WO2007013375A1 - リチウムイオン二次電池用電極 - Google Patents

リチウムイオン二次電池用電極 Download PDF

Info

Publication number
WO2007013375A1
WO2007013375A1 PCT/JP2006/314503 JP2006314503W WO2007013375A1 WO 2007013375 A1 WO2007013375 A1 WO 2007013375A1 JP 2006314503 W JP2006314503 W JP 2006314503W WO 2007013375 A1 WO2007013375 A1 WO 2007013375A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
electrode
mixture
active material
lithium ion
Prior art date
Application number
PCT/JP2006/314503
Other languages
English (en)
French (fr)
Inventor
Hajime Nishino
Shuji Tsutsumi
Shinji Kasamatsu
Hideharu Takezawa
Mikinari Shimada
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/916,603 priority Critical patent/US8883348B2/en
Priority to CN2006800276922A priority patent/CN101233628B/zh
Publication of WO2007013375A1 publication Critical patent/WO2007013375A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode for a lithium ion secondary battery which is suitable for achieving both the safety and the output characteristics of the lithium ion secondary battery.
  • Lithium ion secondary batteries are used in various applications because they have features such as high output, high energy density, light weight, etc., and are actively studied at present.
  • a lithium ion secondary battery includes a non-aqueous electrolyte using a non-aqueous solvent, and includes an electrode with high energy density. Therefore, the ability to further improve safety has become an important issue for lithium ion secondary batteries.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-199574
  • the present invention is a lithium ion secondary battery capable of ensuring a high degree of safety even when exposed to severe conditions in a nail penetration test, a crushing test, etc., and having excellent output characteristics. Intended to provide.
  • the present invention is an electrode having a mixture containing active material particles capable of reversibly absorbing and desorbing lithium, and a current collector carrying the mixture, and the surface of the current collector has a recess.
  • the present invention relates to an electrode for a lithium ion secondary battery, wherein the ratio of the area occupied by the recess to the mixture-supporting area of the current collector is 30% or more.
  • the mixture carrying area of the current collector means the area of the interface between the mixture and the current collector.
  • the area of the exposed portion is not included in the surface of the mixture carrying area.
  • the interface between the mixture and the current collector is considered microscopically to have a complicated shape, but is treated as a plane here.
  • the ratio of the area occupied by the recesses to the mixture-supporting area of the current collector can be determined, for example, by the following method.
  • the cross section obtained by simultaneously cutting the mixture and the current collector perpendicular to the electrode surface is enlarged and observed.
  • a line segment formed by a portion of the current collector surface where the recess is not formed is approximated to a straight line.
  • the ratio of the total length (AL) of the cut-out line segment to the length (L) of the obtained approximate straight line is determined: 100 ⁇ ALZL.
  • the 100 ⁇ ALZL can be regarded as the ratio of the area occupied by the recesses to the mixture-carrying area of the current collector.
  • the present invention is also an electrode having a mixture containing active material particles capable of reversibly absorbing and desorbing lithium, and a current collector carrying the mixture, wherein the surface of the current collector is
  • the present invention relates to an electrode for a lithium ion secondary battery having a recess and having a maximum depth of 1 ⁇ m or more in the cross section obtained by simultaneously cutting the mixture and the current collector perpendicularly to the electrode surface.
  • the present invention is an electrode further comprising a mixture containing active material particles capable of reversibly absorbing and desorbing lithium, and a current collector carrying the mixture, wherein the surface of the current collector is In a section having a recess and simultaneously cutting the mixture and the current collector perpendicularly to the electrode surface, the difference between the average thickness of the current collector and the maximum thickness of the current collector is at least 0.35 m.
  • the present invention relates to an electrode for a lithium ion secondary battery.
  • the depressions on the surface of the current collector are formed, for example, by partial embedding of active material particles.
  • a recess may be formed in advance on the surface of the current collector, and then the mixture containing active material particles may be supported on the current collector.
  • the active material particles include, for example, a lithium-containing composite oxide. Richiu
  • the complex oxide containing molybdenum is represented by the formula 1: Li Co Ni MO, in the formula 1, M is Mn, Ti, Y ⁇ 1-yz yz 2
  • FIG. 1 is a conceptual view of a cross section obtained by simultaneously cutting the mixture and the current collector perpendicularly to the electrode surface.
  • FIG. 2 is another cross-sectional conceptual diagram in which the mixture and the current collector are simultaneously cut perpendicularly to the electrode surface.
  • FIG. 3 Another cross-sectional conceptual diagram in which the mixture and the current collector are simultaneously cut perpendicularly to the electrode surface
  • FIG. 4 is a longitudinal sectional view of a cylindrical lithium ion secondary battery according to an example of the present invention.
  • the present invention relates to an electrode having a mixture containing active material particles capable of reversibly absorbing and desorbing lithium, and a current collector carrying the mixture, and the surface of the current collector has a recess.
  • the present invention is characterized in that the ratio of the recess to the mixture-supporting area of the recess, the depth of the recess, or the change in thickness of the current collector due to the formation of the recess is controlled.
  • the electrode of the present invention is impregnated with a resin to harden the resin. Thereafter, the current collector portion carrying the mixture on both sides is cut in the direction perpendicular to the electrode surface. It is desirable to polish the obtained cross section. Next, the polished cross section is observed with an optical microscope or SEM (scanning electron microscope) or the like. Active material particles are present on the surface of the current collector in the polished cross section. The recessed part formed by partial embedding etc. of can be seen.
  • Partial embedding of active material particles hardly occurs in normal electrode production. Therefore, in order to form the above-described concave portion, for example, it is necessary to control the relationship between the hardness of the current collector and the hardness of the active material particles and simultaneously roll the mixture and the current collector. . For example, it is possible to form the recess as described above by carrying out the rolling process after the current collector is softened.
  • the electrode of the present invention has any of the following characteristics ⁇ 1> to ⁇ 3>.
  • ⁇ 1> In a cross section obtained by simultaneously cutting the mixture and the current collector perpendicularly to the electrode surface, a portion of the surface of the current collector on which no recess is formed is approximated as a straight line.
  • the ratio of the total length (AL) of the line segments cut off at the recess to the length L of the approximate straight line obtained: 100 ⁇ ALZL (hereinafter referred to as the recess area ratio) is at least 30%.
  • the recess area ratio is preferably 50% or more, more preferably 70% or more.
  • the concave area ratio is preferably 95% or less.
  • the maximum depth of the recess is 1 ⁇ m or more.
  • the maximum depth of the recess is more preferably 5 ⁇ m or more, preferably 3 ⁇ m or more.
  • the maximum depth of the recess is preferably half or less of the thickness of the current collector from the viewpoint of maintaining the strength of the current collector.
  • the difference between the average thickness of the current collector and the maximum thickness of the current collector is 0.35 m or more. is there.
  • the difference between the average thickness and the maximum thickness is preferably 1 m or more, more preferably 1.5 m or more. Also, although not particularly limited, the difference between the average thickness and the maximum thickness is preferably 4 m or less from the viewpoint of maintaining the strength of the current collector.
  • FIG. 1 conceptually showing a polished cross section.
  • line segments lla to c formed by the portions of the surface of the current collector 14 where the recesses are not formed are approximated to the straight line 12 of length L.
  • the obtained approximate straight line 12 corresponds to, for example, a straight line that the current collector surface should form before a portion of the active material particles 13a to 13c is embedded by rolling.
  • Next, of the straight line of length L Calculate the total length AL of the line segments 15a-b.
  • the area ratio of the recess area determined by 100 X ⁇ LZL is less than 30%, under the severe condition that the electrode plate is broken, the exposure of the current collector due to the drop of the mixture is sufficiently suppressed. It may not be possible.
  • the length L may be set to, for example, 200 ⁇ m or 100 ⁇ m.
  • the requirements of the present invention are satisfied when the ratio of the area of the recess is 30% or more.
  • the recesses on the surface of the current collector 24 formed by embedding a part of the active material particles 23a to 23c have various depths d.
  • the current collector of the electrode of the present invention is characterized in that it has a recess with a maximum depth dmax of 1 m or more. The depth of the recess is determined from the distance between the approximate straight line 22 determined in the same manner as described above and the deepest portion of the recess.
  • the maximum depth of the recess is less than 1 ⁇ m, the exposure of the current collector due to removal of the mixture may not be sufficiently suppressed in severe conditions where the electrode plate is broken.
  • the maximum depth of the recess may be determined, for example, by observing the interface between the mixture and the current collector over a length of 200 m or 100 m.
  • the average thickness of the current collector 34 is smaller than the thickness before the active material particles are embedded.
  • the average thickness of the current collector 34 can be obtained by measuring the thickness of the current collector for each predetermined width in the cross section and taking the average value.
  • the maximum thickness tmax of the current collector usually corresponds to the thickness before the active material particles are embedded.
  • the predetermined width may be set to 2 ⁇ m, for example.
  • the thickness of the current collector may be measured at about 50 points over a length of 200 ⁇ m or 100 ⁇ m.
  • the interface between the mixture and the current collector in the cross section polished over a predetermined length with a field of view of 1000 ⁇ magnification Observe. And that in this case, it is desirable to obtain the ratio of the area of the recess, the maximum depth of the recess, or the difference between the average thickness and the maximum thickness of the current collector. Also, it is desirable to perform the same operation in five different fields of view, and use the average value of the five values to determine whether or not the above features are present.
  • an aluminum foil, an aluminum alloy foil, or the like is used as a current collector on which the mixture is carried.
  • a sheet in which aluminum is coated on a nonconductive sheet which is also resin equal strength is used.
  • the thickness of the current collector before rolling is preferably 10 to 25 m, but is not particularly limited. It is desirable that the current collector be softened to facilitate embedding of the active material particles.
  • the softening treatment is performed, for example, by heating the current collector at 200 to 350 ° C.
  • the heating atmosphere is not particularly limited, but may be performed, for example, in an air atmosphere.
  • the heating time may vary depending on the heating temperature, for example, 5 to LO time.
  • the embedding of the active material particles on the surface of the current collector is carried out by rolling the current collector in a state in which the mixture is supported, for example, by a roll press.
  • the combination agent contains active material particles as an essential component, and contains a conductive agent, a binder and the like as optional components.
  • the mixture can be supported on the current collector by mixing with the liquid component to prepare a mixture paste, applying the mixture paste to the current collector, and drying. In the drying step, by setting the drying temperature to 200 to 350 ° C., it is possible to simultaneously perform the drying of the mixture and the softening treatment of the current collector. Thereafter, the current collector carrying the mixture is rolled using, for example, a roll press at a linear pressure of 10 k to 15 kN / cm. Thus, partial embedding of the active material particles on the surface of the current collector can be performed.
  • the temperature of the current collector during rolling is not particularly limited, and for example, rolling at 10 to 50 ° C.! / ,.
  • the active material particles are not particularly limited, but it is desirable that the active material particles contain a lithium-containing composite oxide.
  • the lithium-containing composite oxide has the formula 1: Li Co Ni MO (M is Mn, Ti, Y, N b And at least one element selected from the group consisting of Mo, W, Al, Mg, Ca, Sr and Ba, and 0.9.97 ⁇ x 0l. 1, 0. 05 ⁇ y ⁇ l and 0 ⁇ z It is desirable that it be expressed by ⁇ 0.53).
  • the element M is preferably Mn, Al, Sr, W because the element M can be easily embedded in the surface of the current collector and at the same time a high capacity can be obtained and the thermal stability of the crystal is high. And the like.
  • x value is a value in the complex acid compound to be mixed in the mixture, and after being incorporated in the battery as a positive electrode active material, x value is increased or decreased by being charged and discharged.
  • the y value indicating the content of Ni is not particularly limited !, but from the viewpoint of facilitating the embedding of the active material particles in the current collector, it is not less than 0.55, or 0.2. It is desirable to set it as the above. Also, from the viewpoint of enhancing the effect by the combination of Ni and other elements, it is desirable to set it to 0.6 or less.
  • the z value indicating the content of the element M is not particularly limited !, but in consideration of the balance between the ease with which the active material particles can be embedded in the current collector surface and the volume, a value of 0.35 or less is desirable. .
  • the volume-based average particle diameter (median diameter: D50) of the active material particles is preferably, for example, 5 to 10 ⁇ m. If the average particle size of the active material particles is too large, the discharge performance may be impaired. If the average particle size of the active material particles is too small, it may be difficult to embed the active material particles on the surface of the current collector.
  • the optional components to be contained in the mixture ie, the conductive agent, the binder and the like are not particularly limited.
  • other constituent materials of the lithium ion secondary battery used in combination with the electrode of the present invention for example, a counter electrode such as a negative electrode, a non-aqueous electrolytic solution, a separator and the like are not particularly limited.
  • LiCoO having an average particle size of 7.5 ⁇ m that is, Formula 1: Li Co Ni M O
  • the positive electrode active material, acetylene black as a conductive agent, and polytetrafluoroethylene (PTFE) as a binder are mixed in a weight ratio of 90: 5: 5, and 1 weight of carboxymethylcellulose (CM C) % Aqueous solution was added to make a positive electrode mixture slurry.
  • CM C carboxymethylcellulose
  • the positive electrode material mixture slurry is applied to both sides of a 15 m thick aluminum foil as a current collector, dried at 110 ° C., and heated at 275 ° C. for 6 hours to soften the current collector.
  • the Next, positive The current collector carrying the agent was rolled at a linear pressure of 14 kN / cm by a roll press with a roll diameter of 0.4 m to form a positive electrode mixture layer of a predetermined thickness. Thereafter, the obtained electrode plate was cut into a positive electrode having a shape that can be inserted into a cylindrical battery case having a diameter of 18 mm and a height of 65 mm.
  • a negative electrode mixture slurry is applied to both sides of a 10 ⁇ m thick copper foil as a current collector, and after drying, the current collector carrying a negative electrode mixture is applied by a roll press with a roll diameter of 0.4 m.
  • the resultant was rolled at a linear pressure of 14 kN / cm to form a negative electrode mixture layer of a predetermined thickness. Thereafter, the obtained electrode plate was cut into a negative electrode having a shape that can be inserted into a cylindrical battery case having a diameter of 18 mm and a height of 65 mm.
  • Lithium hexafluorophosphate (LiPF 6) is dissolved at a concentration of 1 mol ZL in a mixed solvent containing ethylene carbonate and methyl ether carbonate at a volume ratio of 1: 3, to adjust the non-aqueous electrolyte
  • the positive electrode 5 and the negative electrode 6 were wound via the separator 7 to form a spiral electrode plate group.
  • the separator 7 a composite film of polyethylene and polypropylene (2300 manufactured by Celgard Co., Ltd., thickness 25 m) was used.
  • the positive electrode lead 5a and the negative electrode lead 6a made of nickel were attached to the positive electrode 5 and the negative electrode 6, respectively.
  • An upper insulating plate 8a was disposed on the upper surface of the electrode group, and a lower insulating plate 8b was disposed on the lower surface, and inserted into the battery case 1, and 5 g of a non-aqueous electrolyte was poured into the battery case 1.
  • the sealing plate 2 in which the insulating gasket 3 was arranged around the periphery was made conductive with the positive electrode lead 5 a, and the opening of the battery case 1 was sealed with the sealing plate 2.
  • a cylindrical 18650 lithium ion secondary battery nominal capacity 2 Ah
  • Formula 1 Li Co Ni M O as a positive electrode active material, y value and z value are shown in Table 1 or 2
  • a positive electrode was produced in the same manner as in Example 1 except that the lithium-containing composite oxide (average particle diameter 7 to 8.5 m) having the described value was used, to produce a lithium ion secondary battery.
  • Recesses were formed on both sides of the aluminum foil by rolling the aluminum foil, which is a current collector, with three types of rollers with different undulations subjected to an embossing force.
  • the roller has a diameter of 150 mm, and embossing on the roller surface was performed using a YAG laser (ML-2650B) manufactured by Miyachi Technos Co., Ltd.
  • ML-2650B YAG laser
  • Three types of positive electrodes were prepared in the same manner as in Example 1 except that the three types of current collectors manufactured in this manner were not used to soften the current collectors, and three types of lithium ions were prepared. The following battery was produced.
  • a YAG laser (ML-2650B) manufactured by Miyachi Technos Co., Ltd. was used to form predetermined recesses directly on both sides of the aluminum foil, and the current collector was not softened. Similarly, a positive electrode was produced, and a lithium ion secondary battery was produced.
  • Example 2 Similar to Example 1 except that both surfaces of the aluminum foil were polished with a metal brush (made of SUS, wire diameter 0.5 mm) to form recesses, and the current collector was softened. Then, a positive electrode was produced, and a lithium ion secondary battery was produced.
  • a metal brush made of SUS, wire diameter 0.5 mm
  • Example 2 Similar to Example 1 except that predetermined recesses were formed on both sides of the aluminum foil by sandblasting with alumina particles having an average particle diameter of 5 ⁇ m, and the current collector was not softened.
  • the positive electrode was manufactured, and a lithium ion secondary battery was manufactured.
  • the positive electrode was prepared in the same manner as in Example 1 except that the current collector carrying the positive electrode mixture was not softened by heating, and a predetermined resistor layer (5 ⁇ m thick) was formed on the surface of the current collector. A lithium ion secondary battery was produced.
  • the resistor layer was formed by applying a carbon powder and a polyimide resin on the surface according to the procedure described in Patent Document 1.
  • a positive electrode was produced in the same manner as in Example 1 except that the soft charge treatment by heating of the current collector carrying the positive electrode mixture was performed at 140 ° C., and a lithium ion secondary battery was produced.
  • the positive electrode was impregnated with the resin to cure the resin. Specifically, the positive electrode was placed in a resin adhesive (HARDENER) manufactured by Nagase ChemteX Co., Ltd., degassed under reduced pressure, and then the resin was cured together with the positive electrode. After that, the current collector portion carrying the mixture on both sides It was cut in the direction perpendicular to the surface and the obtained cross section was polished. Next, the cross section was observed with an SEM, and five different SEM images were obtained for each positive electrode. The magnification of the SEM image was 1000 times.
  • HARDENER resin adhesive manufactured by Nagase ChemteX Co., Ltd.
  • Constant voltage charge Voltage 4.2 V, charge termination current 0.1 A
  • Constant voltage charge Voltage 4.2 V, charge termination current 0.1 A
  • Constant voltage charge Voltage 4. 25V, charge termination current 0.1 A
  • Embedding of the active material particles in the current collector occurred more efficiently in the case where the active material particles contained Ni as compared with the case where the active material particles contained only Co as a transition metal. Also, by adding the element M to the active material particles, the embedding of the active material particles in the current collector occurred more efficiently. This is considered to be because the hardness of the lithium-containing composite acid oxide is increased by the addition of the element M.
  • the temperature rise was suppressed in the nail penetration test, and the internal resistance increased, and the discharge capacity retention rate decreased. Further, in the battery of Comparative Example 2, the temperature rise of the battery in the nail penetration test was remarkable. This is related to insufficient embedding of the active material particles in the current collector. The impact of the nail penetration peels off the mixture from the current collector, and the exposed part of the highly conductive current collector is newly formed, and it is considered that a large current flows.
  • Example 1 to 57 since the embedding of the active material particles in the current collector was sufficient, any temperature rise in the nail penetration test was suppressed. Moreover, in Examples 1 to 37, the discharge capacity retention rate was also very good. In Examples 38 to 57, the force at which the decrease in the discharge capacity retention rate was observed is considered to be because the addition amount of the element M exceeded the preferable amount.
  • Example 3 and Example 5 when Example 3 and Example 5 are compared, embedding of the active material particles in the current collector is more effective in the case where Mn is further included, as compared to the case where only Ni is included in addition to the active material power SCo. It was easy to occur, and the discharge capacity retention rate was also excellent. From Examples 18 to 27, it was found that an element M other than Mn had the same effect. In addition, when Examples 5 to 7 are compared, it was found that the safety in the nail penetration test is improved as the amount of the element M is increased. When Example 7 and Examples 8 to 17 are compared, the discharge capacity retention ratio and the safety at the time of the nail penetration test were further improved by containing plural kinds of elements M in the active material. The same tendency was seen in the comparison between Example 23 and Examples 28 to 37.
  • the adhesion between the current collector and the active material particles was improved by forming the recesses in advance on the surface of the aluminum foil, and the safety was improved. Therefore, even in the case of using active material particles that are difficult to embed in the current collector, the adhesion between the current collector and the active material particles can be improved by forming recesses in advance on the surface of the current collector. It has been shown to improve. In particular, according to Examples 58 to 60, it has been confirmed that 90% or more, which is preferably 70% or more, is particularly effective. Similarly, the maximum depth of the recess is preferably 1 m or more, or 3 ⁇ m or more, and more preferably 5 ⁇ m or more. The difference between the average thickness and the maximum thickness of the current collector is preferably 0.35 ⁇ m or more, or 1 ⁇ m or more, and more preferably 1.5 ⁇ m or more.
  • the present invention is useful in a lithium ion secondary battery generally applicable to a lithium ion secondary battery, in particular, in a lithium ion secondary battery including a lithium-containing composite oxide containing nickel or cobalt as a main component as a positive electrode active material.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and may be any shape such as coin, button, sheet, cylindrical, flat, square and the like.
  • the form of the electrode plate group including the positive electrode, the negative electrode and the separator may be a wound type or a laminated type.
  • the size of the battery may be small for use in small portable devices and large for use in electric vehicles and the like.
  • the lithium ion secondary battery of the present invention can be used, for example, as a power source for portable information terminals, portable electronic devices, small-sized power storage devices for home use, motorcycles, electric vehicles, hybrid electric vehicles and the like.
  • the application is not particularly limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明 細 書
リチウムイオン二次電池用電極
技術分野
[0001] 本発明は、リチウムイオン二次電池の安全性と出力特性とを両立するのに適したリ チウムイオン二次電池用電極に関する。
背景技術
[0002] リチウムイオン二次電池は、高出力、高工ネルギー密度、軽量等の特徴を有するこ とから、様々な用途で用いられており、現在も活発に研究が行われている。リチウムィ オン二次電池は、非水溶媒を用いた非水電解液を含み、エネルギー密度の高い電 極を含む。よって、安全性の更なる向上力 リチウムイオン二次電池の重要な課題と なっている。
[0003] 高度な安全性を確保するためには、電池の釘刺し試験や圧壊試験のように、極め て厳しい条件の試験において、電池の昇温等を抑制することが必要となる。試験に おいて、集電体から合剤が剥がれ落ち、導電性の高い集電体の露出部が形成され ると、大電流が流れたり、異常発熱を生じたりするおそれは高くなる。
[0004] 従来は、ヒューズや PTC素子を含む電気回路を用いたり、セパレータのシャットダウ ン機能を利用したり、過酷な状況で抵抗を増大させる抵抗体層を集電体表面に形成 したりして、安全性を確保することが試みられているが、十分ではない (特許文献 1参 照)。特に、集電体に抵抗体層を形成すると、通常の使用時においても電池の内部 抵抗が増加するため、出力の低下が問題となる。
特許文献 1 :特開平 10— 199574号公報
発明の開示
発明が解決しょうとする課題
[0005] そこで、本発明は、釘刺し試験や圧壊試験などにおいて、過酷な条件に曝された 場合にも、高度な安全性を確保でき、かつ、出力特性にも優れたリチウムイオン二次 電池を提供することを目的とする。
課題を解決するための手段 [0006] 本発明は、可逆的にリチウムを吸蔵および放出できる活物質粒子を含む合剤と、合 剤を担持する集電体とを有する電極であって、集電体の表面は、凹部を有し、集電 体の合剤担持面積に対する、凹部が占める面積の割合が、 30%以上である、リチウ ムイオン二次電池用電極に関する。
[0007] ここで、集電体の合剤担持面積とは、合剤と集電体との界面の面積を意味する。集 電体が合剤を担持しない露出部を有する場合、その露出部の面積は、合剤担持面 積に含まれない。合剤と集電体との界面は、微視的に見れば複雑な形状を有すると 考えられるが、ここでは平面として取り扱われる。
[0008] 集電体の合剤担持面積に対する、凹部が占める面積の割合は、例えば、以下の方 法で求められる。
まず、合剤と集電体とを電極面に垂直に同時に切断した断面を、拡大して、観察す る。拡大断面において、集電体表面のうち、凹部を形成しない部分が形成する線分 を直線に近似する。次に、得られた近似直線の長さ (L)に対する、凹部で切除された 線分の合計長さ(AL)の割合: 100 X ALZLを求める。 100 X ALZLは、集電体 の合剤担持面積に対する、凹部が占める面積の割合と見なすことができる。
[0009] 本発明は、また、可逆的にリチウムを吸蔵および放出できる活物質粒子を含む合剤 と、合剤を担持する集電体とを有する電極であって、集電体の表面は、凹部を有し、 合剤と集電体とを電極面に垂直に同時に切断した断面において、凹部の最大深さが 1 μ m以上である、リチウムイオン二次電池用電極に関する。
[0010] 本発明は、さらに、可逆的にリチウムを吸蔵および放出できる活物質粒子を含む合 剤と、合剤を担持する集電体とを有する電極であって、集電体の表面は、凹部を有し 、合剤と集電体とを電極面に垂直に同時に切断した断面において、集電体の平均厚 みと、集電体の最大厚みとの差が、 0. 35 m以上である、リチウムイオン二次電池 用電極に関する。
集電体の表面の凹部は、例えば活物質粒子の部分的な埋め込みにより形成される 。あるいは、集電体の表面に予め凹部を形成しておき、その後、活物質粒子を含む 合剤を集電体に担持させてもょ ヽ。
[0011] 本発明において、活物質粒子は、例えば、リチウム含有複合酸化物を含む。リチウ ム含有複合酸化物は、式 1 :Li Co Ni M Oで表され、式 1中、 Mは、 Mn、 Ti、 Y χ 1-y-z y z 2
、 Nb、 Mo、 W、 Al、 Mg、 Ca、 Srおよび Baよりなる群から選ばれた少なくとも 1種の 元素であり、式 1は、 0. 97≤x≤l. 1、0. 05≤y≤lおよび 0≤z≤0. 35を満たすこ とが望ましい。
発明の効果
[0012] 集電体の表面に複数の凹部が存在することにより、合剤と集電体との密着性が向 上する。よって、極板が破壊される過酷な条件 (例えば釘刺し試験)においても、集電 体の露出を最小限に抑制することができる。このため、短絡時の大電流を抑制し、安 全性を向上することができる。また、本発明においては、特許文献 1に記載されてい るように集電体表面に抵抗体層を設ける必要がない。よって、安全性と出力特性とを 両立する、優れたリチウムイオン二次電池を提供することができる。
図面の簡単な説明
[0013] [図 1]合剤と集電体とを電極面に垂直に同時に切断した断面の概念図である。
[図 2]合剤と集電体とを電極面に垂直に同時に切断した別の断面概念図である。
[図 3]合剤と集電体とを電極面に垂直に同時に切断した更に別の断面概念図である
[図 4]本発明の実施例に係る円筒形リチウムイオン二次電池の縦断面図である。 発明を実施するための最良の形態
[0014] 本発明は、可逆的にリチウムを吸蔵および放出できる活物質粒子を含む合剤と、合 剤を担持する集電体とを有する電極に関し、集電体の表面は、凹部を有する。本発 明は、このような凹部の合剤担持面積に対する割合、凹部の深さ、または、凹部の形 成に起因する集電体の厚み変化、を制御する点に特徴を有する。
合剤と集電体とを電極面に垂直に同時に切断し、その断面を拡大すると、活物質 粒子の部分的な埋め込み等により形成された凹部を観察することができる。例えば、 本発明の電極に榭脂を含浸させて、榭脂を硬化させる。その後、両面に合剤を担持 した集電体部分を、電極面に対して垂直方向に切断する。得られた断面は、研磨す ることが望ましい。次に、研磨された断面を、光学顕微鏡もしくは SEM (走査電子顕 微鏡)などにより観察する。研磨された断面において、集電体表面には、活物質粒子 の部分的な埋め込み等により形成された凹部が見られる。
[0015] 活物質粒子の部分的な埋め込みは、通常の電極製造においては、ほとんど発生し ない。よって、上記のような凹部を形成するためには、例えば、集電体の硬度と活物 質粒子の硬度との関係を制御するとともに、合剤と集電体とを同時に圧延する必要 がある。例えば、集電体の軟化処理を行ってから圧延工程を実施することにより、上 記のような凹部を形成することが可能である。
[0016] ここで、本発明の電極は、具体的には、以下の〈1〉〜く 3〉のいずれかの特徴を有す る。
〈1〉合剤と集電体とを電極面に垂直に同時に切断した断面において、集電体表面 の凹部を形成しない部分を直線に近似する。得られた近似直線の長さ Lに対する、 凹部で切除された線分の合計長さ(A L)の割合:100 X A LZL (以下、凹部面積割 合という)が 30%以上である。凹部面積割合は、 50%以上が好ましぐ 70%以上が 更に好ましい。また、特に限定されないが、凹部面積割合は、 95%以下であることが 好ましい。
[0017] 〈2〉合剤と集電体とを電極面に垂直に同時に切断した断面において、凹部の最大 深さが 1 μ m以上である。凹部の最大深さは、 3 μ m以上が好ましぐ 5 μ m以上が更 に好ましい。凹部の最大深さは、集電体の強度を維持する観点から、集電体の厚み の半分以下であることが望まし 、。
[0018] 〈3〉合剤と集電体とを電極面に垂直に同時に切断した断面において、集電体の平 均厚みと、集電体の最大厚みとの差力 0. 35 m以上である。平均厚みと最大厚 みとの差は、 1 m以上が好ましぐ 1. 5 m以上が更に好ましい。また、特に限定さ れないが、平均厚みと最大厚みとの差は、集電体の強度を維持する観点から、 4 m 以下であることが望ましい。
[0019] 上記〈1〉の特徴について、研磨された断面を概念的に示す図 1を参照しながら説 明する。まず、電極 10の研磨された断面において、集電体 14の表面の凹部を形成 しない部分が形成する線分 l la〜cを、長さ Lの直線 12に近似する。得られた近似直 線 12は、例えば、圧延により活物質粒子 13a〜cの一部が埋め込まれる前の、集電 体表面が形成するべき直線に相当する。次に、長さ Lの直線のうち、凹部で切除され た線分 15a〜bの合計長さ A Lを求める。
[0020] 100 X Δ LZLで求められる凹部面積割合が 30%未満では、極板が破壊される過 酷な条件においては、合剤の脱落による集電体の露出を、十分に抑制することがで きない場合がある。なお、長さ Lは、例えば 200 μ mもしくは 100 μ mに設定すればよ い。例えば、長さ 100 mにわたつて合剤と集電体との界面を観察する場合に、凹部 面積割合が 30%以上であるときには、本発明の要件が満たされる。
[0021] 次に、上記〈2〉の特徴について、研磨された断面を概念的に示す図 2を参照しなが ら説明する。電極 20において、例えば活物質粒子 23a〜cの一部が埋め込まれて形 成された集電体 24の表面の凹部は、様々な深さ dを有する。本発明の電極の集電体 は、最大深さ dmaxが 1 m以上の凹部を有する点に特徴を有する。凹部の深さは、 上記と同様に求められる近似直線 22と凹部の最深部との距離から求められる。凹部 の最大深さが 1 μ m未満では、極板が破壊される過酷な条件においては、合剤の脱 落による集電体の露出を、十分に抑制することができない場合がある。なお、凹部の 最大深さは、例えば長さ 200 mもしくは 100 mにわたつて合剤と集電体との界面 を観察し、その範囲内で決定すればよい。
[0022] 次に、上記〈3〉の特徴について、研磨された断面を概念的に示す図 3を参照しなが ら説明する。電極 30の集電体 34の表面には、活物質粒子 33a〜fの一部が埋め込 まれている。よって、集電体 34の平均厚みは、活物質粒子が埋め込まれる前の厚み よりも減少している。集電体 34の平均厚みは、断面において所定幅 毎に集電体 の厚みを測定し、その平均値を取ることで求められる。集電体の最大厚み tmaxは、通 常、活物質粒子が埋め込まれる前の厚みに相当する。なお、所定幅 は、例えば 2 μ mに設定すればよい。例えば長さ 200 μ mもしくは 100 μ mにわたつて、集電体 の厚みを 50点程度測定すればよい。集電体の平均厚み tavと、集電体の最大厚み t maxとの差 (tmax— tav)が 0. 35 /z m未満では、極板が破壊される過酷な条件におい ては、合剤の脱落による集電体の露出を、十分に抑制することができない場合がある
[0023] なお、上記特徴〈1〉〜〈3〉を確認する際には、例えば倍率 1000倍の視野で、所定 の長さにわたって研磨された断面中の合剤と集電体との界面を観察する。そして、そ の際に、凹部面積割合、凹部の最大深さ、もしくは、集電体の平均厚みと最大厚みと の差を求めることが望ましい。また、同様の操作を異なる 5点の視野で行い、 5つの値 の平均値を用いて上記の特徴を有するか否かを判断することが望ましい。
[0024] 合剤を担持させる集電体には、例えばアルミニウム箔、アルミニウム合金箔などを用 いる。もしくは、榭脂等力もなる不導体シートに例えばアルミニウムをコーティングした シートなどを用いる。圧延を行う前の集電体の厚みは、 10〜25 mが好ましいが、 特に限定される訳ではない。集電体は、活物質粒子の埋め込みが容易になるように 軟化処理を施すことが望ましい。軟化処理は、例えば、集電体を 200〜350°Cでカロ 熱することにより行われる。加熱雰囲気は特に限定されないが、例えば空気雰囲気 中で行えばよい。加熱時間は、加熱温度にもよるが、例えば 5〜: LO時間であればよ い。活物質粒子の集電体表面への埋め込みは、合剤を担持した状態の集電体を、 例えばロールプレスにより圧延することで行われる。
[0025] 合剤は、活物質粒子を必須成分として含み、導電剤、結着剤などを任意成分として 含んでいる。合剤は、液状成分と混合して、合剤ペーストを調製し、合剤ペーストを集 電体に塗布し、乾燥することにより、集電体に担持することができる。この乾燥工程に おいて、乾燥温度を 200〜350°Cに設定することにより、合剤の乾燥と集電体の軟化 処理とを同時に行うことができる。その後、合剤を担持した集電体を、例えば線圧 10 k〜15kN/cmでロールプレスを用いて圧延する。これにより、活物質粒子の集電体 表面への部分的な埋め込みを行うことができる。なお、圧延中の集電体の温度は、 特に限定されず、例えば 10〜 50°Cで圧延を行えばよ!/、。
[0026] 活物質粒子は、特に限定されないが、リチウム含有複合酸化物を含むことが望まし い。また、容量を確保するとともに集電体への埋め込みが可能な硬度を確保する観 点から、リチウム含有複合酸化物は、式 1 :Li Co Ni M O (Mは、 Mn、 Ti、 Y、 N b、 Mo、 W、 Al、 Mg、 Ca、 Srおよび Baよりなる群から選ばれた少なくとも 1種の元素 であり、 0. 97≤x≤l. 1、0. 05≤y≤lおよび 0≤z≤0. 35を満たす)で表されるこ とが望ましい。
[0027] 特に、集電体表面への埋め込みが容易であると同時に、高容量が得られ、結晶の 熱的安定性も高いなどの点で、元素 Mとしては、 Mn、 Al、 Sr、 Wなどが好ましい。 [0028] 式 1において、 x値は、合剤に配合される複合酸ィ匕物における値であり、正極活物 質として電池に組み込まれた後は、充放電されることにより増減する。
[0029] Niの含有量を示す y値は、特に限定されな!、が、活物質粒子の集電体への埋め込 みを容易にする観点からは、 0. 05以上、もしくは 0. 2以上とすることが望ましい。ま た、 Niと他元素との組み合わせによって効果を高める観点からは、 0. 6以下とするこ とが望ましい。
[0030] 元素 Mの含有量を示す z値は、特に限定されな!、が、活物質粒子の集電体表面へ の埋め込みの容易さと容量とのバランスを考慮すると、 0. 35以下が望ましい。
y値および z値の更【こ好まし!/ヽ範囲 ίま 0. 3≤y≤0. 6および 0. 2≤z≤0. 35である
[0031] 活物質粒子の体積基準の平均粒径 (メディアン径: D50)は、例えば 5〜10 μ mで あることが望ましい。活物質粒子の平均粒径が大きすぎると、放電性能が損なわれる 可能性がある。活物質粒子の平均粒径が小さすぎると、集電体表面への活物質粒子 の埋め込みが困難になる場合がある。
[0032] 合剤に含ませる任意成分、すなわち導電剤、結着剤等は、特に限定されない。また 、本発明の電極と組み合わせて用いるリチウムイオン二次電池の他の構成材料、例 えば負極などの対極、非水電解液、セパレータなども特に限定されない。
[0033] 次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例 により限定されるものではない。
[0034] 《実施例 1》
(i)正極の作製
正極活物質として、平均粒径 7. 5 μ mの LiCoO、すなわち式 1: Li Co Ni M O
2 x 1-y-z y z で表され、 y=z= 0であるリチウム含有複合酸化物を用 、た。
2
正極活物質と、導電剤であるアセチレンブラックと、結着剤であるポリテトラフルォロ エチレン(PTFE)とを、重量比 90: 5: 5で混合し、カルボキシメチルセルロース(CM C)の 1重量%水溶液を適量加えて正極合剤スラリーとした。
[0035] 正極合剤スラリーを集電体である厚み 15 mのアルミニウム箔の両面に塗布し、 1 10°Cで乾燥後、 275°Cで 6時間加熱し、集電体の軟化処理を行った。次に、正極合 剤を担持した集電体を、ロール径 0. 4mのロールプレスにより、線圧 14kN/cmで圧 延して、所定厚みの正極合剤層を形成した。その後、得られた極板を直径 18mm、 高さ 65mmサイズの円筒形電池ケースに挿入可能な形状の正極に裁断した。
[0036] (ii)負極の作製
人造黒鉛と、 JSR (株)製のスチレンブタジエンゴム(SBR)とを、重量比 95: 5で混 合し、 CMCの 1重量0 /0水溶液を適量カ卩えて負極合剤スラリーとした。
[0037] 負極合剤スラリーを集電体である厚み 10 μ mの銅箔の両面に塗布し、乾燥後、負 極合剤を担持した集電体を、ロール径 0. 4mのロールプレスにより、線圧 14kN/c mで圧延して、所定厚みの負極合剤層を形成した。その後、得られた極板を直径 18 mm、高さ 65mmサイズの円筒形電池ケースに挿入可能な形状の負極に裁断した。
[0038] (iii)電解液の調製
エチレンカーボネートと、メチルェチルカーボネートとを、体積比 1 : 3で含む混合溶 媒に、六フッ化リン酸リチウム (LiPF )を ImolZLの濃度で溶解し、非水電解液を調
6
製した。
[0039] (iv)電池の組立
図 1のように、正極 5と負極 6とを、セパレータ 7を介して捲回し、渦巻状の極板群を 構成した。セパレータ 7には、ポリエチレンとポリプロピレンとの複合フィルム(セルガ ード (株)製の 2300、厚さ 25 m)を用いた。
正極 5および負極 6には、それぞれニッケル製の正極リード 5aおよび負極リード 6a を取り付けた。この極板群の上面に上部絶縁板 8a、下面に下部絶縁板 8bを配して、 電池ケース 1内に挿入し、さらに 5gの非水電解液を電池ケース 1内に注液した。その 後、周囲に絶縁ガスケット 3を配した封口板 2と、正極リード 5aとを導通させ、電池ケ ース 1の開口部を封口板 2で封口した。こうして、円筒型 18650のリチウムイオン二次 電池 (公称容量 2Ah)を完成させた。
[0040] 《実施例 2〜57》
正極活物質として式 1: Li Co Ni M Oで表され、 y値および z値が表 1または 2
X 1-y-z y z 2
記載の値であるリチウム含有複合酸化物(平均粒径 7〜8. 5 m)を用いたこと以外 、実施例 1と同様にして、正極を作製し、リチウムイオン二次電池を作製した。 [0041] 《実施例 58〜60》
集電体であるアルミニウム箔を、エンボス力卩ェを施した起伏の異なる 3種類のローラ で圧延することにより、アルミニウム箔の両面に凹部を形成した。ローラは 150mm径 であり、ローラ表面へのエンボス加工は、ミヤチテクノス(株)製の YAGレーザ(ML— 2650B)を用いて行った。こうして作製した 3種類の集電体を用い、集電体の軟化処 理を行わなカゝつたこと以外、実施例 1と同様にして、 3種類の正極を作製し、 3種類の リチウムイオン二次電池を作製した。
[0042] 《実施例 61》
ミヤチテクノス(株)製の YAGレーザ(ML— 2650B)を用いて、アルミニウム箔の両 面に直接、所定の凹部を形成し、集電体の軟化処理を行わなかったこと以外、実施 例 1と同様にして、正極を作製し、リチウムイオン二次電池を作製した。
[0043] 《実施例 62》
金属ブラシ (SUS製、線径 0. 5mm)でアルミニウム箔の両面を研磨して凹部を形 成し、集電体の軟ィ匕処理を行わな力つたこと以外、実施例 1と同様にして、正極を作 製し、リチウムイオン二次電池を作製した。
[0044] 《実施例 63》
平均粒径 5 μ mのアルミナ粒子によるサンドブラスト処理により、アルミニウム箔の両 面に所定の凹部を形成し、集電体の軟ィ匕処理を行わな力つたこと以外、実施例 1と 同様にして、正極を作製し、リチウムイオン二次電池を作製した。
[0045] 《比較例 1》
正極合剤を担持した集電体の加熱による軟化処理を行わず、集電体表面に所定 の抵抗体層(厚み 5 μ m)を形成したこと以外、実施例 1と同様にして、正極を作製し 、リチウムイオン二次電池を作製した。なお、抵抗体層は、特許文献 1記載の要領に 従 、、炭素粉末とポリイミド榭脂を表面に塗布して形成した。
[0046] 《比較例 2》
正極合剤を担持した集電体の加熱による軟ィ匕処理を 140°Cで行ったこと以外、実 施例 1と同様にして、正極を作製し、リチウムイオン二次電池を作製した。
[0047] [表 1] \_zrn [8 00]
Figure imgf000012_0001
εθδ1Ίε/900ΖίΓ/13Λ 01· ς/,εειο/ζ,οοζ OAV 実施例 L i C o !_y_zN i V Z02
N i量 M量
Mの種類
(y値) (z値)
28 0.3 Al Ti 0.35 (Al :Ti = 0.175:0.175)
29 0.3 Al Y 0.35 (Al: Y = 0.175:0.175)
30 0.3 Al Nb 0.35 (Al :Nb = 0.175:0.175)
31 0.3 Al Mo 0.35 (A Mo = 0.175:0.175)
32 0.3 Al W 0.35 (Al : = 0.175:0.175)
33 0.3 Al Mn 0.35 (Aに Mn = 0.175:0.175)
34 0.3 Al Mg 0.35 (A Mg = 0.175:0.175)
35 0.3 Al Ca 0.35 (Al: Ca = 0.175:0.175)
36 0.3 Al Sr 0.35 (Al :Sr = 0.175:0.175)
37 0.3 Al Ba 0.35 (A I: Ba = 0.175:0.175)
38 0.3 Ti 一 0.36
39 0.3 Y - 0.36
40 0.3 Nb - 0.36
41 0.3 Mo - 0.36
42 0.3 - 0.36
43 0.3 n - 0.36
44 0.3 Mg - 0.36
45 0.3 Ca ― 0.36
46 0.3 Sr - 0.36
47 0.3 Ba - 0.36
48 0.3 Al Ti 0.36 (Al: Ti = 0.18:0.18)
49 0.3 Al Y 0.36 (Al :Y = 0.18:0.18)
50 0.3 Al Nb 0.36 (Al: b = 0.18:0.18)
51 0.3 Al o 0.36 (Al: o = 0.18:0.18)
52 0.3 Al W 0.36 (Al: W = 0.18:0.18)
53 0.3 Al Mn 0.36 (Al Mn = 0.18:0.18)
54 0.3 Al Mg 0.36 (Al Mg = 0.18:0.18)
55 0.3 Al Ca 0.36 (Al Ca = 0.18:0.18)
56 0.3 Al Sr 0.36 (Al Sr = 0.18:0.18)
57 0.3 Al Ba 0.36 (Al Ba = 0.18:0.18)
[正極の評価]
正極に樹脂を含浸させて樹脂を硬化させた。具体的には、ナガセケムテックス (株) 製の樹脂接着剤(HARDENER)中に正極を投入し、減圧下において脱気した後、 正極とともに樹脂を硬化させた。その後、両面に合剤を担持した集電体部分を電極 面に対して垂直方向に切断し、得られた断面を研磨した。次に、断面を SEMで観察 し、各正極について、異なる 5点の SEM像を得た。 SEM像の倍率は 1000倍とした。
[0050] (凹部面積割合)
5つの SEM像において、それぞれ長さ 100 μ mにわたつて合剤と集電体との界面 を観察した。そして、集電体表面の凹部を形成しない部分が描く線分から、長さ L= l 00 mの近似直線を SEM像内に想定した。次に、近似直線のうち、凹部で切除さ れた線分の合計長さ A L (単位: m)を求め、 100 X A LZLより、凹部面積割合(% )を求めた。 5つの凹部面積割合の平均値を表 3、 4に示す。
[0051] (凹部の最大深さ: dmax)
5つの SEM像において、それぞれ長さ 100 μ mにわたつて合剤と集電体との界面 を観察し、その範囲内で、最も深くまで集電体表面に埋め込まれた活物質粒子を選 択した。そして、上記近似直線と、選択された活物質粒子が形成する凹部の最深部 との距離から、凹部の最大深さ dmax (単位:/ z m)を求めた。 5つの dmaxの平均値を 表 3〜5に示す。
[0052] (集電体の平均厚みと最大厚みとの差: tmax-tav)
5つの SEM像において、それぞれ長さ 100 μ mに亘つて、 2 μ m幅毎に集電体の 厚みを 50点測定し、 50個の測定値の平均値 tav (単位:/ z m)を求めた。集電体の最 大厚み tmaxは、正極合剤スラリーを塗布する前と同じく 15 mであった。 5つの tmax tav= 15 tavの平均値を表 3〜5に示す。
[0053] [電池の評価]
(放電容量維持率)
下記条件 1および 2で、電池の充放電を行い、条件 1で得られた放電容量の、条件 2で得られた放電容量に対する割合を百分率で求めた。結果を表 3〜5に示す。 〈条件 1〉
定電流充電:最大電流 1. 4A、充電終止電圧 4. 2V
定電圧充電:電圧 4. 2V、充電終止電流 0. 1A
定電流放電:電流 4A、放電終止電圧 3. OV
〈条件 2〉 定電流充電:最大電流 1. 4A、充電終止電圧 4. 2V
定電圧充電:電圧 4. 2V、充電終止電流 0. 1A
定電流放電:電流 0. 4A、放電終止電圧 3. 0V
[0054] (釘刺し試験)
放電容量維持率を評価後の電池について、 20°C環境下において、以下の充電を 行った。
定電流充電:電流 1. 4A、充電終止電圧 4. 25V
定電圧充電:電圧 4. 25V、充電終止電流 0. 1A
充電後の電池の側面から、 2. 5mm径の鉄製丸釘を、 5mmZ秒の速度で貫通さ せ、 2分後の電池表面の到達温度を測定した。結果を表 3〜5に示す。
[0055] [表 3]
100AL/L d max t max— t av 放電容量
到達温度 維持率
(%) ( m) (/u.m) (°C)
(%)
1 33 1.23 0.41 88 83
2 51 1.8 0.45 87 76
3 66 2.5 0.48 83 65
4 72 2.8 0.49 81 62
5 85 3.1 0.5 89 56
6 88 3.2 0.51 85 53
7 90 3.3 0.51 76 45
8 91 3.7 0.55 85 42
9 91 3.7 0.55 85 42
10 89 3.5 0.54 84 44
11 90 3.6 0.56 84 46
12 90 3.5 0.55 85 45
13 91 3.7 0.55 85 42
14 91 3.7 0.55 85 43
15 89 3.5 0.54 84 46
16 89 3.5 0.55 84 46
17 89 3.6 0.54 84 45
18 85 3.2 0.5 84 55
19 86 3.1 0.51 85 55
20 87 3.2 0.51 85 55
21 86 3.2 0.5 85 54
22 86 3.2 0.51 85 53
23 88 3.2 0.51 86 50
24 88 3.2 0.51 87 51
25 87 3.1 0.5 85 53
26 86 3.1 0.5 85 53
27 86 3.1 0.5 85 53 比較例 1 0 0 0 63 50 比較例 2 28 0.86 0.3 88 122
lOOAL/L d max t max— t av 放電容量
到達温度 維持率
(%) (μιη) (μ-m) (°C)
(%)
28 92 3.5 0.57 82 46
29 92 3.5 0.57 82 47
30 91 3.5 0.56 83 47
31 91 3.5 0.55 82 48
32 92 3.5 0.56 84 49
33 93 3.5 0.57 84 46
34 93 3.5 0.57 82 46
35 92 3.5 0.55 83 47
36 91 3.5 0.55 83 49
37 92 3.5 0.55 83 49
38 86 3.3 0.58 69 53
39 87 3.1 0.57 70 52
40 88 3.3 0.55 70 52
41 87 3.4 0.53 70 50
42 86 3.3 0.54 70 49
43 89 3.3 0.53 72 46
44 89 3.3 0.53 73 47
45 87 3.3 0.54 70 49
46 87 3.2 0.53 70 48
47 86 3.1 0.53 71 48
48 93 3.7 0.6 67 41
49 93 3.6 0.59 68 43
50 92 3.6 0.59 68 43
51 91 3.7 0.59 67 44
52 93 3.6 0.6 69 45
53 94 3.6 0.6 68 40
54 94 3.6 0.61 67 42
55 92 3.7 0.59 68 42
56 91 3.7 0.59 70 43
57 93 3.5 0.59 68 46
[0057] [表 5] 100 A L/L d max t max— t av 放電容量
到達温度 維持率
(%) ( At m) ( t m) (。c)
(%)
58 51 1 . 8 0. 7 88 76
59 73 3. 1 1. 1 89 49
60 90 5. 4 1. 6 89 39
61 80 4. 3 0. 49 89 48
62 92 3. 3 0. 43 88 52
63 93 3. 5 0. 45 89 50
[0058] [結果考察]
活物質粒子が遷移金属として Coだけを含む場合に比べ、 Niを含む場合の方が、 集電体への活物質粒子の埋め込みが効率よく発生した。また、活物質粒子に元素 M を添加することにより、集電体への活物質粒子の埋め込みが更に効率よく発生した。 これは、元素 Mの添カ卩により、リチウム含有複合酸ィ匕物の硬度が高くなるためと考え られる。
[0059] 比較例 1の電池は、釘刺し試験における温度上昇は抑制された力 内部抵抗が高 くなり、放電容量維持率が低下した。また、比較例 2の電池では、釘刺し試験におけ る電池の温度上昇が顕著であった。これは、集電体への活物質粒子の埋め込みが 不十分であることと関連する。釘刺しの衝撃で、集電体から合剤が剥がれ落ち、導電 性の高い集電体の露出部が新たに形成され、大電流が流れたものと考えられる。
[0060] 一方、実施例 1〜57では、集電体への活物質粒子の埋め込みが十分であるため、 釘刺し試験における温度上昇はいずれも抑制された。また、実施例 1〜37では、放 電容量維持率も極めて良好であった。実施例 38〜57では、放電容量維持率の低下 が見られた力 これは元素 Mの添加量が好適量を超えたためと考えられる。
[0061] 例えば、実施例 3と実施例 5とを比較すると、活物質力 SCo以外に Niのみを含む場 合に比べ、更に Mnを含む方が、集電体への活物質粒子の埋め込みが起こりやすく 、放電容量維持率も優れていた。実施例 18〜27より、 Mn以外の元素 Mにも同様の 効果があることがわ力つた。また、実施例 5〜7を比較すると、元素 Mの量が増加する に従い、釘刺し試験における安全性が向上することがわ力つた。 [0062] 実施例 7と実施例 8〜17とを比較すると、複数種の元素 Mが活物質に含まれること で、放電容量維持率および釘刺し試験時の安全性が更に向上した。実施例 23と実 施例 28〜37との比較力らも、同様の傾向が伺えた。
[0063] 実施例 58〜63では、アルミニウム箔の表面に予め凹部を形成することにより、集電 体と活物質粒子との密着性が向上し、安全性が向上することがわ力つた。よって、集 電体への埋め込みが困難な活物質粒子を用 、る場合であつても、集電体の表面に 予め凹部を形成することにより、集電体と活物質粒子との密着性が向上することが示 された。特に、実施例 58〜60より、凹部面積割合は 70%以上が好ましぐ 90%以上 が特に効果的であることが確認できた。同様に、凹部の最大深さは 1 m以上、もしく は 3 μ m以上、更には 5 μ m以上が好適である。集電体の平均厚みと最大厚みとの 差は 0. 35 μ m以上、もしくは 1 μ m以上、更には 1. 5 μ m以上が好適である。
産業上の利用可能性
[0064] 本発明は、リチウムイオン二次電池一般に適用可能である力 特に、ニッケルまた はコバルトを主成分とするリチウム含有複合酸化物を正極活物質として含むリチウム イオン二次電池において有用である。本発明のリチウムイオン二次電池の形状は、 特に限定されず、例えばコイン型、ボタン型、シート型、円筒型、偏平型、角型などの 何れの形状でもよい。正極、負極およびセパレータカ なる極板群の形態は、捲回 型でも積層型でもよい。電池の大きさは、小型携帯機器などに用いる小型でも電気 自動車等に用いる大型でもよい。本発明のリチウムイオン二次電池は、例えば携帯 情報端末、携帯電子機器、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、 ハイブリッド電気自動車等の電源に用いることができる。ただし、用途は特に限定され ない。

Claims

請求の範囲
[1] 可逆的にリチウムを吸蔵および放出できる活物質粒子を含む合剤と、前記合剤を 担持する集電体とを有する電極であって、
前記集電体の表面は、凹部を有し、
前記集電体の合剤担持面積に対する、前記凹部が占める面積の割合が、 30%以 上である、リチウムイオン二次電池用電極。
[2] 可逆的にリチウムを吸蔵および放出できる活物質粒子を含む合剤と、前記合剤を 担持する集電体とを有する電極であって、
前記集電体の表面は、凹部を有し、
前記合剤と前記集電体とを電極面に垂直に同時に切断した断面において、前記凹 部の最大深さが 1 μ m以上である、リチウムイオン二次電池用電極。
[3] 可逆的にリチウムを吸蔵および放出できる活物質粒子を含む合剤と、前記合剤を 担持する集電体とを有する電極であって、
前記集電体の表面は、凹部を有し、
前記合剤と前記集電体とを電極面に垂直に同時に切断した断面において、前記集 電体の平均厚みと、前記集電体の最大厚みとの差が、 0. 35 m以上である、リチウ ムイオン二次電池用電極。
[4] 前記活物質粒子が、リチウム含有複合酸化物を含み、
前記リチウム含有複合酸化物は、式 1 :Li Co Ni M Oで表され、
X 1-y-z y z 2
式 1中、 Mは、 Mn、 Ti、 Y、 Nb、 Mo、 W、 Al、 Mg、 Ca、 Srおよび Baよりなる群から 選ば、れた少なくとも 1種の元素であり、式 1は、 0. 97≤x≤l. 1、 0. 05≤y≤lおよ び 0≤z≤0. 35を満たす、請求項 1〜3のいずれかに記載のリチウムイオン二次電池 用電極。
PCT/JP2006/314503 2005-07-28 2006-07-21 リチウムイオン二次電池用電極 WO2007013375A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/916,603 US8883348B2 (en) 2005-07-28 2006-07-21 Electrode for lithium ion secondary battery
CN2006800276922A CN101233628B (zh) 2005-07-28 2006-07-21 锂离子二次电池用电极

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-219129 2005-07-28
JP2005219129 2005-07-28

Publications (1)

Publication Number Publication Date
WO2007013375A1 true WO2007013375A1 (ja) 2007-02-01

Family

ID=37683273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314503 WO2007013375A1 (ja) 2005-07-28 2006-07-21 リチウムイオン二次電池用電極

Country Status (4)

Country Link
US (1) US8883348B2 (ja)
KR (1) KR100992248B1 (ja)
CN (1) CN101233628B (ja)
WO (1) WO2007013375A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116872A1 (ja) * 2009-04-10 2010-10-14 三菱電機株式会社 蓄電デバイス用電極およびその製造方法
CN103460465A (zh) * 2011-03-29 2013-12-18 富士胶片株式会社 集电体用铝基材、集电体、正极、负极和二次电池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE035297T2 (en) * 2009-02-27 2018-05-02 Zeon Corp Electrode lithium-ion secondary battery
CN102959768B (zh) * 2010-07-06 2015-04-01 株式会社杰士汤浅国际 蓄电元件用电极体及蓄电元件
KR101702984B1 (ko) 2013-04-19 2017-02-06 삼성에스디아이 주식회사 이차 전지
JP2015088466A (ja) * 2013-09-25 2015-05-07 株式会社東芝 非水電解質二次電池用負極、非水電解質二次電池および電池パック
CN103811768B (zh) * 2014-02-22 2015-09-23 深圳市旭冉电子有限公司 凹坑锂离子电池集流体及其制作方法和设备
KR102048342B1 (ko) * 2015-07-09 2019-11-25 주식회사 엘지화학 이차 전지 양극 내부 기공 분포 분석 방법 및 이를 위한 고분자
KR102068764B1 (ko) * 2016-07-05 2020-01-21 주식회사 엘지화학 배터리 음극 내 기공 분포 관찰방법 및 관찰시스템
TWI617073B (zh) * 2016-11-25 2018-03-01 財團法人工業技術研究院 電池電極結構及其製作方法
KR102168230B1 (ko) * 2016-12-12 2020-10-20 주식회사 엘지화학 전지 안전성을 향상시키는 전극 집전체, 그의 제조방법 및 이를 포함하는 전극
JP7067019B2 (ja) * 2017-10-30 2022-05-16 セイコーエプソン株式会社 二次電池用電極、二次電池、電子機器、二次電池用電極の製造方法、二次電池の製造方法
KR102606425B1 (ko) * 2018-09-05 2023-11-27 주식회사 엘지에너지솔루션 이차 전지용 전극의 성능 예측 방법
US11837729B2 (en) * 2020-03-19 2023-12-05 Global Graphene Group, Inc. Conducting polymer network-protected cathode active materials for lithium secondary batteries
CN112599780A (zh) * 2020-12-14 2021-04-02 中国科学院过程工程研究所 一种锂浆料电池集流体表面改性处理的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335199A (ja) * 1994-06-09 1995-12-22 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH0831408A (ja) * 1994-05-13 1996-02-02 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池用正極およびその製造方法
JPH11162470A (ja) * 1997-11-25 1999-06-18 Toyo Alum Kk 集電体用アルミニウム箔とその製造方法、集電体、二次電池および電気二重層コンデンサ
JP2000113892A (ja) * 1998-10-02 2000-04-21 Mitsubishi Materials Corp リチウムイオン二次電池の集電体膜用アルミニウム箔およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609975A (en) 1994-05-13 1997-03-11 Matsushita Electric Industrial Co., Ltd. Positive electrode for non-aqueous electrolyte lithium secondary battery and method of manufacturing the same
JP3765094B2 (ja) 1996-12-28 2006-04-12 株式会社ジーエス・ユアサコーポレーション 非水電解液電池
EP1256995B1 (en) * 2000-12-28 2016-08-03 Panasonic Corporation Nonaqueous electrolytic secondary battery
CN2574229Y (zh) * 2001-04-11 2003-09-17 日立马库塞鲁株式会社 扁平形非水电解质电池
EP1501136A4 (en) * 2002-04-26 2009-12-30 Mitsui Mining & Smelting Co NEGATIVE ELECTRODE FOR A SECONDARY CELL WITH A WATER-FREE ELECTROLYTE AND METHOD FOR THE PRODUCTION THEREOF AND SECONDARY CELL WITH A WATER-FREE ELECTROLYTE
KR100895225B1 (ko) * 2002-09-26 2009-05-04 에이지씨 세이미 케미칼 가부시키가이샤 리튬 2차 전지용 양극 활성 물질 및 그 제조방법
US20050048367A1 (en) * 2003-07-29 2005-03-03 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery, method for producing the same, and electrode material for electrolyte secondary battery
US7090946B2 (en) * 2004-02-19 2006-08-15 Maxwell Technologies, Inc. Composite electrode and method for fabricating same
US20050241137A1 (en) * 2004-04-28 2005-11-03 Tdk Corporation Electrode, electrochemical device, and method of making electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831408A (ja) * 1994-05-13 1996-02-02 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池用正極およびその製造方法
JPH07335199A (ja) * 1994-06-09 1995-12-22 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH11162470A (ja) * 1997-11-25 1999-06-18 Toyo Alum Kk 集電体用アルミニウム箔とその製造方法、集電体、二次電池および電気二重層コンデンサ
JP2000113892A (ja) * 1998-10-02 2000-04-21 Mitsubishi Materials Corp リチウムイオン二次電池の集電体膜用アルミニウム箔およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116872A1 (ja) * 2009-04-10 2010-10-14 三菱電機株式会社 蓄電デバイス用電極およびその製造方法
CN102341875A (zh) * 2009-04-10 2012-02-01 三菱电机株式会社 蓄电设备用电极及其制造方法
JP2013211575A (ja) * 2009-04-10 2013-10-10 Mitsubishi Electric Corp 蓄電デバイス用電極の製造方法
JP5345207B2 (ja) * 2009-04-10 2013-11-20 三菱電機株式会社 蓄電デバイス用電極およびその製造方法
US9153837B2 (en) 2009-04-10 2015-10-06 Mitsubishi Electric Corporation Electric storage device electrode and method for manufacturing same
CN103460465A (zh) * 2011-03-29 2013-12-18 富士胶片株式会社 集电体用铝基材、集电体、正极、负极和二次电池

Also Published As

Publication number Publication date
CN101233628B (zh) 2010-06-02
US8883348B2 (en) 2014-11-11
KR100992248B1 (ko) 2010-11-05
CN101233628A (zh) 2008-07-30
US20090104529A1 (en) 2009-04-23
KR20080022139A (ko) 2008-03-10

Similar Documents

Publication Publication Date Title
WO2007013375A1 (ja) リチウムイオン二次電池用電極
JP5551849B2 (ja) リチウムイオン二次電池用電極
KR100732803B1 (ko) 리튬이온 2차전지
EP3783700B1 (en) Positive electrode equipped with undercoat layer containing microcapsules, and lithium-ion secondary battery
JP4519796B2 (ja) 角型リチウム二次電池
CN110546804B (zh) 非水电解质二次电池
WO2012150635A1 (ja) 非水電解質二次電池
WO2005117169A1 (ja) 捲回型非水系二次電池およびそれに用いる電極板
JP5720965B2 (ja) 非水電解液二次電池
TW201110448A (en) Electrode structure and electric energy storage device
JP2009123463A (ja) リチウムイオン二次電池用正極、その製造方法及びリチウムイオン二次電池
WO2007032365A1 (ja) 電池用電極
JP5828342B2 (ja) 非水電解質二次電池
WO2011078263A1 (ja) 二次電池用電極及び二次電池
WO2015115513A1 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP2008108649A (ja) 車両用リチウム二次電池正極の製造方法
JP2006302877A (ja) 非水電解質電池およびその製造方法
JP4992203B2 (ja) リチウムイオン二次電池
JP4563039B2 (ja) リチウムイオン二次電池
JP6008199B2 (ja) リチウムイオン二次電池
JP2007317576A (ja) 正極活物質および電池
JP2011119139A (ja) 非水電解質電池
JP2007172879A (ja) 電池およびその製造方法
JP2016062832A (ja) 二次電池の製造方法
JP2007172878A (ja) 電池およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680027692.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11916603

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077030775

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781425

Country of ref document: EP

Kind code of ref document: A1