WO2007029724A1 - 電気絶縁油用基剤 - Google Patents

電気絶縁油用基剤 Download PDF

Info

Publication number
WO2007029724A1
WO2007029724A1 PCT/JP2006/317620 JP2006317620W WO2007029724A1 WO 2007029724 A1 WO2007029724 A1 WO 2007029724A1 JP 2006317620 W JP2006317620 W JP 2006317620W WO 2007029724 A1 WO2007029724 A1 WO 2007029724A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
electrical insulating
insulating oil
base
oil
Prior art date
Application number
PCT/JP2006/317620
Other languages
English (en)
French (fr)
Inventor
Takaaki Kano
Jun-Ichi Yamada
Hidenobu Koide
Yasunori Hatta
Original Assignee
Lion Corporation
Japan Ae Power Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corporation, Japan Ae Power Systems Corporation filed Critical Lion Corporation
Priority to CN2006800366242A priority Critical patent/CN101278362B/zh
Priority to US12/066,045 priority patent/US8187508B2/en
Priority to KR1020087005873A priority patent/KR101313969B1/ko
Priority to JP2007534441A priority patent/JP5158347B2/ja
Publication of WO2007029724A1 publication Critical patent/WO2007029724A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • H01B3/22Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • H01F27/125Cooling by synthetic insulating and incombustible liquid

Definitions

  • the present invention relates to an electric insulating oil base, and more specifically, to an electric insulating oil base excellent in electric characteristics, cooling characteristics, and flame retardancy.
  • PCBs Although there were times when PCBs were used, they were banned from being used in electrical equipment due to their major problems with safety, toxicity, and environmental pollution.
  • these insulating oils have problems of high flammability and insufficient stability against oxygen and heat.
  • the present applicant as an electrical insulating oil excellent in viscosity, fluidity, chemical stability, etc., higher fatty acids having 8-20 carbon atoms and branched aliphatic monohydric alcohols having 6-14 carbon atoms.
  • Esters of fatty acid esters, mixed fatty acids derived from palm oil and mixed fatty acids derived from Z or soybean oil and aliphatic monohydric alcohols having 1 to 5 carbon atoms or branched aliphatic monohydric alcohols having 6 to 14 carbon atoms A report has already been reported (Patent Document 6).
  • the flammability is low and safe, the viscosity is low, the cooling property is excellent, the stability to oxygen and heat is good, the relative dielectric constant is high, and the transformer and the like can be downsized.
  • electrical insulating oils that have an excellent balance of properties such as safety to the environment and can be used practically without any problems, and further improvements and developments are needed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 61-260503
  • Patent Document 2 Japanese Patent Laid-Open No. 9-259638
  • Patent Document 3 Japanese Patent Laid-Open No. 11-306864
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-90740
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-273291
  • Patent Document 6 International Publication 2005Z022558 Pamphlet
  • the present invention has been made in view of such circumstances, and provides an electrical insulating oil base excellent in electrical characteristics, oxidation stability, cooling characteristics, flame retardancy, and safety. Purpose.
  • the present inventors have as a main component an esterified product of a straight chain or branched saturated or unsaturated fatty acid having 6 to 14 carbon atoms and glycerin.
  • the base for electrical insulating oil has excellent electrical properties, oxidation stability, cooling properties, and flame retardancy, and in this case, C6-C14 linear or branched saturated or unsaturated
  • the electrical insulating oils were excellent in safety and could cope with energy and environmental problems, and the present invention was completed.
  • the present invention provides:
  • a base for an electrical insulating oil characterized by comprising an esterified product of a straight-chain or branched saturated or unsaturated fatty acid having 6 to 14 carbon atoms and glycerin,
  • esterified product is an ester product of a linear or branched saturated or unsaturated fatty acid having 8 to 12 carbon atoms and glycerin,
  • edible fats and oils made from vegetable oil-derived fatty acids as linear or branched saturated or unsaturated fatty acids having 6 to 14 carbon atoms makes it possible to cope with energy and environmental problems with excellent electrical insulation.
  • An oil base can be provided.
  • the base for an electrical insulating oil according to the present invention is mainly composed of an ester mixture of a linear or branched saturated or unsaturated fatty acid having 6 to 14 carbon atoms and glycerin.
  • the base for electrical insulating oil means a material that is the main component of electrical insulating oil used for the purpose of insulation and cooling of electrical equipment such as transformers, cables, circuit breakers, and capacitors. To do.
  • Electrical insulating oil has high breakdown voltage, high volume resistivity, low dielectric loss tangent, high relative dielectric constant, low viscosity and excellent cooling characteristics, stability against oxygen and heat Excellent chemical stability, non-corrosiveness to metals, low thermal expansion coefficient and low volatile content, low pour point and wide liquid temperature range, including impurities None is required. In consideration of safety at the time of leakage, it is also required to have a high flash point, good biodegradability, and little adverse effects on living organisms and the environment.
  • fatty acid having 6 to 14 carbon atoms include caproic acid, enanthic acid, strength prillic acid, pelargonic acid, strength purine acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, 4 Isocaproic acid, 2-ethylhexanoic acid, 3, 5, 5 trimethylhexanoic acid, 4-ethylpentanoic acid, hexenoic acid, otathenic acid, nonenic acid, strong proleic acid, myristoleic acid, etc. These can be used alone or in admixture of two or more.
  • the fatty acid preferably has 6 to 14 carbon atoms. Furthermore, in consideration of improving the cooling characteristics of the electrical insulating oil and enhancing the stability to oxygen and heat, the number of carbon atoms of the fatty acid is preferably 8-12.
  • fatty acid having 8 to 12 carbon atoms include strength prillic acid, pelargonic acid, strength purine acid, undecanoic acid, lauric acid, 4 isocaproic acid, 2 ethylhexanoic acid, 3, 5, 5 trimethyl Hexanoic acid, 4-ethylpentanoic acid and the like can be mentioned, and these can be used alone or in combination of two or more.
  • the fatty acid having 6 to 14 carbon atoms used in the base for electrical insulating oil of the present invention is a palm that is a renewable resource from the viewpoint of addressing energy problems and reducing the environmental burden.
  • vegetable oils such as oil, palm kernel oil, soybean oil, palm oil, among the fatty acids exemplified above, power prillic acid, pelargonic acid, power purine derived from vegetable oil. Acid, undecanoic acid and lauric acid are optimal.
  • Glycerin which is a raw material for the esterified product constituting the base for an electrical insulating oil of the present invention, exhibits the most excellent performance among alcohols that react with a fatty acid to give an esterified product. is there.
  • the esterified product obtained by using this has the disadvantages that it has a low flash point and is difficult to be safe, and that the relative permittivity is low, making it difficult to reduce the size of the transformer.
  • alcohols having an aromatic group such as benzyl group and phenol group are also unsuitable for safety because they are likely to be harmful to the human body.
  • the ester cake obtained by using this is a chemical synthetic alcohol derived from petroleum that may satisfy the desired performance in terms of flash point, viscosity, etc. It is unsuitable from the viewpoint of reducing the load.
  • the ester cake obtained by using the glycerin satisfies various properties such as viscosity, flash point, relative permittivity, and acid / acid stability required for the electrical insulating oil, and Since glycerin is widely distributed as a constituent of oils and fats in vegetable oils such as palm oil, palm kernel oil, soybean oil, palm oil, rapeseed oil, and corn oil, which are renewable resources, measures against energy problems and environmental impact It is extremely excellent in terms of reduction and the point.
  • the production method of glycerin is not particularly limited.
  • a vegetable oil is produced from crude glycerin, which is purified and concentrated from a waste liquid as a by-product in the production of fats and oils, animal lipolysis or succinic acid.
  • a method of obtaining a crude glycerin cake obtained by purifying and concentrating the waste liquid as a by-product is preferable.
  • the esterified product contained in the base for an electrical insulating oil of the present invention is not particularly limited as long as it is an esterified product of a straight or branched saturated or unsaturated fatty acid having 6 to 14 carbon atoms and glycerin.
  • force pro-acid triglyceride enanthate triglyceride, caprylic acid triglyceride, pelargonic acid triglyceride, force puric acid triglyceride, unde force acid triglyceride, lauric acid triglyceride, tridecanoic acid triglyceride, myristic acid triglyceride, 4 Isopowered triglyceride, 2-ethylhexanoic acid triglyceride, 3,5,5-trimethylhexanoic acid triglyceride, 4-ethylpentanoic acid triglyceride, hexenoic acid triglyceride, otatenic acid triglyceride, nonene acid triglyceride It is preferable to use seride, force proleic acid triglyceride, myristoleic acid triglyceride, or a mixture of two or more of these, so
  • esterified products of saturated fatty acids having no double bond and glycerin are more preferred.
  • Lauric acid triglyceride tridecanoic acid triglyceride, myristic acid triglyceride, 4-isoproproic acid triglyceride, 2-ethylhexanoic acid triglyceride, 3,5,5-trimethylhexanoic acid triglyceride, 4-ethylpentanoic acid triglyceride It can be used.
  • Proglycotriglyceride, enanthate triglyceride, force prillate triglyceride, pelargonic acid triglyceride, force purinate triglyceride, undecanoic acid triglyceride, lauric acid triglyceride, tridecanoic acid triglyceride, myristic acid triglyceride are suitable.
  • the esterified product can be produced using various known esterified methods. For example, (1) a linear or branched saturated or unsaturated fatty acid having 6 to 14 carbon atoms and glycerin (2) a method of reacting a linear or branched saturated or unsaturated fatty acid ester ester having 6 to 14 carbon atoms and glycerin with an acid, in the presence of an acid, alkali or organometallic catalyst. A method of transesterification by reaction in the presence of an alkali or organometallic catalyst, (3) a method of fractionating vegetable oils such as palm oil, soybean oil, palm oil and palm kernel oil by distillation, etc.
  • the plant oil such as palm oil, soybean oil, coconut oil and palm kernel oil is reacted with glycerin in the presence of an acid, alkali or organometallic catalyst to convert the ester, and fractionated by distillation, etc. It is possible.
  • waste oils, waste acids and waste fatty acid esters of vegetable oils used in foods are regenerated as linear or branched saturated or unsaturated fatty acids having 6 to 14 carbon atoms and glycerin. It ’s all about using it.
  • the esterified product constituting the base for an electrical insulating oil of the present invention contains three hydroxyl groups of glycerin.
  • a part of the glycerin may be a partial ester such as a fatty acid monodalylide or a fatty acid diglyceride, but all the hydroxyl groups of the glycerin are all esterified.
  • Those containing the fatty acid triglyceride which has been crushed are preferred. That is, from the viewpoint of improving the electrical characteristics, it is preferable that the composition is composed of a fatty acid triglyceride, preferably 95% by mass or more, more preferably 98% by mass or more, and even more preferably 99% by mass or more. is there.
  • the esterified product is contained as a main component of the base for electrical insulating oil, and particularly satisfies the required qualities such as viscosity, flash point, relative dielectric constant and oxidation stability in a well-balanced manner.
  • the esterified product is contained in the total amount of the electric insulating oil in an amount of 60% by mass or more, more preferably 80% by mass or more, and more preferably 90% by mass or more.
  • “Main component” means that the component is contained in the base for electrical insulating oil in an amount of more than 50% by mass.
  • the electric insulating oil base of the present invention preferably has a kinematic viscosity at 40 ° C of 20 mm 2 Zs or less. If the kinematic viscosity exceeds 20mm 2 Zs, the flash point becomes high and safety is improved, but the circulation of insulating oil in the transformer is insufficient, cooling becomes incomplete and the cause of overheating There is a risk of becoming.
  • the kinematic viscosity at 40 ° C is 10 to 17 mm 2 Zs, it can be a base for electrical insulating oil that has a high flash point, is safe, has a low viscosity, and has excellent cooling characteristics.
  • the electric insulating oil base of the present invention preferably has a relative dielectric constant of 80 or more at 80 ° C. If the relative permittivity at 80 ° C is less than 3.0, there will be a difference in the relative permittivity with the insulating paper used in the transformer, and it may be difficult to reduce the size of the transformer. If the relative permittivity is 3.0 or more, preferably 3.4 or more, it will be close to the relative permittivity of the insulating paper and partial discharge will occur. There are advantages. However, if the relative dielectric constant is excessively high, the volume resistivity tends to decrease. Therefore, the upper limit of the relative dielectric constant at 80 ° C is preferably about 6.0.
  • the flash point of the base for an electrical insulating oil of the present invention is more preferably 230 ° C or higher because the higher the flash point, which is preferably 200 ° C or higher, is safer.
  • Japan with a flash point of less than 200 ° C It falls under Class 4 and Class 3 Petroleum under the Fire Service Act, and there is a risk of fire occurring when leaked.
  • edible fats and oils of medium chain fatty acid tridalylide with a flash point of 230 ° C or higher correspond to the animal and vegetable oils of the Japanese Fire Service Act, and are suitable because they have low risk of fire and are excellent in safety. It is.
  • the flash point of the base for electrical insulating oil of the present invention is 250 ° C or higher. Is preferred.
  • the upper limit is preferably 300 ° C or less.
  • the base for an electrical insulating oil of the present invention has a post-degradation degradation in an acid / water stability test (120 ° C, 75 hours) according to JIS C2101 in order to ensure stability against oxygen and heat.
  • the total acid value is preferably 0.5 mgKOHZg or less, more preferably 0.3 mgKOHZg or less.
  • the base for electrical insulating oil of the present invention has a dielectric loss tangent (80 ° C) according to JIS C2101 of 5% or less, a dielectric breakdown voltage of 30 KV or more, particularly 60 KV or more in order to ensure excellent electrical characteristics. I prefer to be there.
  • the electric insulating oil base of the present invention is preferably 60% or more (after 28 days), more preferably 80% or more (after 28 days), in order to reduce the load on the natural environment. More preferably, those having biodegradability of 85% or more (after 28 days) are suitable.
  • medium chain fatty acid (forced prillic acid Z forcepuric acid) triglyceride was reported to be 93% biodegradable (after 28 days) to IUCLID Datas et (Dataset created by: EUROPEAN COMMISSION -European Chemical Bureau). It is a base for electrical insulating oil that has a low load on the natural environment and can be suitably used in the present invention.
  • the base for an electrical insulating oil of the present invention preferably has an LC50 concentration of 50 mgZL or more (96 hours) in a fish toxicity test.
  • medium chain fatty acids power prillic acid Z power purinic acid
  • triglycerides were tested in IUCLID Datas et (Dataset created by: EUROPEAN COMMISSION -European Chemical Bureau) with an LCO concentration of 53 mgZL or more (96 hours)
  • IUCLID Datas et Dataset created by: EUROPEAN COMMISSION -European Chemical Bureau
  • LCO concentration 53 mgZL or more
  • the electrical insulating oil base of the present invention has acquired hazard information such as acute toxicity and mutagenicity as data so that the effects on the human body and animals can be grasped. It is preferable.
  • 2-ethyl hexanoic acid triglyceride Exeno Norole TGO manufactured by Kao Corporation
  • Acute toxicity oral, rat, LD50:> 2500mg / kg
  • medium chain fatty acids power prillic acid Z power purinic acid tridalylide are also reported in detail in the IUCLID Dataset (D ataset created by: EUROPEAN COMMISSION -European Chemical Bureau). It is a base for electrical insulating oil that can be grasped as having little influence, and can be suitably used in the present invention.
  • the base for an electrical insulating oil of the present invention is subjected to purification such as glycerin removal and separation, inorganic component removal, neutralization, water washing, distillation, clay treatment, deaeration treatment and the like in order to improve electrical characteristics. It is preferable that it has been applied. In particular, if the acid value and water content of the esterified product are high, the electrical characteristics tend to deteriorate, so at least adsorption treatment with activated clay Z-activated alumina and the like for the purpose of reducing the acid value should be performed. The intended degassing treatment has been performed. And are preferred.
  • Activated clay Z activated alumina adsorption treatment is performed to remove free fatty acids, acid Z alkali Z organometallic catalysts, etc., for example, by adding activated clay and Z or activated alumina to the ester cake. After adsorbing free fatty acids, etc., the method is performed by removing activated clay and Z or activated alumina by filtration.
  • Kiyo Ward Series (Kyo Ward 100, 200, 300, 400, 500, 600, 700, 1000, 2000) is an inorganic synthetic adsorbent mainly composed of Mg, Al, Si, etc. Etc., manufactured by Kyowa Chemical Industry Co., Ltd.) and Tomita AD series (Tomiter AD100, 500, 600, 700, etc., manufactured by Tomita Pharmaceutical Co., Ltd.), 0.01-5 parts by weight per 100 parts by weight
  • the acid value of the ester cake can be reduced preferably to 0.003 to 0.005 mg / OHolg or less, more preferably 0.0001 to 0.005 mgKOHZg or less.
  • the electrical properties of the ware can be remarkably enhanced.
  • the degassing treatment is performed to remove moisture and air in the esterified product. Specifically, after nitrogen replacement, 20 to 160 ° C, 10 minutes to 10 hours, a vacuum of 0.1 lkPa Distill under reduced pressure at ⁇ 80kPa.
  • azeotropic distillation may be performed by adding 0.1 to 3 mol of a compound that can be azeotroped with water, such as toluene, kerosene, isopropyl alcohol, ethanol, and pyridine, with respect to the water in the esterified product.
  • moisture removal may be performed using an apparatus such as a vacuum oil purifier.
  • the water content in the esterified product can be reduced to preferably 0.1 to: LOOp pm or less, and more preferably to 0.1 to 50 ppm or less.
  • the electrical properties of the esterified product are remarkably enhanced. be able to.
  • a dehydrating agent such as Molecular Sieves 4A (manufactured by Junka Kagaku Co., Ltd.) may be added and stored in an amount of 0.1 to 30 parts by mass with respect to 100 parts by mass of the esterified product. Due to the action of a dehydrating agent such as Molecular Sieves 4A, it is possible to maintain a water content of 0.1 to 50 ppm or less for a long period of time.
  • ester cake can be used alone as an electrical insulating oil.
  • additives such as an antioxidant, a metal deactivator, a fluid antistatic agent, a molecular repair agent, and a pour point depressant can be blended and used.
  • Antioxidants include, for example, 2,6-di-tert-butyl-cresol, butylated hydroxysol, 2,6-di-tert-butyl-4-ethylphenol, stearyl 13- (3,5-di-tert-butyl 4-hydroxyphenol.
  • Monophenol antioxidants such as propionate; 2,2, -methylenebis (4-methyl-6t-butylphenol), 2,2, -methylenebis (4-ethyl-6-tert-butylphenol), 4,4'-thiobis ( Bisphenol-based antioxidants such as 3-methyl 6-t butylphenol), 4, 4, -butylidenebis (3-methyl-6-t butylphenol); tetrakis [methylene 3- (3, 5, 5, di-t —Butyl 4, monohydroxyphenol) propionate] High molecular phenols such as methane and tocopherols; dilauryl 3, 3 'thiodipropionate , Dimyristyl 3, 3, monothiodipropionate, distearyl 3, 3, monothiodipropionate and other sulfur antioxidants; phosphorous acids such as triphenylphosphite and diphenylisodecylphosphite An inhibitor etc.
  • Examples of the metal deactivator include benzotriazole, benzotriazole derivatives, and thiazole. Among them, benzotriazole and benzotriazole derivatives that also act as fluid antistatic agents are excellent!
  • the molecular repairing agent examples include bis (alkylphenol) carbodiimides such as diphenylcarbodiimide, ditolylcarbodiimide, bis (isopropylphenol) carbodiimide, and bis (butylphenol) carbodiimide, phenol glycidyl ether, Examples thereof include epoxy compounds such as phenol glycidyl ester, alkyl glycidyl ether, and alkyl glycidyl ester.
  • bis (alkylphenol) carbodiimides such as diphenylcarbodiimide, ditolylcarbodiimide, bis (isopropylphenol) carbodiimide, and bis (butylphenol) carbodiimide
  • phenol glycidyl ether examples thereof include epoxy compounds such as phenol glycidyl ester, alkyl glycidyl ether, and alkyl glycidyl ester.
  • Examples of the pour point depressant include alkyl methacrylate polymers and Z or alkyl acrylate polymers, preferably having a mass average molecular weight of 5,000 to 50.
  • a polyalkyl methacrylate or alkyl acrylate polymer having a linear or branched alkyl group of about 1 to 20 carbon atoms can be preferably used.
  • Sanyo Chemical Industries Co., Ltd. ACLOVE 100 series (132, 133, 136, 137, 138, 146, 160) force may be used in terms of pour point, lowering action and nodling of the estenoir product.
  • antioxidants may be added alone or in combination of two or more depending on the individual required quality. That's fine.
  • the amount added is preferably 3% by mass or less for each additive in the base for electrical insulating oil, but 0.01-1% by mass for the antioxidant, metal deactivator and fluid antistatic agent.
  • the agent should be added according to the required quality in the range of 5 to: LOOOppm, the molecular repair agent in the range of 0.01 to 1% by mass, and the pour point depressant in the range of 0.01 to 1% by mass.
  • the total amount of additives is preferably 3% by mass or less.
  • additives such as antiwear agents, extreme pressure agents, viscosity index improvers, detergent dispersants, and the like can be added alone or in combination.
  • the addition amount of these additives is not particularly limited, but is preferably 1% by mass or less in the base for electrical insulating oil.
  • an alkylene oxide adduct of the glycerin can be used instead of the predetermined glycerin constituting the esterified product.
  • an ester compound of a dariserine alkylene oxide adduct By using such an ester compound of a dariserine alkylene oxide adduct, the relative dielectric constant can be further improved.
  • the above-mentioned ester compound and an ester derivative of a glycerin alkylene oxide adduct can be mixed to form a base for electrical insulating oil.
  • Alkylene oxides include ethylene oxide, propylene oxide, and Z or Glycerin alkylene oxide adducts obtained by adding 1 to 15 mol, preferably 1 to 10 mol, of these mixtures to glycerin.
  • an alkyl oxide is inserted into the ester compound of the present invention using a catalyst mainly composed of a metal oxide such as aluminum-magnesium.
  • a catalyst mainly composed of a metal oxide such as aluminum-magnesium.
  • an esterified product is subjected to an esterification z-exchange reaction of a glycerin-enriched alkylene oxide.
  • the base for electrical insulating oil of the present invention is excellent in compatibility, and can be used by mixing with other electrical insulating oil.
  • Other electrical insulating oils that can be used include, for example, alkylbenzenes, alkylindanes, polybutenes, poly-alpha-olefins, phthalates, diarylalkanes, alkylnaphthalenes, alkylbiphenyls, triarylalkanes, terfals, Arylene naphthalene, 1,1-diphenylethylene, 1,3-diphenylbutene-1,1,4-diphenyl 4-methyl-pentene 1, silicone oil, mineral oil, vegetable oil, vegetable alcohol lower alcohol ester Is mentioned.
  • the mixing ratio of the electric insulating oil base of the present invention to other electric insulating oils may be mixed at any ratio because the electric insulating oil base (esterified product) of the present invention is excellent in compatibility.
  • the other electric insulating oil is 100 parts by mass or less with respect to 100 parts by mass of the base for the electric insulating oil of the present invention.
  • Acid value It was determined by a method based on JIS K1557 potentiometry.
  • Acidity stability It was determined by a method based on the JIS C2101 electrical insulating oil test method.
  • Dielectric breakdown voltage It was determined by a method based on the JIS C2101 electrical insulation oil test method.
  • Relative permittivity determined by a method based on the JIS C2101 electrical insulation oil test method.
  • Fatty acid tridalylide content Take about 40 mg of sample into a 3 mL vial, add 0.5 mL of pyridine, 0.4 mL of hexamethyldisilazane, 0.2 mL of trimethylchlorosilane, and trimethylsilylate at 80 ° C for 30 min. The supernatant is analyzed by gas chromatography.
  • Carrier gas N gas, 50mLZ min
  • palm and palm kernel oil-derived mixed fatty acid methyl ester forced methyl plylate (Pastel M-8, manufactured by Lion Co., Ltd.) Z force methyl methyl phosphate (Pastel M—10, manufactured by Lion Corporation) Z methyl la
  • the resulting mixed fatty acid triglyceride base A for electrical insulating oil has an initial acid value of 0.004 mg KOHZg and a moisture content of 90 ppm.
  • Kiyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) for 100 parts by mass of triglyceride prillate (coconard RK, manufactured by Kao Co., Ltd.) 2.5 parts by mass were added, adsorbed at 110 ° C for 2 hours under a reduced pressure of 2.7 kPa, and degassed and dehydrated. Thereafter, the Kiyo Ward 500SH was removed by filtration.
  • the obtained base B for electrical insulating oil had an acid value of 0.002 mg KOHZg and a water content of 50 ppm.
  • Base B for electrical insulating oil was stored in a nitrogen atmosphere with Molecular Sieves 4A (manufactured by Junka Kagaku Kogyo Co., Ltd.) so as not to absorb moisture. I was able to maintain it.
  • Example for 100 parts by mass of edible oils and fats, mixed fatty acid containing 95% by mass or more of fatty acid tridalide (power prillic acid Z power puric acid 75Z25) tridallylide (Leosafe MCT-75, manufactured by Lion Co., Ltd.)
  • Adsorption and deaeration dehydration treatment was performed in the same manner as in 2.
  • the obtained base C for electrical insulating oil had an acid value of 0.005 mg KOH / g and a water content of 80 ppm.
  • Example for 100 parts by weight of edible oils and fats, mixed fatty acid with 95% by mass or more fatty acid tridalide (power prillic acid Z power puric acid 85Z15) tridallylide (Leosafe MCT-85, manufactured by Lion Co., Ltd.)
  • Adsorption and deaeration dehydration treatment was performed in the same manner as in 2.
  • the obtained base D for electrical insulating oil had an acid value of 0.003 mg KOHZg and a water content of 80 ppm.
  • Example 5 Adsorbed and desorbed in the same manner as in Example 2 with respect to 100 parts by mass of 2-ethyl hexanoic acid triglyceride (Exepal TGO, manufactured by Kao Corporation), which is a cosmetic base and has a fatty acid tridalylide content of 97% by mass or more. Gas dehydration was performed.
  • the obtained base E for electrical insulating oil had an acid value of 0.008 mg KOH / g and a water content of 60 ppm.
  • Example 3 80 parts by mass of the base for electrical insulating oil obtained in Example 3 and 20 parts by mass of rapeseed oil (produced by Junsei Chemical Co., Ltd.) were mixed and stirred to obtain a uniform solution.
  • rapeseed oil produced by Junsei Chemical Co., Ltd.
  • adsorption and degassing dehydration treatment was performed on 100 parts by mass of the homogeneous solution.
  • the obtained base F for electrical insulating oil had an acid value of 0.005 mg KOHZg and a water content of 90 ppm.
  • the obtained base G for electrical insulating oil has an acid value of 0.004 mg KOHZg and a water content of 40 ppm.
  • Example 3 C95 parts by mass of the base for electrical insulating oil obtained in Example 3 and 5 parts by mass of polyethylene glycol 2-ethylhexanoic acid diester (Lionon DEH-40, manufactured by Lion Corporation) were mixed and stirred uniformly. It was set as the solution. In the same manner as in Example 2, adsorption and degassing dehydration treatment were performed on 100 parts by mass of this homogeneous solution.
  • the obtained base H for electrical insulating oil had an acid value of 0.006 mg KO HZg and a water content of 70 ppm.
  • Example 2 B60 parts by mass of the base for electrical insulating oil obtained in Example 2 and 40 parts by mass of trimethylolpropane tri-force prelate (Rubinol F-310N, manufactured by Lion Corporation) were mixed and stirred to obtain a uniform solution. Adsorption and deaeration dehydration treatment was performed on 100 parts by mass of the homogeneous solution in the same manner as in Example 2.
  • the obtained base I for electrical insulating oil had an acid value of 0.007 mg KOHZg and a water content of 80 ppm.
  • Rapeseed oil (Comparative Example 1 produced by Junsei Chemical Co., Ltd.), Rapeseed oil isobutyl ester (Comparative Example 2 production method: described in Patent Document 4), 2-Ethylhexyl laurate (Comparative Example 3 production method: described in Patent Document 6) 3, 5, 5-trimethylhexanoic acid pentaerythritol ester (Comparative Example 4 production method: described in Patent Document 5), mineral oil (Comparative Example 5 manufactured by Nippon Oil Corporation) as is, base for electrical insulation oil It was.
  • Table 1 summarizes the constituent fatty acids, constituent alcohols, and physical property test results for the bases A to I for electrical insulating oil and Comparative Examples 1 to 5 obtained in the above Examples. .
  • Rapeseed oil Stearic acid Several%
  • medium-chain fatty acid triglycerides obtained in Examples 1 to 4 are edible fats and oils derived from vegetable oils, their safety to human bodies has been demonstrated and the burden on the environment is extremely small.
  • the fatty acid triglyceride obtained in Example 5 is also a cosmetic base, safety has been demonstrated.
  • the volume, weight, etc. of the transformer are affected by the specific heat, thermal conductivity, and kinematic viscosity of the electrical insulating oil. Among them, the effect of kinematic viscosity is large and the smaller the value, the more advantageous the cooling design, and a lighter and more compact can be expected.
  • the kinematic viscosities of the bases A to I for electrical insulating oils of the inventive examples 1 to 9 are 12.5 to 17 (mm 2 Zs), compared with the kinematic viscosity 36 (mmVs) of the rapeseed oil of the comparative example 1. small.
  • Example 1 of the present invention A base for electrical insulating oil A (kinematic viscosity 14mm 2 Zs) (Example 14) and comparison Example 1 rapeseed oil (Comparative Example 8) was used to test a 66Zl lkV30MVA specification transformer. And compared the specifications. The results are shown in Table 3. In the trial design, the specific heat, thermal conductivity, density, and volume expansion coefficient of each electrical insulating oil were taken into consideration for comparison.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Insulating Materials (AREA)
  • Lubricants (AREA)
  • Transformer Cooling (AREA)

Abstract

 炭素数6~14、好ましくは8~12の直鎖または分岐の飽和または不飽和脂肪酸と、グリセリンとのエステル化物を主成分とする電気絶縁油用基剤。これにより、電気特性、酸化安定性、冷却特性、難燃性および安全性に優れた電気絶縁油用基剤を提供することができる。特に、炭素数6~14の直鎖または分岐の飽和または不飽和脂肪酸として、植物油由来の脂肪酸を原料とした食用油脂を用いることで、エネルギー・環境問題に対応し得る電気絶縁油用基剤となる。

Description

明 細 書
電気絶縁油用基剤
技術分野
[0001] 本発明は、電気絶縁油用基剤に関し、さらに詳述すると、電気特性、冷却特性、難 燃性に優れる電気絶縁油用基剤に関する。
背景技術
[0002] 変圧器、ケーブル、遮断器、コンデンサーなどの絶縁、冷却などの目的で使用され る電気絶縁油として、古くから重質原油を真空蒸留によって所定の留分に分け、硫 酸、アルカリ、水洗、白土などの処理によって精製された鉱油系絶縁油や、ジフエ二 ル、シリコーン、フタル酸エステルなどの合成化合物系絶縁油が使用されてきた。
[0003] しかし、鉱油系絶縁油は、引火性が高いため、安全性等の点で問題があるだけで なぐエネルギー問題や環境問題から、今後その使用が困難になる可能性がある。 一方、合成化合物系絶縁油も、引火性が高い、高価であるなどの問題を有しており 、特に、フタル酸エステルは内分泌撹乱作用の疑いが指摘されている。
なお、 PCBが使用された時期もあったが、安全性、毒性、環境汚染等に大きな問題 を有しているため、電気機器への使用は禁止された。
[0004] このような経緯から、安全性に優れる大豆油、菜種油、ヒマシ油等の天然植物油を 電気絶縁油として活用することが期待されている。しかし、例えば大型変圧器のよう に電気絶縁油の対流で内部を冷却する方式の機器に植物油を適用する場合には、 植物油の粘度が高いこと、流動点が高いこと、および酸素や熱に対する安定性が悪 いことが欠点になる(特許文献 1)。このため、これらの植物油を電気絶縁油として使 用する場合、従来、鉱油系や合成化合物系の絶縁油と混合していた。
しかし、鉱物系や合成化合物系の絶縁油を混合したのでは、これらの絶縁油に由 来する上記問題点を根本的に解決することにはならない。
[0005] そこで、近年、菜種油,とうもろこし油,紅花油などの植物油の低級アルコールエス テル化物を電気絶縁油に使用することが提案されて 、る(特許文献 2〜4)。
しかし、これら絶縁油の比誘電率は、電気機器に使用されている絶縁紙のそれと比 ベて小さぐ絶縁紙との誘電率整合が得られないことから、油への電界ストレス集中が 発生し、絶縁上の問題力 機器の小型化を難しくする。しかも、これらの絶縁油は、 引火性が高いうえに、酸素や熱に対する安定性が未だ不十分であるという問題もあ る。
したがって、これらの絶縁油の性能は、今後のエネルギー問題を解消し得る電気絶 縁油としては不十分である。
[0006] この点に鑑み、引火性および流動点が低ぐ生分解性に優れた絶縁油として、トリメ チロールプロパン Zペンタエリスリトールと、炭素数 7〜18の脂肪酸とのエステルイ匕 合物が提案されている (特許文献 5)。しかし、この化合物も粘度が高く冷却特性に劣 るという問題を有している。
[0007] また、本出願人は、粘度、流動性、化学的安定性等に優れた電気絶縁油として、炭 素数 8〜20の高級脂肪酸と、炭素数 6〜14の分岐脂肪族 1価アルコールとのエステ ル化物や、パーム油由来混合脂肪酸および Zまたは大豆油由来混合脂肪酸と、炭 素数 1〜5の脂肪族 1価アルコールまたは炭素数 6〜14の分岐脂肪族 1価アルコー ルとのエステルイ匕物を既に報告して 、る(特許文献 6)。
この電気絶縁油は、粘度、流動性、化学的安定性等には優れているものの、引火 点が比較的低ぐ安全性という点で改良の余地がある。
[0008] 以上のように、引火性が低く安全なうえに、粘度が低く冷却特性に優れ、酸素や熱 に対する安定性が良ぐ比誘電率が高く変圧器などの小型化ができ、人体や環境に 安全であるといった各特性のバランスに優れ、実用上問題なく使用できる電気絶縁 油は皆無であり、さらなる改良、開発が必要とされている。
[0009] 特許文献 1:特開昭 61— 260503号公報
特許文献 2:特開平 9 - 259638号公報
特許文献 3:特開平 11― 306864号公報
特許文献 4:特開 2000— 90740号公報
特許文献 5 :特開 2004— 273291号公報
特許文献 6 :国際公開 2005Z022558号パンフレット
発明の開示 発明が解決しょうとする課題
[0010] 本発明はこのような事情に鑑みてなされたものであり、電気特性、酸化安定性、冷 却特性、難燃性および安全性に優れた電気絶縁油用基剤を提供することを目的とす る。
課題を解決するための手段
[0011] 本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、炭素数 6〜14の直 鎖または分岐の飽和または不飽和脂肪酸と、グリセリンとのエステルイ匕物を主成分と する電気絶縁油用基剤が、電気特性、酸化安定性、冷却特性、および難燃性に優 れることを見いだすとともに、この場合に、炭素数 6〜 14の直鎖または分岐の飽和ま たは不飽和脂肪酸として、植物油由来の脂肪酸を原料とした食用油脂を用いること で、エネルギー ·環境問題に対応し得る安全性に優れた電気絶縁油となることを見出 し、本発明を完成した。
[0012] すなわち、本発明は、
1. 炭素数 6〜14の直鎖または分岐の飽和または不飽和脂肪酸と、グリセリンとのェ ステル化物を主成分とすることを特徴とする電気絶縁油用基剤、
2. 前記エステル化物が、炭素数 8〜 12の直鎖または分岐の飽和または不飽和脂 肪酸と、グリセリンとのエステルイ匕物である 1の電気絶縁油用基剤、
3. 前記エステル化物が、 40°Cにおいて 20mm2Zs以下の動粘度を有し、かつ、 2 00°C以上の引火点を有する 1または 2の電気絶縁油用基剤、
4. 前記エステル化物が、 80°Cにおいて 3. 0以上の比誘電率を有する 1〜3のいず れかの電気絶縁油用基剤、
5. 前記エステル化物が、 60質量%以上含まれる 1〜4のいずれかの電気絶縁油 用基剤、
6. 前記エステル化物が、 95質量%以上の脂肪酸トリダリセライドから構成されてい る 1〜5のいずれかの電気絶縁油用基剤、
7. 1〜6のいずれかの電気絶縁油用基剤を用いた電気機器、
8. 変圧器である 7の電気機器
を提供する。 発明の効果
[0013] 本発明によれば、電気特性、酸化安定性、冷却特性、および難燃性に優れた電気 絶縁油用基剤を提供することができる。
また、炭素数 6〜14の直鎖または分岐の飽和または不飽和脂肪酸として、植物油 由来の脂肪酸を原料とした食用油脂を用いれば、エネルギー ·環境問題に対応し得 る安全性に優れた電気絶縁油用基剤を提供することができる。
発明を実施するための最良の形態
[0014] 本発明に係る電気絶縁油用基剤は、炭素数 6〜14の直鎖または分岐の飽和また は不飽和脂肪酸と、グリセリンとのエステルイ匕物を主成分とするものである。
ここで、電気絶縁油用基剤とは、変圧器,ケーブル,遮断器,コンデンサ一等の電 気機器の絶縁、冷却などの目的で使用される電気絶縁油の主成分となる材料を意 味する。
電気絶縁油には絶縁破壊電圧が高いこと、体積抵抗率が高いこと、誘電正接が小 さいこと、比誘電率が高いこと、粘度が低く冷却特性に優れること、酸素や熱に対す る安定性に優れ化学的に安定なこと、金属に対する腐食性がないこと、熱による膨張 係数が小さく揮発分が少な!、こと、流動点が低く液体状態の温度範囲が十分広 、こ と、不純物を含まないこと等が求められる。また、漏洩時における安全性をも考慮し、 引火点が高いこと、生分解性が良いこと、生物や環境への悪影響が少ないこと等も 求められる。
[0015] 本発明において、炭素数 6〜 14の脂肪酸の具体例としては、カプロン酸、ェナント 酸、力プリル酸、ペラルゴン酸、力プリン酸、ゥンデカン酸、ラウリン酸、トリデカン酸、ミ リスチン酸、 4 イソカプロン酸、 2 ェチルへキサン酸、 3, 5, 5 トリメチルへキサン 酸、 4ーェチルペンタン酸、へキセン酸、オタテン酸、ノネン酸、力プロレイン酸、ミリス トレイン酸等が挙げられ、これらは 1種単独でまたは 2種以上混合して用いることがで きる。
[0016] 上記飽和または不飽和脂肪酸の炭素数が 6未満であると、得られるエステル化物 の電気特性が悪ぐ引火点も低いため安全性に欠ける。一方、炭素数が 14を超える と、得られるエステルイ匕物の粘度が高くなるため、電気絶縁油の冷却特性が低下す るという欠点がある。したがって、得られるエステル化物の粘度を低くして、電気絶縁 油の冷却特性を改善することを考慮すると、脂肪酸の炭素数は 6〜14が好ましい。さ らに、電気絶縁油の冷却特性を改善した上で、酸素や熱に対する安定性をも高める ことを考慮すると、脂肪酸の炭素数は 8〜12が好ましい。
[0017] 炭素数 8〜12の脂肪酸の具体例としては、力プリル酸、ペラルゴン酸、力プリン酸、 ゥンデカン酸、ラウリン酸、 4 イソカプロン酸、 2 ェチルへキサン酸、 3, 5, 5 トリ メチルへキサン酸、 4ーェチルペンタン酸等が挙げられ、これらは 1種単独でまたは 2 種以上混合して用いることができる。
[0018] なお、本発明の電気絶縁油用基剤に用いられる炭素数 6〜14の脂肪酸は、ェネル ギー問題に対応するとともに、環境負荷を低減するという点から、再生可能資源であ るヤシ油、パーム核油、大豆油、パーム油などの植物油由来のものであることが好ま しぐ具体的には、上記で例示した脂肪酸の中でも、植物油由来の力プリル酸、ペラ ルゴン酸、力プリン酸、ゥンデカン酸、ラウリン酸が最適である。
[0019] 本発明の電気絶縁油用基剤を構成するエステルイ匕物の原料となるグリセリンは、脂 肪酸と反応してエステルイ匕物を与えるアルコールの中で最も優れた性能を発揮する ものである。例えば、 1価アルコールの場合、これを用いて得られるエステル化物は、 引火点が低く安全性に難があり、また、比誘電率も低いため変圧器の小型化が難し いという欠点がある。また、ベンジル基、フエ-ル基等の芳香族基を持つアルコール は、人体に有害である可能性が高ぐ安全性という点力も不適である。また、エリトリツ ト、ペンタエリトリット、ァラビット、キシリット、ソルビット、ソノレビタン、マンニット、マンニ タン、ガラクチットなどの 4価以上の多価アルコールの場合、これを用いて得られるェ ステルイ匕物は粘度が高いため、変圧器の電気絶縁油用基剤として用いた場合の冷 却特性に劣る。さらに、エチレングリコール、トリメチレングリコール、 1, 4 ブタンジォ ール、 1, 5 ペンタンジオール、 1, 6 へキサンジオール、 1, 7 ヘプタンジォー ル、 1, 8 オクタンジオール、 1, 9ーノナンジオール、 1, 10 デカンジオール、 1, 1 2 ドデカンジオール、 1, 16 へキサデカンジオール、ジエチレングリコール、トリエ チレングリコール、テトラエチレンダリコール、ジプロピレングリコール、ポリエチレング リコール、ポリプロピレングリコール、トリメチロールプロパンなどの 2〜3価アルコール の場合、これを用いて得られるエステルイ匕物は、引火点、粘度などの点で所望の性 能を満足する場合もある力 石油由来の化学合成アルコールであるため、エネルギ 一問題対策、および環境負荷の低減という点からは不適である。
[0020] すなわち、グリセリンの場合、これを用いて得られるエステルイ匕物は、電気絶縁油に 要求される粘度、引火点、比誘電率および酸ィ匕安定性などの諸特性を満足し、かつ 、グリセリンが再生可能資源であるヤシ油、パーム核油、大豆油、パーム油、菜種油、 とうもろこし油などの植物油中の油脂の構成成分として広く分布しているため、ェネル ギー問題対策、および環境負荷の低減と ヽぅ点で極めて優れて ヽる。
[0021] グリセリンの製法としては、特に限定されるものではなぐ(1)植物油の油脂、動物 の脂質分解または石酸製造の際、副産物たる廃液を精製、濃縮した粗グリセリンから 製造する、(2)プロピレンと塩素とから得たクロルヒドリンを加水分解する、(3)酵母の グリセリン発酵による、などの方法が挙げられる力 エネルギー問題対策、および環 境負荷の低減という点で、植物油の油脂分解または植物油からの石鹼製造の際、副 産物である廃液を精製、濃縮した粗グリセリンカゝら得る手法が好適である。
[0022] 本発明の電気絶縁油用基剤に含まれるエステルイ匕物は、炭素数 6〜14の直鎖ま たは分岐の飽和または不飽和脂肪酸とグリセリンとのエステルイ匕物であれば、特に限 定されるものではないが、力プロン酸トリグリセライド、ェナント酸トリグリセライド、カプリ ル酸トリグリセライド、ペラルゴン酸トリグリセライド、力プリン酸トリグリセライド、ゥンデ力 ン酸トリグリセライド、ラウリン酸トリグリセライド、トリデカン酸トリグリセライド、ミリスチン 酸トリグリセライド、 4 イソ力プロン酸トリグリセライド、 2 ェチルへキサン酸トリグリセ ライド、 3, 5, 5—トリメチルへキサン酸トリグリセライド、 4ーェチルペンタン酸トリグリセ ライド、へキセン酸トリグリセライド、オタテン酸トリグリセライド、ノネン酸トリグリセライド 、力プロレイン酸トリグリセライド、ミリストレイン酸トリグリセライド、これらの 2種以上の混 合物等を用いることが好ましぐこれらを用いることで電気絶縁油用基剤として電気特 性、冷却特性、酸化安定性、難燃性、安全性の諸特性のバランスに優れたものとなる
[0023] 特に、酸素や熱に対する化学安定性を高めることを考慮すると、二重結合を有しな い飽和脂肪酸とグリセリンとのエステルイ匕物がより好ましぐ上述したエステルイ匕物の 中でも力プロン酸トリグリセライド、ェナント酸トリグリセライド、力プリル酸トリグリセライド 、ペラルゴン酸トリグリセライド、力プリン酸トリグリセライド、ゥンデカン酸トリグリセライド
、ラウリン酸トリグリセライド、トリデカン酸トリグリセライド、ミリスチン酸トリグリセライド、 4 —イソ力プロン酸トリグリセライド、 2—ェチルへキサン酸トリグリセライド、 3, 5, 5—トリ メチルへキサン酸トリグリセライド、 4—ェチルペンタン酸トリグリセライドを好適に用い ることがでさる。
[0024] さらに、上述のように、エネルギー問題対策、および環境負荷の低減という点からは 再生可能資源であることが望ましぐし力も、人体にも安全であることが望ましいため、 植物油由来の力プロン酸トリグリセライド、ェナント酸トリグリセライド、力プリル酸トリダリ セライド、ペラルゴン酸トリグリセライド、力プリン酸トリグリセライド、ゥンデカン酸トリダリ セライド、ラウリン酸トリグリセライド、トリデカン酸トリグリセライド、ミリスチン酸トリグリセ ライドが好適であり、例えば、既に中鎖脂肪酸トリダリセライドの食用油脂として商品 化されている花王 (株)製ココナードシリーズ (RK、 ML、 MT)、理研ビタミン (株)製 アクターシリーズ(M—107R、 M—l、 M— 2、 M— 3、 M— 4)、ライオン (株)製レオ セーフ MCT—75、 MCT— 85などが好適である。
[0025] 上記エステルイ匕物は、公知の種々のエステルイ匕法を用いて製造することができ、例 えば、(1)炭素数 6〜14の直鎖または分岐の飽和または不飽和脂肪酸とグリセリンと を、酸、アルカリまたは有機金属触媒の存在下で反応してエステルイ匕させる方法、(2 )炭素数 6〜 14の直鎖または分岐の飽和または不飽和脂肪酸エステルイ匕物とグリセ リンとを、酸、アルカリまたは有機金属触媒の存在下で反応してエステル交換させる 方法、(3)パーム油、大豆油、ヤシ油およびパーム核油といった植物油を蒸留等によ り分留する方法、(4)先にパーム油、大豆油、ヤシ油およびパーム核油といった植物 油とグリセリンとを酸、アルカリまたは有機金属触媒の存在下で反応してエステル交 換させ、蒸留等により分留する方法などにより製造することができる。これらの製造方 法において、炭素数 6〜14の直鎖または分岐の飽和または不飽和脂肪酸として、ま た、グリセリンとして、食用で用いられた植物油の廃油、廃酸、廃脂肪酸エステルを再 禾 IJ用することちでさる。
[0026] 本発明の電気絶縁油用基剤を構成するエステル化物は、グリセリンの 3つの水酸基 の一部がエステルイ匕されずに残って 、る脂肪酸モノダリセライド、脂肪酸ジグリセライ ドなどの部分エステルであってもよいが、絶縁油の電気特性の向上という点から、当 該グリセリンの全ての水酸基がエステルイ匕された脂肪酸トリグリセライドを含むものが 好ましい。すなわち、電気特性を向上させる点から、エステルイ匕物力 好ましくは 95 質量%以上、より好ましくは 98質量%以上、より一層好ましくは 99質量%以上の脂 肪酸トリグリセライドによって構成されていることが好適である。
[0027] 本発明において、エステル化物は電気絶縁油用基剤の主成分として含まれるもの であるが、特に、粘度、引火点、比誘電率および酸化安定性等の要求品質をバラン スよく満たすという点から、上記エステルイ匕物は電気絶縁油全量中に 60質量%以上 含まれることが好ましぐ 80質量%以上含まれることがより好ましぐ 90質量%以上含 まれることが更に好ましい。
なお、「主成分」とは、電気絶縁油用基剤中に当該成分が 50質量%超含まれること を意味する。
[0028] 本発明の電気絶縁油用基剤は、 40°Cにおける動粘度が 20mm2Zs以下であること が好ましい。動粘度が 20mm2Zsを超えた場合、引火点が高くなり安全性が向上す るものの、変圧器内などでの絶縁油の循環が不十分となり、冷却が不完全となって過 熱の原因となる虞がある。特に、 40°Cにおける動粘度が 10〜17mm2Zsであると、 引火点が高く安全で、かつ粘度が低く冷却特性に優れた電気絶縁油用基剤とするこ とがでさる。
また、本発明の電気絶縁油用基剤は、 80°Cにおける比誘電率が 3. 0以上であるこ とが好ましい。 80°Cにおける比誘電率が 3. 0未満では、変圧器内などで使用されて いる絶縁紙との比誘電率に差が生じ、変圧器などの小型化が困難である虞がある。 この比誘電率が 3. 0以上、好ましくは 3. 4以上であると、絶縁紙の比誘電率に近くな り部分放電が起きに《なるため、変圧器などの小型化が可能となるという利点がある 。ただし、比誘電率が過度に高いと、体積抵抗率が低下する傾向があるため、 80°C における比誘電率の上限は、 6. 0程度であることが好ましい。
[0029] 本発明の電気絶縁油用基剤の引火点は、 200°C以上が好ましぐ引火点が高いほ ど安全であることから 230°C以上がより好ましい。引火点が 200°C未満では、日本国 内における消防法の危険物第 4類第三石油類に該当し、漏洩の際に火災などが生 じる虞がある。特に、引火点 230°C以上の中鎖脂肪酸トリダリセライドの食用油脂など は、日本国消防法の動植物油類に該当するものであり、火災などの危険性が低く安 全性に優れているため好適である。さらには、引火点が 250°C以上であると、安全性 が高いため消防法危険物カゝら除外されることから、本発明の電気絶縁油用基剤の引 火点は 250°C以上が好ましい。ただし、菜種油のように引火点が 300°Cを超えると、 粘度が高くなり変圧器などの冷却特性に劣るため、その上限は 300°C以下が好まし い。
[0030] また、本発明の電気絶縁油用基剤は、酸素や熱に対する安定性を確保するために 、 JIS C2101による酸ィ匕安定性試験(120°C、 75時間)において、劣化後の全酸価 が 0. 5mgKOHZg以下が好ましぐ 0. 3mgKOHZg以下がより好ましい。
さらに、本発明の電気絶縁油用基剤は、優れた電気特性を確保するために、 JIS C2101による誘電正接(80°C)が 5%以下、絶縁破壊電圧が 30KV以上、特に 60K V以上であることが好まし 、。
[0031] そして、本発明の電気絶縁油用基剤は、自然環境への負荷を低減するために、好 ましくは 60%以上(28日後)、より好ましくは 80%以上(28日後)、より一層好ましくは 85%以上(28日後)の生分解性を有するものが好適である。
例えば、中鎖脂肪酸 (力プリル酸 Z力プリン酸)トリグリセライドは、 IUCLID Datas et (Dataset created by: EUROPEAN COMMISSION -European Chem ical Bureau)に生分解性 93% (28日後)との結果が報告されており、自然環境へ の負荷力小さい電気絶縁油用基剤であって、本発明に好適に使用できる。
[0032] 同様に自然環境に対する負荷影響を低減するという点から、本発明の電気絶縁油 用基剤は、魚毒性試験において、 LC50濃度が 50mgZL以上(96時間)を有するこ とが好ましい。
例えば、中鎖脂肪酸 (力プリル酸 Z力プリン酸)トリグリセライドは、 IUCLID Datas et (Dataset created by: EUROPEAN COMMISSION -European Chem ical Bureau)に魚毒性試験において LCO濃度が 53mgZL以上(96時間)との結 果が報告されており、自然環境への負荷が極めて小さい電気絶縁油用基剤であって 、本発明に好適に使用できる。
[0033] また、本発明の電気絶縁油用基剤は、人体や動物に及ぼす影響を把握できるもの とするために、急性毒性や変異原性などの有害性情報が、データとして取得されて いることが好ましい。例えば、 2—ェチルへキサン酸トリグリセリド (花王 (株)製ェキセ ノ ーノレ TGO) ίま、
急性毒性:経口、ラット、 LD50 : > 2500mg/kg
皮膚刺激性:ヒト、 60%、 48時間閉鎖貼付試験:平均評点 =0. 05
(判定基準と評点:反応は認められない =0、かすかな紅斑 =0. 5、明瞭な紅斑 = 1 、紅斑および浮腫 = 2、紅斑、浮腫に小水疱、丘疹を伴う = 3)
モルモット、 100%24時間閉鎖貼付試験:平均評点 =0. 2
モルモット、 100%、 4回連続塗布試験:平均評点 = 1. 0
(判定基準と評点:反応は認められない =0、かすかな紅斑を認める = 1、明瞭な紅 斑を認める = 2、紅斑と浮腫を認める = 3、紅斑と浮腫および力皮または壊死を認め る =4)
目刺激性:ゥサギ、 100%、 OECD405法:刺激性なし (EUの分類基準による) 変異原性: Ames試験(サルモネラ菌 TA98、 TA100):陰性
生殖毒性:経口、ラット、妊娠 6— 15日: NOAEL> 1000mgZkg
という有害性情報がデータとして取得されており、人体や動物に及ぼす影響力 、さい と把握できる電気絶縁油用基剤であって、本発明に好適に使用できる。
[0034] また、中鎖脂肪酸 (力プリル酸 Z力プリン酸)トリダリセライドも IUCLID Dataset (D ataset created by: EUROPEAN COMMISSION -European Chemical Bureau)に有害性情報が詳細に報告されており、人体や動物に及ぼす影響が小さ いと把握できる電気絶縁油用基剤であって、本発明に好適に使用できる。
[0035] 本発明の電気絶縁油用基剤は、電気特性を改善するために、グリセリンの除去 '分 離、無機成分除去、中和、水洗、蒸留、白土処理、脱気処理等の精製を施されたも のであることが好ましい。特に、エステル化物の酸価および含水率が高い場合、電気 特性が悪ィ匕する傾向にあることから、少なくとも酸価低減を目的とした活性白土 Z活 性アルミナ等での吸着処理および水分低減を目的とした脱気処理がなされているこ とが好ましい。
活性白土 Z活性アルミナ吸着処理は、遊離脂肪酸や酸 Zアルカリ Z有機金属触 媒等を除去するために行うものであり、例えば、エステルイ匕物に活性白土および Zま たは活性アルミナを添加し、遊離脂肪酸等を吸着させた後、濾過により活性白土およ び Zまたは活性アルミナを除去する方法により行われる。
[0036] 具体的には Mg、 Al、 Si等を主成分とする無機合成吸着剤であるキヨ一ワードシリ ーズ(キヨ一ワード 100、 200、 300、 400、 500、 600、 700、 1000、 2000等、協和 化学工業 (株)製)や、トミター ADシリーズ(トミター AD100、 500、 600、 700等、富 田製薬 (株)製)をエステルイ匕物 100質量部に対し 0. 01〜5質量部加え、 20°C〜16 0°Cで 10分〜 10時間、空気下、窒素やアルゴン等の不活性ガス雰囲気下、または 減圧条件下で吸着処理するのが好ま ヽ。この操作によりエステルイ匕物の酸価を好 ましく ίま 0. 0001〜0. OlmgKOH/g以下、より好ましく ίま 0. 0001〜0. 005mgK OHZg以下に低減させることができ、その結果、エステルイ匕物の電気特性を著しく高 めることができる。
[0037] 脱気処理は、エステル化物中の水分、空気を除去するために行うものであり、具体 的には窒素置換後、 20〜160°C、 10分〜 10時間、真空度 0. lkPa〜80kPaにより 減圧留去する。この際、トルエン、ケロシン、イソプロピルアルコール、エタノール、ピリ ジンなどの、水と共沸可能な化合物を、エステル化物中の水分に対し 0. 1〜3モル 添加して共沸を行ってもよい。あるいは、真空浄油機などの装置を用いて水分除去 を行ってもよい。これらの操作によりエステル化物中の水分を好ましくは 0. 1〜: LOOp pm以下に、より好ましくは 0. l〜50ppm以下に低減させることができ、その結果エス テルィ匕物の電気特性を著しく高めることができる。
脱気処理後、エステルィヒ物が再び水分を吸水しないように、窒素雰囲気下で、また は乾燥空気下で保存することが好ましい。さらに、モレキュラーシーブス 4A (純正化 学 (株)製)等の脱水剤を、エステルイ匕物 100質量部に対し、 0. 1〜30質量部添加し て保存するのもよい。モレキュラーシーブス 4A等の脱水剤の作用により、長期間、含 水量 0. l〜50ppm以下の状態を維持することができる。
[0038] 上記エステルイ匕物は、それ自体単品でも電気絶縁油として使用することができるが 、酸化防止剤、金属不活性化剤、流動帯電防止剤、分子修復剤、流動点降下剤等 の添加剤を配合して使用することもできる。
酸化防止剤としては、例えば、 2, 6 ジー tーブチルー p クレゾール、ブチル化ヒ ドロキシァ-ソール、 2, 6 ジ tーブチルー 4 ェチルフエノール、ステアリル 13 - (3, 5—ジ一 t—ブチル 4—ヒドロキシフエ-ル)プロピオネートなどのモノフエノー ル系酸化防止剤; 2, 2,ーメチレンビス(4ーメチルー 6 t—ブチルフエノール)、 2, 2 ,ーメチレンビス(4ーェチルー 6— t—ブチルフエノール)、 4, 4'ーチォビス(3—メチ ルー 6— t ブチルフエノール)、 4, 4,ーブチリデンビス(3—メチルー 6— t ブチル フエノール)などのビスフエノール系酸化防止剤;テトラキスー [メチレン 3—(3,, 5, —ジ一 t—ブチル 4,一ヒドロキシフエ-ル)プロピオネート]メタン、トコフエロール類 などの高分子型フエノール類;ジラウリル 3, 3' チォジプロピオネート、ジミリスチル 3, 3,一チォジプロピオネート、ジステアリル 3, 3,一チォジプロピオネートなどの硫黄 系酸化防止剤;トリフエ-ルホスフアイト、ジフエ-ルイソデシルホスファイトなどのリン 系酸ィ匕防止剤等が挙げられる。中でも、上記エステルイ匕物との相溶性に優れ、酸ィ匕 防止効果の高い 2, 6 ジー tーブチルー p クレゾール、ブチル化ヒドロキシァ-ソ ール、 2, 6 ジ— t—ブチル—4 ェチルフエノール、ステアリル— j8—(3, 5 ジ— t ブチル 4 ヒドロキシフエ-ル)プロピオネートなどのモノフエノール系酸化防止 剤や、植物油脂に含まれ人体への安全性が高いトコフエロール類が優れている。
[0039] 金属不活性化剤としては、例えば、ベンゾトリァゾール、ベンゾトリアゾール誘導体、 チアゾールなどが用いられる。中でも、流動帯電防止剤としても作用するべンゾトリア ゾール、ベンゾトリアゾール誘導体が優れて!/、る。
分子修復剤としては、例えば、ジフヱ-ルカルボジイミド、ジトリルカルボジイミド、ビ ス(イソプロピルフエ-ル)カルボジイミド、ビス(ブチルフエ-ル)カルボジイミドなどの ビス(アルキルフエ-ル)カルボジイミド、フエ-ルグリシジルエーテル、フエ-ルグリシ ジルエステル、アルキルグリシジルエーテル、アルキルグリシジルエステルなどのェポ キシィ匕合物等が挙げられる。
[0040] 流動点降下剤としては、例えば、アルキルメタタリレート系ポリマーおよび Zまたは アルキルアタリレート系ポリマーが挙げられ、好ましくは質量平均分子量が 5千〜 50 万程度で、炭素数 1〜20の直鎖または分岐鎖アルキル基のポリアルキルメタタリレー トまたはアルキルアタリレート系ポリマーを好適に用いることができる。具体的には、ポ リヘプチルアタリレート、ポリへプチルメタタリレート、ポリノニルアタリレート、ポリノ-ル メタタリレート、ポリゥンデシルアタリレート、ポリゥンデシルメタタリレート、ポリトリデシル アタリレート、ポリトリデシルメタタリレート、ポリペンタデシルアタリレート、ポリペンタデ シルメタタリレート、ポリへプタデシルアタリレート、ポリへプタデシルメタタリレート、ポリ メチルアタリレート、ポリメチルメタタリレート、ポリプロピルアタリレート、ポリプロピルメタ タリレート等が挙げられる。特に、三洋化成工業 (株)製ァクルーブ 100シリーズ(132 、 133、 136、 137、 138、 146、 160)力 エステノレィ匕物の流動点、低下作用およびノヽ ンドリング ¾の点でよい。
[0041] これらの酸化防止剤、金属不活性化剤、流動帯電防止剤、分子修復剤および流動 点降下剤は、個々の要求品質に応じて 1種単独でまたは 2種以上組み合わせて添カロ すればよい。添加量は電気絶縁油用基剤中、各添加剤とも 3質量%以下とするのが 好適であるが、酸化防止剤は 0. 01〜1質量%、金属不活性化剤および流動帯電防 止剤は 5〜: LOOOppm、分子修復剤は 0. 01〜1質量%、流動点降下剤は 0. 01〜1 質量%の範囲でそれぞれ要求品質に応じて添加するのがよい。ただし、電気特性に 悪影響を及ぼさな 、ために、添加剤全量で 3質量%以下とするのが好ま 、。
また、上記添加剤以外に、摩耗防止剤、極圧剤、粘度指数向上剤、清浄分散剤等 の添加剤を、単独でまたは複数種類組み合わせて添加することもできる。これらの添 加剤の添加量は特に制限されないが、電気絶縁油用基剤中に 1質量%以下とするこ とが好ましい。
[0042] 本発明の電気絶縁油用基剤では、エステルイ匕物を構成する所定のグリセリンに替 えて、当該グリセリンのアルキレンォキシド付加体を用いることもできる。このようなダリ セリンアルキレンォキシド付加体のエステルイ匕物を用いることで、比誘電率を一層向 上させることができる。なお、本発明においては、上記エステルイ匕物とグリセリンアル キレンォキシド付加体のエステル誘導体とを混合して電気絶縁油用基剤とすることも できる。
アルキレンォキシドとしては、エチレンォキシド、プロピレンォキシド、および Zまた はこれらの混合物を、グリセリンに対して 1〜15モル、好ましくは 1〜10モル付加させ たグリセリンアルキレンォキシド付加体が挙げられる。
アルキレンォキシド付加体の製法としては、例えば、本発明のエステルイ匕物に、ァ ルミ-ゥムゃマグネシウムなどの金属酸ィ匕物を主体とした触媒等を用いて、アルキレ ンォキシドを挿入反応させる力、エステルイ匕物にグリセリンのアルキレンォキシド付カロ 体をエステル化 z交換反応させる方法が挙げられる。
[0043] なお、本発明の電気絶縁油用基剤は相溶性に優れるため、その他の電気絶縁油と 混合して使用することも可能である。使用可能なその他の電気絶縁油としては、例え ば、アルキルベンゼン、アルキルインダン、ポリブテン、ポリ一 α—ォレフイン、フタル 酸エステル、ジァリールアルカン、アルキルナフタレン、アルキルビフエ-ル、トリァリ ールアルカン、ターフェ-ル、ァリールナフタレン、 1, 1ージフエ-ルエチレン、 1, 3 ージフエニルブテン—1, 1, 4ージフエ二ルー 4ーメチルーペンテン 1、シリコーン 油、鉱油、植物油、植物油の低級アルコールエステルイ匕物等が挙げられる。
[0044] これらその他の電気絶縁油の中でも、エネルギー問題対策、環境に対する負荷の 低減および安全性を考慮した場合、植物油またはシリコーン油を用いることが好まし ぐまた、低粘度化を考慮した場合、鉱油または植物油の低級アルコールエステルイ匕 物を用いることが好ましい。
本発明の電気絶縁油用基剤と、その他の電気絶縁油との混合割合は、本発明の 電気絶縁油用基剤 (エステル化物)が相溶性に優れるため、任意の割合で混合する ことが可能であるが、環境負荷などを低減することを考慮すると、本発明の電気絶縁 油用基剤 100質量部に対し、その他の電気絶縁油が 100質量部以下であることが好 ましい。
実施例
[0045] 以下、実施例および比較例を挙げて、本発明をより具体的に説明する力 本発明 は、下記の実施例に限定されるものではない。
なお、以下の実施例および比較例において、酸価、水分、動粘度、引火点、酸ィ匕 安定性、絶縁破壊電圧、比誘電率および脂肪酸トリダリセライド含有量は、下記の方 法により、測定した値である。 (1)酸価: JIS K1557電位差測定法に準拠した方法により求めた。
(2)水分: JIS K0068カールフィッシャー法に準拠した方法により求めた。
(3)動粘度: JIS K2283キャノン—フェンスケ粘度計に準拠した方法により求めた。
(4)引火点: JIS K2265クリーブランド開放式に準拠した方法により求めた。
(5)酸ィ匕安定性: JIS C2101電気絶縁油試験法に準拠した方法により求めた。
(6)絶縁破壊電圧: JIS C2101電気絶縁油試験法に準拠した方法により求めた。
(7)比誘電率: JIS C2101電気絶縁油試験法に準拠した方法により求めた。
(8)脂肪酸トリダリセライド含有量:試料約 40mgを 3mLバイアル瓶に採り、ピリジン 0 . 5mL、へキサメチルジシラザン 0. 4mL、トリメチルクロロシラン 0. 2mLを加えて 80 °Cで 30分間トリメチルシリルイ匕し、その上澄みをガスクロ分析する。
〈ガスクロ条件〉
ガスクロ装置: GC— 9A, (株)島津製作所製
カラム: 2%OV— 1 /Chromo sorbW - AW - DMCS (60/80mesh) 3mmID X 0. 5mL, (株)島津製作所製
カラム温度: 120→330°C (加速温度; 10°CZ分)
検出器: FID
注入口、検出器温度: 330°C
キャリアガス: Nガス, 50mLZ分
2
注入量:1
[実施例 1]
撹拌機、温度計、分縮および全縮コンデンサを取り付けた 4つ口フラスコに、ヤシ、 パーム核油由来の混合脂肪酸メチルエステル (力プリル酸メチル (パステル M— 8、ラ イオン (株)製) Z力プリン酸メチル (パステル M— 10、ライオン (株)製) Zラウリン酸メ チル (パステル M— 12、ライオン (株)製) Zミリスチン酸メチル (パステル M— 14、ラ イオン (株)製) =51Z42Z5Z2質量比)と、グリセリンとを混合脂肪酸メチルエステ ル Zグリセリンのモル比が 4. 0となるように仕込んだ。水酸化カリウム(純正化学 (株) 製) Z酸化亜鉛 (純正化学 (株)製)を触媒として 0. 25質量% (対混合脂肪酸メチル エステル +グリセリン)加え、 180〜200°Cにて 10時間エステル交換を行い、その後 、減圧蒸留、水洗により未反応の混合脂肪酸メチルエステル、グリセリン、副生物の モノグリセリド、ジグリセリドを除去し、 95質量%以上の混合脂肪酸トリグリセライドを得 た。次に得られた混合脂肪酸トリダリセライドに対してキヨ一ワード 700SL/キヨーヮ ード 500SH (協和化学工業 (株)製)を 1質量%Z2. 5質量%添加し、真空度 2. 7k Paの減圧下、 110°Cで 2時間吸着、脱気脱水処理を施した、その後、濾過により、キ ョーワード 700SLZキヨ一ワード 500SHを除去した。得られた混合脂肪酸トリグリセ ライドの電気絶縁油用基剤 Aは初期酸価が 0. 004mgKOHZgであり、水分は 90p pmであつ 7こ。
[0047] [実施例 2]
食用油脂である、脂肪酸トリダリセライド含有量が 97質量%以上の力プリル酸トリグ リセライド (ココナード RK、花王 (株)製) 100質量部に対して、キヨ一ワード 500SH ( 協和化学工業 (株)製)を 2. 5質量部添加し、真空度 2. 7kPaの減圧下、 110°Cで 2 時間吸着、脱気脱水処理を施した。その後、濾過によりキヨ一ワード 500SHを除去し た。得られた電気絶縁油用基剤 Bは、酸価 0. 002mgKOHZg、水分 50ppmであつ た。電気絶縁油用基剤 Bは、水分を吸収しないようモレキュラーシーブス 4A (純正化 学工業 (株)製)を入れ、窒素雰囲気下にして保存したところ、水分は lOppmとなり、 この状態を 1ヶ月間維持できた。
[0048] [実施例 3]
食用油脂である、脂肪酸トリダリセライド含有量が 95質量%以上の混合脂肪酸 (力 プリル酸 Z力プリン酸 = 75Z25)トリダリセライド(レオセーフ MCT— 75、ライオン (株 )製) 100質量部に対して、実施例 2と同様に吸着、脱気脱水処理を行った。得られ た電気絶縁油用基剤 Cは、酸価 0. 005mgKOH/g,水分 80ppmであった。
[0049] [実施例 4]
食用油脂である、脂肪酸トリダリセライド含有量が 95質量%以上の混合脂肪酸 (力 プリル酸 Z力プリン酸 =85Z15)トリダリセライド(レオセーフ MCT— 85、ライオン (株 )製) 100質量部に対して、実施例 2と同様に吸着、脱気脱水処理を行った。得られ た電気絶縁油用基剤 Dは、酸価 0. 003mgKOHZg、水分 80ppmであった。
[0050] [実施例 5] 化粧品用基剤である、脂肪酸トリダリセライド含有量が 97質量%以上の 2—ェチル へキサン酸トリグリセライド (ェキセパール TGO、花王 (株)製) 100質量部に対して、 実施例 2と同様に吸着、脱気脱水処理を行った。得られた電気絶縁油用基剤 Eは、 酸価 0. 008mgKOH/g,水分 60ppmであった。
[0051] [実施例 6]
実施例 3で得られた電気絶縁油用基剤 C80質量部と、菜種油 (純正化学 (株)製) 2 0質量部とを混合攪拌して均一溶液とした。この均一溶液 100質量部に対して、実施 例 2と同様に吸着、脱気脱水処理を行った。得られた電気絶縁油用基剤 Fは、酸価 0 . 005mgKOHZg、水分 90ppmであった。
[0052] [実施例 7]
実施例 3で得られた電気絶縁油用基剤 C80質量部と、パーム油由来混合脂肪酸ィ ソトリデシルエステル (製造法:特許文献 6に記載) 20質量部とを混合攪拌して均一 溶液とした。この均一溶液 100質量部に対して、実施例 2と同様に吸着、脱気脱水処 理を行った。得られた電気絶縁油用基剤 Gは、酸価 0. 004mgKOHZg、水分 40p pmであつ 7こ。
[0053] [実施例 8]
実施例 3で得られた電気絶縁油用基剤 C95質量部と、ポリエチレングリコール 2— ェチルへキサン酸ジエステル (リオノン DEH— 40、ライオン (株)製) 5質量部とを混 合攪拌して均一溶液とした。この均一溶液 100質量部に対して、実施例 2と同様に吸 着、脱気脱水処理を行った。得られた電気絶縁油用基剤 Hは、酸価 0. 006mgKO HZg、水分 70ppmであった。
[0054] [実施例 9]
実施例 2で得られた電気絶縁油用基剤 B60質量部と、トリメチロールプロパントリ力 プリレート (ルビノール F— 310N、ライオン (株)製) 40質量部とを混合攪拌し均一溶 液とした。この均一溶液 100質量部に対して、実施例 2と同様に吸着、脱気脱水処理 を行った。得られた電気絶縁油用基剤 Iは、酸価 0. 007mgKOHZg、水分 80ppm であった。
[0055] [比較例 1〜5] 菜種油(比較例 1 純正化学 (株)製)、菜種油イソブチルエステル (比較例 2 製造 法:特許文献 4に記載)、ラウリン酸 2—ェチルへキシル (比較例 3 製造法:特許文献 6に記載)、 3, 5, 5—トリメチルへキサン酸ペンタエリスリトールエステル (比較例 4 製造法:特許文献 5に記載)、鉱油 (比較例 5 新日本石油 (株)製)をそのまま電気絶 縁油用基剤とした。
[0056] 上記各実施例にて得られた電気絶縁油用基剤 A〜Iおよび比較例 1〜5につ ヽて、 構成脂肪酸、構成アルコール、および物性試験結果を表 1にまとめて示した。
[0057] [表 1]
性試験 動粘度 絶縁破 酸化安定 脂肪酸組成 0。C) 比誘電率 (mgKOH/g) 縁油用 質量部 アルコール (4
(80°C) (KV/2.5
基剤 (質量 ¾)
、mm /s) 120°C mm) 初期値 75h後 カフ。リル酸: 51
カフ'リン酸: 42
1 A 100 グリセリン 14 270 3.5 74 0.004 0.2 ラウリン酸: 5
ミリスチン酸: 2
2 B 100 カフ。リル酸: 100 ク'リセリン 12.5 235 3.8 71 0.002 0.4 カフ。リル酸: 75
3 C 100 グリセリン 13 260 3.6 72 0.005 0.3 カフ'リン酸: 25
カフ。リル酸: 85
4 D 100 ダリセリン 12.5 255 3.7 72 0.003 0.3 カフ。リン酸: 15
2—ェチルへキサン
5 E 100 グリセリン 16 220 3.5 73 0.008 0.2 酸: 100
カフ'リル酸: 75
C:80 グリセリン
カフ'リン酸: 25
へ'ルミチン酸:数%
6 F ステアリン
難油: 酸:数% 17 290 3.3 75 0.005 0.5 才レイン酸: 58 グリセリン
施 20
リノール酸: 22
例 リノレン酸: 11
カフ'リル酸: 75
C:80 ダリセリン
カフ。リン :25
ハ。ルミチン酸: 0.2
7 G 14 tni 250 3.2 72 0.004 0.3 ステアリン酸: 9 ィゾトリデシ
20
才レイン酸: 72 ルァルコール P
リノール酸: 18
カフ'リル酸: 75
C:95 グリセリン
カフ。リン酸: 25
8 H ホ。リエチレン 16 255 4.2 62 0.006 0.4
2—ェチルへキサン
5 ダリコール
酸: 100
Mw-400
B:60 カフ。リル酸: 100 ク'リセリン
9 I トリメチロール 15 260 4.0 70 0.007 0.4
40 カフ'リル酸: 100 フ°口 ン
ハ°ルミチン酸:数%
ステアリン酸:数%
1 菜種油 100 才レイン酸: 58 グリセリン 36 330 2.8 77 0.04 1.2 リノール酸: 22
リノレン酸: 11
へ'ルミチン酸:数%
菜種油 ステアリン酸:数%
ィゾプチル
2 イソブチ fレ 100 才レイン酸: 58 6 210 2.9 80 0.005 1.1 アルコール
エステル リノール酸: 22
比 リノレン酸: 11
較 ラウリン酸
2-ェチル
例 3 2-ェチル 100 ラウリン酸: 100 5 175 2.7 78 0.002 0.3 へキサノール
へキシル
3 ,3,5- トリメチル
へキサン酸 3, 3,5 トリメチルへキ へ-ンタ
4 100 110 >250 >3.0 55 0.02 0.8 へ °ンタエリ サン酸: 100 エリスリトール
スリトール
エステル
5 鉱油 100 8.5 160 2.2 75 <0.01 0.2 表 1に示されるように、実施例 1〜9の電気絶縁油用基剤 A〜Iは、比較例 1〜5の電 気絶縁油用基剤と比べて、冷却特性を示す粘度、安全性を示す引火点、変圧器等 の小型化を可能にする指標である比誘電率、電気絶縁油用基剤としての基本性能 である絶縁破壊電圧、および電気絶縁油用基剤としての酸ィ匕安定性の全てにぉ ヽ てバランスよく優れた値を示していることがわかる。特に、引火点が 250°C以上の実 施例の基剤は、 日本国内における消防法危険物から除外され安全性が高い。
また、実施例 1〜4で得られた中鎖脂肪酸トリグリセリドは、植物油由来の食用油脂 であるため、人体に対する安全性が実証されており、環境への負荷も極めて小さい。 また、実施例 5で得られた脂肪酸トリグリセリドも化粧品用基剤であるため安全性が実 証されている。
[0059] [実施例 10]
実施例 1で得られた電気絶縁油用基剤 Aに対して、 2, 6—ジ— t—ブチル—p—ク レゾールを 0. 1質量%添加し、これを溶解して均一溶液とした。得られた電気絶縁油 用基剤 (初期酸価 0. 004mgKOHZg)の酸ィ匕安定性試験(120°C、 75h)を行 つた結果、酸価は 0. 05mgKOHZgであった。結果を表 2に示す。
[0060] [実施例 11〜13]
電気絶縁油用基剤 E、 F、 Gに対して、実施例 10と同様に各々に 2, 6—ジ— t—ブ チル— p—タレゾールを 0. 1質量%添カ卩し、これを溶解して均一溶液とした。得られ た電気絶縁油用基剤 、G' の酸ィ匕安定性試験(120°C、 75h)を行った結 果を表 2に示す。
[0061] [比較例 6, 7]
比較例 1の菜種油、比較例 2の菜種油イソブチルエステルに対して、実施例 10と同 様に各々に 2, 6—ジ— t—ブチル—p—タレゾールを 0. 1質量0 /0添カ卩し、これを溶解 して均一溶液とした。得られた電気絶縁油用基剤の酸化安定性試験(120°C、 75h) を行った結果を表 2に示す。
[0062] [表 2] 酸化安定性試験 (mgKOH/g)
電気絶縁油用基剤
初期値 120°C , 75時間後
実施例 10 Α' 0.004 0.05
実施例 1 1 Ε' 0.008 0.02
実施例 12 F' 0.005 0.1
実施例 13 G' 0.004 0.02
比較例 6 菜種油配合物 0.04 0.7
菜種油イソプ'チルエステル
比較例 7 0.005 0.7
配合物
[0063] 表 2に示されるように、実施例 10〜13の配合物 , Ε' , F' , G' は、比較例 6 , 7のそれと比べて、 2, 6 ジ tーブチルー ρ タレゾールの添カ卩により酸化安定性 が大きく改良され、酸素や熱に対する安定性が高いことがわ力る。
[0064] [実施例 14,比較例 8]
電気絶縁油を用いて変圧器を構成する場合、電気絶縁油の比熱、熱伝導率、動 粘度の大きさにより変圧器の容積寸法、重量等に影響を与える。その中で動粘度の 効果は大きぐその値が小さい方が冷却設計上有利となり、軽量 'コンパクトィ匕が期待 できる。
本発明実施例 1〜9の電気絶縁油用基剤 A〜Iの動粘度は、 12. 5〜17 (mm2Zs) であり、比較例 1の菜種油の動粘度 36 (mmVs)と比べて小さい。
本発明の実施例 1の電気絶縁油用基剤 A (動粘度 14mm2Zs) (実施例 14)と比較 例 1の菜種油(比較例 8)を用いて 66Zl lkV30MVA仕様の変圧器について試設 計を行い、各緒元の比較を行った。その結果を表 3に示す。なお、試設計では各電 気絶縁油の比熱、熱伝導率、密度、体積膨張率も考慮して比較を行った。
[0065] [表 3]
Figure imgf000022_0001
[0066] 表 3の結果から、比較例 1の菜種油を用いた変圧器 (比較例 8)より、電気絶縁油用 基剤 Aを用いた変圧器 (実施例 14)が、容積で 26%、重量で 10%軽量、コンパクト 化されたことがわかる。また、冷却器も 41%コンパクトィ匕されたことがわかる。

Claims

請求の範囲
[1] 炭素数 6〜14の直鎖または分岐の飽和または不飽和脂肪酸と、グリセリンとのエス テル化物を主成分とすることを特徴とする電気絶縁油用基剤。
[2] 前記エステルイ匕物が、炭素数 8〜12の直鎖または分岐の飽和または不飽和脂肪 酸と、グリセリンとのエステルイ匕物である請求項 1記載の電気絶縁油用基剤。
[3] 前記エステル化物が、 40°Cにおいて 20mm2Zs以下の動粘度を有し、かつ、 200
°C以上の引火点を有する請求項 1または 2記載の電気絶縁油用基剤。
[4] 前記エステル化物が、 80°Cにおいて 3. 0以上の比誘電率を有する請求項 1〜3の
V、ずれか 1項記載の電気絶縁油用基剤。
[5] 前記エステル化物が、 60質量%以上含まれる請求項 1〜4のいずれか 1項記載の 電気絶縁油用基剤。
[6] 前記エステル化物が、 95質量%以上の脂肪酸トリダリセライドから構成されて 、る 請求項 1〜5のいずれか 1項記載の電気絶縁油用基剤。
[7] 請求項 1〜6のいずれかに記載の電気絶縁油用基剤を用いた電気機器。
[8] 変圧器である請求項 7記載の電気機器。
PCT/JP2006/317620 2005-09-09 2006-09-06 電気絶縁油用基剤 WO2007029724A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800366242A CN101278362B (zh) 2005-09-09 2006-09-06 电绝缘油用基剂
US12/066,045 US8187508B2 (en) 2005-09-09 2006-09-06 Base agent for electrical insulating oil
KR1020087005873A KR101313969B1 (ko) 2005-09-09 2006-09-06 전기 절연유용 기제
JP2007534441A JP5158347B2 (ja) 2005-09-09 2006-09-06 電気絶縁油用基剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-262280 2005-09-09
JP2005262280 2005-09-09

Publications (1)

Publication Number Publication Date
WO2007029724A1 true WO2007029724A1 (ja) 2007-03-15

Family

ID=37835843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317620 WO2007029724A1 (ja) 2005-09-09 2006-09-06 電気絶縁油用基剤

Country Status (5)

Country Link
US (1) US8187508B2 (ja)
JP (1) JP5158347B2 (ja)
KR (1) KR101313969B1 (ja)
CN (1) CN101278362B (ja)
WO (1) WO2007029724A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077338A (ja) * 2008-09-29 2010-04-08 Kao Corp 長鎖脂肪酸トリグリセライドの製造方法
US8299281B2 (en) 2009-03-27 2012-10-30 Exxonmobil Research And Engineering Company Process for making triglyceride plasticizer from crude glycerol
JP2013135050A (ja) * 2011-12-26 2013-07-08 Meiden T&D Co Ltd 移動用変圧器
JP2014063876A (ja) * 2012-09-21 2014-04-10 Aichi Electric Co Ltd 油入電気機器
JP2015535013A (ja) * 2012-10-18 2015-12-07 ダウ グローバル テクノロジーズ エルエルシー トリグリセリドベースの低粘度高引火点誘電性流体
JP2016502566A (ja) * 2012-10-18 2016-01-28 ダウ グローバル テクノロジーズ エルエルシー オレイン酸及び中鎖長トリグリセリドベースの低粘度高引火点誘電性流体
JP2016504424A (ja) * 2012-10-18 2016-02-12 ダウ グローバル テクノロジーズ エルエルシー 非オレイン酸トリグリセリドベースの低粘度高引火点誘電性流体
JP2016513360A (ja) * 2013-01-24 2016-05-12 ダウ グローバル テクノロジーズ エルエルシー 電子デバイス冷却のための液体冷却媒体
WO2016167176A1 (ja) * 2015-04-13 2016-10-20 ライオン・スペシャリティ・ケミカルズ株式会社 油入電気機器用の電気絶縁油基油、これを含有する電気絶縁油及び油入電気機器
JP2017534720A (ja) * 2014-10-22 2017-11-24 ダウ グローバル テクノロジーズ エルエルシー 誘電及び/または伝熱用途に有用な分岐トリグリセリド系流体
JP2020120021A (ja) * 2019-01-25 2020-08-06 株式会社日立産機システム 静止誘導機器
JP2020152795A (ja) * 2019-03-19 2020-09-24 日清オイリオグループ株式会社 精製油脂の製造方法、及び精製油脂
JP7569890B2 (ja) 2018-03-21 2024-10-18 カーギル インコーポレイテッド 安定度を高めた天然生物由来油を含む誘電流体

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2731684C (en) 2008-10-16 2013-11-26 Prolec-Ge Internacional, S. De R.L. De C.V. Vegetable oil of high dielectric purity, method for obtaining same and use in an electrical device
CA2823141C (en) * 2010-12-30 2018-11-27 Union Carbide Chemicals & Plastics Technology Llc Method of removing impurities from natural ester oil, manufacture of oil-based dielectric fluids
CN102794515A (zh) * 2011-05-24 2012-11-28 昆山市瑞捷精密模具有限公司 短电弧加工工作液
GB201109706D0 (en) * 2011-06-09 2011-07-27 Erapoil As Method
US9011733B2 (en) * 2011-12-21 2015-04-21 Joan Lynch Dielectric fluids compositions and methods
US20140131639A1 (en) * 2012-11-13 2014-05-15 E I Du Pont De Nemours And Company Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
US20140131640A1 (en) * 2012-11-13 2014-05-15 E I Du Pont De Nemours And Company Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
CN104822812A (zh) 2012-11-13 2015-08-05 纳幕尔杜邦公司 可用作介电流体组合物的共混的油组合物及其制备方法
US20140131641A1 (en) * 2012-11-13 2014-05-15 E I Du Pont De Nemours And Company Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
US20140131638A1 (en) * 2012-11-13 2014-05-15 E I Du Pont De Nemours And Company Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
US20140135522A1 (en) * 2012-11-13 2014-05-15 E I Du Pont De Nemours And Company Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
CN104798143A (zh) * 2012-11-13 2015-07-22 纳幕尔杜邦公司 可用作介电流体组合物的共混的油组合物及其制备方法
US20140131634A1 (en) * 2012-11-13 2014-05-15 E I Du Pont De Nemours And Company Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
US20140131637A1 (en) * 2012-11-13 2014-05-15 E I Du Pont De Nemours And Company Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
WO2014116369A1 (en) * 2013-01-24 2014-07-31 Dow Global Technologies Llc Liquid cooling medium for electronic device cooling
GB201402570D0 (en) 2014-02-13 2014-04-02 M & I Materials Ltd Improvements in and relating to dielectric fluids
KR101576502B1 (ko) * 2014-04-30 2015-12-10 제우스유화공업(주) 환경친화형 식물성 절연유 조성물
CN105296051B (zh) * 2015-10-20 2018-08-24 中国石油化工股份有限公司 一种可生物降解绝缘油及其制备方法
CN106350148A (zh) * 2016-07-29 2017-01-25 广东卓原新材料科技有限公司 一种基于文冠果油的植物绝缘油及其应用
CN106590813B (zh) * 2016-12-15 2019-07-12 武汉泽电新材料有限公司 一种难燃可降解的液体绝缘介质及其应用
CN108456589A (zh) * 2018-06-28 2018-08-28 中国石油化工股份有限公司 一种合成植物型绝缘油及其制备方法
CN109337739B (zh) * 2018-09-28 2022-08-26 江苏樱花化研化工有限公司 植物绝缘油组合物及其制备方法和应用
CN115449418B (zh) * 2022-09-29 2023-12-01 国网湖南省电力有限公司 一种防火绝缘油
KR102581575B1 (ko) * 2023-04-12 2023-09-25 주식회사 갭텍 전기집진기의 행거봉 절연부시 설치구조

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609006A (ja) * 1983-06-27 1985-01-18 松下電器産業株式会社 油入式コンデンサ
WO1997022977A1 (en) * 1995-12-21 1997-06-26 Cooper Industries, Inc. Vegetable oil based dielectric coolant
WO1998031021A1 (en) * 1997-01-06 1998-07-16 Abb Power T & D Company Inc. High oleic acid electrical insulation fluids and devices containing the fluids
WO2000011682A1 (en) * 1998-08-21 2000-03-02 Abb Power T & D Company Inc. High oleic acid oil compositions and electrical devices containing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260503A (ja) 1985-05-14 1986-11-18 ニチコン株式会社 油入電気機器
JPH0570789A (ja) * 1991-02-26 1993-03-23 Kao Corp 冷凍機作動流体用組成物
US6398986B1 (en) * 1995-12-21 2002-06-04 Cooper Industries, Inc Food grade vegetable oil based dielectric fluid and methods of using same
JP3145301B2 (ja) 1996-03-21 2001-03-12 株式会社関西テック 電気絶縁油及びその製造方法
JPH11306864A (ja) 1998-04-20 1999-11-05 Kansai Tech Corp 電気絶縁油及びその製造方法
US5958851A (en) * 1998-05-11 1999-09-28 Waverly Light And Power Soybean based transformer oil and transmission line fluid
JP2000090740A (ja) 1998-09-14 2000-03-31 Kansai Tech Corp エステル系電気絶縁油及びその製造法並びに電気機器
JP4266676B2 (ja) 2003-03-10 2009-05-20 株式会社ジャパンエナジー 電気絶縁油
EP1662513B1 (en) 2003-08-27 2008-04-16 Lion Corporation Base for electric insulating oil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609006A (ja) * 1983-06-27 1985-01-18 松下電器産業株式会社 油入式コンデンサ
WO1997022977A1 (en) * 1995-12-21 1997-06-26 Cooper Industries, Inc. Vegetable oil based dielectric coolant
WO1998031021A1 (en) * 1997-01-06 1998-07-16 Abb Power T & D Company Inc. High oleic acid electrical insulation fluids and devices containing the fluids
WO2000011682A1 (en) * 1998-08-21 2000-03-02 Abb Power T & D Company Inc. High oleic acid oil compositions and electrical devices containing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077338A (ja) * 2008-09-29 2010-04-08 Kao Corp 長鎖脂肪酸トリグリセライドの製造方法
US8299281B2 (en) 2009-03-27 2012-10-30 Exxonmobil Research And Engineering Company Process for making triglyceride plasticizer from crude glycerol
JP2013135050A (ja) * 2011-12-26 2013-07-08 Meiden T&D Co Ltd 移動用変圧器
JP2014063876A (ja) * 2012-09-21 2014-04-10 Aichi Electric Co Ltd 油入電気機器
JP2015535013A (ja) * 2012-10-18 2015-12-07 ダウ グローバル テクノロジーズ エルエルシー トリグリセリドベースの低粘度高引火点誘電性流体
JP2016502566A (ja) * 2012-10-18 2016-01-28 ダウ グローバル テクノロジーズ エルエルシー オレイン酸及び中鎖長トリグリセリドベースの低粘度高引火点誘電性流体
JP2016504424A (ja) * 2012-10-18 2016-02-12 ダウ グローバル テクノロジーズ エルエルシー 非オレイン酸トリグリセリドベースの低粘度高引火点誘電性流体
JP2016513360A (ja) * 2013-01-24 2016-05-12 ダウ グローバル テクノロジーズ エルエルシー 電子デバイス冷却のための液体冷却媒体
JP2017534720A (ja) * 2014-10-22 2017-11-24 ダウ グローバル テクノロジーズ エルエルシー 誘電及び/または伝熱用途に有用な分岐トリグリセリド系流体
WO2016167176A1 (ja) * 2015-04-13 2016-10-20 ライオン・スペシャリティ・ケミカルズ株式会社 油入電気機器用の電気絶縁油基油、これを含有する電気絶縁油及び油入電気機器
JPWO2016167176A1 (ja) * 2015-04-13 2017-12-07 ライオン・スペシャリティ・ケミカルズ株式会社 油入電気機器用の電気絶縁油基油、これを含有する電気絶縁油及び油入電気機器
CN107533878A (zh) * 2015-04-13 2018-01-02 日新电机株式会社 用于充油电气设备的电绝缘油基础油、含有其的电绝缘油及充油电气设备
JP7569890B2 (ja) 2018-03-21 2024-10-18 カーギル インコーポレイテッド 安定度を高めた天然生物由来油を含む誘電流体
JP2020120021A (ja) * 2019-01-25 2020-08-06 株式会社日立産機システム 静止誘導機器
JP2020152795A (ja) * 2019-03-19 2020-09-24 日清オイリオグループ株式会社 精製油脂の製造方法、及び精製油脂
JP7341687B2 (ja) 2019-03-19 2023-09-11 日清オイリオグループ株式会社 精製油脂の製造方法、及び精製油脂

Also Published As

Publication number Publication date
US20090270644A1 (en) 2009-10-29
CN101278362A (zh) 2008-10-01
KR101313969B1 (ko) 2013-10-01
KR20080041698A (ko) 2008-05-13
CN101278362B (zh) 2012-06-06
JPWO2007029724A1 (ja) 2009-03-19
US8187508B2 (en) 2012-05-29
JP5158347B2 (ja) 2013-03-06

Similar Documents

Publication Publication Date Title
WO2007029724A1 (ja) 電気絶縁油用基剤
JP4826741B2 (ja) 電気絶縁油用基剤
US9534184B2 (en) Electrical discharge machining comprising the use of estolide compositions
US20090140830A1 (en) Low Viscosity Mono-Unsaturated Acid-Containing Oil-Based Dielectric Fluids
WO2014078164A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
EP2758969B1 (en) Dielectric fluids comprising polyol esters, methods for preparing mixtures of polyol esters, and electrical apparatuses comprising polyol ester dielectric fluids
US20140131642A1 (en) Blended oil compositions useful as dielectric fluid compsotions and methods of preparing same
CN107735484B (zh) 低倾点的三羟甲基丙烷酯
JP2017054818A (ja) 改善された温度管理のための誘電性流体組成物
WO2013049170A1 (en) Synthetic ester-based dielectric fluid compositions for enhanced thermal management
US20140131634A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
US20140131637A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
US20140131639A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
JP2009076288A (ja) 電気絶縁油
JP2015536548A (ja) 誘電性流体組成物として有用なブレンドした油組成物およびその調製方法
US20140131640A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
US20140135522A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
AU2013204677A1 (en) Low Viscosity Vegetable Oil-Based Dielectric Fluids
KR20150002330A (ko) 생분해 난연성 풍력발전용 전기 절연유

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036624.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007534441

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12066045

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087005873

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06797516

Country of ref document: EP

Kind code of ref document: A1