WO2007023635A1 - 光記録方法、光記録装置、光記録媒体及び光記録再生方法 - Google Patents

光記録方法、光記録装置、光記録媒体及び光記録再生方法 Download PDF

Info

Publication number
WO2007023635A1
WO2007023635A1 PCT/JP2006/314650 JP2006314650W WO2007023635A1 WO 2007023635 A1 WO2007023635 A1 WO 2007023635A1 JP 2006314650 W JP2006314650 W JP 2006314650W WO 2007023635 A1 WO2007023635 A1 WO 2007023635A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
information
optical recording
pattern
recording
Prior art date
Application number
PCT/JP2006/314650
Other languages
English (en)
French (fr)
Inventor
Yoshihisa Usami
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Priority to EP06781562A priority Critical patent/EP1926092A4/en
Priority to US12/064,268 priority patent/US20090245052A1/en
Publication of WO2007023635A1 publication Critical patent/WO2007023635A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • G11B7/0903Multi-beam tracking systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00772Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track on record carriers storing information in the form of optical interference patterns, e.g. holograms
    • G11B7/00781Auxiliary information, e.g. index marks, address marks, pre-pits, gray codes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/083Disposition or mounting of heads or light sources relatively to record carriers relative to record carriers storing information in the form of optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • G11B7/0906Differential phase difference systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0938Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following servo format, e.g. guide tracks, pilot signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00772Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track on record carriers storing information in the form of optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2539Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins biodegradable polymers, e.g. cellulose
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/2585Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on aluminium

Definitions

  • the present invention relates to an optical recording method, an optical recording apparatus, and an optical recording medium in which information is recorded using holography, and particularly to an optical recording medium having a servo pit pattern for focus control and tracking control.
  • the present invention relates to an optical recording method, an optical recording apparatus, and an optical recording medium that can irradiate information light and reference light used for recording, detect reflected light, and perform focus control and tracking control.
  • an optical recording method for recording information on an optical recording medium using holography generally interferes with information light (object light) having image information and reference light inside the optical recording medium.
  • the interference fringes generated at that time are written on the optical recording medium.
  • the optical recording method include a collinear method in which the information light and the reference light are irradiated so that the optical axis of the information light and the optical axis of the reference light are coaxial.
  • the interference fringes are generated by the information light and the reference light, and image information or the like is recorded on the recording layer.
  • Reproduction of recorded image information and the like is performed by irradiating the optical recording medium with the same light as the reference light from the same direction as during recording, and diffracted light is generated from the interference fringes by the light irradiation.
  • the information is reproduced by receiving the diffracted light.
  • the normal position of the optical recording medium is adjusted by adjusting variations in interlayer distances such as recording layers in the optical recording medium or errors in the optical recording and optical reproducing apparatus.
  • the focus position is controlled for the irradiation of light, such as focus control and tracking control for recording the above information.
  • the optical recording medium is irradiated with servo light for performing the focus control or tracking control, and light such as focus information and track information is irradiated by the reflected light.
  • servo light for performing the focus control or tracking control
  • light such as focus information and track information is irradiated by the reflected light.
  • the information light and the reference light are optical recording media. A normal position of the body is irradiated and recording and reproduction are performed (see Patent Documents 1 to 3).
  • the sampled servo system for example, there is an optical recording apparatus shown in FIG.
  • red light is used as servo light
  • laser light having a wavelength different from servo light such as green is used as information light and reference light used for recording.
  • the servo light is reflected by the dichroic mirror 13, passes through the objective lens 12, and is applied to the optical recording medium 21 so as to be focused on the reflective film 2.
  • This dichroic mirror 13 transmits light of green and blue wavelengths and reflects light of red wavelengths.
  • the servo light incident from the light incident / exiting surface A of the optical recording medium 21 is reflected by the reflective film 2 and is emitted from the incident / exiting surface A again.
  • the returned return light passes through the objective lens 12, is reflected by the dichroic mirror 13, and servo information is detected by a servo information detector (not shown).
  • the detected servo information is used for focus servo, tracking servo, slide servo, etc.
  • the recording layer 4 is not sensitive to red light.
  • the information light and the reference light are recorded by the objective lens 12 through the information light and the reference light, which are controlled at appropriate positions by the servo, through the polarizing element 16, the half mirror 17, and the dichroic mirror 13.
  • the optical recording medium 21 is irradiated so as to generate an interference image in the layer 4.
  • the information light and the recording reference light are incident from the incident / exit surface A, they interfere with each other at the recording layer 4 to generate an interference image, pass through the recording layer 4 and enter the filter layer 6. It is reflected between the bottom surface of the filter layer 6 and becomes return light, and does not reach the reflection film 2.
  • the filter layer 6 is designed such that four cholesteric liquid crystal layers are stacked and only red light is transmitted.
  • the servo light and the front Adopting the sampled servo system for both the information light and the reference light has the problem that the efficiency of recording / reproduction is reduced and it is not suitable for high-speed recording / reproduction.
  • Patent Document 1 JP 2002-123949 A
  • Patent Document 2 JP 2004-265472 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-228875
  • An object of the present invention is to solve the conventional problems and achieve the following objects.
  • the present invention provides a plurality of lasers that are generated from errors in optical recording and optical reproducing devices, etc., in which the efficiency of recording and reproducing is high when performing recording or reproduction, focusing and tracking control using laser light. It is an object of the present invention to provide an excellent optical recording method, an optical recording apparatus, and an optical recording medium that are not affected by the deviation of the optical axis of light and that can simplify the layer structure of the optical recording medium itself.
  • An optical recording medium having a recording layer for recording information using holography and having a pattern having at least track information and address information is irradiated with at least one of information light and reference light and reflected.
  • the optical axis of the reference light is moved to a position other than the pattern, the information light and the reference light are irradiated onto the recording layer, an interference image is formed, and the interference image is recorded on the recording layer.
  • an interference image recording step is performed.
  • ⁇ 2> includes a focus position detection step of irradiating the optical recording medium with at least one of information light and reference light, and detecting the focus position of the information light and the reference light in the thickness direction of the photosensitive layer by the reflected light.
  • ⁇ 3> The optical recording method according to any one of ⁇ 1> to ⁇ 2>, wherein the pattern is formed in at least three places on the optical recording medium.
  • ⁇ 4> The optical recording method according to ⁇ 1> to ⁇ 3>, wherein the pattern includes at least one of a concave-convex pattern and a pattern having a material force having a different refractive index.
  • ⁇ 5> The optical recording method according to any one of ⁇ 1> to ⁇ 4>, wherein the pattern is recorded on a recording layer.
  • ⁇ 7> Horizontal position detection method in the pattern position detection step
  • the position information pattern is irradiated with either information light or reference light, the reflected light is received, and the position where the signal intensity of the reflected light is maximized is determined.
  • the optical recording method according to any one of ⁇ 1> to ⁇ 6>, wherein the optical recording method is detected.
  • ⁇ 8> Method for detecting horizontal position in the pattern position detection step
  • the position information pattern is irradiated with either information light or reference light, the reflected light is received, and the position where the signal error of the reflected light is minimized is determined.
  • the optical recording method according to any one of ⁇ 1> to ⁇ 7>, wherein the optical recording method is detected.
  • ⁇ 9> The light according to any one of ⁇ 1> to ⁇ 8>, wherein the information light and the reference light are irradiated such that the optical axis of the information light and the optical axis of the reference light are coaxial. This is a recording method.
  • An optical recording medium includes a first substrate, a recording layer, a pattern, and a second substrate.
  • ⁇ 11> The optical recording method according to any one of ⁇ 1> to ⁇ 10> having a reflective film on the pattern surface.
  • ⁇ 12> The optical recording method according to ⁇ 11>, wherein the reflective film is a metal reflective film.
  • ⁇ 13> The optical recording method according to any one of ⁇ 1>, ⁇ 12>, wherein the optical recording medium is a reflection hologram.
  • Pattern position detecting means for detecting the position of the pattern by reflected light, and based on the detected pattern position information, the positions of the optical axes of the information light and the reference light other than the pattern are determined.
  • Focus position detecting means for irradiating the optical recording medium with at least one of information light and reference light, and detecting the focal position of the information light and the reference light in the thickness direction of the photosensitive layer by reflected light.
  • ⁇ 17> Reproducing recorded information corresponding to the interference image by irradiating the interference image formed on the recording layer with the reference light by the optical recording method according to any one of ⁇ 1> to ⁇ 13> This is an optical recording / reproducing method.
  • the present invention increases the efficiency of recording and reproduction when performing recording or reproduction, focus and tracking control using laser light. Due to misalignment of the optical axes of the plurality of laser beams caused by errors in the reproducing apparatus, etc. Therefore, it is possible to provide an excellent optical recording method, an optical recording apparatus, and an optical recording medium in which the layer configuration of the optical recording medium itself is simplified.
  • FIG. 1 is a partial sectional view of an optical recording medium having an embossed pattern according to the present invention.
  • FIG. 2 is a partial cross-sectional view of an optical recording medium having a pattern layer made of a material having a different refractive index according to the present invention.
  • FIG. 3 is a partial cross-sectional view showing an optical recording method for an optical recording medium of the present invention.
  • FIG. 4 is a perspective view partially showing a pattern of the optical recording medium of the present invention.
  • FIG. 5 is a partial cross-sectional view showing scattering of information light in the optical recording method of the present invention.
  • FIG. 6 is a perspective view of a part of the optical recording medium of the present invention.
  • FIG. 7 is an explanatory diagram showing an example of an optical system around an optical recording medium according to the present invention.
  • FIG. 8 is a block diagram showing an example of the overall configuration of the optical recording / reproducing apparatus of the present invention.
  • FIG. 9 is an explanatory view showing an example of an optical system around a conventional optical recording medium.
  • the optical recording method of the present invention is an optical recording method including a pattern position detection step, an interference image recording step, and other steps appropriately selected as necessary.
  • optical recording method of the present invention can be carried out by the optical recording apparatus of the present invention, and details thereof will be clarified through the description of the optical recording apparatus.
  • the pattern position detecting step in the optical recording method of the present invention can be suitably performed by the pattern position detecting means in the optical recording apparatus of the present invention,
  • the interference image recording step in the optical recording method of the present invention can be suitably performed by the interference image recording means in the optical recording apparatus of the present invention,
  • the pattern position detecting means includes a recording layer for recording information using holography, and an information recording medium for an optical recording medium having a pattern in which position information in the horizontal direction is recorded with respect to the layer surface of the recording layer. And the reference light, and the position of the pattern is detected by reflected light.
  • the position information in the horizontal direction is not particularly limited as long as it is information regarding the position in the horizontal direction of the optical axis of the information light and the reference light with respect to the layer surface of the recording layer laminated on the optical recording medium. It can be appropriately selected according to the purpose, and examples thereof include address information.
  • the address information includes, for example, encoded position information such as 0000, 0001, 0002, etc., and an arbitrary one address on the optical recording medium as an origin, and an X axis and a horizontal layer surface with the recording layer.
  • the position information (a, b) from the X-axis to the position a, Y-axis position b, position information used for tracking servo, position information formed in the wobble, etc. Address information recorded in the pre-pits and recording layers, and position information based only on the recording pattern in which the intensity of light returns.
  • the position information in the horizontal direction is information serving as a reference for controlling the irradiation position of the information light and the reference light, it is required that the position accuracy is extremely high. Is preferably 100 m or less, more preferably 10 m or less, and most preferably 3 m or less, and most preferably 1 m.
  • the reason why it is within 100 / zm is that if it is within 100 m, it is possible to control the irradiation position of the information beam and the reference beam. If high accuracy exceeding 100 m is required, productivity may decrease. It is. Even if the position is shifted, if the shift amount is known and the control is performed based on the known shift amount, there is no problem in the control.
  • the known deviation amount is preferably recorded on an optical recording medium.
  • the pattern can be appropriately selected according to the purpose for which there is no particular limitation. For example, a pattern that returns as information light when irradiated with reference light is preferable.
  • the amount of light is recorded so as to attenuate according to the amount of deviation.
  • the amount of deviation can be detected from the amount of light.
  • the amount of light can be detected independently for X and Y, it is possible to measure the amount of deviation in one playback.
  • the recording location of the position information pattern can be appropriately selected according to the purpose without any particular limitation.
  • the reflection layer of the information light and the reference light, and the horizontal position information for the substrate surface of the optical recording medium, the reflection layer of the information light and the reference light, and the horizontal position information.
  • the number of the patterns is not particularly limited as long as there are at least three optical recording media, and can be appropriately selected according to the purpose.
  • 3 to: LO is acceptable.
  • 3 to: LOO is preferred. More preferably, the number is 3 to 1,000. Further, the number may be provided for each track used for tracking servo. In this case, 3 to: LO is preferred 3 to: LOO is preferred 3 to 1,000 is more preferred . In any case, if the number exceeds 1,000, production efficiency when forming the position information pattern may be reduced. As a number for detecting position information from the pattern, 1,000 is enough.
  • the pattern recording method can be appropriately selected according to the purpose without any particular limitation. For example, a method of forming on a substrate with a stamper, a method of forming a pattern layer, a method of optical recording for each pattern Etc.
  • the information light and the reference light are reflected to obtain return light, and the presence / absence of a pattern can be detected from the difference in optical path length of the return light. Therefore, it is necessary to form a reflective film that reflects light to the area other than the pattern surface.
  • This glass master is formed by forming a conductive film on its surface by an electroless plating method, forming a thin film such as Ni by an electrolytic plating method, and peeling the thin film and the conductive film from the glass master cover. Get a stamper.
  • a substrate having a concavo-convex pattern for transmitting information such as pits and valves can be obtained.
  • a metal master is manufactured by an electroless plating method and an electrolytic plating method from a glass master, and a thin film is formed on the metal master by an electrolytic plating method. Can also be produced. It is also possible to produce a stamper by further repeating the electrolytic plating method.
  • the method for forming the pattern layer can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a method of stacking a new pattern layer for the pattern formation.
  • the pattern layer is formed by periodically forming a layer having a different refractive index between a pattern portion including address information, track information, and the like and a region other than that on the substrate. Changes in refractive index can be used as position information.
  • the material having a different refractive index can be appropriately selected according to the purpose without any particular limitation. Examples thereof include a method of exposing a pattern to a photopolymer and a method of patterning a material having a different refractive index. It is done.
  • the specific material is not particularly limited and can be appropriately selected according to the purpose. For example, TiO and ZnS have a high refractive index, and SiO and MgF have a low refractive index. Mentioned
  • refractive index examples include 1.3 to 2.0, 1.5 to 3.0, and the like.
  • the difference in refractive index is 0.1 or more, it is possible to determine the presence or absence of noturn due to the difference in the target optical path length.
  • the difference in refractive index is preferably 0.2 or more, and more preferably 0.3 or more.
  • the material of the reflective film can be appropriately selected according to the purpose without any particular limitation. For example, it is preferable to use a material having a high reflectance with respect to recording light or reference light.
  • the wavelength of light to be used is 400 to 780 nm, for example, Al, A1 alloy, Ag, Ag alloy, etc. are preferably used.
  • the wavelength of light used is 650 nm or more, it is preferable to use Al, A1 alloy, Ag, Ag alloy, Au, Cu alloy, TiN, or the like.
  • an optical recording medium that reflects light and can be added or deleted such as a DVD (digital video disc)
  • DVD digital video disc
  • add and rewrite directory information such as information on which part has an error and how the replacement process was performed without affecting the hologram.
  • Formation of the reflective film can be appropriately selected according to the purpose without any particular limitation, and various vapor phase growth methods such as vacuum deposition, sputtering, plasma CVD, photo-CVD, ion A plating method, an electron beam evaporation method, or the like is used. Among these, the sputtering method is excellent in terms of mass productivity and film quality.
  • the thickness of the reflective film is preferably 50 nm or more, more preferably 1 OOnm or more so that sufficient reflectivity can be achieved.
  • the detection method of the horizontal position information can be appropriately selected according to the purpose without any particular limitation.
  • the tracking servo is performed by irradiating the servo light, that is, the focal position of the servo light.
  • focus control for position adjustment in the thickness direction and tracking control for position adjustment of the surface method are performed, and the optical axis of the servo light is controlled to an appropriate position.
  • the information light and the reference light (reproduction light) are irradiated on the position information pattern, the reflected light is received, and the optical axis of the information light and the reference light is deviated from the optical axis of the servo light.
  • the detected light is not in a just-focused state, tracking control of the information light and reference light (reproduced light) horizontal position is performed, and the information light and reference light (reproduced light) are moved to the just-focused position. Then, the amount of movement is detected.
  • the position information pattern is irradiated with either information light or reference light, received reflected light, and a position where the signal intensity of the reflected light is maximized, Detection can be performed by moving in the direction of the arrow shown in FIG. 3 using a moving means, and the optical axes of the information light and the reference light can be made to coincide with the position of the position information pattern.
  • the means for recognizing the maximum value of the signal intensity can be appropriately selected according to the purpose for which there is no particular limitation, and examples thereof include a peak hold method.
  • the position information pattern is further irradiated with either information light or reference light, received reflected light, and a position where the reflected light signal error is minimized. Can be detected by moving it in the direction of the arrow shown in FIG. 3 using a moving means, and the optical axes of the information light and the reference light can be made to coincide with the position information pattern.
  • the means for recognizing the minimum value of the signal error can be appropriately selected according to the purpose for which there is no particular limitation, and examples thereof include a peak hold method.
  • the moving means can be appropriately selected according to the purpose for which there is no particular limitation, and examples thereof include the servo mechanism.
  • the servo mechanism can be appropriately selected according to the purpose without any particular limitation.
  • the deviation amount is generated as a focus error signal, for example, via a phase compensation drive amplifier that amplifies the signal.
  • a mechanism for controlling the focal length by instructing the driving device and moving the position of the objective lens.
  • the drive device can be appropriately selected according to the purpose without particular limitation, Examples include an actuator and a stepping motor.
  • the movement amount detection method can be appropriately selected according to the purpose without any particular limitation.
  • the address information is the origin, and the recording layer and the horizontal layer surface have an X axis.
  • the Y axis and the z axis in the thickness direction of the recording layer are the horizontal position information and the address information.
  • the position (a, b) of a and Y axial force b from the X axis (where a is a ⁇ 0, b is b ⁇ 0) is recorded on the photosensitive layer, and the address information is the same
  • the detection of the address information by the information light and the reference light is performed by irradiating the information light and the reference light, receiving the reflected light and recognizing the address of the irradiated portion, and from the position (a, b) of the address,
  • the amounts of movement ⁇ a and ⁇ b in the X-axis and Y-axis directions of how much the irradiated information light and reference light should be moved are obtained.
  • the movement amount may be expressed by a distance and an angle.
  • the distance represented by the following formula may be represented by A L
  • the angle may be represented by an acute angle ⁇ based on the X axis or the Y axis.
  • the deviation amount A L is ( ⁇ a ' ⁇ a), (A h' ⁇
  • a b), A a, A b, and A a A b ′ may be handled and controlled independently.
  • the focus position in the thickness direction of the optical recording medium is detected, the focus is controlled, and the focus of the information light and the reference light is changed to the address information.
  • the horizontal position can also be detected next according to the position.
  • the focus control is performed in the first several places. If it is determined that the address information can be recognized without performing the focus control, the focus control may not be performed sequentially.
  • the detection of the focal position for the focus control can be appropriately selected according to the purpose without any particular limitation.
  • the astigmatism method the Foucault method, and the critical angle method (see FIG. "Compact Disc Reader”, co-authored by Ohmsha, Hirataro Nakajima, Hiroshi Ogawa, first edition, published on November 10, 1986).
  • the astigmatism method detects a deviation amount between a recording position of a recording layer formed on a detected disk and the focal positions of the information light and the reference light. That is, a deviation amount between a focal length (a distance between the center of the objective lens and the focal points of the information light and the reference light) and a distance from the center of the objective lens to a recording portion of the recording layer is detected.
  • Light source force A beam splitter or the like is arranged from the light source in the middle of the objective lens in the optical path through which the emitted light beam passes through the objective lens and irradiates the optical recording medium, and the reflected light is extracted from the cylindrical lens. And let it form an image.
  • the imaging surface is circular, the focal lengths coincide with each other.
  • the image plane is a vertically long ellipse, the optical recording medium is too close to the object lens. It can be detected that the optical recording medium is too far from the objective lens.
  • the detection is performed by dividing the reflected light into four parts and comparing the brightness of the diagonal regions of the imaging.
  • the Foucault method uses the same configuration as the method using the astigmatism and the method in which the beam splitter or the like is arranged to extract the reflected light and pass the reflected light through the cylindrical lens.
  • a prism is used for the portion where the reflected light transmitted by the cylindrical lens forms an image, and the image is formed at the apex angle of the prism, the focal lengths coincide with each other, and when the image passes through the apex angle, the image is formed.
  • the optical recording medium is too close to the objective lens and an image is formed before the apex angle, it can be detected that the optical recording medium is too far from the objective lens.
  • one sensor is arranged for the reflected light divided into two, the brightness of the divided reflected light is sensed, and the imaging position can be detected.
  • the critical angle method detects a deviation between a position where recording is to be performed on a recording layer formed on a detected disk and the focal positions of the information light and the reference light. That is, focal length (vs. The distance between the center of the object lens and the focal point of the information light and the reference light) and the distance from the center of the objective lens to the recording portion of the recording layer is detected.
  • focal length vs. The distance between the center of the object lens and the focal point of the information light and the reference light
  • the incident angle is less than the light beam at the center of the incident light beam from the light source to the middle of the objective lens.
  • a prism with a critical angle (the angle at which incident light is totally reflected at the boundary surface of the prism), taking out the reflected light, and detecting the focal position by sensing the brightness of the reflected light .
  • the reflected light reflected by the prism makes use of the fact that the amount of light is reduced, and distinguishes the perspective by the polarity of +- Can be detected.
  • the method for detecting the horizontal position can be appropriately selected according to the purpose without any particular restriction.
  • the three-beam method, the push-pull method, and the phase difference detection method (“illustrated compact disk reader” (Om, Hirataro Nakajima, Hiroshi Ogawa, 1st edition, published on November 10, 1986)).
  • the three-beam method is a method for detecting the misalignment position of the servo light with respect to the track formed on the disk to be detected.
  • the three beams of the substantially circular main beam, sub beam A, and sub beam B are used. It is done.
  • the secondary beam A, the main beam, and the secondary beam B are arranged in a substantially straight line at equal intervals, and the circle of the secondary beam A is positioned at a position where the center of the main beam circle is irradiated to the center of the track width.
  • the lower part of the sub beam B is arranged so as to be in contact with the end of the width of the track, and the upper part of the circle of the sub beam B is arranged in contact with the end of the width of the track.
  • the reflected light is weak on the track surface and strongly reflected on other than the track surface.
  • the intensity of each reflected light the three irradiated beams are detected. It is possible to detect a positional deviation between the position of the beam and the track.
  • the push-pull method is a method for detecting a misalignment position of servo light with respect to a track formed on a disk to be detected, and irradiates the track with one beam and divides the reflected light into two for detection.
  • a two-part photodetector is used.
  • the beam irradiates the central portion of the track width, the right and left light intensities of the reflected light divided in two become equal, and the track
  • the width is shifted to the left or right, the intensity of the reflected light of the track partial force is weak, and the intensity of the reflected light from other than the track is strong.
  • the distribution is non-target left and right, and it can be detected that it is shifted.
  • the phase difference detection is a method of detecting the irradiation position deviation of the servo light for the track formed on the detected disk.
  • the push-pull method is further divided into two parts.
  • a quadrant photodetector is used.
  • the left and right light intensities of the four areas of the reflected light divided into four are equal, and if the beam is shifted left or right in the width direction of the track, The intensity of the reflected light from the track portion is weak, and the intensity of the reflected light with the force other than the track is strong. Therefore, the light intensity distribution in the four regions of the four-part divided reflected light By detecting the cloth, it becomes a non-right and left object, and it can be detected that it is displaced.
  • the method for detecting the focal position of the information light and the reference light is not particularly limited and can be appropriately selected according to the purpose.For example, by irradiating the information light and the reference light, Similar to the detection of the horizontal position of the servo light, the three-beam method, the push-pull method, the phase difference detection method, and the like can be used.
  • the information light or the reference light can be appropriately selected according to the purpose for which there is no particular limitation.
  • a light beam similar to that used during recording or a light beam weaker than that used during recording can be used.
  • the irradiation energy is, for example, 0.1 to: LO, 000 / zj / cm 2 force S preferred ⁇ , 1 to 1,000 j / cm 2 force S preferred ⁇ 10: LOO / z jZcm 2 is particularly preferred. If the irradiation energy is less than 0 .: JZcm 2 , the focal position may not be sufficiently detected, and if it exceeds 10,000 JZcm 2 , it may be recorded.
  • the interference image recording means detects the optical axis of the information light and the reference light by the horizontal position detection step, grasps the position based on the pattern, and the information light and the reference at a position other than the pattern. Control the horizontal position to move the light irradiation position !, irradiate the area with the information light and reference light at a predetermined position to form an interference image, and record the interference image on the photosensitive layer. It is means to do.
  • the control of the horizontal position is based on the position information detected by the horizontal position detection step, and the horizontal position of the optical axis of the information light and the reference light is recorded at a normal position. And the positions of the X axis and the Y axis of the optical axis of the reference light. Specifically, the control can be performed based on the horizontal position of the information light and the reference light detected in the horizontal position detecting step. For example, the optical axes of the information light and the reference light are moved by ⁇ a and Ab along the X axis and the Y axis from the reference position (a, b) to the position to be recorded.
  • the amount of movement is expressed as a distance and an angle
  • the distance is expressed as AL
  • the angle is expressed as an acute angle ⁇ with reference to the X or Y axis. It can be the amount of movement.
  • the AL By moving by this AL, it is possible to record in a recording area without a pattern formed of materials with different irregularities or refractive indexes.
  • FIG. 5 when the information light and the reference light are focused on the pattern, light is scattered and appropriate recording cannot be obtained as shown in FIG.
  • the pattern is irradiated with information light and reference light, and the reflected light is received, the reflected light is received, and the position where the signal intensity of the reflected light is maximized is moved in the horizontal direction.
  • the irradiation position of the information light and the reference light can be controlled.
  • a peak hold method can be used.
  • the method for controlling the horizontal position can be selected as appropriate according to the purpose for which there is no particular limitation, and examples thereof include the servo mechanism.
  • the horizontal position pattern is irradiated with either information light or reference light, the reflected light is received, and the position where the signal error of the reflected light is minimized is It is detected by moving in the direction and controlling the irradiation position of the information light and the reference light.
  • the means for recognizing the minimum value of the signal error can be appropriately selected according to the purpose for which there is no particular limitation, and examples thereof include a peak hold method.
  • the method for controlling the horizontal position can be selected as appropriate according to the purpose for which there is no particular limitation, and examples thereof include the servo mechanism.
  • the recording of the interference image is performed by irradiating the recording layer for recording information using holography with coherent information light and reference light, and the information light and the reference light. (Interference fringes) is formed, and the interference image is recorded on the recording layer.
  • the means for recording the interference image include a means for recording interference fringes having brightness and darkness in the recording layer as a difference in refractive index.
  • the recording layer also has a photosensitive material force such as a photopolymer, and the bright part of the interference fringes has a refractive index increased due to polymerization reaction of the photosensitive material by light irradiation, and the dark part is refracted without reacting. Since the index does not change, a difference in refractive index will occur.
  • the method of irradiating the information light and the reference light can be appropriately selected according to the purpose for which there is no particular limitation.
  • the reference light is formed at a certain angle with respect to the irradiation direction of the information light.
  • the recording layer may be irradiated with the information light and the reference light so that the optical axis of the information light and the optical axis of the reference light are coaxial.
  • collinear recording is preferred, in which high-multiplex recording is possible and the optical axis of the information light and the optical axis of the reference light are coaxial.
  • the information light and the reference light use a light source that oscillates a coherent laser beam.
  • the light source include a solid-state laser oscillator, a semiconductor laser oscillator, and a liquid Examples thereof include a body laser beam oscillator and a gas laser beam oscillator. Among these, a gas laser optical oscillator and a semiconductor laser optical oscillator are preferable.
  • the laser beam is not particularly limited and can be appropriately selected according to the purpose.
  • a laser beam having a wavelength of 360 to 850 nm and having one or more wavelength forces is used.
  • This wavelength is preferably 380 to 800 mn force, more preferably 400 to 750 mn force, more preferably, the center of the visible region is most easily visible, and 500 to 600 nm force is most preferable!
  • the wavelength is less than 360 nm, a clear interference image may not be obtained, and if it exceeds 850 ⁇ m, the interference fringe may become fine and a photosensitive material corresponding thereto may not be obtained.
  • the irradiation energy of the laser beam is not particularly limited and can be appropriately selected according to the purpose.
  • 0.1 to: LO, 000 jZcm 2 force is preferable, and 1 to 1,000 jZcm 2 force is more preferable.
  • 10 ⁇ : LOO jZcm 2 is particularly preferable. If the irradiation energy is less than 0.1 jZcm 2 , recording may not be performed, and if it exceeds 10,000 jZcm 2 , recording may occur.
  • Examples of the other means include an interference image fixing means.
  • the interference image fixing unit is a unit that irradiates and fixes the interference image recorded on the recording layer by the interference image recording unit.
  • the fixing light is irradiated to the recorded interference image area without excess or deficiency, so that the interference image can be fixed efficiently, and the fixing improves the storage stability and enables reproduction. It is possible to obtain an optical recording medium that does not cause problems such as noise.
  • the irradiation region of the fixing light can be appropriately selected according to the purpose.
  • the same region cover as the recording target portion by the information light and the reference light at an arbitrary position of the recording layer, the recording It is preferable that the region is wider than the outer extension of the target portion and extends from the extension to at least 1 m outside.
  • the fixing light is irradiated to an area exceeding 1 ⁇ m from the outside of the recording target portion, the adjacent recording area is also irradiated, and excessive illumination is performed. It becomes inefficient and becomes inefficient.
  • the fixing light irradiation time is not particularly limited, and can be appropriately selected according to the purpose.
  • Ins ⁇ : LOOms is preferable at any position of the recording layer. More preferred.
  • the irradiation time is less than Ins, fixing may be insufficient, and if it exceeds 100 ms, irradiation with excessive energy occurs.
  • Such fixing light irradiation is preferably performed within 28 hours after the recording of the interference image. If the fixing light irradiation exceeds 28 hours after the recording, the signal quality of the already recorded information may deteriorate.
  • the direction of irradiation of the fixing light is not particularly limited and can be appropriately selected according to the purpose.
  • the irradiation angle is preferably 0 to 60 ° with respect to the layer surface of the recording layer, and more preferably 0 to 40 °. If the irradiation angle force is an angle other than the above, fixing may be inefficient.
  • the wavelength of the fixing light is not particularly limited and can be appropriately selected according to the purpose.
  • the wavelength of the fixing light is preferably 350 to 850 nm and preferably 400 to 600 nm at an arbitrary position of the recording layer. Better than power! / ⁇ .
  • the material may be decomposed, and if it exceeds 850 nm, the temperature may increase and the material may deteriorate.
  • the light source of the fixing light can be appropriately selected according to the purpose. For example, the same light source as the information light and the reference light is used, and it is not necessary to newly provide another light source. This is preferable.
  • a light source similar to the information light and the reference light can be used. By using the same light source, the recording area of the interference image and the irradiation area of the fixing light can be easily matched, and the fixing light can be irradiated efficiently.
  • the irradiation amount of the fixing light is not particularly limited and can be appropriately selected according to the purpose.For example, it is preferably 0.001 to 100 mjZcm 2 at an arbitrary position of the recording layer. 01: and more preferably L0mj / cm 2.
  • the fixing light irradiation method is not particularly limited and may be appropriately selected depending on the purpose. For example, it is preferable to irradiate light emitted from the same light source as the information light and the reference light at an arbitrary position of the recording layer. In some cases, light emitted from different light sources may be irradiated.
  • An optical recording medium of the present invention is recorded by the optical recording method of the present invention, and includes a recording layer for recording information using at least holography on a support, and at least track information and address An optical recording medium having a pattern having information and having an interference image recorded on a recording layer by the fixing light fixed thereon.
  • the optical recording medium of the present invention is either a transmission type or a reflection type, which may be a volume hologram that records a large amount of information such as a relatively thin planar hologram that records two-dimensional information, such as a three-dimensional image. There may be. Any hologram recording method may be used. For example, an amplitude hologram, a phase hologram, a blazed hologram, a complex amplitude hologram, or the like may be used.
  • a reflective optical recording medium used in the collinear recording method is preferable.
  • the optical recording medium is an optical recording medium having the recording layer, a first substrate, and a second substrate, and having other layers appropriately selected as necessary.
  • the pattern has at least track information and address information, and the details of the formation method, formation position, characteristics, etc. are as described in the optical recording method.
  • information can be recorded using holography, and when irradiated with electromagnetic waves of a predetermined wavelength, optical characteristics such as an extinction coefficient and a refractive index change according to the intensity. Is used.
  • the material of the recording layer can be appropriately selected according to the purpose without any particular limitation.
  • a photopolymer that undergoes a polymerization reaction upon irradiation with light and becomes a polymer (2) photopolymer Photorefractive material that exhibits a fractive effect (refractive index modulation is caused by light charge distribution due to light irradiation), (3) photochromism in which molecular isomerism occurs by light irradiation and the refractive index is modulated.
  • inorganic materials such as lithium niobate and barium titanate, and (5) chalcogen materials.
  • the photopolymer of (1) can be appropriately selected depending on the purpose for which there is no particular limitation. For example, it contains a monomer and a photoinitiator, and further, if necessary, a sensitizer. And other components such as oligomers.
  • Examples of the photopolymer include, for example, "Photopolymer Handbook” (Industry Research Committee, 1 989), “Photopolymer Technology” (Nikkan Kogyo Shimbun, 1989), SPIE Proceedings Vol. 3010 p354-372 (1997) and SPIE Proceedings Vol. 3291 p89-103 (1998) can be used.
  • Examples of the method of changing the optical characteristics by irradiating the photopolymer with recording light include a method using diffusion of a low molecular component.
  • a component that diffuses in the opposite direction to the polymerization component may be added, or a compound having an acid cleavage structure may be added separately in addition to the polymer.
  • the recording layer is formed using a photopolymer containing the low molecular component
  • a structure capable of holding a liquid in the recording layer may be required.
  • the compound having an acid cleavage structure is added, the volume change may be suppressed by compensating for the expansion caused by the cleavage and the shrinkage caused by the polymerization of the monomer.
  • the monomer can be appropriately selected according to the purpose without any particular limitation.
  • a radical polymerization type monomer having an unsaturated bond such as an acryl group or a methacryl group, an epoxy ring oxetane.
  • examples thereof include a cationic polymerization type monomer having an ether structure such as a ring.
  • These monomers may be monofunctional or polyfunctional.
  • what utilized the photocrosslinking reaction may be used.
  • radical polymerization type monomers include, but are not limited to, attaroylmorpholine, phenoxychetyl acrylate, isobornyl acrylate, 2-hydroxypropyl acrylate, 2-ethyl hexyl acrylate, 1,6 hexanediol diatalate , Tripropylene glycol diatalate, neopentyl glycol PO-modified diatalylate, 1,9-nonanediol diatalylate, hydroxypivalate neopentylglycol diatalate, EO-modified bisphenol A diatalylate, polyethylene glycol diatalate , Pentaerythritol Triatalylate, Pentaerythritol Tetratalylate, Pentaerythritol Hexatalylate, EO-modified Glycerol Tritalylate, Trimethylolpropantria Relate, EO-modified tri
  • Examples of the cationic polymerization type monomer include bisphenol A epoxy resin, phenol novolac epoxy resin, glycerol triglycidyl ether, 1,6 hexane glycidyl ether, butyltrimethoxysilane, and 4-butylphenol trimethoxysilane. , ⁇ -methacryloxypropyltriethoxysilane, compounds represented by the following structural formulas ( ⁇ ) to ( ⁇ ), and the like.
  • These monomers may be used alone or in combination of two or more.
  • Examples of the photoinitiator include materials that cause radical polymerization, cationic polymerization, crosslinking reaction, and the like by light irradiation as long as they are sensitive to recording light.
  • photoinitiator examples include 2,2′-bis (o-clonal ring) 4,4 ′, 5,5, -tetraphenyl-1,1,1, biimidazole, 2,4,6 Tris (trichloromethyl) 1, 3, 5 triazine, 2, 4 Bis (trichloromethyl) 6— (p-methoxyphenol) 1, 3, 5-triazine, diphenyl-tetrahydrotetrafluor Roborate, diphenol rhododoxy hexafluorophosphate, 4, 4'-tert-butyl diphenyl rhododonium tetrafluoroborate, 4-jetylaminophenol benzene diazo-hexoxaflurophosphate, benzoin, 2 —Hydroxy-2-methyl-1-phenolpropane-2-one Benzophenone, thixanthone, 2,4,6-trimethylbenzoyldiphenylsylphosphine oxide, triphenyl
  • the photopolymer is obtained by stirring and mixing the monomer, the photoinitiator, and, if necessary, other components and reacting them. If the obtained photopolymer has a sufficiently low viscosity, a recording layer can be formed by casting. On the other hand, in the case of a high-viscosity photopolymer that cannot be cast, the photopolymer is placed on the second substrate using a dispenser, and the second substrate A is pressed onto the photopolymer so as to cover it, and spread over the entire surface. Thus, a recording layer can be formed.
  • the photorefractive material (2) can be appropriately selected depending on the purpose without particular limitation as long as it exhibits a photorefractive effect.
  • a charge generating material and a charge transporting material can be selected. And other components as necessary.
  • the charge generating material can be appropriately selected according to the purpose without any particular limitation.
  • phthalocyanine dye Z pigment such as metal phthalocyanine, metal-free phthalocyanine, or derivatives thereof; naphthalocyanine dye Z Pigments; monoazo, disazo, trisazo Azo dyes such as z pigments; perylene dyes Z pigments; indigo dyes Z pigments; quinacridone dyes Z pigments; polycyclic quinone dyes such as anthraquinone and anthanthrone Z pigments; cyanine dyes Z pigments; TTF— Electron acceptor and electron donor as represented by TCNQ; charge transfer complex that can also be used as power; azurenium salt; fullerene represented by C and C
  • methanofullerene which is a derivative thereof. These may be used alone or in combination of two or more.
  • the charge transport material is a material that transports holes or electrons, and may be a low molecular compound or a high molecular compound.
  • the charge transport material is not particularly limited and can be appropriately selected according to the purpose.
  • Nitrogen-containing cyclic compounds such as, or derivatives thereof; hydrazone compounds; triphenylamines; triphenylmethanes; butadienes; stilbenes; quinone compounds such as anthraquinone diphenoquinone, or derivatives thereof; C and C Fullerenes and derivatives thereof;
  • ⁇ - conjugated polymers or oligomers such as polyacetylene, polypyrrole, polythiophene, and polyarine; ⁇ - conjugated polymers or oligomers such as polysilane and polygerman; polycyclic aromatic compounds such as anthracene, pyrene, phenanthrene, and coronene, etc. Is mentioned. These may be used alone or in combination of two or more.
  • a coating film is formed using a coating solution obtained by dissolving or dispersing the photorefractive material in a solvent, and this coating is performed.
  • the recording layer can be formed by removing the solvent from the film.
  • the recording layer can be formed by forming a coating film using the photorefractive material that has been heated and fluidized, and rapidly cooling the coating film.
  • the photochromic material (3) is not particularly limited as long as it is a material that causes a photochromic reaction, and can be appropriately selected depending on the purpose.
  • cis-trans isomerism is caused by light irradiation.
  • Particularly preferred are azobenzene derivatives, stilbene derivatives, spiropyran derivatives, and spirooxazine derivatives that undergo structural changes between ring-opening and ring-closing by light irradiation.
  • the chalcogen material (5) includes, for example, a chalcogenide glass containing a chalcogen element, and metal particles having a metal force that are dispersed in the chalcogenide glass and can be diffused into the chalcogenide glass by light irradiation. Materials, etc. included.
  • the chalcogenide glass is not particularly limited as long as it has a non-acidic amorphous material strength containing a chalcogen element such as S, Te or Se, and can dope metal particles.
  • Examples of the amorphous material containing the chalcogen element include Ge—S glass, As—S glass, As—Se glass, As—Se—Ce glass, and the like. I prefer glass.
  • Ge-S glass is used as the chalcogenide glass, the composition ratio of Ge and S constituting the glass can be arbitrarily changed according to the wavelength of light to be irradiated.
  • Id glass is preferred.
  • the metal particles are not particularly limited as long as they have the property of being light-doped into chalcogenide glass by light irradiation, and can be appropriately selected according to the purpose.
  • Ag, Au, or Cu has a characteristic that it is more likely to cause light doping, and Ag is particularly preferable because it significantly causes light doping.
  • the content of the metal particles dispersed in the chalcogenide glass is preferably 0.1 to 2% by volume based on the total volume of the recording layer, and more preferably 0.1 to 1.0% by volume. If the content of the metal particles is less than 0.1% by volume, the change in transmittance due to light doping may be insufficient, and the recording accuracy may decrease. If the content exceeds 2% by volume, the recording material Therefore, it may be difficult to sufficiently generate optical dope.
  • the recording layer can be formed according to a known method depending on the material.
  • a vapor deposition method, a wet film formation method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, a molecular stacking method It can be suitably formed by an LB method, a printing method, a transfer method, or the like.
  • the vapor deposition method and the wet film forming method are preferable.
  • the vapor deposition method is not particularly limited and may be appropriately selected from known ones according to the purpose. Examples thereof include vacuum vapor deposition, resistance heating vapor deposition, chemical vapor deposition, and physical vapor deposition. Can be mentioned.
  • the chemical vapor deposition method include a plasma CVD method, a laser C VD method, a thermal CVD method, and a gas source CVD method.
  • Formation of the recording layer by the wet film forming method is preferably performed by using (applying and drying) a solution (coating liquid) in which the material of the recording layer is dissolved or dispersed in a solvent.
  • a solution coating liquid
  • the wet film forming method is not particularly limited, and a known medium force can be appropriately selected according to the purpose. For example, an ink jet method, a spin coat method, a kneader coat method, a bar coat method, a blade coat method Casting method, dipping method, curtain coating method and the like.
  • the thickness of the recording layer in particular limitation put out be appropriately selected depending on the Nag purpose, 1 to 1, OOO / zm force preferably, 100 to 700 111 Ca ⁇ Yori preferably 1 ⁇ 0
  • the thickness of the recording layer is within the preferable numerical range, a sufficient SZN ratio can be obtained even when shift multiplexing of 10 to 300 is performed, and when the thickness is within the more preferable numerical range, this is remarkable. It is advantageous in some respects.
  • the shape, structure, size, etc. of the first substrate can be appropriately selected according to the purpose for which there is no particular restriction.
  • Examples of the shape include a disk shape, a card shape, etc. It is necessary to select a material that can ensure the mechanical strength of the optical recording medium.
  • it when light used for recording and reproduction is incident through the substrate, it must be sufficiently transparent in the wavelength region of the light used.
  • the material for the first substrate glass, ceramics, resin, etc. are usually used. From the viewpoint of formability and cost, resin is particularly preferable.
  • the resin examples include polycarbonate resin, acrylic resin, epoxy resin, polystyrene resin, acrylonitrile styrene copolymer, polyethylene resin, polypropylene resin, silicone resin, fluorine resin, ABS resin. Fat, urethane slag, etc. are mentioned.
  • polycarbonate resin and acrylic resin are particularly preferable from the viewpoints of moldability, optical properties, and cost.
  • the first substrate may be appropriately synthesized or a commercially available product may be used.
  • the thickness of the first substrate is not particularly limited and may be appropriately selected depending on the purpose, and is preferably 0.1 to 5 mm, more preferably 0.3 to 2 mm. If the thickness of the substrate is less than 0.1 mm, it may not be possible to suppress the distortion of the shape during storage of the disc. If the thickness exceeds 5 mm, the weight of the entire disc increases and an excessive load is applied to the drive motor. There are times when I can help.
  • the second substrate may be the same as or different from the first substrate in shape, structure, size, material and thickness. Among these, the shape and size are preferably the same as those of the first substrate.
  • the second substrate is provided with address servo areas as a plurality of positioning areas extending linearly in the radial direction at predetermined angular intervals, and fan-shaped sections between adjacent address servo areas become data areas.
  • the information for performing focus servo and tracking servo by the sampled servo method and the address information are embossed (servo pit) formed by injection molding using a stamper as described above. ) It is recorded by pattern etc. (preformat).
  • the focus servo can be performed using the reflection surface of the reflection film.
  • As information for performing the tracking servo for example, a wobble pit in which a certain periodicity is given to a track formed in the circumferential direction of the optical recording medium can be used.
  • These embossed pit patterns can be used as a pattern having at least track information spare address information.
  • the reflective film is formed on the servo pit pattern surface of the second substrate.
  • the same material as the reflective film used for forming the pattern can be used.
  • the other layers are not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include a gap layer and a selective reflection layer. [0086] —Gap layer one
  • the gap layer is provided between the recording layer and the reflective film as necessary, and is formed for the purpose of smoothing the second substrate surface. It is also effective for adjusting the size of the hologram generated in the recording layer. That is, since the recording layer needs to form an interference region of the recording reference light and the information light to a certain size, it is effective to provide a gap between the recording layer and the servo pit pattern. .
  • the gap layer can be formed, for example, by applying a material such as an ultraviolet curable resin by spin coating or the like to harden the servo pit pattern.
  • the thickness of the gap layer can be appropriately selected according to the purpose without particular limitation, and is preferably 1 to 200 / zm.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the optical recording medium 23 in the first embodiment of the present invention.
  • FIG. 6 is a perspective view of a part of the optical recording medium 23 cut out.
  • a servo pit pattern 3 is formed on a polycarbonate resin substrate or glass substrate 1
  • a reflective film 2 is provided on the servo pit pattern 3 by coating with aluminum, gold, platinum or the like. It has been.
  • the force that the convex servo pit pattern 3 is formed at regular intervals in the radial direction of the second substrate 1
  • the part where the servo pit pattern 3 is present and the part where the servo pit pattern 3 is not formed are formed periodically. Also good.
  • the maximum height of this servo pit is 1750 A (175 nm), which is sufficiently smaller than the thickness of the substrate and other layers.
  • the gap layer when forming the gap layer, is made of a material such as an ultraviolet curable resin on the reflective film 2 of the second substrate 1. It can be applied by spin coating or the like.
  • the gap layer is effective for protecting the reflective film 2 and adjusting the size of the hologram generated in the recording layer 4.
  • the recording reference light and information light interference areas need to be formed in a certain size in the recording layer 4, so it is useful to provide a gap between the recording layer 4 and the servo pit pattern 3. It is effective.
  • a recording layer is laminated on the gap layer, and an optical recording medium 23 is formed by sandwiching the recording layer 4 between the first substrate 5 (polycarbonate resin substrate or glass substrate) and the second substrate 1.
  • the thickness of the second substrate 1 is 0.6 mm
  • the recording layer 4 is 0.6 mm
  • the first substrate 5 is 0.6 mm.
  • the thickness is about 1.8 mm.
  • the thickness of the gap layer is preferably 100 / zm.
  • the information light and the reference light are applied to the optical recording medium 23 by the objective lens 12 so as to form a focal point on the reflection film 2.
  • the information light and the recording reference light emitted from the recording Z reproducing laser and generated by a spatial light modulator (SLM) pass through the polarizing element 16 to become linearly polarized light, and the half mirror 17 It passes through the 1Z4 wave plate 15 and becomes circularly polarized light.
  • the information light and the recording reference light pass through the objective lens 12, enter from the light incident / exit surface A of the optical recording medium 23, pass through the first substrate 5 and the recording layer 4, and are reflected by the reflective film 2. Then, the light again passes through the recording layer 4 and the first substrate 5 and is emitted from the incident / exit surface A.
  • the returned return light passes through the objective lens 12 and servo information is detected by a servo information detector (not shown).
  • the detected servo information is used for focus servo, tracking servo, slide servo, and the like. Since the information light and the reference light are sufficiently weak laser beams for the hologram material constituting the recording layer 4, the information light and the reference light are not exposed to light when irradiated with the information light and the reference light. Therefore, the recording layer 4 is set so as not to be affected even if the information light and the reference light are irregularly reflected by the reflection film 2.
  • the servo pit pattern is arranged so that the optical axes of the information beam and the reference beam are not recorded on the recording layer above the servo pit pattern. After moving a certain amount of movement AL from the position, the information light and the reference light having a recording intensity are applied to the optical recording medium 23 so as to generate an interference image on the photosensitive layer. Irradiated.
  • the information light and the recording reference light enter from the incident / exit surface A and interfere with each other in the recording layer 4 to generate an interference image there. Thereafter, the information light and the recording reference light pass through the recording layer 4 and are reflected by the reflective film 2 to become return light.
  • the reflection film is a flat portion without projections like a servo pit pattern, and is reflected without any irregular reflection to return light, and normal recording can be obtained.
  • the recording area is irradiated with fixing light within at least 28 hours, and the interference image recording is fixed.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the optical recording medium 24 in the second embodiment of the present invention.
  • FIG. 2 is a perspective view in which a part of the optical recording medium 24 is cut.
  • the optical recording medium 24 has the same external shape as the optical recording medium 23 shown in FIG. 2, but the optical recording medium 23 has a servo pit pattern formed on the substrate.
  • the recording medium 24 has a pattern layer 9 formed between the second substrate 1 and the recording layer 4.
  • the pattern layer 9 is a layer in which portions having different refractive indexes are periodically formed.
  • the optical recording medium 24 is formed by alternately forming a high refractive index portion and a low refractive index portion at intervals of 2 m in the radial direction, the thickness of the pattern layer 9 is, and the refractive index of the high refractive index portion is 1.
  • the refractive index of the low refractive index portion is 1.5.
  • a reflective film 2 is formed on the second substrate surface.
  • the thickness of the second substrate 1 is 1. Omm, the recording layer 4 is 0.6 mm, the pattern layer 9 is 1 ⁇ m, and the first substrate 5 is 0.4 mm.
  • the total thickness is about 2. Omm.
  • the optical recording medium 24 having such a structure is irradiated with the information light and the reference light as in the first embodiment, and a tracking servo is performed.
  • An interference image is formed at an appropriate position on the recording layer 4 and recorded.
  • the optical reproduction method of the present invention reproduces information by irradiating the interference light recorded on the recording layer 4 with the reference light by the optical recording method of the present invention.
  • the objective lens 12 is finely adjusted, and the reference light records the interference image on the recording layer 4.
  • the reference light records the interference image on the recording layer 4.
  • the information light provided with the two-dimensional intensity distribution and the information light and the reference light having a substantially constant intensity are photosensitive.
  • Information is recorded by superimposing inside the recording layer and generating an optical characteristic distribution inside the recording layer using an interference image formed by them.
  • the recording layer is irradiated with only the reference light in the same arrangement as in recording, and the reproduction has an intensity distribution corresponding to the optical characteristic distribution formed inside the recording layer. Light is emitted from the recording layer as light.
  • optical recording method and optical reproducing method of the present invention are carried out using the optical recording / reproducing apparatus of the present invention described below.
  • optical recording / reproducing apparatus used in the optical recording method and the optical reproducing method of the present invention will be described with reference to FIG.
  • FIG. 8 is an overall configuration diagram of an optical recording / reproducing apparatus according to an embodiment of the present invention.
  • the optical recording / reproducing apparatus includes an optical recording apparatus and an optical reproducing apparatus.
  • the optical recording / reproducing apparatus 100 controls a spindle 81 to which an optical recording medium is attached, a spindle motor 82 for rotating the spindle 81, and the spindle motor 82 so as to keep the rotational speed of the optical recording medium at a predetermined value. It has a spindle servo circuit 83!
  • the optical recording / reproducing apparatus 100 records information by irradiating the optical recording medium with information light and a recording reference light, and irradiates the optical recording medium with the reproduction reference light, thereby reproducing the reproduction light.
  • a drive device 84 that enables the pickup 31 to move in the radial direction of the optical recording medium. ing.
  • the optical recording / reproducing apparatus 100 includes a detection circuit 85 for detecting a focus error signal FE, a tracking error signal TE, and a reproduction signal RF from the output signal of the pickup 31, and a focus error detected by the detection circuit 85.
  • the actuator in the pickup 31 Based on the signal FE, the actuator in the pickup 31 is driven to move the objective lens (not shown) in the thickness direction of the optical recording medium to perform focus servo.
  • the actuator in the pickup 31 is driven to move the objective lens in the radial direction of the optical recording medium to perform tracking servo, the tracking servo circuit 87, the tracking error signal TE, and a controller described later. Control the drive unit 84 based on the And a slide servo circuit 88 for performing a slide servo for moving radially Direction of the recording medium.
  • the optical recording / reproducing apparatus 100 further decodes output data of a later-described CMOS or CCD array in the pickup 31 to reproduce or detect data recorded in the data area of the optical recording medium.
  • a signal processing circuit 89 that reproduces a basic clock and discriminates an address from a reproduction signal RF from the circuit 85, a controller 90 that controls the entire optical recording / reproducing apparatus 100, and various types of controllers 90 And an operation unit 91 for giving instructions.
  • the controller 90 inputs the basic clock and address information output from the signal processing circuit 89, and controls the pickup 31, spindle servo circuit 83, slide servo circuit 88, and the like.
  • the spindle servo circuit 83 inputs the basic clock output from the signal processing circuit 89.
  • the controller 90 has a CPU (Central Processing Unit), ROM (Read Only Memory), and RAM (Random Access Memory), and the CPU executes a program stored in the ROM using the RAM as a work area. The function of the controller 90 is realized.
  • the optical recording / reproducing apparatus used in the optical recording method and the optical reproducing method of the present invention can perform recording or reproduction, focus and tracking control using information light and reference light. High efficiency and high density recording can be realized without being affected by the deviation of the optical axes of the plurality of laser beams caused by errors in optical recording and optical reproducing apparatus. In addition, an excellent optical recording medium in which the layer structure itself of the optical recording medium itself is simple can be obtained.
  • an optical recording medium can be produced.
  • an optical recording medium comprising a first substrate, a second substrate on which a servo pit pattern is formed, and a recording layer can be produced.
  • a general polycarbonate resin substrate used for DVD + RW with a diameter of 120 mm and a plate thickness of 0.6 mm can be used.
  • a concave address is formed by a stamper with a depth of 100 nm and a diameter of 1, OOOnm, with a pitch in the circumferential direction and a pitch of 1.6 m in the radial direction. Is formed.
  • a reflective film is formed on the servo pit pattern surface of the second substrate.
  • Aluminum (A1) was used as the reflective film material.
  • a 100-nm-thick A1 reflective film is formed by DC magnetron sputtering.
  • a polycarbonate film having a thickness of 100 m is used as a gap layer on the reflective film, and can be adhered with an ultraviolet curable resin.
  • a photopolymer coating solution having the following composition can be prepared.
  • the obtained photopolymer coating solution was placed on the second substrate using a dispenser, and the first substrate made of polycarbonate resin having a diameter of 12 cm and a thickness of 0.6 mm was pressed onto the photopolymer. The end of the disk and the first substrate can be bonded together with an adhesive.
  • FIG. 1 is a schematic cross-sectional view showing a form similar to the present embodiment.
  • Information light tracking servo is performed, the address of the optical axis of the information light is detected, and the optical axis of the information light is moved by a predetermined AL so that the position to be recorded is based on the address. For the detection of the address, a tracking servo can be performed after a focus servo is performed as necessary, and the focus position of the information light is adjusted.
  • the movement amount AL shown in FIG. 3 is obtained when the X axis and the Y axis are connected to the recording layer and the horizontal layer surface, for example, from the X axis to the position (2 m, As in 3 m), it can be grasped as a numerical value. Since it cannot be recorded on the photosensitive layer on the address, the movement amount AL moves to a predetermined recording area.
  • the movement amount AL is pre-formed and recorded in a recording area other than the address part. It is the amount that moves.
  • the recording area other than the address part is the uneven part when the focus of the information light and the reference light is matched with the uneven part pattern on which the address part is formed. This is because light scattering occurs in minutes, and an appropriate interference image is not generated, resulting in a decrease in recording quality.
  • a predetermined movement amount AL (for example, 2 / zm from the X-axis when the information light and the reference light are irradiated) Confirm that it has moved 3 ⁇ m from the Y axis, and irradiate the recording layer.
  • the information layer and the recording reference beam are irradiated onto the recording layer 4 with an irradiation energy of about 50 / zjZcm 2 for lOOnsec, and an interference image is obtained. And the interference image can be recorded on the recording layer.
  • the recording reproduction quality is evaluated by the optical recording / reproducing apparatus 100 shown in FIG.
  • the reference light is irradiated onto the optical recording medium, diffracted light is generated from the interference image, read by the detector 14 shown in FIG. 9, the original information is reproduced, and there are few errors (number of Z frames).
  • the optical recording method of the present invention arises from errors in optical recording and optical reproducing apparatus, etc., in which the efficiency of recording / reproducing is high when performing recording or reproducing, focusing and tracking control using laser light.
  • This is an excellent recording method that is not affected by the deviation of the optical axes of the plurality of laser beams, and the layer structure of the optical recording medium itself is simple, and is suitable for a hologram type optical recording method capable of high-density image recording. Used.
  • the optical recording medium of the present invention uses the laser beam to perform recording or reproduction, focusing and tracking control, and the plurality of the plurality of optical recording media that are caused by errors in optical recording and an optical reproducing apparatus with high recording and reproduction efficiency. It is widely used as an excellent optical recording medium that is not affected by the deviation of the optical axis of laser light and has a simple layer structure of the optical recording medium itself.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Holo Graphy (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

 本発明は、レーザ光を用いて、記録又は再生、フォーカスやトラッキング制御を行う際に、記録再生の効率が高く、光記録及び光再生装置の誤差などから生ずる該複数のレーザ光の光軸のずれによる影響を受けず、光記録媒体自体の層構成が簡易となる優れた光記録方法、光記録装置及び光記録媒体を提供することを目的とする。  このため、ホログラフィを利用して情報を記録する記録層を備え、かつ少なくともトラック情報及びアドレス情報を有するパターンを備えた光記録媒体に対し、情報光及び参照光のいずれかを照射し、反射光により前記パターンの位置を検出するパターン位置検出ステップと、検出されたパターン位置情報に基づいて、該情報光及び該参照光の光軸の位置を前記パターン以外の位置に移動し、前記情報光及び前記参照光を前記記録層に照射し、干渉像を形成し、該干渉像を前記記録層に記録する干渉像記録ステップとを含む光記録方法などを提供する。

Description

明 細 書
光記録方法、光記録装置、光記録媒体及び光記録再生方法
技術分野
[0001] 本発明は、ホログラフィを利用して情報が記録される光記録方法、光記録装置及び 光記録媒体に関し、特にフォーカス制御やトラッキング制御のためのサーボピットパ ターンを有する光記録媒体に対して、記録に用いる情報光及び参照光を照射し、反 射光を検出し、フォーカス制御やトラッキング制御を行うことができる光記録方法、光 記録装置及び光記録媒体に関する。
背景技術
[0002] ホログラフィを利用して光記録媒体に情報を記録する光記録方法は、一般に、ィメ ージ情報を持った情報光 (物体光)と参照光とを前記光記録媒体の内部で干渉させ 、その際に生成される干渉縞を前記光記録媒体に書き込むことによって行われる。前 記光記録方法として、例えば、前記情報光の光軸と参照光の光軸とが同軸になるよう にして前記情報光及び参照光が照射されるコリニア方式などが挙げられる。該コリニ ァ方式においては、前記情報光及び参照光により前記干渉縞が生成され、イメージ 情報などが前記記録層に記録される。記録されたイメージ情報などの再生は、前記 光記録媒体に前記参照光と同じ光を、記録時と同じ方向から照射することにより行わ れ、該光照射により前記干渉縞から回折光が生成され、該回折光を受光することによ り前記情報が再生される。
[0003] このようなイメージ情報などの記録又は再生時には、光記録媒体内の記録層などの 層間距離のばらつきや光記録及び光再生装置の誤差などを調整し、該光記録媒体 の正常な位置に前記情報などを記録するためのフォーカス制御やトラッキング制御 など、光線照射につ!ヽての焦点位置の制御が行われる。
これらの焦点位置の制御方法として、例えば、前記フォーカス制御やトラッキング制 御などを行うためのサーボ用光を前記光記録媒体に照射し、その反射光によりフォ 一カス情報やトラック情報などの光照射のための位置情報を検出するサンプルドサ ーボ方式などがある。この焦点位置の制御により前記情報光及び参照光が光記録媒 体の正常な位置に照射され、記録及び再生が行われる (特許文献 1〜3参照)。
[0004] 前記サンプルドサーボ方式の具体例として、例えば、図 9に示す光記録装置などが ある。前記光記録装置では、サーボ用光に赤色光を用い、記録に用いる情報光及び 参照光には緑色などのサーボ用光とは異なる波長のレーザ光が用いられる。
前記サーボ用光はダイクロイツクミラー 13で反射させ、対物レンズ 12を通過させ、 反射膜 2上で焦点を結ぶように光記録媒体 21に対して照射する。このダイクロイツクミ ラー 13は緑色や青色の波長の光を透過し、赤色の波長の光を反射させるようになつ ている。光記録媒体 21の光の入出射面 Aから入射したサーボ用光は、反射膜 2で反 射され、再度、入出射面 Aから出射する。出射した戻り光は、対物レンズ 12を通過し 、ダイクロイツクミラー 13で反射し、サーボ情報検出器 (不図示)でサーボ情報が検出 される。検出されたサーボ情報は、フォーカスサーボ、トラッキングサーボ、スライドサ ーボ等に用いられる。なお、記録層 4は、赤色の光では感光しないようになっている。
[0005] 前記情報光及び参照光は、前記サーボにより適正な位置に制御された前記情報 光及び参照光を、偏光素子 16、ハーフミラー 17、ダイクロイツクミラー 13に透過させ 、対物レンズ 12によって記録層 4内で干渉像を生成するように光記録媒体 21に照射 する。前記情報光及び記録用参照光は入出射面 Aから入射すると、記録層 4で干渉 し合って干渉像をそこに生成した後、記録層 4を通過し、フィルタ層 6に入射するが、 該フィルタ層 6の底面までの間に反射されて戻り光となり、反射膜 2までは到達しない 。フィルタ層 6はコレステリック液晶層が 4層積層され、赤色光のみを透過するように設 計されている。
しかし、前記サンプルドサーボ方式を用いた光記録装置の場合、前記サーボ用光 に対するフォーカス情報やトラック情報などの光照射の位置情報のみが検出され、そ の結果に基づ 、て、前記情報光及び参照光の記録層への照射位置が制御されて 、 る。そのため、前記サーボ用光の光軸と、前記情報光及び参照光の光軸に誤差があ ると、記録に用いた光記録装置と、再生に用いる光記録媒装置が異なるものを使用 した場合には、的確な再生が得られないという問題がある。的確な再生を得るため、 前記サンプルドサーボ方式をサーボ用光だけでなぐ前記情報光及び参照光につ いても実施することにより、改善することも考えられる。しかし、前記サーボ用光と、前 記情報光及び参照光の双方にサンプルドサーボ方式を採用することは、記録再生の 効率が低下し、記録再生の高速ィ匕に向力ないという問題がある。また、複数の異なる レーザ光を、異なったルートで照射するため、各レーザ光に対応した層、例えば、波 長選択反射層などを光記録媒体に積層する必要もあり、層構成が複雑化するという 問題もある。
[0006] したがって、ホログラフィを利用して記録する光記録媒体に対して、レーザ光を用い て、記録又は再生、フォーカスやトラッキング制御を行う際に、記録再生の効率が高く 、光記録及び光再生装置の誤差などから生ずる該複数のレーザ光の光軸のずれに よる影響を受けず、光記録媒体自体の層構成が簡易となる優れた光記録方法、光記 録装置及び光記録媒体は未だ実現されておらず、その提供が望まれて!/、るのが現 状である。
[0007] 特許文献 1 :特開 2002— 123949号公報
特許文献 2:特開 2004 - 265472号公報
特許文献 3:特開 2003 - 228875号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、従来における前記問題を解決し、以下の目的を達成することを課題とす る。即ち、本発明は、レーザ光を用いて、記録又は再生、フォーカスやトラッキング制 御を行う際に、記録再生の効率が高ぐ光記録及び光再生装置の誤差などから生ず る該複数のレーザ光の光軸のずれによる影響を受けず、光記録媒体自体の層構成 が簡易となる優れた光記録方法、光記録装置及び光記録媒体を提供することを目的 とする。
課題を解決するための手段
[0009] 前記課題を解決するための手段としては、以下の通りである。即ち、
< 1 > ホログラフィを利用して情報を記録する記録層を備え、かつ少なくともトラック 情報及びアドレス情報を有するパターンを備えた光記録媒体に対し、情報光及び参 照光少なくとものいずれかを照射し、反射光により前記パターンの位置を検出するパ ターン位置検出ステップと、検出されたパターン位置情報に基づいて、該情報光及 び該参照光の光軸の位置を前記パターン以外の位置に移動し、前記情報光及び前 記参照光を前記記録層に照射し、干渉像を形成し、該干渉像を前記記録層に記録 する干渉像記録ステップとを含むことを特徴とする光記録方法である。
< 2> 光記録媒体に対し、情報光及び参照光の少なくともいずれかを照射し、反 射光により該情報光及び該参照光の感光層の厚み方向の焦点位置を検出する焦点 位置検出ステップを含む前記 < 1 >に記載の光記録方法である。
< 3 > パターンが、光記録媒体における少なくとも 3箇所に形成された前記 < 1 > から < 2 >のいずれかに記載の光記録方法である。
<4> パターンが、凹凸パターン及び屈折率の異なる材料力 なるパターンの少 なくとも 、ずれかを含む前記 < 1 >から < 3 >の!、ずれかに記載の光記録方法であ る。
< 5 > パターンが、記録層に記録された前記 < 1 >から < 4 >のいずれかに記載 の光記録方法である。
< 6 > パターン位置検出ステップにおける水平位置の検出方法力 3ビーム法、 プッシュプル法及び位相差検出法の少なくとも 、ずれかである前記く 1 >から < 5 > の!、ずれかに記載の光記録方法である。
< 7> パターン位置検出ステップにおける水平位置の検出方法力 位置情報パタ ーンに情報光及び参照光のいずれかを照射し、反射光を受光し、該反射光の信号 強度が最大となる位置を検出する前記 < 1 >から < 6 >のいずれかに記載の光記録 方法である。
< 8 > パターン位置検出ステップにおける水平位置の検出方法力 位置情報パタ ーンに情報光及び参照光のいずれかを照射し、反射光を受光し、該反射光の信号 エラーが最小となる位置を検出する前記 < 1 >から < 7 >のいずれかに記載の光記 録方法である。
< 9 > 情報光及び参照光の照射が、該情報光の光軸と該参照光の光軸とが同軸 となるようにして行われる前記 < 1 >から < 8 >のいずれかに記載の光記録方法であ る。
< 10> 光記録媒体が、第一の基板と、記録層と、パターンと、第二の基板とをこ の順に有する前記 < 1 >から < 9 >のいずれかに記載の光記録方法である。
く 11 > パターン表面に反射膜を有する前記く 1 >からく 10>の 、ずれかに記 載の光記録方法である。
< 12> 反射膜が、金属反射膜である前記 < 11 >に記載の光記録方法である。 < 13 > 光記録媒体が反射型ホログラムである前記く 1 >からく 12 >のいずれか 記載の光記録方法である。
[0010] < 14> ホログラフィを利用して情報を記録する記録層を備え、かつ少なくともトラ ック情報及びアドレス情報を有するパターンを備えた光記録媒体に対し、情報光及 び参照光の少なくともいずれかを照射し、反射光により前記パターンの位置を検出す るパターン位置検出手段と、検出されたパターン位置情報に基づいて、該情報光及 び該参照光の光軸の位置を前記パターン以外の位置に移動し、前記情報光及び前 記参照光を前記記録層に照射し、干渉像を形成し、該干渉像を前記記録層に記録 する干渉像記録手段とを有することを特徴とする光記録装置である。
< 15 > 光記録媒体に対し、情報光及び参照光の少なくともいずれかを照射し、 反射光により該情報光及び該参照光の感光層の厚み方向の焦点位置を検出する焦 点位置検出手段を含む前記 < 14 >に記載の光記録装置である。
[0011] < 16 > 前記 < 1 >から < 13 >のいずれかに記載の光記録方法により記録された 光記録媒体である。
[0012] < 17> 前記 < 1 >から < 13 >のいずれかに記載の光記録方法により記録層に 形成された干渉像に参照光を照射して該干渉像に対応した記録情報を再生すること を特徴とする光記録再生方法である。
< 18 > 参照光が、光記録媒体の記録に用いられた参照光と同じ角度になるよう にして、参照光を干渉像に照射して記録情報を再生する前記 < 17>に記載の光記 録再生方法である。
発明の効果
[0013] 本発明によると、従来における諸問題を解決でき、本発明は、レーザ光を用いて、 記録又は再生、フォーカスやトラッキング制御を行う際に、記録再生の効率が高ぐ 光記録及び光再生装置の誤差などから生ずる該複数のレーザ光の光軸のずれによ る影響を受けず、光記録媒体自体の層構成が簡易となる優れた光記録方法、光記 録装置及び光記録媒体を提供することができる。
図面の簡単な説明
[0014] [図 1]図 1は、本発明のエンボスのパターンを有する光記録媒体の部分断面図である
[図 2]図 2は、本発明の屈折率の異なる材料によるパターン層を有する光記録媒体の 部分断面図である。
[図 3]図 3は、本発明の光記録媒体への光記録方法を示す部分断面図である。
[図 4]図 4は、本発明の光記録媒体のパターンを部分的に示した斜視図である。
[図 5]図 5は、本発明の光記録方法における情報光の散乱を示す部分断面図である
[図 6]図 6は、本発明の光記録媒体の一部分を切り取った斜視図である。
[図 7]図 7は、本発明による光記録媒体周辺の光学系の一例を示す説明図である。
[図 8]図 8は、本発明の光記録再生装置の全体構成の一例を表すブロック図である。
[図 9]図 9は、従来の光記録媒体周辺の光学系の一例を示す説明図である。
発明を実施するための最良の形態
[0015] (光記録方法)
本発明の光記録方法は、パターン位置検出ステップ、干渉像記録ステップ及び必 要に応じて適宜選択したその他のステップを含む光記録方法である。
本発明の光記録方法は、本発明の光記録装置により実施することができ、該光記 録装置の説明を通じてその詳細をも明らかにすることとする。
本発明の光記録方法における前記パターン位置検出ステップは、本発明の光記録 装置におけるパターン位置検出手段により好適に行うことができ、
本発明の光記録方法における前記干渉像記録ステップは、本発明の光記録装置 における干渉像記録手段により好適に行うことができ、
本発明の光記録方法における前記その他のステップは、本発明の光記録装置に おける前記その他の手段により好適に行うことができる。
[0016] <パターン位置検出手段 > 前記パターン位置検出手段は、ホログラフィを利用して情報を記録する記録層を備 え、かつ該記録層の層面に対し水平方向の位置情報を記録したパターンを備えた光 記録媒体に対し、情報光及び参照光のいずれかを照射し、反射光により前記パター ンの位置を検出する手段である。
[0017] 一水平方向の位置情報
前記水平方向の位置情報としては、前記光記録媒体に積層された前記記録層の 層面に対して前記情報光及び参照光の光軸の水平方向の位置に関する情報であ れば、特に制限はなぐ目的に応じて適宜選択することができ、例えば、アドレス情報 などが挙げられる。
前記アドレス情報としては、例えば、 0000、 0001、 0002などのように位置情報が 符号化されたもの、光記録媒体における任意の一アドレスを原点とし、前記記録層と 水平方向の層面に X軸及び Y軸をとつたとき、該 X軸から a、 Y軸カゝら bの位置(a, b) という位置情報や、トラッキングサーボに用いられる位置情報、ゥォブルなどに形成さ れた位置情報、更に、プリピットや記録層などに記録されているアドレス情報、単に光 の強弱が戻ってくるだけの記録パターンのみによる位置情報などが挙げられる。
[0018] 前記水平方向の位置情報は、前記情報光及び参照光の照射位置を制御するため の基準となる情報であるため、位置精度は極めて高いことが要請され、前記各 a、 の 位置誤差は、 100 m以内であることが好ましぐ 10 m以内であることがより好まし く、 3 m以内であることが特に好ましぐ 1 mが最も好ましい。 100 /z m以内とした のは、 100 m以内にあれば、前記情報光及び参照光の照射位置制御は可能であ り、 100 mを超える高精度を求めると生産性が低下することがあるからである。また 、位置がずれていても、そのずれ量が既知であり、それに基づいて制御を行うのであ れば、制御に支障はない。既知のずれ量は、光記録媒体に記録されていることが好 ましい。
[0019] パターン
前記パターンとしては、特に制限はなぐ目的に応じて適宜選択することができ、例 えば、参照光を照射したときに、情報光として戻ってくるものが好ましい。
このパターンを再生するとき、該パターンに対する参照光軸がずれていると、その ずれ量に応じて光量が減衰するように記録されて 、ることが好まし 、。その光量から、 ずれ量を検出することが可能となる。また、 Xと Yそれぞれ独立に光量を検出できれ ば, 1度の再生で偏位量を測定することも可能である。
[0020] パターンの記録場所
前記位置情報パターンの記録場所としては、特に制限はなぐ目的に応じて適宜 選択することができ、例えば、光記録媒体の基板面、前記情報光及び参照光の反射 層、前記水平位置情報のために形成し、他の層と屈折率が異なるパターン層、プリピ ット層、ギャップ層、カバー層などが挙げられる。
[0021] パターンの記録個数
前記パターンの個数としては、少なくとも光記録媒体に 3個あれば、特に制限はなく 、目的に応じて適宜選択することができ、例えば、 3〜: LO個でよぐ 3〜: LOO個が好ま しぐ 3〜1, 000個がより好ましい。また、前記個数は、トラッキングサーボに用いられ るトラック毎に設けてもよく、この場合も、 3〜: LO個でよぐ 3〜: LOO個が好ましぐ 3〜1 , 000個がより好ましい。前記個数がいずれの場合も、 1, 000個を超えると、前記位 置情報パターンを形成する際の生産効率の低下を招くことがあり、前記パターンから 位置情報を検出するための個数としては、 1, 000個あれば充分だ力もである。
[0022] パターンの形成方法
前記パターンの記録方法としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、スタンパなどにより基板に形成する方法、パターン層を形成する方 法、パターン毎に光記録する方法などが挙げられる。
いずれの方法においても、前記情報光及び参照光を反射させることにより、戻り光 とし、該戻り光の光路長の違いによりパターンの有無などを検出することができる。そ のため、前記パターンの表面ゃ該パターン以外の領域に光を反射させる反射膜の形 成が必要となる。
[0023] ースタンパにより基板に形成する方法
前記スタンパにより基板に形成する方法しては、例えば、ガラス基板にレジスト材料 を塗布し、リソグラフィの手法で露光し現像してレジスト材料を部分的に除去すること により表面に凹凸パターンを有するガラスマスタ(凹凸パターン転写用原盤)を得、該 ガラスマスタを利用して形成する方法などが挙げられる。このガラスマスタは、その表 面に無電解メツキ法で導電膜を形成してカゝら電解メツキ法で Ni等の薄膜を形成し、こ の薄膜及び導電膜をガラスマスタカゝら剥離することによりスタンパを得る。このスタン パを型内に配設し、ポリカーボネート等の榭脂材料を射出成形することでピット、ダル ーブ等の情報伝達のための凹凸パターンを形成した基板が得られる。なお、生産性 の向上等の目的でガラスマスタカゝら無電解メツキ法及び電解メツキ法でメタルマスタを 作製し、メタルマスタに電解メツキ法で薄膜を形成してメタルマスタカゝら剥離すること によりスタンパを作製することもできる。又、電解メツキ法を更に繰返してスタンパを作 製することも可能である。
更に、特開 2005— 166105号公報、特開 2005— 100546号公報、特開 2004— 259356号公報、特開 2004— 125874号公報、特開 2003— 85831号公報などに 記載のスタンパの製造方法により作製することができる。
パターン層を形成する方法
前記パターン層として形成する方法としては、特に制限はなぐ 目的に応じて適宜 選択することができ、例えば、前記パターン形成のために新たなパターン層を積層す る方法などが挙げられる。前記パターン層は、アドレス情報やトラック情報などが含ま れているパターン部分と、それ以外の領域とで屈折率が異なる層を基板上などに周 期的に形成し、サーボピットパターンと同様に前記屈折率の変化を位置情報として利 用することができる。 前記屈折率の異なる材料としては、特に制限はなぐ 目的に応 じて適宜選択することができ、例えば、フォトポリマーにパターンを露光する方法や、 屈折率の異なる材料をパターンユングする方法などが挙げられる。具体的な材料とし ては、特に制限はなぐ 目的に応じて適宜選択することができ、例えば、屈折率の高 いものとしては、 TiO 、 ZnS、屈折率の低いものとしては、 SiO 、 MgFなどが挙げら
2 2 2
れる。
前記屈折率としては、 1. 3〜2. 0、 1. 5〜3. 0などが挙げられる。
前記屈折率の差として、 0. 1以上であれば、 目的の光路長の違いによる、ノターン の有無を判定することができる。前記屈折率の差は、 0. 2以上が好ましぐ 0. 3以上 がより好ましい。 [0025] 一反射膜
前記反射膜の材料としては、特に制限はなぐ目的に応じて適宜選択することがで き、例えば、記録光や参照光に対して高い反射率を有する材料を用いることが好まし い。使用する光の波長が 400〜780nmである場合には、例えば、 Al、 A1合金、 Ag、 Ag合金、などを使用することが好ましい。使用する光の波長が 650nm以上である場 合には、 Al、 A1合金、 Ag、 Ag合金、 Au、 Cu合金、 TiN、などを使用することが好ま しい。
なお、前記反射膜として、光を反射すると共に、追記及び消去のいずれかが可能な 光記録媒体、例えば、 DVD (ディジタル ビデオ ディスク)などを用い、ホログラムを どのエリアまで記録したかとか、いつ書き換えたかとか、どの部分にエラーが存在し交 替処理をどのように行ったかなどのディレクトリ情報などをホログラムに影響を与えず に追記及び書き換えすることも可能となる。
[0026] 前記反射膜の形成は、特に制限はなぐ目的に応じて適宜選択することができ、各 種気相成長法、例えば、真空蒸着法、スパッタリング法、プラズマ CVD法、光 CVD 法、イオンプレーティング法、電子ビーム蒸着法などが用いられる。これらの中でも、 スパッタリング法が、量産性、膜質等の点で優れている。
前記反射膜の厚みは、十分な反射率を実現し得るように、 50nm以上が好ましぐ 1 OOnm以上がより好ましい。
[0027] 一水平方向の位置情報の検出方法
前記水平位置情報の検出方法としては、特に制限はなぐ目的に応じて適宜選択 することができ、例えば、サーボ用光の照射により、トラッキングサーボなどを行った 状態、即ち、サーボ用光の焦点位置をトラック位置及びアドレス位置に合致させるた め、厚み方向の位置調整のフォーカス制御及び面方法の位置調整のトラッキング制 御を行 、前記サーボ用光の光軸が適正な位置に制御した状態で、前記情報光及び 参照光 (再生光)を前記位置情報パターンに照射し、反射光を受光して、該情報光 及び参照光の光軸が、前記サーボ用光の光軸とどの程度偏差しているかを検出する 方法、トラッキング制御したときに、そのトラッキング位置にオフセットをのせ、位置情 報パターンの再生光力 その偏位量を検出する方法などが挙げられる。 前者の検出方法の場合、前記検出により、前記情報光及び参照光 (再生光)が該 水平位置情報とジャストピントの状態であることが確認できれば、前記サーボ用光の 光軸と前記情報光及び参照光 (再生光)の光軸が設計値と一致し、誤差がな!、ことが 検出される。
前記検出により、ジャストピントの状態ではない場合、前記情報光及び参照光 (再 生光)水平位置のトラッキング制御を行 、ジャストピント位置になるように前記情報光 及び参照光 (再生光)を移動し、該移動量を検出する。
[0028] 前記ジャストピント位置に移動する手段として、前記位置情報パターンに情報光及 び参照光のいずれかを照射し、反射光を受光し、該反射光の信号強度が最大となる 位置を、図 3に示す矢印方向に、移動手段を用いて移動させることにより検出し、前 記情報光及び参照光の光軸を前記位置情報パターンの位置に一致させることがで きる。
前記信号強度の最大値を認識する手段としては、特に制限はなぐ目的に応じて 適宜選択することができ、例えば、ピークホールド法などが挙げられる。
[0029] 前記ジャストピント位置に移動する手段としては、更に、位置情報パターンに情報 光及び参照光のいずれかを照射し、反射光を受光し、該反射光の信号エラーが最 小となる位置を、図 3に示す矢印方向に、移動手段を用いて移動させることにより検 出し、前記情報光及び参照光の光軸を前記位置情報パターンに一致させることがで きる。
前記信号エラーの最小値を認識する手段としては、特に制限はなぐ目的に応じて 適宜選択することができ、例えば、ピークホールド法などが挙げられる。
[0030] 前記移動手段としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、前記サーボ機構などが挙げられる。
前記サーボ機構としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、前記偏差量を、例えば、フォーカス誤差信号として生成し、前記信号を増幅 する位相補償ドライブアンプなどを経由して、駆動装置へ指令し前記対物レンズの位 置を移動することにより焦点距離を制御する機構、などが挙げられる。
前記駆動装置としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、ァクチユエータ、ステッピングモータなどが挙げられる。
[0031] 移動量の検出
前記移動量の検出方法としては、特に制限はなぐ目的に応じて適宜選択すること ができ、例えば、前記水平位置情報として、アドレス情報を原点とし、前記記録層と水 平方向の層面に X軸及び Y軸をとり、前記記録層の厚み方向に z軸をとつたとき、該
X軸から a、 Y軸力 bの位置(a, b)、(ただし、前記 aは a≥0、 bは b≥0)が前記感光 層に記録されており、前記アドレス情報が、同様の X軸、 Y軸及び Z軸において位置( a, として、光記録媒体に記録されている場合、まず、情報光及び参照光で前記ァ ドレス情報を検出し、前記検出結果に基づいて、前記情報光及び参照光の光軸の 記録すべき位置への移動量を求める。
前記情報光及び参照光によるアドレス情報の検出は、該情報光及び参照光を照射 し、反射光を受光して被照射部分のアドレスを認識するとともに、該アドレスの位置 (a , b)から、照射した該情報光及び参照光をどれだけ移動すべきかの X軸及び Y軸方 向の移動量 Δ a及び Δ bを求める。
前記移動量は、距離及び角度で表してもよい。この場合は、下記の式で表される距 離を A Lとし、角度を X軸又は Y軸を基準とした鋭角 Θで表してもよい。
[0032] [数 1]
Figure imgf000014_0001
[0033] 前記偏差量 A Lは、前記表示方法以外に、目的に応じて(Δ a ' Δ a)、 ( A h ' ~
A b)、 A a、 A b、 A a A b 'をそれぞれ独立に扱って制御し、利用してもよい。
[0034] 前記情報光及び参照光によるアドレス情報の検出は、まず、前記光記録媒体の厚 み方向の焦点位置の検出を行い、フォーカス制御し、該情報光及び参照光の焦点 をアドレス情報の位置に合わせ、次に、水平方向の位置を検出を行うこともできる。前 記フォーカス制御は、最初の数箇所行い、該フォーカス制御を行わなくてもアドレス 情報が認識できると判断された場合には、逐次フォーカス制御を行わなくてもよ 、。
[0035] 前記フォーカス制御のための焦点位置の検出としては、特に制限はなぐ目的に応 じて適宜選択することができ、例えば、非点収差法、フーコー法及び臨界角法(「図 解コンパクトディスク読本」オーム社、中島平太郎、小川博司共著、第一版、昭和 61 年 11月 10日発行に記載)などが挙げられる。
[0036] 非点収差法
前記非点収差法は、被検出ディスクに形成されて ヽる記録層の記録しょうとする位 置と、前記情報光及び参照光の焦点の位置との偏差量を検出する。即ち、焦点距離 (対物レンズの中心と前記情報光及び参照光の焦点との距離)と、前記対物レンズの 中心から前記記録層の記録しょうとする部分まで距離との偏差量を検出する。光源 力 出射される光線が対物レンズを通過し光記録媒体に照射される光路における、 前記光源から前記対物レンズの中間にビームスプリツターなどを配置し反射光を取り 出し、該反射光をシリンドリカルレンズに透過させ、結像させる。該結像面が円形の場 合は、前記焦点距離は一致し、縦長の楕円形の場合は、前記光記録媒体が前記対 物レンズに近すぎる位置にあり、横長の楕円の場合は、前記光記録媒体が前記対物 レンズに遠すぎる位置にあることが検出できる。
前記検出は、前記反射光を 4分割し、前記結像の対角領域の明るさを比較すること により検出する。
[0037] フーコー法
前記フーコー法は、前記非点収差を用いる方法と、前記ビームスプリツターなどを 配置し反射光を取り出し、該反射光をシリンドリカルレンズを透過するところまでは同 じ構成を用いる。該シリンドリカルレンズにより透過した反射光が結像する部分にプリ ズムを用い、該プリズムの頂角に結像した場合は、前記焦点距離は一致し、該頂角 を通過して結像した場合は、前記光記録媒体が前記対物レンズに近すぎる位置にあ り、該頂角の手前で結像した場合は、前記光記録媒体が前記対物レンズに遠すぎる 位置にあることが検出できる。前記検出は、 2分割された前記反射光に対して 1個づ つセンサを配置し、前記 2分割された反射光の明るさを感知し、前記結像位置を検出 することができる。
[0038] 臨界角法
前記臨界角法は、被検出ディスクに形成されている記録層へ記録しょうとする位置 と、前記情報光及び参照光の焦点の位置とのずれを検出する。即ち、焦点距離 (対 物レンズの中心と前記情報光及び参照光の焦点との距離)と、前記対物レンズの中 心から前記記録層の記録しょうとする部分まで距離とのずれを検出する。光源から出 射される光線が対物レンズを通過し光記録媒体に照射される光路における、前記光 源から前記対物レンズの中間に、入射する光束の中心の光線に対して、入射角がち ようど臨界角(入射する光線がプリズムの境界面で全部反射される角度)となるプリズ ムを配置し、該プリズム力 前記反射光を取り出し、該反射光の明暗感知することに より焦点位置を検出する。前記光記録媒体が前記対物レンズに近すぎたり、遠すぎ たりする場合、該プリズムで反射する反射光は光量が減ることを利用し、遠近を +— の極性で判別することにより、前記焦点位置を検出することができる。
[0039] 前記水平位置の検出方法としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、 3ビーム法、プッシュプル法及び位相差検出法(「図解コンパクトデ イスク読本」オーム社、中島平太郎、小川博司共著、第一版、昭和 61年 11月 10日発 行に記載)などが挙げられる。
[0040] 3ビーム法
前記 3ビーム法は、被検出ディスクに形成されているトラックに対する、サーボ用光 の照射位置ずれを検出する方法で、略円形の主ビーム、副ビーム A及び副ビーム B の 3本のビームが用いられる。副ビーム A、主ビーム及び副ビーム Bの順に略直線上 に等間隔に配置され、主ビームの円の中心が、前記トラックの幅の中央に対して照射 される位置に、副ビーム Aの円の下部が、前記トラックの幅の端に接する位置に、副 ビーム Bの円の上部が、前記トラックの幅の端に接する位置になるように配置される。 このような配置で、各ビームが前記トラックに照射されると、トラック面では、弱い反 射光、トラック面以外では強い反射光となり、各反射光の強度を検出することにより、 照射された 3本のビームの位置と前記トラックとの位置ずれを検出することができる。
[0041] プッシュプル法
前記プッシュプル法は、被検出ディスクに形成されているトラックに対する、サーボ 用光の照射位置ずれを検出する方法で、 1つのビームを前記トラックに照射し、該反 射光を 2分割して検出する 2分割光検出器を用いる。該ビームが該トラック幅の中心 部分に照射されると、 2分割された反射光の左右の光強度が等しくなり、該トラックの 幅方向に左右にずれた場合には、該トラック部分力 の反射光の強度は弱ぐ該トラ ック以外からの反射光の強度は強 、ので、 2分割された反射光の左右の光強度分布 は左右非対象になり、ずれていることが検出できる。
[0042] 位相差検出法
前記位相差検出(DPD法: Differential Phase Detection)は、被検出ディスク に形成されているトラックに対する、サーボ用光の照射位置ずれを検出する方法で、 前記プッシュプル法の 2分割を更に分割して 4分割した光検出器を用いる。 1つのビ 一ムが該トラック幅の中心部分に照射されると、 4分割された反射光の 4つの領域の 左右の光強度が等しくなり、該トラックの幅方向に左右にずれた場合には、該トラック 部分からの反射光の強度は弱ぐ該トラック以外力 の反射光の強度は強いので、 4 分割された反射光の 4つの領域の光強度分布について、対角領域にある光強度分 布を検出することにより左右非対象となり、ずれていることが検出できる。
[0043] 情報光及び参照光 (再生光)の焦点位置の検出
前記情報光及び参照光 (再生光)の焦点位置の検出方法としては、特に制限はな く、目的に応じて適宜選択することができ、例えば、該情報光及び参照光を照射する ことにより、前記サーボ用光の水平位置の検出と同様に、前記 3ビーム法、前記プッ シュプル法及び前記位相差検出法などを用いることができる。
[0044] 情報光又は参照光の照射
前記情報光又は前記参照光としては、特に制限はなぐ目的に応じて適宜選択す ることができ、例えば、記録時と同様の光線を用いてもよぐ記録時よりも弱い光線を 用いてもよい。記録時よりも弱い光線を用いる場合、照射エネルギーは、例えば、 0. 1〜: LO, 000 /zj/cm2力 S好まし <、 1〜1, 000 j/cm2力 Sより好まし <、 10〜: LOO /z jZcm2が特に好ましい。前記照射エネルギーが、 0.: JZcm2未満であると、焦点 位置の検出が充分になされないことがあり、 10, 000 JZcm2を超えると記録されて しまうことがある。前記情報光又は前記参照光のいずれかである場合は、光の干渉は 起きないので、焦点距離の検出に用いることができる。また、前記情報光及び前記参 照光の双方を照射する場合には、照射エネルギーを、光記録媒体に記録がなされな V、程度に弱めれば、検出用に用いることができる。 [0045] <干渉像記録手段 >
前記干渉像記録手段は、前記情報光及び参照光の光軸を、前記水平位置検出ス テツプにより検出した、前記パターンを基準とする位置を把握し、前記パターン以外 の位置に前記情報光及び参照光の照射位置を移動する水平位置の制御を行!、、所 定の位置において、前記情報光及び参照光を該領域に照射し、干渉像を形成し、該 干渉像を前記感光層に記録する手段である。
[0046] 一水平位置の制御
前記水平位置の制御は、該水平位置検出ステップにより検出された前記位置情報 に基づいて、該情報光及び該参照光の光軸の水平位置について、正常な位置に記 録するため、該情報光及び参照光の光軸の前記 X軸及び Y軸の位置を制御する。 具体的には、前記水平位置検出ステップにより検出された前記情報光及び参照光 の水平位置を基準として制御することができる。例えば、基準位置 (a, b)からの記録 すべき位置までの X軸及び Y軸につ!ヽて、前記情報光及び参照光の光軸を Δ a及び A bだけ移動する。
図 3に示すように、前記移動量が、距離及び角度であらわされる場合は、距離は下 記式で表される A L、角度は X軸又は Y軸を基準とした鋭角 Θで表わされる量を移動 量とすることができる。この A Lだけ移動することにより、凹凸又は屈折率の異なる材 料で形成されたパターンのない記録領域に記録することができる。このように A Lだけ 移動させるのは、図 5に示すように、前記情報光及び参照光の焦点が前記パターン 上で一致すると、光の散乱が生じ適切な記録が得られな 、からである。
[0047] [数 2]
Figure imgf000018_0001
前記水平位置の制御方法として、前記パターンに情報光及び参照光の!、ずれかを 照射し、反射光を受光し、該反射光の信号強度が最大となる位置を、水平方向に、 移動させることにより検出し、前記情報光及び参照光の照射位置を制御することもで きる。
前記信号強度の最大値を認識する手段としては、特に制限はなぐ目的に応じて 適宜選択することができ、例えば、ピークホールド法などが挙げられる。 前記水平位置の制御方法としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、前記サーボ機構などが挙げられる。
[0049] 前記水平位置の制御方法としては、更に、水平位置パターンに情報光及び参照光 のいずれかを照射し、反射光を受光し、該反射光の信号エラーが最小となる位置を、 水平方向に、移動させることにより検出し、前記情報光及び参照光の照射位置を制 御することちでさる。
前記信号エラーの最小値を認識する手段としては、特に制限はなぐ目的に応じて 適宜選択することができ、例えば、ピークホールド法などが挙げられる。
前記水平位置の制御方法としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、前記サーボ機構などが挙げられる。
[0050] 干渉像の記録
前記干渉像の記録は、ホログラフィを利用して情報を記録する前記記録層に対して 、可干渉性を有する情報光及び参照光を照射し、前記情報光と前記参照光とにより 光の干渉像 (干渉縞)を形成し、該前記干渉像を前記記録層に記録する手段である 。前記干渉像の記録手段としては、例えば、明暗力 なる干渉縞を屈折率の差として 記録層内に記録する手段などが挙げられる。前記手段においては、前記記録層は、 フォトポリマーなどの感光材料力もなり、前記干渉縞の明るい部分は、光照射により 感光材料が重合反応し屈折率が高くなり、暗い部分は、反応せず屈折率は変化しな いので、屈折率の差が生ずることになる。
[0051] 前記情報光及び前記参照光の照射方法としては、特に制限はなぐ目的に応じて 適宜選択することができ、例えば、前記情報光の照射方向に対して一定の角度で、 前記参照光を照射してもよぐ前記情報光の光軸と前記参照光の光軸とが同軸とな るように、該情報光及び該参照光を前記記録層に照射してもよ ヽ。
これらの中でも、高多重記録が可能であり、情報の転送速度も速い前記情報光の 光軸と参照光の光軸とが同軸になる、いわゆるコリニア方式による記録が好ましい。
[0052] 前記情報光及び前記参照光は、可干渉性を有するレーザ光を発振する光源を用 いる。前記光源としては、例えば、固体レーザ光発振器、半導体レーザ光発振器、液 体レーザ光発振器、気体レーザ光発振器などが挙げられる。これらの中でも、気体レ 一ザ光発振器、半導体レーザ光発振器などが好ましい。
[0053] 前記レーザ光としては、特に制限はなぐ 目的に応じて適宜選択することができ、例 えば、波長が、 360〜850nm力 選択される 1種以上の波長力もなるレーザ光が用 ヽられる。該波長 ίま、 380〜800mn力好ましく、 400〜750mn力 ^より好ましく、可視 領域の中心が最も見え易 、500〜600nm力最も好まし!/、。
前記波長が、 360nm未満であると、鮮明な干渉像が得られないことがあり、 850η mを超えると、前記干渉縞が微細となり、それに対応する感光材料が得られないこと がある。
前記レーザ光の照射エネルギーとしては、特に制限はなぐ 目的に応じて適宜選択 することができ、例えば、 0. 1〜: LO, 000 jZcm2力好ましく、 1〜1, 000 jZcm2 力 り好ましぐ 10〜: LOO jZcm2が特に好ましい。前記照射エネルギーが、 0. 1 jZcm2未満であると、記録がなされないことがあり、 10, 000 jZcm2を超えると記 録されてしまうことがある。
[0054] <その他の手段 >
前記その他の手段としては、干渉像定着手段などが挙げられる。
[0055] 一干渉像定着手段一
前記干渉像定着手段は、前記干渉像記録手段により前記記録層に記録された前記 干渉像に対して、定着光を、照射し定着する手段である。前記定着光の照射は、記 録された干渉像の領域に対して過不足なく行うことにより、前記干渉像を効率よく定 着することができ、前記定着により保存安定性が改善され、再生の際にノイズの発生 などの支障が起きない光記録媒体を得ることができる。
[0056] 定着光一
前記定着光の照射領域としては、 目的に応じて適宜選択することができ、例えば、 前記記録層の任意の箇所における前記情報光及び前記参照光による記録対象部 分と同じ領域カゝ、該記録対象部分の外延よりも広くかつ該外延から少なくとも 1 m 外側まで延設された領域であることが好ましい。前記記録対象部分の外延から 1 μ m を超えた領域まで定着光を照射すると、隣接する記録領域にも照射され、過剰な照 射エネルギーとなり非効率的である。
[0057] 前記定着光の照射時間としては、特に制限はなぐ 目的に応じて適宜選択すること ができ、例えば、前記記録層の任意の箇所において、 Ins〜: LOOmsが好ましぐ Ins 〜80msがより好ましい。前記照射時間が、 Ins未満であると、定着が不十分なことが あり、 100msを超えると過剰なエネルギーの照射となる。このような定着光の照射は、 前記干渉像の記録の後、 28時間以内に行われることが好ましい。前記定着光の照 射が前記記録の後、 28時間を超えると、既に記録した情報の信号品質が低下するこ とがある。
前記定着光の照射方向としては、特に制限はなぐ 目的に応じて適宜選択すること ができ、例えば、前記記録層の任意の箇所における前記情報光及び前記参照光と 同じ方向でもよぐ異なった方向でもよい。また、照射角度としては、記録層の層面に 対して 0〜60° が好ましぐ 0〜40° 力 り好ましい。前記照射角度力 上記以外の 角度であると、定着が非効率となることがある。
前記定着光の波長としては、特に制限はなぐ 目的に応じて適宜選択することがで き、例えば、前記記録層の任意の箇所において、 350〜850nmであることが好ましく 、 400〜600nmであること力より好まし!/ヽ。
前記波長が、 350nm未満であると、材料が分解してしまうことがあり、 850nmを超 えると、温度が上がり材料が劣化することがある。
[0058] 前記定着光の光源としては、 目的に応じて適宜選択することができ、例えば、前記 情報光及び参照光と同様の光源を用いることが、別の光源を新たに設ける必要がな い点で好ましい。前記光源から出射された光を光記録媒体に照射することにより、前 記情報光及び参照光と同様の光源を用いることができる。同一の光源を用いることに より、前記干渉像の記録領域と定着光の照射領域を容易に一致させることができ、効 率的に定着光を照射することができる。
前記定着光の照射量としては、特に制限はなぐ 目的に応じて適宜選択することが でき、例えば、前記記録層の任意の箇所において、 0. 001〜100mjZcm2であるこ と力 S好ましく、 0. 01〜: L0mj/cm2であることがより好ましい。
[0059] 前記定着光の照射方法としては、特に制限はなぐ 目的に応じて適宜選択すること ができ、例えば、前記記録層の任意の箇所における前記情報光及び前記参照光と 同一の光源から出射される光を照射することがこのましい。場合によっては、異なる 光源から出射される光などを照射してもよい。
[0060] <光記録媒体 >
本発明の光記録媒体は、本発明の前記光記録方法により記録されるものであって 、支持体上に、少なくともホログラフィを利用して情報を記録する記録層を備え、かつ 少なくともトラック情報及びアドレス情報を有するパターンを備え、前記定着光により 記録層に記録した干渉像が定着された光記録媒体である。
本発明の光記録媒体は、 2次元などの情報を記録する比較的薄型の平面ホロダラ ムゃ立体像など多量の情報を記録する体積ホログラムであってもよぐ透過型及び反 射型のいずれであってもよい。また、ホログラムの記録方式もいずれであってもよぐ 例えば、振幅ホログラム、位相ホログラム、ブレーズドホログラム、複素振幅ホログラム などでもよい。
具体的には、前記コリニア方式の記録方法に用いられる反射型の光記録媒体が好 ましい。
前記光記録媒体は、前記記録層と、第一の基板と、第二の基板とを有し、必要に応 じて適宜選択したその他の層を有する光記録媒体である。
[0061] <パターン >
前記パターンは、少なくともトラック情報及びアドレス情報を有するものであり、その 形成方法、形成位置、特性などの詳細は、前記光記録方法で述べたとおりである。
[0062] <記録層 >
前記記録層の感光材料としては、ホログラフィを利用して情報が記録され得るもの であり、所定の波長の電磁波を照射すると、その強度に応じて吸光係数や屈折率な どの光学特性が変化する材料が用いられる。
[0063] 前記記録層の材料としては、特に制限はなぐ目的に応じて適宜選択することがで き、例えば、(1)光照射で重合反応が起こり高分子化するフォトポリマー、(2)フォトリ フラクティブ効果 (光照射で空間電荷分布が生じて屈折率が変調する)を示すフォトリ フラクティブ材料、 (3)光照射で分子の異性ィ匕が起こり屈折率が変調するフォトクロミ ック材料、(4)ニオブ酸リチウム、チタン酸バリウム等の無機材料、(5)カルコゲン材 料、などが挙げられる。
[0064] 前記(1)のフォトポリマーとしては、特に制限はなぐ目的に応じて適宜選択すること ができ、例えば、モノマー、及び光開始剤を含有してなり、更に必要に応じて増感剤 、オリゴマー等のその他の成分を含有してなる。
[0065] 前記フォトポリマーとしては、例えば、「フォトポリマーハンドブック」(工業調査会、 1 989年)、「フォトポリマーテクノロジー」(日刊工業新聞社、 1989年)、 SPIE予稿集 Vol. 3010 p354— 372 (1997)、及び SPIE予稿集 Vol. 3291 p89— 103 (19 98)に記載されているものを用いることができる。また、米国特許第 5, 759, 721号 明細書、同第 4, 942, 112号明細書、同第 4, 959, 284号明細書、同第 6, 221, 5 36号明細書、国際公開第 97Z44714号パンフレット、同第 97/13183号パンフレ ッ卜、同第 99Z26112号パンフレツ K同第 97Z13183号パンフレツ卜、特許第 288 0342号公報、同第 2873126号公報、同第 2849021号公報、同第 3057082号公 報、同第 3161230号公報、特開 2001— 316416号公報、特開 2000— 275859号 公報、などに記載されているフォトポリマーを用いることができる。
[0066] 前記フォトポリマーに記録光を照射して光学特性を変化させる方法としては、低分 子成分の拡散を利用した方法などが挙げられる。また、重合時の体積変化を緩和す るため、重合成分とは逆方向へ拡散する成分を添加してもよぐ或いは、酸開裂構造 を有する化合物を重合体のほかに別途添加してもよい。なお、前記低分子成分を含 むフォトポリマーを用いて記録層を形成する場合には、記録層中に液体を保持可能 な構造を必要とすることがある。また、前記酸開裂構造を有する化合物を添加する場 合には、その開裂によって生じる膨張と、モノマーの重合によって生じる収縮とを補 償させることにより体積変化を抑制してもよい。
[0067] 前記モノマーとしては、特に制限はなぐ目的に応じて適宜選択することができ、例 えば、アクリル基ゃメタクリル基のような不飽和結合を有するラジカル重合型のモノマ 一、エポキシ環ゃォキセタン環のようなエーテル構造を有するカチオン重合型系モノ マーなどが挙げられる。これらのモノマーは、単官能であっても多官能であってもよい 。また、光架橋反応を利用したものであってもよい。 前記ラジカル重合型のモノマーとしては、例えば、アタリロイルモルホリン、フエノキ シェチルアタリレート、イソボル-ルアタリレート、 2—ヒドロキシプロピルアタリレート、 2 ェチルへキシルアタリレート、 1, 6 へキサンジオールジアタリレート、トリプロピレ ングリコールジアタリレート、ネオペンチルグリコール PO変性ジアタリレート、 1, 9ーノ ナンジオールジアタリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアタリレ ート、 EO変性ビスフエノール Aジアタリレート、ポリエチレングリコールジアタリレート、 ペンタエリスリトールトリアタリレート、ペンタエリスリトールテトラアタリレート、ペンタエリ スリトールへキサアタリレート、 EO変性グリセロールトリアタリレート、トリメチロールプロ パントリアタリレート、 EO変性トリメチロールプロパントリアタリレート、 2—ナフト一 1— ォキシェチルアタリレート、 2—力ルバゾィル—9—ィルェチルアタリレート、(トリメチル シリルォキシ)ジメチルシリルプロピルアタリレート、ビ-ルー 1 ナフトエート、 N ビ 二ルカルバゾール、などが挙げられる。
前記カチオン重合型系モノマーとしては、例えば、ビスフエノール Aエポキシ榭脂、 フエノールノボラックエポキシ榭脂、グリセロールトリグリシジルエーテル、 1, 6 へキ サングリシジルエーテル、ビュルトリメトキシシラン、 4—ビュルフエ-ルトリメトキシシラ ン、 γ—メタクリロキシプロピルトリエトキシシラン、下記構造式 (Α)〜(Ε)で表される 化合物、などが挙げられる。
これらモノマーは、 1種単独で使用してもよいし、 2種以上を併用してもよい。
[化 1]
Figure imgf000025_0001
Figure imgf000025_0002
Figure imgf000025_0003
構造式 (D )
Figure imgf000025_0004
構造式 (E )
Figure imgf000025_0005
前記光開始剤としては、記録光に感度を有するものであれば特に制限はなぐ光照 射によりラジカル重合、カチオン重合、架橋反応などを引き起こす材料などが挙げら れる。
前記光開始剤としては、例えば、 2, 2 '—ビス(o クロ口フエ-ル) 4, 4' , 5, 5, —テトラフエ-ル一 1, 1,一ビイミダゾール、 2, 4, 6 トリス(トリクロロメチル) 1, 3, 5 トリアジン、 2, 4 ビス(トリクロロメチル) 6— (p—メトキシフエ-ルビ-ル)一 1, 3, 5—トリアジン、ジフエ-ルョードニゥムテトラフルォロボレート、ジフエ-ルョードニ ゥムへキサフルォロホスフェート、 4, 4'ージー tーブチルジフエ-ルョードニゥムテトラ フルォロボレート、 4ージェチルァミノフエ-ルベンゼンジァゾ -ゥムへキサフルォロホ スフェート、ベンゾイン、 2—ヒドロキシ一 2—メチル 1—フエ-ルプロパン一 2—オン 、ベンゾフエノン、チォキサントン、 2, 4, 6—トリメチルベンゾィルジフエニルァシルホ スフインォキシド、トリフエニルブチルボレートテトラェチルアンモニゥム、下記構造式 で表されるチタノセンィ匕合物、などが挙げられる。これらは、 1種単独で使用してもよ いし、 2種以上を併用してもよい。また、照射する光の波長に合わせて増感色素を併 用してちょい。
[化 2]
Figure imgf000026_0001
[0070] 前記フォトポリマーは、前記モノマー、前記光開始剤、更に必要に応じてその他の 成分を攪拌混合し、反応させること〖こよって得られる。得られたフォトポリマーが十分 低い粘度ならばキャスティングすることによって記録層を形成することができる。一方 、キャスティングできない高粘度フォトポリマーである場合には、ディスペンサーを用 いて第二の基板にフォトポリマーを盛りつけ、このフォトポリマー上に第二の基板 Aで 蓋をするように押し付けて、全面に広げて記録層を形成することができる。
[0071] 前記(2)のフォトリフラクティブ材料としては、フォトリフラクティブ効果を示すもので あるならば特に制限はなぐ目的に応じて適宜選択することができ、例えば、電荷発 生材、及び電荷輸送材を含有してなり、更に必要に応じてその他の成分を含有して なる。
[0072] 前記電荷発生材としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、金属フタロシアニン、無金属フタロシアニン、又はそれらの誘導体等のフタ ロシアニン色素 Z顔料;ナフタロシアニン色素 Z顔料;モノァゾ、ジスァゾ、トリスァゾ 等のァゾ系色素 z顔料;ペリレン系染料 Z顔料;インジゴ系染料 Z顔料;キナクリドン 系染料 Z顔料;アントラキノン、アントアントロン等の多環キノン系染料 Z顔料;シァニ ン系染料 Z顔料; TTF— TCNQで代表されるような電子受容性物質と電子供与性 物質と力もなる電荷移動錯体;ァズレニウム塩; C 及び C で代表されるフラーレン
60 70
並びにその誘導体であるメタノフラーレン、などが挙げられる。これらは、 1種単独で 使用してもよいし、 2種以上を併用してもよい。
[0073] 前記電荷輸送材は、ホール又はエレクトロンを輸送する材料であり、低分子化合物 であってもよぐ又は高分子化合物であってもよい。
前記電荷輸送材としては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、インドール、カルバゾール、ォキサゾール、インォキサゾール、チアゾール 、イミダゾール、ピラゾール、ォキサアジアゾール、ピラゾリン、チアチアゾール、トリア ゾール等の含窒素環式化合物、又はその誘導体;ヒドラゾンィ匕合物;トリフエニルアミ ン類;トリフエ-ルメタン類;ブタジエン類;スチルベン類;アントラキノンジフエノキノン 等のキノンィ匕合物、又はその誘導体; C 及び C 等のフラーレン並びにその誘導体;
60 70
ポリアセチレン、ポリピロール、ポリチォフェン、ポリア-リン等の π共役系高分子又は オリゴマー;ポリシラン、ポリゲルマン等の σ共役系高分子又はオリゴマー;アントラセ ン、ピレン、フエナントレン、コロネン等の多環芳香族化合物、などが挙げられる。これ らは、 1種単独で使用してもよいし、 2種以上を併用してもよい。
[0074] 前記フォトリフラクティブ材料を用いて記録層を形成する方法としては、例えば、前 記フォトリフラクティブ材料を溶媒中に溶解乃至は分散させてなる塗布液を用いて塗 膜を形成し、この塗膜から溶媒を除去することにより前記記録層を形成することがで きる。また、加熱して流動化させた前記フォトリフラクティブ材料を用いて塗膜を形成 し、この塗膜を急冷することにより記録層を形成することもできる。
[0075] 前記(3)のフォトクロミック材料は、フォトクロミック反応を起こす材料であれば特に制 限はなく、 目的に応じて適宜選択することができ、例えば、ァゾベンゼンィ匕合物、スチ ルベン化合物、インジゴ化合物、チォインジゴ化合物、スピロピラン化合物、スピロォ キサジンィ匕合物、フルキド化合物、アントラセンィ匕合物、ヒドラゾンィ匕合物、桂皮酸ィ匕 合物、などが挙げられる。これらの中でも、光照射によりシス トランス異性ィ匕により構 造変化を起こすァゾベンゼン誘導体、スチルベン誘導体、光照射により開環ー閉環 の構造変化を起こすスピロピラン誘導体、スピロォキサジン誘導体が特に好ま U、。
[0076] 前記(5)のカルコゲン材料としては、例えば、カルコゲン元素を含むカルコゲナイド ガラスと、このカルコゲナイドガラス中に分散されており光の照射によりカルコゲナイド ガラス中に拡散可能な金属力 なる金属粒子とを含む材料、などが挙げられる。 前記カルコゲナイドガラスは、 S、 Te又は Seのカルコゲン元素を含む非酸ィ匕物系の 非晶質材料力も構成されるものであり、金属粒子の光ドープが可能なものであれば 特に限定されない。
前記カルコゲン元素を含む非晶質材料としては、例えば、 Ge— S系ガラス、 As— S 系ガラス、 As— Se系ガラス、 As— Se— Ce系ガラスなどが挙げられ、これらの中では Ge S系ガラスが好ま 、。前記カルコゲナイドガラスとして Ge— S系ガラスを用いる 場合には、ガラスを構成する Ge及び Sの組成比は照射する光の波長に応じて任意 に変化させることができる力 主として GeSで表される化学組成を有するカルコゲナ
2
イドガラスが好ましい。
前記金属粒子は、光の照射によりカルコゲナイドガラス中に光ドープされる特性を 有するものであれば特に制限はなぐ 目的に応じて適宜選択することができ、例えば 、 Al、 Au、 Cu、 Cr、 Ni、 Pt、 Sn、 In、 Pd、 Ti、 Fe、 Ta、 W、 Zn、 Agなどが挙げられ る。これらの中では、 Ag、 Au又は Cuが光ドープをより生じやすい特性を有しており、 Agは光ドープを顕著に生じるため特に好ましい。
前記カルコゲナイドガラスに分散されて 、る金属粒子の含有量としては、前記記録 層の全体積基準で 0. 1〜2体積%が好ましぐ 0. 1〜1. 0体積%がより好ましい。前 記金属粒子の含有量が 0. 1体積%未満であると、光ドープによる透過率変化が不充 分となって記録の精度が低下することがあり、 2体積%を超えると、記録材料の光透 過率が低下して光ドープを充分に生じさせることが困難となることがある。
[0077] 前記記録層は、材料に応じて公知の方法に従って形成することができるが、例えば 、蒸着法、湿式成膜法、 MBE (分子線エピタキシー)法、クラスターイオンビーム法、 分子積層法、 LB法、印刷法、転写法、などにより好適に形成することができる。これ らの中でも、蒸着法、湿式成膜法が好ましい。 [0078] 前記蒸着法としては、特に制限はなぐ 目的に応じて公知のものの中から適宜選択 することができるが、例えば、真空蒸着法、抵抗加熱蒸着、化学蒸着法、物理蒸着法 、などが挙げられる。該化学蒸着法としては、例えば、プラズマ CVD法、レーザー C VD法、熱 CVD法、ガスソース CVD法、などが挙げられる。
[0079] 前記湿式成膜法による前記記録層の形成は、例えば、前記記録層の材料を溶剤 に溶解乃至分散させた溶液 (塗布液)を用いる(塗布し乾燥する)ことにより、好適に 行うことができる。該湿式成膜法としては、特に制限はなぐ 目的に応じて公知のもの の中力も適宜選択することができ、例えば、インクジェット法、スピンコート法、ニーダ 一コート法、バーコート法、ブレードコート法、キャスト法、ディップ法、カーテンコート 法などが挙げられる。
[0080] 前記記録層の厚みとしては、特に制限はなぐ 目的に応じて適宜選択することがで さ、 1〜1, OOO /z m力好ましく、 100〜700 111カ^ょり好まし1ヽ0
前記記録層の厚みが、前記好ましい数値範囲であると、 10〜300多重のシフト多 重を行っても十分な SZN比を得ることができ、前記より好ましい数値範囲であるとそ れが顕著である点で有利である。
[0081] 第一の基板
前記第一の基板は、その形状、構造、大きさ等については、特に制限はなぐ 目的 に応じて適宜選択することができ、前記形状としては、例えば、ディスク形状、カード 形状などが挙げられ、光記録媒体の機械的強度を確保できる材料のものを選定する 必要がある。また、記録及び再生に用いる光が基板を通して入射する場合は、用い る光の波長領域で十分に透明であることが必要である。
前記第一の基板の材料としては、通常、ガラス、セラミックス、榭脂、などが用いられ る力 成形性、コストの点から、榭脂が特に好適である。
前記榭脂としては、例えば、ポリカーボネート榭脂、アクリル榭脂、エポキシ榭脂、ポ リスチレン榭脂、アクリロニトリル スチレン共重合体、ポリエチレン榭脂、ポリプロピレ ン榭脂、シリコーン榭脂、フッ素榭脂、 ABS榭脂、ウレタン榭脂、などが挙げられる。 これらの中でも、成形性、光学特性、コストの点から、ポリカーボネート榭脂、アクリル 榭脂が特に好ましい。 前記第一の基板は、適宜合成したものであってもよいし、市販品を使用してもよい。
[0082] 前記第一の基板の厚みとしては、特に制限はなぐ 目的に応じて適宜選択すること ができ、 0. l〜5mmが好ましぐ 0. 3〜2mmがより好ましい。前記基板の厚みが、 0 . 1mm未満であると、ディスク保存時の形状の歪みを抑えられなくなることがあり、 5 mmを超えると、ディスク全体の重量が大きくなつてドライブモーターに過剰な負荷を 力けることがある。
[0083] 第二の基板
前記第二の基板は、前記第一の基板と、その形状、構造、大きさ、材料及び厚みは 同じてもよく異なっていてもよい。これらの中でも、形状及び大きさは第一の基板と同 じであることが好ましい。
前記第二の基板には、半径方向に線状に延びる複数の位置決め領域としてのアド レス サーボエリアが所定の角度間隔で設けられ、隣り合うアドレス サーボエリア間 の扇形の区間がデータエリアになっている。アドレス サーボエリアには、サンプルド サーボ方式によってフォーカスサーボ及びトラッキングサーボを行うための情報とアド レス情報とが、前述のようにスタンパを用 Vヽて射出成型などにより形成したエンボスピ ット(サーボピット)パターン等によって記録されている(プリフォーマット)。なお、フォ 一カスサーボは、反射膜の反射面を用いて行うことができる。トラッキングサーボを行 うための情報としては、例えば、光記録媒体の円周方向に形成したトラックに一定の 周期性を付与したゥォブルピットなどを用いることもできる。これらのエンボスピットパタ ーンゃゥォブルピットなどを、前記少なくともトラック情報予備アドレス情報を有するパ ターンとすることちでさる。
[0084] 一反射膜
前記反射膜は、前記第二の基板のサーボピットパターン表面に形成される。
前記反射膜の材料としては、前記パターンの形成で用いた反射膜と同様の材料を 用!/、ることができる。
[0085] その他の層
前記その他の層としては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、ギャップ層、選択反射層などが挙げられる。 [0086] —ギャップ層一
前記ギャップ層は、必要に応じて前記記録層と前記反射膜との間に設けられ、第二 の基板表面を平滑化する目的で形成される。また、記録層内に生成されるホログラム の大きさを調整するのにも有効である。即ち、前記記録層は、記録用参照光及び情 報光の干渉領域をある程度の大きさに形成する必要があるので、前記記録層とサー ボピットパターンとの間にギャップを設けることが有効となる。
前記ギャップ層は、例えば、サーボピットパターンの上力も紫外線硬化榭脂等の材 料をスピンコート等で塗布し、硬化させることにより形成することができる。前記ギヤッ プ層の厚みとしては、特に制限はなぐ目的に応じて適宜選択することができ、 1〜2 00 /z mが好ましい。
[0087] ここで、本発明の光記録媒体の実施形態の具体例について、図面を参照して更に 詳しく説明する。
<第一の実施形態 >
図 1は、本発明の第一の実施の形態における光記録媒体 23の構成を示す概略断 面図である。図 6は、該光記録媒体 23の一部分を切り取った斜視図である。この光記 録媒体 23では、ポリカーボネート榭脂製基板又はガラス基板 1にサーボピットパター ン 3が形成され、該サーボピットパターン 3上にアルミニウム、金、白金等でコーティン グして反射膜 2が設けられている。なお、図 1では第二の基板 1の半径方向に一定の 間隔で凸形状のサーボピットパターン 3が形成されている力 該サーボピットパターン 3がある部分とない部分が周期的に形成されていてもよい。また、このサーボピットの 高さは最大 1750 A ( 175nm)であり、基板を始め他の層の厚みに比べて充分に小さ いものである。
[0088] 前記第一の実施の形態にお!、て、前記ギャップ層を形成する場合には、該ギヤッ プ層は、紫外線硬化榭脂等の材料を第二の基板 1の反射膜 2上にスピンコート等に より塗布して形成することができる。該ギャップ層は、反射膜 2を保護すると共に、記 録層 4内に生成されるホログラムの大きさを調整するためにも有効である。つまり、記 録層 4において記録用の参照光及び情報光の干渉領域をある程度の大きさに形成 する必要があるため、記録層 4とサーボピットパターン 3との間にギャップを設けると有 効である。
ギャップ層上には記録層が積層され、第一の基板 5 (ポリカーボネート榭脂基板や ガラス基板)と第二の基板 1によって記録層 4を挟むことによって光記録媒体 23が構 成される。
[0089] 本第一の実施形態における光記録媒体 23では、第二の基板 1の厚みは 0. 6mm, 記録層 4は 0. 6mm、第一の基板 5は 0. 6mmであって、合計厚みは約 1. 8mmとな つている。前記ギャップ層を反射膜 2上に形成する場合には、該ギャップ層の厚みは 、 100 /z mが好ましい。
[0090] 次に、図 7を参照して、第一の実施の形態における光記録媒体 23周辺での光学的 動作を説明する。前記情報光及び参照光は対物レンズ 12によって反射膜 2上で焦 点を結ぶように光記録媒体 23に対して照射される。まず、記録用 Z再生用レーザー から出射され空間光変調素子(SLM : Spatial Light Modulator)により生成され た情報光及び記録用参照光は、偏光素子 16を通過して線偏光となりハーフミラー 1 7を通過して 1Z4波長板 15を通った時点で円偏光になる。該情報光及び記録用参 照光は、対物レンズ 12を透過し、光記録媒体 23の光の入出射面 Aから入射し、第一 の基板 5、記録層 4を通過し、反射膜 2で反射され、再度、記録層 4、第一の基板 5を 透過して入出射面 Aから出射する。
出射した戻り光は、対物レンズ 12を通過し、サーボ情報検出器 (不図示)でサーボ 情報が検出される。検出されたサーボ情報は、フォーカスサーボ、トラッキングサーボ 、スライドサーボ等に用いられる。記録層 4を構成するホログラム材料に対して、前記 情報光及び参照光は、充分に弱い強度のレーザ光が用いられるので、該情報光及 び参照光の照射によって感光しないようになっている。そのため、該情報光及び参照 光が反射膜 2で乱反射したとしても、記録層 4には影響を与えないように設定されて いる。
前記サーボ情報により検出された該情報光及び参照光の位置を基準として、該情 報光及び参照光の光軸が前記サーボピットパターンの上方の記録層に記録されな いよう、該サーボピットパターンの位置から、一定の移動量 A L移動した後、記録しう る強度の情報光及び参照光が、感光層に干渉像を生成するように光記録媒体 23に 照射される。
該情報光及び記録用参照光は入出射面 Aから入射し、記録層 4で干渉し合って干 渉像をそこに生成する。その後、情報光及び記録用参照光は記録層 4を通過し、反 射膜 2で反射されて戻り光となる。該反射膜はサーボピットパターンのような突起はな く平坦部分であり、乱反射はおきることなぐ反射されて戻り光となり、正常な記録が 得られる。
[0091] 記録の定着
前記記録層 4に干渉像の記録がなされた後、少なくとも 28時間以内に、定着光が 前記記録領域に対して照射され、前記干渉像の記録が定着される。
[0092] <第二の実施形態 >
図 2は、本発明の第二の実施形態における光記録媒体 24の構成を示す概略断面 図である。図 2は、前記光記録媒体 24の一部を切断した斜視図である。前記光記録 媒体 24は、図 2に示す光記録媒体 23と同様の外観形状を有しているが、光記録媒 体 23が基板上にサーボピットパターンが形成されていたのに対し、本光記録媒体 24 は、第二の基板 1及び記録層 4の間に、パターン層 9を形成したものである。該パター ン層 9は、屈折率が異なる部分を周期的に形成した層である。光記録媒体 24の半径 方向に 2 m間隔で屈折率の高い部分と低い部分を交互に形成したもので、前記パ ターン層 9の厚みは、 であり、高屈折率の部分の屈折率は、 1. 6であり、低屈 折率の部分の屈折率は、 1. 5である。前記第二の基板面には反射膜 2が形成されて いる。
[0093] また、光記録媒体 24では、第二の基板 1の厚みは 1. Omm、記録層 4は 0. 6mm、 パターン層 9は 1 μ m、第一の基板 5は 0. 4mmであって、合計厚みは約 2. Ommと なっている。
[0094] 情報の記録又は再生を行う場合、このような構造を有する光記録媒体 24に対して、 前記第一の実施形態と同様に前記情報光及び参照光が照射され、トラッキングサー ボがなされ、記録層 4の適切な位置に干渉像が形成され、記録される。
[0095] 記録の定着
前記記録の定着は、前記第一の実施形態と同様に行われる。 [0096] (光再生方法)
本発明の光再生方法は、本発明の前記光記録方法により記録層 4に記録された干 渉像に参照光を照射して情報を再生する。前記記録層 4に記録された干渉像に対し て前記参照光を照射するには、図 7に示すように、対物レンズ 12を微調整し、前記参 照光が前記記録層 4の干渉像が記録されている部分に焦点を設定し、照射する。該 照射により、前記干渉像から回折光が生成され、該回折光を、対物レンズ 12を透過 させ、更に、ダイクロイツクミラー 13、 1/4波長板 15を透過させ、ハーフミラー 17で反 射させて検出器 14で回折光力 情報を再生する。
[0097] 本発明の光記録方法及び光再生方法では、上述したように、二次元的な強度分布 が与えられた情報光と、該情報光と強度がほぼ一定な参照光とを感光性の記録層内 部で重ね合わせ、それらが形成する干渉像を利用して記録層内部に光学特性の分 布を生じさせることにより、情報を記録する。一方、書き込んだ情報を読み出す (再生 する)際には、記録時と同様の配置で参照光のみを記録層に照射し、記録層内部に 形成された光学特性分布に対応した強度分布を有する再生光として記録層から出 射される。
ここで、本発明の光記録方法及び光再生方法は、以下に説明する本発明の光記 録再生装置を用いて行われる。
[0098] 本発明の光記録方法及び光再生方法に使用される光記録再生装置について図 8 を参照して説明する。
図 8は、本発明の一実施形態に係る光記録再生装置の全体構成図である。なお、 光記録再生装置は、光記録装置と光再生装置を含んでなる。
この光記録再生装置 100は、光記録媒体が取り付けられるスピンドル 81と、このス ピンドル 81を回転させるスピンドルモータ 82と、光記録媒体の回転数を所定の値に 保つようにスピンドルモータ 82を制御するスピンドルサーボ回路 83とを備えて!/、る。 また、光記録再生装置 100は、光記録媒体に対して情報光と記録用参照光とを照 射して情報を記録すると共に、光記録媒体に対して再生用参照光を照射し、再生光 を検出して、光記録媒体に記録されている情報を再生するためのピックアップ 31と、 このピックアップ 31を光記録媒体の半径方向に移動可能とする駆動装置 84とを備え ている。
[0099] 光記録再生装置 100は、ピックアップ 31の出力信号よりフォーカスエラー信号 FE、 トラッキングエラー信号 TE、及び再生信号 RFを検出するための検出回路 85と、この 検出回路 85によって検出されるフォーカスエラー信号 FEに基づいて、ピックアップ 3 1内のァクチユエータを駆動して対物レンズ (不図示)を光記録媒体の厚み方向に移 動させてフォーカスサーボを行うフォーカスサーボ回路 86と、検出回路 85によって検 出されるトラッキングエラー信号 TEに基づいてピックアップ 31内のァクチユエータを 駆動して対物レンズを光記録媒体の半径方向に移動させてトラッキングサーボを行う トラッキングサーボ回路 87と、トラッキングエラー信号 TE及び後述するコントローラか らの指令に基づいて駆動装置 84を制御してピックアップ 31を光記録媒体の半径方 向に移動させるスライドサーボを行うスライドサーボ回路 88とを備えている。
[0100] 光記録再生装置 100は、更に、ピックアップ 31内の後述する CMOS又は CCDァレ ィの出力データをデコードして、光記録媒体のデータエリアに記録されたデータを再 生したり、検出回路 85からの再生信号 RFより基本クロックを再生したりアドレスを判 別したりする信号処理回路 89と、光記録再生装置 100の全体を制御するコントロー ラ 90と、このコントローラ 90に対して種々の指示を与える操作部 91とを備えている。 コントローラ 90は、信号処理回路 89より出力される基本クロックやアドレス情報を入 力すると共に、ピックアップ 31、スピンドルサーボ回路 83、及びスライドサーボ回路 8 8等を制御するようになっている。スピンドルサーボ回路 83は、信号処理回路 89より 出力される基本クロックを入力するようになっている。コントローラ 90は、 CPU (中央 処理装置)、 ROM (リード オンリ メモリ)、及び RAM (ランダム アクセス メモリ)を 有し、 CPUが、 RAMを作業領域として、 ROMに格納されたプログラムを実行するこ とによって、コントローラ 90の機能を実現するようになっている。
[0101] 本発明の光記録方法及び光再生方法に使用される光記録再生装置は、情報光及 び参照光を用いて、記録又は再生、フォーカスやトラッキング制御を行うことができ、 記録再生の効率が高く、光記録及び光再生装置の誤差などから生ずる該複数のレ 一ザ光の光軸のずれによる影響を受けず高密度記録を実現することができる。また、 光記録媒体自体の層構成自体が簡易となる優れた光記録媒体を得ることができる。 実施例
[0102] 以下、本発明の実施例について説明する力 本発明はこれらの実施例に何ら限定 されるものではない。
[0103] (実施例 1)
本発明の光記録方法を実施するために、光記録媒体を作製することができる。
[0104] 一光記録媒体の作製
前記光記録媒体は、第一の基板、サーボピットパターンを形成した第二の基板と、 記録層とからなる光記録媒体を作製することができる。
前記第二の基板としては、直径 120mm、板厚 0. 6mmの DVD+RW用に用いら れている一般的なポリカーボネート榭脂製基板を使用することができる。この基板表 面には、図 4に示すように、スタンパにより、凹状のアドレスが、深さ 100nm、直径 1, OOOnmで、円周方向に ピッチ、半径方向に 1. 6 mピッチでサーボピットパタ ーンが形成されている。
まず、第二の基板のサーボピットパターン表面に反射膜を成膜する。反射膜材料に はアルミニウム (A1)を用いた。成膜は DCマグネトロンスパッタリング法により厚み 100 nmの A1反射膜を成膜する。前記反射膜の上にギャップ層として、厚み 100 mのポ リカーボネートフィルムを用い、紫外線硬化榭脂にて接着することができる。
[0105] 次に、記録層の材料としては、下記組成のフォトポリマー塗布液を調製することがで きる。
-フォトポリマー塗布液の組成 -
•ジ(ウレタンアタリレート)オリゴマー
(Echo Resins社製、 ALU— 351) 59質量部
'イソボル-ルアタリレート 30質量部
•ビ-ノレべンゾエート 10質量部
•重合開始剤
(チバスペシャルティケミカルズ社製、ィルガキュア 784) · · 1質 [0106] 得られたフォトポリマー塗布液を前記第二の基板上にディスペンサーを用いて盛り つけ、このフォトポリマー上に、直径 12cm、厚み 0. 6mmのポリカーボネート榭脂製 第一の基板を押し付けながらディスク端部と該第一の基板を接着剤で貼り合せること ができる。
なお、ディスク端部には、該フォトポリマー層が厚み 500 mとなるようにフランジ部 が設けてあり、ここに、前記第一の基板を接着することによってフォトポリマー層の厚 みは決定され、余分なフォトポリマーはあふれ出て、除去される。以上により、実施例 1の光記録媒体を作製する。なお、図 1は、本実施例に類似の形態を示す概略断面 図である。
[0107] <情報光及び参照光の光軸の移動量 >
波長 532nmの情報光を、記録がされない範囲の照射エネルギー 25 J/cm2以内 で得られた光記録媒体のパターン部分に照射し、反射光を受光し、ジャストピントとな る位置になるまで該情報光のトラッキングサーボを行 、、該情報光の光軸のアドレス を検出し、該アドレスを基準として、記録すべき位置になるよう前記情報光の光軸を、 所定の A Lだけ移動量する。前記アドレスの検出には、必要に応じてフォーカスサー ボを行い、前記情報光の焦点位置を合わせた後、トラッキングサーボを行うことができ る。
図 3に示す移動量 A Lは、前記アドレスを原点とし、前記記録層と水平方向の層面 に X軸及び Y軸をとつたとき、例えば、該 X軸から、 Y軸からの位置(2 m, 3 m)の ように、数値として把握することができる。前記アドレス上の感光層には記録すること ができないため、所定の記録すべき領域まで、移動する、前記移動量 A Lは、予め形 成されて!/、るアドレス部以外の記録領域に記録されるよう移動する量である。前記ァ ドレス部以外の記録領域としたのは、図 5に示すように、前記アドレス部が形成されて いる凹凸のパターン上に前記情報光及び参照光の焦点が合致してしまうと、凹凸部 分で光の散乱が生じ適切な干渉像が生成されず記録の品質が低下してしまうからで ある。
[0108] <記録層への記録 >
前記情報光及び参照光の照射の際に所定の移動量 A L (例えば、 X軸から 2 /z m、 Y軸から 3 μ m)移動したことを確認し、記録層に対して照射する。
前記記録層への記録は、図 7に示すように、前記記録層 4に対して、前記情報光及 び記録用参照光を用い、照射エネルギー、約 50 /zjZcm2を lOOnsec照射し、干渉 像を形成し、該干渉像を記録層に記録することができる。
[0109] <記録の再生品質の評価 >
前記記録の再生品質の評価は、図 8に示す、前記光記録再生装置 100により行い
、前記参照光を光記録媒体に照射し、前記干渉像から回折光を生じさせ、図 9に示 す検出器 14で読み取り、元の情報を再生し、エラー (個 Zフレーム)が少ないことを
½認することができる。
産業上の利用可能性
[0110] 本発明の光記録方法は、レーザ光を用いて、記録又は再生、フォーカスやトラツキ ング制御を行う際に、記録再生の効率が高ぐ光記録及び光再生装置の誤差などか ら生ずる該複数のレーザ光の光軸のずれによる影響を受けず、光記録媒体自体の 層構成が簡易となる優れた記録方法であり、高密度画像記録が可能なホログラム型 の光記録方法に好適に用いられる。
本発明の光記録媒体は、レーザ光を用いて、記録又は再生、フォーカスやトラツキ ング制御を行う際に、記録再生の効率が高ぐ光記録及び光再生装置の誤差などか ら生ずる該複数のレーザ光の光軸のずれによる影響を受けず、光記録媒体自体の 層構成が簡易な優れた光記録媒体として幅広く用いられる。

Claims

請求の範囲
[1] ホログラフィを利用して情報を記録する記録層を備え、かつ少なくともトラック情報及 びアドレス情報を有するパターンを備えた光記録媒体に対し、情報光及び参照光の 少なくともいずれかを照射し、反射光により前記パターンの位置を検出するパターン 位置検出ステップと、
検出されたパターン位置情報に基づいて、該情報光及び該参照光の光軸を前記 パターン以外の位置に移動し、前記情報光及び前記参照光を前記記録層に照射し 、干渉像を形成し、該干渉像を前記記録層に記録する干渉像記録ステップと を含むことを特徴とする光記録方法。
[2] 光記録媒体に対し、情報光及び参照光の少なくともいずれかを照射し、反射光によ り該情報光及び該参照光の感光層の厚み方向の焦点位置を検出する焦点位置検 出ステップを含む請求項 1に記載の光記録方法。
[3] パターンが、光記録媒体における少なくとも 3箇所に形成された請求項 1から 2のい ずれかに記載の光記録方法。
[4] ノターン力 凹凸パターン及び屈折率の異なる材料力もなるパターンの少なくとも
V、ずれかを含む請求項 1から 3の 、ずれかに記載の光記録方法。
[5] パターンが、基板上に形成された請求項 1から 4のいずれかに記載の光記録方法。
[6] パターン位置検出ステップにおける水平位置の検出方法力 3ビーム法、プッシュ プル法及び位相差検出法の少なくともいずれかである請求項 1から 5のいずれかに 記載の光記録方法。
[7] パターン位置検出ステップにおける水平位置の検出方法力 位置情報パターンに 情報光及び参照光のいずれかを照射し、反射光を受光し、該反射光の信号強度が 最大となる位置を検出する請求項 1から 6のいずれかに記載の光記録方法。
[8] パターン位置検出ステップにおける水平位置の検出方法力 位置情報パターンに 情報光及び参照光のいずれかを照射し、反射光を受光し、該反射光の信号エラー が最小となる位置を検出する請求項 1から 7のいずれかに記載の光記録方法。
[9] 光記録媒体が、第一の基板と、記録層と、パターンと、第二の基板とをこの順に有 する請求項 1から 8のいずれかに記載の光記録方法。
[10] 光記録媒体が、反射型ホログラムである請求項 1から 9のいずれかに記載の光記録 方法。
[11] 情報光及び参照光の照射が、該情報光の光軸と該参照光の光軸とが同軸となるよ うにして行われる請求項 1から 10のいずれかに記載の光記録方法。
[12] ホログラフィを利用して情報を記録する記録層を備え、かつ少なくともトラック情報 及びアドレス情報を有するパターンを備えた光記録媒体に対し、情報光及び参照光 の少なくともいずれかを照射し、反射光により前記パターン位置を検出するパターン 位置検出手段と、
検出されたパターン位置情報に基づいて、該情報光及び該参照光の光軸の位置 を前記パターン以外の位置に移動し、前記情報光及び前記参照光を前記記録層に 照射し、干渉像を形成し、該干渉像を前記記録層に記録する干渉像記録手段と を有することを特徴とする光記録装置。
[13] 光記録媒体に対し、情報光及び参照光の少なくともいずれかを照射し、反射光によ り該情報光及び該参照光の感光層の厚み方向の焦点位置を検出する焦点位置検 出手段を含む請求項 12に記載の光記録装置。
[14] 請求項 1から 11のいずれかに記載の光記録方法により記録された光記録媒体。
[15] 請求項 1から 11のいずれかに記載の光記録方法により記録層に形成された干渉像 に参照光を照射して、該干渉像に対応した記録情報を再生することを特徴とする光 記録再生方法。
[16] 参照光が、光記録媒体の記録に用いられた参照光と同じ角度になるようにして、参 照光を干渉像に照射して記録情報を再生する請求項 15に記載の光記録再生方法。
PCT/JP2006/314650 2005-08-24 2006-07-25 光記録方法、光記録装置、光記録媒体及び光記録再生方法 WO2007023635A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06781562A EP1926092A4 (en) 2005-08-24 2006-07-25 OPTICAL RECORDING METHOD, OPTICAL RECORDER, OPTICAL RECORDING MEDIUM, AND OPTICAL RECORDING / REPRODUCING METHOD
US12/064,268 US20090245052A1 (en) 2005-08-24 2006-07-25 Optical recording method, optical recording apparatus, optical recording medium, and optical recording and reproducing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-243476 2005-08-24
JP2005243476A JP2007058992A (ja) 2005-08-24 2005-08-24 光記録方法、光記録装置、光記録媒体及び光記録再生方法

Publications (1)

Publication Number Publication Date
WO2007023635A1 true WO2007023635A1 (ja) 2007-03-01

Family

ID=37771386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314650 WO2007023635A1 (ja) 2005-08-24 2006-07-25 光記録方法、光記録装置、光記録媒体及び光記録再生方法

Country Status (5)

Country Link
US (1) US20090245052A1 (ja)
EP (1) EP1926092A4 (ja)
JP (1) JP2007058992A (ja)
TW (1) TW200721143A (ja)
WO (1) WO2007023635A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100975066B1 (ko) * 2008-08-28 2010-08-11 삼성전자주식회사 홀로그래픽 정보 기록/재생장치 및 기록층 위치 조정 방법
TWI384477B (zh) * 2008-09-03 2013-02-01 Ind Tech Res Inst 可重複讀寫之資料儲存媒體
EP2180469A1 (en) * 2008-10-21 2010-04-28 Thomson Licensing Holographic storage system with improved beam overlap
KR101659360B1 (ko) * 2012-05-30 2016-09-23 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 홀로그래픽 이미징 장치 및 방법
WO2015129016A1 (ja) * 2014-02-28 2015-09-03 日立コンシューマエレクトロニクス株式会社 情報記録再生装置および情報記録方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311936A (ja) * 1998-02-27 1999-11-09 Hideyoshi Horigome 光情報記録媒体
WO2004021339A1 (ja) * 2002-08-01 2004-03-11 Pioneer Corporation ホログラム記録再生装置及び方法ならびにホログラム記録媒体
JP2005182910A (ja) * 2003-12-19 2005-07-07 Pioneer Electronic Corp ホログラム記録再生装置
JP2005302149A (ja) * 2004-04-12 2005-10-27 Tdk Corp ホログラフィック記録媒体、及びその記録再生方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126335A (ja) * 1997-10-24 1999-05-11 Sony Corp 光情報記録媒体、光情報記録装置および方法ならびに光情報再生装置および方法
US6738322B2 (en) * 1999-07-29 2004-05-18 Research Investment Network, Inc. Optical data storage system with focus and tracking error correction
JP3639202B2 (ja) * 2000-07-05 2005-04-20 株式会社オプトウエア 光情報記録装置および方法、光情報再生装置および方法、ならびに光情報記録再生装置および方法
US7706233B2 (en) * 2003-03-20 2010-04-27 Optware Corporation Optical-disk recording method, recording apparatus and reproducing apparatus
JP4199099B2 (ja) * 2003-12-09 2008-12-17 パイオニア株式会社 ホログラム記録媒体及び記録再生システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311936A (ja) * 1998-02-27 1999-11-09 Hideyoshi Horigome 光情報記録媒体
WO2004021339A1 (ja) * 2002-08-01 2004-03-11 Pioneer Corporation ホログラム記録再生装置及び方法ならびにホログラム記録媒体
JP2005182910A (ja) * 2003-12-19 2005-07-07 Pioneer Electronic Corp ホログラム記録再生装置
JP2005302149A (ja) * 2004-04-12 2005-10-27 Tdk Corp ホログラフィック記録媒体、及びその記録再生方法

Also Published As

Publication number Publication date
US20090245052A1 (en) 2009-10-01
TW200721143A (en) 2007-06-01
JP2007058992A (ja) 2007-03-08
EP1926092A1 (en) 2008-05-28
EP1926092A4 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
WO2007026483A1 (ja) 光記録方法、光記録装置、光記録媒体及び光記録再生方法
US7835249B2 (en) Optical recording method, optical recording apparatus, optical recording medium, optical reproducing method, and optical reproducing apparatus
JP2006301171A (ja) 光記録媒体及びその製造方法、並びに、光記録媒体の記録方法及び光記録媒体の再生方法
EP1942355A1 (en) Filter for optical recording medium, method for manufacturing such optical recording medium, optical recording medium, method for recording in such optical recording medium and method for reproducing from such optical recording medium
US20080316896A1 (en) Optical Recording/Reproducing Apparatus, Optical Recording Method, and Optical Reproduction Method
WO2007023635A1 (ja) 光記録方法、光記録装置、光記録媒体及び光記録再生方法
JP2006301127A (ja) 光記録媒体及びその製造方法、並びに、光記録媒体の記録方法及び光記録媒体の再生方法
WO2006137367A1 (ja) 光記録方法、光記録装置及び光記録媒体
JP4373383B2 (ja) 光記録方法、光記録装置、光記録媒体及び光記録再生方法
JP2007066462A (ja) 光記録再生装置及び光記録媒体の記録再生方法
US20060077871A1 (en) Optical recording medium
JP2007207387A (ja) 光再生方法及び光再生装置
JP2007257800A (ja) 光記録方法及び光再生方法、並びに光記録装置及び光再生装置
WO2006059517A1 (ja) 光記録媒体用フィルタ、光記録媒体及びその製造方法、並びに光記録方法及び光再生方法
JP2007066400A (ja) 光記録方法、光記録装置及び光記録媒体
JP2007059010A (ja) 光記録媒体用フィルタ、光記録媒体及びその製造方法、並びに、光記録方法及び光再生方法
JP2007240562A (ja) 光再生方法及び光再生装置
JP2007066461A (ja) 光記録媒体、並びにその記録方法及び再生方法
WO2007072666A1 (ja) 光情報記録媒体、情報記録方法及び情報記録システム
JP2006184897A (ja) 光記録媒体用フィルタ、光記録媒体及びその製造方法、並びに光記録方法及び光再生方法
JP2007171762A (ja) 光情報記録媒体、情報記録方法及び情報記録システム
JP2007087561A (ja) 光記録方法、光記録装置、光記録媒体及び光再生方法
WO2006059531A1 (ja) 光記録媒体用フィルタ、光記録媒体及びその製造方法、並びに光記録方法及び光再生方法
JP2007171486A (ja) 光情報記録媒体、情報記録方法及び情報記録システム
JP2007206460A (ja) 光記録用組成物及びその製造方法、並びに光記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12064268

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006781562

Country of ref document: EP