.
  • the parameter Ryni is the average value of the maximum height for each reference length, that is, the roughness curve force, the reference length is extracted in the direction of the average line, and the distance between the peak line and the valley bottom line of this extracted part is the roughness curve. It is a value measured in the direction of the vertical magnification (ISO 4287: 1997).
  • the parameter Sk indicates the skewness of the roughness curve (ISO 4287: 1997), and is a statistic that provides a measure of the asymmetry of the concave-convex distribution.
  • the Sk value is close to 0, and becomes negative when the concave and convex portions are deleted, and positive when the concave portion is deleted.
  • the Sk value can be controlled by selecting the rotational speed, processing time, workpiece input, type and size of the abrasive tip, etc.
  • the Sk value By setting the Sk value to 1.6 or less in both the width direction and the circumferential direction, the micro-concave recess becomes an oil reservoir, and the lubricant can be held evenly. Therefore, even when compressed, there is little oil leakage in the sliding direction and right-angle direction, and it is excellent in oil film formation, the oil film formation condition is good, and surface damage is minimized. There is an effect to suppress.
  • the surface roughness parameter Rymax of the surface provided with the recess is in the range of 0.4 to 1.0.
  • the parameter Rymax is the maximum value of the maximum height for each reference length (IS04287: 1997).
  • the value of the ratio between the axial surface roughness Rqni (L) and the circumferential surface roughness Rqni (C) Rqni (L) / Rqni (C) is preferably 1.0 or less.
  • the parameter Rqni is the square root of the value obtained by integrating the square of the height deviation to the roughness center line force roughness curve over the measured length interval, and averaging it over that interval, also known as the root mean square.
  • Rqni is obtained by numerical calculation of the cross-sectional curve and roughness curve force recorded in an enlarged manner, and is measured by moving the stylus of the roughness meter in the width direction and circumferential direction.
  • the measurement method and conditions of the parameters Ryni, Rymax, Sk, Rqni are exemplified as follows.
  • the measured value at one location can be relied on as a representative value. It is good to measure two places.
  • Measuring device Surface roughness measuring instrument Surfcom 1400A (Tokyo Seimitsu Co., Ltd.)
  • the conventional tapered roller bearings A and B (comparative example) in which the rolling surface of the tapered roller is finished to a smooth surface, and a random number of minute concave recesses on the rolling surface of the tapered roller
  • the formed bearings C to E (comparative example) and the bearings F and G (examples) will be explained (see Table 1). All of the bearings A to G used are tapered roller bearings with an outer ring outer diameter of 81 mm and an inner ring inner diameter S45 mm. Note that the rolling surfaces of the rollers in the bearings A and B of the comparative example are covered with a super-finish (super-finishing) after grinding, and are not subjected to hollowing.
  • Rolling surfaces of comparative example bearings C to E and example bearings F and G are as follows: A myriad of indentations with a small concave shape are formed randomly by barrel polishing special processing. Regarding Rqni (LZC), roller bearings C to G are 1.0 or less, and roller bearings A and B are around 1.0.
  • a peeling test was performed using a two-cylinder testing machine shown in Fig. 20, and the metal contact rate was evaluated.
  • the driving side cylinder 32 (D cylinder: Driver) and the driven side cylinder 34 (F cylinder: Follower) are attached to one end of each rotating shaft, and the two rotating shafts 36, 38 are pulleys 40, respectively. Can be driven by a separate motor.
  • the shaft 36 on the D cylinder 32 side was driven by a motor, and the F cylinder 34 was free-rolled to follow the D cylinder 32.
  • Two types of F cylinders 34 were prepared for surface treatment: a comparative example and an example. Details of test conditions are shown in Table 2.
  • Comparative data of metal contact ratio is shown in FIGS. 21A and 21B.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the metal contact ratio
  • FIG. 21A shows the metal contact ratio of the rolling surface of the roller in the comparative example bearing
  • FIG. 21B shows the roller rolling in the example bearing.
  • the metal contact ratio of the surface is shown respectively.
  • the roller contact width of the column portion 8 of the cage 8 is 10% or more of the pocket length with respect to the central position in the pocket axial direction on both the left and right sides.
  • the roller filling rate is simply increased with the pocket size of the cage 72 as it is, the column 72a of the cage 72 becomes thin, and sufficient column strength cannot be ensured.
  • the cage diameter is changed in a direction that reduces the clearance between the cage and the outer ring (increase the diameter) in order to ensure the column strength, wear at the outer ring contact portion of the cage is promoted, and so-called dragging is promoted.
  • the roller contact width of the pillar is secured at least 10% of the pocket length with respect to the central position in the pocket axial direction on both the left and right sides, and the roller force is concentrated locally or the load applied to the cage is uneven. To prevent abnormal wear or damage due to stress concentration.
  • the roller coefficient can be set to ⁇ > 0.94, and the maximum surface pressure of the raceway surface can be reduced. Therefore, it is possible to prevent surface-origin separation with an extremely short life under severe lubrication conditions. In addition, since no drag torque is generated by contact with the cage, wear of the cage pocket can be minimized.
  • the cage 5 is not in contact with the outer ring 3 in the neutral state, and is in contact with the outer ring 3 when moved in the radial direction. By doing so, dragging due to contact, increase in torque and wear can be suppressed, which is advantageous in reducing torque. Furthermore, since the maximum surface pressure of the raceway surface of the tapered roller bearing can be reduced, it is possible to prevent surface-origin separation that causes an extremely short life under severe lubrication conditions.
  • FIG. 22-25 shows the pocket viewed from the inner diameter side of the cage, and the contact of the roller with the pocket column surface (side surface of the column part) is indicated by a two-dotted line.
  • the contact width of the roller on the pocket pillar surface is secured at least 10% of the pocket length in the axial center position of the pocket, that is, the pocket center position force. This is to prevent abnormal wear or damage due to stress concentration due to the load acting on the roller cage being concentrated locally or being loaded unevenly.
  • the roller contact width is secured over 10% of the pocket length on both sides in the axial direction from the pocket center position force. Therefore, the roller contact width at the pocket center position is more than 20% of the pocket length.
  • the roller contact is closer to the left side in the figure, but the pocket center position force and the right side of the pocket are at least 10% of the pocket length.
  • FIG. 24 In this case, contrary to Fig. 23, the roller contact is closer to the right side in the figure, but the pocket center position force is also secured on the left side with a roller contact width of 10% or more of the pocket length.
  • Fig. 25 shows the force when the roller contact between the upper and lower pocket pillars in the figure is offset in the opposite direction. A width per roller of 0% or more is secured.
  • At least one bearing component of the inner ring 2, the outer ring 3 and the tapered roller 4 of the tapered roller bearing 1 has a nitrogen-enriched layer, and the austenite grain size number in the nitrogen-enriched layer is No. 10. You may make it exist in the range which exceeds.
  • the nitrogen-enriched layer is a layer with an increased nitrogen content formed on the surface layer of the race (outer ring or inner ring) or tapered roller, and it is formed by a process such as carbonitriding, nitriding, or nitriding. Can do.
  • the nitrogen content in the nitrogen-enriched layer is preferably in the range of 0.1% to 0.7%. If the nitrogen content is less than 0.1%, the effect will be lost, especially the rolling life will be reduced under the condition of contamination.
  • the nitrogen content is more than 0.7%, voids called voids will be formed, and the residual austenite will increase so much that hardness will not be achieved, resulting in a short life.
  • the nitrogen content is the value at the surface layer of 50 m of the raceway surface after grinding and can be measured, for example, with PMA (wavelength dispersive X-ray microanalyzer) .
  • the austenite grain size is finer as the grain size number of the austenite crystal grains exceeds 10, the rolling fatigue life can be greatly improved. If the austenite grain size number is 10 or less, the rolling fatigue life is not greatly improved, so the range is over 10. Usually 11 or higher. The finer the austenite grain size, the better the strength. Usually, it is difficult to obtain a grain size number exceeding 13. Note that the austenite grains of the bearing parts described above do not change in the surface layer portion having the nitrogen-enriched layer or in the inner part thereof. Therefore, the target positions in the above-mentioned range of the grain size number are the surface layer portion and the inner portion.
  • the austenite crystal grain is a crystal grain based on the trace of the austenite crystal grain boundary immediately before quenching after the quenching treatment, for example.
  • a nitrogen-enriched layer By forming a nitrogen-enriched layer and refining the austenite grain size to 11 or more in grain size number, the rolling fatigue life is greatly improved, and excellent crack resistance strength and aging resistance change can be obtained. Can do.
  • a heat treatment including a carbonitriding process will be described as a specific example of the process for forming the nitrogen-enriched layer.
  • FIG. 26 is a diagram for explaining a heat treatment method for a rolling bearing according to the embodiment of the present invention
  • FIG. 27 is a diagram for explaining a modification thereof.
  • Fig. 26 is a heat treatment pattern showing the method of primary quenching and secondary quenching
  • Fig. 27 is a method of cooling the material to below the A1 transformation point temperature during quenching, and then reheating and finally quenching. This is a heat treatment pattern showing.
  • treatment T the carbon is sufficiently dissolved while carbon and nitrogen are diffused in the steel substrate, and then cooled below the A transformation point.
  • process T in the figure, it is reheated to a temperature above the A transformation point temperature and lower than that of process T.
  • the rolling bearing of the present invention manufactured by the heat treatment pattern of FIG. 26 or FIG. 27 has a microstructure in which the austenite crystal grain size is less than one-half of the conventional one. Bearing parts subjected to the above heat treatment have a long life against rolling fatigue, can improve the cracking strength, and can also reduce the aging rate of dimensional change. Since a heat treatment step for lowering the secondary quenching temperature is taken to refine the crystal grains, the amount of retained austenite decreases on the surface layer and inside, so that excellent cracking strength and aging dimensional change can be obtained.
  • FIGS. 28A and 28B are diagrams showing the microstructure of bearing parts, particularly austenite grains.
  • FIG. 28A shows a bearing part of the present invention example
  • FIG. 28B shows a conventional bearing part. That is, FIG. 28A shows the austenite grain size of the bearing ring of the rolling bearing according to the embodiment of the present invention to which the heat treatment pattern shown in FIG. 26 is applied.
  • FIG. 28B shows the austenite grain size of the bearing steel by the conventional heat treatment method.
  • Figures 29A and 29B show the austenite grain sizes illustrated in Figures 28A and 28B. From the structure showing the austenite crystal grain size, the conventional austenite grain size is JIS standard grain size number 10 and according to the heat treatment method shown in FIG. 26 or FIG. 27, the 12th fine grain can be obtained.
  • the average particle diameter in FIG. 28A was 5.6 m as a result of measurement by the intercept method.
  • examples of the present invention will be described.
  • Samples A to D (examples of the present invention): carbonitriding 850 ° C, holding time 150 minutes.
  • the atmosphere was a mixed gas of RX gas and ammonia gas.
  • the primary quenching is performed from the carbonitriding temperature of 850 ° C !, the following is lower than the carbonitriding temperature, and the secondary is heated to a temperature range of 780 ° C to 830 ° C. Quenching was performed. However, Sample A with a secondary quenching temperature of 780 ° C was excluded from the test due to insufficient quenching.
  • Samples E and F Carbonitriding is performed with the same history as the inventive examples A to D, and the secondary quenching temperature is 850 ° C to 870 ° C, which is 850 ° C or higher. It was.
  • Conventional carbonitrided product Carbonitriding 850 ° C, holding time 150 minutes. Atmosphere The gas was a mixed gas of RX gas and ammonia gas. Quenching was performed as it was from the carbonitriding temperature, and secondary quenching was not performed.
  • Normal hardened product Heated to 850 ° C and hardened without carbonitriding. The secondary quenching was powerful.
  • the amount of hydrogen was analyzed for the amount of non-diffusible hydrogen in the steel using a DH-103 hydrogen analyzer manufactured by LECO.
  • the amount of diffusible hydrogen is not measured.
  • the specifications of this LECO DH-103 hydrogen analyzer are as follows.
  • Sample weight size 1 Omg to 35 mg (Maximum: Diameter 12mm X Length 1 OOmm)
  • Carrier gas nitrogen gas
  • gas dosing gas hydrogen gas, purity of 99.99% or more for both gases, pressure 40 psi (2.8 kgf / cm 2 )
  • the outline of the measurement procedure is as follows.
  • the sample collected by the dedicated sampler is inserted into the hydrogen analyzer with the sampler.
  • the internal diffusible hydrogen is led to the thermal conductivity detector by the nitrogen carrier gas. This diffusible hydrogen is not measured in this example.
  • the sample is taken out from the sampler, heated in a resistance heating furnace, and non-diffusible hydrogen is led to the thermal conductivity detector by nitrogen carrier gas.
  • the amount of non-diffusible hydrogen can be determined by measuring the thermal conductivity with a thermal conductivity detector.
  • the grain size was measured based on the JIS G 0551 steel austenite grain size test method.
  • FIG. 30 is a view showing a test piece of a static crushing strength test (measurement of a breaking stress value). Measure the load until it breaks by applying a load in the P direction in the figure. After that, the obtained fracture load is converted into a stress value by the following stress calculation formula for the curved beam. Note that the test piece is not limited to the test piece shown in Fig. 30, and other types of test pieces may be used.
  • the fiber stress on the convex surface of the test piece in FIG. 30 is ⁇ , and the fiber stress on the concave surface is ⁇ .
  • Table 4 shows the test conditions for the rolling fatigue life test.
  • 31A and 31B are schematic views of a rolling fatigue life tester, FIG. 31A is a front view, and FIG. 31B is a side view.
  • Rolling fatigue life test piece 18 is driven by drive roll 12 and rotates in contact with ball 16.
  • the ball 16 is a 3Z4 inch ball and rolls while being applied to the rolling fatigue life test piece 18 by being guided by the guide roll 14 while exerting a high surface pressure.
  • the austenite grains are remarkably refined to a grain size number of 11 to 12. Being sung.
  • the austenite grains of Samples E and F, as well as the conventional carbonitrided and conventional quenched products have a grain size number of 10, and are coarser than those of Samples B to D of the inventive examples.
  • the fracture stress value corresponds to the crack resistance strength.
  • the conventional carbonitrided product has a fracture stress value of 2330 MPa.
  • the fracture stress values of Samples B to D are improved to 2650 to 2840 MPa.
  • the fracture stress value of the normal quenching product is 2770 MPa, and the improved cracking resistance strength of Samples B to D is estimated to have the effect of reducing the hydrogen content as well as the refinement of austenite crystal grains! .
  • the normal fatigue-hardened product has the lowest rolling fatigue life L, reflecting that it does not have a carbonitriding layer in the surface layer. Compared to this, the rolling fatigue life of conventional carbonitrided products is 3
  • Samples E and F are almost the same as conventional carbonitrided products.
  • Samples B to D of the present invention have a reduced hydrogen content, austenite grain size refined to 11th or more, Charpy impact value, crack strength, and rolling fatigue life. Is also improved.
  • Example IV A series of tests were conducted on the following X, Y and Z materials.
  • JIS standard SUJ2 material (1.0 wt% C—0.25 wt%) Si—0.4 wt% Mn—1.5 wt. / 0 Cr), common to X to Z materials.
  • the manufacturing history of materials X to Z is as follows.
  • Y material (comparative example): quenching after carbonitriding (conventional carbonitriding). Carbonitriding temperature 845 ° C, holding time 150 minutes. The atmosphere of carbonitriding was RX gas + ammonia gas.
  • Z material (example of the present invention): Bearing steel subjected to the heat treatment pattern of FIG. Carbonitriding temperature 845 ° C, holding time 150 minutes. The atmosphere of carbonitriding was RX gas + ammonia gas. The final quenching temperature was 800 ° C.
  • Table 5 shows the results of this rolling fatigue life test. According to Table 5, the Y material of the comparative example is the same as the comparative example.
  • the Z material of the present invention shows a long life of 1.74 times that of the B material and 5.4 times that of the X material. The main reason for this improvement is thought to be the refinement of the microstructure.
  • the Charpy impact test was performed by using a U-notch test piece according to the method described in JISZ2242. Table 6 shows the test results.
  • the Charpy impact value of the carbonitrided Y material (comparative example) is not higher than that of the normal quenching X material (comparative example), but the Z material has the same value as the X material.
  • FIG. 32 is a diagram showing a test piece for a static fracture toughness test. After introducing a pre-row about 1 mm into the notch of this test piece, a static load by three-point bending was applied to determine the fracture load P. The following formula (I) was used to calculate the fracture toughness value (Klc value). The test results are shown in Table 7. Since the pre-crack depth is greater than the carbonitrided layer depth, there is no difference between the X and Y materials of the comparative example. However, the Z material of the inventive example was able to obtain a value about 1.2 times that of the comparative example.
  • ⁇ 1 ⁇ ( ⁇ ⁇ 3 / ⁇ ⁇ ⁇ 2 ) ⁇ 5.8-9.2 (a / W) +43.6 (a / W) 2 -75.3 (a / W) 3 + 77.5 (a / W)
  • the static crushing strength test used the shape shown in FIG. 32 as described above. In the figure, a static crushing strength test was performed with a load applied in the P direction. Table 8 shows the test results.
  • the Y material which is carbonitriding, is slightly lower than the normal quenching X material. However, the Z material of the present invention has higher static crushing strength than the Y material, and a level comparable to that of the X material.
  • Table 9 shows the measurement results of the dimensional change over time at a holding temperature of 130 ° C and a holding time of 500 hours, together with the surface hardness and the amount of retained austenite (50 m depth). Compared to the dimensional change rate of the Y material with a large amount of residual austenite, the Z material of the example of the present invention is suppressed to less than half.
  • the rolling fatigue life was evaluated under the condition that a predetermined amount of standard foreign matter was mixed.
  • Table 10 shows the test conditions and Table 11 shows the test results.
  • the conventional carbonitriding Y material is about 2.5 times longer, and the Z material of the present invention has a longer life about 2.3 times.
  • the Z material of the present invention has a small amount of retained austenite compared to the Y material of the comparative example! / although it has almost the same long life due to the intrusion of nitrogen and the effect of the refined microstructure.
  • the Z material that is, the inventive example, has three items which are difficult to achieve with the conventional carbonitriding process: longer life of rolling fatigue, improved crack strength, and reduced rate of dimensional change over time. I was able to be satisfied at the same time.
  • Comparative Example 1 is a standard hardened product
  • Comparative Example 2 is a standard carbonitrided product
  • Comparative Example 3 is the case where the same treatment as that of the embodiment of the present invention was performed, but only the nitrogen amount was excessive.
  • the test conditions are as follows.
  • Tapered roller bearing 30206 both inner Z outer ring and roller are made of JIS high carbon chromium bearing steel class 2 (SUJ2))
  • roller diameter X number of rollers may be the roller diameter.
  • the difference between the circumferential length on the roller pitch circle and the product of the roller diameter and number is made smaller than the roller diameter.
  • FIG. 10 illustrates an example of a differential configuration of an automobile that can use the tapered roller bearing 1 described above.
  • This differential is connected to a propeller shaft (not shown), and the drive pion 22 inserted into the differential case 21 meshes with the ring gear 24 attached to the differential gear case 23, so that the differential gear case 23
  • the pinion gear 25 installed inside the gear meshes with the side gear 26 that is coupled to the drive shaft (not shown) that also inserts the left and right force into the differential gear case 23, and the engine driving force is transferred from the propeller shaft to the left and right drive shafts.
  • a drive pion 22 and a differential gear case 23 that are power transmission shafts are supported by a pair of tapered roller bearings la and lb, respectively.
  • the differential case 21 is sealed with seal members 27a, 27b, and 27c, and lubricating oil is stored inside.
  • the tapered roller bearings la and lb rotate in a state where the lower part is immersed in this lubricating oil bath, and the lubricating oil in the oil bath flows into the bearing.
  • the surface between the rolling surface of the tapered roller 4 and the taper surface 8a of the column portion 8 of the cage 5 is also formed by these surfaces. Lubricated with lubricating oil entering the wedge space
  • FIG. 11 shows an example of the configuration of an automobile transmission.
  • This transmission is a synchronous type, and the left side of the figure is the engine side and the right side is the drive wheel side.
  • a tapered roller bearing 43 is disposed between the main shaft 41 and the main drive gear 42.
  • the outer ring raceway surface of the tapered roller bearing 43 is formed directly on the inner periphery of the main drive gear 42. It is.
  • the main drive gear 42 is rotatably supported by the tapered roller bearing 44 with respect to the casing 45.
  • a clutch gear 46 is connected to the main drive gear 42, and a synchronization mechanism 47 is disposed in the vicinity of the clutch gear 46.
  • the synchro mechanism 47 includes a sleeve 48 that moves in the axial direction (left and right in the figure) by the operation of a selector (not shown), and a synchronizer key 49 that is mounted on the inner periphery of the sleeve 48 so as to be axially movable.
  • the hub 50 engaged with the outer periphery of the main shaft 41, the synchronizer ring 51 slidably mounted on the outer periphery (cone portion) of the clutch gear 46, and the synchronizer key 49 are inertial on the inner periphery of the sleeve 48.
  • a presser pin 52 and a spring 53 are provided for pressing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 ころ軸受(1)は、外周に軌道をもった内輪と、内周に軌道をもった外輪と、内輪の軌道と前記外輪の軌道との間に介在させた複数のころと、前記ころを収容するポケットをもった保持器とからなり、ころ係数が0.94を超え、保持器は、ころの一方の端部側で連なった環状部と、ころの他方の端部側で連なった環状部と、両環状部を連結する複数の柱部とからなり、柱部(8)の内径面の両側にころ(4)の転動面と接するテーパ面(8a)が形成してあり、このテーパ面(8a)の幅方向の長さ寸法(L)はころ(4)の平均直径(D)の5%以上11%未満である。

Description

ころ軸受
技術分野
[0001] この発明はころ軸受に関し、たとえば自走車両のデフアレンシャルやトランスミツショ ン等の動力伝達軸を支持する軸受に適用することができる。
背景技術
[0002] 円筒ころ軸受ゃ円すいころ軸受等のころ軸受は、外周に軌道をもった内輪と、内周 に軌道をもった外輪と、内輪と外輪の軌道間に介在させた複数のころと、これらのころ を円周方向で所定間隔に保持する保持器とからなる。保持器は、ころの一方の端部 側で連なった環状部と、ころの他方の端部側で連なった環状部と、これらの環状部同 士を連結する複数の柱部とを有し、隣り合った柱部間にころを収納するためのポケッ トが画成される。このような保持器では、ころの転動面と接する柱部の内径面の両側 にテーパ面を設け、ころの転動面に接触疵が生じないようにしている。従来、このテ ーパ面の幅方向の長さ寸法は、ころの平均直径の 11〜20%とするのが一般的であ る。
[0003] 自走車両のデフアレンシャルやトランスミッション等の動力伝達軸を支持するころ軸 受は、一部が油浴に漬カつた状態で使用され、その回転に伴って油浴の油を潤滑油 とする油浴潤滑状態となる。このように油浴潤滑状態で使用されるころ軸受では、ころ の転動面と保持器の柱部内径面のテーパ面との間も、これらの面で形成されるくさび 空間に入り込む潤滑油で潤滑される。
発明の開示
発明が解決しょうとする課題
[0004] 従来の、保持器の柱部テーパ面の長さ寸法をころの平均直径の 11〜20%としたこ ろ軸受は、ころの転動面と柱部テーパ面との間に比較的大きいくさび空間が形成さ れ、多量の潤滑油がくさび空間に入り込む。このくさび空間からころの転動面と保持 器のテーパ面との界面に入る潤滑油の量は限られているので、多量の潤滑油がくさ び空間に入り込もうとすると、潤滑油の逃げ場がなくなって軸受回転の抵抗となり、ト ルク損失が大きくなるという問題がある。また、このように潤滑油が軸受内部へ流入す るころ軸受では、保持器の回転に対する潤滑油の流動抵抗も、無視できないトルク損 失の要因となる。
[0005] したがって、軸受内部に潤滑油が流入するころ軸受における潤滑油の流動抵抗に よるトルク損失を低減させる必要がある。以上が低トルク化のために油の流動抵抗を 減少させる方法であるが、大幅な低トルク化を行うためには、転がり粘性抵抗が低下 するように軸受諸元を変更することが必要である。しかしながら、従来の低トルク化手 法 (特開平 09— 096352号公報、特開平 11— 210765号公報、特開 2003— 3435 52号公報参照)では、定格荷重を低下させない低トルク化は可能であるが、軸受剛 性がいくらか低下する。
[0006] この発明の主要な目的は、軸受剛性を低下させることなぐ低トルク化を実現するこ とにある。
課題を解決するための手段
[0007] この発明は、ころ本数を減らさず、あるいは増加させつつ、ころピッチ円径 (PCD)を 小さくすることによって、課題を解決したものである。図 1は円すいころ軸受において PCDを変化させたときの剛性比 (ー參一)およびトルク比 (一〇一)を表したものであ る。ころの弾性変形量を計算確認した結果、図 1に示すように、 PCDを小さくすると軸 受のトルクは大幅に低下する力 軸受剛性はあまり低下しないといった知見を得た。 そこで、ころ本数を減らさないか増加させつつ、 PCDを小さくすることによって、剛性 を低下させずにトルクを低減させることができる。
[0008] この発明のころ軸受は、外周に軌道をもった内輪と、内周に軌道をもった外輪と、内 輪の軌道と外輪の軌道との間に介在させた複数のころと、ころを収納するためのボケ ットをもった保持器とからなり、ころ係数が 0. 94を超え、前記保持器が、前記ころの 一方の端部側で連なった環状部と、前記ころの他方の端部側で連なった環状部と、 前記両環状部同士を連結する複数の柱部とからなり、前記柱部の内径面の両側に 前記ころの転動面と接するテーパ面が形成したり、前記テーパ面の幅方向の長さ寸 法力 前記ころの平均直径の 5%以上 11%未満であることを特徴とするものである。
[0009] ころ係数 γ (ころの充填率)は、(ころ本数 Xころ平均直径) Ζ ( π X PCD)で表され るパラメータであって、ころ平均直径が一定の場合、 γの値が大きいほどころ本数が 多いことを意味する。従来の典型的な保持器付き円すいころ軸受ではころ係数 γを 通常 0. 94以下に設定しているのに対し、ころ係数 γが 0. 94を超えるということは、 従来と比較して、ころ充填率ひ 、ては軸受剛性が高 、ことを意味する。
[0010] ころの転動面と接する保持器の柱部のテーパ面の幅方向の長さ寸法を、ころの平 均直径の 11%未満、好ましくは 9%以下とすることにより、ころの転動面と保持器の柱 部のテーパ面との間にあまり大きなくさび空間が形成されないようにして、くさび空間 に入り込む潤滑油の量を少なくし、潤滑油の逃げ場がなくなることによるトルク損失を 低減させるようにした。なお、テーパ面の幅方向の長さ寸法をころの平均直径の 5% 以上としたのは、 5%未満では、ころの外径面とテーパ面との弾性接触領域がテーパ 面の幅よりも大きくなるおそれがあるからである。
[0011] この発明によれば、剛性を低下させることなくトルク損失を減少させることができる。
すなわち、この発明のころ軸受は、ころ係数が 0. 94を超えるような設定とすることによ り、ころ本数を減らさず、あるいは増加させつつ、ころピッチ円径 (PCD)を小さくする ことができ、剛性を低下させることなく低トルク化が実現する。し力も、ころ係数を 0. 9 4より大きくすることにより、負荷容量がアップするば力りでなぐ軌道面の最大面圧を 低下させることができるため、過酷潤滑条件下での極短寿命の原因となる表面起点 剥離を防止することができる。
[0012] さらに、ころの転動面と接する保持器の柱部のテーパ面の幅方向の長さ寸法を、こ ろの平均直径の 5%以上 11%未満としたことにより、ころの転動面とテーパ面との間 にあまり大きなくさび空間が形成されず、くさび空間に入り込む潤滑油の量が少なく なる。したがって、潤滑油の逃げ場がなくなることによるトルク損失が減少し、この面か らも低トルク化を促進することができる。
図面の簡単な説明
[0013] [図 1]円す 、ころ軸受にお 、てころピッチ円径 (PCD)を変化させたときの剛性比( 參 )およびトルク比(一〇一)の変化を表した線図
[図 2Α]この発明の実施の形態を示す円すいころ軸受の横断面図
[図 2Β]図 2Αの円すいころ軸受の縦断面図 [図 3A]図 2Aの円すいころ軸受における保持器の展開平面図
[図 3B]図 3Aの B— B矢視図
[図 4]窓角が下限の円す 、ころ軸受の部分拡大断面図
[図 5]窓角が上限の円す 、ころ軸受の部分拡大断面図
圆 6]従来の円すいころ軸受の部分拡大断面図
[図 7]軸受の寿命試験の結果を示す線図
[図 8]この発明の変形例を示す円すいころ軸受の部分拡大断面図
[図 9]図 8の保持器の柱部の拡大図
[図 10]—般的な自動車のデフアレンシャルの断面図
[図 11]一般的な自動車のトランスミッションの断面図
[図 12]トルク測定試験の結果を示すグラフ
[図 13]保持器の部分斜視図
圆 14A]保持器の底押し過程を示す断面図
圆 14B]保持器の力しめ過程を示す断面図
圆 15A]従来の保持器のポケットに円すいころを挿入する過程を示す断面図 圆 15B]従来の保持器のポケットに円すいころを挿入する過程を示す断面図 圆 15C]従来の保持器のポケットに円すいころを挿入する過程を示す断面図 圆 16A]保持器のポケットに円すいころを挿入する過程を示す断面図 圆 16B]保持器のポケットに円すいころを挿入する過程を示す断面図 圆 16C]保持器のポケットに円すいころを挿入する過程を示す断面図
[図 17]保持器を外輪に寄せた従来の円すいころ軸受の断面図
[図 18A]軸方向移動前の保持器の断面図
[図 18B]軸方向移動後の保持器の断面図
[図 19A]静止時の円すいころ軸受の略図
[図 19B]回転初期の円すいころ軸受の略図
[図 19C]回転中の円すいころ軸受の略図
[図 20]2円筒試験機の全体概略図
[図 21 A]比較例の金属接触率を示すグラフ [図 21B]実施例の金属接触率を示すグラフ
[図 22]保持器のポケットの略図
[図 23]保持器のポケットの略図
[図 24]保持器のポケットの略図
[図 25]保持器のポケットの略図
[図 26]ころ軸受の熱処理方法を説明する線図
[図 27]ころ軸受の熱処理方法の変形例を示す線図
[図 28A]本発明例の軸受部品のミクロ組織、とくにオーステナイト粒界を示す組織図
[図 28B]従来の軸受部品のミクロ組織、とくにオーステナイト粒界を示す組織図
[図 29A]図 28Aを図解したオーステナイト粒界を示す組織図
[図 29B]図 28Bを図解したオーステナイト粒界を示す組織図
[図 30]静圧壊強度試験 (破壊応力値の測定)の試験片を示す図
[図 31A]転動疲労寿命試験機の概略図
[図 31B]転動疲労寿命試験機の側面図
[図 32]静的破壊靭性試験の試験片を示す図
符号の説明
1, la, lb 円すいころ軸受
2 内輪
2a 軌道面
2b 小つば
2c 大つば
3 外輪
3a 軌道面
R1 半径
4 円すいころ
D 平均直径
Ύ ころ係数
4a 小端面 5 保持器
6 環状部 (ころ小端面側) 7 環状部 (ころ大端面側) 8 柱部
T 厚さ寸法
W1 横幅
8a テーノ面
L 幅方向長さ寸法
Θ 窓角
8b 突起部
R2 曲率半径
W2 横幅
9 ポケット
10 鍔部
10a先端部
11a, l ib 底押し治具 11c かしめ治具
12 駆動ロール
14 案内ロール
16 ボール
18 転動疲労寿命試験片 21 デフアレンシャルケース 22 ドライブピニオン 23 差動歯車ケース 24 リングギヤ
25 ピニオンギヤ
26 サイドギヤ
27a, 27b, 27c シーノレ部材 駆動側円筒 従動側円筒
, 38 回転軸
プーリ
メインシャフト メインドライブギヤ 円すいころ軸受 円すいころ軸受 ケーシング
クラッチギヤ シンクロ機構 スリーブ
シンクロナイザーキー ハブ
シンクロナイザーリング 押さえピン
スプリング
円すいころ軸受 保持器
a 小径側環状部b 大径側環状部c 柱部
d 鍔部
外輪
a 軌道面
凹所
円すいころ
ホケット 71 外輪
72 保持器
72a 柱
74 柱面
73 円すいころ
75 内輪
[0015] 以下、図面に従ってこの発明の実施の形態を説明する。ここでは円すいころ軸受の 場合を例にとって説明する。図 2Aおよび 2Bに示すように、円すいころ軸受 1は、内 輪 2と外輪 3と円すいころ軸受 4と保持器 5とを主要な構成要素している。内輪 2は外 周に円す ヽ状の軌道面 2aが形成してあり、外輪は内周に円す ヽ状の軌道面 3aが形 成してある。内輪 2の軌道面 2aと外輪 3の軌道面 3aとの間に複数の円すいころ 4が転 動自在に介在させてある。各円すいころ 4は保持器 5のポケット内に収容され、内輪 2 の小つば 2bと大つば 2cとでころ 4の軸方向移動が規制される。
[0016] 円すいころ軸受 1は、ころ係数 γ > 0. 94となっている。ころ係数 (ころの充填率) y は次式で表される。
γ = (Ζ · ϋΑ) / ( π - PCD)
ここで、 Ζ :ころ本数、 DA :ころ平均直径、 PCD :ころピッチ円径。
なお、従来の典型的な保持器付き円すいころ軸受は、図 6に示すように外輪 71と保 持器 72との接触を避けた上で、保持器 72の柱幅を確保し、適切な保持器 72の柱強 度と円滑な回転を得るために、通常、ころ係数 γを 0. 94以下にして設計している。 図 6中、符号 73, 74, 75は、それぞれ、円すいころ、柱面、内輪を指し、符号 Θは窓 角を表している。
[0017] 保持器 5は、図 3Αに示すように、円すいころ 4の小端面側で連なった小径側環状 部と、円すいころ 4の大端面側で連なった大径側環状部 7と、これらの環状部 6, 7を 連結する複数の柱部 8とからなり、隣り合った柱部 8間に台形状のポケット 9が画成さ れる。図 3Βに示すように、柱部 8の内径面の両側には、円すいころ 4の転動面と接す るテーパ面 8aが形成してある。このテーパ面 8aの幅方向の長さ寸法 Lは、円すいこ ろ 4の平均直径 Dの 5%以上 1 1 %未満、好ましくは 9%以下に設定する。このような 構成とすることにより、円すいころ 4の転動面とテーパ面 8aとの間にあまり大きなくさび 空間が形成されることはない。柱部 8の厚さ寸法は、円すいころ 4の平均直径 Dの 5% 以上 17%未満が好ましい。これにより、柱部 8の厚みを薄くして、保持器 5の回転に 対する潤滑油の流動抵抗を小さくし、トルク損失をより低減させることができる。なお、 柱部 8の厚さ寸法 Tを円すいころ 4の平均直径 Dの 5%以上としたのは、 5%未満では 保持器 8の剛性を十分に確保できな 、からである。
[0018] 図 4および 5を参照して、円すいころ 4の転動面と接するテーパ面 8aがなす角度す なわち窓角 Θについて述べると、下限 Θ minが 55° (図 4)、上限 Θ maxが 80° (図 5 )である。従来の、保持器が外輪から離間している典型的な保持器付き円すいころ軸 受(図 6)では、窓角 Θは大きくても約 50° である。下限 Θ minを 55° としたのはころと の良好な接触状態を確保するためであり、 55° 未満ではころとの接触状態が悪くな る。すなわち、窓角を 55° 以上とすることで、保持器強度を確保したうえで γ >0. 9 4として、かつ、良好な接触状態を確保できるのである。上限 Θ maxを 80° としたのは 、これ以上大きくなると半径方向への押し付け力が大きくなり、自己潤滑性の榭脂材 製の保持器であっても円滑な回転が得られなくなる危険性が生じるカゝらである。なお 、通常の保持器では窓角は 25° 〜50° となっている。
[0019] 図 7に軸受の寿命試験の結果を示す。同図中、「軸受」欄の「比較例 1」は保持器と 外輪とが離れた典型的な従来の円すいころ軸受(図 6参照)、「比較例 2」は「比較例 1 」のものをころ係数 γのみ γ >0. 94とした円すいころ軸受、「実施例」はころ係数 γ を γ >0. 94とし、力つ、窓角 0を 55° 〜80° の範囲にしたこの発明の円すいころ 軸受である。試験は、過酷潤滑、課題負荷条件下で行った。同図から明らかなように 、「比較例 2」は「比較例 1」の 2倍以上の長寿命となる。さらに、「実施例」の軸受はこ ろ係数が「比較例 2」と同じ 0. 96であるが、寿命時間は「比較例 2」の約 5倍以上にも なる。なお、軸受の寸法(単位 mm)は!、ずれも φ 45 X φ 81 X 16で、ころ本数は「比 較例 1」が 24本、「比較例 2」と「実施例」が 27本、油膜パラメータ Λは 0. 2であった。
[0020] 実施例と比較例の円すいころ軸受について、縦型トルク試験機を用いたトルク測定 試験を行った。実施例の円すいころ軸受は、図 3Bに示したテーパ面 8aの長さ寸法 L を円す 、ころ 4の平均直径 Dの 7%とした保持器を用 V、、比較例の円す 、ころ軸受は 、テーパ面の長さ寸法 Lを円すいころの平均直径 Dの 13%とした。円すいころ軸受の 寸法(単位 mm)はいずれも外径 φ 100、内径 φ 45、幅 27. 25であった。また、保持 器の柱部 8の厚さ寸法 Τは、実施例のものが円すいころ 4の平均直径 Dの 13%、比 較例のものが 17%であった。
[0021] 試験条件は次のとおりである。
アキシァノレ荷重: 300kgf
回転速度 : 300〜2000r/min (lOOr/minピッチ)
潤滑条件 :油浴潤滑 (潤滑油: 75W— 90)
[0022] 図 12に試験結果を示す。同図のグラフの縦軸は比較例のトルクに対する実施例の トルクの低減率を表して 、る。テーパ面の長さ寸法 Lを円す ヽころの平均直径 Dの 7 %と小さくした実施例は、低速回転から高速回転まで顕著なトルク低減効果が認めら れ、試験の最高回転速度である 2000r/minでも 12. 0%のトルク低減率を得た。この 実施例のトルク低減効果には、柱部の厚さ寸法 Tを薄くして保持器の回転に対する 潤滑油の流動抵抗を小さくした効果も含まれて 、る。
[0023] ところで、保持器 5は、鋼板製のプレス成形品の場合、図 3Aおよび 13に示すように 、円すいころ 4を転動自在に収容するため円すいころ 4の形状に対応した等脚台形 のポケット 9が円周方向に一定の間隔で複数打ち抜かれて形成され、ポケット 9間に 位置する柱部 8が小径側環状部 6と大径側環状部 7を連結して 、る。円す 、ころ 4と 保持器 5を内輪 2に組み付けるには、保持器 5に組み付けた円すいころ 4を内輪 2の 小つば 2bを乗り超えさせて内輪 2の軌道 2aに嵌合させる。このとき、円すいころ 4と小 つば 2bとの間で無理な負荷が発生しないようにする必要がある。そこで、保持器 5を 正規の形状に成形した後、図 14Aに示すように底押し治具 11a, l ibによって柱部 8 の小径側環状部 6の付近を押し広げて塑性変形させ、円す ヽころ 4と接する部分の 内径を拡大させる。次に、保持器 5の内側力もすベてのポケット 9内に円すいころ 4を 挿入した後、円すいころ列の内側に内輪 2を挿入する。このとき、上述のとおり柱部 8 の小径側環状部 6付近が外側に押し広げられて円すいころ 4と接する部分の内径が 正規寸法に比べ大きくなつているため、内輪 2の小つば 2bと円すいころ 4とが干渉せ ずに組み付けが行われる。その後、図 14Bに示すように、力しめ治具 11cにより、底 押し治具により押し広げられた柱部 8を内側に力しめる(たとえば、特開 2003— 139 133号公報参照)。
[0024] 図 15A—15Cを参照して説明すると、円すいころ 4の組み付けに際しては、図 15A に示すように円すいころ 4を上方力 降下させて保持器 5のポケット 9に内側力 挿入 する。すると、図 15Bに示すように円すいころ 4の小端面 4aがポケット 9の下端縁に引 つ掛かり、その円すいころ 4が半径方向外側に倒れてポケット 9に収容され、図 15C の状態に至る。しかしながら、円すいころ 4の径が大きぐその PCDに対して保持器 5 の外径が大きい場合には、円すいころ 4を保持器 5のポケット 9に挿入した時にその 円すいころ 4の姿勢が不安定となって、図 15Bの状態から図 15Cの状態へスムーズ に移行せず、円す 、ころ 4を挿入してから内輪 2を挿入するまでの間に円す 、ころ 4 が円周方向にたおれてしま 、、組み立てが困難となることがある。
[0025] 一方、自動車のトランスミッションには、近年、ミッションの AT'CVT化、低燃費化な どのため、低粘度オイルが使用される傾向にある力 低粘度オイルが使用される環境 下では、油温が高い、油量が少ない、予圧抜けが発生する等の悪条件が重なった場 合に潤滑不良に起因する非常に短寿命での表面起点剥離が、面圧の高い内輪の 軌道面に生じることがある。この軌道面の最大面圧の差異が表面起点剥離の発生率 に影響するため、軸受寸法を変更することができない場合には、軸受内の円すいこ ろ 4の充填率 (本数)を増大させることが、軌道面での最大面圧を低減するための有 効な解決策となる。この円すいころ 4の充填率を増大させた軸受として、保持器 5の径 を大きくした構造のものがある(たとえば、特開 2003— 28165号公報参照)。この種 の円すいころ軸受 1は、円すいころ 4の充填率を増大させるため、保持器 5の外径と 円すいころ 4の PCDとの差が大きくなつている。そのため、軸受の組立てにおいて、 円すいころ 4を保持器 5のポケット 9に挿入した時にその円すいころ 4の姿勢が不安定 となることに起因する前述の問題が顕著となる。
[0026] そこで、円すいころの充填率を増大させても、円すいころの組み付け時にその円す いころが保持器内で安定した姿勢で支持され、組立性の向上を図ることができ、しか も軸受剛性を低下させることなく、低トルク化を実現することが可能な円す 、ころ軸受 を提供することが求められる。かかる課題は、保持器の小径側環状部の端縁から半 径方向内向きに鍔部を延在させ、その鍔部の内端を軸方向内側に屈曲させることに よって解決することができる。これにより、保持器に円すいころを組み付けるに際して 、保持器の小径側環状部を下向きにした状態で、円すいころをポケットに降下させた とき、円すいころがポケット端縁部と鍔部内端の両方で支持される。その結果、円す V、ころを安定した姿勢に保持することができ、円す 、ころが円周方向に傾れるようなこ とはない。
[0027] 図 16A— 16Cを参照して説明すると、保持器 5は鋼板製のプレス成形品であって、 円す 、ころ 4を転動自在に収容するために、円す 、ころ 4の形状に対応した等脚台 形のポケット 9が円周方向に一定の間隔で複数打ち抜かれて形成され、そのポケット 9間に位置する複数の柱部 8が小径側環状部 6と大径側環状部 7を連結し、その小 径側環状部 6の端縁から半径方向内向きに鍔部 10を延在させ、その鍔部 10の内端 1 Oaを軸方向内側に屈曲させた形状を有する。この円すいころ軸受 1の製造にお!、 て、円すいころ 4と保持器 5を内輪 2に組み付けるに際し、円すいころ 4と内輪 2の小 つば 2bとの間で無理な負荷が発生しないようにするため、まず、保持器 5を正規の形 状に成形した後、底押し治具 11a, l ib (図 14A参照)によって柱部 8の小径側環状 部 6の付近を押し広げて塑性変形させ、円すいころ 4と接する部分の内径を拡大させ る。
[0028] 円すいころ軸受 1の自動組立機では、前述のようにして柱部 8の小径側環状部 6の 付近が押し広げられた保持器 5は、その小径側環状部 6を下向きにした状態で配置 され、図 16Aに示すように円す 、ころ 4を上方から降下させてポケット 9内に内側から 挿入する。すると、図 16Bに示すように円すいころ 4の小端面 4aがポケット 9の下端に 引っ掛かり、そこを支点として矢印で示すように半径方向外側に倒れて図 16Cの状 態に至る。このように、円すいころ 4は、保持器 5の半径方向に所定間隔で位置する ポケット 9の端縁部と鍔部 10の内端 10aの両方で受け止められるため、円周方向に 傾れることはなぐ確実に半径方向外側に傾れてポケット 9内に収まる。その後、内輪 2が保持器 5内の円すいころ列の内側に降下してくる。その際、保持器 5の柱部 8が 外側に押し広げられて円すいころ 4と接する部分の内径が正規寸法に比べ大きくな つているため、内輪 2の小つば 2bと円すいころ 4とが干渉せずに組み付けが行われる 。その後、柱部 8を力しめ治具 11c (図 14B参照)によって内側に力しめる。
[0029] 保持器 5を、その小径側環状部 6の鍔部 10の内端 10aを軸方向内側に屈曲させた 形状としたことにより、その保持器 5に円すいころ 4を組み付けるに際して、保持器 5の 小径側環状部 6を下向きにした状態で、円すいころ 4をポケット 9に降下させたとき、 円すいころ 4がポケット 9の下端と鍔部内端 10aの両方で支持される。これにより、円 す 、ころ 4を安定した姿勢に保持することができ、円す 、ころ 4が円周方向に傾れるよ うなことはない。したがって、自動組立機による円すいころ軸受の組立性が向上し、軸 受内の円す ヽころの充填率 (ころ本数)を容易に増大させることが可能となる。すなわ ち、ころ本数を増加させつつころ PCDを小さくできる。これにより、軸受剛性を低下さ せることなぐ低トルク化を実現できる。また、ころ本数を増加させたので、負荷容量が アップするば力りでなぐ軌道面の最大面圧を低下させることができるため、過酷潤滑 条件下での極短寿命での表面起点剥離を防止することができる。すなわち、軌道面 の面圧過大による早期破損を未然に防止し得る円すいころ軸受を容易かつ安価に 提供できる。
[0030] 一方、自動車のトランスミッションには、近年、ミッションの AT'CVT化、低燃費化な どのため、低粘度オイルが使用される傾向にある力 低粘度オイルが使用される環境 下では、油温が高い、油量が少ない、予圧抜けが発生する等の悪条件が重なった場 合に潤滑不良に起因する非常に短寿命での表面起点剥離が、面圧の高い内輪の 軌道面に生じることがある。この表面起点剥離による短寿命対策としては最大面圧低 減が直接的かつ有効な解決策である。最大面圧を低減するためには軸受寸法を変 更するか、軸受寸法を変えない場合は軸受のころ本数を増大させる。ころ直径を減 少させな!/ヽでころ本数を増やすためには保持器のポケット間隔を狭くしなければなら な!、が、そのためには保持器のピッチ円を大きくして外輪側にできるだけ寄せる必要 がある。
[0031] 保持器を外輪内径面に接するまで寄せた例として図 17に記載の円す 、ころ軸受 がある(特開 2003 - 28165号公報参照)。この円す ヽころ軸受 61は保持器 62の小 径側環状部 62aの外周面と大径側環状部 62bの外周面を外輪 63内径面と摺接させ て保持器 62をガイドし、保持器 62の柱部 62cの外径面に引きずりトルクを抑制する ため凹所 64を形成して、柱部 62cの外径面と外輪 63の軌道面 63aの非接触状態を 維持するようにしている。保持器 62は詳しくは図 17に示すように、小径側環状部 62a と、大径側環状部 62bと、小径側環状部 62aと大径側環状部 62bとを軸方向に繋ぎ 外径面に凹所 64が形成された複数の柱部 62cとを有する。そして柱部 62c相互間に 円す 、ころ 65を転動自在に収容するための複数のポケット 66が設けられて 、る。小 径側環状部 62aには、内径側に一体に延びた鍔部 62dが設けられて 、る。
[0032] 特開 2003— 28165号公報記載の円すいころ軸受 61では、保持器 62の柱部 62c に凹所 64があるので板厚が必然的に薄くなつて保持器 62の剛性が低下し、軸受 61 の組立て時の応力によって保持器 62が変形したり、軸受 61の回転中に保持器 62が 変形する等の可能性もある。保持器 62の剛性を高めようとすると保持器 62の径寸法 が大きくなるため、外輪接触部での摺接によるトルク増大を引き起こす可能性がある
[0033] 一方、特開 2003— 28165号公報記載の円すいころ軸受以外の従来の典型的な 保持器付き円すいころ軸受は、図 6のように外輪 71と保持器 72との接触を避けた上 で、保持器 72の柱幅を確保し、適切な保持器 72の柱強度と円滑な回転を得るため に、次式で定義されるころ係数 γ (ころの充填率)を、通常 0. 94以下にして設計して Vヽる(特開平 11— 210765号公報参照)。
ころ係数 Ύ = (Ζ · DA) Ζ ( π · PCD)
ここで、 Z :ころ本数、 DA:ころ平均径、 PCD :ころピッチ円径。
なお、図 6で 73は円すいころ、 74は柱面またはテーパ面、 75は内輪、 Θは窓角であ る。
[0034] 保持器 72のポケット寸法をそのままにして単純にころ充填率を高めようとすると、保 持器 72の柱が細くなり、充分な柱強度を確保することができない。そこで、ころ本数を 増やすことによって負荷容量の増加と軌道面の面圧過大による早期破損を防止し、 かつ軸受剛性を低下させることなぐ低トルク化を実現することができて、引きずりトル クの発生を抑制することができる円すいころ軸受が求められる。かかる課題は、保持 器を、機械的強度、耐油性および耐熱性に優れたエンジニアリング 'プラスチックで 構成すること〖こよって解決することができる。 [0035] 保持器は鉄板製のほか、榭脂製としてもよ!ヽ。鉄板製保持器は、油への浸漬による 材質劣化 (耐油性)を気にせず使用できると!ヽぅ点で有利である。榭脂製保持器は鉄 板製に比べて保持器重量が軽ぐ自己潤滑性があり、摩擦係数が小さいという特徴 があるため、軸受内に介在する潤滑油の効果と相俟って、外輪との接触による摩耗 の発生を抑えることが可能になる。また、榭脂製保持器は重量が軽く摩擦係数が小さ いため、軸受起動時のトルク損失や保持器摩耗を緩和する上で有利である。さらに、 榭脂製保持器は軸受の組立において底広げ、力しめといった作業が不要となるため 、所要の寸法精度を確保することが容易である。
[0036] 保持器はたとえば PPS、 PEEK, PA、 PPA、 PAI等のスーパーエンプラで一体成 形することができる。また、必要に応じて、強度増強のため、これら榭脂材料またはそ の他のエンジニアリング ·プラスチックにガラス繊維または炭素繊維などを配合したも のを使用してもょ 、。エンジニアリング ·プラスチックは汎用エンジニアリング ·プラスチ ックとスーパーエンジニアリング ·プラスチックを含む。以下にエンジニアリング ·プラス チックの代表的なものを掲げる力 これらは例示であって限定する趣旨ではな 、。
[0037] 〔汎用エンジニアリング 'プラスチック〕ポリカーボネート (PC)、ポリアミド 6 (PA6)、 ポリアミド 66 (PA66)、ポリアセタール(POM)、変性ポリフエ-レンエーテル(m—P PE)、ポリブチレンテレフタレート(PBT)、 GF強化ポリエチレンテレフタレート(GF— PET)、超高分子量ポリエチレン(UHMW— PE)
[0038] 〔スーパ一'エンジニアリング 'プラスチック〕ポリサルホン(PSF)、ポリエーテルサル ホン(PES)、ポリフエ-レンサルファイド(PPS)、ポリアリレート(PAR)、ポリアミドイミ ド(PAI)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、液晶ポリ マー(LCP)、熱可塑性ポリイミド (TPI)、ポリべンズイミダゾール(PBI)、ポリメチルベ ンテン (TPX)、ポリ 1, 4—シクロへキサンジメチレンテレフタレート(PCT)、ポリアミド 46 (PA46)、ポリアミド 6T(PA6T)、ポリアミド 9T(PA9T)、ポリアミド 11, 12 (PA11 , 12)、フッ素榭脂、ポリフタルアミド (PPA)
[0039] 図 8に示す円すいころ軸受 1は、エンジニアリング 'プラスチックで一体成形した保 持器 5の柱部 8の外径面に、外輪軌道面側に向けて凸状となった突起部 8bを形成し たものである。その他は前述の保持器 5と同じである。突起部 8bは図 9に示すように 柱部 8の横断方向の断面輪郭形状が円弧状をしている。突起部 8gの曲率半径 Rは
2 外輪軌道面の半径 Rより小さくしてある。これは、突起部 8bと外輪軌道面との間に良 好なくさび状油膜が形成されるようにするためである。望ましくは突起部の曲率半径 R は外輪軌道面の半径 Rの 70〜90%程度にするとよい。 70%未満ではくさび状油
2 1
膜の入口開き角度が大きくなりすぎ却って動圧が低下する。 90%を超えると、くさび 状油膜の入口角度が小さくなりすぎて同様に動圧が低下する。
[0040] また、突起部 8bの横幅 Wは望ましくは柱部 8の横幅 Wの 50%以上とする (W≥0
2 1 2
. 5W )。 50%未満では良好なくさび状油膜を形成するための十分な高さが確保で きないためである。なお、外輪軌道面半径 Rは大径側から小径側へと連続的に変化 しているので、突起部 8bの曲率半径 Rもそれに合わせて大径側環状部 7の大きな曲
2
率半径 Rから小径側環状部 6の小さな曲率半径 Rへと連続的に変化するようにする
2 2
[0041] 図 8の円すいころ軸受 1は以上のように構成されているため、軸受 1が回転して保持 器 5が回転し始めると、外輪軌道面と保持器 5の突起部 8bとの間にくさび状油膜が形 成される。このくさび状油膜は軸受 1の回転速度にほぼ比例した動圧を発生するので 、保持器 5のピッチ円径 (PCD)を従来よりも大きくして外輪軌道面に近接させても、 軸受 1を大きな摩耗ないしトルク損失を生じることなく回転させることが可能となり、無 理なくころ本数を増加させることが可能となる。
[0042] また、図 17に関連して上に述べた従来の円すいころ軸受では、保持器 62の小径 側環状部 62aの外周面と大径側環状部 62bの外周面を外輪 63内径面と摺接させて いるためその分だけ高トルクになるという問題もある。かかる課題は、保持器の外径を 、保持器を半径方向に移動させると保持器外周面が外輪軌道面に当接するが、軸 受回転中は保持器中心が軸中心に移動して保持器外周面と外輪軌道面との間にす きまが形成される寸法とすることによって解決することができる。
[0043] 保持器が軸中心に位置した状態では保持器外径と外輪軌道面との間にすきまが 存在して!/、るので、軸受運転中には外輪と保持器との接触が殆ど発生しな 、ようにし ている。保持器が軸中心に位置した状態では保持器外径と外輪軌道面間にすきま が存在していると、軸受運転中には外輪と保持器との接触が殆ど発生せず、接触に よる引きずりトルクの増大や摩耗を抑制することができる。このように、外輪と保持器と の接触を回転中のみ避けるような保持器寸法とすることにより、ころ係数 γを γ > 0. 94とすることち容易となる。
[0044] 円すいころ軸受の保持器直径は、図 18Aに示す状態力も図 18Bに示すように保持 器 5を軸方向小径側に移動させ、次に図 19Αに示すように径方向下側に移動させる と、外輪 3と保持器 5は接触する力 図 19Bに示すように軸受が回転し始め、図 19C に示すように保持器 5がセンタリングされると、保持器 5と外輪 3が周方向全周で所定 すきまをあけて接触しないような寸法に設定される。すなわち、保持器 5が軸中心に 配置され、図 18Bに示すように保持器 5が小径側に寄った状態では保持器 5と外輪 3 の間にすきまができるが、保持器 5を軸中心から径方向に移動させると外輪 3と保持 器 5が接触する寸法に設定される。
[0045] このことにより、運転初期には外輪 3と保持器 5は接触するが、運転中は非接触となる ことから、接触による引きずりトルクの増大や摩耗を抑制することができる。なお、鉄板 製保持器の場合は底広げゃカゝしめ作業が必要であつたが、榭脂製保持器の場合は 不要となるため、発明品に必要な寸法精度を確保することが容易である。ここで「底 広げ」とは、ころを組み込んだ保持器 5を内輪に組み付ける時、ころが内輪小つばを 乗り超えるように保持器 5小径側の柱部の径を大きく拡げることを 、う(図 14A参照)。 「かしめ作業」とは、前述のように大きく拡げた保持器 5小径部の柱部を外側力も型で 押して元に戻すことをいう(図 14B参照)。
[0046] 円すいころ 4の転動面および端面ならびに内外輪 2, 3の軌道面(さらに円すいころ 軸受の内輪については大つば面)の少なくとも一つに、微小凹形状のくぼみをランダ ムに無数に形成して微小粗面化してもよい。この微小粗面は、くぼみを設けた面の面 粗さパラメータ Rqniが 0. 4 iu m≤Rqni≤l . O /z mの範囲内であり、かつ、 Sk値が一 1. 6以下、好ましくは— 4. 9〜― 1. 6の範囲である。また、くぼみを設けた面の面粗 さパラメータ Rymaxが 0. 4〜1. 0である。さらに、面粗さを各表面の軸方向と円周方 向のそれぞれで求めてパラメータ Rqniで表示したとき、軸方向面粗さ Rqni (L)と円周 方向面粗さ Rqni (C)の比の値 Rqni (L) ZRqni (C)が 1. 0以下になっている。このよう な微小粗面を得るための表面カ卩ェ処理としては、特殊なバレル研摩によって、所望 の仕上げ面を得ることができる力 ショット等を用いてもよい。
[0047] 円すいころ軸受の場合、図 2Bから理解できるように、運転中、円すいころ 4の転動 面が内輪 2および外輪 3の軌道と転がり接触するほか、円すいころ 4の大端面が内輪 2の大つば 2cの内側面と滑り接触する。したがって、円すいころ 4の場合、転動面の ほか大端面にも微小凹形状のくぼみをランダムに無数に形成させてもよい。同様に、 内輪 2の場合、軌道面のほか大つば 2cの内側面にも微小凹形状のくぼみをランダム に無数に形成させてもょ 、。
[0048] 少なくとも円すいころ 4の表面に、微小凹形状のくぼみをランダムに無数に設けるこ とにより、円すいころの表面に満遍なく潤滑油を保持させて、軸受内部に滞留する潤 滑油の量を減らしても、円すいころと内外輪との接触部を十分に潤滑することができ る。少なくとも円すいころの表面に、微小凹形状のくぼみをランダムに無数に設けるこ とによって、油膜形成能力が向上し、低粘度 ·希薄潤滑下で極端に油膜厚さが薄い 条件下でも長寿命を得ることができる。とくに、くぼみを設けた面の面粗さパラメータ R yniを 0. 4 ^ πι≤Κγηί≤1. 0 mの範囲内に設定し、従来よりも小さく抑えることによ り、希薄潤滑下でも油膜切れを防ぐことが可能で、従来品に比べ、極端に油膜厚さが 薄い条件下でも長寿命を得ることができる。 Sk値については、 1. 6以下が表面凹 部の形状、分布が加工条件により油膜形成に有利な範囲である。
[0049] パラメータ Ryniは、基準長毎最大高さの平均値すなわち、粗さ曲線力 その平均 線の方向に基準長さだけ抜き取り、この抜き取り部分の山頂線と谷底線との間隔を粗 さ曲線の縦倍率の方向に測定した値である(ISO 4287: 1997)。
[0050] パラメータ Skは粗さ曲線の歪み度 (スキューネス)を指し (ISO 4287 : 1997)、凹 凸分布の非対称性を知る目安となる統計量であり、ガウス分布のような対称な分布で は Sk値は 0に近くなり、凹凸の凸部を削除した場合は負の値、逆に凹部を削除した 場合は正の値となる。 Sk値のコントロールは、バレル研摩機の回転速度、加工時間、 ワーク投入量、研摩チップの種類と大きさ等を選ぶことにより行える。 Sk値を幅方向、 円周方向とも 1. 6以下とすることにより、微小凹形状のくぼみが油溜りとなり、満遍 なく潤滑油を保持することができる。したがって、圧縮されても滑り方向、直角方向へ の油のリークは少なぐ油膜形成に優れ、油膜形成状況は良好で、表面損傷を極力 抑える効果がある。
[0051] くぼみを設けた面の面粗さパラメータ Rymaxは 0. 4〜1. 0の範囲内とするのが好ま しい。パラメータ Rymaxは基準長毎最大高さの最大値である(IS04287 : 1997)。
[0052] くぼみを設けた面の面粗さをパラメータ Rqniで表示したとき、軸方向面粗さ Rqni (L )と円周方向面粗さ Rqni (C)との比の値 Rqni (L) /Rqni (C)が 1. 0以下とするのが 好ましい。パラメータ Rqniは、粗さ中心線力 粗さ曲線までの高さの偏差の自乗を測 定長さの区間で積分し、その区間で平均した値の平方根であり、別名自乗平均平方 根ともいう。 Rqniは拡大記録した断面曲線、粗さ曲線力 数値計算で求められ、粗さ 計の触針を幅方向および円周方向に移動させて測定する。
[0053] パラメータ Ryni, Rymax, Sk, Rqniの測定方法、条件を例示するならば次のとおり である。なお、これらのパラメータで表される表面性状を、転がり軸受の転動体ゃ軌 道輪といった構成要素について測定する場合、一ヶ所の測定値でも代表値として信 頼できるが、たとえば直径方向に対向する二ケ所を測定するとよい。
パラメータ算出規格: JIS B 0601: 1994 (サーフコム JIS 1994)
測定長さ: 5 λ
カットオフ種另 U:ガウシアン
測定倍率: X 10000
測定速度: 0. 30mm/s
測定箇所:ころ中央部
測定数: 2
測定装置:面粗さ測定器サーフコム 1400A (東京精密株式会社)
[0054] 次に、円すいころの転動面を滑らかな面に仕上げた従来の円すいころ軸受 A, B ( 比較例)と、円すいころの転動面に微小凹形状のくぼみをランダムに無数に形成した 軸受 C〜E (比較例)ならびに軸受 F, G (実施例)につ 、て行った寿命試験につ!、て 説明する(表 1参照)。使用した軸受 A〜Gはいずれも、外輪の外径が 81mm、内輪 の内径力 S45mmの円すいころ軸受である。なお、比較例の軸受 A, Bにおけるころの 転動面は、研削後にスーパーフィニッシュ (超仕上げ)を施してカ卩ェされ、くぼみカロェ を施してない。比較例の軸受 C〜Eならびに実施例の軸受 F, Gのころの転動面は、 バレル研摩特殊加工によって微小凹形状のくぼみがランダムに無数に形成してある 。なお、 Rqni (LZC)については、ころ軸受 C〜Gは 1. 0以下であり、ころ軸受 A, B は 1. 0前後である。
[¾1]
Figure imgf000022_0001
[0056] 図 20に示す 2円筒試験機を使用してピーリング試験を行い、金属接触率を評価し た。同図において、駆動側円筒 32 (D円筒: Driver)と従動側円筒 34 (F円筒: Followe r)は各々の回転軸の片端に取り付けられ、 2本の回転軸 36, 38はそれぞれプーリ 4 0を介して別々のモータで駆動できるようになつている。 D円筒 32側の軸 36をモータ で駆動し、 F円筒 34は D円筒 32に従動させる自由転がりにした。 F円筒 34は、表面 処理に関して比較例と実施例の 2種類を用意した。試験条件等詳細は表 2のとおりで ある。
[0057] [表 2]
試験機 2円筒試験機 (図 20)
駆 ft側円筒 (D円筒) 40 X L 1 2 , 副曲率 R 60
SU J 2標準品 +外径面超仕上
従動側円筒 (F円筒) φ 40 X L 1 2, ス トレート
SU J 2標準品 +外径面超仕上
表面処理 比較例 実施例
平均面積 ( 145 83
Ryni ( μ m) 1. 2 1 0. 73
面積率 (%) 20 1 5
回転数 20000 r pm
荷重 21 56N (220 k g f )
最大面圧 P 2. 3 GP a
接触楕円 (2aX2b) 2. 34 mmX 0. 72mm
負荷回数 2. 4 X 1 0 s回 (2 h)
雰囲気温度 巾
給油方法 フェルトパッド給油
潤滑油 JOMO HI SPEED FLUID (VG 1.5)
[0058] 金属接触率の比較データを図 21Aおよび 21Bに示す。同図は横軸が経過時間、 縦軸が金属接触率を表し、図 21Aは比較例の軸受におけるころの転動面の金属接 触率を、図 21Bは実施例の軸受におけるころの転動面の金属接触率を、それぞれ示 す。これらの図を対比すれば、比較例に比べて実施例では金属接触率が改善され ていることを明瞭に確認できる。言い換えれば、油膜形成率( = 100%—金属接触率 )が、実施例の軸受の方が比較例の軸受に比べて、運転開始時で 10%程度、試験 終了時(2時間後)で 2%程度、向上している。
[0059] 保持器 8の柱部 8のころ当たり幅は、左右共にポケット軸方向中央位置に対しポケッ ト長さの 10%以上確保するのが好ましい。柱部 8のころ当たり幅を、左右共にポケット 9の軸方向中央位置に対しポケット長さの 10%以上確保することにより、ころ 4から保 持器 5に作用する荷重が局部的に集中したり、偏って負荷されたりすることによって、 異常な摩耗が発生したり、応力集中による破損が発生したりしないようになる。これら により、ころ係数を γ >0. 94とすることが容易となる。
[0060] 保持器 72のポケット寸法をそのままにして単純にころ充填率を高めようとすると、保 持器 72の柱 72aが細くなり、充分な柱強度を確保することができない。一方、柱強度 を確保するため、保持器と外輪とのすきまが小さくなる方向に保持器径を変更 (径寸 法を大きく)すると、保持器の外輪接触部での摩耗を促進し、いわゆる引きずりトルク の増大を引き起こすおそれがある。そこで、柱部のころ当たり幅を、左右共にポケット 軸方向中央位置に対しポケット長さの 10%以上確保して、ころ力も保持器に作用す る荷重が局部的に集中したり、偏って負荷されたりすることによって、異常な摩耗が 発生したり、応力集中による破損が発生したりしないようにしておく。これにより、ころ 係数を γ >0. 94とすることが可能になり、軌道面の最大面圧を低下させることができ る。したがって、過酷潤滑条件下での極短寿命での表面起点剥離を防止することが できる。また、保持器の接触による引きずりトルクを発生させないため、保持器ポケット 部の摩耗も最小限とすることができる。
[0061] また、保持器 5は、中立状態では外輪 3と非接触で、半径方向に動かすと外輪 3と 接触するようにするのが望ましい。そうすることにより、接触による引きずりやトルクの 増大や摩耗を抑制することができるので、低トルク化に有利である。さらに、円すいこ ろ軸受の軌道面の最大面圧を低下させることができるため、過酷潤滑条件下での極 短寿命の原因となる表面起点剥離を防止することができる。
[0062] 図 22— 25は、保持器の内径側から見たポケットを示し、ポケット柱面 (柱部の側面) にころの当たりを二点差線で示してある。いずれの場合も、ポケット柱面のころの当た り幅を、ポケットの軸方向中央位置すなわちポケット中央位置力もポケット長さの 10% 以上確保してある。ころ力 保持器に作用する荷重が局部的に集中したり、偏って負 荷されたりすることによって、異常な摩耗が発生したり、応力集中による破損が発生し たりしないようにするためである。具体的には、図 22の場合、ころ当たり幅は、ポケット 中央位置力ゝら軸方向両側にそれぞれポケット長さの 10%以上にわたって確保されて いる。したがって、ポケット中央位置でのころ当たり幅はポケット長さの 20%以上とな つている。図 23の場合は、ころの当たりが図中の左側寄りになっているが、ポケット中 央位置力も右側にもポケット長さの 10%以上のころ当たり幅が確保されている。図 24 の場合は、図 23と逆にころの当たりが図中の右側寄りになっているが、ポケット中央 位置力も左側にもポケット長さの 10%以上のころ当たり幅が確保されている。図 25は 、図中上側のポケット柱面と図中下側のポケット柱面とでころの当たりが逆方向に片 寄っている場合である力 いずれも、ポケット中央位置力 少なくともポケット長さの 1 0%以上のころ当たり幅が確保されている。
[0063] 円すいころ軸受 1の内輪 2、外輪 3および円すいころ 4の少なくとも一つの軸受部品 は窒素富化層を有し、かつ、その窒素富化層におけるオーステナイト結晶粒の粒度 番号が 10番を超える範囲にあるようにしてもよい。窒素富化層は、軌道輪 (外輪もしく は内輪)または円すいころの表層に形成された窒素含有量が増加した層であって、 たとえば浸炭窒化、窒化、浸窒などの処理によって形成させることができる。窒素富 化層における窒素含有量は、好ましくは 0. 1%〜0. 7%の範囲である。窒素含有量 が 0. 1%より少ないと効果がなぐとくに異物混入条件での転動寿命が低下する。窒 素含有量が 0. 7%より多いと、ボイドと呼ばれる空孔ができたり、残留オーステナイト が多くなりすぎて硬度が出なくなったりして短寿命になる。軌道輪に形成された窒素 富化層については、窒素含有量は、研削後の軌道面の表層 50 mにおける値であ つて、たとえば PMA (波長分散型 X線マイクロアナライザ)で測定することができる。
[0064] オーステナイト結晶粒の粒度番号が 10番を超えるほどオーステナイト粒径が微細 であることにより、転動疲労寿命を大幅に改良することができる。オーステナイト粒径 の粒度番号が 10番以下では、転動疲労寿命は大きく改善されないので、 10番を超 える範囲とする。通常、 11番以上とする。オーステナイト粒径は細かいほど望ましい 力 通常、 13番を超える粒度番号を得ることは難しい。なお、上記の軸受部品のォー ステナイト粒は、窒素富化層を有する表層部でも、それより内側の内部でも変化しな い。したがって、上記の結晶粒度番号の範囲の対象となる位置は、表層部および内 部とする。オーステナイト結晶粒は、たとえば焼入れ処理を行った後も焼入れ直前の オーステナイト結晶粒界の痕跡が残っており、その痕跡に基づいた結晶粒をいう。窒 素富化層を形成した上で、オーステナイト粒径を粒度番号で 11番以上に微細化する ことにより、転動疲労寿命が大きく改善され、優れた耐割れ強度や耐経年寸法変化 を得ることができる。 [0065] 窒素富化層を形成させるための処理の具体例として浸炭窒化処理を含む熱処理 について説明する。
[0066] 図 26は、この発明の実施の形態における転がり軸受の熱処理方法を説明する図で あり、図 27はその変形例を説明する図である。図 26は一次焼入れおよび二次焼入 れを行う方法を示す熱処理パターンであり、図 27は焼入れ途中で材料を A1変態点 温度未満に冷却し、その後、再加熱して最終的に焼入れする方法を示す熱処理バタ ーンである。これらの図において、処理 Tでは鋼の素地に炭素や窒素を拡散させた まま炭素の溶け込みを十分に行った後、 A変態点未満に冷却する。次に、図中の処 理 Tにおいて、 A変態点温度以上かつ処理 Tよりも低温に再加熱し、そこ力も油焼
2 1 1
入れを施す。
[0067] 上記の熱処理により、従来の浸炭窒化焼入れすなわち浸炭窒化処理に引き続いて そのまま 1回焼入れするよりも、表層部分を浸炭窒化しつつ、割れ強度を向上させ、 経年寸法変化率を減少させることができる。図 26または図 27の熱処理パターンによ つて製造されたこの発明の転がり軸受は、オーステナイト結晶粒の粒径が従来の 2分 の 1以下となるミクロ組織を有している。上記の熱処理を受けた軸受部品は、転動疲 労に対して長寿命であり、割れ強度を向上させ、経年寸法変化率も減少させることが できる。結晶粒の微細化のために二次焼入れ温度を下げる熱処理工程をとるため、 残留オーステナイト量が表層および内部で減少する結果、すぐれた耐割れ強度ゃ耐 経年寸法変化を得ることができるのである。
[0068] 図 28Aおよび 28Bは、軸受部品のミクロ組織、とくにオーステナイト粒を示す図であ る。図 28Aは本発明例の軸受部品であり、図 28Bは従来の軸受部品である。すなわ ち、図 26に示す熱処理パターンを適用したこの発明の実施の形態である転がり軸受 の軌道輪のオーステナイト結晶粒度を図 28Aに示す。また、比較のため、従来の熱 処理方法による軸受鋼のオーステナイト結晶粒度を図 28Bに示す。図 29Aおよび 2 9Bに、図 28Aおよび 28Bを図解したオーステナイト結晶粒度を示す。これらオーステ ナイト結晶粒度を示す組織より、従来のオーステナイト粒径 «JIS規格の粒度番号で 10番であり、図 26または図 27による熱処理方法によれば 12番の細粒を得ることが できる。図 28Aの平均粒径は、切片法で測定した結果、 5. 6 mであった。 次に、この発明の実施例について説明する。
(実施例 1)
JIS規格 SUJ2材(1. 0重量%C— 0. 25重量%Si— 0. 4重量%Mn— 1. 5重量% Cr)を用いて、(1)水素量の測定、(2)結晶粒度の測定、(3)シャルピー衝撃試験、 ( 4)破壊応力値の測定、(5)転動疲労試験の各試験を行った。表 4にその結果を示す
[0070] [表 3]
Figure imgf000027_0001
[0071] 各試料の製造履歴は次のとおりである。
試料 A〜D (本発明例):浸炭窒化処理 850°C、保持時間 150分間。雰囲気は、 RX ガスとアンモニアガスとの混合ガスとした。図 26に示す熱処理パターンにおいて、浸 炭窒化処理温度 850°Cから一次焼入れを行!、、次!、で浸炭窒化処理温度より低 、 温度域 780°C〜830°Cに加熱して二次焼入れを行った。ただし、二次焼入れ温度 7 80°Cの試料 Aは焼入れ不足のため試験の対象力 外した。
試料 E, F (比較例):浸炭窒化処理は、本発明例 A〜Dと同じ履歴で行い、二次焼 入れ温度を浸炭窒化処理温度 850°C以上の 850°C〜870°Cで行った。
従来浸炭窒化処理品 (比較例):浸炭窒化処理 850°C、保持時間 150分間。雰囲 気は、 RXガスとアンモニアガスとの混合ガスとした。浸炭窒化処理温度からそのまま 焼入れを行い、二次焼入れは行わなかった。
普通焼入れ品(比較例):浸炭窒化処理を行わずに、 850°Cに加熱して焼入れした 。二次焼入れは行わな力つた。
[0072] 次に、試験方法について説明する。
(1)水素量の測定
水素量は、 LECO社製 DH— 103型水素分析装置により、鋼中の非拡散性水素量 を分析した。拡散性水素量は測定していない。この LECO社製 DH—103型水素分 析装置の仕様は次のとおりである。
分析範囲: 0. 01〜50. OOppm
分析精度: ±0. lppmまたは ± 3%H (いずれか大なる方)
分析感度:0. Olppm
検出方式:熱伝導度法
試料重量サイズ: 1 Omg〜 35mg (最大:直径 12mm X長さ 1 OOmm)
加熱炉温度範囲: 50°C〜1100°C
試薬:アンハイドロン Mg (ClO ) 、 ァスカライト NaOH
4 2
キャリアガス:窒素ガス、ガスドージングガス:水素ガス、いずれのガスも純度 99. 99 %以上、圧力 40psi (2. 8kgf/cm2)
[0073] 測定手順の概要は以下のとおりである。専用のサンプラーで採取した試料をサンプ ラーごと上記の水素分析装置に挿入する。内部の拡散性水素は窒素キャリアガスに よって熱伝導度検出器に導かれる。この拡散性水素は本実施例では測定しない。次 に、サンプラーから試料を取り出し、抵抗加熱炉内で加熱し、非拡散性水素を窒素キ ャリアガスによって熱伝導度検出器に導く。熱伝導度検出器において熱伝導度を測 定することによって非拡散性水素量を知ることができる。
[0074] (2)結晶粒度の測定
結晶粒度の測定は、 JIS G 0551の鋼のオーステナイト結晶粒度試験方法に基 づいて行った。
[0075] (3)シャルピー衝撃試験 シャルピー衝撃試験は、 JIS Z 2242の金属材料のシャルピー衝撃試験方法に 基づいて行った。試験片は、 JIS Z 2202に示された Uノッチ試験片 (JIS 3号試験 片)を用いた。
[0076] (4)破壊応力値の測定
図 30は、静圧壊強度試験 (破壊応力値の測定)の試験片を示す図である。図中の P方向に荷重を負荷して破壊されるまでの荷重を測定する。その後、得られた破壊荷 重を、下記の曲がり梁の応力計算式により応力値に換算する。なお、試験片は図 30 に示す試験片に限られず、他の形状の試験片を用いてもょ 、。
[0077] 図 30の試験片の凸表面における繊維応力を σ 、凹表面における繊維応力を σ と
1 2 すると、 σ および σ は下記の式によって求められる (機械工学便覧 Α4編材料力学
1 2
Α4— 40)。ここで、 Νは円環状試験片の軸を含む断面の軸力、 Αは横断面積、 eは
1 外半径、 e κ
2は内半径を表す。また、 は曲がり梁の断面係数である。
σ = (N/A) + {M/ (A ) } [ l + e /{ K ( p +e ) } ]
1 0 1 0 1
σ = (Ν/Α) + {Μ/ (Α ) } [ 1— e Z — e ) } ]
0 2
Figure imgf000029_0001
[0078] (5)転動疲労寿命
転動疲労寿命試験の試験条件を表 4に示す。また、図 31Aおよび 31Bは、転動疲 労寿命試験機の概略図であって、図 31Aは正面図、図 31Bは側面図である。転動 疲労寿命試験片 18は、駆動ロール 12によって駆動され、ボール 16と接触して回転 する。ボール 16は 3Z4インチのボールであり、案内ロール 14にガイドされて転動疲 労寿命試験片 18との間で高い面圧を及ぼし合いながら転動する。
[0079] 表 3に示した実施例 Iの試験結果を説明すると次のとおりである。
水素量
浸炭窒化処理したままの従来浸炭窒化処理品は、 0. 72ppmと非常に高い値とな つている。これは、浸炭窒化処理の雰囲気に含まれるアンモニア (NH )が分解して
3
水素が鋼中に浸入したためと考えられる。これに対し、試料 B〜Dは、水素量は 0. 3 7〜0. 40ppmと半分近くまで減少している。この水素量は普通焼入れ品と同レベル である。 [0080] 結晶粒度
結晶粒度は二次焼入れ温度が、浸炭窒化処理時の焼入れ (一次焼入れ)の温度よ り低い場合、すなわち試料 B〜Dの場合、オーステナイト粒は、結晶粒度番号 11〜1 2と顕著に微細化されて ヽる。試料 Eおよび Fならびに従来浸炭窒化処理品および普 通焼入れ品のオーステナイト粒は、結晶粒度番号 10であり、本発明例の試料 B〜D より粗大な結晶粒となっている。
[0081] シャルピー衝撃試験
表 3によれば、従来浸炭窒化処理品のシャルピー衝撃値は 5. 33jZcm2であるの に対して、本発明例の試料 B〜Dのシャルピー衝撃値は 6. 30〜6. 65jZcm2と高 い値が得られている。この中でも、二次焼入れ温度が低い方がシャルピー衝撃値が 高くなる傾向を示す。普通焼入れ品のシャルピー衝撃値は 6. 70jZcm2と高い。
[0082] (4)破壊応力値の測定
上記破壊応力値は、耐割れ強度に相当する。表 3によれば、従来浸炭窒化処理品 は 2330MPaの破壊応力値となっている。これに比して、試料 B〜Dの破壊応力値は 2650〜2840MPaと改善された値が得られて 、る。普通焼入れ品の破壊応力値は 2770MPaであり、試料 B〜Dの改良された耐割れ強度は、オーステナイト結晶粒の 微細化と並んで、水素含有率の低減による効果が大き!、と推定される。
[0083] (5)転動疲労試験
表 3によれば、普通焼入れ品は浸炭窒化層を表層部に有しないことを反映して、転 動疲労寿命 L は最も低い。これに比して従来浸炭窒化処理品の転動疲労寿命は 3
10
. 1倍となる。試料 B〜Dの転動疲労寿命は従来浸炭窒化処理品より大幅に向上する
。試料 E, Fは、従来浸炭窒化処理品とほぼ同等である。
[0084] 上記をまとめると、本発明例の試料 B〜Dは、水素含有率が低下し、オーステナイト 結晶粒度が 11番以上に微細化され、シャルピー衝撃値、耐割れ強度および転動疲 労寿命も改善される。
[0085] (実施例 II)
次に、実施例 Πについて説明する。下記の X材、 Y材および Z材について、一連の 試験を行った。熱処理用素材には、 JIS規格 SUJ2材(1. 0重量%C— 0. 25重量% Si— 0. 4重量%Mn— 1. 5重量。/ 0Cr)を用い、 X材〜 Z材に共通とした。 X材〜 Z材 の製造履歴は次のとおりである。
X材 (比較例):普通焼入れのみ (浸炭窒化処理せず)
Y材 (比較例):浸炭窒化処理後にそのまま焼入れ (従来の浸炭窒化焼入れ)。浸 炭窒化処理温度 845°C、保持時間 150分間。浸炭窒化処理の雰囲気は、 RXガス + アンモニアガスとした。
Z材 (本発明例):図 26の熱処理パターンを施した軸受鋼。浸炭窒化処理温度 845 °C、保持時間 150分間。浸炭窒化処理の雰囲気は、 RXガス +アンモニアガスとした 。最終焼入れ温度は 800°Cとした。
[0086] (1)転動疲労寿命
転動疲労寿命の試験条件および試験装置は、上述したように、表 4および図 31 A および 31Bに示すとおりである。この転動疲労寿命試験の結果を表 5に示す。表 5に よれば、比較例の Y材は、同じく比較例で普通焼入れのみを施した X材の L 寿命(
10 試験片 10個中の 1個が破損する寿命)の 3. 1倍を示し、浸炭窒化処理による長寿命 化の効果が認められる。これに対して、本発明例の Z材は、 B材の 1. 74倍、また X材 の 5. 4倍の長寿命を示している。この改良の主因はミクロ組織の微細化によるものと 考えられる。
[0087] [表 4]
Figure imgf000031_0001
[0088] [表 5] 材質 ' 寿命 (負荷回数)
L10(X104回) L;0(X104回)
1. 0
X材 801 7 1 8648
3. 1
Y材 246 5 6 3 3 974
5. 4
1 ζ材 43244 6 90 3 1
[0089] (2)シャルピー衝撃試験
シャルピー衝撃試験は、 Uノッチ試験片を用いて、上述の JISZ2242に準じた方法 により行った。試験結果を表 6に示す。浸炭窒化処理を行った Y材 (比較例)のシャル ピー衝撃値は、普通焼入れの X材 (比較例)より高くないが、 Z材は X材と同等の値が 得られた。
[0090] [表 6]
Figure imgf000032_0001
[0091] (3)静的破壊靭性値の試験
図 32は、静的破壊靭性試験の試験片を示す図である。この試験片のノッチ部に、 予き列を約 lmm導入した後、 3点曲げによる静的荷重を加え、破壊荷重 Pを求めた 。破壊靭性値 (Klc値)の算出には次に示す (I)式を用いた。また、試験結果を表 7 に示す。予き裂深さが浸炭窒化層深さよりも大きくなつたため、比較例の X材と Y材と には違いはない。しかし、本発明例の Z材は比較例に対して約 1.2倍の値を得ること ができた。
Κ1ο=(Ρ^3/Β^ν2){5.8-9.2(a/W)+43.6(a/W)2-75.3(a/W)3+ 77. 5 (a/W)
[0092] [表 7]
Figure imgf000033_0001
[0093] (4)静圧壊強度試験
静圧壊強度試験は、上述のように図 32に示す形状のものを用いた。図中、 P方向 に荷重を負荷して、静圧壊強度試験を行った。試験結果を表 8に示す。浸炭窒化処 理を行っている Y材は普通焼入れの X材よりもやや低い値である。し力しながら、本発 明例の Z材は、 Y材よりも静圧壊強度が向上し、 X材と遜色ないレベルが得られてい る。
[表 8]
Figure imgf000033_0002
(5)経年寸法変化率
保持温度 130°C、保持時間 500時間における経年寸法変化率の測定結果を、表 面硬度、残留オーステナイト量(50 m深さ)と併せて表 9に示す。残留オーステナイ ト量の多い Y材の寸法変化率に比べて、本発明例の Z材は 2分の 1以下に抑制され ていることがわ力る。
[表 9] 寸法変化率 寸法変化率
材 質 試験数 表面硬度 グ 留 Ί重
(X 104) の比
(HRC) (%)
X 材 3 6 2. 5 8 - 8 18
1. 0
Y 材 3 6 3. 6 30. 5
35 1. 9
Z « 3 60. 0 1 1. 8
22 1. 2
[0095] (6)異物混入下における転動寿命試験
玉軸受 6206を用い、標準異物を所定量混入させた異物混入下での転動疲労寿 命を評価した。試験条件を表 10に、試験結果を表 11に示す。 X材に比べ、従来の浸 炭窒化処理を施した Y材は約 2.5倍になり、また、本発明例の Z材は約 2.3倍の長 寿命が得られた。本発明例の Z材は、比較例の Y材に比べて残留オーステナイト量 が少な!/、ものの、窒素の浸入と微細化されたミクロ組織の影響でほぼ同等の長寿命 が得られている。
[0096] [表 10]
Figure imgf000034_0001
[0097] [表 11] 材 質 L10寿命 (h) 。寿命の比
X 材 20. 0 1. 0
Y 材 50。 2 2.. 5
z 材 45„ 8 2。 3 [0098] 上記の結果より、 Z材すなわち本発明例は、従来の浸炭窒化処理では困難であつ た転動疲労寿命の長寿命化、割れ強度の向上、経年寸法変化率の低減の 3項目を 同時に満足することができることがわ力つた。
[0099] (実施例 III)
表 12に、窒素含有量と異物混入条件下の転動寿命との関係につ 、て行った試験 の結果を示す。なお、比較例 1は標準焼入れ品、比較例 2は標準の浸炭窒化品であ る。比較例 3はこの本発明実施例と同様の処理を施したものの窒素量のみ過多の場 合である。試験条件は次のとおりである。
供試軸受:円すいころ軸受 30206 (内 Z外輪、ころ共に JISによる高炭素クロム軸受 鋼 2種 (SUJ2)製)
ラジアル荷重: 17. 64kN
アキシアル荷重: 1. 47kN
回転速度: 2000rpm
硬質の異物混入 lgZL
[0100] [表 12]
Figure imgf000035_0001
[0101] 表 12より、実施例 1〜5に関しては、窒素含有量と異物寿命はほぼ比例関係にある ことがわかる。ただし、窒素含有量が 0. 72の比較例 3では異物混入下の転動寿命が 極端に低下していることに照らし、窒素含有量は 0. 7を上限とするのがよい。 [0102] 円すいころを、ころピッチ円上におけるころ間隔が(ころ径 Zころ本数)未満になるよ うに均等に配置するのが好ましい。これにより、ころ本数を減らさず、あるいは増加さ せつつ、ころピッチ円径 (PCD)を小さくすることができる。したがって、剛性を低下さ せることなくトルク損失を減少させることができる。
[0103] あるいは、(ピッチ円上の円周方向長さ)一(ころ径 Xころ本数)くころ径としてもよい 。言い換えれば、ころピッチ円上の周方向長さと、ころ径ところ本数の積との差がころ 径より小さくなるようにする。このような設定とすることにより、ころ本数を減らさず、ある いは増カロさせつつ、ころピッチ円径 (PCD)を小さくすることができる。したがって、剛 性を低下させることなくトルク損失を減少させることができる。
[0104] 図 10は、上述の円すいころ軸受 1を使用し得る自動車のデフアレンシャルの構成を 例示したものである。このデフアレンシャルは、プロペラシャフト(図示省略)に連結さ れ、デフアレンシャルケース 21内に挿入したドライブピ-オン 22が差動歯車ケース 2 3に取り付けたリングギヤ 24とかみ合い、差動歯車ケース 23の内部に取り付けたピ- オンギヤ 25が、差動歯車ケース 23に左右力も挿入されるドライブシャフト(図示省略) と結合するサイドギヤ 26とかみ合って、エンジンの駆動力をプロペラシャフトから左右 のドライブシャフトに伝達するようになっている。このデフアレンシャルでは、動力伝達 軸であるドライブピ-オン 22と差動歯車ケース 23が、それぞれ一対の円すいころ軸 受 la, lbで支持してある。
[0105] デフアレンシャルケース 21はシール部材 27a、 27b, 27cで密封され、内部に潤滑 油が貯留される。各円すいころ軸受 la、 lbはこの潤滑油の油浴に下部が漬カつた状 態で回転し、油浴の潤滑油が軸受内部へ流入する。このように油浴潤滑状態で使用 される円すいころ軸受 la、 lbでは、円すいころ 4の転動面と保持器 5の柱部 8のテー パ面 8aとの間も、これらの面で形成されるくさび空間に入り込む潤滑油で潤滑される
[0106] 図 11は、自動車のトランスミッションの一構成例を示している。このトランスミッション は同期嚙合式のもので、同図の左側がエンジン側、右側が駆動車輪側である。メイン シャフト 41とメインドライブギヤ 42との間に円すいころ軸受 43が配置してある。この例 では、メインドライブギヤ 42の内周に円すいころ軸受 43の外輪軌道面が直接形成し てある。メインドライブギヤ 42は、円すいころ軸受 44でケーシング 45に対して回転自 在に支持される。メインドライブギヤ 42にクラッチギヤ 46を連結させ、クラッチギヤ 46 に近接してシンクロ機構 47が配置してある。
[0107] シンクロ機構 47は、セレクタ(図示省略)の作動によって軸方向(同図で左右方向) に移動するスリーブ 48と、スリーブ 48の内周に軸方向移動自在に装着したシンクロ ナイザーキー 49と、メインシャフト 41の外周に係合連結されたハブ 50と、クラッチギ ャ 46の外周(コーン部)に摺動自在に装着したシンクロナイザーリング 51と、シンクロ ナイザーキー 49をスリーブ 48の内周に弹性的に押圧する押さえピン 52およびスプリ ング 53とを備えている。
[0108] 同図に示す状態では、スリーブ 48およびシンクロナイザーキー 49が押さえピン 52 によって中立位置に保持されている。この時、メインドライブギヤ 42はメインシャフト 4 1に対して空転する。一方、セレクタの作動により、スリーブ 48が同図に示す状態から たとえば軸方向左側に移動すると、スリーブ 48に従動してシンクロナイザーキー 49が 軸方向左側に移動し、シンクロナイザーリング 51をクラッチギヤ 46のコーン部の傾斜 面に押し付ける。これにより、クラッチギヤ 46の回転速度が落ち、逆にシンクロ機構 4 7側の回転速度が高まる。そして、両者の回転速度が同期した頃、スリーブ 48がさら に軸方向左側に移動して、クラッチギヤ 46とかみ合い、メインシャフト 41とメインドライ ブギヤ 42との間がシンクロ機構 47を介して連結される。これにより、メインシャフト 41 とメインドライブギヤ 42とが同期回転する。
[0109] 以上、この発明の実施の形態につき説明したが、この発明は前記実施の形態に限 定されることなく種々の変形が可能である。たとえば、円すいころ軸受の場合を例にと つて実施の形態を説明したが、この発明は、円筒ころ軸受ゃ球面ころ軸受といった他 のころ軸受にも適用することができる。

Claims

請求の範囲
[1] 外周に軌道をもった内輪と、内周に軌道をもった外輪と、前記内輪の軌道と前記外 輪の軌道との間に介在させた複数のころと、前記ころを収容するポケットをもった保持 器とからなり、
ころ係数が 0. 94を超え、
前記保持器が、前記ころの一方の端部側で連なった環状部と、前記ころの他方の 端部側で連なった環状部と、前記両環状部を連結する複数の柱部とからなり、前記 柱部の内径面の両側に前記ころの転動面と接するテーパ面が形成してあり、前記テ ーパ面の幅方向の長さ寸法が前記ころの平均直径の 5%以上 11%未満であるころ 軸受。
[2] 前記ころ軸受が、前記ころを円すいころとした円すいころ軸受である請求項 1のころ 軸受。
[3] 前記柱部の厚さ寸法が前記ころの平均直径の 5%以上 17%未満である請求項 1ま たは 2のころ軸受。
[4] 前記保持器のポケットの窓角が 55° 以上 80° 以下である請求項 1から 3のいずれ かのころ軸受。
[5] 前記保持器の小径側環状部の端縁から半径方向内向きの鍔部を設け、その鍔部 の内端を軸方向内側に屈曲させた請求項 1から 4の 、ずれかのころ軸受。
[6] 前記保持器の外径を、保持器を半径方向に移動させると保持器外周面が外輪軌 道面に当接するが、軸受回転中は保持器中心が軸中心に移動して保持器外周面と 外輪軌道面との間にすきまが形成される寸法とした請求項 1から 5のいずれかのころ 軸受。
[7] 少なくとも前記円すいころの表面に、微小凹形状のくぼみをランダムに無数に設け 、前記窪みを設けた表面の面粗さパラメータ Ryniが 0. 4 ^ πι≤Κγηί≤1. の範 囲内で、かつ、 Sk値が 1. 6以下である請求項 1から 6のいずれかのころ軸受。
[8] 前記くぼみを設けた面の面粗さパラメータ Rymaxが 0. 4〜1. 0の範囲内である請 求項 7のころ軸受。
[9] 前記くぼみを設けた面の面粗さをパラメータ Rqniで表示したとき、軸方向面粗さ Rq ni (L)と円周方向面粗さ Rqni (C)との比の値 Rqni (L) ZRqni (C)が 1. 0以下である 請求項 7または 8のころ軸受。
[10] 前記柱部のころ当たり面が左右共にポケット軸方向中央位置に対しポケット長さの
10%以上確保してある請求項 1から 9のいずれかのころ軸受。
[11] 保持器が軸中心に位置した状態では保持器外径と外輪軌道面との間にすきまが 存在して!/、る請求項 10のころ軸受。
[12] 保持器が鉄板製である請求項 1から 11のいずれかのころ軸受。
[13] 保持器が榭脂製である請求項 1から 11のいずれかのころ軸受。
[14] 前記保持器が機械的強度、耐油性および耐熱性に優れたエンジニアリング 'プラス チックで形成してある請求項 13のころ軸受。
[15] 保持器が、中立状態では外輪と非接触で、径方向に動かすと外輪と接触する請求 項 1から 14の!、ずれかのころ軸受。
[16] 前記内輪、外輪および円すいころのうち少なくともいずれか一つの部材力 窒素富 化層を有し、かつ、前記窒素富化層におけるオーステナイト結晶粒の粒度番号が 10 番を超える範囲にある請求項 1から 15のいずれかのころ軸受。
[17] 前記窒素富化層における窒素含有量が 0. 1%〜0. 7%の範囲である請求項 16の ころ軸受。
[18] 前記円すいころ力 ころピッチ円上におけるころ間隔が(ころ径 Zころ本数)未満に なるように均等に配置してある請求項 1から 17のいずれかのころ軸受。
[19] (ピッチ円上の円周方向長さ) - (ころ径 Xころ本数)くころ径とした請求項 1から 17 のいずれかのころ軸受。
[20] 自走車両の動力伝達軸を支持するものである請求項 1から 19のいずれかのころ軸 受。
[21] デフアレンシャル用である請求項 1から 19のいずれかのころ軸受。
[22] トランスミッション用である請求項 1から 19のいずれかのころ軸受。
PCT/JP2006/320186 2005-10-19 2006-10-10 ころ軸受 WO2007046263A1 (ja)

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
JP2005304941A JP4920236B2 (ja) 2005-10-19 2005-10-19 円すいころ軸受
JP2005-304941 2005-10-19
JP2005-311659 2005-10-26
JP2005311659A JP2007120577A (ja) 2005-10-26 2005-10-26 円すいころ軸受
JP2005312983A JP4994636B2 (ja) 2005-10-27 2005-10-27 円すいころ軸受
JP2005-312983 2005-10-27
JP2005-314619 2005-10-28
JP2005-314638 2005-10-28
JP2005314619A JP4994637B2 (ja) 2005-10-28 2005-10-28 ころ軸受
JP2005314642A JP5008856B2 (ja) 2005-10-28 2005-10-28 円すいころ軸受
JP2005314638A JP4994638B2 (ja) 2005-10-28 2005-10-28 円すいころ軸受
JP2005-314642 2005-10-28
JP2005321343A JP2007127219A (ja) 2005-11-04 2005-11-04 デファレンシャル用円すいころ軸受
JP2005-321341 2005-11-04
JP2005-321332 2005-11-04
JP2005321341A JP2007127218A (ja) 2005-11-04 2005-11-04 円すいころ軸受
JP2005321332A JP2007127217A (ja) 2005-11-04 2005-11-04 円すいころ軸受
JP2005-321343 2005-11-04
JP2005321345A JP2007127220A (ja) 2005-11-04 2005-11-04 トランスミッション用円すいころ軸受
JP2005-321345 2005-11-04
JP2005-327884 2005-11-11
JP2005-327916 2005-11-11
JP2005327916A JP5005209B2 (ja) 2005-11-11 2005-11-11 円すいころ軸受
JP2005327884A JP4994643B2 (ja) 2005-11-11 2005-11-11 円すいころ軸受

Publications (1)

Publication Number Publication Date
WO2007046263A1 true WO2007046263A1 (ja) 2007-04-26

Family

ID=37962359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320186 WO2007046263A1 (ja) 2005-10-19 2006-10-10 ころ軸受

Country Status (1)

Country Link
WO (1) WO2007046263A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8439574B2 (en) 2007-09-18 2013-05-14 Ntn Corporation Tapered roller bearing
US8596877B2 (en) 2007-11-12 2013-12-03 Ntn Corporation Tapered roller bearing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0130008B2 (ja) * 1984-07-14 1989-06-15 Ntn Toyo Bearing Co Ltd
JPH03117725A (ja) * 1989-09-28 1991-05-20 Ntn Corp 転がり軸受
JPH10131970A (ja) * 1996-10-29 1998-05-22 Koyo Seiko Co Ltd 転がり軸受とその製造方法
JP2004293730A (ja) * 2003-03-28 2004-10-21 Koyo Seiko Co Ltd 円すいころ軸受
JP2004293698A (ja) * 2003-03-27 2004-10-21 Ntn Corp 円錐ころ軸受
JP2005098316A (ja) * 2003-09-22 2005-04-14 Ntn Corp 円錐ころ軸受
WO2005036003A1 (ja) * 2003-10-10 2005-04-21 Ntn Corporation 転がり軸受
JP2005188738A (ja) * 2003-12-02 2005-07-14 Ntn Corp 円すいころ軸受
JP2005265126A (ja) * 2004-03-19 2005-09-29 Ntn Corp 総ころ型円錐ころ軸受

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0130008B2 (ja) * 1984-07-14 1989-06-15 Ntn Toyo Bearing Co Ltd
JPH03117725A (ja) * 1989-09-28 1991-05-20 Ntn Corp 転がり軸受
JPH10131970A (ja) * 1996-10-29 1998-05-22 Koyo Seiko Co Ltd 転がり軸受とその製造方法
JP2004293698A (ja) * 2003-03-27 2004-10-21 Ntn Corp 円錐ころ軸受
JP2004293730A (ja) * 2003-03-28 2004-10-21 Koyo Seiko Co Ltd 円すいころ軸受
JP2005098316A (ja) * 2003-09-22 2005-04-14 Ntn Corp 円錐ころ軸受
WO2005036003A1 (ja) * 2003-10-10 2005-04-21 Ntn Corporation 転がり軸受
JP2005188738A (ja) * 2003-12-02 2005-07-14 Ntn Corp 円すいころ軸受
JP2005265126A (ja) * 2004-03-19 2005-09-29 Ntn Corp 総ころ型円錐ころ軸受

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8439574B2 (en) 2007-09-18 2013-05-14 Ntn Corporation Tapered roller bearing
US8596877B2 (en) 2007-11-12 2013-12-03 Ntn Corporation Tapered roller bearing

Similar Documents

Publication Publication Date Title
US8152383B2 (en) Tapered roller bearing
EP1614917B1 (en) Tapered roller bearing
US6328477B1 (en) Tapered roller bearings and gear shaft support devices
EP1770294B1 (en) Tapered roller bearing
US7841773B2 (en) Tapered roller bearing
US9206490B2 (en) Bearing part, rolling bearing, and methods of manufacturing them
JP2008121706A (ja) 円すいころ軸受
CN111919040B (zh) 锥形滚柱轴承
US10890213B2 (en) Tapered roller bearing
JP2008051276A (ja) 車輪用軸受装置
JP4987281B2 (ja) 円すいころ軸受
WO2007046263A1 (ja) ころ軸受
JP2006112558A (ja) 円すいころ軸受
WO2006001149A1 (ja) 転がり軸受
JP2006112557A (ja) 円すいころ軸受
CN1973144A (zh) 滚动轴承
JP2019066038A (ja) 円錐ころ軸受
JP2008150687A (ja) 車輪支持用転がり軸受装置
JP2007127218A (ja) 円すいころ軸受
JP2019066039A (ja) 円錐ころ軸受
JP2006022820A (ja) 転がり軸受
JP2008164105A (ja) 円すいころ軸受
JP4757458B2 (ja) 転がり軸受
WO2007032470A1 (ja) 円錐ころ軸受
JP2006022819A (ja) 転がり軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811499

Country of ref document: EP

Kind code of ref document: A1