以下、本発明の実施形態について図面を参照して説明する。
図1は、第1実施形態にかかる蒸気生成システムを示す概略図である。図1において、蒸気生成システムS1は、作動媒体(第1媒体)が流れるヒートポンプ10と、被加熱媒体(第2媒体)の供給経路20と、圧縮機30と、制御装置70とを備える。本実施形態におて、被加熱媒体は水である。制御装置70は、システム全体を統括的に制御する。蒸気生成システムS1の構成は、蒸気生成システムS1の設計要求に応じて様々に変更可能である。
ヒートポンプ10は、蒸発、圧縮、凝縮、及び膨張の各工程からなるサイクルにより、低温の物体から熱を汲み上げ、高温の物体に熱を与える装置である。ヒートポンプは一般に、エネルギー効率が比較的高く、結果として、二酸化炭素等の排出量が比較的少ないという利点を有する。
本実施形態において、ヒートポンプ10は、吸熱部11、圧縮部12、放熱部(第1放熱部13A、第2放熱部13B、第3放熱部13C、第4放熱部13D、第5放熱部13E)、及び膨張部14を有し、これらは配管を介して接続されている。
吸熱部11では、主経路15内を流れる作動媒体がサイクル外の熱源の熱を吸収する。本実施形態において、ヒートポンプ10の吸熱部11は、冷熱供給装置90の放熱管91に熱的に接続されている。冷熱供給装置90において、放熱管91を流れる媒体(冷媒など)の熱がヒートポンプ10の吸熱部11に吸収される。冷却された媒体が冷熱供給装置90から所定の設備に供給される。ヒートポンプ10の吸熱部11が大気など他の熱源の熱を吸収する構成とすることもできる。
圧縮部12は、圧縮機等によって作動媒体を圧縮する。この際、通常、作動媒体の温度が上がる。本実施形態において、圧縮部12は、作動媒体を多段に圧縮する構造を有する。図1に示す圧縮部12は、第1圧縮部12A、第2圧縮部12B、第3圧縮部12C、及び第4圧縮部12Dを含む4段圧縮構造を有する。圧縮の段数は、蒸気生成システムS1の仕様に応じて設定され、2、3、4、5、6、7、8、9、あるいは10以上である。圧縮部12は、軸流圧縮機、遠心圧縮機、レシプロ式圧縮機、ロータリー式圧縮機などの様々な圧縮機のうち、作動媒体の圧縮に適するものが適用される。圧縮機には動力が供給される。圧縮部12は、各圧縮部12A,12B,12C,12Dに対応する回転数が個々に制御される多軸圧縮構造を有することができる。あるいは、圧縮部12は、同軸圧縮構造を有することができる。本実施形態において、圧縮部12A及び12Bが同軸に構成され、圧縮部12C及び12Dが同軸に構成される。2軸のそれぞれに動力が供給される。各圧縮部12A,12B,12C,12Dの圧縮比(圧力比)は、蒸気生成システムS1の仕様に応じて設定される。
放熱部13A〜13Eは、圧縮部12で圧縮された作動媒体が流れる配管を有し、主経路15内を流れる作動媒体の熱をサイクル外の熱源に与える。本実施形態において、作動媒体の流れ方向に沿って、5つの放熱部13A〜13Eが直列に配置されている。放熱部の数は、蒸気生成システムS1の仕様に応じて設定され、3、4、5、6、7、8、9、10、あるいは11以上である。第1放熱部13Aは圧縮部12Aと12Bとの段間に配置され、第2放熱部13Bは圧縮部12Bと12Cとの段間に配置され、第3放熱部13Cは圧縮部12Cと12Dとの段間に配置され、第4放熱部13Dは圧縮部12Dの下流位置に配置され、第5放熱部13Eは、第4放熱部13Dの下流位置に配置される。
膨張部14は、減圧弁またはタービン等によって作動媒体を膨張させる。この際、通常、作動媒体の温度が下がる。タービンを使用した場合には膨張部14から動力を取り出すことができ、その動力を例えば圧縮部12に供給してもよい。ヒートポンプ10に使用される作動媒体として、フロン系媒体(HFC 245faなど)、アンモニア、水、二酸化炭素、空気などの公知の様々な熱媒体が、蒸気生成システムS1の仕様及び熱バランスなどに応じて用いられる。
本実施形態において、ヒートポンプ10はさらに、バイパス経路17と、再生器18とを有する。バイパス経路17の入口端がヒートポンプ10の主経路15における第4放熱部13Dと第5放熱部13Eとの間の配管に流体的に接続される。バイパス経路17の出口端が主経路15における第5放熱部13Eと膨張部14との間の配管に流体的に接続される。バイパス経路17の入口に、作動媒体のバイパス流量を制御する流量制御弁を設けることができる。バイパス経路17において、第4放熱部13Dからの作動媒体の一部が、第5放熱部13Eを迂回し、膨張部14の手前で第5放熱部13Eからの作動媒体と合流する。第4放熱部13Dからの残りの作動媒体は、第5放熱部13Eを流れ、第1熱交換器41においてその作動媒体と供給経路20内の水とが熱交換する。
再生器18は、バイパス経路17の配管の一部と、ヒートポンプ10の主経路15の配管(吸熱部11と圧縮部12との間の配管)の一部とが熱的に接続された構成を有する。例えば、両配管が互いに接触あるいは隣接して配置される。ヒートポンプ10において、吸熱部11からの作動媒体に比べて、第4放熱部13Dからの作動媒体は高温である。再生器18において、バイパス経路17を流れる第4放熱部13Dからの作動媒体と、ヒートポンプ10の主経路15を流れる吸熱部11からの作動媒体とが熱交換する。この熱交換により、バイパス経路17内の作動媒体の温度が降下し、主経路15内の作動媒体の温度が上昇する。再生器18は、低温の流体(主経路15内の作動媒体)と高温の流体(バイパス経路17内の作動媒体)とが対向して流れる向流型の熱交換方式を有することができる。あるいは、再生器18は、高温流体と低温流体とが並行して流れる並行流型の熱交換方式を有してもよい。
供給経路20は、加温部21と、蒸発部22と、蒸発部22と圧縮機30とを流体的に接続するダクト23とを有する。
加温部21は、ヒートポンプ10の第5放熱部13Eに熱的に接続されかつ供給源(不図示)からの水が流れる配管を含む。加温部21と第5放熱部13Eとを含んで第1熱交換器41が構成される。第1熱交換器41は、低温の流体(供給経路20内の水)と高温の流体(ヒートポンプ10内の作動流体)とが対向して流れる向流型の熱交換方式を有することができる。あるいは、第1熱交換器41は、高温流体と低温流体とが並行して流れる並行流型の熱交換方式を有してもよい。本実施形態において、第1熱交換器41の熱交換構造として、公知の様々なものを採用することができる。加温部21の配管と第5放熱部13Eの配管とは互いに接触あるいは隣接して配置される。例えば、第5放熱部13Eの配管を、加温部21の配管の外周面や内部に配設することができる。加温部21において、ヒートポンプ10の第5放熱部13Eからの伝達熱によって、供給経路20内の水が温度上昇する。
蒸発部22は、必要に応じて脱気槽49と、少なくとも液状の被加熱媒体(水)を貯溜するタンク47と、タンク47に流体的に接続された循環配管(第1循環配管48A、第2循環配管48B、第3循環配管48C、第4循環配管48D)とを有する。脱気槽49とタンク47との間には、必要に応じて流体駆動部49Cが配置される。脱気槽49には、ポンプ49A及び放出管49Bが流体的に接続される。脱気槽49の内部に気液分離器を配置してもよい。脱気槽49において、加温部21からの水が脱気され、その気体がポンプ49A及び放出管49Bを介して外部(大気)に適宜に放出される。タンク47には、脱気槽49(加温部21)からの水の供給口と、蒸気の排出口とが設けられる。タンク47は、必要に応じて、液面を計測するレベルセンサ50と、気液分離器(不図示)とを有する。
本実施形態において、1つのタンク47に対して各循環配管48A,48B,48C,48Dが流体的に接続されている。すなわち、循環配管48A〜48Dの各入口端と各出口端とがタンク47に流体的に接続される。循環配管の数は、蒸気生成システムS1の仕様に応じて設定され、2、3、4、5、6、7、8、9、あるいは10以上である。第1循環配管48Aは、ヒートポンプ10の第1放熱部13Aに熱的に接続される蒸発管51Aと、ポンプ52Aと、必要に応じてバルブ53Aとを有する。同様に、第2循環配管48Bは、ヒートポンプ10の第2放熱部13Bに熱的に接続される蒸発管51Bと、ポンプ52Bと、必要に応じてバルブ53Bとを有する。第3循環配管48Cは、ヒートポンプ10の第3放熱部13Cに熱的に接続される蒸発管51Cと、ポンプ52Cと、必要に応じてバルブ53Cとを有し、第4循環配管48Dは、ヒートポンプ10の第4放熱部13Dに熱的に接続される蒸発管51Dと、ポンプ52Dと、必要に応じてバルブ53Dとを有する。バルブ53A〜53Dは、例えばレギュレータ、流量制御弁、又は開閉バルブである。本実施形態において、蒸発管51A〜51Dは、個々に独立してタンク47に流体的に接続される。また、蒸発管51A〜51Dは、タンク47及び供給経路20に対して並列に配置される。被加熱媒体(水)の熱対流及び/又は外部との差圧などを利用してポンプ52A〜52Dの少なくとも1つを省いてもよい。
蒸発管51Aと第1放熱部13Aとを含んで第2熱交換器42が構成される。同様に、蒸発管51Bと第2放熱部13Bとを含んで第3熱交換器43が構成される。蒸発管51Cと第3放熱部13Cとを含んで第4熱交換器44が構成され、蒸発管51Dと第4放熱部13Dとを含んで第5熱交換器45が構成される。第2〜第5熱交換器42〜45は、低温の流体(蒸発管51A〜51D内の水)と高温の流体(ヒートポンプ10内の作動流体)とが対向して流れる向流型の熱交換方式を有することができる。あるいは、第2〜第5熱交換器42〜45は、高温流体と低温流体とが並行して流れる並行流型の熱交換方式を有してもよい。第2〜第5熱交換器42〜45の熱交換構造として、公知の様々なものを採用することができる。ヒートポンプ10の各放熱部13A,13B,13C,13Dの配管と、蒸発管51A,51B,51C,51Dとは互いに接触あるいは隣接して配置される。例えば、ヒートポンプ10の各放熱部13A,13B,13C,13Dの配管を、蒸発管51A,51B,51C,51Dの外周面や内部に配設することができる。
本実施形態において、第2〜第5熱交換器42〜45に対して蓄熱部100が設けられている。蓄熱部100は、ヒートポンプ10から伝わる熱を蓄える蓄熱材101を有する。蓄熱材101の熱は蒸発管51A〜51Dに伝わる。蒸気生成システムS1の仕様に応じて、蓄熱材101の材料特性が定められる。本実施形態において、蓄熱材101は、液体−固体の相変化を伴って蓄熱及び放熱する潜熱蓄熱材を含む。すなわち、蓄熱材101は、融解する際に熱を蓄え、凝固するときに放熱する。潜熱蓄熱材の融点が、蒸発管51A〜51D内の水の蒸発温度と同程度以上(例えば、90〜150℃)であるのが望ましい。潜熱蓄熱材としては、例えば、エリスリトール、アルカン類等の炭化水素、ワックス系(パラフィンワックス、マイクロクリスタリンワックス等)等が挙げられる。エリスリトールは、融点が117〜120℃程度であり、単位質量当たりの蓄熱量(蓄熱効率)が比較的高い。アルカン類は、目標の融点となるように、側鎖の水素を水酸基に置換した物質を構築するなどにより、分子の大きさが適宜調節することができる。潜熱蓄熱材は、相変化に伴う体積変化が小さく、装置のコンパクト化に有利である。蓄熱材101として、顕熱蓄熱材、化学反応蓄熱材等の他の物質を用いてもよい。
図2A〜2Cは、蓄熱部100の構成例である。図2Aにおいて、熱交換器42〜45に対して1つの蓄熱部100が設けられている。図2Bにおいて、各熱交換器42〜45に対して独立した蓄熱部100が設けられている。図2Cにおいて、熱交換器42及び43に1つの蓄熱部100が設けられ、熱交換器44及び45に対して別の1つの蓄熱部100が設けられている。
図3A〜3Dは、蓄熱部100が設けられた第2熱交換器42の構造例を示す断面図である。図3Aにおいて、第2熱交換器42は、筐体102内で、ヒートポンプ10の放熱部13Aの配管と蒸発管51Aとが直接接触した構造を有する。また、放熱部13Aの配管と蒸発管51Aとを覆うように、筐体102内に蓄熱材101が配置されている。蒸発管51Aは、放熱部13Aと直接的に熱的に接続されている。
図3Bにおいて、第2熱交換器42は、ヒートポンプ10の放熱部13Aの配管と蒸発管51Aとが筐体102内に配置された構造を有する。また、放熱部13Aの配管と蒸発管51Aとの隙間を含む、筐体102の内部空間に蓄熱材101が、放熱部13Aの配管と蒸発管51Aとを覆うように、配置されている。蒸発管51Aは、蓄熱材101を介して放熱部13Aに熱的に接続されている。放熱部13Aから蒸発管51Aへの熱移動促進のために、蓄熱材101が熱伝導物質を含んでもよい。
図3Cにおいて、第2熱交換器42は、環状断面の流路を有する蒸発管51Aの内方にヒートポンプ10の放熱部13Aの配管が配置された構造を有する。また、蒸発管51Aと放熱部13Aの配管との隙間に蓄熱材101が配置されている。蒸発管51Aは、蓄熱材101を介して放熱部13Aに熱的に接続されている。蒸発管51Aを囲む筐体102を設け、筐体102と蒸発管51Aとの隙間にも蓄熱材101を配置することが可能である。他の実施形態において、第2熱交換器42は、環状断面の流路を有する放熱部13Aの配管の内方に蒸発管51Aが配置されてもよい。
図3Dにおいて、第2熱交換器42は、環状断面の流路を有する蒸発管51Aの内方に放熱部13Aの複数(本例では2つ)の配管が配置された構造を有する。放熱部13Aの各配管が蒸発管51Aに直接接触している。また、蒸発管51Aの内方の空間に蓄熱材101が配置されている。蒸発管51Aは、直接的に放熱部13Aに熱的に接続され、あるいは蓄熱材101を介して放熱部13Aに熱的に接続されている。蒸発管51Aを囲む筐体102を設け、筐体102と蒸発管51Aとの隙間にも蓄熱材101を配置することが可能である。
なお、各配管の形状、配列、材質などは任意に設定可能であり、蓄熱部100が設けられた第2熱交換器42について様々な形態が適用可能である。第2熱交換器42には、断熱材が必要に応じて配置される。各配管にはフィンが必要に応じて設けられる。他の熱交換器43、44、45についても第2熱交換器42と同様である。
蒸発部22において、加温部21で温度上昇した水が供給口を介してタンク47に供給され、タンク47及び循環配管48A〜48D内に水が貯溜される。タンク47内の液面が所定範囲内になるように、タンク47への水の供給量が制御される。例えば、レベルセンサ50の計測結果に基づいて、タンク47への水の供給量が制御される。ヒートポンプ10の第1〜第4放熱部13A〜13D及び蓄熱材101からの伝達熱によって蒸発管51A〜51D内の水が加熱され、その水の少なくとも一部が蒸発する。タンク47は、ダクト23を介して圧縮機30に流体的に接続されている。タンク47の内部空間は、タンク47の排出口及びダクト23を介して圧縮機30によって吸引される。タンク47内の蒸気は、ダクト23内を圧縮機30に向けて流れる。
圧縮機30は、供給経路20上に配設され、その配設位置はタンク47に対して下流である。圧縮機30としては、軸流圧縮機、遠心圧縮機、レシプロ式圧縮機、ロータリー式圧縮機などの様々な圧縮機が適用され、蒸気圧縮に適するものが用いられる。圧縮機30は、タンク47からの蒸気を圧縮し、昇圧した蒸気を下流に流す。
圧縮機30及び/又は供給経路20には、蒸気に対して水を供給するノズル35が、必要に応じて配設される。ノズル35の配設位置は、例えば、圧縮機30の入口及び/又は出口である。圧縮機30が多段式である場合には、ノズル35を圧縮機30の段間に配設することができる。本実施形態において、圧縮機30は、第1圧縮部30A、第2圧縮部30B、第3圧縮部30C、及び第4圧縮部30Dを含む4段圧縮構造を有する。圧縮機30の多段圧縮構造は、後述する蒸気の高温・高圧化に有利である。圧縮機30は、各圧縮部30A,30B,30C,30Dに対応する回転数が個々に制御される多軸圧縮構造を有することができる。あるいは、圧縮機30は、同軸圧縮構造を有することができる。本実施形態において、圧縮部30A及び30Bが同軸に構成され、圧縮部30C及び30Dが同軸に構成される。2軸のそれぞれに動力が供給される。各圧縮部30A〜30Dの圧縮比(圧力比)は、蒸気生成システムS1の仕様に応じて設定される。本実施形態において、各段間にノズル35が配設される。ノズル35とタンク47の液相位置とが配管36を介して流体的に接続することができる。この配管構成では、比較的高温であるタンク47内の液体がノズル35への供給に有効利用される。ノズル35からの液体の排出(スプレイ)には、ポンプ37などの動力源を用いてもよく、配管36の入口と出口との圧力差を利用してもよい。
圧縮機30による吸引作用により、供給経路20におけるヒートポンプ10による加熱部位での内部空間、すなわちタンク47の内部空間が減圧される。タンク47の内部圧力が大気圧に比べて低い負圧(陰圧)となるように、供給経路20上の制御弁(流量制御弁など。不図示)や圧縮機30が制御される。この制御は、例えば、タンク47の内部圧力を計測するセンサ(不図示)の計測結果に基づいて行われる。
また、タンク47及びヒートポンプ10は、タンク47の内部空間が負圧状態において、水が蒸発するように設計(容量設計、能力設計など)されている。ヒートポンプ10の成績係数は、被加熱媒体(水)の入力温度と出力温度との差に応じて変化し、その温度差が過度に大きいと成績係数(COP)が低下する場合がある。タンク47の内部空間が負圧状態であるという条件により、加熱温度領域(入出力温度差)を比較的狭く設定し、高いCOPでのヒートポンプ10の使用が可能である。例えば、水の入力温度は約20℃であり、蒸発部22からの水の出力温度は約90℃である。
次に、蒸気生成システムS1の基本的な動作について説明する。蓄熱部100を利用した蒸気生成システムS1の各種運転方法については後述する。
図1に示すように、まず、第1熱交換器41において、供給経路20内の水がヒートポンプ10の第5放熱部13Eからの伝達熱によって沸点近くまで温度上昇する。その後、第2〜第5熱交換器42〜45において、第1〜第4放熱部13A〜13D及び/又は蓄熱部100からの伝達熱によってその水が相変化して蒸発する。つまり、水の顕熱加熱が第1熱交換器41において行われ、水の潜熱加熱が第2〜第5熱交換器42〜45において行われる。第1熱交換器41が顕熱交換に適した形態であり、第2〜第5熱交換器42〜45が潜熱交換に適した形態であるといった、装置構成の最適化が図られ、これに応じて、好ましい加熱プロセスを経て蒸気が生成される。
ボイラのエネルギー効率が一般に約0.7〜0.8(70〜80%)であるのに対して、ヒートポンプのエネルギー効率としての成績係数(COP:coefficient of performance)は一般に2.5〜5.0である。ヒートポンプの成績係数は、被加熱媒体(水)の入出力温度差に応じて変化し、比較的高い入出力温度差においてその成績係数が低下する傾向がある。本実施形態において、顕熱交換及び潜熱交換に対応してヒートポンプが個別の加熱部を有することにより、入出力温度差を抑え、ボイラに比べて高いエネルギー効率で蒸気を発生させることができる。
また、本実施形態において、供給経路20内の水が、ヒートポンプ10(放熱部13A〜13E)及び/又は蓄熱部100からの熱伝達によって比較的低圧力かつ低温度の蒸気となり、圧縮機30による圧縮で比較的高圧力かつ高温度の蒸気となる。すなわち、ヒートポンプ10及び/又は蓄熱部100で加熱された水が、圧縮機30による圧縮によってさらに加熱され、これにより、100℃以上の高温蒸気が発生する。蒸気生成システムS1からの蒸気は、外部の所定施設、例えば製造プラント、調理施設、空調設備、発電プラントなどに供給される。
図4は、蒸気生成システムS1による水の状態変化の一例を示す T-s 線図である。図4に示すように、水は、第1熱交換器41(図1参照)において沸点近くまで温度上昇した後、温度一定のまま第2〜第5熱交換器42〜45において相変化する。このとき、大気圧(P1=1atm=約0.1MPa)に比べて低い負圧P0の状態において、飽和蒸気d0が発生する。飽和蒸気d0の温度は標準沸点よりも低い、例えば約90℃である。
次に、その飽和蒸気d0は、圧縮機30(図1参照)による圧縮で比較的高圧力かつ高温の蒸気(過熱蒸気e2)になる。すなわち、上記圧縮に伴って、蒸気が温度上昇する。過熱蒸気e2の圧力P2は大気圧よりも高い、例えば0.8MPaである。
0.8MPaの過熱蒸気e2を定圧下で冷却することにより、約160℃の飽和蒸気を得ることができる(図4の破線a)。同様に、大気圧(約0.1MPa)の過熱蒸気を定圧下で冷却することにより、約100℃の飽和蒸気d1を得ることができる。
過熱蒸気から飽和蒸気への冷却に、液状の水または温水を直接混入することにより、蒸気のボリュームが増加する。この場合、例えば、圧縮機30の出口において蒸気に対して水または温水が供給される。
水または温水の供給量及びタイミングの最適化により、比較的低圧力かつ低温度の飽和蒸気d0から比較的高圧力かつ高温度の飽和蒸気d2への変化を、より直接的にできる。例えば、圧縮機30の入口で適量の水または温水が蒸気に供給されることにより、圧縮機30の入口での飽和蒸気d0が、圧縮機30の出口で飽和蒸気d2に変化する(図4の破線c1(スプレー)及びc2(圧縮))。または、圧縮機30の中間で圧縮機30の段落ごとに適量の水または温水が蒸気に供給されることにより、圧縮機30の入口での飽和蒸気d0が、圧縮機30の出口で飽和蒸気d2に変化する(図4の破線b)。すなわち、圧縮機30による圧縮と水または温水による冷却との組み合わせの最適化により、効率良く圧縮機30から飽和状態に近い蒸気を排出することができる。
このように、本実施形態において、図1に示すヒートポンプ10(蓄熱部100を含む)による2段加熱と圧縮機30による加熱とを含む3段順次加熱により、飽和蒸気及び過熱蒸気のいずれも容易に発生させることができる。すなわち、ヒートポンプ10(蓄熱部100を含む)による加熱で大気圧に比べて低い負圧での飽和蒸気を発生させた後、圧縮機30による圧縮で大気圧または大気圧よりも高い圧力での過熱蒸気または飽和蒸気を発生させることができる。つまり、蒸気生成システムS1は、蒸気仕様に対する柔軟性が高い。
また、本実施形態において、蒸気生成のための加熱過程の一部を圧縮機30が補うから、高いCOPでヒートポンプ10が使用され、したがって、蒸気生成システムS1は、全体としての一次エネルギーの節減が期待される。すなわち、被加熱媒体(水)に対する比較的高温域の加熱に圧縮機30を利用することは、熱伝達のみを利用した加熱と比較して、温度上昇の短時間化及び熱損失の抑制に有利である。
また、本実施形態において、バイパス経路17を介して作動媒体の一部が第1熱交換器41を迂回するから、第1熱交換器41に入る作動媒体の流量の最適化が図られる。これは、作動媒体の保有熱を有効に使う上で有利である。
また、本実施形態において、バイパス経路17を介して作動媒体の一部が第1熱交換器41を迂回することにより、第1熱交換器41への作動媒体の流入量が制御され、その結果、第1熱交換器41及び第2熱交換器42(第3〜第5熱交換器43〜45)のそれぞれに対して、必要に応じた熱量を有する作動媒体が供給される。
バイパス経路17を流れる作動媒体は、再生器18において、ヒートポンプ10の主経路15を流れる吸熱部11からの作動媒体と熱交換する。この熱交換により、バイパス経路17内の作動媒体の温度が降下し(例えば約20℃)、ヒートポンプ10の主経路15内の作動媒体の温度が上昇する(例えば約95℃)。圧縮部12に対する作動媒体の入力温度の上昇により、圧縮部12の動力の低減が図られる。
なお、作動媒体のバイパス量は、被加熱媒体及び作動媒体の各物性値(比熱など)に応じて定められる。被加熱媒体が水でありかつ、作動媒体がフロン系媒体又はアンモニアである場合には、第2〜第5熱交換器42〜45における作動媒体の単位時間あたりの流量に対して、バイパス量がモル比で50%程度であるのが好ましい。この場合、顕熱及び潜熱のそれぞれにおいて水と作動媒体との間の熱バランスが良い。さらに、再生器18における作動媒体同士の熱バランスも良い。
また、本実施形態において、再生器18で温度降下したバイパス経路17内の作動媒体(例えば約20℃)は、膨張部14の手前で、ヒートポンプ10の主経路15を流れる第1熱交換器41(第5放熱部13E)からの作動媒体と合流する。前述したように、第1熱交換器41からの作動媒体の出力温度は比較的低く設定される(例えば約30℃)。膨張部14に対する作動媒体の入力温度の降下により、作動媒体の液ガス比の最適化が図られ、その結果、吸熱部11においてサイクル外の熱源(冷熱供給装置90の放熱管91を流れる媒体)から有効に熱が吸収される。
このように、本実施形態において、水の蒸発に用いた後の作動媒体が水の加温と作動媒体の再生とに用いられることにより、熱の有効利用が図られる。
また、本実施形態において、圧縮部12が多段式である点からも、エネルギー効率の向上が図られる。すなわち、多段式の圧縮部12の段間の放熱部13A,13B,13Cの熱が奪われることによって、作動媒体の圧縮過程における作動媒体の温度上昇が抑制され、その結果、圧縮部12の圧縮効率の向上及び圧縮機の動力の低減化が図られる。圧縮に伴う作動媒体の温度上昇と、段間の放熱部(13A,13B,13C)における作動媒体の温度降下との繰り返しの数(再熱の段数)は、2、3、4、5、6、7、8、9、あるいは10以上である。再熱の段数が装置構成上の制約の範囲内で多いのが、エネルギー効率の向上に有利である。
また、本実施形態において、多段式の圧縮部12に対する作動媒体の入力温度が再生器18によって高められている点も、圧縮部12の動力低減に有利である。また、段間の放熱部13A,13B,13Cの冷却を利用して、被加熱媒体である水を加熱する点からも、熱の有効利用が図られる。
また、本実施形態において、供給経路20が複数の蒸発管51A〜51Dを有することからも、エネルギー効率の向上が図られる。蒸発管では、水の流れの方向に沿って、液体に対する気体(蒸気)の比率が高くなり、蒸気生成の進行に伴って、熱伝達率が低下する。蒸発管内では、質量及びボリュームとして水が支配的であるのが好ましい。供給経路20が複数の蒸発管51A〜51Dを有することにより、気体の比率が高い水に対する加熱が回避され、その結果、蒸気生成に伴う熱伝達率の低下が抑制される。また、熱交換面積の拡大のために蒸発管の長さを長くすると、蒸発管の入口部と出口部との圧力差が大きくなり、蒸発管に水を流すための必要動力が増える可能性がある。複数の蒸発管51A〜51Dが個々に独立していると差圧が小さくて済み、熱交換面積の拡大に伴う水輸送動力の増加が抑制される。蒸発管51A〜51Dが並列配置されていることは、複数の蒸発管51A〜51Dが個々に独立した構成を実現しやすく、装置の簡素化に有利である。
また、本実施形態において、独立した複数の蒸発管51A〜51Dを供給経路20が有することにより、熱バランス制御の向上が図られる。ヒートポンプ10においては、放熱部13A〜13Dの間で、作動媒体の状態(圧力など)が異なる。各放熱部13A〜13Dに対応する複数の蒸発管51A〜51Dを流れる水の単位時間あたりの流量が個々に制御されることにより、放熱部13A〜13Dを有する多段式の圧縮部12における再熱制御の最適化が図られる。
図5は、蒸発管51Aにおける水の流量を制御する構成の一例を示す。ヒートポンプ10において、蒸発管51Aに対応する第1放熱部13Aの出口温度を計測するセンサ71が設けられている。制御装置70は、センサ71の計測結果に基づいて、蒸発管51A用のポンプ52Aを介して蒸発管51Aを流れる単位時間あたりの水の流量を制御する。これにより、第1放熱部13Aにおける作動媒体の出口温度を目標値に設定することができる。第1放熱部13Aの入口温度を計測するセンサ72を用いてもよい。図1において、他の蒸発管51B〜蒸発管51D及び対応する放熱部13B〜13Dもこれと同様の構成を採用することができる。
次に、蒸気生成システムS1の運転方法について説明する。本実施形態において、蒸気生成システムS1は、第1、第2、第3、及び第4の運転モードを有する。
<第1運転モード>
第1運転モードでは、夜間にヒートポンプ10を稼動して蓄熱材101に熱を蓄え、昼間に蓄熱材101の熱を使用して蒸気を生成する。
図6A〜6Dは、第1運転モードの説明図である。まず、夜間において、図6Aに示すように、ヒートポンプ10を稼動して、蓄熱材101への蓄熱を開始する。ヒートポンプ10を稼動するのは、蒸気需要が少なくかつ電力料金が低く設定されている時間帯とする。第2〜第5熱交換器42〜45において、ヒートポンプ10の第1〜第4放熱部13A〜13D(図1参照)からの熱が蓄熱材101に蓄えられる。すなわち、第1〜第4放熱部13A〜13Dによって蓄熱材101が加熱され、蓄熱材101が固相から液相に変化する。蓄熱部100において、蓄熱材101の液状化に伴い、蓄熱材101の融解潜熱が蓄えられる。制御装置70は、システムを統括的に制御する。
また、供給経路20の加温部21(第1熱交換器41)において、ヒートポンプ10の第5放熱部13E(図1参照)からの伝達熱によって、不図示の供給源からの水が温度上昇する(例えば、約90℃)。タンク47は、加温部21からの温水を蓄える。タンク47の容量は、例えば、昼間に消費される蒸気量に対応して設定される。蓄熱材101の蓄熱容量は、タンク47の容量に対応する。蓄熱材101の温度は、タンク47内の温水よりも高く、例えば100〜150℃である。
この蓄熱プロセスにおいて、蒸発管51A〜51D内に水が存在してもしなくてもよい。蒸発部22内の水の沸騰を防ぐ処置が必要に応じてなされる。例えば、少なくとも圧縮機30及びポンプ37(図1参照)が停止される。加温部21からの温水の供給に伴って、蒸発部22の内部圧力が上昇し、水の蒸発が抑えられる。循環配管48A〜48Dのバルブ53A〜53D(図1参照)が圧力調整機能を有する場合には、蒸発部22の内部圧力を、バルブ53A〜53Dによって設定できる。あるいは、バルブ53A〜53Dがクローズされる。ポンプ52A〜52D(図1参照)を駆動して、蒸発部22の循環配管48A〜48Dの内部に所定の圧力を与えてもよい。
なお、蓄熱プロセスでは、ヒートポンプ10の吸熱部11を介して冷熱需要に対応可能である。すなわち、ヒートポンプ10の稼動時に、冷熱供給装置90を稼動することにより、吸熱部11によって冷却された媒体が冷熱供給装置90から所定の設備に供給される。冷熱供給装置90が非稼動の場合または冷熱供給装置90が設けられていない場合、ヒートポンプ10は吸熱部11を介して大気から熱を吸収することができる。
図6Bに示すように、所定時間を経過すると、タンク47に温水が蓄えられ、蓄熱材101に熱が蓄えられる。例えば、時刻、処理時間、及び/又はタンク47の貯水量に基づいて、蓄熱プロセスの終了が判断される。必要に応じて、蓄熱プロセスの少なくとも一部を繰り返してもよい。
次に、昼間において、図6Cに示すように、蒸気生成部(蒸発部22、圧縮機30など)を稼動して蓄熱材101の熱を使って蒸気を生成する。すなわち、循環配管48A〜48Dのポンプ52A〜52D(図1参照)、圧縮機30、及びポンプ37等が駆動される。循環配管48A〜48Dのバルブ53A〜53D(図1参照)はオープンしている。タンク47内の温水が循環配管48A〜48Dを通って循環する。圧縮機30の吸引作用により、蒸発部22の内部空間が減圧されるとともに、蓄熱材101からの伝達熱によって蒸発管51A〜51D内の温水が加熱される。その結果、供給経路20内の水が比較的低圧力かつ低温度の蒸気となり、その後、圧縮機30による圧縮で比較的高圧力かつ高温度の蒸気となる。
図6Dに示すように、所定時間を経過すると、タンク47内の温水が減り、蓄熱材101の蓄熱量が減少する。再び夜間において、図6A及び6Bに示す蓄熱プロセスが行われる。
このように、第1運転モードでは、電気料金の低い夜間にヒートポンプ10を稼動し、蒸気需要がある昼間に蒸気生成部(蒸発部22、圧縮機30など)を稼動する。すなわち、蓄熱を利用することにより、蒸気生成システムS1における電力消費が夜間と昼間とに振り分けられる。その結果、蒸気生成システムS1のピークパワー及び平均消費電力が低く抑えられる。これは、受電設備の簡素化及び低コスト化、並びに契約電力(電力基本料金)の抑制に有利である。
また、蓄熱の利用により、蒸気需要に応じて、蒸気生成のタイミング及び量を容易に調整できる。すなわち、蒸気生成システムS1は、蒸気供給について高い柔軟性及び制御性を有する。蓄熱プロセスでは、蓄熱材101と、タンク47との2箇所で蓄熱される。タンク47に温水が蓄えられることにより、蒸気生成プロセスの立ち上がり時間の短縮に有利である。
本実施形態において、第1熱交換器41に蓄熱材を配置することができる。この場合、蓄熱プロセスにおいて、タンク47の温水貯溜に代えて、第1熱交換器41の蓄熱材に熱が蓄えられる。蒸発部22への水供給を避けることで、蓄熱プロセスにおいて、蒸発部22内の水の沸騰を防ぐ処置が不要となる。また、吸熱部11及び/又は再生器18など、他の箇所に蓄熱材を配置することも可能である。
蓄熱材101及び温水による蓄熱は、バッテリを使用した蓄熱に比べて、イニシャルコストの抑制に有利であり、また、同等以上の蓄熱効率を期待できる。電力補完的に、バッテリを使用することも可能である。例えば、バッテリに蓄えたエネルギーによって、タンク47内の水を補完的に加熱することが可能である。
なお、第1運転モードにおいて、設備的に問題がなければ、タンク47の温水及び蓄熱材101の熱を使い切った場合において、ヒートポンプ10及び蒸発部22を稼動することにより、さらなる蒸気需要に対応することが可能である。
<第2運転モード>
次に、蒸気生成システムS1の第2運転モードについて説明する。第1運転モードと同様の動作については説明を簡略化又は省略する。第2運転モードでは、ヒートポンプ10が実質的に連続稼動される。蒸気需要が無いとき、蓄熱材101に熱が蓄えられるとともに、蒸気需要が有るとき、ヒートポンプ10及び/又は蓄熱材101からの熱を使用して蒸気が生成される。
図7A及び7Bは、第2運転モードの説明図である。まず、蒸気需要が無いとき、図7Aに示すように、ヒートポンプ10が稼動され、蓄熱材101に熱が蓄えられるとともに、タンク47に温水が蓄えられる。すなわち、第2〜第5熱交換器42〜45において、ヒートポンプ10の第1〜第4放熱部13A〜13D(図1参照)によって蓄熱材101が加熱される。蓄熱材101の相変化に伴い、蓄熱材101の融解潜熱が蓄えられる。また、不図示の供給源からの水が供給経路20の加温部21(第1熱交換器41)によって加熱される。その温水がタンク47に蓄えられる。この蓄熱プロセスにおいて、少なくとも圧縮機30及びポンプ37が停止される。また、冷熱供給装置90を稼動することにより、吸熱部11によって冷却された媒体が冷熱供給装置90から所定の設備に供給される。制御装置70は、システムを統括的に制御する。
次に、蒸気需要が有るとき、図7Bに示すように、ヒートポンプ10及び蒸気生成部(蒸発部22、圧縮機30など)が稼動され、ヒートポンプ10及び/又は蓄熱材101の熱を使って蒸気が生成される。すなわち、ヒートポンプ10に加え、循環配管48A〜48Dのポンプ52A〜52D(図1参照)、圧縮機30、及びポンプ37等が駆動される。循環配管48A〜48Dのバルブ53A〜53D(図1参照)はオープンしている。タンク47内の温水が循環配管48A〜48Dを通って循環する。圧縮機30の吸引作用により、蒸発部22の内部空間が減圧されるとともに、ヒートポンプ10の第1〜第4放熱部13A〜13D(図1参照)及び/又は蓄熱材101からの伝達熱によって蒸発管51A〜51D内の温水が加熱される。その結果、供給経路20内の水が比較的低圧力かつ低温度の蒸気となり、その後、圧縮機30による圧縮で比較的高圧力かつ高温度の蒸気となる。タンク47に温水が蓄えられていることにより、蒸気生成プロセスの立ち上がり時間の短縮に有利である。また、冷熱供給装置90を稼動することにより、吸熱部11によって冷却された媒体が冷熱供給装置90から所定の設備に供給される。冷熱供給装置90が非稼動の場合または冷熱供給装置90が設けられていない場合、ヒートポンプ10は吸熱部11を介して大気から熱を吸収することができる。
このように、第2運転モードでは、ヒートポンプ10が実質的に連続稼動され、蒸気需要が無いときあるいは少ないときに、蓄熱材101に熱が蓄えられる。蒸気需要が有るときは、ヒートポンプ10からの直接的な伝達熱に加え、蓄熱材101に蓄えられた熱を使用して蒸気が生成される。すなわち、ヒートポンプ10の熱が蒸気生成に使用されるに際して、熱補助及びバッファの役割を蓄熱材101及びタンク47が果たす。蒸気需要に応じた蓄熱容量の最適化により、特に、ヒートポンプ10のピークパワー及び平均消費電力を低く抑えることができる。これは、ヒートポンプ10の小サイズ化及び低コスト化に有利である。
<第3運転モード>
次に、蒸気生成システムS1の第3運転モードについて説明する。第1又は第2運転モードと同様の動作については説明を簡略化又は省略する。第3運転モードでは、少なくとも冷熱需要が有るときに蓄熱が実行される。
図8A〜8Cは、第3運転モードの説明図である。まず、冷熱需要が有るとき、図8Aに示すように、ヒートポンプ10及び冷熱供給装置90が稼動される。すなわち、ヒートポンプ10の第1〜第4放熱部13A〜13D(図1参照)からの熱が蓄熱材101に蓄えられるとともに、第5放熱部13E(図1参照)によって加熱された温水がタンク47に蓄えられる。この蓄熱プロセスにおいて、少なくとも圧縮機30及びポンプ37が停止される。また、冷熱供給装置90を稼動することにより、吸熱部11によって冷却された媒体が冷熱供給装置90から所定の設備に供給される。制御装置70は、システムを統括的に制御する。
次に、蒸気需要が有るとき、図8Bに示すように、蒸気生成部(蒸発部22、圧縮機30など)が稼動され、蓄熱材101の熱を使って蒸気が生成される。すなわち、循環配管48A〜48Dのポンプ52A〜52D(図1参照)、圧縮機30、及びポンプ37等が駆動される。循環配管48A〜48Dのバルブ53A〜53D(図1参照)はオープンしている。タンク47内の温水が循環配管48A〜48Dを通って循環する。圧縮機30の吸引作用により、蒸発部22の内部空間が減圧されるとともに、蓄熱材101からの伝達熱によって蒸発管51A〜51D内の温水が加熱される。その結果、供給経路20内の水が比較的低圧力かつ低温度の蒸気となり、その後、圧縮機30による圧縮で比較的高圧力かつ高温度の蒸気となる。
あるいは、蒸気需要が有るとき、図8Cに示すように、ヒートポンプ10及び蒸気生成部(蒸発部22、圧縮機30など)が稼動され、ヒートポンプ10及び蓄熱材101の熱を使って蒸気が生成される。すなわち、ヒートポンプ10に加え、循環配管48A〜48Dのポンプ52A〜52D(図1参照)、圧縮機30、及びポンプ37等が駆動される。循環配管48A〜48Dのバルブ53A〜53D(図1参照)はオープンしている。タンク47内の温水が循環配管48A〜48Dを通って循環する。圧縮機30の吸引作用により、蒸発部22の内部空間が減圧されるとともに、ヒートポンプ10の第1〜第4放熱部13A〜13D(図1参照)及び蓄熱材101からの伝達熱によって蒸発管51A〜51D内の温水が加熱される。その結果、供給経路20内の水が比較的低圧力かつ低温度の蒸気となり、その後、圧縮機30による圧縮で比較的高圧力かつ高温度の蒸気となる。この蒸気生成プロセスにおいて、余剰の熱は蓄熱材101に蓄えられる。
このように、第3運転モードでは、少なくとも冷熱需要が有るときに蓄熱が実行される。すなわち、冷熱供給装置90の稼動に合わせて蓄熱材101及びタンク47に熱が蓄えられる。その結果、冷熱供給装置90では、ヒートポンプ10の吸熱部11における吸熱作用を最大限に利用して冷熱供給することができる。蒸気需要、及び冷熱需要のタイミング及び一日に占める時間的長さなどに応じて、蒸気生成システムS1の蓄熱容量が定められる。
<第4運転モード>
次に、蒸気生成システムS1の第4運転モードについて説明する。第1〜第3運転モードと同様の動作については説明を簡略化又は省略する。第4運転モードでは、特に蒸気生成システムS1の初期稼動時に、蓄熱を利用して蒸気が生成される。
図9A〜9Cは、第4運転モードの説明図である。まず、図9Aに示すように、蒸気生成システムS1の通常稼動時においては、ヒートポンプ10及び蒸気生成部(蒸発部22、圧縮機30など)が稼動され、ヒートポンプ10からの伝達熱によって蒸気が生成される。すなわち、圧縮機30の吸引作用により、蒸発部22の内部空間が減圧されるとともに、ヒートポンプ10の第1〜第4放熱部13A〜13D(図1参照)からの伝達熱によって蒸発管51A〜51D内の温水が加熱される。その結果、供給経路20内の水が比較的低圧力かつ低温度の蒸気となり、その後、圧縮機30による圧縮で比較的高圧力かつ高温度の蒸気となる。また、冷熱供給装置90を稼動することにより、吸熱部11によって冷却された媒体が冷熱供給装置90から所定の設備に供給される。冷熱供給装置90が非稼動の場合または冷熱供給装置90が設けられていない場合、ヒートポンプ10は吸熱部11を介して大気から熱を吸収することができる。制御装置70は、システムを統括的に制御する。
次に、図9Bに示すように、蒸気生成プロセスの終了時において、ヒートポンプ10が稼動状態で、蒸気生成部(蒸発部22、圧縮機30など)が停止される。蓄熱材101に熱が蓄えられるとともに、タンク47に温水が蓄えられる。その後、蒸気生成部も停止される。
次に、図9Cに示すように、蒸気需要が有るとき、蒸気生成システムS1の初期稼動時において、蓄熱材101の熱を使って蒸気を生成する。すなわち、圧縮機30の吸引作用により、蒸発部22の内部空間が減圧されるとともに、蓄熱材101からの伝達熱によって蒸発管51A〜51D内の温水が加熱され、その結果、蒸気が生成される。その後、蒸気生成システムS1(ヒートポンプ10の放熱部13A〜13Eなど)の暖機(warm-up)が完了すると、図9Aに示す、蒸気生成システムS1の通常稼動が実行される。
このように、第4運転モードでは、特に蒸気生成システムS1の初期稼動時に、蓄熱を利用して蒸気が生成される。その結果、蒸気生成システムS1の暖機に要する時間を削減することができる。すなわち、蒸気生成プロセスの立ち上がり時間の短縮に有利である。第4運転モードでは、蓄熱容量は、初期稼動時に消費される量でよい。上述した他の運転モードに比べて装置コストの低減が可能である。
次に、本発明の第2実施形態について図面を参照して説明する。
図10は、第2実施形態にかかる蒸気生成システムを示す概略図である。以下の説明では、上記実施形態と同様の構成要素には同一の符号を付し、その説明を省略または簡略化する。
図10に示すように、蒸気生成システムS2は、第1実施形態と異なり、供給経路20における水を貯溜するタンクが、複数の蒸発管51A〜51Dに対応する複数の個別タンク47A〜47Dを有する。ヒートポンプ10の構成は、第1実施形態のそれと同様である。
供給経路20は、加温部21と、蒸発部22と、蒸発部22と圧縮機30とを流体的に接続するダクト23とを有する。蒸発部22は、必要に応じて脱気槽49と、少なくとも液状の被加熱媒体(水)を貯溜するタンク(第1タンク47A、第2タンク47B、第3タンク47C、第4タンク47D)と、各タンク47A〜47Dに流体的に接続された循環配管(第1循環配管48A、第2循環配管48B、第3循環配管48C、第4循環配管48D)とを有する。脱気槽49とタンク(47A〜47D)との間には、必要に応じて流体駆動部49Cが配置される。各タンク47A〜47Dには、加温部21(脱気槽49)からの水の供給口と、蒸気の排出口とが設けられる。タンク47A〜47Dは、必要に応じて、液面を計測するレベルセンサ50A〜50Dと、気液分離器(不図示)とを有する。
本実施形態において、第1タンク47Aに対して、蒸発管51Aを有する第1循環配管48Aが流体的に接続されている。すなわち、第1循環配管48Aの各入口端と各出口端とが第1タンク47Aに流体的に接続される。同様に、第2タンク47Bに対して蒸発管51Bを有する第2循環配管48Bが流体的に接続されている。第3タンク47Cに蒸発管51Cを有する第3循環配管48Cが流体的に接続され、第4タンク47Dに蒸発管51Dを有する第4循環配管48Dが流体的に接続されている。蒸発管51Aは、ヒートポンプ10の第1放熱部13Aに熱的に接続される。同様に、蒸発管51B、51C、及び51Dはそれぞれ、ヒートポンプ10の第2放熱部13B、第3放熱部13C、及び第4放熱部13Dに熱的に接続される。タンク及び循環配管(蒸発管)の数は、蒸気生成システムS2の仕様に応じて設定され、2、3、4、5、6、7、8、9、あるいは10以上である。本実施形態において、タンク47A〜47Dと蒸発管51A〜51Dの各ペアが、供給経路20に対して並列に配置される。
蒸発管51Aと第1放熱部13Aとを含んで第2熱交換器42が構成される。同様に、蒸発管51Bと第2放熱部13Bとを含んで第3熱交換器43が構成される。蒸発管51Cと第3放熱部13Cとを含んで第4熱交換器44が構成され、蒸発管51Dと第4放熱部13Dとを含んで第5熱交換器45が構成される。第2〜第5熱交換器42〜45は、低温の流体(蒸発管51A〜51D内の水)と高温の流体(ヒートポンプ10内の作動流体)とが対向して流れる向流型の熱交換方式を有することができる。あるいは、第2〜第5熱交換器42〜45は、高温流体と低温流体とが並行して流れる並行流型の熱交換方式を有してもよい。第2〜第5熱交換器42〜45の熱交換構造として、公知の様々なものを採用することができる。ヒートポンプ10の各放熱部13A,13B,13C,13Dの配管と、蒸発管51A,51B,51C,51Dとは互いに接触あるいは隣接して配置される。例えば、ヒートポンプ10の各放熱部13A,13B,13C,13Dの配管を、蒸発管51A,51B,51C,51Dの外周面や内部に配設することができる。
本実施形態において、第2〜第5熱交換器42〜45に対して蓄熱部100が設けられている。蓄熱部100は、ヒートポンプ10から伝わる熱を蓄える蓄熱材101を有する。蓄熱材101の熱は蒸発管51A〜51Dに伝わる。蒸気生成システムS1の仕様に応じて、蓄熱材101の材料特性が定められる。本実施形態において、蓄熱材101は、第1実施形態と同様に、液体−固体の相変化を伴って蓄熱及び放熱する潜熱蓄熱材を含む。蓄熱部100の構成は、図2A〜3Dに示したように、様々な形態が適用可能である。
蒸発部22において、加温部21で温度上昇した水が分岐して各タンク47A〜47Dに供給され、各タンク47A〜47D及び各循環配管48A〜48D内に水が貯溜される。供給経路20は、各タンク47A〜47Dへの水の供給量を制御するバルブ80A〜80Dを有する。各タンク47A〜47D内の液面が所定範囲内になるように、バルブ80A〜80Dを介して各タンク47A〜47Dへの水の供給量が制御される。例えば、レベルセンサ50A〜50Dの計測結果に基づいて、各タンク47A〜47Dへの水の供給量が制御される。ヒートポンプ10の第1〜第4放熱部13A〜13Dからの熱伝達によって蒸発管51A〜51D内の水が加熱され、その水の少なくとも一部が蒸発する。各タンク47A〜47Dは、ダクト23を介して圧縮機30に流体的に接続されている。タンク47A〜47Dの内部空間は、各タンク47A〜47Dの排出口及びダクト23を介して圧縮機30によって吸引される。
圧縮機30(または供給経路20)には、蒸気に対して水を供給するノズル35が、必要に応じて配設される。ノズル35の配設位置は、例えば、圧縮機30の入口及び/又は出口である。圧縮機30が多段式である場合には、ノズル35を圧縮機30の段間に配設することもできる。ノズル35と少なくとも1つのタンク47A〜47Dの液相位置とが配管36を介して流体的に接続された配管を構成することができる。この配管構成では、比較的高温である少なくとも1つのタンク47A〜47D内の液体がノズル35への供給に有効利用される。ノズル35からの液体の排出(スプレイ)には、ポンプ37などの動力源を用いてもよく、配管36の入口と出口との圧力差を利用してもよい。
本実施形態においても、第1実施形態と同様に、供給経路20内の水が、ヒートポンプ10(放熱部13A〜13E)からの熱伝達によって比較的低圧力かつ低温度の蒸気となり、圧縮機30による圧縮で比較的高圧力かつ高温度の蒸気となる。また、蓄熱材101及びタンク47A〜47Dを用いた蓄熱を利用することにより、蒸気生成システムS2のピークパワー及び平均消費電力の抑制、蒸気・冷熱需要への柔軟な対応、及び/又は蒸気生成プロセスの立ち上がり時間の短縮が可能である。蒸気生成システムS2からの蒸気は、外部の所定施設、例えば製造プラント、調理施設、空調設備、発電プラントなどに供給される。本実施形態では、複数の個別タンク47A〜47Dを有することにより、蒸気需要の変動に対する柔軟性が高い。
次に、本発明の第3実施形態について図面を参照して説明する。
図11は、第3実施形態にかかる蒸気発生システムを示す概略図である。以下の説明では、上記実施形態と同様の構成要素には同一の符号を付し、その説明を省略または簡略化する。
図11に示すように、蒸気生成システムS3は、上記実施形態と異なり、供給経路20における水を貯溜するタンクが、内部圧力が個別に設定される複数の個別タンク47A及び47Bを有する。蒸気発生システムS3は、作動媒体(第1媒体)が流れるヒートポンプ10と、被加熱媒体(第2媒体)の供給経路20と、圧縮機30,31とを備える。
本実施形態において、ヒートポンプ10は、吸熱部11、圧縮部12、放熱部13A〜13D、及び膨張部14を有し、これらは配管を介して接続されている。
本実施形態において、圧縮部12は、作動媒体を単段で圧縮する構造を有する。後述する他の実施形態において、圧縮部12は、作動媒体を複数段で圧縮する構造を有することができる。圧縮部12は、軸流圧縮機、遠心圧縮機、レシプロ式圧縮機、ロータリー式圧縮機などの様々な圧縮機のうち、作動媒体の圧縮に適する圧縮機を有する。圧縮機には動力が供給される。圧縮部12の圧縮比(圧力比)は、蒸気発生システムS3の仕様に応じて設定される。
放熱部13A〜13Dは、圧縮部12で圧縮された作動媒体が流れる配管を有し、主経路15内を流れる作動媒体の熱をサイクル外の熱源に与える。本実施形態において、作動媒体の流れ方向に沿って、4つの放熱部13A〜13Dが直列に配置されている。作動媒体の流れ方向に沿って、放熱部13A、放熱部13B、放熱部13C、及び放熱部13Dがその順に並んでいる。放熱部の数は、蒸気発生システムS3の仕様に応じて設定され、3、4、5、6、7、8、9、10、あるいは11以上である。
本実施形態において、供給経路20は、第1及び第2加温部21A,21Bと、第1及び第2蒸発部22A,22Bと、蒸発部22A,22Bと圧縮機30,31とを流体的に接続するダクト23A,23Bとを有する。本実施形態において、供給経路20は、分岐部24Aと、分岐部24Aからの水を第1蒸発部22Aに導く分岐経路25Aと、分岐部24Aからの水を第2蒸発部22Bに導く分岐経路25Bとを有する。
第1加温部21Aは、ヒートポンプ10の放熱部13Dに隣接して配置されかつ供給源(不図示)からの水が流れる配管を含む。第1加温部21Aと放熱部13Dとを含んで第1熱交換器41が構成される。第1加温部21Aにおいて、ヒートポンプ10の放熱部13Dからの熱伝達によって、供給経路20内の水が温度上昇する。
第2加温部21Bは、分岐経路25Bに配置される。第2加温部21Bは、ヒートポンプ10の放熱部13Bに隣接して配置されかつ第1加温部21Aからの水が流れる配管を含む。第2加温部21Bと放熱部13Bとを含んで第2熱交換器42が構成される。第2加温部21Bにおいて、ヒートポンプ10の放熱部13Bからの熱伝達によって、分岐経路25B内の水が温度上昇する。
第1及び第2熱交換器41,42は、低温の流体(供給経路20内の水)と高温の流体(ヒートポンプ10内の作動流体)とが対向して流れる向流型の熱交換方式を有することができる。第1及び第2熱交換器41,42は、高温流体と低温流体とが並行して流れる並行流型の熱交換方式を有してもよい。第1及び第2熱交換器41,42の熱交換構造として、公知の様々なものを採用することができる。例えば、ヒートポンプ10の放熱部13D又は放熱部13Bの配管を、第1加温部21A又は第2加温部21Bの配管の外周面及び/又は内部に配設することができる。
本実施形態において、分岐経路25Bにおける分岐部24Aと第2加温部21Bとの間にポンプ26が配置されている。ポンプ26及び/又は不図示の流量制御装置(制御バルブ等)によって、分岐経路25A及び分岐経路25Bを流れる単位時間あたりの水の量(蒸発部22A,22Bに対する水の分配量)が制御される。ポンプ26の配置位置は、分岐部24Aと第2加温部21Bとの間に限定されない。
第1蒸発部22Aは、少なくとも液状の被加熱媒体(水)を貯溜する第1タンク47Aと、第1タンク47Aに流体的に接続された第1循環配管48Aとを有する。すなわち、第1循環配管48Aの入口端と出口端とが第1タンク47Aに流体的に接続される。第1タンク47Aには、第1加温部21Aからの水の供給口と、蒸気の排出口とが設けられる。第1タンク47Aは、必要に応じて、液面を計測するレベルセンサ50Aと、気液分離器(不図示)とを有する。第1循環配管48Aは、ヒートポンプ10の放熱部13Cに隣接して配置される蒸発管51Aと、必要に応じてポンプ52Aとを有する。
第2蒸発部22Bは、第1蒸発部22Aと同様に、少なくとも液状の被加熱媒体(水)を貯溜する第2タンク47Bと、第2タンク47Bに流体的に接続された第2循環配管48Bとを有する。すなわち、第2循環配管48Bの入口端と出口端とが第2タンク47Bに流体的に接続される。第2タンク47Bには、第2加温部21Bからの水の供給口と、蒸気の排出口とが設けられる。第2タンク47Bは、必要に応じて、液面を計測するレベルセンサ50Bと、気液分離器(不図示)とを有する。第2循環配管48Bは、ヒートポンプ10の放熱部13Aに隣接して配置される蒸発管51Bと、必要に応じてポンプ52Bとを有する。
本実施形態において、第1蒸発部22A(第1タンク47A、蒸発管51A)と第2蒸発部22B(第2タンク47B、蒸発管51B)とが、供給経路20に対して実質的に並列に配置される。なお、前述したように、ヒートポンプ10における作動媒体の流れ方向に対して、第2蒸発部22Bが上流位置、第1蒸発部22Aが下流位置である。被加熱媒体(水)の熱対流及び/又は差圧などを利用してポンプ52A,52Bの少なくとも1つを省いてもよい。
蒸発管51Aと放熱部13Cとを含んで第3熱交換器43が構成される。同様に、蒸発管51Bと放熱部13Aとを含んで第4熱交換器44が構成される。第3及び第4熱交換器43,44は、低温の流体(蒸発管51A,51B内の水)と高温の流体(ヒートポンプ10内の作動流体)とが対向して流れる向流型の熱交換方式を有することができる。第3及び第4熱交換器43,44は、高温流体と低温流体とが並行して流れる並行流型の熱交換方式を有してもよい。第3及び第4熱交換器43,44の熱交換構造として、公知の様々なものを採用することができる。例えば、ヒートポンプ10の各放熱部13C,13Aの配管を、蒸発管51A,51Bの外周面及び/又は内部に配設することができる。
本実施形態において、第3熱交換器43及び第4熱交換器44に対して蓄熱部100が設けられている。蓄熱部100は、ヒートポンプ10から伝わる熱を蓄える蓄熱材101を有する。蓄熱材101の熱は蒸発管51A及び51Bに伝わる。蒸気生成システムS3の仕様に応じて、蓄熱材101の材料特性が定められる。本実施形態において、蓄熱材101は、第1実施形態と同様に、液体−固体の相変化を伴って蓄熱及び放熱する潜熱蓄熱材を含む。蓄熱部100の構成は、図2A〜3Dに示したように、様々な形態が適用可能である。
第1蒸発部22Aにおいて、第1加温部21Aで温度上昇した水が供給口を介して第1タンク47Aに供給され、第1タンク47A及び第1循環配管48A内に水が貯溜される。第1タンク47A内の液面が所定範囲内になるように、第1タンク47Aへの水の供給量が制御される。例えば、レベルセンサ50Aの計測結果に基づいて、第1タンク47Aへの水の供給量が制御される。ヒートポンプ10の放熱部13Cからの熱伝達によって蒸発管51A内の水が加熱され、その水の少なくとも一部が蒸発する。第1タンク47Aは、ダクト23Aを介して圧縮機30に流体的に接続されている。第1タンク47Aの内部空間は、第1タンク47Aの排出口及びダクト23Aを介して圧縮機30によって吸引される。第1タンク47A内の蒸気は、ダクト23A内を圧縮機30に向けて流れる。
第2蒸発部22Bにおいて、第1及び第2加温部21A,21Bで温度上昇した水が供給口を介して第2タンク47Bに供給され、第2タンク47B及び第2循環配管48B内に水が貯溜される。第2タンク47B内の液面が所定範囲内になるように、第2タンク47Bへの水の供給量が制御される。例えば、レベルセンサ50Bの計測結果に基づいて、第2タンク47Bへの水の供給量が制御される。
本実施形態において、放熱部13Aと13Cの間で、作動媒体の状態(圧力など)が異なる。各放熱部13A,13Cに対応する蒸発管51A,51Bを流れる水の単位時間あたりの流量が個々に制御されることにより、熱バランス制御の向上が図られる。
ヒートポンプ10の放熱部13Aからの熱伝達によって蒸発管51B内の水が加熱され、その水の少なくとも一部が蒸発する。第2タンク47Bは、ダクト23Bを介して圧縮機31に流体的に接続されている。第2タンク47Bの内部空間は、第2タンク47Bの排出口及びダクト23Bを介して圧縮機31によって吸引される。第2タンク47B内の蒸気は、ダクト23B内を圧縮機31に向けて流れる。
圧縮機30は、供給経路20の分岐経路25A上に配置され、その配置位置は第1タンク47Aに対して下流である。圧縮機31は、供給経路20の分岐経路25B上に配置され、その配置位置は第2タンク47Bに対して下流である。圧縮機30,31としては、軸流圧縮機、遠心圧縮機、レシプロ式圧縮機、ロータリー式圧縮機などの様々な圧縮機が適用され、蒸気圧縮に適するものが用いられる。圧縮機30は、第1タンク47Aからの蒸気を圧縮し、昇圧した蒸気を下流に流す。圧縮機31は、第2タンク47Bからの蒸気を圧縮し、昇圧した蒸気を下流に流す。
圧縮機30(または分岐経路25A)には、蒸気に対して水を供給するノズル35Aが、必要に応じて配設される。同様に、圧縮機31(または分岐経路25B)には、ノズル35Bが必要に応じて配設される。ノズル35A,35Bの配設位置は、例えば、圧縮機30,31の入口及び/又は出口である。圧縮機30,31が多段式である場合には、ノズル35A,35Bを各圧縮機30,31の段間に配設することもできる。ノズル35Aと第1タンク47Aの液相位置とが配管36Aを介して流体的に接続された配管構成を採用することができる。この配管構成では、比較的高温である第1タンク47A内の液体がノズル35Aへの供給に有効利用される。同様に、ノズル35Bと第2タンク47Bの液相位置とが配管36Bを介して流体的に接続された配管構成を採用することができる。ノズル35A,36Bからの液体の排出(スプレイ)には、ポンプ37A,37Bなどの動力源を用いてもよく、配管36A,36Bの入口と出口との圧力差を利用してもよい。
圧縮機30による吸引作用により、供給経路20におけるヒートポンプ10による加熱部位での内部空間、すなわち第1タンク47Aの内部空間が減圧される。第1タンク47Aの内部圧力が大気圧(1atm=約0.1MPa)に比べて低い負圧(陰圧)となるように、供給経路20(分岐経路25A)上の制御弁(流量制御弁など。不図示)、圧縮機30等が制御される。この制御は、例えば、第1タンク47Aの内部圧力を計測するセンサ(不図示)の計測結果に基づいて行われる。
第1タンク47A及びヒートポンプ10は、第1タンク47Aの内部空間が負圧状態において、水が蒸発するように設計(容量設計、能力設計など)されている。第1タンク47A内の水の温度は標準沸点よりも低い。ヒートポンプ10の成績係数は、被加熱媒体(水)の入力温度と出力温度との差に応じて変化し、その温度差が過度に大きいと成績係数(COP)が低下する場合がある。第1タンク47Aの内部空間が負圧状態であるという条件により、加熱温度領域(入出力温度差)を比較的狭く設定し、高いCOPでのヒートポンプ10の使用が可能である。例えば、第1加温部21Aへの水の入口温度は約20℃であり、第1加温部21Aからの水の出口温度(第1蒸発部22Aへの水の入口温度)は約90℃である。また、例えば、第1蒸発部22Aからの水(蒸気)の出口温度は約90℃である。
第2タンク47Bの内部圧力は、第2蒸発部22Bへの水の入力温度に応じて設定される。本実施形態において、第1タンク47Aに比べて、第2タンク47Bへの水の入口温度が高い。第1及び第2加温部21A,21Bで加熱された水の温度(第2加温部21Bからの水の出口温度、第2蒸発部22Bへの水の入口温度)は例えば約120℃である。第1タンク47Aに比べて、第2タンク47Bの内部圧力が高く設定される。供給経路20(分岐経路25B)上の制御弁(流量制御弁など。不図示)、ポンプ26、圧縮機31等の制御によって、第2タンク47Bの内部圧力が設定される。この制御は、例えば、第2タンク47Bの内部圧力を計測するセンサ(不図示)の計測結果に基づいて行われる。上記した各部位での入口及び出口温度は一例である。供給源の水の温度、気温、蒸気の要求仕様などの条件に応じて、各部位における水の入口及び出口温度が変化する。
本実施形態においては、供給経路20内の水が、ヒートポンプ10からの熱伝達によって蒸気になる。まず、第1熱交換器41(第1加温部21A)において、供給経路20内の水がヒートポンプ10の放熱部13Dからの熱伝達によって温度上昇する。第1加温部21Aからの水の流れは、分岐部24Aを介して、分岐経路25Aと分岐経路25Bとに分かれる。分岐経路25Aを流れる水は、第1蒸発部22A(第1タンク47A)に向かう。第1タンク47Aにおいて、水は沸点(第1沸点)に近い温度を有する。第3熱交換器43において、放熱部13Cからの熱伝達によって蒸発管51A内の水が相変化して蒸発する。
分岐経路25Bを流れる水は、第2熱交換器42(第2加温部21B)に向かう。第2熱交換器42(第2加温部21B)において、分岐経路25B内の水がヒートポンプ10の放熱部13Bからの熱伝達によってさらに温度上昇する。第2タンク47Bの内部圧力は第1タンク47Aに比べて高い。第2タンク47Bにおいて、水は沸点(第2沸点)に近い温度を有する。第2タンク47B内の水の温度は、第1タンク47A内の水に比べて高い。第4熱交換器44において、放熱部13Aからの熱伝達によって蒸発管51A内の水が相変化して蒸発する。
本実施形態において、第1及び第2熱交換器41,42(第1及び第2加温部21A,21B)において水が顕熱加熱され、第3及び第4熱交換器43,44(第1及び第2蒸発管51A,51B)において水が潜熱加熱される。第1及び第2熱交換器41,42が顕熱交換に適した形態であり、第3及び第4熱交換器43,44が潜熱交換に適した形態であるといった、装置構成の最適化が図られることにより、好ましい加熱プロセスを経て蒸気が発生する。
本実施形態においても、蓄熱材101及びタンク47A及び47Bを用いた蓄熱を利用することにより、蒸気生成システムS3のピークパワー及び平均消費電力の抑制、蒸気・冷熱需要への柔軟な対応、及び/又は蒸気生成プロセスの立ち上がり時間の短縮が可能である。
本実施形態において、供給経路20内の水が、ヒートポンプ10(放熱部13A〜13D)からの熱伝達によって比較的低圧力かつ低温度の蒸気となり、圧縮機30,31による圧縮で比較的高圧力かつ高温度の蒸気となる。すなわち、ヒートポンプ10で加熱された水が、圧縮機30,31による圧縮によってさらに加熱され、これにより、100℃以上の高温蒸気が発生する。
図12は、蒸気発生システムS3におけるヒートポンプ10の作動媒体の状態変化の一例を示す T-s 線図である。図13は、第3実施形態における水とヒートポンプの作動媒体との温度変化の一例を模式的に示している。
図13に示すように、第1加温部21A(図11参照)において、作動媒体との熱交換により、供給源からの水の温度が第1沸点近くに上昇する(図13の矢印m1)。第1蒸発部22Aにおいて、作動媒体との熱交換により、第1沸点近くの温度で、水が液体から蒸気に相変化する(矢印m2)。第2加温部21Bにおいて、作動媒体との熱交換により、水の温度が第2沸点近くに上昇する(矢印m3)。第2蒸発部22Bにおいて、作動媒体との熱交換により、第2沸点近くの温度で、水が液体から蒸気に相変化する(矢印m4)。
また、図13に示すように、水との熱交換により、圧縮部12(図11参照)からの作動媒体(蒸気)の温度が降下する(矢印n1)。その作動媒体(蒸気)は、水との熱交換により、液体に相変化する(矢印n2)。さらに、水との熱交換により、作動媒体(液体)の温度が降下する(矢印n3)。
このように、異なる環境に設定された2つの蒸発部を用いて蒸気を発生させることにより、熱交換時の作動媒体と水との温度差を抑制し、熱交換効率を高めることができる。図13において、水の温度を示す線と、作動媒体の温度を示す線とで囲まれた領域の面積が小さいほど、熱交換効率が高いと考えることができる。
図14は、図11の蒸気発生システムS3の変形例である第4実施形態を示す概略図である。以下の説明では、蒸気発生システムS4について、図11に示す蒸気発生システムS3と同様の要素には同一の符号を付し、その説明を省略または簡略化する。
図14に示すように、蒸気発生システムS4は、3つの蒸発部22A,22B,22Cと、3つの圧縮機30,31,32とを有する。供給経路20は、第1、第2、及び第3加温部21A,21B,21Cと、第1、第2、及び第3蒸発部22A,22B,22Cと、蒸発部22A,22B,22Cと圧縮機30,31,32とを流体的に接続するダクト23A,23B,23Cとを有する。本実施形態において、供給経路20は、分岐部24A,24Bと、分岐経路25A,25B,25C,25Dとを有する。供給経路20において、第2加温部21Bと第2タンク47Bとの間に、分岐部24Bが位置する。分岐経路25Cは、分岐部24Bからの水を第2蒸発部22Bに導く。分岐経路25Dは、分岐部24Bからの水を第3蒸発部22Cに導く。
本実施形態において、作動媒体の流れ方向に沿って、6つの放熱部13A〜13Fが直列に配置されている。作動媒体の流れ方向に沿って、放熱部13E、放熱部13F、放熱部13A、放熱部13B、放熱部13C、及び放熱部13Dがその順に並んでいる。
第3加温部21Cは、分岐経路25Dに配置される。第3加温部21Cは、ヒートポンプ10の放熱部13Fに隣接して配置されかつ第2加温部21Bからの水が流れる配管を含む。第3加温部21Cと放熱部13Fとを含んで第5熱交換器45が構成される。第3加温部21Cにおいて、ヒートポンプ10の放熱部13Fからの熱伝達によって、分岐経路25D内の水が温度上昇する。
本実施形態において、分岐経路25Dにおける分岐部24Bと第3加温部21Cとの間にポンプ27が配置されている。ポンプ27及び/又は不図示の流量制御装置(制御バルブ等)によって、分岐経路25C及び分岐経路25Dを流れる単位時間あたりの水の量(蒸発部22B,22Cに対する水の分配量)が制御される。ポンプ27の配置位置は、分岐部24Bと第3加温部21Cとの間に限定されない。
第3蒸発部22Cは、第1及び第2蒸発部22A,22Bと同様に、少なくとも液状の被加熱媒体(水)を貯溜する第3タンク47Cと、第3タンク47Cに流体的に接続された第3循環配管48Cとを有する。すなわち、第3循環配管48Cの入口端と出口端とが第3タンク47Cに流体的に接続される。第3タンク47Cには、第3加温部21Cからの水の供給口と、蒸気の排出口とが設けられる。第3タンク47Cは、必要に応じて、液面を計測するレベルセンサ50Cと、気液分離器(不図示)とを有する。第3循環配管48Cは、ヒートポンプ10の放熱部13Eに隣接して配置される蒸発管51Cと、必要に応じてポンプ52Cとを有する。
本実施形態において、第1蒸発部22A(第1タンク47A、蒸発管51A)と第2蒸発部22B(第2タンク47B、蒸発管51B)と第3蒸発部22C(第3タンク47C、蒸発管51C)とが、供給経路20に対して実質的に並列に配置される。第1、第2、及び第3加温部21A,21B,21Cは、供給経路20に対して実質的に直列に配置される。なお、ヒートポンプ10における作動媒体の流れ方向に対して、第3蒸発部22Cが上流位置、第2蒸発部22Bが中間位置、第1蒸発部22Aが下流位置である。被加熱媒体(水)の熱対流及び/又は差圧などを利用してポンプ52A,52B,52Cの少なくとも1つを省いてもよい。蒸発管51Cと放熱部13Eとを含んで第6熱交換器46が構成される。
本実施形態において、第3熱交換器43、第4熱交換器44、及び第6熱交換器46に対して蓄熱部100が設けられている。蓄熱部100は、ヒートポンプ10から伝わる熱を蓄える蓄熱材101を有する。蓄熱材101の熱は蒸発管51A〜51Cに伝わる。蒸気生成システムS4の仕様に応じて、蓄熱材101の材料特性が定められる。本実施形態において、蓄熱材101は、第1実施形態と同様に、液体−固体の相変化を伴って蓄熱及び放熱する潜熱蓄熱材を含む。蓄熱部100の構成は、図2A〜3Dに示したように、様々な形態が適用可能である。
第3蒸発部22Cにおいて、第1、第2、及び第3加温部21A,21B,21Cで温度上昇した水が供給口を介して第3タンク47Cに供給され、第3タンク47C及び第3循環配管48C内に水が貯溜される。第3タンク47C内の液面が所定範囲内になるように、第3タンク47Cへの水の供給量が制御される。例えば、レベルセンサ50Cの計測結果に基づいて、第3タンク47Cへの水の供給量が制御される。ヒートポンプ10の放熱部13Eからの熱伝達によって蒸発管51C内の水が加熱され、その水の少なくとも一部が蒸発する。第3タンク47Cは、ダクト23Cを介して圧縮機32に流体的に接続されている。第3タンク47Cの内部空間は、第3タンク47Cの排出口及びダクト23Cを介して圧縮機32によって吸引される。第3タンク47C内の蒸気は、ダクト23C内を圧縮機32に向けて流れる。
圧縮機32は、供給経路20の分岐経路25D上に配置され、その配置位置は第3タンク47Cに対して下流である。圧縮機32は、第3タンク47Cからの蒸気を圧縮し、昇圧した蒸気を下流に流す。
第3タンク47Cの内部圧力は、第3蒸発部22Cへの水の入力温度に応じて設定される。本実施形態において、第1及び第2タンク47A,47Bに比べて、第3タンク47Cへの水の入口温度が高い。第1、第2、及び第3加温部21A,21B,21Cで加熱された水の温度(第3加温部21Cからの水の出口温度、第3蒸発部22Cへの水の入口温度)は例えば約150℃である。第1及び第2タンク47A,47Bに比べて、第3タンク47Cの内部圧力が高く設定される。供給経路20(分岐経路25D)上の制御弁(流量制御弁など。不図示)、ポンプ27、圧縮機32等の制御によって、第3タンク47Cの内部圧力が設定される。この制御は、例えば、第3タンク47Cの内部圧力を計測するセンサ(不図示)の計測結果に基づいて行われる
本実施形態において、分岐経路25Dを流れる水は、第5熱交換器45(第3加温部21C)に向かう。第5熱交換器45(第3加温部21C)において、分岐経路25D内の水がヒートポンプ10の放熱部13Fからの熱伝達によってさらに温度上昇する。第3タンク47Cの内部圧力は第1及び第2タンク47A,47Bに比べて高い。第3タンク47Cにおいて、水は沸点(第3沸点)に近い温度を有する。第3タンク47C内の水の温度は、第1及び第2タンク47A,47B内の水に比べて高い。第6熱交換器46において、放熱部13Eからの熱伝達によって蒸発管51C内の水が相変化して蒸発する。
本実施形態においても、蓄熱材101及びタンク47A〜47Cを用いた蓄熱を利用することにより、蒸気生成システムS4のピークパワー及び平均消費電力の抑制、蒸気・冷熱需要への柔軟な対応、及び/又は蒸気生成プロセスの立ち上がり時間の短縮が可能である。
本実施形態において、第1蒸発部22Aの第1タンク47Aでは比較的低い圧力下で飽和蒸気が発生し、第3蒸発部22Cの第3タンク47Cでは比較的高い圧力下で飽和蒸気が発生し、第2蒸発部22Bの第2タンク47Bでは中間の圧力下で飽和蒸気が発生する。第1、第2、及び第3蒸発部22A,22B,22Cの各蒸気排出量(混合比)を制御することにより、出力蒸気の仕様を変化させることができる。
図15は、第4実施形態における水とヒートポンプの作動媒体との温度変化の一例を模式的に示す。
図15に示すように、第1及び第2加温部21A,21B(図14参照)を介して上昇した水の温度が、第3加温部21Cにおいて、作動媒体との熱交換により、第3沸点近くにさらに上昇する(図15の矢印m5)。第3蒸発部22Cにおいて、作動媒体との熱交換により、第3沸点近くの温度で、水が液体から蒸気に相変化する(矢印m6)。
このように、異なる環境に設定された3つの蒸発部を用いて蒸気を発生させることにより、熱交換時の作動媒体と水との温度差を抑制し、熱交換効率を高めることができる。図15において、水の温度を示す線と、作動媒体の温度を示す線とで囲まれた領域の面積が小さいほど、熱交換効率が高いと考えることができる。
第3及び第4実施形態において、蒸発部の数(タンク及び循環配管(蒸発管)の数)は、蒸気発生システムの仕様に応じて設定され、2、3、4、5、6、7、8、9、あるいは10以上である。
図16は、図11の蒸気発生システムS3の別の変形例である第5実施形態を示す概略図である。以下の説明では、蒸気発生システムS5について、図11に示す蒸気発生システムS3と同様の要素には同一の符号を付し、その説明を省略または簡略化する。
蒸気発生システムS5において、図16に示すように、圧縮部12が作動媒体を複数段(本例では2段)で圧縮する構造を有する。本実施形態において、圧縮部12は、放熱部13Aの前に配置される第1圧縮部12Aと、放熱部13Aの中段に配置される第2圧縮部12Bとを有する。第2圧縮部12Bに代えてあるいは加えて、放熱部13Cの中段に圧縮部を設けることができる。圧縮の段数は、蒸気発生システムの仕様に応じて設定され、2、3、4、5、6、7、8、9、あるいは10以上である。圧縮部12は、各圧縮部12A,12Bに対応する回転数が個々に制御される多軸圧縮構造を有することができる。あるいは、圧縮部12は、同軸圧縮構造を有することができる。各圧縮部12A,12Bの圧縮比(圧力比)は、蒸気発生システムの仕様に応じて設定される。
本実施形態において、第3熱交換器43及び第4熱交換器44に対して蓄熱部100が設けられている。蓄熱部100は、ヒートポンプ10から伝わる熱を蓄える蓄熱材101を有する。蓄熱材101の熱は蒸発管51A及び51Bに伝わる。蒸気生成システムS5の仕様に応じて、蓄熱材101の材料特性が定められる。本実施形態において、蓄熱材101は、第1実施形態と同様に、液体−固体の相変化を伴って蓄熱及び放熱する潜熱蓄熱材を含む。蓄熱部100の構成は、図2A〜3Dに示したように、様々な形態が適用可能である。
本実施形態において、圧縮部12が多段式である点から、エネルギー効率の向上が図られる。すなわち、多段式の圧縮部12の段間の熱が奪われることによって、作動媒体の圧縮過程における作動媒体の温度上昇が抑制され、その結果、圧縮部12の圧縮効率の向上及び圧縮機の動力の低減化が図られる。また、本実施形態において、多段式の圧縮部12に対する作動媒体の入力温度が再生器18によって高められている点も、圧縮部12の動力低減に有利である。
また、本実施形態においても、蓄熱材101及びタンク47A及び47Bを用いた蓄熱を利用することにより、蒸気生成システムS5のピークパワー及び平均消費電力の抑制、蒸気・冷熱需要への柔軟な対応、及び/又は蒸気生成プロセスの立ち上がり時間の短縮が可能である。
図17は、図14の蒸気発生システムS4の変形例である第6実施形態を示す概略図である。以下の説明では、蒸気発生システムS6について、図14に示す蒸気発生システムS4と同様の要素には同一の符号を付し、その説明を省略または簡略化する。
蒸気発生システムS6において、図17に示すように、圧縮部12が作動媒体を複数段(本例では2段)で圧縮する構造を有する。本実施形態において、圧縮部12は、放熱部13Eの前に配置される第1圧縮部12Aと、放熱部13Eの中段に配置される第2圧縮部12Bとを有する。第2圧縮部12Bに代えてあるいは加えて、放熱部13Aの中段及び/又は放熱部Cの中段に圧縮部を設けることができる。
本実施形態において、第3熱交換器43、第4熱交換器44、及び第6熱交換器46に対して蓄熱部100が設けられている。蓄熱部100は、ヒートポンプ10から伝わる熱を蓄える蓄熱材101を有する。蓄熱材101の熱は蒸発管51A〜51Cに伝わる。蒸気生成システムS6の仕様に応じて、蓄熱材101の材料特性が定められる。本実施形態において、蓄熱材101は、第1実施形態と同様に、液体−固体の相変化を伴って蓄熱及び放熱する潜熱蓄熱材を含む。蓄熱部100の構成は、図2A〜3Dに示したように、様々な形態が適用可能である。
本実施形態においても、蓄熱材101及びタンク47A〜47Cを用いた蓄熱を利用することにより、蒸気生成システムS6のピークパワー及び平均消費電力の抑制、蒸気・冷熱需要への柔軟な対応、及び/又は蒸気生成プロセスの立ち上がり時間の短縮が可能である。
図18は、図11の蒸気発生システムS3の別の変形例である第7実施形態を示す概略図である。以下の説明では、蒸気発生システムS7について、図11に示す蒸気発生システムS3と同様の要素には同一の符号を付し、その説明を省略または簡略化する。
蒸気発生システムS7において、図18に示すように、圧縮部12が作動媒体を複数段(本例では2段)で圧縮する構造を有する。本実施形態において、圧縮部12は、放熱部13Aの前に配置される第1圧縮部12Aと、放熱部13Bと放熱部13Cとの間に配置される第2圧縮部12Cとを有する。第2圧縮部12Cに加えて、放熱部13A及び/又は放熱部13Cの中段に圧縮部を設けることもできる。圧縮の段数は、蒸気発生システムの仕様に応じて設定され、2、3、4、5、6、7、8、9、あるいは10以上である。圧縮部12は、各圧縮部12A,12Cに対応する回転数が個々に制御される多軸圧縮構造を有することができる。あるいは、圧縮部12は、同軸圧縮構造を有することができる。各圧縮部12A,12Cの圧縮比(圧力比)は、蒸気発生システムの仕様に応じて設定される。
本実施形態において、第3熱交換器43及び第4熱交換器44に対して蓄熱部100が設けられている。蓄熱部100は、ヒートポンプ10から伝わる熱を蓄える蓄熱材101を有する。蓄熱材101の熱は蒸発管51A及び51Bに伝わる。蒸気生成システムS7の仕様に応じて、蓄熱材101の材料特性が定められる。本実施形態において、蓄熱材101は、第1実施形態と同様に、液体−固体の相変化を伴って蓄熱及び放熱する潜熱蓄熱材を含む。蓄熱部100の構成は、図2A〜3Dに示したように、様々な形態が適用可能である。
本実施形態においても、蓄熱材101及びタンク47A及び47Bを用いた蓄熱を利用することにより、蒸気生成システムS7のピークパワー及び平均消費電力の抑制、蒸気・冷熱需要への柔軟な対応、及び/又は蒸気生成プロセスの立ち上がり時間の短縮が可能である。
図19は、図14の蒸気発生システムS4の別の変形例である第8実施形態を示す概略図である。以下の説明では、蒸気発生システムS8について、図14に示す蒸気発生システムS4と同様の要素には同一の符号を付し、その説明を省略または簡略化する。
蒸気発生システムS8において、図19に示すように、圧縮部12が作動媒体を複数段(本例では2段)で圧縮する構造を有する。本実施形態において、圧縮部12は、放熱部13Eの前に配置される第1圧縮部12Aと、放熱部13Fと放熱部13Aとの間に配置される第2圧縮部12Cとを有する。第2圧縮部12Cに代えてあるいは加えて、放熱部13Bと放熱部13Cとの間に圧縮部を設けることができる。また、第2圧縮部12Cに加えて、放熱部13E、放熱部13A、及び/又は放熱部13Cの中段に圧縮部を設けることもできる。
本実施形態において、第3熱交換器43、第4熱交換器44、及び第6熱交換器46に対して蓄熱部100が設けられている。蓄熱部100は、ヒートポンプ10から伝わる熱を蓄える蓄熱材101を有する。蓄熱材101の熱は蒸発管51A〜51Cに伝わる。蒸気生成システムS8の仕様に応じて、蓄熱材101の材料特性が定められる。本実施形態において、蓄熱材101は、第1実施形態と同様に、液体−固体の相変化を伴って蓄熱及び放熱する潜熱蓄熱材を含む。蓄熱部100の構成は、図2A〜3Dに示したように、様々な形態が適用可能である。
本実施形態においても、蓄熱材101及びタンク47A〜47Cを用いた蓄熱を利用することにより、蒸気生成システムS8のピークパワー及び平均消費電力の抑制、蒸気・冷熱需要への柔軟な対応、及び/又は蒸気生成プロセスの立ち上がり時間の短縮が可能である。
図20は、図19の蒸気発生システムS8の別の変形例である第9実施形態を示す概略図である。以下の説明では、蒸気発生システムS9について、図19に示す蒸気発生システムS8と同様の要素には同一の符号を付し、その説明を省略または簡略化する。
蒸気発生システムS9において、図20に示すように、供給経路20に対して、第2加温部21Bと第3加温部21Cとが実質的に並列に配置される。なお、ヒートポンプ10における作動媒体の流れ方向に対して、第3加温部21Cが上流位置、第2加温部21Bが下流位置である。
本実施形態において、供給経路20は、分岐部24A,24Cと、分岐経路25A,25F,25G,25Hとを有する。供給経路20において、分岐部24Aから、分岐経路25Aと分岐経路25Fとが分かれている。分岐経路25Aは、前述したように、分岐部24Aからの水を第1蒸発部22Aに導く。分岐部24Aからの分岐経路25Fに分岐部24Cが位置する。分岐部24Cから、分岐経路25Gと分岐経路25Hとが分かれている。分岐経路25Gは、分岐部24Cからの水を第2加温部21Bに導く。分岐経路25Hは、分岐部24Bからの水を第3加温部21Cに導く。
本実施形態において、分岐経路25Fにポンプ28が配置されている。ポンプ28及び/又は不図示の流量制御装置(制御バルブ等)によって、分岐経路25A,25F,25G,25Hを流れる単位時間あたりの水の量(蒸発部22A,22B,23Cに対する水の分配量)が制御される。ポンプ28の配置位置は、分岐経路25F上に限定されない。他の実施形態において、分岐経路25G及び/又は25H上に、ポンプを配置することができる。
第2蒸発部22Bにおいて、第1及び第2加温部21A,21Bで温度上昇した水が供給口を介して第2タンク47Bに供給される。同様に、第3蒸発部22Cにおいて、第1及び第3加温部21A,21Cで温度上昇した水が供給口を介して第3タンク47Cに供給される。
本実施形態において、ヒートポンプ10の圧縮部12が多段式であるから、放熱部13Bから第2加温部21Bに伝達される熱は、放熱部13Eから第3加温部21Cに伝達される熱と同程度にすることができる。第2及び第3加温部21B,21Cが実質的に並列に配置されるから、第2蒸発部22Bへの水の入口温度(第2加温部21Bからの水の出口温度)は、第1及び第3加温部21A,21Cで加熱された水の温度(第3加温部21Cからの水の出口温度、第3蒸発部22Cへの水の入口温度)と同程度にすることができる。
第2及び第3タンク47B,47Cの内部圧力は、第2及び第3蒸発部22B,22Cへの水の入力温度に応じて設定される。本実施形態において、第1タンク47Aに比べて、第2及び第3タンク47B,47Cへの水の入口温度が高い。第1タンク47Aに比べて、第2及び第3タンク47B,47Cの内部圧力が高く設定される。供給経路20(分岐経路25H,25G)上の制御弁(流量制御弁など。不図示)、ポンプ28、圧縮機31,32等の制御によって、第2及び第3タンク47B,47Cの内部圧力が設定される。この制御は、例えば、第2及び第3タンク47B,47Cの内部圧力を計測するセンサ(不図示)の計測結果に基づいて行われる。
本実施形態において、第1蒸発部22Aの第1タンク47Aでは比較的低い圧力下で飽和蒸気が発生し、第2及び第3蒸発部22B,22Cの第2及び第3タンク47B,47Cでは比較的高い圧力下で飽和蒸気が発生する。第1、第2、及び第3蒸発部22A,22B,22Cの各蒸気排出量(混合比)を制御することにより、出力蒸気の仕様を変化させることができる。本実施形態において、同程度の内部圧力に設定可能な複数の蒸発タンク(第2及び第3タンク47B,47C)が設けられているから、その圧力に応じた条件に対応する蒸気を比較的多く発生させることができる。
本実施形態において、第3熱交換器43、第4熱交換器44、及び第6熱交換器46に対して蓄熱部100が設けられている。蓄熱部100は、ヒートポンプ10から伝わる熱を蓄える蓄熱材101を有する。蓄熱材101の熱は蒸発管51A〜51Cに伝わる。蒸気生成システムS9の仕様に応じて、蓄熱材101の材料特性が定められる。本実施形態において、蓄熱材101は、第1実施形態と同様に、液体−固体の相変化を伴って蓄熱及び放熱する潜熱蓄熱材を含む。蓄熱部100の構成は、図2A〜3Dに示したように、様々な形態が適用可能である。
本実施形態においても、蓄熱材101及びタンク47A〜47Cを用いた蓄熱を利用することにより、蒸気生成システムS9のピークパワー及び平均消費電力の抑制、蒸気・冷熱需要への柔軟な対応、及び/又は蒸気生成プロセスの立ち上がり時間の短縮が可能である。
上記説明において使用した数値は一例であって、本発明はこれに限定されない。
以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。上記説明において使用した数値は一例であって、本発明はこれに限定されない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付の請求の範囲によってのみ限定される。
S1〜S9…蒸気発生システム、10…ヒートポンプ、11…吸熱部、12…圧縮部、13A〜13F…放熱部、14…膨張部、15…主経路、17…バイパス経路、18…再生器、20…供給経路、21A〜21C…加温部、22A〜22C…蒸発部、23A〜23C…ダクト、24A,24B,24C…分岐部、25A,25B,25C,25D,25F,25G,25H…分岐経路、26〜28…ポンプ、30,31,32…圧縮機、35A〜35C…ノズル、41〜46…熱交換器、47A〜47C…タンク、48A〜48C…循環配管、50A〜50C…レベルセンサ、51A〜51C…蒸発管、70…制御装置、71,72…センサ、90…冷熱供給装置、91…放熱管、100…蓄熱部、101…蓄熱材、102…筐体。