WO2007029680A1 - 蒸気発生システム - Google Patents

蒸気発生システム Download PDF

Info

Publication number
WO2007029680A1
WO2007029680A1 PCT/JP2006/317519 JP2006317519W WO2007029680A1 WO 2007029680 A1 WO2007029680 A1 WO 2007029680A1 JP 2006317519 W JP2006317519 W JP 2006317519W WO 2007029680 A1 WO2007029680 A1 WO 2007029680A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
medium
generation system
steam generation
path
Prior art date
Application number
PCT/JP2006/317519
Other languages
English (en)
French (fr)
Inventor
Shuichi Umezawa
Kenji Watanabe
Jun Adachi
Original Assignee
The Tokyo Electric Power Company, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005256389A external-priority patent/JP4982985B2/ja
Priority claimed from JP2005316547A external-priority patent/JP4784263B2/ja
Priority claimed from JP2006166272A external-priority patent/JP4853125B2/ja
Application filed by The Tokyo Electric Power Company, Incorporated filed Critical The Tokyo Electric Power Company, Incorporated
Publication of WO2007029680A1 publication Critical patent/WO2007029680A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • F22B1/167Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour using an organic fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a steam generation system.
  • Patent Document 1 JP-A-6-249450
  • the energy efficiency of boilers is generally about 0.8 (80%). Along with heightened awareness of environmental issues, further improvement in energy efficiency is desired for steam generation systems.
  • An object of the present invention is to provide a steam generation system with high energy efficiency.
  • the heat pump in which the working medium flows and the first path through which the first medium flows have the heated portion in which the first medium evaporates by heat transfer of the heat pump force.
  • a steam generation system is provided.
  • the steam generation system may further include a compressor that compresses the first medium of the heated portion force of the first path. As a result, it is heated by the heat pump. The first medium is further heated by compression by the compressor. Since the compressor compensates for part of the heating temperature range for steam generation, heat pumps are used at high COPs.
  • the internal space of the heated portion of the first path can be decompressed by the compressor.
  • the first path further includes a tank for storing the first medium, the gas phase in the tank is sucked into the compressor, and the liquid phase in the tank is It can be heated by the heat pump inside or outside the tank
  • the steam generation system further includes a nozzle that supplies the liquid first medium to the steam of the first medium, the nozzle including an inlet of the compressor, an outlet of the compressor, and It can be arranged in at least one of the stages of the compressor.
  • the heat pump has a heat absorption part, a compression part, a first heat radiation part, a second heat radiation part, and an expansion part arranged in the flow direction of the working medium, and the second heat radiation part and The first heat dissipating unit may sequentially heat the first medium in the first path.
  • the heat pump since the heat pump has a plurality of heating parts (first heat radiation part and second heat radiation part) that heat the first medium in stages, the heating process of the first medium and the configuration of the heat pump can be optimized. Figured.
  • the first medium in the first path rises in temperature near the boiling point due to the heat from the second heat radiating part, and changes in phase due to the heat from the first heat radiating part to become steam. Can be.
  • the heat pump includes the bypass path in which a part of the working medium from the first heat radiating part bypasses the second heat radiating part, and the working medium in the bypass path.
  • a regenerator that heats the working medium having an endothermic force and further includes the regenerator disposed between the endothermic part and the compression part in the heat pump, and the binos path includes an inlet end. Is connected between the first heat dissipating part and the second heat dissipating part in the main path of the heat pump, and the outlet end is connected between the second heat dissipating part and the expansion part in the main path of the heat pump.
  • the compression unit compresses the working medium in multiple stages.
  • the second heat radiation part, the first heat radiation part, and the interstage heat radiation part of the compression part may heat the first medium in the first path in that order.
  • the first medium may be water
  • the working medium may be an ammonia or a fluorocarbon medium.
  • the steam generation system may further include a compressor that compresses the first medium of the heated portion force of the first path.
  • the internal space of the heated portion of the first path can be depressurized by the compressor.
  • This steam generation system may further include a nozzle that supplies the liquid first medium to the steam of the first medium.
  • the heated portion of the first path may include a plurality of evaporation tubes in which the first medium evaporates by heat transfer from the heat pump.
  • the supply path since the supply path has a plurality of evaporation pipes, the controllability of the evaporation process of the first medium can be improved.
  • the first path may have a tank for storing the first medium and fluidly connected to the plurality of evaporation pipes.
  • the tank may include a plurality of individual tanks corresponding to the plurality of evaporation pipes.
  • the first path may have a flow rate control means for controlling the flow rate of the first medium in each of the plurality of evaporation pipes.
  • the heat pump can have a plurality of heat radiation portions corresponding to the plurality of evaporation tubes.
  • the heat pump may have a structure for compressing the working medium in multiple stages.
  • the heat pump may include a heating heat dissipation unit that heats the first medium before the first medium flows into the plurality of evaporation tubes.
  • the heat pump is configured to compress the working medium before compression.
  • a regenerator for preheating the working medium may be provided.
  • the internal pressure of the plurality of evaporation pipes can be made lower than the atmospheric pressure.
  • the steam generation system further includes a compressor that compresses the first medium of the plurality of evaporation tube forces, and the first medium in the evaporation tube is relatively low due to heat transfer from the heat pump. It becomes a steam of pressure and low temperature, and can be made a steam of relatively high pressure and high temperature by compression by the compressor.
  • the steam generation system may further include a nozzle that supplies the liquid first medium to the steam of the first medium.
  • FIG. 1 is a schematic view showing a first embodiment.
  • FIG. 2 is a Ts diagram showing an example of the state change of water by the steam generation system.
  • FIG. 3 This is an example of tank configuration.
  • FIG. 4 Another example of the tank configuration.
  • FIG.5 Another example of tank configuration.
  • FIG. 6 is a schematic view showing a second embodiment.
  • FIG. 7 is a schematic view showing a third embodiment.
  • FIG. 8 is a graph schematically showing an example of a temperature change between a medium to be heated and a working medium of a heat pump accompanying heat exchange.
  • FIG. 9 is a graph schematically showing an example of a temperature change between a medium to be heated and a working medium of a heat pump accompanying heat exchange.
  • FIG. 10 is a Ts diagram showing an example of the state change of the working medium of the heat pump.
  • FIG. 11 is an Hs diagram showing an example of the state change of the working medium of the heat pump.
  • FIG. 12 is a schematic view showing a fourth embodiment.
  • FIG. 13 is a schematic view showing a fifth embodiment.
  • FIG. 14 is a schematic view showing a sixth embodiment.
  • FIG. 15 is a schematic view showing a seventh embodiment.
  • FIG. 16 shows an example of a configuration for controlling the flow rate of water in the evaporation pipe.
  • FIG. 17 is a schematic view showing an eighth embodiment.
  • Nozzle 36 ... Piping, 41-45, 65 ... Heat exchange ⁇ , 47 ... Tank, 47 ⁇ ... First tank, 47 ⁇ ... Second tank, 47C ... 3rd tank, 47D ... 4th Tank, 48, 48A to 48D ... circulation piping, 48a ... Inlet end, 48b ... Outlet end, 49 ... Gas-liquid separator, 50 ... Level sensor, 51A-51D ... Evaporation pipe, 61 ... Stage release Heating part, 70 ... Control device, 71, 72 ... Sensor, 471, 472, 473 ... Storage part.
  • FIG. 1 is a schematic view showing a steam generation system of a first embodiment.
  • the steam generation system S 1 includes a heat pump 10, a heating medium (for example, water) supply path 20, and a compressor 30.
  • the heat pump 10 is a device that pumps heat from a low-temperature object and applies heat to the high-temperature object by a cycle that includes process forces of evaporation, compression, condensation, and expansion. Heat pumps generally have the advantage of being environmentally friendly with relatively low emissions of carbon dioxide, etc. as a result of relatively high energy efficiency.
  • the heat pump 10 includes a heat absorption part 11, a compression part 12, a heat radiation part 13, and an expansion part 14, which are sequentially connected via a pipe.
  • the heat absorbing unit 11 has an endothermic function, and absorbs heat corresponding to the absorbed heat from a heat source outside the cycle when the working medium (heat medium) absorbs heat.
  • the heat dissipating unit 13 has a heat dissipating function. When the working medium dissipates heat, the heat dissipating unit 13 gives heat corresponding to the heat released to a heat source outside the cycle.
  • the compression unit 12 is Compress the working medium. At this time, the temperature of the working medium usually increases. Power is supplied to the compression unit 12.
  • the expansion unit 14 expands the working medium using a pressure reducing valve, a turbine, or the like. At this time, the temperature of the working medium usually decreases. When a turbine is used, power can be taken out from the expansion section 14, and the power may be supplied to the compression section 12, for example.
  • various known heat mediums such as chlorofluorocarbon media (HFC 245fa, etc.), ammonia, water, carbon dioxide, air, and the like are applied.
  • the supply path 20 includes a tank 47 that stores a liquid medium to be heated, and a duct 23 that fluidly connects the tank 47 and the compressor 30.
  • the tank 47 is provided with a supply port 25 and a discharge port 26.
  • a liquid medium to be heated is supplied to the tank 47 through the supply port 25.
  • the supply amount of the heated medium to the tank 47 is controlled so that the liquid level in the tank 47 falls within a predetermined range. For example, based on the measurement result of a sensor (not shown) that measures the liquid level in the tank 47, the output of the supply power source 27 for the medium to be heated is controlled.
  • the heat radiating portion 13 of the heat pump 10 is disposed.
  • the heat dissipation part 13 of the heat pump 10 may or may not be in direct contact with the liquid in the tank 47.
  • the liquid phase of the medium to be heated in the tank 47 is heated by heat exchange with the heat radiating unit 13.
  • the position of the outlet 26 is the gas phase (vapor phase) position in the tank 47.
  • the internal space of the tank 47 is sucked by the compressor 30 through the discharge port 26 and the duct 23.
  • the steam generated in the tank 47 flows in the duct 23 toward the compressor 30 through the discharge port 26.
  • the compressor 30 is disposed on the supply path 20, and the position of the compressor 30 is downstream from the tank 47.
  • various compressors such as an axial flow compressor, a centrifugal compressor, a reciprocating compressor, and a rotary type compressor are applied, and it is preferable that the compressor 30 is suitable for vapor compression.
  • the compressor 30 compresses the steam from the tank 47 and flows the pressurized steam downstream.
  • the compressor 30 (or the supply path 20) is provided with a nozzle 35 for supplying a liquid medium to be heated with respect to the steam as required.
  • the arrangement position of the nozzle 35 is, for example, at least one of an inlet and an outlet of the compressor 30.
  • a nozzle (spray nozzle or the like) 35 can be disposed between the stages of the compressor 30.
  • a pipe configuration in which the nozzle 35 and the liquid phase position of the tank 47 are connected via the pipe 36 may be used.
  • the liquid in the tank 47 having a relatively high temperature is effectively used to supply the nozzle 35.
  • a power source such as a pump may be used, or the pressure difference between the inlet and outlet of the pipe may be used.
  • the internal space in the heated portion of the supply path 20 that receives the heat of the heat pump 10, that is, the internal space of the tank 47 is decompressed.
  • the control valve (flow control valve, etc., not shown) and the compressor 30 on the supply path 20 are controlled so that the internal pressure of the tank 47 becomes a negative pressure (negative pressure) lower than the atmospheric pressure. This control is performed based on the measurement result of a sensor (not shown) that measures the internal pressure of the tank 47, for example.
  • the tank 47 and the heat pump 10 are designed (capacity design, capacity design, etc.) so that water evaporates when the internal space of the tank 47 is in a negative pressure state.
  • the performance coefficient of the heat pump 10 changes according to the difference between the input temperature and the output temperature of the heated medium (water), and if the temperature difference is excessively large, the coefficient of performance (COP) may decrease.
  • the heating temperature region (input / output temperature difference) is set relatively narrow, and the heat pump 10 can be used at a high COP.
  • the input temperature of water is 20 ° C
  • the output temperature of water from the tank 47 is about 90 ° C. This number is an example, and the present invention is not limited to this.
  • the medium to be heated in the supply path 20 becomes steam having a relatively low pressure and low temperature when heated by the heat pump 10, and has a relatively high pressure and high temperature when compressed by the compressor 30. It becomes steam. That is, the water heated by the heat pump 10 is further heated by the compression by the compressor 30, thereby generating high-temperature steam of 100 ° C. or higher.
  • the steam from the steam generation system S1 is supplied to predetermined external facilities such as a manufacturing plant, a control facility, an air conditioning facility, and a power plant.
  • the compressor 30 supplements a part of the heating temperature region for generating steam
  • the heat pump 10 is used at a high COP. Therefore, in the steam generation system S1, high energy efficiency can be obtained compared to the boiler by two-stage sequential heating using the heat pump 10 and the compressor 30. Further, since the compressor 30 is used in the second stage of heating, the configuration is relatively simple.
  • FIG. 2 is a Ts diagram showing an example of a change in the state of water by the steam generation system S1.
  • the saturated steam d is compressed at a relatively high pressure by the compressor 30 (see Fig. 1).
  • the pressure P of the superheated steam e is higher than the atmospheric pressure, for example, 0.8 MPa.
  • saturated steam d of about 100 ° C can be obtained by cooling superheated steam at atmospheric pressure (about 0. IMPa) under constant pressure.
  • both saturated steam and superheated steam can be easily generated by the two-stage sequential heating using the heat pump 10 and the compressor 30.
  • compression with compressor 30 generates superheated steam or saturated steam at atmospheric pressure or higher than atmospheric pressure. Can be generated.
  • the steam generation system S1 is highly flexible with respect to the steam specifications.
  • the steam generation system S1 is suitable for obtaining high temperature steam exceeding 100 ° C.
  • FIG. 4 and FIG. 5 are configuration examples of the tank 47 shown in FIG.
  • the tank 47 has a box-shaped reservoir 471.
  • the lower part in the reservoir 471 is the liquid phase of the medium to be heated, and the upper part is the gas phase (vapor phase) of the medium to be heated.
  • a supply port 25 for a medium to be heated is provided on the bottom surface or side surface of the reservoir 471.
  • a discharge port 26 for the medium to be heated is provided on the upper surface (gas phase position) of the reservoir 471.
  • the heat dissipating part 13 of the heat pump 10 is disposed at the liquid phase position inside the storage part 471.
  • the liquid heated medium is stored in the lower part of the storage part 471, and the heated medium is heated by heat exchange with the heat radiating part 13 of the heat pump 10.
  • the generated steam is sucked into the compressor 30 (see FIG. 1) through the discharge port 26 of the reservoir 471.
  • the tank 47 has a cylindrical reservoir 472! /.
  • the axial direction of the cylindrical reservoir 472 is parallel to the gravity direction or inclined with respect to the gravity direction.
  • a heating medium supply port 25 is provided at the lower end of the reservoir 472.
  • a heating medium discharge port 26 is provided at the upper end (gas phase position) of the reservoir 472.
  • the heat radiating portion 13 of the heat pump 10 is disposed inside the storage portion 472 along the axial direction thereof.
  • the heat radiating part 13 of the heat pump 10 may be configured to be wound along the outer peripheral surface of the cylindrical storage part 472 and in the axial direction.
  • a liquid heated medium is stored in a cylindrical storage section 472, and the heated medium is heated by heat exchange with the heat radiating section 13 of the heat pump 10.
  • the steam generated in the tank 47 is sucked into the compressor 30 (see FIG. 1) through the discharge port 26 of the reservoir 472. Further, the lower force also increases upward along the axial direction of the reservoir 472, and the temperature of the medium to be heated rises.
  • the tank 47 is held in a storage part 473 and has a circulation pipe 48.
  • a supply port 25 for a medium to be heated is provided in the reservoir 473 or the circulation pipe 48.
  • a discharge port 26 is provided on the upper surface (gas phase position) of the reservoir 473.
  • the inlet end 48 a of the circulation pipe 48 is connected to the bottom surface of the reservoir 473, and the other outlet end 48 b is connected to the upper surface (gas phase position) of the reservoir 473.
  • the heat radiating portion 13 of the heat pump 10 is wound around the outer peripheral surface of the circulation pipe 48.
  • a configuration in which a gas-liquid separator is disposed adjacent to the outlet end 48b of the circulation pipe 48 may be employed.
  • the heat dissipating part 13 of the heat pump 10 may be arranged inside the circulation pipe 48.
  • a liquid heated medium is stored in the storage part 473 and the circulation pipe 48, and the heated medium in the circulation pipe 48 is exchanged by heat exchange with the heat radiating part 13 of the heat pump 10. Is heated.
  • the medium to be heated flows through the circulation pipe 48 with the direction from the inlet end 48a to the outlet end 48b.
  • the vapor is sucked into the compressor 30 (see FIG. 1) via the discharge port 26 of the storage unit 473, and the liquid is stored in the storage unit 473.
  • FIG. 6 is a schematic diagram showing the second embodiment.
  • the steam generation system S2 includes a heat pump 10, a supply path 20 for a medium to be heated (water in this example), and a compressor 30.
  • the heat pump 10 has a heat absorbing portion 11, a compressing portion 12, a heat radiating portion (first heat radiating portion 13A, second heat radiating portion 13B), and an expanding portion 14, which are connected via a pipe. Connected sequentially.
  • the working medium flowing in the main path 15 absorbs heat from a heat source outside the cycle (for example, the atmosphere).
  • the heat dissipating parts 13A and 13B include piping through which a high-temperature working medium from the compressing part 12 flows.
  • the heat radiating portions 13A and 13B are arranged in series in that order in the flow direction of the working medium, and give the heat of the working medium flowing in the main path 15 to the heat source outside the cycle.
  • the supply path 20 includes a heating unit 21, an evaporation unit 22, and a duct 23 that fluidly connects the evaporation unit 22 and the compressor 30.
  • the heating unit 21 includes a pipe through which water from a supply source flows, and is disposed adjacent to the second heat radiation unit 13B of the heat pump 10.
  • a first heat exchange is configured including the heating unit 21 and the second heat radiation unit 13B.
  • the first heat exchanger 41 has a countercurrent heat exchange structure in which a low-temperature fluid (water in the supply path 20) and a high-temperature fluid (working fluid in the heat pump 10) flow opposite to each other.
  • the first heat exchanger 41 may have a parallel flow type heat exchange structure in which a high-temperature fluid and a low-temperature fluid flow in parallel.
  • the temperature of the water in the supply path 20 rises due to the heat from the second heat radiating unit 13B of the heat pump 10.
  • the evaporation unit 22 includes a tank 47 for storing a liquid medium to be heated (water) and a circulation pipe 48.
  • the tank 47 or the circulation pipe 48 is provided with a water supply port from the heating unit 21 and a steam discharge port.
  • the inlet end and the outlet end of the circulation pipe 48 are connected to the tank 47, respectively.
  • At least a partial force of the circulation pipe 48 is arranged adjacent to the first heat radiation part 13A of the heat pump 10.
  • a second heat exchange 42 is configured including the circulation pipe 48 and the first heat radiation part 13A.
  • the second heat exchange ⁇ 42 is a countercurrent heat exchange structure in which a low-temperature fluid (water in the circulation pipe 48) and a high-temperature fluid (working fluid in the heat pump 10) face each other, or a high-temperature fluid. And a parallel flow type heat exchange structure in which a low-temperature fluid flows in parallel.
  • a configuration in which the first heat radiating portion 13A of the heat pump 10 is disposed on the outer peripheral surface or inside of the circulation pipe 48 may be employed.
  • a gas-liquid separator 49 is arranged adjacent to the outlet end of the circulation pipe 48 as necessary.
  • the water whose temperature has increased in the heating unit 21 is supplied to the tank 47 through the supply port.
  • the amount of water supplied to the tank 47 is controlled so that the liquid level in the tank 47 falls within a predetermined range.
  • the supply amount of water is controlled based on the measurement result of a sensor (not shown) that measures the liquid level in the tank 47.
  • Water is stored in the tank 47 and the circulation pipe 48, and the water in the circulation pipe 48 is heated by the first heat radiating portion 13A of the heat pump 10. With this heating, water (and steam) flows through the circulation pipe 48.
  • the internal space of the tank 47 is sucked by the compressor 30 through the discharge port of the tank 47 and the duct 23.
  • the steam generated in the tank 47 flows in the duct 23 toward the compressor 30. Due to the suction action by the compressor 30, the internal space at the portion heated by the heat pump 10 in the supply path 20, that is, the internal space of the tank 47 is decompressed.
  • the control valve (flow control valve, etc., not shown) and the compressor 30 on the supply path 20 are controlled so that the internal pressure of the tank 47 becomes a negative pressure (negative pressure) lower than the atmospheric pressure. This control is performed based on the measurement result of a sensor (not shown) that measures the internal pressure of the tank 47, for example.
  • steam generation system S2 steam is generated by heating with the hydraulic heat pump 10 in the supply path 20.
  • the water in the supply path 20 rises in the first heat exchanger 41 to near the boiling point due to the heat of the second heat radiating portion 13B of the heat pump 10 and then the second heat exchanger.
  • the water undergoes phase change and evaporates due to the heat from the first heat radiating portion 13A. That is, the sensible heat heating and the latent heat heating of the water are performed stepwise by the separate heat exchangers 41 and 4 2 (radiating portions 13A and 13B).
  • the first heat exchanger 41 including the second heat radiating portion 13B is in a form suitable for sensible heat exchange, and the second heat exchanger including the first heat radiating portion 13A.
  • the system configuration is optimized such that 42 is in a form suitable for latent heat exchange, and in response, steam is preferably generated through a heating process.
  • the coefficient of performance of the heat pump changes according to the input / output temperature difference of the medium to be heated (water), and the coefficient of performance tends to decrease at a relatively high input / output temperature difference.
  • the heat pump has individual heating parts (heat radiation parts 13A and 13B) corresponding to sensible heat exchange and latent heat exchange, so that steam can be generated with higher energy efficiency than a boiler.
  • the steam generated by the hydraulic heat pump 10 heat dissipating sections 13A and 13B in the supply path 20 is heated to a relatively low pressure and low temperature, and compressed by the compressor 30 to a relatively high pressure. And it becomes high temperature steam. That is, the water heated by the heat pump 10 is further heated by the compression by the compressor 30, thereby generating high-temperature steam of 100 ° C. or higher.
  • the steam from the steam generation system S1 is supplied to a predetermined external facility, for example, a manufacturing plant, a cooking facility, an air conditioning facility, a power plant, and the like.
  • both saturated steam and superheated steam can be easily generated by three-stage sequential heating including two-stage heating by the heat pump 10 and heating by the compressor 30. You can. That is, after heating with the heat pump 10 generates saturated steam at a negative pressure lower than the atmospheric pressure, compression with the compressor 30 generates superheated steam or saturated steam at atmospheric pressure or higher than atmospheric pressure. Can be made. That is, the steam generation system S 1 is highly flexible with respect to the steam specifications.
  • the heat pump 10 is used at a high COP. Primary energy savings are expected.
  • the compressor 30 is used to heat the medium to be heated (water) in a relatively high temperature range, so that the temperature rise is shorter than that by heat transfer. It is advantageous for reducing the heat loss and heat loss.
  • FIG. 7 is a schematic diagram showing the third embodiment.
  • the steam generation system S3 includes a heat pump 10, a supply path 20 for a medium to be heated (water in this example), and a multistage compression section 60.
  • the configuration of the supply path 20 is the same as that of the steam generation system S2 of FIG.
  • the heat pump 10 includes a bypass path 17 and a regenerator 18 in addition to the same configuration as the heat pump 10 of FIG.
  • An inlet end force heat pump 10 of the no-path path 17 is connected to a pipe between the first heat dissipating part 13A and the second heat dissipating part 13B in the main path 15 of the heat path 10, and an outlet end is a second heat dissipating part 1 in the main path 15. It is connected to the pipe between 3B and the expansion part 14.
  • a flow control valve for controlling the bypass flow rate of the working medium may be installed.
  • a part of the working medium from the first heat radiating part 13 A bypasses the second heat radiating part 13 B and joins the working medium from the first heat radiating part 13 A before the expansion part 14.
  • the remaining working medium from the first heat radiating section 13A flows through the second heat radiating section 13B, and in the first heat exchange 41, the working medium and water in the supply path 20 exchange heat.
  • the regenerator 18 has a configuration in which the pipe of the bypass path 17 and the pipe of the main path 15 of the heat pump 10 (the pipe between the heat absorption unit 11 and the compression unit 60) are arranged adjacent to each other. .
  • the operation from the first heat radiating part 13A is compared to the working medium from the heat absorbing part 11.
  • the moving medium is hot.
  • the working medium from the first heat radiating part 13 A flowing through the bypass path 17 and the working medium from the heat absorbing part 11 flowing through the main path 15 of the heat pump 10 exchange heat. By this heat exchange, the temperature of the working medium in the bypass path 17 is lowered, and the temperature of the working medium in the main path 15 is raised.
  • the regenerator 18 has a counter-current heat exchange structure in which a low-temperature fluid (working medium in the main path 15) and a high-temperature fluid (working fluid in the bypass path 51) flow oppositely, or It has a parallel flow type heat exchange structure in which a high-temperature fluid and a low-temperature fluid flow in parallel.
  • the compression unit 60 has a structure for compressing the working medium in multiple stages.
  • the number of stages may be two or more than three.
  • a circulation pipe 48 of the evaporation section 22 in the water supply path 20 and an interstage heat radiation section 61 of the multistage compression section 60 are arranged adjacent to each other.
  • a second heat exchanger 65 is configured including the circulation pipe 48, the interstage heat radiation part 61 of the compression part 60, and the first heat radiation part 13A.
  • the second heat exchange 65 is a countercurrent heat exchange structure in which a low-temperature fluid (water in the circulation pipe 48) and a high-temperature fluid (working fluid in the heat pump 10) face each other, or a high-temperature fluid It has a parallel flow type heat exchange structure in which a low-temperature fluid flows in parallel.
  • the second heat radiation part 13B, the first heat radiation part 13A, and the interstage heat radiation part 61 of the compression part 60 heat the water in the supply path 20 in that order.
  • the temperature of the water in the supply path 20 rises to near the boiling point in the first heat exchange 41 due to the heat from the second heat radiating portion 13B of the heat pump 10.
  • the second heat exchanger 65 the water undergoes phase change and evaporates due to the heat from the first heat radiation part 13A and the heat from the interstage heat radiation part 61 of the compression part 60.
  • the sensible heat and latent heat of water are stepped by separate heat exchange ⁇ 41, 65, respectively.
  • the working medium undergoes a phase change to a vapor-powered liquid with a constant temperature due to heat exchange with water, and then drops in temperature.
  • FIG. 8 and FIG. 9 are graphs schematically showing an example of temperature change between the medium to be heated and the working medium of the heat pump accompanying heat exchange.
  • Figure 8 corresponds to the steam generation system S2 ( Figure 6)
  • Figure 9 corresponds to the steam generation system S3 ( Figure 7).
  • the heated medium is water (HO )
  • the working medium is ammonia (NH 3).
  • the phase of the water changes from liquid to vapor with the temperature kept constant.
  • the input temperature of water is about 20 ° C and the output temperature is about 90 ° C.
  • Ammonia undergoes a phase change to a vapor-powered liquid with a constant temperature due to heat exchange with water, and then drops in temperature.
  • the ammonia output temperature must be above a certain value to avoid reversal of temperature between water and ammonia (dashed line in Fig. 8). This is because the heat of vaporization of water is larger than that of ammonia.
  • the ammonia inlet temperature is set to about 100 ° C and the outlet temperature is set to about 80 ° C.
  • the steam generation system S3 of FIG. 7 a part of the ammonia bypasses the subsequent heat exchanger (first heat exchanger 41) with respect to the direction of ammonia flow.
  • the output temperature of ammonia can be lowered.
  • the required amount of ammonia is optimized for each process of water temperature rise (sensible heat) and phase change (latent heat).
  • the ammonia inlet temperature is set to about 100 ° C and the outlet temperature is set to about 30 ° C.
  • the working medium flows into the first heat exchanger 41 by partially bypassing the first heat exchanger 41 via the bypass path 17.
  • the amount is controlled.
  • each of the first heat exchanger 41 and the second heat exchanger 65 is supplied with a working medium having a heat amount as required.
  • the working medium flowing through the nopass path 17 exchanges heat with the working medium from the heat absorbing section 11 flowing through the main path 15 of the heat pump 10 in the regenerator 18.
  • the temperature of the working medium in the bypass path 17 decreases (for example, about 20 ° C.), and the temperature of the working medium in the main path 15 of the heat pump 10 increases (for example, about 95 ° C.).
  • the power of the compression unit 60 can be reduced.
  • the bypass amount of the working medium is determined according to each physical property value (such as specific heat) of the medium to be heated and the working medium.
  • the bypass amount is preferably about 50% in terms of molar ratio with respect to the amount of working medium supplied to the second heat exchanger 65.
  • the heat balance between water and ammonia is good in both sensible heat and latent heat.
  • the specific heat of the liquid phase of ammonia is about twice that of the gas phase, the heat balance between the ammonia in the regenerator 18 is good. This is the same when using chlorofluorocarbon-based media instead of ammonia.
  • the working medium (for example, about 20 ° C) in the bypass passage 17 whose temperature has dropped in the regenerator 18 is in front of the expansion portion 14, and the first heat exchanger 41 (the first heat exchanger 41 flowing through the main passage 15 of the heat pump 10). 2Merge with working medium from heat dissipation part 13B). As described above, the output temperature of the working medium from the first heat exchanger 41 is set to be relatively low (for example, about 30 ° C.). By reducing the input temperature of the working medium to the expansion section 14, the liquid gas ratio of the working medium is optimized, and as a result, the heat absorption section 11 effectively absorbs heat from a heat source outside the cycle (for example, the atmosphere). Is done.
  • the steam generation system S3 the working medium after being used for water evaporation is used for heating the water and regenerating the working medium, so that the heat can be effectively used. Therefore, the steam generation system S3 has higher energy efficiency than the steam generation system S2.
  • the compression unit 60 is a multistage type, and the energy efficiency is also improved from the point that the working medium and water exchange heat in the interstage heat dissipation unit 61 of the compression unit 60. It is done. That is, the heat of the interstage heat radiation part 61 of the multistage compression part 60 is deprived, thereby suppressing the temperature rise of the working medium during the compression process of the working medium. As a result, the compression efficiency of the compression part 60 is improved and the compression The power of the machine can be reduced.
  • the number of repetitions of the temperature rise of the working medium accompanying compression and the temperature drop of the working medium in the interstage radiating section 61 may be two stages or three stages or more. It is advantageous for improving energy efficiency that the number of stages of reheating is within the limits of the device configuration.
  • FIG. 10 is a Ts diagram showing an example of a state change of the working medium of the heat pump 10 of FIG.
  • FIG. 11 is an Hs diagram (Molier diagram) showing an example of the state change of the working medium of the heat pump 10 of FIG.
  • Figures 10 and 10 are examples of four-stage reheating.
  • the input temperature of the working medium to the multistage compression unit 60 is reduced.
  • the point raised by the living vessel 18 is also advantageous for reducing the power of the compression unit 60.
  • the heat can be effectively utilized from the viewpoint of heating the water that is the medium to be heated by using the cooling of the interstage heat radiation portion 61.
  • the first heat exchanger 41 including the second heat radiating portion 13B has a configuration suitable for sensible heat exchange, and the first heat radiating system
  • the configuration of the apparatus is optimized such that the second heat exchanger 65 including the interstage heat radiation part 61 of the part 13A and the compression part 60 is in a form suitable for latent heat exchange. Steam is generated.
  • the water in the supply path 20 is heated to a relatively low pressure and low temperature by heating with the heat pump 50, and is compressed. Compression by machine 30 results in relatively high pressure and high temperature steam. That is, it is further heated by the compression by the hydraulic compressor 30 heated by the heat pump 50, thereby generating high-temperature steam of 100 ° C or higher.
  • the steam from the steam generation system S2 is supplied to predetermined external facilities such as a manufacturing plant, a cooking facility, an air conditioning facility, and a power generation plant.
  • saturated steam and superheated steam are generated by multi-stage heating including heating by the heat pump 10 and heating by the compressor 30. Either can be easily generated. That is, heating by the heat pump 10 generates saturated steam at a low pressure and a negative pressure compared to atmospheric pressure, and then compression by the compressor 30 generates superheated steam or saturated steam at a pressure higher than atmospheric pressure or atmospheric pressure. Can be generated.
  • the steam generation system S2 is highly flexible with respect to the steam specifications.
  • FIG. 12 shows a fourth embodiment which is a modification of the steam generation system S3 of FIG.
  • the steam generation system S4 in FIG. 12 has a heat pump 10 that omits the bypass path 17 and the regenerator 18 from the heat pump 10 of the steam generation system S3 in FIG.
  • COP was estimated for the steam generation system S2 in Fig. 6, the steam generation system S3 in Fig. 7, and the steam generation system S4 in Fig. 12.
  • the medium to be heated is water.
  • the moving medium is ammonia.
  • the COP of the steam generation system S2 in Fig. 6 was 3.07.
  • the COP of the steam generation system S3 in Fig. 7 was 3.42 for the second stage of reheating and 3.52 for the fourth stage of reheating.
  • the COP of the steam generation system S4 in Fig. 12 was 3.21 for the second stage of reheating.
  • FIG. 13 and FIG. 14 are the fourth and fifth embodiments, respectively, which are other variations of the steam generation system S3 of FIG.
  • the steam generation system S 5 in FIG. 13 differs from the steam generation system S 3 in FIG. 7 in the input temperature of the heated medium (water) (approximately 60 ° C.).
  • the steam generation system S6 in FIG. 14 has a supply path 80 in which the compressor 30 is omitted from the supply path 20 of the steam generation system S3 in FIG.
  • FIG. 15 is a schematic diagram showing the sixth embodiment.
  • the steam generation system S6 includes a heat pump 10, a heating medium (water) supply path 20, and a compressor 30.
  • the configuration of the steam generation system S6 can be variously changed according to the design requirements of the steam generation system S1.
  • the heat pump 10 includes a heat absorbing part 11, a compressing part 12, a heat radiating part (first heat radiating part 13A, second heat radiating part 13B, third heat radiating part 13C, fourth heat radiating part 13D, and fifth heat radiating part. Part 13E) and an expansion part 14, which are connected via a pipe.
  • the compression unit 12 has a structure for compressing the working medium in multiple stages.
  • the compression unit 12 shown in FIG. 15 has a four-stage compression structure including a first compression unit 12A, a second compression unit 12B, a third compression unit 12C, and a fourth compression unit 12D.
  • the number of compression stages is set according to the specifications of the steam generation system S6, 2, 3, 4, 5, 6, 7, 8, 9, and more than 10!
  • the compression rod has a compressor suitable for compressing a working medium among various compressors such as an axial flow compressor, a centrifugal compressor, a reciprocating compressor, and a rotary compressor. Power is supplied to the compressor.
  • the compression unit 12 can have a multiaxial compression structure in which the rotation speeds corresponding to the compression units 12A, 12B, 12C, and 12D are individually controlled. Alternatively, the compression unit 12 can have a coaxial compression structure.
  • the compression ratio (pressure ratio) of each compression unit 12A, 12B, 12C, 12D is set according to the specification of the steam generation system S1.
  • the heat dissipating units 13 to 13 have piping through which the working medium compressed by the compressing unit 12 flows.
  • the heat of the working medium flowing in the path 15 is given to the heat source outside the cycle.
  • five heat radiating portions 13A to 13E are arranged in series along the flow direction of the working medium.
  • the number of heat dissipating parts is set according to the specifications of the steam generation system S1, and is 3, 4, 5, 6, 7, 8, 9, 10, or 11 or more.
  • the first heat dissipating part 13A is disposed between the compression parts 12A and 12B
  • the second heat dissipating part 13B is disposed between the compression parts 12B and 12C
  • the third heat dissipating part 13C is the compression parts 12C and 12D.
  • the fourth heat dissipating part 13D is disposed downstream of the compression part 12D
  • the fifth heat dissipating part 13E is disposed downstream of the fourth heat dissipating part 13D.
  • the heat pump 10 further includes a bypass path 17 and a regenerator 18.
  • the inlet end of the bypass path 17 is connected to a pipe between the fourth heat radiating part 13D and the fifth heat radiating part 13E in the main path 15 of the heat pump 10.
  • An outlet end of the bypass path 17 is connected to a pipe between the fifth heat radiation part 13E and the expansion part 14 in the main path 15.
  • a flow rate control valve for controlling the bypass flow rate of the working medium can be provided at the inlet of the bypass path 17.
  • a part of the working medium from the fourth heat radiating part 13D bypasses the fifth heat radiating part 13E and joins the working medium from the fifth heat radiating part 13E before the expansion part 14.
  • the remaining working medium having the force of the fourth heat radiating section 13D flows through the fifth heat radiating section 13E, and in the first heat exchange 41, the working medium and the water in the supply path 20 exchange heat.
  • the regenerator 18 includes a part of the piping of the bypass passage 17 and the piping of the main passage 15 of the heat pump 10.
  • a part of (the pipe between the heat absorption part 11 and the compression part 12) is arranged adjacent to each other.
  • the working medium from the fourth heat radiating unit 13D is hotter than the working medium from the heat absorbing unit 11.
  • the regenerator 18 the working medium having the fourth heat radiating portion 13D flowing through the bypass path 17 and the working medium from the heat absorbing section 11 flowing through the main path 15 of the heat pump 10 exchange heat.
  • the temperature of the working medium in the bypass path 17 is lowered, and the temperature of the working medium in the main path 15 is raised.
  • the regenerator 18 can have a countercurrent heat exchange system in which a low-temperature fluid (a working medium in the main path 15) and a high-temperature fluid (a working medium in the bypass path 17) flow opposite to each other.
  • the regenerator 18 may have a parallel flow type heat exchange system in which a high-temperature fluid and a low-temperature fluid flow in parallel.
  • the supply path 20 includes a heating unit 21, an evaporation unit 22, and a duct 23 that fluidly connects the evaporation unit 22 and the compressor 30.
  • the heating unit 21 includes a pipe that is arranged adjacent to the fifth heat radiation unit 13E of the heat pump 10 and through which water from a supply source (not shown) flows.
  • a first heat exchange section 41 is configured including the heating section 21 and the fifth heat radiation section 13E.
  • the first heat exchange 41 can have a countercurrent heat exchange method in which a low-temperature fluid (water in the supply path 20) and a high-temperature fluid (working fluid in the heat pump 10) flow opposite to each other. .
  • the first heat exchange may have a parallel flow type heat exchange system in which a high-temperature fluid and a low-temperature fluid flow in parallel.
  • Various heat exchange structures for the first heat exchanger 41 can be used.
  • the pipe of the fifth heat radiating part 13E of the heat pump 10 can be arranged on the outer peripheral surface or inside of the pipe of the heating part 21. In the heating unit 21, the temperature of the water in the supply path 20 rises due to the heat transfer of the fifth heat radiation unit 13 E of the heat pump 10.
  • the evaporation section 22 includes at least a tank 47 for storing a liquid medium to be heated (water) and a circulation pipe fluidly connected to the tank 47 (the first circulation pipe 48 ⁇ , the second circulation pipe 48 ⁇ , the third It has a circulation pipe 48C and a fourth circulation pipe 48D).
  • the tank 47 is provided with a water supply port from the heating unit 21 and a steam discharge port.
  • the tank 47 has a level sensor 50 for measuring the liquid level and a gas-liquid separator (not shown) as required.
  • each circulation pipe 48A, 48B, 48C, 48D is fluidly connected to one tank 47. That is, each inlet end and each outlet end of the circulation pipes 48A to 48D are fluidly connected to the tank 47.
  • the number of circulation pipes is set according to the specifications of the steam generation system S1, and is 2, 3, 4, 5, 6, 7, 8, 9, and more than 10!
  • the first circulating self-pipe 48 ⁇ has an evaporation pipe 51A disposed adjacent to the first heat dissipating part 13A of the heat pump 10, and a pump 52 ⁇ as necessary.
  • the second circulation pipe 48 ⁇ has an evaporation pipe 51B disposed adjacent to the second heat radiating portion 13B of the heat pump 10 and, if necessary, a pump 52 ⁇ .
  • the third circulation pipe 48C has an evaporation pipe 51C arranged adjacent to the third heat radiation part 13C of the heat pump 10 and a pump 52C as necessary. 4 It has the evaporation pipe 51D arrange
  • the evaporation pipes 51A to 51D are fluidly connected to the tank 47 independently of each other.
  • the evaporation pipes 51 ⁇ / b> A to 51 ⁇ / b> D are arranged in parallel to the tank 47 and the supply path 20. Uses heat convection of heated medium (water) and differential pressure with Z or outside Therefore, at least one of the pumps 52A to 52D may be omitted.
  • a second heat exchange is configured including the evaporation pipe 51A and the first heat radiation part 13A.
  • a third heat exchange 43 is configured including the evaporation pipe 51B and the second heat radiating portion 13B.
  • a fourth heat exchange 44 is configured including the evaporation pipe 51C and the third heat radiation part 13C, and a fifth heat exchange 45 is configured including the evaporation pipe 51D and the fourth heat radiation part 13D.
  • the second to fifth heat exchanges 42 to 45 are countercurrent heat exchange systems in which a low-temperature fluid (water in the evaporation tubes 51A to 51D) and a high-temperature fluid (working fluid in the heat pump 10) flow in opposition. Can have.
  • the second to fifth heat exchangers 42 to 45 may have a parallel flow type heat exchange system in which a high-temperature fluid and a low-temperature fluid flow in parallel.
  • Various known heat exchange structures for the second to fifth heat exchangers 42 to 45 can be employed.
  • the pipes of the heat radiating portions 13A, 13B, 13C, and 13D of the heat pump 10 can be arranged on the outer peripheral surface and inside of the evaporation pipes 51A, 51B, 51C, and 51D.
  • the water whose temperature has increased in the heating unit 21 is supplied to the tank 47 through the supply port, and water is stored in the tank 47 and the circulation pipes 48 8 to 480.
  • the amount of water supplied to the tank 47 is controlled so that the liquid level in the tank 47 falls within a predetermined range. For example, the amount of water supplied to the tank 47 is controlled based on the measurement result of the level sensor 50.
  • the water in the evaporation pipes 51A to 51D is heated by heat transfer from the first to fourth heat radiation portions 13A to 13D of the heat pump 10, and at least a part of the water evaporates.
  • the tank 47 is fluidly connected to the compressor 30 via the duct 23.
  • the internal space of the tank 47 is sucked by the compressor 30 through the discharge port of the tank 47 and the duct 23.
  • the steam in the tank 47 flows in the duct 23 toward the compressor 30.
  • the steam generation system S6 steam is generated by the heat transfer from the hydraulic heat pump 10 in the supply path 20.
  • the water in the supply path 20 is close to the boiling point by heat transfer from the fifth heat radiating portion 13E of the heat pump 10.
  • the temperature rises to Thereafter, in the second to fifth heat exchangers 42 to 45, the water changes its phase and evaporates by heat transfer of the first to fourth heat radiating portions 13A to 13D. That is, sensible heat heating of water is performed in the first heat exchanger 41, and latent heat heating of water is performed in the second to fifth heat exchangers 42 to 45.
  • the first heat exchanger 41 is in a form suitable for sensible heat exchange
  • the second to fifth heat exchangers 42 to 45 are in a form suitable for latent heat exchange.
  • steam is generated through a preferred heating process.
  • the heat pump since the heat pump has individual heating portions corresponding to sensible heat exchange and latent heat exchange, steam can be generated with higher energy efficiency than a boiler.
  • relatively low pressure and low temperature steam is generated by heat transfer from the hydraulic heat pump 10 (heat dissipating units 13A to 13E) in the supply path 20 and is relatively compressed by the compressor 30.
  • High pressure and high temperature steam That is, the water heated by the heat pump 10 is further heated by the compression by the compressor 30, thereby generating high-temperature steam of 100 ° C. or higher.
  • Steam from the steam generation system S1 is supplied to a predetermined external facility such as a manufacturing plant, a cooking facility, an air conditioning facility, a power plant, and the like.
  • both saturated steam and superheated steam can be easily generated by three-stage sequential heating including two-stage heating by the heat pump 10 and heating by the compressor 30 shown in FIG. .
  • compression by the compressor 30 generates superheated steam or saturated steam at a pressure higher than atmospheric pressure or atmospheric pressure. be able to.
  • the steam generation system S1 is highly flexible with respect to steam specifications.
  • the compressor 30 since the compressor 30 supplements a part of the heating process for generating steam, the heat pump 10 is used at a high COP. Therefore, the steam generating system S1 has a primary energy as a whole. Savings are expected. In other words, using the compressor 30 for heating in a relatively high temperature range with respect to the medium to be heated (water) shortens the temperature rise and suppresses heat loss compared to heating using only heat transfer. Is advantageous.
  • a part of the working medium bypasses the first heat exchange via the bypass path 17, whereby the inflow amount of the working medium to the first heat exchange is controlled, and as a result, A working medium having a heat quantity as required is supplied to each of the first heat exchanger 41 and the second heat exchanger 42 (third to fifth heat exchangers 43 to 45).
  • the working medium flowing through the nopass path 17 exchanges heat with the working medium from the heat absorbing section 11 flowing through the main path 15 of the heat pump 10 in the regenerator 18.
  • the temperature of the working medium in the bypass path 17 decreases (for example, about 20 ° C.), and the temperature of the working medium in the main path 15 of the heat pump 10 increases (for example, about 95 ° C.).
  • the power of the compression unit 12 can be reduced.
  • the bypass amount of the working medium is determined according to each physical property value (specific heat, etc.) of the medium to be heated and the working medium.
  • the medium to be heated is water and the working medium is a chlorofluorocarbon medium or an ammonia, it bypasses the flow rate of the working medium per unit time in the second to fifth heat exchangers 42 to 45.
  • the amount is preferably about 50% in molar ratio.
  • the heat balance between water and the working medium is good in both sensible heat and latent heat. Furthermore, the heat balance between the working media in the regenerator 18 is good.
  • the working medium for example, about 20 ° C
  • the working medium flows through the main path 15 of the heat pump 10 before the expansion section 14.
  • Heat exchange 41 (5th heat dissipating part 13E) joins the working medium.
  • the output temperature of the working medium from the first heat exchanger 41 is set to be relatively low (for example, about 30 ° C.).
  • the working medium after being used for water evaporation is used for warming water and regenerating the working medium, so that heat can be effectively used.
  • the energy efficiency can also be improved by the point force in which the compression unit 12 is a multistage type. That is, the heat of the heat dissipating parts 13A, 13B, and 13C between the stages of the multistage compression unit 12 is deprived, thereby increasing the temperature of the working medium during the working medium compression process. As a result, the compression efficiency of the compression unit 12 is improved and the power of the compressor is reduced.
  • the number of repetitions of the temperature rise of the working medium due to compression and the temperature drop of the working medium in the heat dissipation section (13A, 13B, 13C) between the stages is 2, 3, 4, 5 , 6, 7, 8, 9, or 10 or more. It is advantageous for improving energy efficiency that the number of stages of reheating is within the limits of the device configuration.
  • the fact that the input temperature of the working medium to the multistage compression unit 12 is increased by the regenerator 18 is also advantageous in reducing the power of the compression unit 12.
  • the heat can be effectively used from the viewpoint of heating water, which is a medium to be heated, by using cooling of the heat radiation portions 13A, 13B, and 13C between the stages.
  • the supply path 20 includes the plurality of evaporation pipes 51A to 51D, energy efficiency can be improved.
  • the ratio of gas (vapor) to liquid increases along the direction of water flow, and the heat transfer rate decreases with the progress of vapor generation.
  • water is dominant as a mass and a volume. Since the supply path 20 includes the plurality of evaporation pipes 51A to 51D, heating to water having a high gas ratio is avoided, and as a result, a decrease in heat transfer coefficient due to steam generation is suppressed.
  • the pressure difference between the inlet and outlet of the evaporator tube increases, which may increase the power required to flow water through the evaporator tube.
  • the differential pressure is small, and the increase in water transport power accompanying the expansion of the heat exchange area is suppressed.
  • the fact that the evaporation tubes 51A to 51D are arranged in parallel is advantageous for simplification of the apparatus in which the plurality of evaporation tubes 51A to 51D can easily achieve an independent configuration.
  • the supply path 20 includes a plurality of independent evaporation pipes 51A to 51D, thereby improving the heat balance control.
  • the state (pressure, etc.) of the working medium differs between the heat release portions 13A to 13D.
  • FIG. 16 shows an example of a configuration for controlling the flow rate of water in the evaporation pipe 51A.
  • a sensor 71 is provided for measuring the outlet temperature of the first heat radiating portion 13A corresponding to the evaporation pipe 51A. Based on the measurement result of the sensor 71, the control device 70 controls the flow rate of water per unit time flowing through the evaporation pipe 51A via the pump 52A for the evaporation pipe 51A. Thereby, the outlet temperature of the working medium in the first heat radiating portion 13A can be set to the target value.
  • Use a sensor 72 that measures the inlet temperature of the first heat dissipating part 13A.
  • the other evaporator tubes 51B to 51D and the corresponding heat dissipating parts 13B to 13D can adopt the same configuration.
  • FIG. 17 is a schematic view showing the seventh embodiment.
  • the same or equivalent components as those of the above-described embodiments are denoted by the same reference numerals, and the description thereof is simplified or omitted.
  • the steam generation system S7 has a tank for storing water in the supply path 20 having a plurality of individual tanks 47A corresponding to the plurality of evaporation pipes 51A to 51D. Has ⁇ 47D.
  • the configuration of the heat pump 10 is the same as that of the sixth embodiment.
  • the supply path 20 has a heating unit 21, an evaporation unit 22, and a duct 23 that fluidly connects the evaporation unit 22 and the compressor 30.
  • the evaporation section 22 is a tank (first tank 47A, second tank 47B, third tank 47C, fourth tank 47D) for storing at least a liquid heated medium (water), and fluids to each of the tanks 47A to 47D.
  • the first circulation pipe 48A, the second circulation pipe 48B, the third circulation pipe 48C, and the fourth circulation pipe 48D connected to.
  • Each tank 47A to 47D is provided with a water supply port from the heating unit 21 and a steam discharge port.
  • the tanks 47A to 47D have level sensors 50A to 50D for measuring the liquid level and a gas-liquid separator (not shown) as required.
  • the first circulation pipe 48A having the evaporation pipe 51A is fluidly connected to the first tank 47A. That is, each inlet end and each outlet end of the first circulation pipe 48A are fluidly connected to the first tank 47A.
  • a second circulation pipe 48B having an evaporation pipe 51B is fluidly connected to the second tank 47B.
  • a third circulation pipe 48C having an evaporation pipe 51C is fluidly connected to the third tank 47C
  • a fourth circulation pipe 48D having an evaporation pipe 51D is fluidly connected to the fourth tank 47D.
  • Tank and circulation piping ( The number of (evaporation tubes) is set according to the specifications of the steam generation system S2, and is 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more.
  • the paired force supply paths 20 of the tanks 47A to 47D and the evaporation pipes 51A to 51D are arranged in parallel.
  • the water whose temperature has risen in the heating section 21 is branched and supplied to the tanks 47A to 47D, and water is stored in the tanks 47A to 47D and the circulation pipes 48A to 48D.
  • the supply path 20 includes valves 80A to 80D that control the amount of water supplied to the tanks 47A to 47D.
  • the amount of water supplied to each of the tanks 47A to 47D is controlled via the valves 80A to 80D so that the liquid levels in the tanks 47A to 47D are within a predetermined range.
  • the amount of water supplied to each of the tanks 47A to 47D is controlled based on the measurement results of the level sensors 50A to 50D.
  • Each tank 47A-47D is fluidly connected to the compressor 30 via a duct 23.
  • the internal spaces of the tanks 47A to 47D are sucked by the compressor 30 through the discharge ports and the ducts 23 of the tanks 47A to 47D.
  • a nozzle 35 for supplying water to the steam is disposed as necessary.
  • the arrangement position of the nozzle 35 is, for example, the inlet and Z or the outlet of the compressor 30.
  • the nozzles 35 can be disposed between the stages of the compressor 30.
  • a pipe in which the nozzle 35 and the liquid phase positions of at least one tank 47A to 47D are fluidly connected via the pipe 36 can be configured.
  • the liquid in at least one of the tanks 47 ⁇ / b> A to 47 ⁇ / b> D having a relatively high temperature is effectively used for supplying the nozzle 35.
  • a pressure difference between the inlet and the outlet of the pipe 36 which may use a power source such as the pump 37, may be used.
  • water in the supply path 20 is converted into steam having a relatively low pressure and low temperature by heat transfer from the heat pump 10 (heat dissipating units 13A to 13E).
  • the compression by the compressor 30 results in a relatively high pressure and high temperature steam.
  • Steam from the steam generation system S2 is supplied to predetermined external facilities such as a manufacturing plant, a cooking facility, an air conditioning facility, and a power plant.
  • predetermined external facilities such as a manufacturing plant, a cooking facility, an air conditioning facility, and a power plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 蒸気発生システムは、作動媒体が流れるヒートポンプと、第1媒体が流れる第1経路であり、前記ヒートポンプからの熱伝達によって前記第1媒体が蒸発する被加熱部を有する前記第1経路と、を備える。

Description

明 細 書
蒸気発生システム
技術分野
[0001] 本発明は、蒸気発生システムに関する。
本願は、 2005年 9月 5日に出願された特願 2005— 256389号、 2005年 10月 31 日に出願された特願 2005— 316547号、及び 2006年 6月 15日に出願された特願 2006— 166272号に基づき優先権を主張し、その内容をここに援用する。
背景技術
[0002] 蒸気発生システムとしては、ボイラで燃料を燃焼させて被加熱媒体を加熱する構成 が一般的に知られている (例えば、特許文献 1参照)。
特許文献 1:特開平 6— 249450号公報
発明の開示
発明が解決しょうとする課題
[0003] ボイラのエネルギー効率は一般に約 0. 8 (80%)である。環境問題に対する意識の 高まりとともに、蒸気発生システムに関して、より一層のエネルギー効率の向上が望ま れている。
課題を解決するための手段
[0004] 本発明は、エネルギー効率の高い蒸気発生システムを提供することにある。
[0005] 本発明の態様に従えば、作動媒体が流れるヒートポンプと、第 1媒体が流れる第 1 経路であり、前記ヒートポンプ力 の熱伝達によって前記第 1媒体が蒸発する被加熱 部を有する前記第 1経路と、を備える蒸気発生システムが提供される。
[0006] この蒸気発生システムによれば、ヒートポンプを活用することにより、ボイラに比べて エネルギー効率が向上する。ボイラのエネルギー効率は一般に約 0. 8 (約 80%)で あり、ヒートポンプのエネルギー効率としての成績係数(COP coefficient of performa nce)は一般に 2. 5〜5. 0である。
[0007] この蒸気発生システムにおいて、前記第 1経路の前記被加熱部力 の前記第 1媒 体を圧縮する圧縮機をさらに備えることができる。これにより、ヒートポンプで加熱され た第 1媒体は、圧縮機による圧縮でさらに加熱される。蒸気発生のための加熱温度 領域の一部を圧縮機が補うから、高い COPでヒートポンプが使用される。
[0008] この蒸気発生システムにおいて、前記第 1経路の前記被加熱部での内部空間が、 前記圧縮機によって減圧されるようにできる。
[0009] この蒸気発生システムにおいて、前記第 1経路は、前記第 1媒体を貯留するタンク をさらに有し、前記タンク内の気相が前記圧縮機に吸引され、前記タンク内の液相が 前記タンク内または前記タンク外で前記ヒートポンプによって加熱されるようにできる
[0010] この蒸気発生システムにおいて、前記第 1媒体の蒸気に対して液状の前記第 1媒 体を供給するノズルを、さらに備え、前記ノズルが前記圧縮機の入口、前記圧縮機の 出口、及び前記圧縮機の段間の少なくとも 1つに配置されるようにできる。
[0011] この蒸気発生システムにおいて、前記ヒートポンプは、前記作動媒体の流れ方向に 並ぶ吸熱部、圧縮部、第 1放熱部、第 2放熱部、及び膨張部を有し、前記第 2放熱部 及び前記第 1放熱部がその順に、前記第 1経路内の前記第 1媒体を加熱するように できる。この蒸気発生システムでは、段階的に第 1媒体を加熱する複数の加熱部 (第 1放熱部及び第 2放熱部)をヒートポンプが有するから、第 1媒体の加熱プロセス及び ヒートポンプの構成の最適化が図られる。
[0012] この場合、前記第 1経路内の前記第 1媒体が、前記第 2放熱部からの熱によって沸 点近くに温度上昇し、前記第 1放熱部からの熱によって相変化して蒸気になるように できる。
[0013] この蒸気発生システムにおいて、前記ヒートポンプは、前記第 1放熱部からの前記 作動媒体の一部が前記第 2放熱部を迂回するバイパス経路と、前記バイパス経路内 の前記作動媒体によって、前記吸熱部力 の前記作動媒体を加熱する再生器であり 、前記ヒートポンプにおける前記吸熱部と前記圧縮部との間に配される前記再生器と 、をさらに有し、前記バイノ ス経路は、入口端が前記ヒートポンプの主経路における 前記第 1放熱部と前記第 2放熱部との間に接続され、出口端が前記ヒートポンプの主 経路における前記第 2放熱部と前記膨張部との間に接続されるようにできる。
[0014] この蒸気発生システムにおいて、前記圧縮部が、前記作動媒体を多段に圧縮する 構造を有し、前記第 2放熱部、前記第 1放熱部、及び前記圧縮部の段間放熱部がそ の順に、前記第 1経路内の前記第 1媒体を加熱するようにできる。
[0015] この蒸気発生システムにおいて、前記第 1媒体が水であり、前記作動媒体がアンモ ユアまたはフロン系媒体であるようにできる。
[0016] この蒸気発生システムにおいて、前記第 1経路の前記被加熱部力 の前記第 1媒 体を圧縮する圧縮機をさらに備えることができる。
[0017] この蒸気発生システムにおいて、前記第 1経路の前記被加熱部での内部空間が、 前記圧縮機によって減圧されるようにできる。
[0018] この蒸気発生システムにおいて、前記第 1媒体の蒸気に対して液状の前記第 1媒 体を供給するノズルを、さらに備えることができる。
[0019] この蒸気発生システムにおいて、前記第 1経路の被加熱部は、前記ヒートポンプか らの熱伝達によって前記第 1媒体が蒸発する複数の蒸発管を有するようにできる。こ の蒸気発生システムでは、供給経路が複数の蒸発管を有するから、第 1媒体の蒸発 プロセスの制御性の向上が図られる。
[0020] この蒸気発生システムにおいて、前記第 1経路は、前記第 1媒体を貯溜しかつ前記 複数の蒸発管に流体的に接続されるタンクを有するようにできる。
[0021] この蒸気発生システムにおいて、前記タンクは、前記複数の蒸発管に対応する複 数の個別タンクを有するようにできる。
[0022] この蒸気発生システムにおいて、前記第 1経路は、前記複数の蒸発管の各々にお ける前記第 1媒体の流量を制御する流量制御手段を有するようにできる。
[0023] この蒸気発生システムにおいて、前記ヒートポンプは、前記複数の蒸発管に対応す る複数の放熱部を有するようにできる。
[0024] この蒸気発生システムにお 、て、前記ヒートポンプは、前記作動媒体を多段に圧縮 する構造を有するようにできる。
[0025] この蒸気発生システムにおいて、前記ヒートポンプは、前記第 1媒体の前記複数の 蒸発管への流入前に、前記第 1媒体を加温する加温用放熱部を有するようにできる
[0026] この蒸気発生システムにおいて、前記ヒートポンプは、前記作動媒体の圧縮前に、 前記作動媒体を予熱する再生器を有するようにできる。
[0027] この蒸気発生システムにおいて、前記複数の蒸発管の内部圧力が大気圧に比べ て低いようにできる。
[0028] この蒸気発生システムにおいて、前記複数の蒸発管力 の前記第 1媒体を圧縮す る圧縮機をさらに備え、前記蒸発管内の前記第 1媒体が、前記ヒートポンプからの熱 伝達によって比較的低圧力かつ低温度の蒸気となり、前記圧縮機による圧縮で比較 的高圧力かつ高温度の蒸気となるようにできる。
[0029] この蒸気発生システムにおいて、前記第 1媒体の蒸気に対して液状の前記第 1媒 体を供給するノズルをさらに備えることができる。
発明の効果
[0030] 本発明の蒸気発生システムによれば、ヒートポンプを活用することにより、エネルギ 一効率の向上を図ることができる。
図面の簡単な説明
[0031] [図 1]第 1実施形態を示す概略図である。
[図 2]蒸気発生システムによる水の状態変化の一例を示す T-s線図である。
[図 3]タンクの構成例である。
[図 4]タンクの他の構成例である。
[図 5]タンクの別の構成例である。
[図 6]第 2実施形態を示す概略図である。
[図 7]第 3実施形態を示す概略図である。
[図 8]熱交換に伴う、被加熱媒体とヒートポンプの作動媒体との温度変化の一例を模 式的に示すグラフ図である。
[図 9]熱交換に伴う、被加熱媒体とヒートポンプの作動媒体との温度変化の一例を模 式的に示すグラフ図である。
[図 10]ヒートポンプの作動媒体の状態変化の一例を示す T-s線図である。
[図 11]ヒートポンプの作動媒体の状態変化の一例を示す H-s線図である。
[図 12]第 4実施形態を示す概略図である。
[図 13]第 5実施形態を示す概略図である。 [図 14]第 6実施形態を示す概略図である。
[図 15]第 7実施形態を示す概略図である。
[図 16]蒸発管における水の流量を制御する構成の一例を示す。
[図 17]第 8実施形態を示す概略図である。
符号の説明
[0032] S1〜S8"'蒸気発生システム、 10· ··ヒートポンプ、 11· ··吸熱部、 12、 60…圧縮部 、 13· ··放熱部、 13A…第 1放熱部、 13B…第 2放熱部、 13C…第 3放熱部、 13D〜 第 4放熱部、 13Ε· ··第 5放熱部、 14…膨張部、 15· ··主経路、 17· ··バイパス経路、 1 8…再生器、 20、 80…供給経路、 21…加温部、 22…蒸発部、 23…ダクト、 25…供 給口、 26· ··排出口、 27…供給動力源、 30…圧縮機、 35…ノズル、 36…配管、 41 〜45、 65· ··熱交^^、 47· ··タンク、 47Α· ··第 1タンク、 47Β· ··第 2タンク、 47C…第 3タンク、 47D…第 4タンク、 48、 48A〜48D…循環配管、 48a…入口端、 48b…出 口端、 49…気液分離機、 50· ··レベルセンサ、 51A〜51D…蒸発管、 61· ··段間放 熱部、 70· ··制御装置、 71, 72· ··センサ、 471, 472, 473· ··貯溜部。
発明を実施するための最良の形態
[0033] 以下、本発明の実施形態について図面を参照して説明する。
[0034] 図 1は、第 1実施形態の蒸気発生システムを示す概略図である。図 1において、蒸 気発生システム S1は、ヒートポンプ 10と、被加熱媒体 (例えば水)の供給経路 20と、 圧縮機 30とを備えている。
[0035] ヒートポンプ 10は、蒸発、圧縮、凝縮、及び膨張の各工程力もなるサイクルにより、 低温の物体から熱を汲み上げ、高温の物体に熱を与える装置である。ヒートポンプは 一般に、エネルギー効率が比較的高ぐ結果として、二酸化炭素等の排出量が比較 的少なぐ環境に優 、と 、う利点を有する。
[0036] 本実施形態において、ヒートポンプ 10は、吸熱部 11、圧縮部 12、放熱部 13、及び 膨張部 14を有し、これらは配管を介して順次接続されている。吸熱部 11は、吸熱機 能を有し、作動媒体 (熱媒体)が吸熱する際、その吸収熱に相当する熱をサイクル外 の熱源から吸収する。放熱部 13は、放熱機能を有し、作動媒体が放熱する際、その 放出熱に相当する熱をサイクル外の熱源に与える。圧縮部 12は、圧縮機等によって 作動媒体を圧縮する。この際、通常、作動媒体の温度が上がる。圧縮部 12には動力 が供給される。膨張部 14は、減圧弁またはタービン等によって作動媒体を膨張させ る。この際、通常、作動媒体の温度が下がる。タービンを使用した場合には膨張部 1 4から動力を取り出すことができ、その動力を例えば上記圧縮部 12に供給してもよい 。ヒートポンプ 10に使用される作動媒体としては、フロン系媒体 (HFC 245faなど)、ァ ンモユア、水、二酸化炭素、空気などの公知の様々な熱媒体が適用される。
[0037] 本実施形態にぉ ヽて、供給経路 20は、液状の被加熱媒体を貯留するタンク 47と、 タンク 47と圧縮機 30とを流体的に接続するダクト 23とを有する。
[0038] タンク 47には、供給口 25及び排出口 26が設けられている。液状の被加熱媒体が 供給口 25を介してタンク 47に供給される。タンク 47内の液面が所定範囲内になるよ うに、タンク 47への被加熱媒体の供給量が制御される。例えば、タンク 47内の液面を 計測するセンサ (不図示)の計測結果に基づいて、被加熱媒体の供給動力源 27の 出力が制御される。
[0039] タンク 47における液相位置には、ヒートポンプ 10の放熱部 13が配設されている。ヒ ートポンプ 10の放熱部 13がタンク 47内の液体と直接接してもよく直接接しなくてもよ い。放熱部 13との熱交換により、タンク 47内の被加熱媒体の液相が加熱される。排 出口 26の配設位置は、タンク 47における気相(蒸気相)位置である。タンク 47の内 部空間は、排出口 26及びダクト 23を介して圧縮機 30によって吸引される。タンク 47 内で発生した蒸気は、排出口 26を介して圧縮機 30に向けて、ダクト 23内を流れる。
[0040] 圧縮機 30は、供給経路 20上に配設され、その配設位置はタンク 47に対して下流 である。圧縮機 30としては、軸流圧縮機、遠心圧縮機、レシプロ式圧縮機、ロータリ 一式圧縮機などの様々な圧縮機が適用され、蒸気圧縮に適するのが好ましい。圧縮 機 30は、タンク 47からの蒸気を圧縮し、昇圧した蒸気を下流に流す。
[0041] また、圧縮機 30 (または供給経路 20)には、蒸気に対して液状の被加熱媒体を供 給するノズル 35が、必要に応じて配設されている。ノズル 35の配設位置は、例えば、 圧縮機 30の入口及び出口の少なくとも一方である。圧縮機 30が多段式である場合 には、ノズル (スプレーノズルなど) 35を圧縮機 30の段間に配設することができる。ノ ズル 35とタンク 47の液相位置とが配管 36を介して接続された配管構成にすることも でき、この配管構成では、比較的高温であるタンク 47内の液体がノズル 35への供給 に有効利用される。ノズル 35からの液体の排出(スプレイ)には、ポンプなどの動力源 を用いてもよぐ配管の入口と出口との圧力差を利用してもよ 、。
[0042] 圧縮機 30による吸引作用により、ヒートポンプ 10の熱を受ける供給経路 20の被カロ 熱部での内部空間、すなわちタンク 47の内部空間が減圧される。タンク 47の内部圧 力が大気圧に比べて低い負圧(陰圧)となるように、供給経路 20上の制御弁 (流量制 御弁など。不図示)や圧縮機 30が制御される。この制御は、例えば、タンク 47の内部 圧力を計測するセンサ (不図示)の計測結果に基づ!、て行われる。
[0043] また、タンク 47及びヒートポンプ 10は、タンク 47の内部空間が負圧状態において、 水が蒸発するように設計 (容量設計、能力設計など)されている。ヒートポンプ 10の成 績係数は、被加熱媒体 (水)の入力温度と出力温度との差に応じて変化し、その温度 差が過度に大きいと成績係数 (COP)が低下する場合がある。タンク 47の内部空間 が負圧状態であるという条件により、加熱温度領域 (入出力温度差)を比較的狭く設 定し、高い COPでのヒートポンプ 10の使用が可能である。本例において、例えば、 水の入力温度は 20°Cであり、タンク 47からの水の出力温度は約 90°Cである。この数 値は一例であって、本発明はこれに限定されない。
[0044] 蒸気発生システム S1において、供給経路 20内の被加熱媒体が、ヒートポンプ 10に よる加熱で比較的低圧力かつ低温度の蒸気となり、圧縮機 30による圧縮で比較的 高圧力かつ高温度の蒸気となる。すなわち、ヒートポンプ 10で加熱された水は、圧縮 機 30による圧縮によってさらに加熱され、これにより、 100°C以上の高温蒸気が発生 する。蒸気発生システム S1からの蒸気は、外部の所定施設、例えば製造プラント、調 理施設、空調設備、発電プラントなどに供給される。
[0045] 蒸気発生のための加熱温度領域の一部を圧縮機 30が補うから、高い COPでヒート ポンプ 10が使用される。したがって、蒸気発生システム S1では、ヒートポンプ 10と圧 縮機 30とを用いた 2段順次加熱により、ボイラに比べて高いエネルギー効率を得るこ とができる。また、加熱の 2段目に圧縮機 30を使用するから、構成が比較的簡素であ る。
[0046] ここで、試算例を示す。水の加熱温度領域を 20°C〜161°C (0. 8MPaの飽和蒸気 )とするとき、本例の蒸気発生システム SIでは、ボイラに比べて、約 14%の一次投入 エネルギーが低減される。一次投入エネルギーの低減は、工場などの施設からの C 02排出量の削減に効果的である。なお、上記試算では、ボイラ効率を 80%、ヒート ポンプの COPを 4、発電効率 (送電端、送電ロス含む)を 38%、とした。また、ボイラ の一次投入エネルギーは燃料熱量から求め、ヒートポンプの一次投入エネルギーは 電力を燃料換算して求めた。ヒートポンプの COPが 3である場合、ボイラに対する、 一次投入エネルギーの低減割合は約 4%である。
[0047] 図 2は、蒸気発生システム S1による水の状態変化の一例を示す T-s線図である。
図 2に示すように、水は、ヒートポンプからの熱伝達によって、沸点近くまで温度上昇 した後、温度一定のまま相変化する。このとき、大気圧 = latm =約 0. IMPa)に 比べて低い負圧 Pの状態において、飽和蒸気 dが発生する。飽和蒸気 dの温度は
0 0 0 標準沸点よりも低い、例えば約 90°Cである。
[0048] 次に、その飽和蒸気 dは、圧縮機 30 (図 1参照)による圧縮で比較的高圧力かつ
0
高温の蒸気 (過熱蒸気 e )
2 になる。すなわち、上記圧縮に伴って、蒸気が温度上昇す る。過熱蒸気 eの圧力 Pは大気圧よりも高い、例えば 0. 8MPaである。
2 2
[0049] 0. 8MPaの過熱蒸気 eを定圧下で冷却することにより、約 160°Cの飽和蒸気を得
2
ることができる(図 2の破線 a)。同様に、大気圧 (約 0. IMPa)の過熱蒸気を定圧下 で冷却することにより、約 100°Cの飽和蒸気 dを得ることができる。
[0050] 過熱蒸気から飽和蒸気への冷却に、液状の水または温水を直接混入することによ り、蒸気のボリュームが増加する。この場合、例えば、圧縮機 30の出口において蒸気 に対して水または温水が供給される。
[0051] また、水または温水の供給量及びタイミングの最適化により、比較的低圧力かつ低 温度の飽和蒸気 dから比較的高圧力かつ高温度の飽和蒸気 dへの変化を、より直
0 2
接的にできる。例えば、圧縮機 30の入口で適量の水または温水が蒸気に供給される ことにより、圧縮機 30の入口での飽和蒸気 d力 圧縮機 30の出口で飽和蒸気 dに
0 2 変化する(図 2の破線 cl (スプレー)及び c2 (圧縮))。または、圧縮機 30の中間で圧 縮機 30の段落ごとに適量の水または温水が蒸気に供給されることにより、圧縮機 30 の入口での飽和蒸気 d力 圧縮機 30の出口で飽和蒸気 dに変化する(図 2の破線 b ) oすなわち、圧縮機 30による圧縮と水または温水による冷却との組み合わせの最適 化により、効率良く圧縮機 30から飽和状態に近い蒸気を排出することができる。
[0052] このように、蒸気発生システム S1では、ヒートポンプ 10と圧縮機 30とを用いた 2段順 次加熱により、飽和蒸気及び過熱蒸気のいずれも容易に発生させることができる。す なわち、ヒートポンプ 10による加熱で大気圧に比べて低い負圧での飽和蒸気を発生 させた後、圧縮機 30による圧縮で大気圧または大気圧よりも高い圧力での過熱蒸気 または飽和蒸気を発生させることができる。つまり、蒸気発生システム S1は、蒸気仕 様に対する柔軟性が高い。
[0053] さらに、蒸気発生システム S1は、 100°Cを超える高温蒸気を得るのに適している。
すなわち、被加熱媒体 (水)に対する比較的高温域の加熱に圧縮機 30を利用するこ とは、熱伝達のみを利用した加熱と比較して、温度上昇の短時間化及び熱損失の抑 制に有禾 ljである。
[0054] 図 3、図 4、及び図 5は、図 1に示すタンク 47の構成例である。
図 3において、タンク 47は、箱型の貯溜部 471を有している。貯溜部 471内の下部 が被加熱媒体の液相であり、上部が被加熱媒体の気相 (蒸気相)である。貯溜部 47 1の底面または側面に被加熱媒体の供給口 25が設けられている。貯溜部 471の上 面 (気相位置)に被加熱媒体の排出口 26が設けられて 、る。また、貯溜部 471の内 部における、液相位置にヒートポンプ 10の放熱部 13が配設されている。
[0055] 図 3のタンク 47では、貯溜部 471内の下部に液状の被加熱媒体が貯溜され、ヒート ポンプ 10の放熱部 13との熱交換により、その被加熱媒体が加熱される。タンク 47に おいて、発生した蒸気が貯溜部 471の排出口 26を介して圧縮機 30 (図 1参照)に吸 引される。
[0056] 図 4にお!/、て、タンク 47は、筒状の貯溜部 472を有して!/、る。筒状の貯溜部 472の 軸方向は、重力方向に平行、あるいは重力方向に対して傾いている。貯溜部 472の 下端に被加熱媒体の供給口 25が設けられている。貯溜部 472の上端 (気相位置)に 被加熱媒体の排出口 26が設けられている。また、貯溜部 472の内部に、その軸方向 に沿ってヒートポンプ 10の放熱部 13が配設されている。ヒートポンプ 10の放熱部 13 力 筒状の貯溜部 472の外周面かつ軸方向に沿って巻かれた構成でもよい。 [0057] 図 4のタンク 47では、筒状の貯溜部 472内に液状の被加熱媒体が貯溜され、ヒート ポンプ 10の放熱部 13との熱交換により、その被加熱媒体が加熱される。タンク 47に ぉ 、て、発生した蒸気が貯溜部 472の排出口 26を介して圧縮機 30 (図 1参照)に吸 引される。また、貯溜部 472の軸方向に沿って下力も上に向力 て、被加熱媒体の 温度が上昇する。
[0058] 図 5において、タンク 47は、貯溜部 473にカ卩え、循環配管 48を有している。貯溜部 473または循環配管 48に被加熱媒体の供給口 25が設けられている。貯溜部 473の 上面 (気相位置)に排出口 26が設けられて 、る。循環配管 48の入口端 48aが貯溜 部 473の底面に接続され、他方の出口端 48bが貯溜部 473の上面 (気相位置)に接 続されている。また、循環配管 48の外周面にヒートポンプ 10の放熱部 13が巻かれて いる。循環配管 48の出口端 48bに隣接して、気液分離器が配設された構成でもよい 。ヒートポンプ 10の放熱部 13が、循環配管 48の内部に配設された構成でもよい。
[0059] 図 5のタンク 47では、貯溜部 473及び循環配管 48内に液状の被加熱媒体が貯溜 され、ヒートポンプ 10の放熱部 13との熱交換により、その循環配管 48内の被加熱媒 体が加熱される。この熱変化に伴い、入口端 48aから出口端 48bに向力つて、循環 配管 48内を被加熱媒体が流れる。循環配管 48から排出された被加熱媒体のうち、 蒸気が貯溜部 473の排出口 26を介して圧縮機 30 (図 1参照)に吸引され、液体が貯 溜部 473に貯溜される。
[0060] 図 6は、第 2実施形態を示す概略図である。以下の説明において、上記の実施形 態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しく は省略する。図 6において、蒸気発生システム S2は、ヒートポンプ 10と、被加熱媒体 (本例では水)の供給経路 20と、圧縮機 30とを備えて ヽる。
[0061] 本実施形態において、ヒートポンプ 10は、吸熱部 11、圧縮部 12、放熱部(第 1放熱 部 13A、第 2放熱部 13B)、及び膨張部 14を有し、これらは配管を介して順次接続さ れている。吸熱部 11では、主経路 15内を流れる作動媒体がサイクル外の熱源 (例え ば大気)の熱を吸収する。放熱部 13A, 13Bは、圧縮部 12からの高温の作動媒体が 流れる配管を含む。また、放熱部 13A, 13Bはその順に、作動媒体の流れ方向に直 列に並んでおり、主経路 15内を流れる作動媒体の熱をサイクル外の熱源に与える。 [0062] 本実施形態において、供給経路 20は、加温部 21と、蒸発部 22と、蒸発部 22と圧 縮機 30とを流体的に接続するダクト 23とを有する。
[0063] 加温部 21は、供給源からの水が流れる配管を含み、ヒートポンプ 10の第 2放熱部 1 3Bに隣接して配置される。加温部 21と第 2放熱部 13Bとを含んで第 1熱交 が 構成される。第 1熱交換器 41は、本例では、低温の流体 (供給経路 20内の水)と高 温の流体 (ヒートポンプ 10内の作動流体)とが対向して流れる向流型の熱交換構造 を有するが、第 1熱交換器 41は、高温流体と低温流体とが並行して流れる並行流型 の熱交換構造を有してもよい。加温部 21では、ヒートポンプ 10の第 2放熱部 13Bから の熱によって、供給経路 20内の水が温度上昇する。
[0064] 蒸発部 22は、液状の被加熱媒体 (水)を貯溜するタンク 47と、循環配管 48とを含む 。タンク 47または循環配管 48には、加温部 21からの水の供給口と、蒸気の排出口と が設けられる。循環配管 48の入口端と出口端とはそれぞれタンク 47に接続される。 循環配管 48の少なくとも一部力 ヒートポンプ 10の第 1放熱部 13Aに隣接して配置 される。循環配管 48と第 1放熱部 13Aとを含んで第 2熱交 42が構成される。第 2 熱交^^ 42は、低温の流体 (循環配管 48内の水)と高温の流体 (ヒートポンプ 10内 の作動流体)とが対向して流れる向流型の熱交換構造、あるいは、高温流体と低温 流体とが並行して流れる並行流型の熱交換構造などを有する。ヒートポンプ 10の第 1 放熱部 13Aが、循環配管 48の外周面や内部に配設された構成を採用してもよい。タ ンク 47内には、循環配管 48の出口端に隣接して、必要に応じて気液分離器 49が配 設される。
[0065] 蒸発部 22では、加温部 21で温度上昇した水が供給口を介してタンク 47に供給さ れる。タンク 47内の液面が所定範囲内になるように、タンク 47への水の供給量が制 御される。例えば、タンク 47内の液面を計測するセンサ (不図示)の計測結果に基づ いて、水の供給量が制御される。タンク 47及び循環配管 48内に水が貯溜され、また 、ヒートポンプ 10の第 1放熱部 13Aによって循環配管 48内の水が加熱される。この 加熱に伴い、循環配管 48内を水 (及び蒸気)が流れる。タンク 47の内部空間は、タン ク 47の排出口及びダクト 23を介して圧縮機 30によって吸引される。タンク 47内で発 生した蒸気は、ダクト 23内を圧縮機 30に向けて流れる。 [0066] 圧縮機 30による吸引作用により、供給経路 20におけるヒートポンプ 10による加熱 部位での内部空間、すなわちタンク 47の内部空間が減圧される。タンク 47の内部圧 力が大気圧に比べて低い負圧(陰圧)となるように、供給経路 20上の制御弁 (流量制 御弁など。不図示)や圧縮機 30が制御される。この制御は、例えば、タンク 47の内部 圧力を計測するセンサ (不図示)の計測結果に基づ!、て行われる。
[0067] 蒸気発生システム S2において、供給経路 20内の水力 ヒートポンプ 10による加熱 で蒸気になる。本実施形態において、供給経路 20内の水が、第 1熱交換器 41にお いてヒートポンプ 10の第 2放熱部 13B力もの熱によって沸点近くまで温度上昇し、そ の後、第 2熱交換器 42において第 1放熱部 13Aからの熱によってその水が相変化し て蒸発する。つまり、水の顕熱加熱及び潜熱加熱がそれぞれ別々の熱交換器 41, 4 2 (放熱部 13A, 13B)によって段階的に行われる。
[0068] そのため、この蒸気発生システム S2によれば、第 2放熱部 13Bを含む第 1熱交換 器 41が顕熱交換に適した形態であり、第 1放熱部 13Aを含む第 2熱交換器 42が潜 熱交換に適した形態であるといった、装置構成の最適化が図られ、これに応じて、好 ま ヽ加熱プロセスを経て蒸気が発生する。
[0069] 前述したように、ヒートポンプの成績係数は、被加熱媒体 (水)の入出力温度差に応 じて変化し、比較的高い入出力温度差においてその成績係数が低下する傾向があ る。本実施形態において、顕熱交換及び潜熱交換に対応してヒートポンプが個別の 加熱部 (放熱部 13A, 13B)を有することにより、ボイラに比べて高いエネルギー効率 で蒸気を発生させることができる。
[0070] さらに、蒸気発生システム S1では、供給経路 20内の水力 ヒートポンプ 10 (放熱部 13A, 13B)による加熱で比較的低圧力かつ低温度の蒸気となり、圧縮機 30による 圧縮で比較的高圧力かつ高温度の蒸気となる。すなわち、ヒートポンプ 10で加熱さ れた水が、圧縮機 30による圧縮によってさらに加熱され、これにより、 100°C以上の 高温蒸気が発生する。蒸気発生システム S1からの蒸気は、外部の所定施設、例え ば製造プラント、調理施設、空調設備、発電プラントなどに供給される。
[0071] 蒸気発生システム S2では、ヒートポンプ 10による 2段加熱と圧縮機 30による加熱と を含む 3段順次加熱により、飽和蒸気及び過熱蒸気のいずれも容易に発生させるこ とができる。すなわち、ヒートポンプ 10による加熱で大気圧に比べて低い負圧での飽 和蒸気を発生させた後、圧縮機 30による圧縮で大気圧または大気圧よりも高い圧力 での過熱蒸気または飽和蒸気を発生させることができる。つまり、蒸気発生システム S 1は、蒸気仕様に対する柔軟性が高い。
[0072] さらに、蒸気発生システム S2は、蒸気発生のための加熱過程の一部を圧縮機 30 が補うから、高い COPでヒートポンプ 10が使用され、したがって、蒸気発生システム S 1は、全体としての一次エネルギーの節減が期待される。すなわち、蒸気発生システ ム S1によれば、被加熱媒体 (水)に対する比較的高温域の加熱のために圧縮機 30 が利用されるから、熱伝達による加熱と比較して、温度上昇の短時間化及び熱損失 の抑制に有利である。
[0073] 図 7は、第 3実施形態を示す概略図である。以下の説明において、上記の各実施 形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若 しくは省略する。図 7において、蒸気発生システム S3は、ヒートポンプ 10と、被加熱媒 体 (本例では水)の供給経路 20と、多段式の圧縮部 60とを備えて 、る。
[0074] 供給経路 20の構成は、図 6の蒸気発生システム S2のそれと同様である。ヒートボン プ 10は、図 2のヒートポンプ 10と同様の構成に加え、バイパス経路 17と、再生器 18と を有する。
[0075] ノ ィパス経路 17の入口端力ヒートポンプ 10の主経路 15における第 1放熱部 13Aと 第 2放熱部 13Bとの間の配管に接続され、出口端が主経路 15における第 2放熱部 1 3Bと膨張部 14との間の配管に接続される。バイパス経路 17の入口に、作動媒体の バイパス流量を制御する流量制御弁が配設されてもょ 、。バイノス経路 17にお ヽて 、第 1放熱部 13Aからの作動媒体の一部が、第 2放熱部 13Bを迂回し、膨張部 14の 手前で第 1放熱部 13Aからの作動媒体と合流する。第 1放熱部 13Aからの残りの作 動媒体は、第 2放熱部 13Bを流れ、第 1熱交翻 41においてその作動媒体と供給経 路 20内の水とが熱交換する。
[0076] 再生器 18は、バイパス経路 17の配管と、ヒートポンプ 10の主経路 15の配管(吸熱 部 11と圧縮部 60との間の配管)とが、互いに隣接して配置された構成を有する。ヒー トポンプ 10において、吸熱部 11からの作動媒体に比べて、第 1放熱部 13Aからの作 動媒体は高温である。再生器 18において、バイパス経路 17を流れる第 1放熱部 13 Aからの作動媒体と、ヒートポンプ 10の主経路 15を流れる吸熱部 11からの作動媒体 とが熱交換する。この熱交換により、バイパス経路 17内の作動媒体の温度が降下し、 主経路 15内の作動媒体の温度が上昇する。なお、再生器 18は、低温の流体 (主経 路 15内の作動媒体)と高温の流体 (バイパス経路 51内の作動流体)とが対向して流 れる向流型の熱交換構造、あるいは、高温流体と低温流体とが並行して流れる並行 流型の熱交換構造などを有する。
[0077] 圧縮部 60は、作動媒体を多段に圧縮する構造を有する。その段数は、 2段でもよく 、 3段以上でもよい。水の供給経路 20における蒸発部 22の循環配管 48と、多段式 の圧縮部 60の段間放熱部 61とが互いに隣接して配置される。循環配管 48、圧縮部 60の段間放熱部 61、及び第 1放熱部 13A、を含んで第 2熱交換器 65が構成される 。第 2熱交翻 65は、低温の流体 (循環配管 48内の水)と高温の流体 (ヒートポンプ 10内の作動流体)とが対向して流れる向流型の熱交換構造、あるいは、高温流体と 低温流体とが並行して流れる並行流型の熱交換構造などを有する。
[0078] 蒸気発生システム S3においては、第 2放熱部 13B、第 1放熱部 13A、及び圧縮部 60の段間放熱部 61がその順に、供給経路 20内の水を加熱する。本実施形態にお いて、供給経路 20内の水が、第 1熱交翻41においてヒートポンプ 10の第 2放熱部 13Bからの熱によって沸点近くまで温度上昇する。その後、第 2熱交換器 65におい て第 1放熱部 13Aからの熱及び圧縮部 60の段間放熱部 61からの熱によってその水 が相変化して蒸発する。つまり、水の顕熱加熱及び潜熱加熱がそれぞれ別々の熱交 ^41, 65によって段階的に行われる。一方、作動媒体は、水との熱交換により、 温度一定のまま蒸気力 液体へ相変化し、その後に、温度降下する。
[0079] バイパス経路 17を介して作動媒体の一部が第 1熱交 を迂回するから、第 1 熱交換器 41に入る作動媒体の流量の最適化が図られる。これは、次に説明するよう に、作動媒体の保有熱を有効に使う上で有利である。
[0080] 図 8及び図 9は、熱交換に伴う、被加熱媒体とヒートポンプの作動媒体との温度変 化の一例を模式的に示すグラフ図である。図 8は蒸気発生システム S2 (図 6)に対応 し、図 9は蒸気発生システム S3 (図 7)に対応する。本例では、被加熱媒体は水 (H O )であり、作動媒体はアンモニア (NH )である。
3
[0081] 図 8及び図 9に示すように、水は、アンモニアとの熱交換により、沸点近くまで温度 上昇した後、温度一定のまま液体から蒸気に相変化する。例えば、水の入力温度は 約 20°Cであり、出力温度は約 90°Cである。アンモニアは、水との熱交換により、温度 一定のまま蒸気力 液体へ相変化し、その後に、温度降下する。
[0082] 図 8に示すように、図 6の蒸気発生システム S2では、水の温度上昇過程 (顕熱)と相 変化過程 (潜熱)との間で実質的に同量のアンモニアが熱交換に用いられるから、水 とアンモニアとの間での温度の逆転(図 8の破線)の回避のために、アンモニアの出 力温度を一定値以上にする必要がある。これは、アンモニアに比べて、水の蒸発熱 が大きいことによる。蒸気発生システム S2では、例えば、アンモニアの入口温度は約 100°C、出口温度は約 80°Cに設定される。
[0083] 一方、図 9に示すように、図 7の蒸気発生システム S3では、アンモニアの流れ方向 に関して後段の熱交換器 (第 1熱交換器 41)を、アンモニアの一部が迂回するから、 蒸気発生システム S2に比べて、アンモニアの出力温度を低くできる。すなわち、水の 温度上昇 (顕熱)及び相変化 (潜熱)の各過程に対して、アンモニアの必要量が最適 化される。蒸気発生システム S3では、例えば、アンモニアの入口温度は約 100°C、 出口温度は約 30°Cに設定される。
[0084] 図 7に戻り、蒸気発生システム S3では、バイパス経路 17を介して作動媒体の一部 が第 1熱交換器 41を迂回することにより、第 1熱交換器 41への作動媒体の流入量が 制御される。その結果、第 1熱交換器 41及び第 2熱交換器 65のそれぞれに対して、 必要に応じた熱量を有する作動媒体が供給される。
[0085] ノ ィパス経路 17を流れる作動媒体は、再生器 18において、ヒートポンプ 10の主経 路 15を流れる吸熱部 11からの作動媒体と熱交換する。この熱交換により、バイパス 経路 17内の作動媒体の温度が降下し (例えば約 20°C)、ヒートポンプ 10の主経路 1 5内の作動媒体の温度が上昇する(例えば約 95°C)。圧縮部 60に対する作動媒体 の入力温度の上昇により、圧縮部 60の動力の低減ィ匕が図られる。
[0086] 作動媒体のバイパス量は、被加熱媒体及び作動媒体の各物性値 (比熱など)に応 じて定められる。被加熱媒体が水でありかつ、作動媒体がアンモニアである場合には 、第 2熱交翻65に対する作動媒体の供給量に対して、バイパス量がモル比で 50 %程度であるのが好ましい。この場合、図 9に示したように、顕熱及び潜熱のそれぞ れにおいて水とアンモニアとの間の熱バランスが良い。さらに、アンモニアの液相の 比熱が気相の比熱の約 2倍であることから、再生器 18におけるアンモニア同士の熱 バランスも良い。アンモニアに代えて、フロン系媒体を用いた場合もこれと同様である
[0087] 再生器 18で温度降下したバイパス経路 17内の作動媒体 (例えば約 20°C)は、膨 張部 14の手前で、ヒートポンプ 10の主経路 15を流れる第 1熱交換器 41 (第 2放熱部 13B)からの作動媒体と合流する。前述したように、第 1熱交換器 41からの作動媒体 の出力温度は比較的低く設定される(例えば約 30°C)。膨張部 14に対する作動媒体 の入力温度の降下により、作動媒体の液ガス比の最適化が図られ、その結果、吸熱 部 11にお ヽてサイクル外の熱源 (例えば大気)から有効に熱が吸収される。
[0088] このように、蒸気発生システム S3によれば、水の蒸発に用いた後の作動媒体が水 の加温と作動媒体の再生とに用いられるから、熱の有効利用が図られる。したがって 、蒸気発生システム S3は、蒸気発生システム S2に比べて、高いエネルギー効率を有 する。
[0089] また、蒸気発生システム S3では、圧縮部 60が多段式であり、圧縮部 60の段間放熱 部 61において、作動媒体と水とが熱交換する点からも、エネルギー効率の向上が図 られる。すなわち、多段式の圧縮部 60の段間放熱部 61の熱が奪われることによって 、作動媒体の圧縮過程における作動媒体の温度上昇が抑制され、その結果、圧縮 部 60の圧縮効率の向上及び圧縮機の動力の低減化が図られる。圧縮に伴う作動媒 体の温度上昇と、段間放熱部 61における作動媒体の温度降下との繰り返しの数 (再 熱の段数)は、 2段でもよぐ 3段以上でもよい。再熱の段数が装置構成上の制約の 範囲内で多いのが、エネルギー効率の向上に有利である。
[0090] 図 10は、図 7のヒートポンプ 10の作動媒体の状態変化の一例を示す T-s線図で ある。図 11は、図 7のヒートポンプ 10の作動媒体の状態変化の一例を示す H-s線 図(モリエ線図)である。図 10及び図 10は、 4段再熱の例である。
[0091] 蒸気発生システム S3では、多段式の圧縮部 60に対する作動媒体の入力温度が再 生器 18によって高められている点も、圧縮部 60の動力低減に有利である。また、段 間放熱部 61の冷却を利用して、被加熱媒体である水を加熱する点からも、熱の有効 利用が図られる。
[0092] また、蒸気発生システム S3では、蒸気発生システム S2 (図 6)と同様に、第 2放熱部 13Bを含む第 1熱交換器 41が顕熱交換に適した形態であり、第 1放熱部 13A及び 圧縮部 60の段間放熱部 61を含む第 2熱交換器 65が潜熱交換に適した形態である といった、装置構成の最適化が図られ、これに応じて、好ましい加熱プロセスを経て 蒸気が発生する。
[0093] また、蒸気発生システム S3では、蒸気発生システム S2 (図 6)と同様に、供給経路 2 0内の水が、ヒートポンプ 50による加熱で比較的低圧力かつ低温度の蒸気となり、圧 縮機 30による圧縮で比較的高圧力かつ高温度の蒸気となる。すなわち、ヒートボン プ 50で加熱された水力 圧縮機 30による圧縮によってさらに加熱され、これにより、 1 00°C以上の高温蒸気が発生する。蒸気発生システム S2からの蒸気は、外部の所定 施設、例えば製造プラント、調理施設、空調設備、発電プラントなどに供給される。
[0094] また、蒸気発生システム S3では、蒸気発生システム S2 (図 6)と同様に、ヒートボン プ 10による複数段の加熱と圧縮機 30による加熱とを含む多段加熱により、飽和蒸気 及び過熱蒸気のいずれも容易に発生させることができる。すなわち、ヒートポンプ 10 による加熱で大気圧に比べて低 、負圧での飽和蒸気を発生させた後、圧縮機 30に よる圧縮で大気圧または大気圧よりも高い圧力での過熱蒸気または飽和蒸気を発生 させることができる。つまり、蒸気発生システム S2は、蒸気仕様に対する柔軟性が高 い。
[0095] 図 12は、図 7の蒸気発生システム S3の変形例である第 4実施形態を示す。以下の 説明において、上記の各実施形態と同一又は同等の構成部分については同一の符 号を付し、その説明を簡略若しくは省略する。図 12の蒸気発生システム S4は、図 7 の蒸気発生システム S3のヒートポンプ 10から、バイパス経路 17及び再生器 18を省 V、たヒートポンプ 10を有して!/、る。
[0096] ここで、試算例を示す。図 6の蒸気発生システム S2、図 7の蒸気発生システム S3、 及び図 12の蒸気発生システム S4について、 COPを試算した。被加熱媒体は水、作 動媒体はアンモニアである。図 6の蒸気発生システム S2の COPは 3. 07であった。 図 7の蒸気発生システム S3の COPは、再熱 2段が 3. 42、再熱 4段で 3. 52であった 。図 12の蒸気発生システム S4の COPは、再熱 2段が 3. 21であった。
[0097] 図 13及び図 14はそれぞれ、図 7の蒸気発生システム S3の別の変形例である第 4 及び第 5実施形態である。以下の説明において、上記の各実施形態と同一又は同等 の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。図 13 の蒸気発生システム S 5は、図 7の蒸気発生システム S 3と比較して被加熱媒体 (水) の入力温度が異なる(約 60°C)。図 14の蒸気発生システム S6は、図 7の蒸気発生シ ステム S3の供給経路 20から、圧縮機 30を省 、た供給経路 80を有して 、る。
[0098] 図 15は、第 6実施形態を示す概略図である。以下の説明において、上記の各実施 形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若 しくは省略する。図 15において、蒸気発生システム S6は、ヒートポンプ 10と、被加熱 媒体 (水)の供給経路 20と、圧縮機 30とを備える。蒸気発生システム S6の構成は、 蒸気発生システム S1の設計要求に応じて様々に変更可能である。
[0099] 本実施形態において、ヒートポンプ 10は、吸熱部 11、圧縮部 12、放熱部(第 1放熱 部 13A、第 2放熱部 13B、第 3放熱部 13C、第 4放熱部 13D、第 5放熱部 13E)、及 び膨張部 14を有し、これらは配管を介して接続されている。
[0100] 本実施形態において、圧縮部 12は、作動媒体を多段に圧縮する構造を有する。図 15に示す圧縮部 12は、第 1圧縮部 12A、第 2圧縮部 12B、第 3圧縮部 12C、及び第 4圧縮部 12Dを含む 4段圧縮構造を有する。圧縮の段数は、蒸気発生システム S6の 仕様【こ応じて設定され、 2、 3、 4、 5、 6、 7、 8、 9、ある!/ヽ ίま 10以上である。圧縮咅 は、軸流圧縮機、遠心圧縮機、レシプロ式圧縮機、ロータリー式圧縮機などの様々な 圧縮機のうち、作動媒体の圧縮に適する圧縮機を有する。圧縮機には動力が供給さ れる。圧縮部 12は、各圧縮部 12A, 12B, 12C, 12Dに対応する回転数が個々に 制御される多軸圧縮構造を有することができる。あるいは、圧縮部 12は、同軸圧縮構 造を有することができる。各圧縮部 12A, 12B, 12C, 12Dの圧縮比 (圧力比)は、蒸 気発生システム S1の仕様に応じて設定される。
[0101] 放熱部 13Α〜13Εは、圧縮部 12で圧縮された作動媒体が流れる配管を有し、主 経路 15内を流れる作動媒体の熱をサイクル外の熱源に与える。本実施形態におい て、作動媒体の流れ方向に沿って、 5つの放熱部 13A〜13Eが直列に配置されてい る。放熱部の数は、蒸気発生システム S1の仕様に応じて設定され、 3、 4、 5、 6、 7、 8 、 9、 10、あるいは 11以上である。第 1放熱部 13Aは圧縮部 12Aと 12Bとの段間に配 置され、第 2放熱部 13Bは圧縮部 12Bと 12Cとの段間に配置され、第 3放熱部 13C は圧縮部 12Cと 12Dとの段間に配置され、第 4放熱部 13Dは圧縮部 12Dの下流位 置に配置され、第 5放熱部 13Eは、第 4放熱部 13Dの下流位置に配置される。
[0102] 本実施形態において、ヒートポンプ 10はさらに、バイパス経路 17と、再生器 18とを 有する。バイパス経路 17の入口端がヒートポンプ 10の主経路 15における第 4放熱部 13Dと第 5放熱部 13Eとの間の配管に接続される。バイパス経路 17の出口端が主経 路 15における第 5放熱部 13Eと膨張部 14との間の配管に接続される。バイパス経路 17の入口に、作動媒体のバイパス流量を制御する流量制御弁を設けることができる 。バイパス経路 17において、第 4放熱部 13Dからの作動媒体の一部が、第 5放熱部 13Eを迂回し、膨張部 14の手前で第 5放熱部 13Eからの作動媒体と合流する。第 4 放熱部 13D力もの残りの作動媒体は、第 5放熱部 13Eを流れ、第 1熱交翻 41にお いてその作動媒体と供給経路 20内の水とが熱交換する。
[0103] 再生器 18は、バイパス経路 17の配管の一部と、ヒートポンプ 10の主経路 15の配管
(吸熱部 11と圧縮部 12との間の配管)の一部とが、互いに隣接して配置された構成 を有する。ヒートポンプ 10において、吸熱部 11からの作動媒体に比べて、第 4放熱 部 13Dからの作動媒体は高温である。再生器 18において、バイパス経路 17を流れ る第 4放熱部 13D力もの作動媒体と、ヒートポンプ 10の主経路 15を流れる吸熱部 11 からの作動媒体とが熱交換する。この熱交換により、バイパス経路 17内の作動媒体 の温度が降下し、主経路 15内の作動媒体の温度が上昇する。再生器 18は、低温の 流体 (主経路 15内の作動媒体)と高温の流体 (バイパス経路 17内の作動媒体)とが 対向して流れる向流型の熱交換方式を有することができる。再生器 18は、高温流体 と低温流体とが並行して流れる並行流型の熱交換方式を有してもよい。
[0104] 供給経路 20は、加温部 21と、蒸発部 22と、蒸発部 22と圧縮機 30とを流体的に接 続するダクト 23とを有する。 [0105] 加温部 21は、ヒートポンプ 10の第 5放熱部 13Eに隣接して配置されかつ供給源( 不図示)からの水が流れる配管を含む。加温部 21と第 5放熱部 13Eとを含んで第 1 熱交^^ 41が構成される。第 1熱交翻41は、低温の流体 (供給経路 20内の水)と 高温の流体 (ヒートポンプ 10内の作動流体)とが対向して流れる向流型の熱交換方 式を有することができる。第 1熱交 は、高温流体と低温流体とが並行して流れ る並行流型の熱交換方式を有してもよい。第 1熱交 41の熱交換構造として、公 知の様々なものを採用することができる。例えば、ヒートポンプ 10の第 5放熱部 13E の配管を、加温部 21の配管の外周面や内部に配設することができる。加温部 21に おいて、ヒートポンプ 10の第 5放熱部 13E力もの熱伝達によって、供給経路 20内の 水が温度上昇する。
[0106] 蒸発部 22は、少なくとも液状の被加熱媒体 (水)を貯溜するタンク 47と、タンク 47に 流体的に接続された循環配管 (第 1循環配管 48Α、第 2循環配管 48Β、第 3循環配 管 48C、第 4循環配管 48D)とを有する。タンク 47には、加温部 21からの水の供給口 と、蒸気の排出口とが設けられる。タンク 47は、必要に応じて、液面を計測するレべ ルセンサ 50と、気液分離器 (不図示)とを有する。
[0107] 本実施形態において、 1つのタンク 47に対して各循環配管 48A, 48B, 48C, 48 Dが流体的に接続されている。すなわち、循環配管 48A〜48Dの各入口端と各出口 端とがタンク 47に流体的に接続される。循環配管の数は、蒸気発生システム S1の仕 様【こ応じて設定され、 2、 3、 4、 5、 6、 7、 8、 9、ある!/ヽ ίま 10以上である。第 1循環酉己 管 48Αは、ヒートポンプ 10の第 1放熱部 13Aに隣接して配置される蒸発管 51Aと、 必要に応じてポンプ 52Αとを有する。同様に、第 2循環配管 48Βは、ヒートポンプ 10 の第 2放熱部 13Bに隣接して配置される蒸発管 51Bと、必要に応じてポンプ 52Βとを 有する。第 3循環配管 48Cは、ヒートポンプ 10の第 3放熱部 13Cに隣接して配置され る蒸発管 51Cと、必要に応じてポンプ 52Cとを有し、第 4循環配管 48Dは、ヒートボン プ 10の第 4放熱部 13Dに隣接して配置される蒸発管 51Dと、必要に応じてポンプ 5 2Dとを有する。本実施形態において、蒸発管 51A〜51Dは、個々に独立してタンク 47に流体的に接続される。蒸発管 51A〜51Dは、タンク 47及び供給経路 20に対し て並列に配置される。被加熱媒体 (水)の熱対流及び Z又は外部との差圧などを利 用してポンプ 52A〜52Dの少なくとも 1つを省いてもよい。
[0108] 蒸発管 51Aと第 1放熱部 13Aとを含んで第 2熱交 が構成される。同様に、 蒸発管 51Bと第 2放熱部 13Bとを含んで第 3熱交 43が構成される。蒸発管 51C と第 3放熱部 13Cとを含んで第 4熱交 44が構成され、蒸発管 51Dと第 4放熱部 13Dとを含んで第 5熱交 45が構成される。第 2〜第 5熱交 42〜45は、低温 の流体 (蒸発管 51A〜51D内の水)と高温の流体(ヒートポンプ 10内の作動流体)と が対向して流れる向流型の熱交換方式を有することができる。第 2〜第 5熱交換器 4 2〜45は、高温流体と低温流体とが並行して流れる並行流型の熱交換方式を有して もよい。第 2〜第 5熱交 42〜45の熱交換構造として、公知の様々なものを採用 することができる。例えば、ヒートポンプ 10の各放熱部 13A, 13B, 13C, 13Dの配 管を、蒸発管 51A, 51B, 51C, 51Dの外周面や内部に配設することができる。
[0109] 蒸発部 22において、加温部 21で温度上昇した水が供給口を介してタンク 47に供 給され、タンク 47及び循環配管48八〜480内に水が貯溜される。タンク 47内の液面 が所定範囲内になるように、タンク 47への水の供給量が制御される。例えば、レベル センサ 50の計測結果に基づいて、タンク 47への水の供給量が制御される。ヒートポ ンプ 10の第 1〜第 4放熱部 13A〜13Dからの熱伝達によって蒸発管 51A〜51D内 の水が加熱され、その水の少なくとも一部が蒸発する。タンク 47は、ダクト 23を介して 圧縮機 30に流体的に接続されている。タンク 47の内部空間は、タンク 47の排出口 及びダクト 23を介して圧縮機 30によって吸引される。タンク 47内の蒸気は、ダクト 23 内を圧縮機 30に向けて流れる。
[0110] 圧縮機 30による吸引作用により、供給経路 20におけるヒートポンプ 10による加熱 部位での内部空間、すなわちタンク 47の内部空間が減圧される。タンク 47の内部圧 力が大気圧に比べて低い負圧(陰圧)となるように、供給経路 20上の制御弁 (流量制 御弁など。不図示)や圧縮機 30が制御される。この制御は、例えば、タンク 47の内部 圧力を計測するセンサ (不図示)の計測結果に基づ!、て行われる。
[0111] 蒸気発生システム S6において、供給経路 20内の水力 ヒートポンプ 10からの熱伝 達によって蒸気になる。本実施形態において、まず、第 1熱交換器 41において、供 給経路 20内の水がヒートポンプ 10の第 5放熱部 13Eからの熱伝達によって沸点近く まで温度上昇する。その後、第 2〜第 5熱交換器 42〜45において、第 1〜第 4放熱 部 13A〜13D力もの熱伝達によってその水が相変化して蒸発する。つまり、水の顕 熱加熱が第 1熱交換器 41において行われ、水の潜熱加熱が第 2〜第 5熱交換器 42 〜45において行われる。その結果、第 1熱交換器 41が顕熱交換に適した形態であり 、第 2〜第 5熱交 42〜45が潜熱交換に適した形態であるといった、装置構成の 最適化が図られ、これに応じて、好ましい加熱プロセスを経て蒸気が発生する。
[0112] 本実施形態において、顕熱交換及び潜熱交換に対応してヒートポンプが個別の加 熱部を有することにより、ボイラに比べて高いエネルギー効率で蒸気を発生させること ができる。
[0113] また、本実施形態において、供給経路 20内の水力 ヒートポンプ 10 (放熱部 13A 〜 13E)からの熱伝達によって比較的低圧力かつ低温度の蒸気となり、圧縮機 30に よる圧縮で比較的高圧力かつ高温度の蒸気となる。すなわち、ヒートポンプ 10でカロ 熱された水が、圧縮機 30による圧縮によってさらに加熱され、これにより、 100°C以 上の高温蒸気が発生する。蒸気発生システム S1からの蒸気は、外部の所定施設、 例えば製造プラント、調理施設、空調設備、発電プラントなどに供給される。
[0114] 蒸気発生システム S6において、図 15に示すヒートポンプ 10による 2段加熱と圧縮 機 30による加熱とを含む 3段順次加熱により、飽和蒸気及び過熱蒸気のいずれも容 易に発生させることができる。すなわち、ヒートポンプ 10による加熱で大気圧に比べ て低い負圧での飽和蒸気を発生させた後、圧縮機 30による圧縮で大気圧または大 気圧よりも高い圧力での過熱蒸気または飽和蒸気を発生させることができる。つまり、 蒸気発生システム S1は、蒸気仕様に対する柔軟性が高い。
[0115] 本実施形態において、蒸気発生のための加熱過程の一部を圧縮機 30が補うから、 高い COPでヒートポンプ 10が使用され、したがって、蒸気発生システム S1は、全体と しての一次エネルギーの節減が期待される。すなわち、被加熱媒体 (水)に対する比 較的高温域の加熱に圧縮機 30を利用することは、熱伝達のみを利用した加熱と比 較して、温度上昇の短時間化及び熱損失の抑制に有利である。
[0116] また、本実施形態において、バイパス経路 17を介して作動媒体の一部が第 1熱交 を迂回するから、第 1熱交換器 41に入る作動媒体の流量の最適化が図られ る。これは、作動媒体の保有熱を有効に使う上で有利である。
[0117] また、本実施形態において、バイパス経路 17を介して作動媒体の一部が第 1熱交 を迂回することにより、第 1熱交 への作動媒体の流入量が制御され、 その結果、第 1熱交換器 41及び第 2熱交換器 42 (第 3〜第 5熱交換器 43〜45)のそ れぞれに対して、必要に応じた熱量を有する作動媒体が供給される。
[0118] ノ ィパス経路 17を流れる作動媒体は、再生器 18において、ヒートポンプ 10の主経 路 15を流れる吸熱部 11からの作動媒体と熱交換する。この熱交換により、バイパス 経路 17内の作動媒体の温度が降下し (例えば約 20°C)、ヒートポンプ 10の主経路 1 5内の作動媒体の温度が上昇する(例えば約 95°C)。圧縮部 12に対する作動媒体 の入力温度の上昇により、圧縮部 12の動力の低減化が図られる。
[0119] なお、作動媒体のバイパス量は、被加熱媒体及び作動媒体の各物性値 (比熱など )に応じて定められる。被加熱媒体が水でありかつ、作動媒体がフロン系媒体又はァ ンモユアである場合には、第 2〜第 5熱交換器 42〜45における作動媒体の単位時 間あたりの流量に対して、バイパス量がモル比で 50%程度であるのが好ましい。この 場合、顕熱及び潜熱のそれぞれにおいて水と作動媒体との間の熱バランスが良い。 さらに、再生器 18における作動媒体同士の熱バランスも良い。
[0120] また、本実施形態において、再生器 18で温度降下したバイパス経路 17内の作動 媒体 (例えば約 20°C)は、膨張部 14の手前で、ヒートポンプ 10の主経路 15を流れる 第 1熱交 41 (第 5放熱部 13E)力もの作動媒体と合流する。前述したように、第 1 熱交換器 41からの作動媒体の出力温度は比較的低く設定される (例えば約 30°C)。 膨張部 14に対する作動媒体の入力温度の降下により、作動媒体の液ガス比の最適 化が図られ、その結果、吸熱部 11においてサイクル外の熱源 (例えば大気)から有効 に熱が吸収される。
[0121] このように、本実施形態において、水の蒸発に用いた後の作動媒体が水の加温と 作動媒体の再生とに用いられることにより、熱の有効利用が図られる。
[0122] また、本実施形態において、圧縮部 12が多段式である点力もも、エネルギー効率 の向上が図られる。すなわち、多段式の圧縮部 12の段間の放熱部 13A, 13B, 13C の熱が奪われることによって、作動媒体の圧縮過程における作動媒体の温度上昇が 抑制され、その結果、圧縮部 12の圧縮効率の向上及び圧縮機の動力の低減ィ匕が図 られる。圧縮に伴う作動媒体の温度上昇と、段間の放熱部(13A, 13B, 13C)にお ける作動媒体の温度降下との繰り返しの数 (再熱の段数)は、 2、 3、 4、 5、 6、 7、 8、 9 、あるいは 10以上である。再熱の段数が装置構成上の制約の範囲内で多いのが、 エネルギー効率の向上に有利である。
[0123] また、本実施形態において、多段式の圧縮部 12に対する作動媒体の入力温度が 再生器 18によって高められている点も、圧縮部 12の動力低減に有利である。また、 段間の放熱部 13A, 13B, 13Cの冷却を利用して、被加熱媒体である水を加熱する 点からも、熱の有効利用が図られる。
[0124] また、本実施形態において、供給経路 20が複数の蒸発管 51A〜51Dを有すること からも、エネルギー効率の向上が図られる。蒸発管では、水の流れの方向に沿って、 液体に対する気体 (蒸気)の比率が高くなり、蒸気発生の進行に伴って、熱伝達率が 低下する。蒸発管内では、質量及びボリュームとして水が支配的であるのが好ましい 。供給経路 20が複数の蒸発管 51A〜51Dを有することにより、気体の比率が高い水 に対する加熱が回避され、その結果、蒸気発生に伴う熱伝達率の低下が抑制される 。また、熱交換面積の拡大のために蒸発管の長さを長くすると、蒸発管の入口部と出 口部との圧力差が大きくなり、蒸発管に水を流すための必要動力が増える可能性が ある。複数の蒸発管 51A〜51Dが個々に独立していると差圧が小さくて済み、熱交 換面積の拡大に伴う水輸送動力の増加が抑制される。蒸発管 51A〜51Dが並列配 置されていることは、複数の蒸発管 51A〜51Dが個々に独立した構成を実現しやす ぐ装置の簡素化に有利である。
[0125] また、本実施形態において、独立した複数の蒸発管 51A〜51Dを供給経路 20が 有することにより、熱バランス制御の向上が図られる。ヒートポンプ 10においては、放 熱部 13A〜13Dの間で、作動媒体の状態 (圧力など)が異なる。各放熱部 13A〜13 Dに対応する複数の蒸発管 51A〜51Dを流れる水の単位時間あたりの流量が個々 に制御されることにより、放熱部 13A〜 13Dを有する多段式の圧縮部 12における再 熱制御の最適化が図られる。
[0126] 図 16は、蒸発管 51Aにおける水の流量を制御する構成の一例を示す。ヒートボン プ 10において、蒸発管 51Aに対応する第 1放熱部 13Aの出口温度を計測するセン サ 71が設けられている。制御装置 70は、センサ 71の計測結果に基づいて、蒸発管 51A用のポンプ 52Aを介して蒸発管 51Aを流れる単位時間あたりの水の流量を制 御する。これにより、第 1放熱部 13Aにおける作動媒体の出口温度を目標値に設定 することができる。第 1放熱部 13Aの入口温度を計測するセンサ 72を用いてもょ 、。 図 15にお 、て、他の蒸発管 51B〜蒸発管 51D及び対応する放熱部 13B〜 13Dも これと同様の構成を採用することができる。
[0127] 図 17は、第 7実施形態を示す概略図である。以下の説明において、上記の各実施 形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若 しくは省略する。
[0128] 図 17に示すように、蒸気発生システム S7は、第 6実施形態と異なり、供給経路 20 における水を貯溜するタンクが、複数の蒸発管 51A〜51Dに対応する複数の個別タ ンク 47A〜47Dを有する。ヒートポンプ 10の構成は、第 6実施形態のそれと同様であ る。
[0129] 供給経路 20は、加温部 21と、蒸発部 22と、蒸発部 22と圧縮機 30とを流体的に接 続するダクト 23とを有する。蒸発部 22は、少なくとも液状の被加熱媒体 (水)を貯溜 するタンク(第 1タンク 47A、第 2タンク 47B、第 3タンク 47C、第 4タンク 47D)と、各タ ンク 47A〜47Dに流体的に接続された循環配管 (第 1循環配管 48A、第 2循環配管 48B、第 3循環配管 48C、第 4循環配管 48D)とを有する。各タンク 47A〜47Dには 、加温部 21からの水の供給口と、蒸気の排出口とが設けられる。タンク 47A〜47D は、必要に応じて、液面を計測するレベルセンサ 50A〜50Dと、気液分離器 (不図 示)とを有する。
[0130] 本実施形態において、第 1タンク 47Aに対して、蒸発管 51Aを有する第 1循環配管 48 Aが流体的に接続されている。すなわち、第 1循環配管 48Aの各入口端と各出口 端とが第 1タンク 47Aに流体的に接続される。同様に、第 2タンク 47Bに対して蒸発 管 51Bを有する第 2循環配管 48Bが流体的に接続されている。第 3タンク 47Cに蒸 発管 51Cを有する第 3循環配管 48Cが流体的に接続され、第 4タンク 47Dに蒸発管 51Dを有する第 4循環配管 48Dが流体的に接続されている。タンク及び循環配管( 蒸発管)の数は、蒸気発生システム S2の仕様に応じて設定され、 2、 3、 4、 5、 6、 7、 8、 9、あるいは 10以上である。本実施形態において、タンク 47A〜47Dと蒸発管 51 A〜51Dの各ペア力 供給経路 20に対して並列に配置される。
[0131] 供給経路 20において、加温部 21で温度上昇した水が分岐して各タンク 47A〜47 Dに供給され、各タンク 47A〜47D及び各循環配管 48A〜48D内に水が貯溜され る。供給経路 20は、各タンク 47A〜47Dへの水の供給量を制御するバルブ 80A〜8 0Dを有する。各タンク 47A〜47D内の液面が所定範囲内になるように、バルブ 80A 〜80Dを介して各タンク 47A〜47Dへの水の供給量が制御される。例えば、レベル センサ 50A〜50Dの計測結果に基づ!/、て、各タンク 47A〜47Dへの水の供給量が 制御される。ヒートポンプ 10の第 1〜第 4放熱部 13A〜 13D力 の熱伝達によって蒸 発管 51A〜51D内の水が加熱され、その水の少なくとも一部が蒸発する。各タンク 4 7A〜47Dは、ダクト 23を介して圧縮機 30に流体的に接続されている。タンク 47A〜 47Dの内部空間は、各タンク 47A〜47Dの排出口及びダクト 23を介して圧縮機 30 によって吸引される。
[0132] 圧縮機 30 (または供給経路 20)には、蒸気に対して水を供給するノズル 35が、必 要に応じて配設される。ノズル 35の配設位置は、例えば、圧縮機 30の入口及び Z 又は出口である。圧縮機 30が多段式である場合には、ノズル 35を圧縮機 30の段間 に配設することもできる。ノズル 35と少なくとも 1つのタンク 47A〜47Dの液相位置と が配管 36を介して流体的に接続された配管を構成することができる。この配管構成 では、比較的高温である少なくとも 1つのタンク 47A〜47D内の液体がノズル 35への 供給に有効利用される。ノズル 35からの液体の排出(スプレイ)には、ポンプ 37など の動力源を用いてもよぐ配管 36の入口と出口との圧力差を利用してもよい。
[0133] 本実施形態においても、第 6実施形態と同様に、供給経路 20内の水が、ヒートボン プ 10 (放熱部 13A〜 13E)からの熱伝達によって比較的低圧力かつ低温度の蒸気と なり、圧縮機 30による圧縮で比較的高圧力かつ高温度の蒸気となる。蒸気発生シス テム S2からの蒸気は、外部の所定施設、例えば製造プラント、調理施設、空調設備 、発電プラントなどに供給される。本実施形態では、複数の個別タンク 47A〜47Dを 有することにより、蒸気需要の変動に対する柔軟性が高い。 [0134] 上記説明にお 、て使用した数値及び図面に記載した温度は一例であって、本発 明はこれに限定されない。
[0135] 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定される ことはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびそ の他の変更が可能である。本発明は前述した説明によって限定されることはなぐ添 付の請求の範囲によってのみ限定される。

Claims

請求の範囲
[1] 蒸気発生システムであって、
作動媒体が流れるヒートポンプと、
第 1媒体が流れる第 1経路であり、前記ヒートポンプからの熱伝達によって前記第 1 媒体が蒸発する被加熱部を有する前記第 1経路と、を備える。
[2] 請求項 1に記載の蒸気発生システムにお 、て、
前記第 1経路の前記被加熱部からの前記第 1媒体を圧縮する圧縮機をさらに備え る。
[3] 請求項 2に記載の蒸気発生システムにお 、て、
前記第 1経路の前記被加熱部での内部空間が、前記圧縮機によって減圧される。
[4] 請求項 2に記載の蒸気発生システムにお 、て、
前記第 1経路は、前記第 1媒体を貯留するタンクをさらに有し、
前記タンク内の気相が前記圧縮機に吸引され、前記タンク内の液相が前記タンク 内または前記タンク外で前記ヒートポンプによって加熱される。
[5] 請求項 4に記載の蒸気発生システムにお 、て、
前記タンク内の液面に基づ!、て、前記タンクへの前記第 1媒体の供給量が制御さ れる。
[6] 請求項 2に記載の蒸気発生システムにお 、て、
前記第 1媒体の蒸気に対して液状の前記第 1媒体を供給するノズルを、さらに備え 前記ノズルが前記圧縮機の入口、前記圧縮機の出口、及び前記圧縮機の段間の 少なくとも 1つに配置される。
[7] 請求項 1に記載の蒸気発生システムにお 、て、
前記ヒートポンプは、前記作動媒体の流れ方向に並ぶ吸熱部、圧縮部、第 1放熱 部、第 2放熱部、及び膨張部を有し、
前記第 2放熱部及び前記第 1放熱部がその順に、前記第 1経路内の前記第 1媒体 を加熱する。
[8] 請求項 7に記載の蒸気発生システムにお 、て、 前記第 1経路内の前記第 1媒体が、前記第 2放熱部からの熱によって沸点近くに温 度上昇し、前記第 1放熱部力 の熱によって相変化して蒸気になる。
[9] 請求項 7に記載の蒸気発生システムにお 、て、
前記ヒートポンプは、前記第 1放熱部からの前記作動媒体の一部が前記第 2放熱 部を迂回するバイパス経路と、前記バイパス経路内の前記作動媒体によって、前記 吸熱部からの前記作動媒体を加熱する再生器であり、前記ヒートポンプにおける前 記吸熱部と前記圧縮部との間に配される前記再生器と、をさらに有し、
前記バイパス経路は、入口端が前記ヒートポンプの主経路における前記第 1放熱 部と前記第 2放熱部との間に接続され、出口端が前記ヒートポンプの主経路における 前記第 2放熱部と前記膨張部との間に接続される。
[10] 請求項 7に記載の蒸気発生システムにおいて、
前記圧縮部が、前記作動媒体を多段に圧縮する構造を有し、
前記第 2放熱部、前記第 1放熱部、及び前記圧縮部の段間放熱部がその順に、前 記第 1経路内の前記第 1媒体を加熱する。
[11] 請求項 7に記載の蒸気発生システムにおいて、
前記第 1媒体が水であり、
前記作動媒体がアンモニアまたはフロン系媒体である。
[12] 請求項 7に記載の蒸気発生システムにおいて、
前記第 1経路の前記被加熱部からの前記第 1媒体を圧縮する圧縮機をさらに備え る。
[13] 請求項 12に記載の蒸気発生システムにおいて、
前記第 1経路の前記被加熱部での内部空間が、前記圧縮機によって減圧される。
[14] 請求項 12に記載の蒸気発生システムにおいて、
前記第 1媒体の蒸気に対して液状の前記第 1媒体を供給するノズルを、さらに備え る。
[15] 請求項 1に記載の蒸気発生システムにお 、て、
前記第 1経路の被加熱部は、前記ヒートポンプ力 の熱伝達によって前記第 1媒体 が蒸発する複数の蒸発管を有する。
[16] 請求項 15に記載の蒸気発生システムにおいて、
前記第 1経路は、前記第 1媒体を貯溜しかつ前記複数の蒸発管に流体的に接続さ れるタンクを有する。
[17] 請求項 16に記載の蒸気発生システムにおいて、
前記タンクは、前記複数の蒸発管に対応する複数の個別タンクを有する。
[18] 請求項 15に記載の蒸気発生システムにおいて、
前記第 1経路は、前記複数の蒸発管の各々における前記第 1媒体の流量を制御す る流量制御手段を有する。
[19] 請求項 15に記載の蒸気発生システムにおいて、
前記ヒートポンプは、前記複数の蒸発管に対応する複数の放熱部を有する。
[20] 請求項 15に記載の蒸気発生システムにお 、て、
前記ヒートポンプは、前記作動媒体を多段に圧縮する構造を有する。
[21] 請求項 15に記載の蒸気発生システムにおいて、
前記ヒートポンプは、前記第 1媒体の前記複数の蒸発管への流入前に、前記第 1 媒体を加温する加温用放熱部を有する。
[22] 請求項 15に記載の蒸気発生システムにお 、て、
前記ヒートポンプは、前記作動媒体の圧縮前に、前記作動媒体を予熱する再生器 を有する。
[23] 請求項 15に記載の蒸気発生システムにお 、て、
前記複数の蒸発管の内部圧力が大気圧に比べて低い。
[24] 請求項 15に記載の蒸気発生システムにお 、て、
前記複数の蒸発管からの前記第 1媒体を圧縮する圧縮機をさらに備え、 前記蒸発管内の前記第 1媒体が、前記ヒートポンプ力 の熱伝達によって比較的 低圧力かつ低温度の蒸気となり、前記圧縮機による圧縮で比較的高圧力かつ高温 度の蒸気となる。
[25] 請求項 15に記載の蒸気発生システムにお 、て、
前記第 1媒体の蒸気に対して液状の前記第 1媒体を供給するノズルをさらに備える
PCT/JP2006/317519 2005-09-05 2006-09-05 蒸気発生システム WO2007029680A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005256389A JP4982985B2 (ja) 2005-09-05 2005-09-05 蒸気発生システム
JP2005-256389 2005-09-05
JP2005-316547 2005-10-31
JP2005316547A JP4784263B2 (ja) 2005-10-31 2005-10-31 蒸気発生システム
JP2006166272A JP4853125B2 (ja) 2006-06-15 2006-06-15 蒸気発生システム
JP2006-166272 2006-06-15

Publications (1)

Publication Number Publication Date
WO2007029680A1 true WO2007029680A1 (ja) 2007-03-15

Family

ID=37835800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317519 WO2007029680A1 (ja) 2005-09-05 2006-09-05 蒸気発生システム

Country Status (1)

Country Link
WO (1) WO2007029680A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232534A (ja) * 2007-03-20 2008-10-02 Tokyo Electric Power Co Inc:The 蒸気生成システム及び蒸気生成方法
JP2008256280A (ja) * 2007-04-05 2008-10-23 Tokyo Electric Power Co Inc:The 蒸気生成システム
JP2008309360A (ja) * 2007-06-12 2008-12-25 Tokyo Electric Power Co Inc:The 蒸気生成システム
JP2009150625A (ja) * 2007-12-21 2009-07-09 Tokyo Electric Power Co Inc:The 蒸気生成システム
JP2010014380A (ja) * 2008-07-07 2010-01-21 Tokyo Electric Power Co Inc:The 熱流体供給システム及び熱流体供給方法
EP2574740A1 (de) * 2011-09-29 2013-04-03 Siemens Aktiengesellschaft Anlage zur Speicherung thermischer Energie
WO2013156292A1 (de) * 2012-04-17 2013-10-24 Siemens Aktiengesellschaft Anlage zur speicherung und abgabe thermischer energie und verfahren zu deren betrieb
CN103842623A (zh) * 2011-09-29 2014-06-04 西门子公司 用于存储热能的设备
US20230296243A1 (en) * 2021-06-16 2023-09-21 Colorado State University Research Foundation Air source heat pump system and method of use for industrial steam generation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238650A (ja) * 1984-05-14 1985-11-27 株式会社荏原製作所 ヒ−トポンプ
JPS61125547A (ja) * 1984-11-21 1986-06-13 株式会社東芝 ヒ−トポンプ式ボイラ装置
JPS6317905U (ja) * 1986-07-17 1988-02-05
JPS63131901A (ja) * 1986-11-25 1988-06-03 徳山石油化学株式会社 反応熱の回収方法
JPH0942606A (ja) * 1995-07-31 1997-02-14 Babcock Hitachi Kk 貫流ボイラ蒸気温度制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238650A (ja) * 1984-05-14 1985-11-27 株式会社荏原製作所 ヒ−トポンプ
JPS61125547A (ja) * 1984-11-21 1986-06-13 株式会社東芝 ヒ−トポンプ式ボイラ装置
JPS6317905U (ja) * 1986-07-17 1988-02-05
JPS63131901A (ja) * 1986-11-25 1988-06-03 徳山石油化学株式会社 反応熱の回収方法
JPH0942606A (ja) * 1995-07-31 1997-02-14 Babcock Hitachi Kk 貫流ボイラ蒸気温度制御装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232534A (ja) * 2007-03-20 2008-10-02 Tokyo Electric Power Co Inc:The 蒸気生成システム及び蒸気生成方法
JP2008256280A (ja) * 2007-04-05 2008-10-23 Tokyo Electric Power Co Inc:The 蒸気生成システム
JP2008309360A (ja) * 2007-06-12 2008-12-25 Tokyo Electric Power Co Inc:The 蒸気生成システム
JP2009150625A (ja) * 2007-12-21 2009-07-09 Tokyo Electric Power Co Inc:The 蒸気生成システム
JP2010014380A (ja) * 2008-07-07 2010-01-21 Tokyo Electric Power Co Inc:The 熱流体供給システム及び熱流体供給方法
WO2013045388A1 (de) * 2011-09-29 2013-04-04 Siemens Aktiengesellschaft Anlage zur speicherung thermischer energie
EP2574740A1 (de) * 2011-09-29 2013-04-03 Siemens Aktiengesellschaft Anlage zur Speicherung thermischer Energie
CN103842623A (zh) * 2011-09-29 2014-06-04 西门子公司 用于存储热能的设备
CN103946490A (zh) * 2011-09-29 2014-07-23 西门子公司 用于存储热能的设备
JP2014532138A (ja) * 2011-09-29 2014-12-04 シーメンス アクティエンゲゼルシャフト 熱エネルギーを貯蔵するための設備
US9829254B2 (en) 2011-09-29 2017-11-28 Siemens Aktiengesellschaft Installation for storing thermal energy
WO2013156292A1 (de) * 2012-04-17 2013-10-24 Siemens Aktiengesellschaft Anlage zur speicherung und abgabe thermischer energie und verfahren zu deren betrieb
CN104302875A (zh) * 2012-04-17 2015-01-21 西门子公司 用于储存和释出热能的设备及其运行方法
US20230296243A1 (en) * 2021-06-16 2023-09-21 Colorado State University Research Foundation Air source heat pump system and method of use for industrial steam generation

Similar Documents

Publication Publication Date Title
JP4784263B2 (ja) 蒸気発生システム
WO2007029680A1 (ja) 蒸気発生システム
JP5141101B2 (ja) 蒸気生成システム
JP5130676B2 (ja) 蒸気発生システム
JP5200461B2 (ja) 蒸気生成システム
JP2006348876A (ja) 蒸気供給システム及び発電プラント
JP5206172B2 (ja) 熱流体供給システム及び熱流体供給方法
JP4982985B2 (ja) 蒸気発生システム
JP5157224B2 (ja) 蒸気生成システム
JP5515438B2 (ja) 熱供給システム
JP5211883B2 (ja) 蒸気生成システム
JP5200525B2 (ja) 蒸気生成システム
JP5409022B2 (ja) 高温型ヒートポンプシステム
JP5551902B2 (ja) 高温型ヒートポンプシステム
JP5568838B2 (ja) 産業用乾燥システム
JP2008232534A (ja) 蒸気生成システム及び蒸気生成方法
JP5239613B2 (ja) 蒸気生成システム
JP4853125B2 (ja) 蒸気発生システム
JP5760303B2 (ja) 熱供給システム
JP5056031B2 (ja) 蒸気生成システム及び蒸気生成方法
JP5176491B2 (ja) 蒸気生成システム
JP5239284B2 (ja) 蒸気生成システム
JP4923843B2 (ja) 蒸気発生システム
JP5223937B2 (ja) 蒸気発生システム
JP5262428B2 (ja) ヒートポンプシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797425

Country of ref document: EP

Kind code of ref document: A1