WO2007031034A1 - Proteína de la cápsida del virus dengue inductora de respuesta protectora y composición farmacéutica - Google Patents

Proteína de la cápsida del virus dengue inductora de respuesta protectora y composición farmacéutica Download PDF

Info

Publication number
WO2007031034A1
WO2007031034A1 PCT/CU2006/000008 CU2006000008W WO2007031034A1 WO 2007031034 A1 WO2007031034 A1 WO 2007031034A1 CU 2006000008 W CU2006000008 W CU 2006000008W WO 2007031034 A1 WO2007031034 A1 WO 2007031034A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
capsid
sequence
virus
dengue
Prior art date
Application number
PCT/CU2006/000008
Other languages
English (en)
French (fr)
Inventor
Laura Lazo Vazquez
Lisset Hermida Cruz
Carlos Lopez Abarrategui
Beatriz De La Caridad Sierra Vazquez
Susana Vazquez Ramundo
Iris Valdez Prado
Gerardo Enrique Guillen Nieto
María Guadalupe GUZMAN TIRADO
Aída ZULUETA MORALES
Original Assignee
Centro De Ingenieria Genetica Y Biotecnologia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Ingenieria Genetica Y Biotecnologia filed Critical Centro De Ingenieria Genetica Y Biotecnologia
Priority to DK06791279.0T priority Critical patent/DK1944038T3/en
Priority to CN2006800422806A priority patent/CN101304760B/zh
Priority to KR1020087008971A priority patent/KR101350318B1/ko
Priority to EP06791279.0A priority patent/EP1944038B1/en
Priority to US12/067,129 priority patent/US7790173B2/en
Priority to JP2008530308A priority patent/JP5657204B2/ja
Priority to ES06791279.0T priority patent/ES2444691T3/es
Priority to AU2006291863A priority patent/AU2006291863B2/en
Priority to BRPI0616224A priority patent/BRPI0616224B8/pt
Priority to KR1020137022261A priority patent/KR20130100026A/ko
Priority to CA2622827A priority patent/CA2622827C/en
Publication of WO2007031034A1 publication Critical patent/WO2007031034A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/295Polyvalent viral antigens; Mixtures of viral and bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/18Togaviridae; Flaviviridae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention is related to the field of biotechnology and the pharmaceutical industry, in particular with the obtaining of proteins capable of inducing a protective immune response against infection by the Dengue virus, named hereinafter DEN, avoiding the effects of viral amplification dependent on Acs described in people reinfected by this virus.
  • DEN Dengue virus
  • Dengue fever (FD) and dengue hemorrhagic fever (FHD) are becoming increasingly important as health problems that affect many countries in the tropical and subtropical areas of our planet. Dengue has been recognized in more than 100 countries and an estimated 2.5 billion people live in risk areas. Between 50 and 100 million cases of FD and 250,000 to 500,000 cases of FHD are reported each year (Guzmán M. G. and Kour ⁇ G. 2002. Dengue: an update. Lancet Infect. Dis. 2: 33-42).
  • the causative agent of this disease is the dengue virus, belonging to the Flaviviridae family, genus Flavivirus, which is transmitted by the bite of the Aedes aegypti mosquito (Leyssen P., De Clerco E., Neyts J. 2000. Perspectives for the treatment of infections with Flaviviridae. Clin. Microbiol. Rev. 13: 67-82).
  • virus-antibody complexes can be internalized by cells that express Fc ⁇ receptors on their surface such as monocytes and macrophages.
  • Fc ⁇ receptors Fc ⁇ receptors on their surface
  • monocytes and macrophages Fc ⁇ receptors on their surface
  • ADA antibody-dependent amplification
  • Halstead et al. (Halstead S. B., Scanlon J. E., Umpaivit P., Udomsakdi S. 1969. Dengue and Chikungunya virus infection n man in Thailand, 1962-1964. IV. Epidemiologic studies in the
  • T cell epitopes have been reported mainly T - cell epitopes in the nonstructural proteins NS3 protein highlighting (Kurane I, Zeng L 1 Brinton MA 1 Ennis FA. 1998. Definition of an epitope on NS3 Recognized by human CD4 + T lymphocyte clones cross- cytotoxic reactive for dengue virus types 2, 3, and 4. Virology. 1998 Jan 20; 240 (2): 169-74). T cell epitopes have also been reported in the structural proteins of the Envelope and the viral capsid (Bukowski, JF, I. Kurane, CJ. Lai, M. Bray, B. Falgout, and FA Ennis. 1989. Dengue virus-specific cross-reactive CD8 human cytotoxic T lymphocytes J. Virol.
  • NS1 protein protection levels have been achieved in mice by immunization with the protein obtained by recombinant route and with naked DNA formulations containing the NS 1 gene through the ADCC mechanism (Wu SF, Liao CL, Lin YL, Yeh CT, Chen LK, Huang YF, Chou HY, Huang JL, Shaio MF, Sytwu HK. 2003. Evaluation of protective efficacy and immune mechanisms of using a non-structural protein NS1 in DNA vaccine against dengue 2 virus in mice Vaccine Sep 8; 21 (25-26): 3919-29).
  • Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infected Dis. 181: 2-9).
  • the dengue virus capsid protein has a molecular weight of 9 to 12 kDa (112-127 amino acids) and a marked basic character, since 25% of its amino acids are arginine and lysine. The presence of these aas could favor antigenic presentations to the immune system since the ability of polycationic peptides to perform said function has been reported (Lingnau K., Egyed A., Schellack C, Mattner F, Buschle M., Schmidt W. 2002.
  • PoIy-I-arginine synergizes with oligodeoxynucleotides containing CpG-motifs (CpG-ODN) for enhanced and prolonged immune responses and prevents the CpG-ODN-induced sysiemic relée of pro-inflamma ⁇ ory cyyokines.
  • Vaccine. 20: 3498-3508. find io ⁇ almen ⁇ e in ⁇ erna in the es ⁇ ruc ⁇ ura del virión without any exposed region (Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH. 2002.
  • the DEN-2 virus capsid obtained recombinantly in the E. coli bacteria and with only 40% purity, is capable of inducing a protective immune response against the challenge with virus Lethal DEN-2 in mice. It was shown that said highly purified protein retained its protective capacity which was overcome with the immunization of mice with the particulate form of the molecule. On the other hand, it was demonstrated that the protection achieved was mediated by CD8 + cells, a novel element if we take into account that the T cell epitopes reported so far for the capsid are recognized by CD4 + T cells (Gagnon SJ, Zeng W, Kurane I, Ennis FA. 1996.
  • this recombinant molecule was mixed with the PD5 protein Ia which is formed by the P64k protein of Neisseria meningitidis and domain III of the protein of the dengue 2 virus envelope.
  • This fusion protein is capable of generating a protective and neutralizing immune response.
  • highly serotype specifies that the union with the protein of the capsid would generate a formulation capable of inducing a cellular and humoral immune response with a low probability of generating the phenomenon of antibody-dependent amplification (Hermida L, Rodr ⁇ guez R, Lazo L, Silva R , Zulueta A, Chinea G, López C, Guzman MG, Guillen G. 2004.
  • a dengue-2 Envelope fragment inserted into the structure of the P64k meningococcal protein carrier enables a functional immune response against the virus in mice. J Viral Methods. 2004 Jan; 115 (1): 41-9). It also describes the obtaining of a genetic construction formed by the fusion of domain III and the capsid to reach the same goal.
  • the object of this invention is to obtain a recombinant protein corresponding to the dengue virus capsid, which when inoculated in mice generates a protective response against infection with the lethal virus.
  • the gene coding for the dengue virus capsid protein was inserted into a plasmid containing the T5 phage promoter.
  • the XL-1 blue cells being transformed with the recombinant plasmid expressed high levels of the resulting protein.
  • This protein was semi-purified to approximately 40% purity and was added in aluminum hydroxide for inoculation in Balb / C mice.
  • One month after the last dose the response of antiviral Acs and the lymphoproliferative response in spleen lymphocytes stimulated in vitro with the dengue virus were determined. As a result, it was determined that no antiviral antibodies were induced and a significant lymphoproliferative response.
  • the protection test was performed.
  • the dimeric and particulate variants both with more than 95% purity, were inoculated into mice.
  • the dimeric variant it was inoculated with Freund's adjuvant and aluminum hydroxide (Alumina) while the particulate variant was inoculated only in alumina. Similar to that obtained for the impure variant, high levels of lymphoproliferation were obtained in spleen lymphocytes stimulated in vitro with the dengue virus.
  • the protection test was carried out, it was determined that in the pure dimeric variant, levels of protection of 40% and 20% adjuvant in Freund's adjuvant and alumina were achieved, respectively, however the pure particulate protein and adjuvant in alumina exhibited a percentage of greater protection.
  • the purified particulate variant and a fusion protein containing the sun III of the dengue-2 virus envelope protein were inoculated, which is capable of generating a specific serotype immune response also minimizing the ADE phenomenon (Hermida L, Rodr ⁇ guez R, Lazo L, Silva R, Zulueta A, Chinea G, López C, Guzman MG, Guillen G. 2004.
  • a dengue-2 Envelope fragment inserted within the structure of the P64k meningococcal protein carrier enables a functional immune response against the virus in mice. J Virol Methods. 2004 Jan; 115 (1): 41- 9).
  • serotype-specific antiviral Acs was potentiated due to the inoculation of the fusion protein.
  • a lymphoproliferative response superior to that induced by the capsid was detected only and significantly greater than that induced by the inoculation of only the fusion protein.
  • a plasmid was constructed containing the Dom III of the protein of the envelope of the DEN-2 virus fused to the N terminal of the gene coding for the protein of the capsid .
  • the resulting protein with 40% purity, also generated in 0 Balb / C mice a lymphoproliferative response superior to that obtained with the capsid only and a serotype specific Acs response superior to that induced by PD5.
  • DEN2 C Fragment of the protein of the capsid of DEN-2.
  • FIG. 3 Analysis by 15% SDS-PAGE of the PDC-2 purification process. -5 1. Breaking supernatant, 2. Fraction not adsorbed to the matrix, 3. Washing (350 mM NaCI)., 4. Fraction eluted (750 mM NaCI), 5. Fraction in 10 mM Tris, 1 mM EDTA.
  • nucleotide sequence that codes for amino acids 1 to 99 of the protein of the DEN-2 virus capsid was amplified with the oligonucleotides identified in the sequence listing as Sequence No. 1 and Sequence No. 2 from the viral strain of DEN-2 genotype Jamaica (Deubel V., Kinney RM, Trent DW 5 Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of Dengue type 2 virus, Jamaica genotype: Comparative analysis of the full-length genome.Virology 1988.165: 234-244).
  • the vector was generated by BamHI / HindIII digestion of plasmid pQE-30, which contains the Phage T5 promoter and a 6-histidine tail at the N-terminal end (Sequence No. 6). 0 After the ligation process, the possible recombinants were analyzed by restriction and the positives were sequenced to check the junctions.
  • Competent XL-1 Blue cells (Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580) were transformed with the selected clone called pDC-2 (Fig. 1 and Sequence No. 4).
  • the transformed E. coli -5 strains were grown in Luria Bertani (LB) medium supplemented with Ampicillin at 50 ⁇ g / mL for 10 h at 37 0 C.
  • the induction of the promoter was performed with Isopropyl- ⁇ - D-thiogalactopyranoside (IPTG) at a final concentration of 1mM.
  • IPTG Isopropyl- ⁇ - D-thiogalactopyranoside
  • the biomass obtained from the E. coli strain transformed with pDC-2 and grown at 37 0 C was disrupted by French press.
  • the recombinant protein was obtained equally distributed among the soluble and insoluble fractions.
  • an anion exchange chromatography was performed, using the Q Sepharose FF matrix and the Tris 1OmM pH 8 buffer.
  • the protein, present in the fraction not adsorbed to the matrix, was obtained with 40% purity and It was used to perform immunological studies (Fig. 2)
  • mice Three groups of 30 Balb / c mice were used. Two of them were immunized with 10 ug of the recombinant protein by the intraperitoneal route, using as an adjuvant in one of them, Freund's adjuvant and in the other aluminum hydroxide (Alumina). As a negative control, the soluble fraction of the rupture of XL-1 Blue cells transformed with plasmid pQE-30 and adjuvant in Freund's adjuvant was immunized. A part of the animals (10 mice) were bled 15 days after the third dose and the anti-DEN-2 antibodies were determined by ELISA. As can be seen in Table 1, no antiviral antibodies were obtained after immunization with the recombinant protein formulated in both adjuvants.
  • mice of the groups immunized with the recombinant protein adsorbed in alumina and with the control preparation were used.
  • Each of the animals received a dose of 100 LD 50 of lethal DEN-2 by intracranial inoculation and were observed for 21 days to obtain the lethality percentages in terms of death from viral encephalitis.
  • a group of 10 mice immunized with infectious DEN-2 virus (10 4 pfu) was used as a positive control. All the mice of the
  • the remaining animals of the group immunized with the protein of the capsid adjuvant in alumina were sacrificed 30 days after the last dose. Subsequently, the spleens were removed and the lymphoproliferative response against the Dengue 2 virus was studied. The results in Table 3 reflect the stimulation rates obtained.
  • mice Five groups of 20 Balb / c mice were used. Two of them were immunized with 10 ug of the dimeric purified recombinant protein by the intraperitoneal route, using alumina and Freund as an adjuvant. Another group was immunized with 10 ug of the protein of the purified and particulate capsid adjuvant in alumina. As a negative control, the soluble fraction of the rupture of transformed XL-1 blue cells was immunized with the plasmid pQE-30 subjected to the same purification steps as the PDC-2, in Freund's adjuvant. The fifth group was immunized with DEN-2 virus as a positive control.
  • mice from each group received a dose of 100 LD 50 of lethal DEN-2 by intracranial inoculation and were observed for 21 days to obtain the survival rates. All the mice in the control group (+) survived while the mice in the control group (-) became ill within 7-11 days after the challenge, obtaining a 0% survival. Finally, of the groups immunized with the recombinant protein, the group immunized with pure dimeric PDC-2 presented 20% protection when immunized with alumina and 40% protection when using Freund as an adjuvant. Additionally, 90% of the mice were protected in the group that received the pure protein partitioned and adjuvant in alumina (Table 4).
  • Stimulation index ratio of the counts per minute of the samples between the counts per minute of the control of spontaneous DNA synthesis.
  • mice were inoculated with the mixture of 10 ug of the particulate pure core protein and 20 ug of the PD5 protein (Sequence 23) in a three dose regimen every fifteen days.
  • Groups immunized with 10 ug of the pure capsid protein were used as controls, with 20ug of the PD5 protein mixed with the equivalent PDC-2 volume but from a control run (-) and another group with the P64k protein, the protein carrier present in the construction of PD5.
  • alumina was used as an adjuvant.
  • Stimulation index ratio of the counts per minute of the samples between the counts per minute of the control of spontaneous DNA synthesis.
  • the proteins of the distributed and dimeric capsid were inoculated in Balb / C mice with the objective of obtaining some evidence of the induction of cellular response.
  • a preparation obtained from the cells transformed with the vector used for the generation of pDC-2 and by a purification process similar to that performed for the PDC-2 protein was used.
  • EXAMPLE 13 Obtaining and semi-purifying the DEN-1 protein
  • the nucleotide sequence that codes for amino acids 1 to 100 of the protein of the DEN-1 virus capsid (Sequence No. 7), was amplified with the oligonucleotides identified in the sequence listing as Sequence No. 8 and Sequence No. 10 from the viral strain of DEN-1.
  • the vector was generated by the BamHI / HindIII digestion of plasmid PQE30, which contains the T5 Phage promoter and a 6-histidine tail at the N-terminal end (Sequence No. 6). After the ligation process, the possible recombinants were analyzed by restriction and the positives were sequenced to check the junctions. Competent XL-1 Blue cells (Hanahan D. 1983.
  • EXAMPLE 14 Semipurification and characterization of PDC-1.
  • EXAMPLE 15 Immunological evaluation of the semi-purified PDC-1 protein.
  • mice Two groups of 30 Balb / c mice were used. One of them was immunized with 10 ug of the recombinant protein by the intraperitoneal route, using alumina as an adjuvant. As a negative control, the soluble fraction of the rupture of XL-1 Blue cells transformed with plasmid pQE-30, also adjuvant in alumina, was immunized. A part of the animals (10 mice) were bled 15 days after the third dose and the
  • mice For the evaluation of the protection conferred to mice before the challenge with homologous lethal DEN by immunization with the described variants, another 10 of the mice from the groups immunized with the recombinant protein adsorbed in alumina and with the control preparation were used. Each of the animals received a dose of 100 LD 50 of lethal DEN-1 by intracranial inoculation and were observed for 21 days to obtain the lethality percentages in terms of death from viral encephalitis. A group of 10 mice immunized with infectious DEN-1 virus (10 4 pfu) was used as a positive control. All the mice of the control group (+) survived while the mice of the control group (-), became ill within 7-11 days after the challenge, obtaining 100% mortality on day 21. Finally, the group immunized with the recombinant protein PDC-1 presented 50% protection (Table 11).
  • the remaining animals of the group immunized with the PDC-1 protein were sacrificed 15 days after the last dose. Subsequently, the spleens were removed and the lymphoproliferative response against the Dengue 1 virus was studied. The results in Table 12 reflect the stimulation indices obtained.
  • EXAMPLE 18 Cloning and expression of P DC -2 Domlll.
  • nucleotide sequence encoding amino acids 286 to 426 of the protein of the envelope of the DEN-2 virus (Sequence No. 12), corresponding to the region of domain III of the protein, was amplified with the oligonucleotides identified in the list of sequences such as Sequence No. 13 and Sequence No. 14 from the viral strain of DEN-2 genotype Jamaica (Deubel V., Kinney RM, Trent DW Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of Dengue type 2 virus, Jamaica genotype: Comparative analysis of the full-length genome.Virology 1988.165: 234-244).
  • the vector was generated by BamHUBamH digestion of plasmid pQE30 containing the promoter of Phage T5 and a tail of 6 histidines at the N-terminal end (Sequence No. 6) and the region corresponding to the 100 amino acids of the protein of the capsid of the virus Dengue 2. After the ligation process, the possible recombinants were analyzed by restriction and the positives were sequenced to check the junctions. Finally, a clone was selected which was called pDC-2 Domlll (sequence No. 15).
  • the competent XL-1 Blue cells (Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580) were transformed with the selected clone called pDC-2 Domlll.
  • the transformed E. coli strains were grown in Luria Bertani (LB) medium supplemented with Ampicillin at 50 ⁇ g / MI for 10 h at 37 0 C.
  • the induction of the promoter was performed with Isopropyl- ⁇ -D-thiogalactopyranoside (IPTG) at a final concentration of 1mM. From the biomass obtained, an SDS-PAGE of the cell culture was made and a band corresponding to a protein of approximately
  • EXAMPLE 19 Semipurification and characterization of PDC-2 Domlll.
  • the biomass obtained from the E. coli strain transformed with pDC-2 Dom III and grown at 37 0 C was disrupted by French press.
  • the recombinant protein was obtained equally distributed between the soluble and insoluble fractions.
  • an anion exchange chromatography was performed, using the Q Sepharose FF matrix and the Tris 1OmM pH 8 buffer.
  • mice Five groups of 30 Balb / c mice were used. One of them was immunized with 10 ug of the recombinant protein by the intraperitoneal route, using Alumina as an adjuvant. As a negative control, the soluble fraction of the rupture of XL-1 Blue cells transformed with plasmid pQE-30 was immunized by immunizing the same adjuvant. In addition, two groups were included as controls, one of which was immunized with the PDC-2 protein and another group with the PD5 protein (it contains the region of domain III of the DEN-2 envelope protein). A part of the animals (10 mice) were bled 15 days after the third dose and the anti-DEN-2 antibodies were determined by ELISA.
  • Stimulation index ratio of the counts per minute of the samples between the counts per minute of the control of spontaneous DNA synthesis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

En esta invención se describe la obtención de un compuesto farmacéutico que contiene la proteína de la cápsida de los serotipos del virus Dengue capaz de inducir en el receptor una respuesta inmune protectora frente al reto viral, sin inducir el fenómeno de inmunoamplificación dependiente de Acs.

Description

PROTEÍNA DE LA CÁPSIDA DEL VIRUS DENGUE INDUCTORA DE RESPUESTA PROTECTORA Y COMPOSICIÓN FARMACÉUTICA.
Campo de Ia invención La presente invención esta relacionada con el campo de Ia biotecnología y Ia industria farmacéutica, en particular con Ia obtención de proteínas capaces de inducir una respuesta inmune protectora frente a Ia infección por el virus del Dengue, nombrado en Io adelante DEN, evitándose los efectos de amplificación viral dependiente de Acs descritos en personas reinfectadas por este virus. Arte previo
La fiebre del dengue (FD) y Ia fiebre hemorrágica del dengue (FHD) adquieren cada vez mayor importancia como problemas de salud que afectan a numerosos países de las zonas tropicales y subtropicales de nuestro planeta. El dengue ha sido reconocido en más de 100 países y se estima que 2 500 millones de personas viven en áreas de riesgo. Cada año se reportan entre 50 y 100 millones de casos de FD y 250 000 a 500 000 de FHD (Guzmán M. G. and Kourí G. 2002. Dengue: an update. Lancet Infect. Dis. 2: 33-42).
El agente causal de esta enfermedad es el virus dengue, perteneciente a Ia familia Flaviviridae, género Flavivirus, el cual se transmite por Ia picada del mosquito Aedes aegypti (Leyssen P., De Clerco E., Neyts J. 2000. Perspectives for the treatment of infections with Flaviviridae. Clin. Microbiol. Rev. 13: 67-82).
Hasta el momento se han reportado cuatro serotipos virales los que pueden circular en una misma región. Es un virus envuelto ARN positivo, cuyo genoma contiene un solo marco de lectura que es traducido en forma de una poliproteína que luego es procesada en tres proteínas estructurales y siete no estructurales (Russell P.K., Brandt W.E., Dalrymple J. M. 1980. Chemical and antigenic structure of flaviviruses. The togaviruses: biology, structure, replication. Schelesinger R.W. (ed.). 503-529).
Se han realizado múltiples estudios epidemiológicos con el objetivo de determinar los factores de riesgo que conllevan a Ia forma más severa de Ia enfermedad, Ia cual se caracteriza por alta fiebre, extravasación de líquidos, hemorragias y finalmente el shock por dengue (Gubler DJ. 1998. Dengue and Dengue Hemorrhagic Fever. Clin. Microbiol. Rev. 11: 480-496). Uno de los factores de riesgo más definido Io constituye Ia infección secundaria por un serotipo heterólogo, lo cual implica que no existe protección cruzada entre las infecciones de los diferentes serotipos (Kourí G., Guzmán M. G., Bravo J., Trina C. 1989. Dengue hemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic. WHO Bulletin OMS. 67: 375-380). Existen varias hipótesis para explicar dicho fenómeno entre las que se destaca Ia amplificación viral dependiente de anticuerpos (Halstead S. B., Scanlon J. E., Umpaivit P., Udomsakdi S. 1969. Dengue and Chikungunya virus infection in man in Thailand, 1962- 1964. IV. Epidemiologic studies in the Bangkok metropolitan área. Am. J. Trop. Med. Hyg. 5 18: 997-1021).
A partir de los primeros estudios se planteó que el DEN se replicaba en mayor medida en células mononucleares periféricas de Ia sangre de pacientes que habían sufrido una infección previa con este virus (Halstead S.B., O'Rourke EJ. , Allison A.C. 1977. Dengue viruses and mononuclear phagocytes. II. Identity of blood and tissue leukocytes supporting 10 in vitro infection. J. Exp. Med. 146: 218-229). Más tarde se mostró que los Acs residuales eran los responsables de este efecto (Morens DM, Halstead SB, Marchette NJ. 1987. Profiles of antibody-dependent enhancement of dengue virus type 2 infection. Microb Pathog. Oct;3(4):231-7).
En condiciones de especificidad o concentración de Acs en las que no ocurre Ia
15 neutralización, los complejos virus-anticuerpo pueden ser internalizados por las células que expresan receptores Fcγ en su superficie como los monocitos y los macrófagos. Este mecanismo, conocido como amplificación dependiente de anticuerpos (ADA) ocurre, según se ha planteado, durante las infecciones secundarias (Morens DM, Halstead SB, Marchette
NJ. 1987. Profiles of antibody-dependent enhancement of dengue virus type 2 infection.
20 Microb Pathog. Oct;3(4):231-7; Kliks S.C., Nimmannitya S., Nisalak A., Burke D.S. 1988.
Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am. J. Trop. Med. Hyg. 38: 411-419).
Halstead et al., (Halstead S. B., Scanlon J. E., Umpaivit P., Udomsakdi S. 1969. Dengue and Chikungunya virus infection ¡n man in Thailand, 1962-1964. IV. Epidemiologic studies in the
25 . Bangkok metropolitan área. Am. J. Trop. Med. Hyg. 18: 997-1021.) en un estudio de 3 años en Bangkok, Tailandia, reportaron que los índices de hospitalización por infección con DEN entre los niños alcanzaron un máximo en aquellos con edades entre los 7 y 8 meses de vida. Estos índices fueron de cuatro a ocho veces mayores que los observados entre los niños de 1 a 3 meses y dos veces que los de los niños de 3 años. Kliks et al., (Kliks S. C,
30 Nimmannitya S., Nisalak A., Burke D.S. 1988. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am. J. Trop. Med. Hyg. 38: 411-419) determinaron Ia relación existente entre los títulos de Acs neutralizantes contra DEN-2 maternos y las edades de 13 niños con FHD provocada por infección con el virus homólogo. Los resultados arrojaron que los casos serios de infección con el virus
35. ocurrieron cuando los niveles de Acs maternos habían disminuido considerablemente hasta alcanzar niveles subneutralizantes. Estos datos son consistentes con Ia hipótesis de que los Acs maternos desempeñan el doble papel de proteger al inicio y aumentar posteriormente el riesgo de desarrollar Ia FHD.
A pesar de Ia existencia de este fenómeno, en Ia actualidad los candidatos vacunales más avanzados en el mundo se corresponden con las cepas de virus atenuados de los cuatro serotipos virales que contienen a Ia proteína de Ia envoltura. Estos candidatos son capaces de inducir anticuerpos potencialmente inmunoamplificadores contra las proteínas expuestas (PrM/M y Envoltura) y anticuerpos neutralizantes protectores contra los cuatro serotipos virales (Kanesa-thasan N., Sun W., Kim-Ahn G., Van Albert S., Putnak J.R., King A., Raengsakulsrach B., Christ-Schmidt H., Gilson K., Zahradnik J. M., Vaughn D.W., Innis B.L., Saluzzo J. F. y Hoke CH. 2001. Safety and immunogenicity of attenuated dengue virus vaccines (Aventis Pasteur) ¡n human volunteers. Vaccine. 19: 3179-3188). Si se logran inducir altos niveles de Acs neutralizantes tras Ia inmunización estos impedirían Ia replicación viral frente a Ia infección a pesar de Ia inducción de los Acs inmunoamplificadores. El problema puede aparecer cuando no se logre Ia seroconversión total a los cuatro serotipos en los vacunados en términos de Acs neutralizantes o que a medida que pase el tiempo disminuyan a bajos niveles en sangre y los individuos se convertirían entonces en susceptibles a una infección secundaria severa con el serotipo viral cuyos anticuerpos protectores no estén presentes. De hecho varios ensayos en monos y humanos se han realizado para definir las cantidades virales en las formulaciones vacunales (Guirakhoo F., Arroyo J., Pugachev K.V., Miller C, Zhang Z. -X., Weltzin R., Georgakopoulos K., Catalán J., Ocran S., Soike K., Raterree M., Monath T.P. 2001. Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever- dengue virus tetravalent vaccine. J. Viral. 75: 7290-7304). En algunos casos no se ha logrado Ia seroconversión balanceada contra los cuatro serotipos (Sabchareon A, Lang J, Chanthavanich P, Yoksan S, Forrat R, Attanath P, Sirivichayakul C, Pengsaa K, Pojjaroen- Anant C, Chokejindachai W, Jagsudee A, Saluzzo JF, Bhamarapravati N. 2002. Safety and immunogenicity of tetravalent live-attenuated dengue vaccines in Thai adult volunteers: role of serotype concentration, ratio, and múltiple doses. Am J Trop Med Hyg. 66(3): 264-72). Adicionalmente, ha sido necesario administrar hasta tres dosis de vacunas atenuadas en niños para una seroconversión total en teminos de acs neutralizantes y aún queda por conocer si estos perdurarán en el tiempo (Sabchareon A, Lang J, Chanthavanich P, Yoksan S, Forrat R, Attanath P, Sirivichayakul C, Pengsaa K, Pojjaroen-Anant C, Chambonneau L, Saluzzo JF, Bhamarapravati N..2004. Safety and immunogenicity of a three dose régimen of two tetravalent live-attenuated dengue vaccines in five- to twelve-year-old Thai children. Pediatr Infecí Dis J.;23(2):99-109). Este es uno de los aspectos más cuestionados actualmente en las formulaciones que incluyen a Ia proteína de Ia envoltura del virus Dengue y por consiguiente de los candidatos vacunales en desarrollo. Otros de los aspectos negativos que presentan las vacunas atenuadas actualmente en fase l/ll es Ia seguridad. Se ha demostrado en varios estudios que existen efectos adversos en adultos y en niños (fiebre, mialgia, petequias y cefalea) después de Ia inoculación de Ia primera dosis (Sabchareon A, Lang J, Chanthavanich P, Yoksan S, Forrat R, Attanath P, Sirivichayakul C, Pengsaa K, Pojjaroen-Anant C, Chambonneau L, Saluzzo JF, Bhamarapravati N. 2004. Safety and immunogenicity of a three dose régimen of two tetravalent live-attenuated dengue vaccines in five- to twelve-year-old Thai children. Pediatr Infecí Dis J.;23(2):99-109). En general se pueden presentar los fenómenos de reversión a Ia virulencia potencialmente asociados a las vacunas vivas.
En Ia búsqueda de nuevas alternativas, se han desarrollado diferentes variantes de candidatos vacunales basados en Ia proteína de Ia envoltura o fragmentos de ésta obtenidas de manera recombinante. Si bien estas estrategias evitan los problemas de seguridad relacionados con Ia inoculación de los virus vivos, presentan Ia misma desventaja de potencialmente sensibilizar al individuo cuando en Ia formulación tetravalente se pierda o no se induzca una equivalente respuesta de Acs neutralizantes contra los cuatro serotipos (Velzing J, Groen J, Drouet MT, van Amerongen G, Copra C, Osterhaus AD, Deubel V. 1999. Induction of protective immunity against Dengue virus type 2: comparison of candidate live attenuated and recombinant vaccines. Vaccine. Mar 17; 17(11-12): 1312-20). Por otra parte, con aquellos candidatos donde se logra una respuesta serotipoespecífica se requieren potentes adyuvantes para lograr una respuesta inmune protectora adecuada, los cuales no están aprobados para su uso en humanos (Hermida L, Rodríguez R, Lazo L, Silva R, Zulueta A, Chinea G, López C, Guzman MG, Guillen G. 2004. A dengue-2 Envelope fragment inserted within the structure of the P64k meningococcal protein carrier enables a functional immune response against the virus in mice. J Virol Methods. 2004 Jan;115(1):41-
9)-
Si bien Ia respuesta humoral, en términos de Acs neutralizantes, ha sido extensamente estudiada en animales y se ha demostrado su efecto protector, Ia respuesta inmune celular citotóxica como mecanismo de protección en dengue no sido ha profundamente explorada.
Por el contrario, existen varios reportes en que se correlaciona Ia inducción de una respuesta celular con Ia forma más severa de Ia enfermedad (Rothman A. L. y Ennis F.A.
1999. Immunopathogenesis of Dengue Hemorragic Fever. Virology. 257: 1-6). Estos estudios se basan en Ia presencia de altos niveles de células T activadas en aquellos individuos que exhiben fiebre hemorrágica del dengue (Green S, Pichyangkul S, Vaughn
DW, Kalayanarooj S, Nimmannitya S, Nisalak A, Kurane I1 Rothman AL, Ennis FA. 1999. Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever. J Infecí Dis. 180(5):1429-35).
Se han reportado epitopos de células T mayoritariamente en las proteínas no estructurales destacándose Ia proteína NS3 (Kurane I, Zeng L1 Brinton MA1 Ennis FA. 1998. Definition of an epitope on NS3 recognized by human CD4+ cytotoxic T lymphocyte clones cross- reactive for dengue virus types 2, 3, and 4. Virology. 1998 Jan 20;240(2): 169-74). También se han reportado epitopos de células T en las proteínas estructurales de Ia Envoltura y Ia cápsída viral (Bukowski, J. F., I. Kurane, C-J. Lai, M. Bray, B. Falgout, and F. A. Ennis. 1989. Dengue virus-specific cross-reactive CD8 human cytotoxic T lymphocytes. J. Virol. 63:5086-5091 ; Gagnon S.J., Zeng W., Kurane I., Ennis F.A. 1996. Identification of two epitopes on the dengue 4 virus capsid protein recognized by a serotype-specific and a panel of serotype-cross-reactive human CD4+ cytotoxic T-lymphocyte clones. J Virol. 70: 141- 147). Sin embargo no se ha demostrado el carácter protector de alguna de estas proteínas a través de Ia inducción de únicamente una respuesta inmune celular. En Ia búsqueda de candidatos vacunales que eviten el fenómeno de Ia inmunoamplificación se han realizado intentos con las proteínas no estructurales NS 1 y NS3. En el caso de Ia proteína NS1 se han alcanzado niveles de protección en ratones por Ia inmunización con Ia proteína obtenida por vía recombinante y con formulaciones de ADN desnudo conteniendo el gen de NS 1 a través del mecanismo de ADCC (Wu SF, Liao CL, Lin YL, Yeh CT, Chen LK, Huang YF, Chou HY, Huang JL, Shaio MF, Sytwu HK. 2003. Evaluation of protective efficacy and immune mechanisms of using a non-structural protein NS1 in DNA vaccine against dengue 2 virus in mice. Vaccine. Sep 8;21(25-26):3919-29). Sin embargo, existen reportes de su posible rol en fenómenos de autoinmunidad debido a Ia inducción de Acs que reconocen células endoteliales humanas (Chiou-Feng Lin, Huan-Yao Lei, Ai-Li Shiau, Hsiao-Sheng Liu, Trai-Ming Yeh, Shun-Hua Chen, Ching-Chuan Liu, Shu-Chen Chiu, and Yee-Shin Lin. 2002. Endothelial CeII Apoptosis Induced by Antibodies Against Dengue Virus nonstructural Protein 1 Via Production of Nitric Oxide. J. Immunol. 657-664). Adicionalmente existe un reporte de protección con una formulación de ADN desnudo conteniendo el gen de Ia proteína NS3, si embargo se evidenció que esta protección estaba mediada por los Acs generados ya que se logró Ia misma protección con inmunización pasiva (Tan CH, Yap EH, Singh M, Deubel V, Chan YC. 1990. Passive protection studies in mice with monoclonal antibodies directed against the non-structural protein NS3 of dengue 1 virus. J Gen Virol. 1990 Mar;71 ( Pt 3):745-9). Es de destacar además que Ia hipótesis de que Ia respuesta celular pueda ser potencialmente dañina frente una infección con virus heterólogo se basa en estudios de epitopos contenidos en Ia proteína NS3 (Zivny J, DeFronzo M, Jarry W, Jameson J, Cruz J, Ennis FA, Rothman AL. 1999. Partial agonist effect influences the CTL response to a heterologous dengue virusserotype. J Immunol. Sep1 ; 163(5):2754-60).
En cuanto a Ia proteína de Ia cápsida del virus del dengue, no se ha reportado ninguna evidencia de protección frente al reto con el virus dengue letal. En cuanto a flavivirus relacionados, se publicó un reporte donde se inocularon ratones con una formulación de ADN desnudo conteniendo el gen de Ia proteína de Ia cápsida del virus de Ia Encefalitis Japonesa (JE). Dicha construcción no fue capaz de inducir una respuesta protectora frente al reto con virus JE letal en ratones a pesar de Ia demostración de Ia inducción de una respuesta citotóxica (Konishi E, Ajiro N, Nukuzuma C, Masón PW, Kurane I. 2003. Comparison of protective efficacies of plasmid DNAs encoding Japanese encephalitis virus proteins that induce neutralizing antibody or cytotoxic T lymphocytes in mice. Vaccine. Sep 8;21(25-26):3675-83).
La protección con cápsidas recombinantes ha sido demostrada únicamente en el caso del virus del papiloma humano, aunque se ha sugerido su posible papel protector con otros virus como el de Ia Hepatitis C. Sin embargo, en todos los casos, se corresponden con infecciones crónicas o tumores en las cuales Ia respuesta celular citotóxica es Ia única arma del sistema inmune capaz de clarear Ia infección viral (Dueñas-Carrera S, Alvarez- Lajonchere L, Alvarez-Obregon JC, Herrera A, Lorenzo LJ, Pichardo D, Morales J. 2000. A truncated variant of the hepatitis C virus core induces a slow but potent immune response in mice following DNA immunization. Vaccine. Nov 22;19(7-8):992-7; Suzich JA, Ghin SJ, Palmer-Hill FJ, et al. 1995. Systemic immunization with papillomavirus L1 protein completely prevenís the development of viral mucosal papillomas. Proc Nati Acad Sci USA; 92: 11553- 57). Estos tipos de enfermedades no se corresponden con el perfil agudo que se exhibe en Ia infección por dengue en humanos (Vaughn D.W., Green S., Kalayanarooj S., Innis B.L., Nimmannitya S., Suntayakom S., Endy T.P., Raengsakulrach B., Rothman A.L., Ennis FA y Nisalak A. 2000. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infecí Dis.181: 2-9). La proteína de Ia cápsida del virus dengue tiene un peso molecular de 9 a 12 kDa (112-127 aminoácidos) y un marcado carácter básico, ya que el 25% de sus aminoácidos son arginina y lisina. La presencia de estos aas podrían favorecer presentaciones antigénicas al sistema inmune ya que ha sido reportada Ia capacidad de péptidos policatiónicos de ejercer dicha función (Lingnau K., Egyed A., Schellack C, Mattner F, Buschle M., Schmidt W. 2002. PoIy-I -arginine synergizes with oligodeoxynucleotides containing CpG-motifs (CpG- ODN) for enhanced and prolonged immune responses and prevenís the CpG-ODN-induced sysíemic reléase of pro-inflammaíory cyíokines. Vaccine. 20: 3498-3508. La proíeína se encueníra íoíalmeníe iníerna en Ia esírucíura del virión sin ninguna región expuesta (Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH. 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusión. CeII. Mar 8;108(5):717-25). Jones y cois. (Christopher T. Jones, Lixin Ma, John W. Burgner, Teresa D. Groesch, Carol B. Post, and Richard J. Kuhn. 2003. Flavivirus Capsid Is a Dimeric Alpha-Helical Protein. Journal of Virology, p7143-7149, Vol.77, No.12) purificaron Ia proteína de Ia cápsida del VD2 obtenida por vía recombinante en Escherichia coli (E. coli) y demostraron que esta proteína se comporta como un dímero en solución en ausencia de ácidos nucleicos. Su estructura secundaria es mayoritariamente en forma de alfa-hélices y está compuesta por cuatro de ellas, encontrándose Ia de mayor longitud en el extremo C-terminal. El extremo N- terminal no presenta estructura definida y su deleción no afecta Ia integralidad estructural de Ia proteína.
En Ia presente invención se describe por primera vez que Ia cápsida del virus DEN-2, obtenida de forma recombinante en Ia bacteria E. coli y con solamente un 40% de pureza, es capaz de inducir una respuesta inmune protectora frente al reto con virus DEN-2 letal en ratones. Se demostró que dicha proteína altamente purificada retuvo su capacidad protectora Ia cual fue superada con Ia inmunización de ratones con Ia forma particulada de Ia molécula. Por otra parte se demostró que Ia protección alcanzada estaba mediada por células CD8+, elemento novedoso si tomamos en cuenta que los epitopos de células T reportados hasta el momento para Ia cápsida son reconocidos por células T CD4+ (Gagnon SJ, Zeng W, Kurane I, Ennis FA. 1996. Identification of two epitopes on the dengue 4 virus capsid protein recognized by a serotype-specific and a panel of serotype-cross-reactive human CD4+ cytotoxic T-lymphocyte clones. J Viral. 70(1): 141-7; Simmons CP, Dong T, Chau NV, Dung NT, Chau TN, Thao Ie TT, Dung NT, Hien TT, Rowland-Jones S, Farrar J. 2005. Early T-cell responses to dengue virus epitopes in Vietnamese adults with secondary dengue virus infections. J Viral. 79(9): 5665-75). Adicionalmente esta molécula recombinante se mezcló con Ia proteína PD5 Ia cual está formada por Ia proteína P64k de Neisseria meningitidis y el dominio III de Ia proteína de Ia envoltura del virus dengue 2. Esta proteína de fusión es capaz de generar una respuesta inmune protectora y neutralizante altamente serotipoespecifica por Io que Ia unión con Ia proteína de Ia cápsida generaría una formulación capaz de inducir una respuesta inmune celular y humoral con una baja probabilidad de generar el fenómeno de amplificación dependiente de anticuerpos (Hermida L, Rodríguez R, Lazo L, Silva R, Zulueta A, Chinea G, López C, Guzman MG, Guillen G. 2004. A dengue-2 Envelope fragment ¡nserted within the structure of the P64k meningococcal protein carrier enables a functional immune response against the virus in mice. J Viral Methods. 2004 Jan;115(1):41-9). También se describe Ia obtención de una construcción genética formada por Ia fusión del dominio III y Ia cápsida para alcanzar el mismo objetivo. Como resultado se obtuvo que las dos formulaciones donde se combina Ia cápsida y el dominio III de DEN-2 generaron en ratones una respuesta linfoproliferativa superior a Ia generada por Ia cápsida solamente y además una respuesta de Acs serotipo- específica superior a Ia generada únicamente por PD5. Este último resultado evidencia Ia capacidad inmunopotenciadora de Ia cápsida del virus dengue en Ia generación de Acs por un antígeno heterólogo, fenómeno descrito para otras cápsidas recombinantes provenientes de otros virus como el de Ia hepatitis B (Alvarez JC, Guillen G. Fomulaciones conteniendo partículas semejantes a virus como ¡nmunopotenciadores por via mucosal. Oficina Cubana de Ia propiedad Industrial. CU 1998/183).
Descripción detallada de Ia invención
El objeto de esta invención es Ia obtención de una proteína recombinante correspondiente a Ia cápsida del virus dengue, Ia cual al ser inoculada en ratones genera una respuesta protectora contra Ia infección con el virus letal.
El gen codificante para Ia proteína de Ia cápsida del virus dengue se insertó en un plasmidio conteniendo el promotor del fago T5. Las células XL-1 blue al ser transformadas con el plasmidio recombinante expresaron altos niveles de Ia proteína resultante. Esta proteína se semipurificó hasta aproximadamente un 40% de pureza y se adyuvó en hidróxido de aluminio para su inoculación en ratones Balb/C. Un mes después de Ia última dosis se determinó Ia respuesta de Acs antivirales y Ia respuesta linfoproliferativa en los linfocitos de bazo estimulados in vitro con el virus dengue. Como resultado se pudo determinar que no se indujeron anticuerpos antivirales y sí una respuesta linfoproliferativa significativa. Paralelamente, en los ratones no analizados se realizó el ensayo de protección. Para ello se inoculó una dosis letal correspondiente a 100 LD50 de virus Dengue y se observó Ia aparición de síntomas y Ia muerte durante 21 días. Como resultado se obtuvo un 44,4% de sobrevida en los ratones inmunizados con Ia cápsida recombinante mientras que en el grupo control negativo todos los ratones murieron. Esta constituye Ia primera evidencia de una respuesta protectora frente al virus del dengue debido a Ia inoculación con Ia proteína de Ia cápsida únicamente.
Seguidamente se realizó un proceso de purificación empleando pasos cromatográficos de alta resolución lográndose un porcentaje de pureza > 95%. Ambas preparaciones, Ia variante semipurificada y Ia variante purificada se analizaron por cromatografía en gel en HPLC con el objetivo de conocer el estado de agregación de Ia proteína en cada muestra. En el caso de Ia preparación semipurificada se detectó una fracción con bajos tiempos de retención mientras que en Ia muestra de Ia preparación purificada se detectó un tiempo de retención correspondiente a Ia forma dimérica de Ia molécula.
Con el objetivo de lograr un estado de agregación en Ia variante pura, se realizó un proceso de particulación in vitro empleando cantidades pequeñas de oligonucleótidos. Como resultado se lograron obtener partículas de aproximadamente 21 nm de diámetro.
Las variantes dimérica y particulada, ambas con más de un 95% de pureza, se inocularon en ratones. En el caso de Ia variante dimérica se inoculó con adyuvante de Freund e hidróxido de aluminio (Alúmina) mientras que Ia variante particulada se inoculó únicamente en alúmina. Similar a Io obtenido para Ia variante impura, se obtuvieron altos niveles de linfoproliferación en los linfocitos de bazo estimulados in vitro con el virus dengue. Cuando se realizó el ensayo de protección se determinó que en Ia variante pura dimérica se lograron niveles de protección de un 40% y 20% adyuvada en Adyuvante de Freund y alúmina, respectivamente, sin embargo Ia proteína particulada pura y adyuvada en alúmina exhibió un porcentaje de protección mayor. Estos resultados conjuntamente con los obtenidos con Ia proteína semipurificada demuestran Ia potencialidad de Ia proteína de Ia cápsida de inducir una respuesta protectora en ratones Balb/c, y a su vez que Ia forma particulada es superior permitiendo además su futuro empleo en humanos debido al empleo de Ia alúmina como adyuvante. Adicionalmente, al no inducir una respuesta de Acs antivirales eliminaría el fenómeno de amplificación viral dependiente de Acs reportado como factor de riesgo para Ia ocurrencia de Ia forma más severa de Ia enfermedad: Ia fiebre hemorrágica de dengue. Con el objetivo de determinar el posible mecanismo de protección, el cual no esta relacionado con Ia inducción de Acs debido a su ausencia demostrada, se realizó un estudio de depleción de células CD8+, marcador presente en las células T citotóxicas. Como resultado se obtuvo que Ia protección alcanzada con las proteínas puras de cada variante fue dependiente de Ia presencia de las células que presentan dicho marcador, ya que al eliminarlas se eliminó el efecto protector inducido.
Adicionalmente se realizó un estudio para conocer si Ia combinación de Ia cápsida recombinante particulada con antígenos inductores de respuesta humoral no afecta Ia generación de Ia respuesta linfoproliferativa y contar con una mezcla de inmunógenos capaz de aportar ambas ramas de Ia respuesta inmune. Para ello se inocularon Ia variante purificada particulada y una proteína de fusión conteniendo el dom III de Ia proteína de Ia envoltura del virus dengue-2, Ia cual es capaz de generar una respuesta inmune serotipo específica minimizando también el fenómeno del ADE (Hermida L, Rodríguez R, Lazo L, Silva R, Zulueta A, Chinea G, López C, Guzman MG, Guillen G. 2004. A dengue-2 Envelope fragment inserted within the structure of the P64k meningococcal protein carrier enables a functional immune response against the virus in mice. J Virol Methods. 2004 Jan;115(1):41- 9). Al administrar tres dosis y analizar los Acs generados, se demostró que se potenció Ia inducción de Acs antivirales serotipoespecíficos producto de Ia inoculación de Ia proteína de fusión. A su vez, se detectó una respuesta linfoproliferativa superior a Ia inducida por Ia cápsida solamente y significativamente mayor que Ia inducida por Ia inoculación de 5 únicamente Ia proteína de fusión.
Paralelamente para conocer si es posible obtener el efecto de Ia combinación por fusión genética de ambos antígenos se construyó un plasmidio conteniendo el Dom III de Ia proteína de Ia envoltura del virus DEN-2 fusionado al N terminal del gen codificante para Ia proteína de Ia cápsida. La proteína resultante, con un 40% de pureza también generó en 0 ratones Balb/C una respuesta linfoproliferativa superior a Ia obtenida con Ia cápsida solamente y una respuesta de Acs serotipoespecífica superior a Ia inducida por PD5.
DESCRIPCIÓN DE LAS FIGURAS 5
Figura 1. Estrategia de clonación de Ia cápsida del virus DEN2 para Ia obtención de PDC-2
DEN2 C: Fragmento de Ia proteína de Ia cápsida del DEN-2.
Figura 2. Análisis por SDS-PAGE al 15% del proceso de semipurificación de Ia proteína 0 PDC-2.
1. Sobrenadante de ruptura. 2 y 3. Fracción no adsorbida a Ia matriz Q Sepharose FF. 4. Eluato de Ia matriz con 1M de NaCI.
Figura 3. Análisis por SDS-PAGE al 15% del proceso de purificación de PDC-2. -5 1. Sobrenadante de ruptura, 2. Fracción no adsorbida a Ia matriz, 3. Lavado (350 mM NaCI)., 4. Fracción eluida (750 mM NaCI), 5. Fracción en Tris 10 mM, EDTA 1 mM.
Figura 4. Perfil cromatográfico de Ia preparación semipurificada (A) y pura (B) de PDC-2 en superdex 200. 0
Figura 5. Fotografías de microscopía electrónica de Ia preparación pura de PDC-2 antes (A) y después (B) del tratamiento con los oligonucleótidos.
. Figura 6. Estrategia de clonación de Ia cápsida del virus DEN-1 para Ia obtención de PDC-1 5 DEN1 C: Fragmento de Ia proteína de Ia cápsida del DEN-1. Figura 7. Análisis por SDS-PAGE al 15% del proceso de semipurificación de Ia proteína PDC- 1.
1. Patrón de peso molecular. 2. Sobrenadante de ruptura. 3. Fracción no adsorbida a Ia matriz 5 Q Sepharose FF .
EJEMPLOS DE REALIZACIÓN
0 EJEMPLO 1. Clonaje y expresión de PDC-2.
La secuencia nucleotídica que codifica para los aminoácidos 1 al 99 de Ia proteína de Ia cápsida del virus DEN-2 (Secuencia No. 3 ), se amplificó con los oligonucleótidos identificados en el listado de secuencias como Secuencia No. 1 y Secuencia No. 2 a partir de Ia cepa viral de DEN-2 genotipo Jamaica (Deubel V., Kinney R. M., Trent D.W. 5 Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of Dengue type 2 virus, Jamaica genotype: Comparative analysis of the full-length genome.Virology 1988.165:234-244).
El vector se generó por digestión BamHI/HindIII del plasmidio pQE-30, que contiene el promotor del Fago T5 y una cola de 6 histidinas en el extremo N-terminal (Secuencia No. 6). 0 Después del proceso de ligamiento, los posibles recombinantes se analizaron por restricción y los positivos se secuenciaron para chequear las uniones.
Las células competentes XL-1 Blue (Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557-580) se transformaron con el clon seleccionado llamado pDC-2 (Fig. 1 y Secuencia No. 4). Las cepas de E. coli -5 transformadas se crecieron en medio Luria Bertani (LB) suplementado con Ampicillina a 50 μg/mL durante 10 h a 370C. La inducción del promotor se realizó con Isopropyl-β-D- thiogalactopyranoside (IPTG) a una concentración final de 1mM. A partir de Ia biomasa obtenida se realizó un SDS-PAGE del cultivo celular y se obtuvo una banda correspondiente a una proteína de aproximadamente 15 kDa que fue reconocida por un líquido ascítico 0 hiperinmune (LAHI) anti-DEN2 y se denominó PDC-2 (Secuencia No. 5).
EJEMPLO 2. Semipurificación y caracterización de PDC-2.
La biomasa obtenida de Ia cepa transformada con PDC-2 y crecida a 37 0C se rompió en prensa francesa. La proteína recombinante se obtuvo distribuida de igual manera entre las fracciones soluble e ¡nsoluble. A partir de Ia fracción soluble se realizó una cromatografía de intercambio aniónico, utilizando Ia matriz Q Sepharose FF y el tampón Tris 1OmM pH 8. La proteína, presente en Ia fracción no adsorbida a Ia matriz, se obtuvo con un 40 % de pureza y se empleó para realizar los estudios inmunológicos (Fig. 2)
EJEMPLO 3. Evaluación inmunológica en ratones de PDC-2 semipυrificada.
Se utilizaron tres grupos de 30 ratones Balb/c. Dos de ellos fueron inmunizados con 10 ug de Ia proteína recombinante por Ia vía intraperitoneal, utilizando como adyuvante en uno de ellos, el adyuvante de Freund y en el otro el hidróxido de aluminio (Alúmina). Como control negativo se inmunizó Ia fracción soluble de Ia ruptura de células XL-1 Blue transformadas con el plasmidio pQE-30 y adyuvada en adyuvante de Freund. Una parte de los animales (10 ratones) se sangraron 15 días tras Ia tercera dosis y se determinaron por ELISA los anticuerpos anti-DEN-2. Como se observa en Ia tabla 1 no se obtuvieron anticuerpos antivirales tras Ia inmunización con Ia proteína recombinante formulada en ambos adyuvantes.
Tabla 1. Títulos de anticuerpos contra el virus DEN-2 de los sueros obtenidos tras Ia inmunización con PDC-2 semipurificada.
Figure imgf000013_0001
EJEMPLO 4. Ensayo de protección
Para Ia evaluación de Ia protección conferida a los ratones ante el reto con DEN letal homólogo por Ia inmunización con las variantes descritas, se utilizaron 10 de los ratones de los grupos inmunizados con Ia proteína recombinante adsorbida en alúmina y con Ia preparación control. Cada uno de los animales recibió una dosis de 100 LD50 de DEN-2 letal por inoculación intracraneal y se observaron durante 21 días para obtener los porcentajes de letalidad en términos de muerte por encefalitis viral. Se utilizó como control positivo un grupo de 10 ratones inmunizados con virus DEN-2 infectivo (104 ufp). Todos los ratones del
10 grupo control (+) sobrevivieron mientras que los ratones del grupo control (-), enfermaron en los 7-11 días posteriores al reto obteniéndose un 100% de mortalidad al día 21. Finalmente, el grupo inmunizado con Ia proteína recombinante PDC-2 presentó un 44,4% de protección (tabla 2).
15 Tabla 2. Porcentajes de sobrevida en ratones inmunizados con PDC-2 frente al reto con virus DEN homólogo letal.
Figure imgf000014_0001
* Se calculó: (# de ratones sobrevivientes)/ (# total de ratones). Los datos de sobrevivientes se toman 21 después del reto. 20
Ejemplo 5. Respuesta Linfoproliferativa
Los animales restantes del grupo inmunizado con Ia proteína de Ia cápsida adyuvada en 25 alúmina fueron sacrificados 30 días después de Ia última dosis. Posteriormente, se les extrajeron los bazos y se estudió Ia respuesta linfoproliferativa frente al virus Dengue 2. Los resultados de Ia tabla 3 reflejan los índices de estimulación obtenidos.
Tabla 3. índices de estimulación frente al serotipo homólogo de los linfocitos de los ratones 3.0 inmunizados.
Figure imgf000015_0001
* índice de estimulación: cociente promedio de los conteos por minuto de las muestras entre los conteos por minuto del control de síntesis espontánea de ADN. ** Preparación de cerebro de ratones infectados con DEN-2. *** Preparación de cerebro de ratones no infectados. **** Mitógeno Phytohemaglutinina (Control positivo).
EJEMPLO 6. Purificación de PDC-2
La biomasa obtenida de Ia cepa transformada con pDC-2 y crecida a 37 0C se rompió en prensa francesa. La proteína recombinante se obtuvo distribuida de igual manera entre las fracciones soluble e insoluble. A partir de Ia fracción soluble se realizó una cromatografía de intercambio catiónico, utilizando Ia matriz SP-Sepharose FF y el tampón Tris 1OmM, tween
0.5%, urea 7M, pH 8. El lavado de Ia columna se realizó con tampón dietanolamina 3OmM,
NaCI 350 mM, pH 10.3. La elución de Ia proteína de interés se llevó a cabo con tampón dietanolamina 3OmM, NaCI 75OmM, pH 10.3. Una vez eluida Ia proteína se realizó un cambio de tampón utilizando columnas de G-25. Finalmente Ia proteína se obtuvo a un 96% de pureza en el tampón Tris 10 mM, EDTA 1 mM (Figura 3).
EJEMPLO 7. Caracterización de las variantes semipurificada y purificada
Con el objetivo de caracterizar el estado de agregación de Ia preparación semipurificada y purificada se realizaron cromatografías de filtración en gel utilizando Ia columna TSK-5000
(Tosoh bioscience, Japan). Luego de aplicar Ia muestra semipurificada se obtuvo un pico homogéneo y mayoritario cuyo tiempo de retención osciló entre 15 y 20 minutos, Io cual evidenció Ia presencia de especies de alto peso molecular. (Figura 4A) Contrariamente, en
Ia muestra proveniente de Ia fracción altamente purificada de Ia proteína de Ia cápsida, se detectaron tiempos de retención de 30 minutos correspondientes a Ia forma dimérica de Ia molécula. (Figura 4B) EJEMPLO 8. Estudios de reparticulación "in vitro".
Para Ia reparticulación de Ia proteína pura de Ia cápsida en forma dimérica se realizó un cambio de tampón a Hepes 25 mM, KAc 100 mM, MgAc2 1.7 mM pH 7.4. Después de calentar 1 mln a 370C Ia proteína y Ia mezcla de oligonucleótidos, estas se incubaron en igual volumen por 30 min a 300C. Como control negativo del experimento se llevó a cabo una incubación de proteína sin oligonucleótidos. Ambas preparaciones se observaron en el microscopio electrónico donde se detectaron una gran cantidad de partículas de aproximadamente 21 nm de diámetro en Ia muestra de proteína previamente incubada con Ia mezcla de oligonucleotidos mientras que en Ia muestra control no se observaron partículas. (Figura 5).
EJEMPLO 9. Evaluación inmunológica en ratones de Ia cápsida purificada .
Se utilizaron cinco grupos de 20 ratones Balb/c. Dos de ellos fueron inmunizados con 10 ug de Ia proteína recombinante purificada dimérica por Ia vía ¡ntraperitoneal, utilizando como adyuvante Ia alumina y el Freund. Otro grupo se inmunizó con 10 ug de Ia proteína de Ia cápsida purificada y particulada adyuvada en alúmina. Como control negativo se inmunizó Ia fracción soluble de Ia ruptura de células XL-1 blue transformadas con el plasmidio pQE-30 sometida a los mismos pasos de purificación que Ia PDC-2, en adyuvante de Freund. El quinto grupo fue inmunizado con virus DEN-2 como control positivo. Un mes después de Ia ultima dosis 10 animales de cada grupo recibieron una dosis de 100 LD50 de DEN-2 letal por inoculación intracraneal y se observaron durante 21 días para obtener los porcentajes de sobrevida. Todos los ratones del grupo control (+) sobrevivieron mientras que los ratones del grupo control (-) enfermaron en los 7-11 días posteriores al reto obteniéndose un 0% de sobrevida. Finalmente, de los grupos inmunizados con Ia proteína recombinante, el grupo inmunizado con PDC-2 pura dimérica presentó un 20% de protección al ser inmunizada con alúmina y un 40% de protección al emplear Freund como adyuvante. Adicionalmente, en el grupo que recibió Ia proteína pura reparticulada y adyuvada en alúmina se protegieron el 90% de los ratones (Tabla 4).
Tabla 4. Porcentajes de sobrevida en ratones inmunizados con las variantes de proteínas ensayadas frente al reto con virus DEN homólogo letal.
Figure imgf000017_0001
* Se calculó: (# de ratones sobrevivientes)/ (# total de ratones). Los datos de sobrevivientes se toman en el día 21 después del reto.
Ejemplo 10. Respuesta Linfoproliferativa
Los animales restantes de los grupos inmunizados con Ia proteína de Ia cápsida (10 animales), tanto dimérica como reparticulada, adyuvadas en alúmina, fueron sacrificados 15 días después de Ia última dosis. Posteriormente, se les extrajeron las células del bazo y se estudió Ia respuesta linfoproliferativa frente al virus Dengue 2 infectivo. Los resultados de Ia tabla 5 reflejan los índices de estimulación obtenidos.
Tabla 5. índices de estimulación frente al serotipo homólogo de los linfocitos de los ratones inmunizados.
Figure imgf000017_0002
* índice de estimulación: cociente de los conteos por minuto de las muestras entre los conteos por minuto del control de síntesis espontánea de ADN.
** Preparación de cerebro de ratones infectados con DEN-2.
*** Preparación de cerebro de ratone no infectados.
**** Mitógeno Phytohemaglutinina (Control positivo). EJEMPLO 11. Evaluación inmunológica de la mezcla formada por PD5 y PDC-2
Se inocularon 20 animales con Ia mezcla de 10 ug de Ia proteína del core pura particulada y de 20 ug de Ia proteína PD5 (Secuencia 23) en un régimen de tres dosis cada quince días. Se emplearon como controles grupos inmunizados con 10 ug de Ia proteína de Ia cápsida pura, con 20ug de Ia proteína PD5 mezclada con el volumen equivalente PDC-2 pero proveniente de una corrida control (-) y otro grupo con Ia proteína P64k, Ia proteína portadora presente en Ia construcción de PD5. En todos los casos se empleó Ia alúmina como adyuvante.
Quince días tras Ia última dosis los animales se sangraron y los sueros se analizaron por ELISA para determinar los anticuerpos antivirales. Como se observa en las tablas 6 y 7 en el grupo inmunizado con Ia mezcla se generaron anticuerpos serotipoespecíficos de títulos superiores a los generados en el grupo inmunizado únicamente con Ia proteína PD5 y a su vez ambos superiores a los generados con el grupo inmunizado con Ia proteína PDC-2 donde no se detectaron Acs contra el virus DEN-2.
Por otra parte se tomaron otros 10 animales de cada grupo para realizar los ensayos de linfoproliferación. Para ello se extrajeron las células del bazo de cada animal se estimularon con el virus DEN-2 infectivo. Como se observa en Ia tabla 8 en el grupo inmunizado con Ia mezcla se obtuvieron índices de estimulación superiores a los detectados en el grupo inmunizado con Ia proteína de Ia cápsida solamente. A su vez, en el grupo inmunizado con Ia proteína PD5 los índices de estimulación fueron los más bajos.
Tabla 6. Títulos de anticuerpos contra el virus DEN-2 de los sueros obtenidos tras Ia inmunización.
Figure imgf000018_0001
Tabla 7. Determinación de Ia especificidad de serotipo de los Acs contenidos en las mezclas de los sueros obtenidos de cada grupo.
Figure imgf000019_0001
Tabla 8. índices de estimulación frente al serotipo homólogo de los linfocitos de los ratones inmunizados.
Figure imgf000019_0002
* índice de estimulación: cociente de los conteos por minuto de las muestras entre los conteos por minuto del control de síntesis espontánea de ADN.
** Preparación de cerebro de ratones infectados con DEN-2.
*** Preparación de cerebro de ratone no infectados.
**** Mitógeno Phytohemaglutinina (Control positivo).
EJEMPLO 12. Estudios de depleción de CD8
Las proteínas de Ia cápsida reparticulada y dimérica, se inocularon en ratones Balb/C con el objetivo de obtener alguna evidencia de Ia inducción de respuesta celular. Como control negativo se empleó una preparación obtenida a partir de las células transformadas con el vector utilizado para Ia generación de pDC-2 y por un proceso de purificación similar al realizado para Ia proteína PDC-2.
Se administraron en grupos de 20 animales, 3 dosis de Ia proteína (20ug) empleando el hidróxido de aluminio como adyuvante. Un mes después de Ia última dosis a Ia mitad de los animales de cada grupo se les administró 1 mg de un AcM de rata anti-CD8 capaz de depletar las células del sistema inmune del ratón que contengan dicho marcador. Al día siguiente, todos los animales se retaron con 100 DL50 (dosis letal media) de virus dengue-2, se observaron Ia aparición de signos de Ia enfermedad y se cuantificaron las muertes. En el caso de los grupos inmunizados y no tratados, se obtuvieron una 20 y 80 % de protección en los grupos inmunizados con Ia cápsida dimérica y reparticulada, respectivamente. Paralelamente, en los grupos tratados el % de protección fue menor que en los no tratados: 0% de protección para PDC-2 dimérica y 10% de protección para Ia proteína reparticulada. En el caso del grupo control negativo no se obtuvo protección alguna tanto en los animales tratados como en los no tratados.
Tabla 9. Ensayo de reto con virus DEN-2 letal en los animales inmunizados con variantes de Ia cápsida recombinante
Figure imgf000020_0001
* Se calculó: (# de ratones sobrevivientes)/ (# total de ratones). Los datos de sobrevivientes se toman en el día 21 después del reto.
EJEMPLO 13: Obtención y semipurificación de Ia proteína de DEN-1
La secuencia nucleotídica que codifica para los aminoácidos 1 al 100 de Ia proteína de Ia cápsida del virus DEN-1 (Secuencia No. 7), se amplificó con los oligonucleótidos identificados en el listado de secuencias como Secuencia No. 8 y Secuencia No. 10 a partir de Ia cepa viral de DEN-1. El vector se generó por Ia digestión BamHI/HindIII del plasmidio PQE30, que contiene el promotor del Fago T5 y una cola de 6 histidinas en el extremo N- terminal (Secuencia No. 6). Después del proceso de ligamiento, los posibles recombinantes se analizaron por restricción y los positivos se secuenciaron para chequear las uniones. Las células competentes XL-1 Blue (Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557-580) se transformaron con el clon seleccionado llamado pDC-1 (Figura 6 y Secuencia No. 10). Las cepas de E. coli transformadas se crecieron en medio Luria Bertani (LB) suplementado con Ampicillina a 50 μg/mL durante 10 h a 370C. La inducción del promotor se realizó con Isopropyl-β-D- thiogalactopyranoside (IPTG) a una concentración final de 1mM. A partir de Ia biomasa obtenida se realizó un SDS-PAGE del cultivo celular y se obtuvo una banda correspondiente a una proteína de aproximadamente 15 kDa que fue reconocida por un líquido ascítico hiperinmune (LAHI) anti-DEN1 y se denominó PDC-1 (Secuencia No. 11).
10
EJEMPLO 14. Semipurificación y caracterización de PDC-1.
La biomasa obtenida de Ia cepa transformada con PDC-1 y crecida a 37 0C se rompió en prensa francesa. La proteína recombinante se obtuvo distribuida de igual manera entre las fracciones soluble e insoluble. A partir de Ia fracción soluble se realizó una cromatografía de
15 intercambio aniónico, utilizando Ia matriz Q Sepharose FF y el tampón Tris 1OmM pH 8. La proteína, presente en Ia fracción no adsorbida a Ia matriz, se obtuvo con un 45 % de pureza y se empleó para realizar los estudios inmunológicos.
EJEMPLO 15: Evaluación inmunológica de Ia proteína PDC-1 semipurificada.
20 Se utilizaron dos grupos de 30 ratones Balb/c. Uno de ellos se inmunizó con 10 ug de Ia proteína recombinante por Ia vía intraperitoneal, utilizando Ia alúmina como adyuvante. Como control negativo se inmunizó Ia fracción soluble de Ia ruptura de células XL-1 Blue transformadas con el plasmidio pQE-30, también adyuvada en alúmina. Una parte de los animales (10 ratones) se sangraron 15 días tras Ia tercera dosis y se determinaron los
25. anticuerpos anti DEN-1 por ELISA. Como se observa en Ia tabla 10 no se obtuvieron anticuerpos antivirales tras Ia inmunización con Ia proteína recombinante.
Tabla 10. Títulos de anticuerpos contra el virus DEN-1 de los sueros obtenidos tras Ia inmunización con PDC-1 semipurificada.
Figure imgf000021_0001
Figure imgf000022_0001
EJEMPLO 16. Ensayo de protección
Para Ia evaluación de Ia protección conferida a los ratones ante el reto con DEN letal homólogo por Ia inmunización con las variantes descritas, se utilizaron otros 10 de los ratones de los grupos inmunizados con Ia proteína recombinante adsorbida en alúmina y con Ia preparación control. Cada uno de los animales recibió una dosis de 100 LD50 de DEN-1 letal por inoculación intracraneal y se observaron durante 21 días para obtener los porcentajes de letalidad en términos de muerte por encefalitis viral. Se utilizó como control positivo un grupo de 10 ratones inmunizados con virus DEN-1 infectivo (104 ufp). Todos los ratones del grupo control (+) sobrevivieron mientras que los ratones del grupo control (-), enfermaron en los 7-11 días posteriores al reto obteniéndose un 100% de mortalidad al día 21. Finalmente, el grupo inmunizado con Ia proteína recombinante PDC-1 presentó un 50% de protección (Tabla 11).
Tabla 11. Porcentajes de sobrevida en ratones inmunizados con las variantes de proteínas ensayadas frente al reto con virus DEN homólogo letal.
Figure imgf000022_0002
* Se calculó: (# de ratones sobrevivientes)/ (# total de ratones). Los datos de sobrevivientes se toman 21 después del reto. Ejemplo 17. Respuesta linfoproliferativa
Los animales restantes del grupo inmunizado con Ia proteína PDC-1 fueron sacrificados 15 días después de Ia última dosis. Posteriormente, se les extrajeron los bazos y se estudió Ia respuesta linfoproliferativa frente al virus Dengue 1. Los resultados de Ia tabla 12 reflejan los índices de estimulación obtenidos.
Tabla 12. índices de estimulación frente al serotipo homólogo de los linfocitos de los ratones inmunizados.
Figure imgf000023_0001
* índice de estimulación: cociente de los conteos por minuto de las muestras entre los conteos por minuto del control de síntesis espontánea de ADN. ** Preparación de cerebro de ratones infectados con DEN-1. *** Preparación de cerebro de ratone no infectados. **** Mitógeno Phytohemaglutinina (Control positivo)
EJEMPLO 18. Clonaje y expresión de P DC -2 Domlll.
La secuencia nucleotídica que codifica para los aminoácidos 286 al 426 de Ia proteína de Ia envoltura del virus DEN-2 (Secuencia No. 12), correspondiente a Ia región del dominio III de Ia proteína, se amplificó con los oligonucleótidos identificados en el listado de secuencias como Secuencia No. 13 y Secuencia No. 14 a partir de Ia cepa viral de DEN-2 genotipo Jamaica (Deubel V., Kinney R. M., Trent D. W. Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of Dengue type 2 virus, Jamaica genotype: Comparative analysis of the full-length genome.Virology 1988.165:234-244).
El vector se generó por digestión BamHUBamH\ del plasmidio pQE30 que contiene el promotor del Fago T5 y una cola de 6 histidinas en el extremo N-terminal (Secuencia No. 6) y Ia región correspondiente a los 100 aminoácidos de Ia proteína de Ia cápsida del virus Dengue 2. Después del proceso de ligamiento, los posibles recombinantes se analizaron por restricción y los positivos se secuenciaron para chequear las uniones. Finalmente se seleccionó un clon el cual se denominó pDC-2 Domlll (secuencia No 15).
Las células competentes XL-1 Blue (Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557-580) se transformaron con el clon seleccionado llamado pDC-2 Domlll. Las cepas de E. coli transformadas se crecieron en medio Luria Bertani (LB) suplementado con Ampicillina a 50 μg/MI durante 10 h a 370C. La inducción del promotor se realizó con Isopropyl-β-D-thiogalactopyranoside (IPTG) a una concentración final de 1mM. A partir de Ia biomasa obtenida se realizó un SDS-PAGE del cultivo celular y se obtuvo una banda correspondiente a una proteína de aproximadamente
30 kDa que fue reconocida por un líquido ascítico hiperinmune (LAHI) anti-DEN2 y se denominó PDC-2 Domlll (Secuencia No. 16).
EJEMPLO 19. Semipurificación y caracterización de PDC-2 Domlll. La biomasa obtenida de Ia cepa transformada con PDC-2 Domlll y crecida a 37 0C se rompió en prensa francesa. La proteína recombinante se obtuvo distribuida de igual manera entre las fracciones soluble e insoluble. A partir de Ia fracción soluble se realizó una cromatografía de intercambio aniónico, utilizando Ia matriz Q Sepharose FF y el tampón Tris 1OmM pH 8. La proteína, presente en Ia fracción no adsorbida a Ia matriz, se obtuvo con un 40 % de pureza y se empleó para realizar los estudios ¡nmunológicos.
EJEMPLO 20. Evaluación inmunológica en ratones de PDC-2 Domlll semipurificada.
Se utilizaron cinco grupos de 30 ratones Balb/c. Uno de ellos se inmunizó con 10 ug de Ia proteína recombinante por Ia vía intraperitoneal, utilizando como Ia Alúmina como adyuvante. Como control negativo se inmunizó Ia fracción soluble de Ia ruptura de células XL-1 Blue transformadas con el plasmidio pQE-30 emlpeando el mismo adyuvante. Además se incluyeron como controles dos grupos, uno de los cuales fue inmunizado con Ia proteína PDC-2 y otro grupo con Ia proteína PD5 (contiene Ia región del dominio III de Ia proteína de Ia envoltura de DEN-2). Una parte de los animales (10 ratones) se sangraron 15 días tras Ia tercera dosis y se determinaron por ELISA los anticuerpos anti-DEN-2. Como se observa en las tablas 13 y 14, en el grupo inmunizado con PDC-2 Domlll se generaron altos títulos de Acs anti-DEN-2 serotipoespecíficos, los cuales fueron superiores a los generados por Ia proteína PD5. Estos resultados evidencian que también Ia combinación genética con Ia cápsida inmunopotencia Ia respuesta contra el virus aportada por el Dominio III de al proteína de Ia envoltura. Tabla 13. Títulos de anticuerpos contra el virus DEN-2 de los sueros obtenidos tras Ia inmunización con Ia proteína Domlll-cápsida.
Figure imgf000025_0001
Tabla 14. Determinación de Ia especificidad de serotipo de los Acs contenidos en las mezclas de los sueros obtenidos de cada grupo.
Figure imgf000025_0002
Por otra parte se tomaron otros 10 animales de cada grupo para realizar los ensayos de linfoproliferación. Para ello se extrajeron las células del bazo de cada animal y se estimularon con el virus DEN-2 infectivo. Como se observa en Ia tabla en el grupo inmunizado con Ia mezcla se obtuvieron índices de estimulación superiores a los detectados en el grupo inmunizado con Ia proteína de Ia cápsida solamente. A su vez, en el grupo inmunizado con Ia proteína PD5 los índices de estimulación fueron los más bajos. Tabla 15. índices de estimulación frente al serotipo homólogo de los linfocitos de los ratones inmunizados.
Figure imgf000026_0001
* índice de estimulación: cociente de los conteos por minuto de las muestras entre los conteos por minuto del control de síntesis espontánea de ADN.
** Preparación de cerebro de ratones infectados con DEN-2.
*** Preparación de cerebro de ratone no infectados.
**** Mitógeno Phytohemaglutinina (Control positivo).

Claims

REIVINDICACIONES.
1. Un compuesto farmacéutico caracterizado por ser una vacuna capaz de inducir en el organismo receptor una respuesta inmune protectora contra los virus Dengue y contener Ia proteína de Ia cápsida de uno o de varios serotipos del virus dengue sola o combinada con otros antígenos.
2. Un compuesto farmacéutico de acuerdo con Ia reivindicación 1 , caracterizado por contener Ia proteína de Ia cápsida del virus Dengue 1 , 2, 3 o 4, sola, mezcladas o combinadas entre ellas.
3. Un compuesto farmacéutico de acuerdo con Ia reivindicación 1 , caracterizado porque contiene Ia proteína de Ia cápsida mezclada o combinada con antígenos capaces de inducir una respuesta humoral y/o celular.
4. Un compuesto farmacéutico de acuerdo con Ia reivindicaciones 1 y 3, caracterizado porque contiene Ia proteína de Ia cápsida mezclada con una o varias de las proteínas identificadas en el listado de secuencia como: Secuencia 20, Secuencia 21 , Secuencia 22 y Secuencia 23.
5. Un compuesto farmacéutico de acuerdo con Ia reivindicaciones 1 y 3, caracterizado porque contiene Ia proteína de Ia cápsida fusionada por vía química o genética con una o varias de las secuencias identificadas en el listado de secuencia como: Secuencia 17, Secuencia 18, Secuencia 19 y Secuencia 24.
6. Un compuesto farmacéutico de acuerdo con las reivindicaciones 1 , 2, 3, 4 y 5 caracterizado porque contiene Ia proteína de Ia cápsida en forma particulada o agregada.
7. Un compuesto farmacéutico de acuerdo con las reivindicaciones 1 , 2, 3, 4, 5 y 6 caracterizado porque contiene un vehículo farmacológicamente aceptable y un adyuvante oleoso, o no oleoso.
8. Un compuesto farmacéutico de acuerdo con las reivindicaciones 1 , 2, 3, 4, 5, 6 y 7 caracterizado por ser un compuesto preventivo o terapéutico contra los virus del Dengue, para uso oral, intramuscular, subcutáneo, mucosal o intravenoso.
PCT/CU2006/000008 2005-09-16 2006-09-18 Proteína de la cápsida del virus dengue inductora de respuesta protectora y composición farmacéutica WO2007031034A1 (es)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DK06791279.0T DK1944038T3 (en) 2005-09-16 2006-09-18 Dengue virus capsid protein that induces a protective response AND PHARMACEUTICAL COMPOSITION
CN2006800422806A CN101304760B (zh) 2005-09-16 2006-09-18 诱导保护性应答的登革病毒衣壳蛋白以及药物组合物
KR1020087008971A KR101350318B1 (ko) 2005-09-16 2006-09-18 보호 반응을 유도하는 댕기열 바이러스 캡시드 단백질 및약학적 조성물
EP06791279.0A EP1944038B1 (en) 2005-09-16 2006-09-18 Dengue virus capsid protein which induces a protective response and pharmaceutical composition
US12/067,129 US7790173B2 (en) 2005-09-16 2006-09-18 Pharmaceutical compound capable of induce immune protective response against Dengue virus having the capsid protein of the Dengue virus
JP2008530308A JP5657204B2 (ja) 2005-09-16 2006-09-18 デングウイルスのカプシドタンパク質を有する、デングウイルスに対する防御反応を誘導することができる医薬品組成物
ES06791279.0T ES2444691T3 (es) 2005-09-16 2006-09-18 Proteína de la cápside del virus del Dengue que induce una respuesta protectora y su composición farmacéutica
AU2006291863A AU2006291863B2 (en) 2005-09-16 2006-09-18 Dengue virus capsid protein which induces a protective response and pharmaceutical composition
BRPI0616224A BRPI0616224B8 (pt) 2005-09-16 2006-09-18 composição farmacêutica
KR1020137022261A KR20130100026A (ko) 2005-09-16 2006-09-18 보호 반응을 유도하는 댕기열 바이러스 캡시드 단백질 및 약학적 조성물
CA2622827A CA2622827C (en) 2005-09-16 2006-09-18 Pharmaceutical compound capable of inducing immune protective response against dengue virus having the capsid protein of the dengue virus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CUCU2005-0168 2005-09-16
CU20050168A CU23578A1 (es) 2005-09-16 2005-09-16 Proteína de la cápsida del virus dengue inductora de respuesta protectora y composición vacunal

Publications (1)

Publication Number Publication Date
WO2007031034A1 true WO2007031034A1 (es) 2007-03-22

Family

ID=40132555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2006/000008 WO2007031034A1 (es) 2005-09-16 2006-09-18 Proteína de la cápsida del virus dengue inductora de respuesta protectora y composición farmacéutica

Country Status (17)

Country Link
US (1) US7790173B2 (es)
EP (1) EP1944038B1 (es)
JP (1) JP5657204B2 (es)
KR (2) KR20130100026A (es)
CN (1) CN101304760B (es)
AR (1) AR058049A1 (es)
AU (1) AU2006291863B2 (es)
BR (1) BRPI0616224B8 (es)
CA (1) CA2622827C (es)
CU (1) CU23578A1 (es)
DK (1) DK1944038T3 (es)
ES (1) ES2444691T3 (es)
MY (2) MY161452A (es)
PT (1) PT1944038E (es)
RU (1) RU2008114841A (es)
WO (1) WO2007031034A1 (es)
ZA (1) ZA200802740B (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128949A2 (en) * 2008-04-18 2009-10-22 Vaxinnate Corporation Compositions of dengue viral proteins and methods of use
EP2294192A2 (en) * 2008-06-09 2011-03-16 La Jolla Institute for Allergy and Immunology Compositions and methods for dengue virus (dv) treatment and vaccination
US8574588B2 (en) 2005-01-19 2013-11-05 VanInnate Corporation Fusion proteins comprising flagellin and dengue viral envelope proteins
WO2014101903A1 (es) * 2012-12-27 2014-07-03 Centro De Ingeniria Genetica Y Biotecnologia Composicion vacunal contra el virus dengue
US8999675B2 (en) 2009-08-31 2015-04-07 Gen-Probe Incorporated Dengue virus assay
US10308689B2 (en) 2010-06-24 2019-06-04 La Jolla Institute For Allergy And Immunology Dengue virus (DV) polypeptide sequences, T cell epitopes and methods and uses thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2723372A4 (en) * 2011-06-24 2015-03-04 Jolla Inst Allergy Immunolog PROTECTION AGAINST DENGUE VIRUS AND PREVENTION AGAINST HEAVY DENGUE ILLNESSES
IN2015DN02893A (es) 2012-10-04 2015-09-11 Univ Leland Stanford Junior
SG11201706342PA (en) * 2015-02-09 2017-09-28 Academia Sinica An epitope-substituted vaccine for use in improving safety and immunogenicity against dengue viruses
SG10201607778XA (en) * 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
WO2018169550A1 (en) * 2017-03-17 2018-09-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Real-time rt-pcr assay for detection of dengue, chikungunya, and zika viruses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006214A1 (en) * 1991-09-19 1993-04-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Chimeric and/or growth-restricted flaviviruses
WO1999018216A2 (en) * 1997-10-08 1999-04-15 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Chimeric vaccine against tick-borne encephalitis virus
EP1418180A2 (en) * 2001-07-16 2004-05-12 Centro De Ingenieria Genetica Y Biotecnologia (Cigb) Chimeric chains that code for proteins that induce effects directed against viruses
EP1454988A1 (en) * 2003-03-03 2004-09-08 Institut National De La Sante Et De La Recherche Medicale (Inserm) Infectious flavivirus pseudo-particles containing functional prM-E envelope proteins

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CU22302A1 (es) 1990-09-07 1995-01-31 Cigb Secuencia nucleotidica codificante para una proteina de la membrana externa de neisseria meningitidis y uso de dicha proteina en preparados vacunales
WO1996037221A1 (en) 1995-05-24 1996-11-28 Hawaii Biotechnology Group, Inc. Subunit vaccine against flavivirus infection
CU22559A1 (es) 1996-01-17 1999-05-03 Ct Ingenieria Genetica Biotech Sistema de expresión de antígenos heterologos en e. coli como proteínas de fusión
EP0907659A1 (en) 1996-05-10 1999-04-14 Schering Corporation Synthetic inhibitors of hepatitis c virus ns3 protease
CU22666A1 (es) 1996-11-25 2001-04-27 Inst De Medicina Tropical Pedro Kouri Procedimiento para la expresión de genes de los virus del dengue en la levadura pichia pastoris, adns recombinantes y microorganismos transformados
CU22683A1 (es) 1997-01-15 2001-07-20 Inst De Medicina Tropical Pedro Kouri Epítopes de la proteína pre-m/m del virus del dengue, péptidos sintéticos, proteínas quiméricas y sus usos
ES2241157T3 (es) 1997-08-11 2005-10-16 Boehringer Ingelheim (Canada) Ltd. Peptidos inhibidores de la hepatitis c.
DK1185691T3 (da) 1999-04-30 2009-06-22 Novartis Vaccines & Diagnostic Genomiske neisseriasekvenser og fremgangmåder til anvendelse deraf
ES2533085T3 (es) * 2001-05-22 2015-04-07 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Desarrollo de mutaciones útiles para atenuar virus del dengue y virus del dengue quiméricos
WO2003101397A2 (en) * 2002-05-31 2003-12-11 Acambis, Inc. Tetravalent dengue vaccines
AU2003300831A1 (en) 2002-12-11 2004-06-30 Hawaii Biotech, Inc. Recombinant vaccine against flavivirus infection
WO2005002501A2 (en) 2003-04-22 2005-01-13 Children's Medical Center Corporation Novel druggable regions in the dengue virus envelope glycoprotein and methods of using the same
EP1841785A2 (en) 2005-01-19 2007-10-10 Vaxinnate Corporation Compositions comprising pathogen-associated molecular patterns and antigens and their use to stimulate an immune response
CA2508266A1 (fr) 2005-06-20 2006-12-20 Institut Pasteur Polypeptides chimeriques et leurs applications therapeutiques contre une infection a flaviviridae
CU23632A1 (es) 2006-04-28 2011-02-24 Ct Ingenieria Genetica Biotech Métodos para la identificación de candidatos terapéuticos contra enfermedades causadas por flavivirus y moléculas antivirales.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006214A1 (en) * 1991-09-19 1993-04-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Chimeric and/or growth-restricted flaviviruses
WO1999018216A2 (en) * 1997-10-08 1999-04-15 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Chimeric vaccine against tick-borne encephalitis virus
EP1418180A2 (en) * 2001-07-16 2004-05-12 Centro De Ingenieria Genetica Y Biotecnologia (Cigb) Chimeric chains that code for proteins that induce effects directed against viruses
EP1454988A1 (en) * 2003-03-03 2004-09-08 Institut National De La Sante Et De La Recherche Medicale (Inserm) Infectious flavivirus pseudo-particles containing functional prM-E envelope proteins

Non-Patent Citations (45)

* Cited by examiner, † Cited by third party
Title
"Safety and immunogenicity of a three dose regimen of two tetravalent live-attenuated dengue vaccines in five- to twelve-year-old Thai children", PEDIATR INFECT DIS J., vol. 23, no. 2, pages 99 - 109
AM J TROP MED HYG., vol. 66, no. 3, pages 264 - 72
AM. J. TROP. MED. HYG., vol. 38, pages 411 - 419
BUKOWSKI, J. F. ET AL.: "Dengue virus-specific cross-reactive CD8 human cytotoxic T lymphocytes", J. VIROL., vol. 63, 1989, pages 5086 - 5091
CHIOU-FENG LIN ET AL.: "Endothelial Cell Apoptosis Induced by Antibodies against Dengue Virus nonstructural Protein 1 via Production of Nitric Oxide", J. IMMUNOL., 2002, pages 657 - 664
CHRISTOPHER T. JONES ET AL.: "Flavivirus Capsid Is a Dimeric Alpha-Helical Protein", JOURNAL OF VIROLOGY, vol. 77, no. 12, 2003, pages 7143 - 7149
DEUBEL V.; KINNEY R.M.; TRENT D.W.: "Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of Dengue type 2 virus, Jamaica genotype: Comparative analysis of the full-length genome", VIROLOGY, vol. 165, 1988, pages 234 - 244
DUENAS-CARRERA S ET AL.: "A truncated variant of the hepatitis C virus core induces a slow but potent immune response in mice following DNA immunization", VACCINE, vol. 19, no. 7-8, 22 November 2000 (2000-11-22), pages 992 - 7
GAGNON S.J. ET AL.: "Identification of two epitopes on the dengue 4 virus capsid protein recognized by a serotype-specific and a panel of serotype-cross-reactive human CD4+ cytotoxic T-lymphocyte clones", J VIROL, vol. 70, 1996, pages 141 - 147
GAGNON SJ ET AL.: "Identification of two epitopes on the dengue 4 virus capsid protein recognized by a serotype-specific and a panel of serotype-cross-reactive human CD4+ cytotoxic T-lymphocyte clones", J VIROL., vol. 70, no. 1, 1996, pages 141 - 7
GREEN S ET AL.: "Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever", J INFECT DIS., vol. 180, no. 5, 1999, pages 1429 - 35
GUBLER D.J., MICROBIOL. REV., vol. 11, 1998, pages 480 - 496
GUIRAKHOO F. ET AL.: "Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine", J. VIROL., vol. 75, 2001, pages 7290 - 7304
GUZMAN M.G.; KOURI G., LANCET INFECT. DIS., vol. 2, 2002, pages 33 - 42
HALSTEAD S.B. ET AL., DENGUE AND CHIKUNGUNYA VIRUS INFECTION IN MAN IN THAILAND, 1969, pages 1962 - 1964
HALSTEAD S.B. ET AL.: "Dengue and Chikungunya virus infection in man in Thailand", DENGUE AND CHIKUNGUNYA VIRUS INFECTION IN MAN IN THAILAND, vol. 18, 1969, pages 1962 - 1964
HALSTEAD S.B.; O'ROURKE E.J.; ALLISON A.C.: "Dengue viruses and mononuclear phagocytes. II. Identity of blood and tissue leukocytes supporting in vitro infection", J. EXP. MED., vol. 146, 1977, pages 218 - 229
HANAHAN D.: "Studies on transformation of Escherichia coli with plasmids", J. MOL. BIOL., vol. 166, 1983, pages 557 - 580
HERMIDA L ET AL.: "A dengue-2 Envelope fragment inserted within the structure of the P64k meningococcal protein carrier enables a functional immune response against the virus in mice", J VIROL METHODS, vol. 115, no. 1, January 2004 (2004-01-01), pages 41 - 9
HERMIDA L ET AL.: "A dengue-2 Envelope fragment inserted within the structure of the P64k meningococcal protein carrier enables a functional immune response against the virus in mice", J VIROL METHODS., vol. 115, no. 1, January 2004 (2004-01-01), pages 41 - 9
IV. EPIDEMIOLOGIC STUDIES IN THE BANGKOK METROPOLITAN AREA, vol. 18, pages 997 - 1021
IV. EPIDEMIOLOGIC STUDIES IN THE BANGKOK METROPOLITAN AREA. AM. J. TROP. MED. HYG., vol. 18, pages 997 - 1021
KANESA-THASAN N. ET AL.: "Safety and immunogenicity of attenuated dengue virus vaccines (Aventis Pasteur) in human volunteers", VACCINE, vol. 19, 2001, pages 3179 - 3188
KLIKS S.C. ET AL.: "Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants", AM. J. TROP. MED. HYG, vol. 38, 1988, pages 411 - 419
KLIKS S.C., NIMMANNITYA S., 1988
KONISHI E ET AL.: "Comparison of protective efficacies of plasmid DNAs encoding Japanese encephalitis virus proteins that induce neutralizing antibody or cytotoxic T lymphocytes in mice", VACCINE, vol. 21, no. 25-26, 8 September 2003 (2003-09-08), pages 3675 - 83
KOURI G. ET AL.: "Dengue hemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic", WHO BULLETIN OMS, vol. 67, 1989, pages 375 - 380
KUHN RJ ET AL.: "Structure of dengue virus: implications for flavivirus organization, maturation, and fusion", CELL, vol. 108, no. 5, 8 March 2002 (2002-03-08), pages 717 - 25
KURANE I ET AL.: "Definition of an epitope on NS3 recognized by human CD4+ cytotoxic T lymphocyte clones cross-reactive for dengue virus types 2, 3, and 4", VIROLOGY, vol. 240, no. 2, 20 January 1998 (1998-01-20), pages 169 - 74
LAZO L ET AL: "A recombinant capsid protein from Dengue-2 induces protection in mice against homologous virus", VACCINE 22 JAN 2007 UNITED KINGDOM, vol. 25, no. 6, 22 January 2007 (2007-01-22), pages 1064 - 1070, XP002418880, ISSN: 0264-410X *
LEYSSEN P.; DE CLERCO E.; NEYTS J.: "Perspectives for the treatment of infections with Flaviviridae", CLIN. MICROBIOL. REV., vol. 1, no. 3, 2000, pages 67 - 82
LINGNAU K. ET AL.: "Poly-I -arginine synergizes with oligodeoxynucleotides containing CpG-motifs (CpG-ODN) for enhanced and prolonged immune responses and prevents the CpG-ODN-induced systemic release of pro-inflammatory cytokines", VACCINE, vol. 20, 2002, pages 3498 - 3508
MORENS DM; HALSTEAD SB; MARCHETTE NJ: "Profiles of antibody-dependent enhancement of dengue virus type 2 infection", MICROB PATHOG, vol. 3, no. 4, October 1987 (1987-10-01), pages 231 - 7
P.K.; BRANDT W.E.; DALRYMPLE J.M.: "Chemical and antigenic structure of flaviviruses. The togaviruses: biology, structure, replication", 1980, pages: 503 - 529
PEDIATR INFECT DIS J., vol. 23, no. 2, pages 99 - 109
ROTHMAN A.L.; ENNIS F.A.: "Immunopathogenesis of Dengue Hemorragic Fever", VIROLOGY, vol. 257, 1999, pages 1 - 6
SABCHAREON A ET AL., BHAMARAPRAVATI N, 2004
SABCHAREON A ET AL., BHAMARAPRAVATI N., 2004
SIMMONS CP ET AL.: "Early T-cell responses to dengue virus epitopes in Vietnamese adults with secondary dengue virus infections", J VIROL., vol. 79, no. 9, 2005, pages 5665 - 75
SUZICH JA; GHIN SJ; PALMER-HILL FJ ET AL.: "Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas", PROC NATL ACAD SCI USA, vol. 92, 1995, pages 11553 - 57
TAN CH ET AL.: "Passive protection studies in mice with monoclonal antibodies directed against the non-structural protein NS3 of dengue 1 virus", J GEN VIROL, vol. 71, no. 3, March 1990 (1990-03-01), pages 745 - 9
VAUGHN D.W. ET AL.: "Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity", J INFECT DIS., vol. 181, 2000, pages 2 - 9
VELZING J ET AL.: "Induction of protective immunity against Dengue virus type 2: comparison of candidate live attenuated and recombinant vaccines", VACCINE, vol. 17, no. 11-12, 1999, pages 1312 - 20
WU SF ET AL.: "Evaluation of protective efficacy and immune mechanisms of using a non-structural protein NS1 in DNA vaccine against dengue 2 virus in mice", VACCINE, vol. 21, no. 25-26, 2003, pages 3919 - 29
ZIVNY J ET AL.: "Partial agonist effect influences the CTL response to a heterologous dengue virusserotype", J IMMUNOL., vol. 163, no. 5, 1 September 1999 (1999-09-01), pages 2754 - 60

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9446115B2 (en) 2005-01-19 2016-09-20 Vaxinnate Corporation Methods of stimulating immunity employing dengue viral antigens
US8574588B2 (en) 2005-01-19 2013-11-05 VanInnate Corporation Fusion proteins comprising flagellin and dengue viral envelope proteins
US8871221B2 (en) 2005-01-19 2014-10-28 Vaxinnate Corporation Methods of stimulating protective immunity employing Dengue viral antigens
US9234009B2 (en) 2005-01-19 2016-01-12 Vaxinnate Corporation Methods of stimulating protective immunity employing Dengue viral antigens
WO2009128949A3 (en) * 2008-04-18 2010-03-11 Vaxinnate Corporation Compositions of dengue viral proteins and methods of use
WO2009128949A2 (en) * 2008-04-18 2009-10-22 Vaxinnate Corporation Compositions of dengue viral proteins and methods of use
EP2294192A2 (en) * 2008-06-09 2011-03-16 La Jolla Institute for Allergy and Immunology Compositions and methods for dengue virus (dv) treatment and vaccination
EP2294192A4 (en) * 2008-06-09 2011-11-23 Jolla Inst Allergy Immunolog COMPOSITIONS AND METHODS OF TREATMENT AND VACCINATION AGAINST DENGUE VIRUS (DV)
US8999675B2 (en) 2009-08-31 2015-04-07 Gen-Probe Incorporated Dengue virus assay
US10308689B2 (en) 2010-06-24 2019-06-04 La Jolla Institute For Allergy And Immunology Dengue virus (DV) polypeptide sequences, T cell epitopes and methods and uses thereof
WO2014101903A1 (es) * 2012-12-27 2014-07-03 Centro De Ingeniria Genetica Y Biotecnologia Composicion vacunal contra el virus dengue
US9463235B2 (en) 2012-12-27 2016-10-11 Centro De Ingeniería Geneética Y Biotechnología Dengue virus vaccine composition
AU2013369626B2 (en) * 2012-12-27 2017-07-27 Centro De Ingeniería Genetica Y Biotecnología Dengue virus vaccine composition

Also Published As

Publication number Publication date
AR058049A1 (es) 2008-01-23
US7790173B2 (en) 2010-09-07
RU2008114841A (ru) 2009-10-27
ES2444691T3 (es) 2014-02-26
CU23578A1 (es) 2010-09-30
EP1944038A1 (en) 2008-07-16
MY161452A (en) 2017-04-14
CA2622827A1 (en) 2007-03-22
CN101304760B (zh) 2013-03-13
US20080311157A1 (en) 2008-12-18
CA2622827C (en) 2015-12-15
AU2006291863A1 (en) 2007-03-22
CN101304760A (zh) 2008-11-12
BRPI0616224B8 (pt) 2021-05-25
BRPI0616224A2 (pt) 2013-02-19
DK1944038T3 (en) 2014-03-03
AU2006291863B2 (en) 2012-09-20
BRPI0616224B1 (pt) 2019-01-15
KR20080048068A (ko) 2008-05-30
PT1944038E (pt) 2014-02-21
ZA200802740B (en) 2008-12-31
KR20130100026A (ko) 2013-09-06
EP1944038B1 (en) 2013-11-27
MY149395A (en) 2013-08-30
KR101350318B1 (ko) 2014-01-14
JP5657204B2 (ja) 2015-01-21
JP2009507864A (ja) 2009-02-26

Similar Documents

Publication Publication Date Title
CA2622827C (en) Pharmaceutical compound capable of inducing immune protective response against dengue virus having the capsid protein of the dengue virus
US8088391B2 (en) West nile virus vaccine
ES2374131T3 (es) Flavivirus quiméricos avirulentos e inmunógenos.
Apt et al. Tetravalent neutralizing antibody response against four dengue serotypes by a single chimeric dengue envelope antigen
PL192957B1 (pl) Chimeryczny żywy, zakaźny, atenuowany wirus, jego zastosowanie oraz cząsteczka kwasu nukleinowego kodująca chimeryczny żywy, zakaźny, atenuowany wirus
US20180228887A1 (en) Compositions, methods of administration and uses for trivalent dengue virus formulations
JP2018090618A (ja) デングウイルスに対する免疫原性組成物およびワクチンキット
US10357558B2 (en) Method, kit, plasmid and composition for inducing an immune response to dengue virus, on the basis of DNA and chimeric virus vaccines
KR100991717B1 (ko) 바이러스에 대한 효과를 유도하는 단백질을 코딩하는키메라 사슬
WO2021127017A1 (en) Combinations of flavivirus proteins, peptide sequences, epitopes, and methods and uses thereof
Viljoen Preparation and immunogenicity of a candidate replicon based yellow fever vaccine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680042280.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2622827

Country of ref document: CA

Ref document number: 2008530308

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/003841

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2006791279

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1634/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006291863

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020087008971

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008114841

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2006291863

Country of ref document: AU

Date of ref document: 20060918

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006291863

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006791279

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12067129

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0616224

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080317

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020137022261

Country of ref document: KR