WO2007018306A1 - 水素貯蔵装置 - Google Patents

水素貯蔵装置 Download PDF

Info

Publication number
WO2007018306A1
WO2007018306A1 PCT/JP2006/315987 JP2006315987W WO2007018306A1 WO 2007018306 A1 WO2007018306 A1 WO 2007018306A1 JP 2006315987 W JP2006315987 W JP 2006315987W WO 2007018306 A1 WO2007018306 A1 WO 2007018306A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
storage device
adsorbing member
liquid
hydrogen storage
Prior art date
Application number
PCT/JP2006/315987
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Hirose
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005230076A external-priority patent/JP4706384B2/ja
Priority claimed from JP2005230077A external-priority patent/JP5124918B2/ja
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CA2618777A priority Critical patent/CA2618777C/en
Priority to US11/990,126 priority patent/US20100213084A1/en
Priority to CN2006800292569A priority patent/CN101238323B/zh
Priority to DE112006002110T priority patent/DE112006002110B4/de
Publication of WO2007018306A1 publication Critical patent/WO2007018306A1/ja
Priority to US13/962,585 priority patent/US20130334067A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • F17C2223/045Localisation of the removal point in the gas with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a hydrogen storage device.
  • Conventional hydrogen storage methods include, for example, a method in which a pressure of about 2 OMPa is applied to hydrogen to store hydrogen in a high-pressure hydrogen cylinder, or hydrogen that has been cooled to about 20 K and liquefied is liquid. There is a method of storing in a hydrogen cylinder. Furthermore, a carbon material having pores as described in JP-A 2 0 0 1-2 2 0 1 0 1 (hereinafter sometimes referred to as Patent Document 1), and a container containing the carbon material, Hydrogen storage devices containing are known. Disclosure of the invention
  • a tank or cylinder made of stainless steel, for example is used as a container for storing hydrogen.
  • heat from the outside could not be sufficiently blocked, and it was sometimes difficult to store hydrogen for a long time.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a hydrogen storage device capable of storing hydrogen over a long period of time.
  • a hydrogen storage device comprises: a heat insulating container having an internal space, a liquid hydrogen inlet, and a hydrogen gas outlet; and a hydrogen adsorption member disposed in the internal space. It is.
  • the hydrogen storage device of the present invention uses a heat insulating container, the conduction of heat from the outside to the internal space can be suppressed, and the vaporization of liquid hydrogen stored in the hydrogen storage device can be suppressed. Further, a hydrogen adsorbing member is disposed in the internal space. As a result, the hydrogen adsorbent is filled into the internal space. Hydrogen adsorbing member arranged in the internal space is hydrogen Adsorb and retain molecules. Since the hydrogen held in the hydrogen adsorbing member is held in the apparatus even after all of the liquid hydrogen stored in the hydrogen storage apparatus has evaporated, the hydrogen storage apparatus of the present invention can store hydrogen for a long period of time. is there.
  • the hydrogen adsorbing member means a member made of a substance (hydrogen adsorbing material) capable of adsorbing and holding hydrogen molecules on the surface thereof, and the substance captures and absorbs atomic hydrogen.
  • a distinction is made from alloys.
  • the hydrogen adsorbing member may be disposed so as to occupy a part of the internal space.
  • a portion of the internal space is filled with the hydrogen adsorbent.
  • the hydrogen adsorption member may be disposed so as to occupy 5 to 30% of the internal space. If the amount occupied by the hydrogen adsorbing member is 30% or less, the filling amount of liquid hydrogen can be made sufficient. Further, if the amount occupied by the hydrogen adsorbing member is 5% or more, the amount of hydrogen retained in the hydrogen adsorbing member can be made sufficient. More preferably, the hydrogen adsorption member is disposed so as to occupy 10 to 25% of the internal space.
  • the anti-gravity direction side when the internal space is divided so that the volume is 1: 1 on the plane orthogonal to the vertical line ie, the hydrogen storage device
  • the hydrogen adsorbing member may be arranged on the upper part.
  • the hydrogen gas generated when filling with liquid hydrogen is adsorbed and held by a hydrogen adsorbing member disposed at the top of the hydrogen storage device.
  • Adsorption heat is generated when hydrogen gas is adsorbed to the hydrogen adsorbing member, but the hydrogen gas generated during filling is liquid hydrogen temperature (20.4 K). This low-temperature hydrogen gas takes away the heat of adsorption, so that the temperature rise in the hydrogen storage device can be suppressed.
  • the hydrogen gas outlet may be provided so that the hydrogen adsorbed on the hydrogen adsorption member can be taken out. This makes it possible to extract from the vaporized hydrogen.
  • a hydrogen gas outflow port may be provided at a location where the hydrogen adsorbing member is disposed.
  • a hydrogen adsorbing member When a hydrogen adsorbing member is arranged in a part of the internal space, the gravity direction side when the internal space is divided so that the volume is 1: 1 on the plane perpendicular to the vertical line (ie, the hydrogen storage device A hydrogen adsorbing member may be arranged in the lower part.
  • the hydrogen adsorbing member When the hydrogen adsorbing member is disposed at the lower part of the hydrogen storage device, the hydrogen adsorbing member can sufficiently adsorb hydrogen. Therefore, even when liquid hydrogen no longer exists in the apparatus, a large amount of hydrogen can be retained.
  • the hydrogen storage device of the present invention may further include a liquid hydrogen introduction pipe that communicates a portion of the internal space where the hydrogen adsorbing member is not disposed and a liquid hydrogen inlet.
  • a liquid hydrogen inflow port is formed, and the space surrounded by the inner wall of the heat insulating container and the hydrogen adsorbing member (hereinafter, this space may be referred to as “liquid hydrogen storage / retention unit”).
  • liquid hydrogen When liquid hydrogen is introduced into the liquid hydrogen storage section through the liquid hydrogen introduction pipe, the liquid hydrogen boils by contacting the inner wall of the heat insulating container to generate hydrogen gas.
  • This hydrogen gas is discharged from the hydrogen gas discharge pipe after passing through the hydrogen adsorbing member.
  • the temperature of the hydrogen gas generated by the boiling of liquid hydrogen is substantially the same as the boiling point of liquid hydrogen (20.4 K).
  • this low-temperature hydrogen gas passes through the hydrogen adsorbing member, heat is generated from the hydrogen adsorbing member. The It is discharged out of the insulated container while stealing. Therefore, it is possible to efficiently release the heat inside the insulated container to the outside of the container.
  • the hydrogen storage device of the present invention can store hydrogen for a long period of time. Is possible.
  • the hydrogen storage device of the present invention may further include a partition member that partitions the hydrogen adsorption member and the liquid hydrogen storage unit.
  • a partition member that partitions the hydrogen adsorption member and the liquid hydrogen storage unit.
  • the hydrogen adsorbing member and the liquid hydrogen storage unit may be arranged in the horizontal direction in the heat insulating container.
  • the hydrogen storage device of the present invention is provided with a partition member that partitions the hydrogen adsorbing member and the liquid hydrogen storage portion.
  • a partition wall may be provided in the hydrogen adsorbing member so that hydrogen gas passes through the hydrogen adsorbing member in a meandering manner.
  • the hydrogen adsorption member may be provided with a slit.
  • the surface area of the hydrogen adsorbing member can be increased. Therefore, the rate of heat exchange between the hydrogen gas and the hydrogen adsorption member and the adsorption rate of the hydrogen gas can be increased.
  • Examples of the hydrogen adsorbing member used in the hydrogen storage device of the present invention include activated carbon, carbon nanotube, or porous metal organic structure (MOF).
  • Examples of porous metal organic structures include Zn 4 0 (dimethyl 1,4-benzenedicarboxylate) 3
  • a hydrogen storage device capable of storing hydrogen over a long period of time is provided. Can be provided. Brief Description of Drawings
  • FIG. 1A is a perspective view of a hydrogen storage device according to a first embodiment of the present invention.
  • FIG. 1 B is a cross-sectional view taken along line AA of the hydrogen storage device according to the first embodiment of the present invention.
  • FIG. 2 A is a perspective view of a hydrogen storage device according to a second embodiment of the present invention.
  • FIG. 2B is a cross-sectional view taken along line C_C of the hydrogen storage device according to the second embodiment of the present invention.
  • FIG. 3A is a perspective view of a hydrogen storage device according to a third embodiment of the present invention.
  • FIG. 3B is a sectional view taken along line A_A of the hydrogen storage device according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along line AA of the hydrogen storage device according to the first modification of the third embodiment.
  • FIG. 5 is a cross-sectional view taken along line AA of the hydrogen storage device according to the second modification of the third embodiment.
  • FIG. 6A is a perspective view of a hydrogen storage device according to a fourth embodiment of the present invention.
  • FIG. 6B is a cross-sectional view of the hydrogen storage device according to the fourth embodiment of the present invention, taken along line BB.
  • FIG. 7A is a perspective view of a hydrogen storage device according to a fifth embodiment of the present invention.
  • FIG. 7B is a cross-sectional view taken along line C_C of the hydrogen storage device according to the fifth embodiment of the present invention.
  • FIG. 1A shows a perspective view of the hydrogen storage device according to the first embodiment of the present invention
  • FIG. 1B shows a cross-sectional view taken along line AA of FIG. 1A.
  • the hydrogen storage device includes a heat insulating container 10, a liquid hydrogen inlet 20 and a hydrogen gas outlet 30 provided at the top of the heat insulating container 10.
  • Insulated container On the anti-gravity direction side (ie, the upper part of the hydrogen storage device) when the internal space 40 is divided so that the volume is 1: 1 on the plane perpendicular to the vertical line B, the hydrogen adsorbing member 5 0 is placed.
  • the liquid hydrogen inlet 20 and a portion of the internal space 40 where the hydrogen adsorbing member 50 is not disposed are communicated with each other through a liquid hydrogen introduction pipe 60.
  • the hydrogen gas outlet 30 is provided at the top of the heat insulating container 10 so that the hydrogen adsorbed on the hydrogen adsorbing member 50 can be taken out.
  • the heat insulating container 10 may be a US or stainless steel tank provided with a heat insulating material (multi-layer insulation: M L I) on the outer surface, but is not limited thereto.
  • M L I multi-layer insulation
  • M L I is configured by alternately laminating thin-film radiation shield materials with high reflectivity and spacer materials that prevent heat conduction between the shield materials.
  • the shielding material a polyester film or the like deposited on one or both sides of aluminum is used, and as the spacer material, a glass fiber cloth, paper, nylon net, or the like is used.
  • M L I can reduce the amount of heat generated by radiation to 1 Z (N + 1) by inserting N shield materials o
  • the hydrogen adsorbent constituting the hydrogen adsorbing member 5 0, include activated carbon, carbon nanotube, Z n 4 0 (1, 4 _ -benzenedicarboxylic acid dimethyl) 3 of MOF (porous metal organic framework), and the like It is done. These materials are used in the form of granules, pellets, or powders of these materials packed in a bag. In this embodiment, pelletized activated carbon is used.
  • a partition was formed in the internal space 40 with a metal mesh or the like, and pellet-like activated carbon was placed in the partition.
  • Liquid hydrogen injected from the liquid hydrogen inlet 20 is supplied to a portion of the internal space 40 where the hydrogen adsorbing member 50 is not disposed via the liquid hydrogen introduction pipe 60.
  • the liquid hydrogen supplied through the liquid hydrogen introduction pipe 60 does not come into direct contact with the hydrogen adsorbing member 50.
  • a part of the supplied liquid hydrogen is vaporized to generate hydrogen gas near the liquid hydrogen temperature.
  • This water The raw gas cools the internal space 40 and the hydrogen adsorbing member 50, and is discharged from the hydrogen gas outlet 30, and part of the gas is adsorbed and held by the hydrogen adsorbing member 50.
  • Adsorption heat is generated when hydrogen gas is adsorbed by the hydrogen adsorbing member 50, but the temperature rise in the internal space 40 and the hydrogen adsorbing member 50 is suppressed because it is cooled by the hydrogen gas near the liquid hydrogen temperature. .
  • liquid hydrogen may touch the hydrogen adsorbing member 50. This is because even if liquid hydrogen touches the hydrogen adsorbing member 50 to which hydrogen has been sufficiently adsorbed, heat of adsorption is not generated, and liquid hydrogen does not boil. In this case, a portion filled with the hydrogen adsorbing member 50 can be used as a buffer portion for the expanded liquid hydrogen.
  • the hydrogen storage device it is possible to prevent bumping due to direct contact between liquid hydrogen and the hydrogen adsorbing member 50, and to shorten the filling time of liquid hydrogen.
  • the hydrogen charged in the hydrogen storage device is taken out from the hydrogen gas outlet 30 and used.
  • a heater may be provided in the internal space 40 to facilitate hydrogen removal. Even after the liquid hydrogen filled in the internal space 40 is exhausted, hydrogen is adsorbed by the hydrogen adsorbing member 50, so that the hydrogen storage device according to the present invention can store hydrogen for a long time.
  • FIG. 2A shows a perspective view of the hydrogen storage device according to the second embodiment of the present invention
  • FIG. 2B shows a cross-sectional view taken along line C 1 C of FIG. 2A
  • the hydrogen storage device according to the second embodiment includes a heat insulating container 10, a liquid hydrogen inlet 20 and a hydrogen gas outlet 30 provided at the upper part of the heat insulating container 10. Hydrogen is adsorbed on the gravitational direction side (ie, the lower part of the hydrogen storage device) when the inner space 40 of the heat insulating container 10 is divided so that the volume is 1: 1 on the plane perpendicular to the vertical line B. Member 50 is disposed. As the heat insulating container 10 and the hydrogen adsorbing member 50, those described in the first embodiment can be used. In this embodiment, the pellet shape The activated carbon was used and arranged in the same manner as in the first embodiment.
  • Liquid hydrogen injected from the liquid hydrogen inlet 20 is supplied to the internal space 40.
  • a small amount of liquid hydrogen may be gradually supplied into the internal space 40 for cooling.
  • the hydrogen charged in the hydrogen storage device is taken out from the hydrogen gas outlet 30 and used.
  • the hydrogen adsorbing member 50 according to the second embodiment can adsorb and hold a large amount of hydrogen in contact with liquid hydrogen. Therefore, even after the liquid hydrogen is exhausted, the hydrogen storage device according to the present invention can store hydrogen for a long period of time.
  • an open valve may be further provided to suppress an increase in the internal pressure of the heat insulating container.
  • the anti-gravity direction side i.e., the upper part of the hydrogen storage device
  • the gravity direction side i.e. A hydrogen adsorbing member
  • FIG. 3A shows a perspective view of the hydrogen storage device according to the third embodiment of the present invention
  • FIG. 3B shows a cross-sectional view taken along line AA of FIG. 3A
  • the hydrogen storage device according to the third embodiment has an adiabatic container 110, a liquid hydrogen introduction pipe 120 and a hydrogen gas discharge pipe 130 provided on the upper part of the heat insulation container 110.
  • the liquid hydrogen introduction pipe 1 2 0 forms a liquid hydrogen inlet
  • the hydrogen gas discharge pipe 1 3 0 forms a hydrogen gas outlet.
  • the heat insulating container 1 1 0 is composed of a tank 1 1 2 and a heat insulating material 1 1 4 that covers the outside of the tank 1 1 2.
  • a SUS or stainless steel tank can be used, but is not limited thereto.
  • Multi-layer insulation can be used as the heat insulating material 1 1 4.
  • a specific example of M L I is the same as that in the first embodiment.
  • a hydrogen adsorbing member 140 is disposed inside the heat insulating container 110.
  • a specific example of the hydrogen adsorbent constituting the hydrogen adsorbing member 140 is the same as in the case of the first embodiment.
  • Liquid hydrogen which is a space surrounded by the inner wall of the heat insulating container 1 1 0 and the hydrogen adsorbing member 1 4 0
  • a liquid hydrogen introduction pipe 120 is communicated with the reservoir 1510 so that liquid hydrogen can be supplied into the heat insulating container 110 without directly touching the hydrogen adsorbing member 140.
  • Each of the liquid hydrogen inlet pipe 120 and the hydrogen gas outlet pipe 130 has a valve 160.
  • the valve 160 is covered with a heat insulating material 114 so that the hydrogen gas itself can prevent heat from entering as a heat medium.
  • the heat insulating container 110 can be efficiently cooled. Adsorption heat is generated when hydrogen gas is adsorbed to the hydrogen adsorption member 140, but the adsorption heat is also discharged outside the heat insulation container 110 by the hydrogen gas discharged from the heat insulation container 110.
  • the vaporization of the liquid hydrogen stops, and the liquid hydrogen is stored in the liquid hydrogen storage unit 1 5 0. Since the hydrogen adsorbing member 14 0 composed of pelletized activated carbon has a gap between the pellets, liquid hydrogen larger than the volume of the liquid hydrogen reservoir 1 5 0 is stored in the heat insulating container 1 1 0. be able to. After sufficient hydrogen has been adsorbed on the hydrogen adsorbing member 140, no adsorption heat will be generated even if liquid hydrogen touches the hydrogen adsorbing member 140, and liquid hydrogen will not bump.
  • the hydrogen adsorbing member 140 made of pelleted activated carbon the pressure loss can be reduced, and as a result, the filling time of liquid hydrogen can be shortened.
  • liquid hydrogen boils due to heat entering the insulated container 110 from the outside, and hydrogen gas near the liquid hydrogen temperature is further exposed. May occur. Also in this case, since the hydrogen gas is discharged from the heat insulating container 110 after passing through the hydrogen adsorbing member 140, the heat insulating container 110 can be efficiently cooled.
  • FIG. 4 is a cross-sectional view taken along line AA of the hydrogen storage device according to the first modification of the third embodiment.
  • the hydrogen adsorbing member 140 according to FIG. 4 is provided with slits 1 4 2. As a result, the rate of heat exchange between the hydrogen gas and the hydrogen adsorption member 140 and the adsorption rate of the hydrogen gas can be increased, and the introduction rate of liquid hydrogen can be improved.
  • the pellets can also be arranged so that the diameter of the pellets is small. As a result, the same effect as that obtained when the slits 1 4 2 are provided on the hydrogen adsorbing member 1 4 0 can be obtained.
  • FIG. 5 is a cross-sectional view taken along line A_A of the hydrogen storage device according to the second modification of the third embodiment.
  • a partition wall 14 4 is provided in the hydrogen adsorbing member 140 so that hydrogen gas can meander through the hydrogen adsorbing member 140.
  • the rate of heat exchange between the hydrogen gas and the hydrogen adsorption member 140 and the adsorption rate of the hydrogen gas can be increased, and the introduction rate of liquid hydrogen can be improved.
  • FIG. 6A shows a perspective view of the hydrogen storage device according to the fourth embodiment of the present invention
  • FIG. 6B shows a cross-sectional view taken along line BB in FIG. 6A.
  • the hydrogen adsorbing member 140 and the liquid hydrogen storage unit 150 are arranged in the horizontal direction.
  • Partition member 1 7 0 Hydrogen adsorbing member 1 4 0 and liquid hydrogen reservoir 1 5 0 are partitioned so that liquid hydrogen and hydrogen adsorbing member are supplied when liquid hydrogen is supplied from liquid hydrogen introduction pipe 1 2 0 1 4 0 can be prevented from coming into direct contact. Therefore, bumping of liquid hydrogen due to heat of adsorption can be prevented, and the introduction speed of liquid hydrogen can be improved.
  • the shape of the tank 1 1 2 can be reduced. Therefore, when the hydrogen storage device is used as, for example, a fuel tank of a fuel cell vehicle, it is advantageous in mounting.
  • FIG. 7A shows a perspective view of the hydrogen storage device according to the fifth embodiment of the present invention
  • FIG. 7B shows a cross-sectional view taken along the line CC in FIG. 7A.
  • the hydrogen adsorption member 1 4 0 and the liquid hydrogen storage unit 1 5 0 are arranged in the horizontal direction.
  • the liquid hydrogen storage unit 150 is provided with a cylindrical liquid hydrogen receiving tray 180.
  • the bottom of the liquid hydrogen pan 1 80 is in contact with the tank 1 1 2.
  • the liquid hydrogen tray 1 80 can be formed of a SUS-based material or aluminum.
  • the liquid hydrogen supplied through the liquid hydrogen inlet pipe 120 is first stored in the liquid hydrogen receiving tray 180.
  • the liquid hydrogen tray 1 80 has a lower heat capacity than the tank 1 1 2, so that liquid hydrogen bumping can be suppressed. Further, since the bottom of the liquid hydrogen receiving tray 1800 is in contact with the tank 1 1 2, the liquid hydrogen receiving tray 1 80 can promote heat transfer from the liquid hydrogen to the tank 1 1 2.
  • hydrogen gas may be taken out from the hydrogen gas discharge pipe 1 30, or a hydrogen extraction pipe having a smaller diameter than the hydrogen gas discharge pipe 1 3 0 may be provided to supply liquid hydrogen (large amount Hydrogen gas is discharged from the hydrogen gas discharge pipe 1 30 and is used when hydrogen gas is used (when a small amount of hydrogen gas needs to be released). You may make it take out hydrogen gas from a take-out pipe o
  • the ratio between the volume occupied by the hydrogen adsorbing member 140 and the volume occupied by the liquid hydrogen storage unit 150 in the heat insulating container 110 is appropriately determined in consideration of the purpose of use of the hydrogen storage device. There is no particular limitation. In the present invention, the flow path connecting the internal space (liquid hydrogen reservoir) and the outside
  • Liquid hydrogen introduction pipe Z hydrogen gas discharge pipe is preferably arranged so as to surround the outside of the tank.
  • the hydrogen gas discharge pipe 1 3 0 in FIG. 7B may be disposed so as to be wound around the tank 1 1 2.
  • the hydrogen storage device of the present invention can store hydrogen for a long period of time, it can be suitably used for a hydrogen storage device for a fuel cell vehicle using hydrogen gas as a fuel.

Abstract

長期間にわたって水素貯蔵が可能な水素貯蔵装置を提供する。本発明の水素貯蔵装置は、内部空間(40)と液体水素流入口(20)と水素ガス流出口(30)とを有する断熱容器(10)と、内部空間(40)に充填された水素吸着部材(50)と、を備える。

Description

明細書
水素貯蔵装置
技術分野
本発明は水素貯蔵装置に関する。
背景技術
近年水素を燃料として用いる燃料電池ゃェンジン等が開発され、 それと同時に これらのエンジンや燃料電池等に供給される水素を吸蔵或いは貯蔵する方法、 装 置等についても開発が進められている。
従来から存在する水素の貯蔵方法としては、 例えば 2 O M P a程度の圧力を水 素に加えて高圧水素ボンベに水素を貯蔵する方法や、 約 2 0 Kにまで冷却され液 化された水素を液体水素ボンベに貯蔵する方法がある。 さらに、 特開 2 0 0 1 - 2 2 0 1 0 1号公報 (以下、 特許文献 1と称することがある。 ) に記載のように 細孔を有する炭素材料と該炭素材料を収容した容器とを含む水素貯蔵装置が知ら れている。 発明の開示
特許文献 1に記載の水素貯蔵装置では、 水素を貯蔵する容器として例えば、 ス テンレス製のタンクやボンベが用いられる。 しかし、 ステンレス製のタンク等で は液体水素を貯蔵する際に外界からの熱を十分に遮断できず長期間の水素貯蔵が 困難である場合があった。
本発明は上記従来の問題点に鑑みてなされたものであり、 長期間にわたつて水 素貯蔵が可能な水素貯蔵装置を提供することを目的とする。
上記目的を達成するための本発明の水素貯蔵装置は、 内部空間と液体水素流入 口と水素ガス流出口とを有する断熱容器と、 前記内部空間に配置された水素吸着 部材と、 を備えたものである。
本発明の水素貯蔵装置は断熱容器を用いるため、 外界から内部空間への熱の伝 導を抑制することができ、 水素貯蔵装置内に貯蔵された液体水素の気化を抑える ことができる。 さらに、 内部空間には水素吸着部材が配置される。 これにより、 水素吸着材が内部空間に充填される。 内部空間に配置された水素吸着部材は水素 分子を吸着して保持する。 水素吸着部材に保持された水素は、 水素貯蔵装置内に 貯蔵された液体水素が全て蒸発した後でも装置内に保持されるため、 本発明の水 素貯蔵装置は長期間にわたる水素貯蔵が可能である。
なお、 本発明において水素吸着部材とはその表面に水素分子を吸着して保持可 能な物質 (水素吸着材) からなる部材をいい、 該物質は、 原子状水素を捉えて吸 蔵する水素吸蔵合金とは区別されるものである。
本発明の水素貯蔵装置においては、 内部空間の一部を占めるように水素吸着部 材が配置された態様であってもよい。 これにより、 内部空間の一部に水素吸着材 が充填される。 内部空間の一部を占めるように水素吸着部材を配置することによ り、 内部空間に水素吸着部材が配置されていない部分 (後述する 「液体水素貯留 部」 ) を設けることができ、 内部空間への液体水素の充填量を増やすことができ る
本発明の水素貯蔵装置においては、 水素吸着部材は、 内部空間の 5〜 3 0 %を 占めるように配置されていてもよい。 水素吸着部材の占める量が 3 0 %以下であ れば液体水素の充填量を十分なものとすることができる。 また、 水素吸着部材の 占める量が 5 %以上であれば水素吸着部材に保持される水素の量を十分なものと することができる。 水素吸着部材は、 内部空間の 1 0〜 2 5 %を占めるように配 置されていることがさらに好ましい。
内部空間の一部に水素吸着部材が配置される場合、 内部空間を、 鉛直線と直交 する面で体積が 1 : 1となるように分けたときの反重力方向側 (即ち、 水素貯蔵 装置の上部) に前記水素吸着部材が配置されるようにしてもよい。 本発明の水素 貯蔵装置をこのような態様とすることにより、 重力方向側 (即ち、 水素貯蔵装置 の下部) に水素吸着部材が配置されていない部分を設けることができる。 前記水 素吸着部材が配置されていない部分に液体水素を充填することにより、 前記水素 吸着部材に液体水素が触れることに起因する液体水素の気化を抑制し、 液体水素 の充填効率を向上させることができる。
また、 液体水素を充填する際に生ずる水素ガスは水素貯蔵装置の上部に配置さ れた水素吸着部材に吸着保持される。 水素吸着部材に水素ガスが吸着される際に は吸着熱が生ずるが、 充填の際に生ずる水素ガスは液体水素温度 (2 0 . 4 K ) と略同等であり、 この低温の水素ガスが吸着熱を奪うために水素貯蔵装置内の温 度上昇を抑制することができる。
反重力方向側に水素吸着部材が配置される場合、 水素ガス流出口は、 水素吸着 部材に吸着された水素を取り出し可能なように設けられてもよい。 これにより、 気化した水素から取り出すことが可能となる。 水素吸着部材に吸着された水素を 取り出すためには、 例えば、 水素吸着部材の配置されている箇所に水素ガス流出 口を設けるようにすればよい。
内部空間の一部に水素吸着部材が配置される場合、 内部空間を、 鉛直線と直交 する面で体積が 1 : 1となるように分けたときの重力方向側 (即ち、 水素貯蔵装 置の下部) に水素吸着部材が配置されるようにしてもよい。 水素貯蔵装置の下部 に水素吸着部材が配置された場合、 水素吸着部材に水素を十分に吸着させること ができる。 そのため、 装置内に液体水素が存在しなくなった場合であっても多く の水素を保持できる。
本発明の水素貯蔵装置においては、 内部空間の水素吸着部材が配置されていな い部分と、 液体水素流入口と、 を連通する液体水素導入管をさらに備えるように してもよい。 このような構成とすることにより、 水素貯蔵装置への液体水素供給 の際に、 液体水素が水素吸着部材に触れることなく供給できるため、 液体水素の 充填効率を向上させることができる。
また、 本発明においては液体水素流入口をなし、 断熱容器の内壁と水素吸着部 材とに囲まれた空間 (以下、 この空間を 「液体水素貯,留部」 と称することがある 。 ) に液体水素を導入する液体水素導入管と、 水素ガス流出口をなし、 液体水素 から生ずる水素ガスを断熱容器内から排出させる水素ガス排出管と、 をさらに備 え、 水素ガスが水素吸着部材内を通過した後に断熱容器内から排出されるように 液体水素導入管と水素吸着部材と水素ガス排出管とを配置してもよい。
液体水素貯留部に液体水素導入管を通して液体水素が導入されると、 断熱容器 の内壁に接触することにより液体水素が沸騰して水素ガスが生ずる。 この水素ガ スは水素吸着部材内を通過した後に水素ガス排出管から排出される。 液体水素の 沸騰により生じた水素ガスの温度は液体水素の沸点 (2 0 . 4 K ) と略同等であ り、 この低温の水素ガスが水素吸着部材内を通過する際に水素吸着部材から熱を 奪いながら断熱容器外に排出される。 そのため、 効率よく断熱容器内の熱を容器 外に放出することが可能となる。
また、 水素ガスが水素吸着部材内を通過する際に、 その一部は水素吸着部材に 吸着されて保持される。 水素吸着部材に保持された水素は、 水素貯蔵装置内に貯 留された液体水素が全て蒸発した後でも該装置内に保持されるため、 本発明の水 素貯蔵装置は長期間にわたる水素貯蔵が可能である。
本発明の水素貯蔵装置は、 水素吸着部材と液体水素貯留部とを仕切る仕切部材 をさらに備えてもよい。 仕切部材を備えることにより液体水素を導入する際に液 体水素と水素吸着部材とが直接接触するのを抑制できる。 このため、 液体水素の 突沸を防ぐことができる。
本発明の水素貯蔵装置においては、 断熱容器内で水素吸着部材と液体水素貯留 部とを水平方向に配置してもよい。 この場合、 本発明の水素貯蔵装置には水素吸 着部材と液体水素貯留部とを仕切る仕切部材が設けられる。 水素吸着部材と液体 水素貯留部とを水平方向に配置することにより、 水素貯蔵装置のレイァゥトの自 由度を拡げることができる。
本発明の水素貯蔵装置においては、 水素ガスが水素吸着部材内を蛇行して通過 するように水素吸着部材内に隔壁を設けるようにしてもよい。 水素ガスを水素吸 着部材内で蛇行させることにより、 水素吸着部材と水素ガスとの接触面積を増や すことができ、 水素吸着能力を向上させることができる。
本発明の水素吸蔵装置においては、 水素吸着部材にスリッ トが設けられていて もよい。 水素吸着部材にスリッ トを設けることにより、 水素吸着部材の表面積を 大きくすることができる。 そのため、 水素ガスと水素吸着部材との間の熱交換の 速度及び水素ガスの吸着速度を高めることができる。
本発明の水素吸蔵装置に用いられる水素吸着部材としては、 活性炭、 カーボン ナノチューブ又は多孔性金属有機構造 (M O F ) が挙げられる。 多孔性金属有機 構造としては Z n 4〇 (1, 4—ベンゼンジカルボン酸ジメチル) 3が挙げられる 以上説明したように、 本発明によれば、 長期間にわたって水素貯蔵が可能な水 素貯蔵装置を提供することができる。 図面の簡単な説明
【図 1 A】 本発明の第一実施形態に係る水素貯蔵装置の斜視図である。
【図 1 B】 本発明の第一実施形態に係る水素貯蔵装置の A— A線断面図である o
【図 2 A】 本発明の第二実施形態に係る水素貯蔵装置の斜視図である。
【図 2 B】 本発明の第二実施形態に係る水素貯蔵装置の C _ C線断面図である o
【図 3 A】 本発明の第三実施形態に係る水素貯蔵装置の斜視図である。
【図 3 B】 本発明の第三実施形態に係る水素貯蔵装置の A _ A線断面図である
0
【図 4】 第三実施形態の第一の変形例に係る水素貯蔵装置の A— A線断面図で ある。
【図 5】 第三実施形態の第二の変形例に係る水素貯蔵装置の A— A線断面図で あ 3 o
【図 6 A】 本発明の第四実施形態に係る水素貯蔵装置の斜視図である。
【図 6 B】 本発明の第四実施形態に係る水素貯蔵装置の B— B線断面図である
0
【図 7 A】 本発明の第五実施形態に係る水素貯蔵装置の斜視図である。
【図 7 B】 本発明の第五実施形態に係る水素貯蔵装置の C _ C線断面図である
発明を実施するための最良の形態
以下に、 本発明の水素貯蔵装置を図面に基づいて説明する。
<第一実施形態 >
図 1 Aは、 本発明の第一実施形態に係る水素貯蔵装置の斜視図を表し、 図 1 B は、 図 1 Aの A— A線断面図を表す。
第一実施形態に係る水素貯蔵装置は、 断熱容器 1 0と、 断熱容器 1 0の上部に 設けられた液体水素流入口 2 0及ぴ水素ガス流出口 3 0と、 を有する。 断熱容器 1 0の内部空間 4 0を、 鉛直線 Bと直交する面で体積が 1 : 1となるように分け たときの反重力方向側 (即ち、 水素貯蔵装置の上部) には、 水素吸着部材 5 0が 配置されている。 液体水素流入口 2 0と内部空間 4 0の水素吸着部材 5 0が配置 されていない部分とは、 液体水素導入管 6 0で連通されている。 水素ガス流出口 3 0は、 水素吸着部材 5 0に吸着された水素を取り出し可能なように、 断熱容器 1 0の上部に設けられている。
断熱容器 1 0には、 外面に断熱材 (多層インシュレーション : M L I ) の設け られた S U S又はステンレス製のタンク等を用いることができるがこれに限定さ れるものではない。
M L Iは、 反射率の高い薄膜状の放射シールド材とシールド材間の熱伝導を防 ぐスぺーサ材とを交互に積層することにより構成される。 シールド材としては片 面あるいは両面アルミ蒸着されたポリエステルフィルム等が、 スぺーサ材として はガラス繊維の布や紙、 ナイロンネッ ト等が用いられる。 M L Iは、 シールド材 を N枚挿入すると輻射による進入熱量を 1 Z (N + 1 ) に減少させることができ る o
水素吸着部材 5 0を構成する水素吸着材としては、 活性炭、 カーボンナノチュ ーブ、 Z n 40 ( 1, 4 _ベンゼンジカルボン酸ジメチル) 3等の M O F (多孔性 金属有機構造) 等が挙げられる。 これらの材料は、 顆粒状、 ペレット状又はこれ らの材料の粉末を袋に詰めた状態で用いられる。 本実施形態では、 ペレツト状の 活性炭を用いた。
内部空間 4 0内に金属メッシュ等で仕切りを形成し、 該仕切り内にペレツト状 の活性炭を配置した。
次に、 第一実施形態に係る水素貯蔵装置に液体水素を貯蔵する際の各構成部材 の作用について説明する。
液体水素流入口 2 0から注入された液体水素は液体水素導入管 6 0を介して内 部空間 4 0の水素吸着部材 5 0が配置されていない部分に供給される。 液体水素 導入管 6 0を介して供給された液体水素は水素吸着部材 5 0と直接接触すること がない。 内部空間 4 0内の温度や、 断熱容器 1 0の内壁の温度にもよるが、 供給 された液体水素の一部は気化して液体水素温度近傍の水素ガスを生ずる。 この水 素ガスが内部空間 4 0及び水素吸着部材 5 0を冷却し、 水素ガス流出口 3 0から 排出されるとともにその一部が水素吸着部材 5 0により吸着されて保持される。 水素ガスが水素吸着部材 5 0により吸着される際に吸着熱が生ずるが、 液体水素 温度近傍の水素ガスにより冷却されるため内部空間 4 0内及び水素吸着部材 5 0 の温度上昇は抑制される。
内部空間 4 0が冷却されるに従い液体水素の気化が収まり、 液体水素が内部空 間 4 0に充填される。 液体水素の充填量は、 液体水素の膨張率を勘案して適量充 填される。 水素吸着部材 5 0に十分水素が吸着された後は、 液体水素が水素吸着 部材 5 0に触れてもよい。 水素が十分吸着された水素吸着部材 5 0に液体水素が 触れても吸着熱が発生せず、 液体水素の沸騰が生じないためである。 この場合、 水素吸着部材 5 0の充填された部分を膨張した液体水素の緩衝部分とすることも できる。
第一実施形態に係る水素貯蔵装置によれば、 液体水素と水素吸着部材 5 0とが 直接触れることによる突沸を防ぎ、 液体水素の充填時間を短縮することができる o
水素貯蔵装置に充填された水素は、 水素ガス流出口 3 0から取り出され、 使用 される。 水素取り出しを容易にするために内部空間 4 0内にヒーターを設けるよ うにしてもよい。 内部空間 4 0内に充填された液体水素がなくなった後でも、 水 素が水素吸着部材 5 0に吸着されているため、 本発明に係る水素貯蔵装置は長期 間にわたる水素貯蔵が可能である。
<第二実施形態 >
次に、 本発明の水素貯蔵装置の第二実施形態について説明する。 図 2 Aは、 本 発明の第二実施形態に係る水素貯蔵装置の斜視図を表し、 図 2 Bは、 図 2 Aの C 一 C線断面図を表す。 第二実施形態に係る水素貯蔵装置は、 断熱容器 1 0と、 断 熱容器 1 0の上部に設けられた液体水素流入口 2 0及び水素ガス流出口 3 0と、 を有する。 断熱容器 1 0の内部空間 4 0を、 鉛直線 Bと直交する面で体積が 1 : 1となるように分けたときの重力方向側 (即ち、 水素貯蔵装置の下部) には、 水 素吸着部材 5 0が配置されている。 断熱容器 1 0及び水素吸着部材 5 0としは、 第一実施形態に記載のものを用いることができる。 本実施形態では、 ペレツト状 の活性炭を用い、 第一実施形態と同様にして配置した。
液体水素流入口 2 0から注入された液体水素は内部空間 4 0に供給される。 水 素吸着部材 5 0と接触することにより液体水素が突沸するおそれがあるときは、 水素吸着部材 5 0をあらかじめ冷却しておくことが好ましい。 冷却方法としては 、 少量の液体水素を内部空間 4 0内に徐々に供給して冷却するようにすればよい 。 水素貯蔵装置に充填された水素は、 水素ガス流出口 3 0から取り出され、 使用 される。 第二実施形態に係る水素吸着部材 5 0は、 液体水素と接触して多くの水 素を吸着、 保持することができる。 そのため、 液体水素がなくなった後でも本発 明に係る水素貯蔵装置は長期間にわたる水素貯蔵が可能である。
本発明の水素貯蔵装置には、 断熱容器の内圧の上昇を抑えるために開放弁をさ らに設けてもよい。 また、 断熱容器の内部空間を、 鉛直線と直交する面で体積が 1 : 1となるように分けたときの反重力方向側 (即ち、 水素貯蔵装置の上部) 及 ぴ重力方向側 (即ち、 水素貯蔵装置の下部) の両方に水素吸着部材を配置するよ うにしてもよい。
<第三実施形態 >
図 3 Aは本発明の第三実施形態に係る水素貯蔵装置の斜視図を表し、 図 3 Bは 、 図 3 Aの A— A線断面図を表す。 第三実施形態に係る水素貯蔵装置は、 断熱容 器 1 1 0と、 断熱容器 1 1 0の上部に設けられた液体水素導入管 1 2 0及び水素 ガス排出管 1 3 0と、 を有する。 本実施形態においては、 液体水素導入管 1 2 0 が液体水素流入口をなし、 水素ガス排出管 1 3 0が水素ガス流出口をなす。 断熱容器 1 1 0は、 図 3 Bに示すようにタンク 1 1 2とタンク 1 1 2の外側を 覆う断熱材 1 1 4とで構成される。
タンク 1 1 2としては、 S U S又はステンレス製のタンク等を用いることがで きるがこれに限定されるものではない。
断熱材 1 1 4としては、 多層インシュレーション (M L I ) を用いることがで きる。 M L Iの具体例は第一実施形態の場合と同様である。
断熱容器 1 1 0の内部には水素吸着部材 1 4 0が配置される。 水素吸着部材 1 4 0を構成する水素吸着材の具体例は、 第一実施形態の場合と同様である。 断熱容器 1 1 0の内壁と水素吸着部材 1 4 0とに囲まれた空間である液体水素 貯留部 1 5 0には液体水素導入管 1 2 0が連通され、 液体水素が水素吸着部材 1 4 0に直接触れることなく断熱容器 1 1 0内に供給できるようになつている。 液体水素導入管 1 2 0及ぴ水素ガス排出管 1 3 0の各々にはバルブ 1 6 0が設 けられている。 バルブ 1 6 0は断熱材 1 1 4に覆われており、 水素ガス自体が熱 媒となる熱進入を防ぐことができるようになつている。
次に、 第三実施形態に係る水素貯蔵装置に液体水素を貯蔵する際の各構成部材 の作用について説明する。
液体水素導入管 1 2 0を通じて液体水素貯留部 1 5 0に液体水素を供給すると 、 タンク 1 1 2の内壁の温度にもよるが、 液体水素の一部が気化して液体水素温 度近傍の水素ガスが生ずる。 この水素ガスは水素吸着部材 1 4 0を通過した後に 水素ガス排出管 1 3 0を通じて断熱容器 1 1 0内から排出される。 水素吸着部材 1 4 0を通過する際に水素ガスと水素吸着部材 1 4 0との間で熱交換がおこり、 水素吸着部材 1 4 0を冷却すると共にその一部が水素吸着部材 1 4 0に吸着され て保持される。 水素ガスは水素吸着部材 1 4 0から熱を奪った後に断熱容器 1 1 0内から排出されるため、 断熱容器 1 1 0内を効率的に冷却することができる。 また、 水素吸着部材 1 4 0に水素ガスが吸着される際に吸着熱が生ずるが、 断熱 容器 1 1 0内から排出される水素ガスによって吸着熱も断熱容器 1 1 0外に排出 される。
タンク 1 1 2の内壁が冷却されるに従い液体水素の気化が収まり、 液体水素が 液体水素貯留部 1 5 0に貯留される。 ペレツ ト状の活性炭により構成された水素 吸着部材 1 4 0は、 ペレツ ト間に空隙を有するため、 液体水素貯留部 1 5 0の体 積以上の液体水素を断熱容器 1 1 0内に貯留することができる。 水素吸着部材 1 4 0に十分水素が吸着された後は、 水素吸着部材 1 4 0に液体水素が触れても吸 着熱が発生せず、 液体水素の突沸が生じない。
また、 ペレツト状の活性炭により構成された水素吸着部材 1 4 0を用いること により圧損を小さくすることができ、 その結果として液体水素の充填時間を短く することができる。
液体水素の供給終了後、 液体水素を保存する際に外部から断熱容器 1 1 0内へ 熱が進入することにより液体水素が沸騰して液体水素温度近傍の水素ガスがさら に生ずることがある。 この場合も水素吸着部材 1 4 0を通過した後に該水素ガス が断熱容器 1 1 0内から排出されるため、 効率よく断熱容器 1 1 0内を冷却する ことができる。
上述のように、 本発明の水素貯蔵装置によれば液体水素温度近傍の水素ガスを 断熱容器 1 1 0内の冷却に有効利用することができるため、 液体水素の貯蔵効率 を向上させることが可能となると共に液体水素の長期間保存が可能となる。 次に、 第三実施形態に係る水素貯蔵装置の変形例について説明する。 図 4は、 第三実施形態の第一の変形例に係る水素貯蔵装置の A— A線断面図を表す。 図 4 に係る水素吸着部材 1 4 0にはスリッ ト 1 4 2が設けられている。 これにより、 水素ガスと水素吸着部材 1 4 0との間の熱交換の速度及び水素ガスの吸着速度を 高めることができ、 液体水素の導入速度を向上させることができる。
水素吸着部材 1 4 0にスリッ ト 1 4 2を設ける代わりに、 液体水素貯留部 1 5 0側から水素ガス排出管 1 3 0側に進むに従い水素吸着部材 1 4 0を構成する活 性炭 (ペレット) の直径が小さくなるように該ぺレッ トを配置することもできる 。 これにより、 水素吸着部材 1 4 0にスリッ ト 1 4 2を設けた場合と同様の効果 が得られる。
図 5は、 第三実施形態の第二の変形例に係る水素貯蔵装置の A _ A線断面図を 表す。 水素ガスが水素吸着部材 1 4 0内を蛇行して通過可能なように水素吸着部 材 1 4 0内に隔壁 1 4 4が設けられている。 これにより、 水素ガスと水素吸着部 材 1 4 0との間の熱交換の速度及び水素ガスの吸着速度を高めることができ、 液 体水素の導入速度を向上させることができる。
<第四実施形態 >
図 6 Aは、 本発明の第四実施形態に係る水素貯蔵装置の斜視図を表し、 図 6 B は、 図 6 Aの B— B線断面図を表す。 第四実施形態に係る水素貯蔵装置において は、 水素吸着部材 1 4 0と液体水素貯留部 1 5 0とが水平方向に配置されている 。 仕切部材 1 7 0カ^水素吸着部材 1 4 0と液体水素貯留部 1 5 0とを仕切ること により、 液体水素が液体水素導入管 1 2 0から供給された際に液体水素と水素吸 着部材 1 4 0とが直接接触することを防ぐことができる。 このため、 吸着熱によ る液体水素の突沸を防止し、 液体水素の導入速度を向上させることができる。 本発明の水素貯蔵装置をこのような態様とすることにより、 タンク 1 1 2の形 状を細くすることができる。 そのため当該水素貯蔵装置を例えば燃料電池自動車 の燃料タンクとして用いる際に、 搭載上有利となる。
<第五実施形態 >
図 7 Aは、 本発明の第五実施形態に係る水素貯蔵装置の斜視図を表し、 図 7 B は、 図 7 Aの C— C線断面図を表す。 第五実施形態に係る水素貯蔵装置において は、 水素吸着部材 1 4 0と液体水素貯留部 1 5 0とが水平方向に配置されている o
液体水素貯留部 1 5 0には、 円筒状の液体水素受け皿 1 8 0が備えられている 。 液体水素受け皿 1 8 0の底はタンク 1 1 2と当接している。 液体水素受け皿 1 8 0は S U S系材料又はアルミなどで形成可能である。
液体水素導入管 1 2 0を通じて供給された液体水素は、 まず液体水素受け皿 1 8 0に貯留される。 液体水素受け皿 1 8 0はタンク 1 1 2と比較して低熱容量で あるため、 液体水素の突沸を抑制することができる。 さらに、 液体水素受け皿 1 8 0の底とタンク 1 1 2とは当接しているため、 液体水素受け皿 1 8 0は液体水 素からタンク 1 1 2への伝熱を促進することができる。
なお、 上述した第三乃至第五実施形態に係る水素貯蔵装置には、 水素ガス排出 管 1 3 0と通ずる空隙が存在するが、 この空隙は水素ガスの排出を効率よく行う ために設けられているものであり、 本発明では必ずしもこの空隙が設けられてい なく ともよい。
また、 水素ガス排出管 1 3 0から水素ガスを取り出すようにしてもよいし、 水 素ガス排出管 1 3 0よりも小口径の水素取り出し管をさらに設け、 液体水素を供 給する際 (大量の水素ガスを放出する必要がある場合) には水素ガス排出管 1 3 0から水素ガスを放出させ、 水素ガスを使用する際 (小量の水素ガスを放出する 必要がある場合) には水素取り出し管から水素ガスを取り出すようにしてもよい o
本発明においては、 断熱容器 1 1 0内で水素吸着部材 1 4 0が占める体積と液 体水素貯留部 1 5 0が占める体積との比率は水素貯蔵装置の使用目的などを勘案 して適宜決定されるものであり、 特に限定されるものではない。 また、 本発明においては内部空間 (液体水素貯留部) と外部とを接続する流路
(液体水素導入管 Z水素ガス排出管) が、 タンクの外部を取り卷くように配置さ れていることが好ましい。 具体的には、 図 7 Bにおける水素ガス排出管 1 3 0が タンク 1 1 2の周囲に卷かれるように配置されるとよい。 タンク本体に複数回卷 かれるように配置することによって、 流路の距離を長くすることができる。 これ により、 外部の熱が内部空間 (液体水素貯留部) へ伝熱するのを抑制することが できる。
尚、 日本出願 2 00 5 -230076及ぴ 2005 - 23 0077の開示はそ の全体が参照により本明細書に取り込まれる。 また、 本明細書に記載された全て の文献、 特許出願、 及び技術規格は、 個々の文献、 特許出願、 および技術規格が 参照により取り込まれることが具体的かつ個々に記された場合と同程度に、 本明 細書中に参照により取り込まれる。 産業上の利用の可能性
本発明の水素貯蔵装置は長期間にわたる水素貯蔵が可能であるため、 水素ガス を燃料として用いる燃料電池自動車用の水素貯蔵装置に好適に用いることができ

Claims

請求の範囲
1 . 内部空間と液体水素流入口と水素ガス流出口とを有する断熱容器と、 前記内部空間に配置された水素吸着部材と、
を備えた水素貯蔵装置。
2 . 前記水素吸着部材が、 前記内部空間の一部を占めるように配置された請求項 1に記載の水素貯蔵装置。
3 . 前記水素吸着部材が、 前記内部空間の 5〜 3 0 %を占めるように配置された 請求項 2に記載の水素貯蔵装置。
4 . 前記内部空間を、 鉛直線と直交する面で体積が 1 : 1となるように分けたと きの反重力方向側に、 前記水素吸着部材が配置された請求項 2に記載の水素貯蔵 装置。
5 . 前記水素ガス流出口が、 前記水素吸着部材に吸着された水素を取り出し可能 なように設けられた請求項 4に記載の水素貯蔵装置。
6 . 前記内部空間を、 鉛直線と直交する面で体積が 1 : 1となるように分けたと きの重力方向側に、 前記水素吸着部材が配置された請求項 2に記載の水素貯蔵装 id。
7 . 前記内部空間の前記水素吸着部材が配置されていない部分と、 前記液体水素 流入口と、 を連通する液体水素導入管をさらに備えた請求項 2に記載の水素貯蔵 装置。
8 . 前記液体水素流入口をなし、 前記断熱容器の内壁と前記水素吸着部材とに囲 まれた空間に液体水素を導入する液体水素導入管と、 前記水素ガス流出口をなし、 前記液体水素から生ずる水素ガスを前記断熱容器 内から排出させる水素ガス排出管と、
をさらに備え、 前記水素ガスが前記水素吸着部材内を通過した後に前記断熱容 器内から排出されるように前記液体水素導入管と前記水素吸着部材と前記水素ガ ス排出管とを配置した請求項 1に記載の水素貯蔵装置。
9 . 前記水素吸着部材と前記空間とを仕切る仕切部材をさらに備えた請求項 8に 記載の水素貯蔵装置。
1 0 . 前記断熱容器内で前記水素吸着部材と前記空間とが水平方向に配置される ようにした請求項 9に記載の水素貯蔵装置。
1 1 . 前記水素ガスが前記水素吸着部材内を蛇行して通過するように前記水素吸 着部材内に隔壁が設けられた請求項 8に記載の水素貯蔵装置。
1 2 . 前記水素吸着部材にスリッ トが設けられた請求項 8に記載の水素貯蔵装置
1 3 . 前記水素吸着部材が、 活性炭、 カーボンナノチューブ又は多孔性金属有機 構造である請求項 1に記載の水素貯蔵装置。
1 4 . 前記多孔性金属有機構造が、 Z n 40 ( 1, 4一ベンゼンジカルボン酸ジ メチル) 3である請求項 1 3に記載の水素貯蔵装置。
PCT/JP2006/315987 2005-08-08 2006-08-08 水素貯蔵装置 WO2007018306A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2618777A CA2618777C (en) 2005-08-08 2006-08-08 Hydrogen storage device
US11/990,126 US20100213084A1 (en) 2005-08-08 2006-08-08 Hydrogen Storage Device
CN2006800292569A CN101238323B (zh) 2005-08-08 2006-08-08 氢储藏装置
DE112006002110T DE112006002110B4 (de) 2005-08-08 2006-08-08 Wasserstoffspeichervorrichtung
US13/962,585 US20130334067A1 (en) 2005-08-08 2013-08-08 Hydrogen storage device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-230077 2005-08-08
JP2005230076A JP4706384B2 (ja) 2005-08-08 2005-08-08 水素貯蔵装置
JP2005-230076 2005-08-08
JP2005230077A JP5124918B2 (ja) 2005-08-08 2005-08-08 水素貯蔵装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/962,585 Division US20130334067A1 (en) 2005-08-08 2013-08-08 Hydrogen storage device

Publications (1)

Publication Number Publication Date
WO2007018306A1 true WO2007018306A1 (ja) 2007-02-15

Family

ID=37727477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315987 WO2007018306A1 (ja) 2005-08-08 2006-08-08 水素貯蔵装置

Country Status (6)

Country Link
US (2) US20100213084A1 (ja)
KR (1) KR100979470B1 (ja)
CA (1) CA2618777C (ja)
DE (1) DE112006002110B4 (ja)
RU (1) RU2008107395A (ja)
WO (1) WO2007018306A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100980323B1 (ko) 2008-02-22 2010-09-07 주식회사 엑스에프씨 수소저장장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011122352B4 (de) * 2011-12-23 2015-10-29 Astrium Gmbh Tank zur Separation von Flüssigkeiten im Orbit
FR3000172B1 (fr) * 2012-12-21 2017-05-19 Inergy Automotive Systems Res (Societe Anonyme) Reservoir pour le stockage d'un gaz stocke par sorption sur un compose.
US9108144B2 (en) 2013-05-21 2015-08-18 Astrium Gmbh Tank for separating liquid from gas under weightless conditions
EP2806204B1 (de) * 2013-05-22 2017-05-24 Astrium GmbH Tank zur Separation von Flüssigkeiten im Orbit
GB2516959B (en) * 2013-08-08 2018-01-10 Intelligent Energy Ltd Gas filling apparatus and method
DE102014006377A1 (de) * 2014-05-05 2015-11-05 Gkn Sinter Metals Engineering Gmbh Wasserstoffspeicher mit einem hydrierbaren Material und einer Matrix
KR102144518B1 (ko) * 2019-02-22 2020-08-13 부산대학교 산학협력단 액화수소 저장장치
CN116222147B (zh) * 2022-12-28 2024-04-19 华中科技大学 一种实验级液氢冷凝制取装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222299A (ja) * 2002-01-31 2003-08-08 Jfe Engineering Kk ハイブリッド型水素貯蔵容器および容器への水素貯蔵方法
US20040093874A1 (en) * 2002-08-29 2004-05-20 Nanomix, Inc. Hydrogen storage and supply system
JP2004530628A (ja) * 2001-06-29 2004-10-07 ヘラ ハイドロゲン ストレージ システムズ インコーポレイテッド ハイブリッド状態で水素を貯蔵する方法
JP2004324715A (ja) * 2003-04-23 2004-11-18 Daido Steel Co Ltd 水素供給ユニット
JP2005506305A (ja) * 2001-04-30 2005-03-03 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン 気体の貯蔵に応用できる等網状の金属−有機構造体、それを形成する方法、およびその孔サイズと官能基の系統的な設計

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350229A (en) * 1962-01-27 1967-10-31 Siemens Schuckertwerke Method and apparatus for storing gaseous fuel for the operation of fuel cells
US3298185A (en) * 1964-07-15 1967-01-17 Cryogenic Eng Co Low temperature storage container
BE788513A (fr) * 1971-09-13 1973-01-02 Dupont S T Procede de stockage d'un liquide en vue de sa distribution sousforme gazeuse, appareils pour la mise en oeuvre de celui-ci
DE3514500C1 (de) * 1985-04-22 1986-05-22 Daimler-Benz Ag, 7000 Stuttgart Wasserstoffspeicher
US5912424A (en) * 1997-03-31 1999-06-15 Lockheed Martin Energy Research Corporation Electrical swing adsorption gas storage and delivery system
JPH10299997A (ja) * 1997-04-28 1998-11-13 Tokyo Gas Co Ltd 低温液体貯槽のbog処理方法及び装置
WO2000036335A1 (fr) * 1998-12-15 2000-06-22 Toyota Jidosha Kabushiki Kaisha Systeme pour stocker du gaz dissous a base de methane
DE19859654A1 (de) * 1998-12-15 2000-06-29 Mannesmann Ag Vorrichtung zum Speichern von Druckgas
JP2001220101A (ja) 2000-02-09 2001-08-14 Toyota Motor Corp 水素吸蔵方法及び水素吸蔵装置
US6634321B2 (en) * 2000-12-14 2003-10-21 Quantum Fuel Systems Technologies Worldwide, Inc. Systems and method for storing hydrogen
US6672077B1 (en) * 2001-12-11 2004-01-06 Nanomix, Inc. Hydrogen storage in nanostructure with physisorption
US6620225B2 (en) * 2002-01-10 2003-09-16 Advanced Technology Materials, Inc. Adsorbents for low vapor pressure fluid storage and delivery
US7191602B2 (en) * 2003-06-16 2007-03-20 The Regents Of The University Of California Storage of H2 by absorption and/or mixture within a fluid medium
US6969545B2 (en) * 2003-07-28 2005-11-29 Deere & Company Hydrogen storage container
JP4402475B2 (ja) 2004-02-17 2010-01-20 九州日立マクセル株式会社 ヘアードライヤ
JP2005230077A (ja) 2004-02-17 2005-09-02 Maruhon Ind Co Ltd パチンコ機
JP2006083898A (ja) * 2004-09-14 2006-03-30 Honda Motor Co Ltd 水素貯蔵タンク

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506305A (ja) * 2001-04-30 2005-03-03 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン 気体の貯蔵に応用できる等網状の金属−有機構造体、それを形成する方法、およびその孔サイズと官能基の系統的な設計
JP2004530628A (ja) * 2001-06-29 2004-10-07 ヘラ ハイドロゲン ストレージ システムズ インコーポレイテッド ハイブリッド状態で水素を貯蔵する方法
JP2003222299A (ja) * 2002-01-31 2003-08-08 Jfe Engineering Kk ハイブリッド型水素貯蔵容器および容器への水素貯蔵方法
US20040093874A1 (en) * 2002-08-29 2004-05-20 Nanomix, Inc. Hydrogen storage and supply system
JP2004324715A (ja) * 2003-04-23 2004-11-18 Daido Steel Co Ltd 水素供給ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAEJIMA Y.: "Suiso Seisan Oyobi Chozo Sochi no Nanotechnology Shinten Beikoku)", NEDO KAIGAI REPORT, no. 915, 17 September 2003 (2003-09-17), pages 35 - 37, XP003008084, Retrieved from the Internet <URL:http://www.nedo.go.jp/kankobutsu/report/915/915.pdf> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100980323B1 (ko) 2008-02-22 2010-09-07 주식회사 엑스에프씨 수소저장장치

Also Published As

Publication number Publication date
KR20080034984A (ko) 2008-04-22
US20130334067A1 (en) 2013-12-19
DE112006002110T5 (de) 2009-07-09
CA2618777A1 (en) 2007-02-15
CA2618777C (en) 2010-10-05
RU2008107395A (ru) 2009-09-20
DE112006002110B4 (de) 2010-08-26
US20100213084A1 (en) 2010-08-26
KR100979470B1 (ko) 2010-09-02

Similar Documents

Publication Publication Date Title
WO2007018306A1 (ja) 水素貯蔵装置
JP4929654B2 (ja) 水素貯蔵装置
US7721601B2 (en) Hydrogen storage tank and method of using
JP4914918B2 (ja) 水素貯蔵器及び水素貯蔵器を充填するための方法
US5861050A (en) Thermally-managed fuel vapor recovery canister
US7517396B2 (en) Apparatus for optimal adsorption and desorption of gases utilizing highly porous gas storage materials
JP5760000B2 (ja) 金属水素化物を有する水素貯蔵タンク
US20120312701A1 (en) Hydrogen storage unit
EP2187108A2 (en) Thermal management apparatus for gas storage
JP4706384B2 (ja) 水素貯蔵装置
US20160201855A1 (en) Sorption store with improved heat transfer
JP5124918B2 (ja) 水素貯蔵装置
CN101248320B (zh) 用于冷却和/或加热器的热化学反应器
JP2005325708A (ja) キャニスタ
TW201221822A (en) Hydrogen storage device
JP2006291993A (ja) 水素貯蔵タンク
JPS5848480Y2 (ja) 金属水素化物を用いた水素貯蔵装置
JP2007218317A (ja) 低温液体・気体水素貯蔵タンク
JPS61244997A (ja) 水素ガス貯蔵容器
JP4605926B2 (ja) 吸着式天然ガス自動車用燃料貯蔵装置
JP2000146092A (ja) 吸蔵式天然ガス貯蔵タンク
JPH01239001A (ja) 水素吸蔵合金用反応槽
WO2016065427A1 (en) Reducing axial temperature gradients
JP2003278996A (ja) ガス貯蔵タンク
JPH0650687A (ja) 蓄熱装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680029256.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2618777

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1120060021109

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087005548

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008107395

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 11990126

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06782722

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112006002110

Country of ref document: DE

Date of ref document: 20090709

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607