WO2007010944A1 - 光学活性2-(n-置換アミノメチル)-3-ヒドロキシ酪酸エステル類の製造方法 - Google Patents

光学活性2-(n-置換アミノメチル)-3-ヒドロキシ酪酸エステル類の製造方法 Download PDF

Info

Publication number
WO2007010944A1
WO2007010944A1 PCT/JP2006/314285 JP2006314285W WO2007010944A1 WO 2007010944 A1 WO2007010944 A1 WO 2007010944A1 JP 2006314285 W JP2006314285 W JP 2006314285W WO 2007010944 A1 WO2007010944 A1 WO 2007010944A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optionally substituted
acid ester
genus
reaction
Prior art date
Application number
PCT/JP2006/314285
Other languages
English (en)
French (fr)
Inventor
Yoshihiko Yasohara
Miho Yano
Shigeru Kawano
Noriyuki Kizaki
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to US11/996,271 priority Critical patent/US20090104671A1/en
Priority to EP06768311A priority patent/EP1908845A4/en
Priority to JP2007526034A priority patent/JP5090910B2/ja
Publication of WO2007010944A1 publication Critical patent/WO2007010944A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom

Definitions

  • the present invention relates to a method for producing optically active 2- (N-substituted aminomethyl) -3-hydroxybutyric acid esters.
  • the compound is a compound useful as a synthesis raw material and an intermediate for pharmaceutical products that require optical activity, for example.
  • a compound having the configuration of (2S, 3R) is an important compound as a synthetic intermediate of j8-latata antibiotics represented by cenamycin.
  • a carboxy group at the 3-position of 2- (N-substituted aminomethyl) -3-oxobutyric acid ester is stereoselectively formed by hydrogenation reaction using a ruthenium optically active phosphine complex.
  • a catalytic reduction method is known (Non-patent Document 1, Patent Document 1).
  • this catalytic reduction method requires the use of a very expensive optically active phosphine ligand in order to obtain high stereoselectivity, 1 to: requires a high hydrogen pressure of about LOMPa, etc.
  • the economic viewpoint power was not always satisfactory.
  • Patent Document 3 JP-A-2-134349
  • Patent Document 2 Japanese Patent Laid-Open No. 63-297360
  • Patent Document 3 US Patent Application Publication No. 2003Z0139464
  • Non-Patent Document 1 R. Noyori et al., Stereoselective hydrogenation via dynamic kinetic resolution ", J. Am. Chem. Soc, 111, 9134 (1989)
  • Non-Patent Document 2 Claudio Fuganti et al., “Microbial Generation of (2R, 3S)-and (2S, 3S)-Et hyl 2- Benzamidomethyl- 3-hydroxybutyrate, a key intermediate in the synthesis of (3S, 1 'R) — 3— (1, —hydroxyethyl) azetidin— 2—one ”, J. Chem. Soc. Perkin Trans. 1, (1993) 2247
  • Non-patent document 3 Joo Hwan Cha et al., "Stereochemical control in diastereoselective reduct ion of a -substituted- ⁇ - ketoesters using a reductase purified from Kluyveromyces marxianus", Biotechnol. Lett. 24, 1695 (2002)
  • An object of the present invention is to provide an optically active 2- (N-substituted aminomethyl) -3 hydroxybutyric acid ester, particularly a method for industrially producing the compound having a configuration of (2S, 3R). There is to serve. These compounds are used, for example, as synthetic intermediates for j8-latata antibiotics.
  • the present invention relates to a general formula (5):
  • R 1 represents an optionally substituted lower alkyl group, an aryl group, an optionally substituted aryl group, or an optionally substituted aralkyl group
  • R 3 and R 2 represent ,
  • R 3 is a hydrogen atom
  • R 2 is an optionally substituted lower alkyl group, an optionally substituted lower alkoxy group, an optionally substituted aryl group, or an optionally substituted V, Represents an aralkyloxy group
  • the present invention relates to a method characterized by allowing an enzyme source having an activity to reduce stereoselectively to an ester.
  • 2- (N-substituted aminomethyl) 3-oxobutyric acid esters are represented by the general formula (6):
  • R 1 represents an optionally substituted lower alkyl group, an aryl group, an optionally substituted aryl group, or an optionally substituted aralkyl group
  • R 3 and R 2 are optionally substituted lower alkyl group, an aryl group, an optionally substituted aryl group, or an optionally substituted aralkyl group
  • R 3 is a hydrogen atom
  • R 2 is an optionally substituted lower alkyl group, an optionally substituted lower alkoxy group, an optionally substituted aryl group, or an optionally substituted V, Represents an aralkyloxy group
  • R 3 and COR 2 form a phthaloyl group.
  • R 1 is the same as described above, R 2 is an optionally substituted lower alkyl group, an optionally substituted lower alkoxy group, an optionally substituted aryl group, or a substituted
  • R 3 and R 2 are the above 2
  • the compound represented by the above formula (6) is represented by the following formula (4):
  • “Lower” means having 1 to 7 carbon atoms, preferably 1 to 4 carbon atoms, unless otherwise indicated.
  • Examples of the lower alkyl group include a methyl group, an ethyl group, a chloromethyl group, an n propyl group, an isopropyl group, an n butyl group, an isobutyl group, a t butyl group, an n pentyl group, and a cyclohexyl group.
  • a methyl group, an ethyl group, an n-propyl group, a butyl group, etc. are mentioned. These groups may be substituted.
  • the substituent in that case is not particularly limited as long as it does not adversely affect the reduction reaction of the present invention, and examples thereof include a halogen atom, a hydroxyl group, an amino group, a nitro group, and a cyan group.
  • the aryl group which may be substituted is not particularly limited.
  • a phenyl group o-methylphenol group, m-methylphenyl group, p-methylphenyl group, o-methoxyphenyl group.
  • the aralkyl group is not particularly limited, and examples thereof include a benzyl group, a p-hydroxybenzyl group, and a p-methoxybenzyl group.
  • the lower alkoxy group is not particularly limited, but is a methyloxy group, an ethyloxy group, a chloromethyloxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, an isobutyloxy group, a t-butyloxy group, an n-pentyloxy group, Examples thereof include a cyclohexyloxy group, preferably a methyloxy group, an ethyloxy group, an n-propyl group, a butyloxy group and the like. These groups may be substituted, and examples of the substituent in this case include the same substituents as in the case of the aforementioned alkyl group.
  • the aralkyloxy group includes a benzyloxy group, a p-hydroxybenzyloxy group, a p-methoxybenzyloxy group, and the like, and preferably a benzyloxy group.
  • R 1 is more preferably a methyl group, preferably an alkyl group having 1 to 4 carbon atoms.
  • R 2 is more preferably a phenyl group that is preferably an optionally substituted phenyl group, a phenyl group that is more preferably a p--trophenyl group, or a p-chlorophenyl group.
  • R 3 and one COR 2 are integrated to form a phthaloyl group.
  • R 1 is a methyl group and R 2 is a phenyl group.
  • the compound represented by the above formula (6) is asymmetrically reduced by acting an enzyme source having an activity for asymmetric reduction of the compound. ):
  • each reduction product is represented by the following formula ( 1) A compound represented by the following formula (3).
  • the enzyme source used in the present invention converts 2- (N-substituted aminomethyl) -3-oxobutyric acid esters into optically active 2- (N-substituted aminomethyl) -3-hydroxybutyric acid esters.
  • the thing derived from the microorganisms which have the capability to do can be used.
  • the “microorganism-derived” as used herein may be a cell of the microorganism itself, a culture solution of the microorganism, or a treated product of the microorganism, or an enzyme obtained from the microorganism force. It also includes a transformant into which DNA encoding the enzyme having the reducing activity is introduced. these It may be used alone or in combination of two or more. These enzyme sources may be fixed so that they can be used repeatedly by a known method.
  • Microorganisms capable of converting 2- (N-substituted aminomethyl) -3-oxobutyric acid esters to optically active 2- (N-substituted aminomethyl) 3-hydroxybutyric acid esters are found by the method described below. be able to.
  • a test tube After sterilization by placing 5 ml of liquid medium (pH 7) in a test tube with a composition of 90 mg, copper sulfate pentahydrate 5 mg, manganese sulfate tetrahydrate 10 mg, sodium chloride 100 mg (V, deviation per liter) Inoculate the microorganism aseptically and incubate with shaking at 30 ° C for 2-3 days.
  • the cells are collected by centrifugation, suspended in 0.5-5 ml of phosphate buffer containing 2-10% glucose, and 2 benzamidomethyl 3-methylbutyrate (2- (N-substituted aminomethyl) in advance).
  • -3—Oxobutyric acid esters) are placed in a test tube containing 0.5-25 mg and shaken at 30 ° C for 2-3 days.
  • the cells obtained by centrifugation can be used in a desiccator or dried with acetone.
  • NAD + and Z or NADP + and glucose dehydrogenase and glucose, or formate dehydrogenase and formic acid are added. Also good.
  • an organic solvent may coexist in the reaction system. After the conversion reaction, extraction is performed with a suitable organic solvent, and the resulting 2-benzamidomethyl 3-hydroxybutyrate is analyzed by high performance liquid chromatography.
  • 2- (N-substituted aminomethyl) -3-oxobutyric acid esters are converted to (2S, 3R) -2- (N-substituted aminomethyl) -3 hydroxybutyric acid esters.
  • Any microorganism can be used as long as it has the ability, for example, the genus Candida, the genus Geotrichum, the genus Galactomyces, Saccharomycopsis genus, Achromobacter genus, Arthrobacter genus, Bacillus genus, Brerevundonas genus, Xanthomonas genus, Devosia ), Ralstonia, Lactobacillus, Leuconostoc, Microsporum, and Moniliella.
  • Candida kefyr, C andida oleophila, Candida maris, Geotrichum eriense, and Kalactoma ses' Gaesstomyces. reessii), Saccharomycopsis malanga, Achromobacter xylosoxidans, Chromonoacta 1 ⁇ A-tricificans, Chromobacter ae nitrificans, Artifactia paraffin, 'Arthrobacter nicotianae', Bachinoles' amylolyticus (Bacillus a mylolyticus), Bacillus circulans, Bacillus cereus (Baci llus cereus), Bacillus' Bacillus badius, Bacillus' us faelicus (Bacill sphaericus) , Brevundimonas diminuta, Santo Monas sp., Devosia riboflavina, Ralstonia eu
  • these microorganisms can be obtained as stocks that can be easily obtained or purchased, but natural forces can also be separated. It is also possible to obtain strains having more advantageous properties for this reaction by causing mutations in these microorganisms.
  • any medium can be used as long as it contains a nutrient source that can be assimilated by these microorganisms.
  • a nutrient source that can be assimilated by these microorganisms.
  • sugars such as glucose, sucrose and maltose, organic acids such as lactic acid, acetic acid, citrate and propionic acid, ethanol and glycerin
  • Carbon sources such as alcohols, hydrocarbons such as paraffin, oils and fats such as soybean oil and rapeseed oil, or mixtures thereof; ammonium sulfate, ammonium phosphate, urea, yeast extract, meat extract,
  • Ordinary culture media can be used in which nitrogen sources such as peptone and corn steep liquor; and nutrient sources such as other inorganic salts and vitamins are mixed and blended as appropriate.
  • These mediums should be selected appropriately according to the type of microorganism used.
  • Microorganisms can be cultured under normal conditions, for example, aerobically cultured at pH 4.0 to 9.5, temperature range 20 ° C to 45 ° C for 10 to 96 hours. Is preferred. 2
  • a culture solution containing the microorganisms can usually be used for the reaction as it is. Concentrates can also be used.
  • a microbial cell or a processed microbial cell obtained by treating the culture solution by centrifugation or the like can also be used.
  • the microorganism-treated product of the microorganism is not particularly limited.
  • a dried cell obtained by dehydration using acetone or nitric pentoxide or drying using a desiccator or a fan examples include lysed enzyme-treated products, immobilized cells or cell-free extracts obtained by disrupting cells.
  • an enzyme that catalyzes the reduction reaction stereoselectively from the culture may be purified and used.
  • the substrate 2- (N-substituted aminomethyl) 3 -oxobutyric acid ester may be added all at once at the beginning of the reaction, or divided and added as the reaction proceeds. May be.
  • the temperature during the reaction is usually 10-60 ° C, preferably 20-40 ° C, and the pH during the reaction is in the range 2.5-9, preferably 5-9.
  • the amount of enzyme source in the reaction solution may be appropriately determined according to the ability to reduce these substrates.
  • the substrate concentration in the reaction solution is preferably 0.01 to 50% (WZV), more preferably 0.1 to 30% (WZV).
  • the reaction is usually carried out with shaking or stirring with aeration.
  • the reaction time is appropriately determined depending on the substrate concentration, the amount of enzyme source, and other reaction conditions. Usually, it is preferable to set each condition so that the reaction is completed in 2 to 168 hours.
  • glucose, ethanol, isopropanol was added to the reaction solution.
  • L which is good because excellent results can be obtained when energy sources such as 0.5 to 30% are added.
  • reduced nicotinamide, adenine dinucleotide (hereinafter abbreviated as NADH), reduced nicotinamide 'adenine dinucleotide phosphate (hereinafter abbreviated as NADPH), etc. which are required for reduction by biological methods
  • the reaction can also be promoted by adding a coenzyme. In this case, specifically, these are added directly to the reaction solution.
  • glucose dehydrogenase as an enzyme that reduces to a reduced form
  • glucose coexisting as a substrate for reduction or formate dehydrogenase as an enzyme that reduces to reduced form, and formic acid as a substrate to reduce
  • a transformant containing DNA encoding the enzyme can be used in the same manner as optically active 2- (N-substituted aminomethyl) — 3-Hydroxybutyric acid esters can be produced.
  • the optically active 2- (N-substituted aminomethyl) -3-hydroxybutyric acid esters can be produced.
  • an enzyme for regenerating the coenzyme is separately provided. Preparation of optically active 3-hydroxybutyric acid esters that do not require addition can be performed more efficiently.
  • transformant containing a DNA encoding the polypeptide of the present invention, or a DNA encoding the polypeptide of the present invention and a DNA encoding a polypeptide capable of coenzyme regeneration are included.
  • the transformant can be used for the production of optically active 3-hydroxybutyric acid esters, not to mention cultured cells, but also processed products thereof. The meaning of the processed product of the transformant here is the same as described above.
  • DNA encoding the reductase of the present invention and a polypeptide having coenzyme regeneration ability The transformant containing both the DNA encoding the DNA incorporates both the DNA encoding the reductase of the present invention and the DNA encoding the polypeptide having the coenzyme regeneration ability into the same vector.
  • the culture can be carried out using a normal liquid nutrient medium containing a carbon source, a nitrogen source, organic salts, organic nutrients and the like.
  • a surfactant such as Triton Kakelite Light Tester Co., Ltd.), Span (Kanto Yigaku Co., Ltd.), Queen Kakeki Power Tester Co., Ltd. or the like to the reaction solution.
  • a surfactant such as Triton Kakelite Light Tester Co., Ltd.), Span (Kanto Yigaku Co., Ltd.), Queen Kakeki Power Tester Co., Ltd. or the like
  • water-insoluble organic substances such as ethyl acetate, butyl acetate, isopropyl ether, toluene, hexane, etc. are used for the purpose of avoiding the inhibition of the reaction by the substrate and Z or 3-hydroxybutyrate esters, which are products of the reduction reaction.
  • a solvent may be added to the reaction solution.
  • an organic solvent soluble in water such as methanol, ethanol, acetone, tetrahydrofuran, dimethyl sulfoxide, etc. can be added.
  • optically active 2- (N-substituted aminomethyl) -3-hydroxybutyric acid esters produced by the reduction reaction is not particularly limited.
  • ethyl acetate, toluene can be collected directly from the reaction solution or after separating the cells. Extract with a solvent such as t-butyl methyl ether or hexane, and after dehydration, purify by distillation or silica gel column chromatography. Purity optically active 2- (N-substituted aminomethyl) 3 hydroxybutyric acid esters can be easily obtained.
  • This cell suspension was added to a test tube containing 2.5 mg of 2 benzamidomethyl-3 methyl oxobutyrate in advance and reacted at 30 ° C for 24 hours. After the reaction, 1 ml of ethyl acetate was added to each reaction solution and mixed well. Part of the organic layer is manufactured by Daicel Engineering Co., Ltd. Analysis was performed by HPLC equipped with Chiralpak AD—H (250 mm X 4.6 mm) to determine the yield of the reaction and the optical purity of the product. The results are summarized in Table 1.
  • liquid medium pH 7 ml of liquid medium (pH 7) with composition power of 10 g of meat extract, 10 g of peptone, 5 g of yeast extract and 3 g of sodium chloride (each per liter) was dispensed into a large test tube and steam sterilized at 120 ° C for 20 minutes .
  • These liquid media were aseptically inoculated with one platinum loop of the microorganisms shown in Table 2 below, and cultured with shaking at 30 ° C for 72 hours. After culturing, each culture solution was centrifuged to collect the cells, and the cells were suspended in 0.5 ml (pH 6.5) of lOOmM phosphate buffer containing 1% glucose.
  • This cell suspension was added to a test tube containing 2.5 mg of 2-benzamidomethyl-3-oxobutyrate in advance and reacted at 30 ° C for 24 hours. After the reaction, lml of ethyl acetate was added to each reaction solution and mixed well, and a part of the organic layer was analyzed under the analytical conditions described in Example 1 to determine the reaction yield and the optical purity of the product. . The results are summarized in Table 2.
  • This bacterial cell suspension was added to a test tube containing 1 mg of methyl 2-benzamidomethyl-3-oxobutyrate in advance and reacted at 30 ° C for 24 hours. After the reaction, add 2 ml of ethyl acetate to each reaction mixture and mix well. Pour a portion of the organic layer under the analytical conditions described in Example 1 to determine the reaction yield and the optical purity of the product. It was. The results are summarized in Table 3.
  • liquid medium consisting of 55 g (per liter) of MSR medium (Difco) was dispensed into a large test tube and steam sterilized at 120 ° C for 20 minutes.
  • MSR medium MSR medium
  • These liquid mediums were aseptically inoculated with one platinum loop of the microorganisms shown in Table 4 below, and were statically cultured at 30 ° C for 72 hours. After culture, each culture solution was centrifuged to collect the cells, and the cells were suspended in 1 ml of a 100 mM phosphate buffer (pH 6.5) containing 1% glucose.
  • This bacterial cell suspension was added to a test tube containing 1 mg of methyl 2-benzamidomethyl-3-oxobutyrate in advance and reacted at 30 ° C for 24 hours. After the reaction, add 2 ml of ethyl acetate to each reaction solution and mix well. Pour a portion of the organic layer under the analytical conditions described in Example 1 to determine the reaction yield and the optical purity of the product. It was. The results are summarized in Table 4.
  • reaction solution was extracted with 2 ml of ethyl acetate to obtain methyl (2S, 3R) -2-benzamidomethyl-3-hydroxybutanoate in a yield of 57%, which had an optical purity of 59.7. % ee, diastereoselectivity was 49.5% de.
  • liquid medium pH 7 ml of liquid medium (pH 7) with composition power of 10 g of meat extract, 10 g of peptone, 5 g of yeast extract and 3 g of sodium chloride (each per 1 L) was dispensed into a large test tube and steam sterilized at 120 ° C for 20 minutes .
  • These liquid media were aseptically inoculated with one platinum loop of the microorganisms shown in Table 5 below, and cultured with shaking at 30 ° C for 72 hours. After culturing, each culture solution was centrifuged to collect the cells, and the cells were suspended in 0.5 ml (pH 6.5) of lOOmM phosphate buffer containing 1% glucose.
  • This bacterial cell suspension was added to a test tube containing 0.5 mg of 2-benzamidomethyl-3-oxobutyrate in advance and reacted at 30 ° C for 24 hours. After the reaction, add lml of ethyl acetate to each reaction mixture and mix well. Analyze part of the organic layer by HPLC equipped with Chiral pak AD-H (250mm x 4.6mm) manufactured by Daicel Engineering Co., Ltd. The reaction yield and the optical purity of the product were determined. Table 5 summarizes the results.
  • lml lOOmM phosphate buffer pH 6.5
  • glucose 50mg carboreductase RDR derived from Devosia riboflavina (see WO2004Z 027055) 10kU
  • glucose dehydrogenase "GLUCDH” “Amano2” manufactured by Amano Enzym Co., Ltd.
  • lmg NADO. 25mg
  • 2-benzamidomethyl-3-oxobutyric acid 5mg were added and shaken at 30 ° C.
  • This bacterial cell suspension was added to a test tube containing 0.5 mg of 2-benzamidomethyl-3-oxobutyric acid ter t-butyl in advance and reacted at 30 ° C. for 24 hours. After the reaction, lml of ethyl acetate is added to each reaction solution and mixed well. A part of the organic layer is separated by HPLC equipped with Chiralpak AD-H (250mm x 4.6mm) manufactured by Daicel Chemical Industries Co., Ltd. We prayed and determined the yield of the reaction and the optical purity of the product. Table 6 summarizes the results.
  • lml lOOmM phosphate buffer pH 6.5
  • glucose 50mg carboreductase RDR derived from Devosia riboflavina (see WO2004Z 027055) 10kU
  • glucose dehydrogenase "GLUCDH” “Amano2” manufactured by Amano Enzym Co., Ltd.
  • NADO. 25mg 2-phthaloylamidomethyl-3-methyloxobutyrate 5mg were added and shaken at 30 ° C.
  • lml lOOmM phosphate buffer pH 6.5
  • glucose 50mg carbohydrase FPDH derived from Candida maris FPDH (see WO01Z05996 publication) 10kU, glucose dehydrogenase "GLUCDH” "Amano2” (Amano Enzym Co., Ltd.) lmg, NADO. 25mg, 2-phthaloylamidomethyl-3-oxobutyric acid methyl 5mg were added and shaken at 30 ° C.
  • E. coli HB101 (pNTDRGl) (FERM BP—08458: International Publication No. WO2004Z 027055) is cultured in a 2X sputum medium containing 120 ⁇ g / ml ampicillin. NAD 50 mg, 2-benzamidomethyl-3-methylbutyrate 3 g were added and stirred at 30 ° C. Meanwhile, the pH of the reaction solution was maintained at 6.5 with 6NNaOH. After the reaction for 24 hours, the reaction solution was extracted three times with 30 ml of ethyl acetate, and the obtained organic layers were combined and dried over anhydrous sodium sulfate.

Abstract

 本発明は、光学活性2-(N-置換アミノメチル)-3-ヒドロキシ酪酸エステルの製造方法であって、2-(N-置換アミノメチル)-3-オキソ酪酸エステルに、該化合物を(2S,3R)の立体配置を有する光学活性2-(N-置換アミノメチル)-3-ヒドロキシ酪酸エステルに立体選択的に還元する活性を有する酵素源を作用させることを特徴とする方法に関する。本発明によれば、医薬等の中間体として有用な光学活性2-(N-置換アミノメチル)-3-ヒドロキシ酪酸エステル、とりわけ、(2S,3R)の立体配置を有する該化合物を、効率よく工業的に製造することができる。                                                                               

Description

明 細 書
光学活性 2_ (N—置換アミノメチル) _ 3—ヒドロキシ酪酸エステル類の 製造方法
技術分野
[0001] 本発明は、光学活性な 2— (N—置換アミノメチル)—3—ヒドロキシ酪酸エステル類 の製造方法に関する。当該化合物は、例えば光学活性を必要とする医薬品の合成 原料及び中間体として有用な化合物である。
背景技術
[0002] 光学活性な 2— (N—置換アミノメチル)—3—ヒドロキシ酪酸エステル類、とりわけ、
(2S, 3R)の立体配置を有する化合物は、チェナマイシンに代表される j8—ラタタム 系抗生物質の合成中間体として重要な化合物である。このものの製造方法としては、 2- (N—置換アミノメチル)—3—ォキソ酪酸エステルの 3位のカルボ-ル基を、ルテ -ゥム光学活性ホスフィン錯体を用いる水素添加反応によって立体選択的かつ触媒 的に還元する方法が知られている(非特許文献 1、特許文献 1)。しかし、この触媒的 還元による方法は、高い立体選択性を得るためには非常に高価な光学活性ホスフィ ン配位子を用いる必要がある、 1〜: LOMPa程度の高い水素圧力を必要とするなど、 工業的な製造を考える上では経済性の観点力 必ずしも満足できるものではなかつ た。
[0003] 一方、酵素や微生物を触媒とする当該エステル類の還元反応についての報告もあ る。すなわち、 2—ベンズアミドメチル— 3—ヒドロキシ酪酸ェチルをパン酵母を用いて 還元した場合には、 (2S, 3S)体と(2R, 3S)体の混合物が得られる(特許文献 2)。 また、 2 -ベンズアミドメチル— 3—ヒドロキシ酪酸ェチルを微生物の菌体を用 、て還 元した場合には、使用する微生物の種類によってさまざまな混合比の(2R, 3S)体と (2S, 3S)体の混合物が得られる(非特許文献 2)。さらに、クルイべロマイセス 'マル キアヌス(Kluyveromyces marxianus)由来の還元酵素を用いて 2—フタロイルアミノメ チルー 3—ォキソ酪酸ェチルを還元した場合には、(2S, 3R)体の立体配置を有す る化合物が検出された (特許文献 3、非特許文献 3)。 特許文献 1 :特開平 2— 134349号公報
特許文献 2:特開昭 63 - 297360号公報
特許文献 3 :米国特許出願公開第 2003Z0139464号明細書
非特許文献 1: R.Noyoriら, Stereoselective hydrogenation via dynamic kinetic resol ution", J. Am. Chem. Soc, 111 , 9134 (1989)
非特許文献 2 : Claudio Fugantiら, "Microbial Generation of (2R,3S)- and (2S,3S)- Et hyl 2- Benzamidomethyl- 3- hydroxybutyrate, a key intermediate in the synthesis of ( 3S, 1 'R)— 3— (1,— hydroxyethyl)azetidin— 2— one", J. Chem. Soc. Perkin Trans. 1 , (1993 ) 2247
非特許文献 3 : Joo Hwan Chaら, "Stereochemical control in diastereoselective reduct ion of a -substituted- β— ketoesters using a reductase purified from Kluyveromyces marxianus", Biotechnol. Lett. 24, 1695 (2002)
発明の開示
発明が解決しょうとする課題
[0004] 本発明の課題は、光学活性な 2— (N 置換アミノメチル)—3 ヒドロキシ酪酸エス テル類、特に (2S, 3R)の立体配置を有する該化合物を工業的に製造する方法を提 供することにある。これらの化合物は、例えば j8—ラタタム系抗生物質の合成中間体 として利用される。
課題を解決するための手段
[0005] 本発明者らは、上記課題を解決すべく検討を重ねた結果、 2—(N—置換アミノメチ ル) 3 ォキソ酪酸エステル類のカルボ-ル基を立体選択的に還元し、 (2S, 3R) の立体配置を有する 2—(N—置換アミノメチル) 3 ヒドロキシ酪酸エステル類に 変換する能力を有する酵素源を発見し、本発明を完成するに至った。
[0006] すなわち、本発明は、一般式 (5):
[0007] [化 7]
Figure imgf000004_0001
[0008] (式中、 R1は置換されていてもよい低級アルキル基、ァリル基、置換されていてもよい ァリール基、または置換されていてもよいァラルキル基を表し、 R3及び R2は、
1) R3が水素原子で、 R2が置換されていてもよい低級アルキル基、置換されていても よい低級アルコキシ基、置換されていてもよいァリール基、または置換されていてもよ V、ァラルキルォキシ基を表すか、
2) R3と— COR2がー体となってフタロイル基を表す。)で示される光学活性 2— (N— 置換アミノメチル) 3—ヒドロキシ酪酸エステル類の製造方法であって、一般式 (6):
[0009] [化 8]
Figure imgf000004_0002
[0010] (式中、
Figure imgf000004_0003
R2、及び R3は前記と同じ)で示される 2— (N 置換アミノメチル)—3—ォ キソ酪酸エステルに、該化合物を(2S, 3R)の立体配置を有する光学活性 3 ヒドロ キシ酪酸エステルに立体選択的に還元する活性を有する酵素源を作用させることを 特徴とする方法に関する。
発明の効果
[0011] 本発明によって、医薬等の中間体として有用な、 (2S, 3R)の立体配置を有する 2 一(N—置換アミノメチル) 3—ヒドロキシ酪酸エステル類を工業的に製造する方法 が提供される。 発明を実施するための最良の形態
[0012] 以下、実施形態に基づいて本発明を詳述する。
[0013] 1.基質及び生成物
本発明での還元反応に使用される基質の例示としての 2—(N 置換アミノメチル) 3—ォキソ酪酸エステル類は、一般式 (6):
[0014] [化 9]
Figure imgf000005_0001
[0015] で表される化合物である。
[0016] 式中、 R1は置換されていてもよい低級アルキル基、ァリル基、置換されていてもよい ァリール基、または置換されていてもよいァラルキル基を表し、 R3及び R2は、
1) R3が水素原子で、 R2が置換されていてもよい低級アルキル基、置換されていても よい低級アルコキシ基、置換されていてもよいァリール基、または置換されていてもよ V、ァラルキルォキシ基を表すか、
2) R3と COR2がー体となってフタロイル基を表す。
[0017] 即ち、 R3及び R2が上記 1)の組み合わせの場合には、前記式 (6)で示される化合物 は、下記式(2) :
[0018] [化 10]
Figure imgf000005_0002
[0019] (式中、 R1は前記と同じ、 R2は置換されていてもよい低級アルキル基、置換されてい てもよい低級アルコキシ基、置換されていてもよいァリール基、または置換されていて もよぃァラルキルォキシ基を表す)で示される化合物となり、また、 R3及び R2が上記 2) の場合には、前記式 (6)で示される化合物は、下記式 (4):
[0020] [化 11]
Figure imgf000006_0001
[0021] (式中、 R1は前記と同じ)で示される化合物となる。
[0022] 「低級」とは、他に示されていない限り、 1〜7個の炭素原子を有することを示し、好 ましくは、 1〜4個の炭素原子を有することを示す。
[0023] 低級アルキル基としては、例えば、メチル基、ェチル基、クロロメチル基、 n プロピ ル基、イソプロピル基、 n ブチル基、イソブチル基、 t ブチル基、 n ペンチル基、 シクロへキシル基などが挙げられ、好ましくは、メチル基、ェチル基、 n—プロピル基、 ブチル基などが挙げられる。これらの基は置換されていてもよい。その場合の置換基 としては、本発明の還元反応に悪影響を及ばさない限り特に限定されず、例えば、ハ ロゲン原子、水酸基、アミノ基、ニトロ基、シァノ基等が挙げられる。
[0024] 置換されていてもよいァリール基としては、特に限定されず、例えば、フエ-ル基、 o メチルフエ-ル基、 m—メチルフエ-ル基、 p メチルフエ-ル基、 o—メトキシフエ -ル基、 m—メトキシフエ-ル基、 p—メトキシフエ-ル基、 o フルオロフェ-ル基、 m —フルオロフェ-ル基、 p フルオロフェ-ル基、 o クロ口フエ-ル基、 m—クロロフ ェニノレ基、 p クロ口フエ二ノレ基、 o -トロフエ-ノレ基、 m—-トロフエ-ノレ基、 ρ -ト 口フエ-ル基、 o トリフルォロメチルフエ-ル基、 m トリフルォロメチルフエ-ル基、 p トリフルォロメチルフヱ-ル基、ナフチル基、アントラセ-ル基、 2—フリル基、 2— チォフエ-ル、 2—ピリジル基などが挙げられる。好ましくは、置換されていてもよいフ ェニル基であり、より好ましくはフエニル基である。
[0025] 置換されて!、てもよ 、ァラルキル基としては、特に限定されず、例えばべンジル基、 p ヒドロキシベンジル基、 p—メトキシベンジル基などが挙げられる。
[0026] 低級アルコキシ基としては、特に限定されず、メチルォキシ基、ェチルォキシ基、ク ロロメチルォキシ基、 n プロピルォキシ基、イソプロピルォキシ基、 n ブチルォキシ 基、イソブチルォキシ基、 t ブチルォキシ基、 n ペンチルォキシ基、シクロへキシ ルォキシ基などが挙げられる、好ましくはメチルォキシ基、ェチルォキシ基、 n—プロ ピル基、ブチルォキシ基などが挙げられる。これらの基は置換されていてもよぐその 場合の置換基としては、前述のアルキル基の場合と同様の置換基が挙げられる。
[0027] 置換されて!、てもよ 、ァラルキルォキシ基としては、ベンジルォキシ基、 p ヒドロキ シベンジルォキシ基、 p—メトキシベンジルォキシ基などが挙げられ、好ましくは、ベ ンジルォキシ基である。
[0028] 上記のなかでも、 R1としては炭素数 1〜4のアルキル基が好ましぐメチル基がより 好ましい。 R2としては置換されていてもよいフエ-ル基が好ましぐフエ-ル基、 p— - トロフエニル基、 p—クロ口フエニル基がより好ましぐフエニル基が更に好ましい。また 、 R3と一 COR2とが一体となって、フタロイル基をなすことも好ましい。更に、 R1がメチ ル基であり、かつ、 R2がフエ-ル基である場合が特に好ましい。
[0029] 本発明にお 、ては、上記式 (6)で示される化合物を、該化合物を不斉還元する活 性を有する酵素源を作用させて不斉還元することにより、一般式 (5):
[0030] [化 12]
Figure imgf000007_0001
[0031] で表される光学活性 2—(N—置換アミノメチル) 3 ヒドロキシ酪酸エステル類に変 換する。式中、
Figure imgf000008_0001
及び R3は前記同じである。
[0032] 言うまでもまく、前記式 (6)で示される化合物として、前記式(2)または前記式 (4)で 示される化合物を用いた場合には、還元生成物はそれぞれ、下記式(1)、下記式(3 )で示される化合物となる。
[0033] [化 13]
Figure imgf000008_0002
[0034] [化 14]
Figure imgf000008_0003
[0035] で表される化合物である。
[0036] 2.酵素源
本発明で使用される酵素源は、 2— (N—置換アミノメチル)—3—ォキソ酪酸エステ ル類を光学活性な 2— (N—置換アミノメチル)—3—ヒドロキシ酪酸エステル類に変 換する能力を有する微生物由来のものを用いることができる。ここでいう「微生物由来 のもの」としては、該微生物の菌体そのもの、微生物の培養液、あるいは菌体処理物 、または該微生物力 得られる酵素であってもよいし、さらには該微生物由来の上記 還元活性を有する酵素をコードする DNAが導入された形質転換体も含む。これらを 単独で用いても、 2種類以上組み合わせてもよい。また、これらの酵素源は周知の方 法でくり返し使用できるように固定ィ匕してもよい。
[0037] 3. 2—(N—置換アミノメチル) 3 ヒドロキシ酪酸エステル類への変換能力の測 定
2- (N—置換アミノメチル)—3—ォキソ酪酸エステル類を光学活性な 2— (N 置 換ァミノメチル) 3—ヒドロキシ酪酸エステル類に変換する能力を有する微生物は、 以下に説明する方法によって見いだすことができる。例えば、以下のようにして行なう 。グルコース 40g、酵母エキス 3g、リン酸水素二アンモ-ゥム 6. 5g、リン酸二水素カリ ゥム lg、硫酸マグネシウム 7水和物 0. 8g、硫酸亜鉛 7水和物 60mg、硫酸鉄 7水和 物 90mg、硫酸銅 5水和物 5mg、硫酸マンガン 4水和物 10mg、塩化ナトリウム 100m g (V、ずれも 1L当たり)の組成力もなる液体培地 (pH7) 5mlを試験管に入れて殺菌 後、無菌的に微生物を接種し、 30°Cで 2〜3日間振とう培養する。その後、菌体を遠 心分離により集め、グルコース 2〜10%を含んだリン酸緩衝液 0. 5〜5mlに懸濁し、 あらかじめ 2 ベンズアミドメチル 3 ォキソ酪酸メチル等( 2—(N 置換アミノメチ ル)— 3—ォキソ酪酸エステル類に属する)を 0. 5〜25mgいれた試験管にカ卩えて、 2 〜3日間 30°Cで振とうする。この際、遠心分離により得た菌体をデシケーター中また はアセトンにより乾燥したものを用いることもできる。更に、これら微生物もしくはその 処理物と 2 ベンズアミドメチル 3 ォキソ酪酸エステル類を反応させる際に、 NA D+及び Zまたは NADP+と、グルコース脱水素酵素及びグルコース、もしくはギ酸脱 水素酵素及びギ酸、を添加してもよい。また、反応系に有機溶媒を共存させてもかま わない。変換反応ののち適当な有機溶媒で抽出を行ない、生成する 2—べンズアミド メチル 3—ヒドロキシ酪酸エステル類を高速液体クロマトグラフィーなどにより分析 する。
[0038] 4.微生物
本発明に使用しうる微生物としては、 2- (N 置換アミノメチル)—3—ォキソ酪酸 エステル類を(2S, 3R)— 2— (N—置換アミノメチル)—3 ヒドロキシ酪酸エステル 類に変換する能力を有する微生物であればいずれも使用しうるが、例えば、キャンデ イダ (Candida)属、ゲォトリカム (Geotrichum)属、ガラクトマイセス (Galactomyces)属、 サッカロマイコプシス (Saccharomycopsis)属、ァクロモノくクタ一 (Achromobacter)属、 アースロバクタ一(Arthrobacter)属、バチノレス(Bacillus)属、ブレフンディモナス(Brev undimonas)属、キナントモナス (Xanthomonas)属、デボシァ (Devosia)属、ラノレスト- ァ (Ralstonia)属、ラクトノくチノレス (Lactobacillus)属、ロイコノストック (Leuconostoc)属 、ミクロスポルム(Microsporum)属、モ-リエラ(Moniliella)属に属する微生物等が挙 げられる。
[0039] 更に好ましくは、キャンディダ.ケフリ(Candida kefyr)、キャンディダ.ォェオフイラ(C andida oleophila)、キャンディダ 'マリス(Candida maris)、ゲォトリカム'エリエンス(Geo trichum eriense)、カフクトマ セス'リエッシ (Galactomyces reessii)、サッカロマイコプ シス'マランガ(Saccharomycopsis malanga)、ァクロモパクター'キシロソキシダンス(A chromobacter xylosoxidans 、 クロモノ クタ1 ~~ 'ァ-トリフィカンス、 chromobacter ae nitrificans)、アースロバクタ一 'パラフイネウス(Arthrobacter paraffineus)、アースロノく クタ一 'ニコチアナェ(Arthrobacter nicotianae)、バチノレス'アミロリティカス(Bacillus a mylolyticus)、バチルス'サーキュランス(Bacillus circulans)、バチルス'セレウス(Baci llus cereus)、バチルス 'バディウス(Bacillus badius)、バチルス 'スファエリカス(Bacill us sphaericus)、ブレフンアイモナス'アイミヌ ~~タ (Brevundimonas diminuta)、 = サント モナス.エスピー(Xanthomonas sp.)、デボシァ 'リボフラビナ(Devosia riboflavina )、ラルストニア'ユートロファ(Ralstonia eutropha)、ラクトバチルス'ブレビス(Lactobac illus brevis)、ラクトノくチノレス'へノレべテイクス (Lactobacillus helveticus)、ロイコノストツ ク'ンュ1 ~~ドモセンァロイァス (Leuconostoc pseudomesenteroidesノ、 クロスホノレム'コ ーケィ (Microsporum cookei)、モ-リエラ ·ァセトァノ テンス (Moniliella acetoabatens) などがあげられる。
[0040] これら微生物は一般に、入手または購入が容易な保存株力 得ることができるが、 自然界力も分離することもできる。なお、これらの微生物に変異を生じさせて、より本 反応に有利な性質を有する菌株を得ることもできる。
[0041] これらの微生物の培養には、通常これらの微生物が資化しうる栄養源を含む培地 であれば何でも使用しうる。例えば、グルコース、シユークロース、マルトース等の糖 類、乳酸、酢酸、クェン酸、プロピオン酸等の有機酸類、エタノール、グリセリン等の アルコール類、パラフィン等の炭化水素類、大豆油、菜種油等の油脂類、またはこれ らの混合物等の炭素源;硫酸アンモ-ゥム、リン酸アンモ-ゥム、尿素、酵母エキス、 肉エキス、ペプトン、コーンスチープリカー等の窒素源;更に、その他の無機塩、ビタ ミン類等の栄養源;を適宜混合 .配合した通常の培地を用いることが出来る。これら培 地は用いる微生物の種類によって適宜選択すればょ 、。
[0042] 微生物の培養は通常一般の条件により行なうことができ、例えば、 pH4. 0〜9. 5、 温度範囲 20°C〜45°Cの範囲で、好気的に 10〜96時間培養するのが好ましい。 2 一べンズアミドメチルー 3—ォキソ酪酸エステル類に微生物を反応させる場合におい ては、通常、上記微生物の菌体を含んだ培養液をそのまま反応に使用することもでき るが、培養液の濃縮物も用いることができる。また、培養液中の成分が反応に悪影響 を与える場合には、培養液を遠心分離等により処理して得られる菌体または菌体処 理物を使用することも出来る。
[0043] 上記微生物の菌体処理物としては特に限定されず、例えば、アセトンや五酸化ニリ ンによる脱水処理またはデシケーターや扇風機を利用した乾燥によって得られる乾 燥菌体、界面活性剤処理物、溶菌酵素処理物、固定化菌体または菌体を破砕した 無細胞抽出液などをあげることができる。更に、培養物より立体選択的に還元反応を 触媒する酵素を精製し、これを使用してもよい。
[0044] 5.還元反応
還元反応の際には、基質である 2—(N 置換アミノメチル) 3 ォキソ酪酸エステ ル類を反応の初期に一括して添加してもよく、反応の進行にあわせて分割して添カロ してもよい。反応時の温度は通常 10〜60°C、好ましくは、 20〜40°Cであり、反応時 の pHは 2. 5〜9、好ましくは、 5〜9の範囲である。反応液中の酵素源の量はこれら の基質を還元する能力に応じ適宜決定すればよい。また、反応液中の基質濃度は 0 . 01〜50% (WZV)が好ましぐより好ましくは、 0. 1〜30% (WZV)である。反応 は通常、振とうまたは通気攪拌しながら行なう。反応時間は基質濃度、酵素源の量及 びその他の反応条件により適宜決定される。通常、 2〜168時間で反応が終了する ように各条件を設定することが好ま 、。
[0045] 還元反応を促進させるために、反応液にグルコース、エタノール、イソプロパノール などのエネルギー源を 0. 5〜 30%の割合でカ卩えると優れた結果が得られるので好ま L 、。一般に生物学的方法による還元反応に必要とされて 、る還元型ニコチンアミド •アデ-ンジヌクレオチド(以降 NADHと省略する)、還元型ニコチンアミド 'アデニン ジヌクレオチドリン酸 (以降 NADPHと省略する)等の補酵素を添加することにより、反 応を促進させることもできる。この場合、具体的には、反応液に直接これらを添加する
[0046] また、還元反応を促進させるために、 NAD+もしくは NADP+をそれぞれの還元型へ 還元する酵素、及び還元するための基質を共存させて反応を行うと優れた結果が得 られるので好ましい。例えば、還元型へ還元する酵素としてグルコース脱水素酵素、 還元するための基質としてグルコースを共存させる力、または、還元型へ還元する酵 素としてギ酸脱水素酵素、還元するための基質としてギ酸を共存させる。
[0047] 6.還元反応の変形例
本発明の還元反応を触媒する酵素 (還元酵素)のかわりに、該酵素をコードする D NAを含む形質転換体を使用しても、同様に光学活性な 2—(N—置換アミノメチル) — 3—ヒドロキシ酪酸エステル類を製造することができる。
[0048] また、本発明の還元酵素をコードする DNA、および、補酵素再生能を有するポリべ プチドをコードする DNAの両者を含む形質転換体を使用しても、同様に光学活性な 2- (N—置換アミノメチル)—3—ヒドロキシ酪酸エステル類を製造することができる。 とりわけ、本発明の還元酵素をコードする DNA、および、補酵素再生能を有するポリ ペプチドをコードする DNAの両者を含む形質転換体を使用した場合には、補酵素 を再生するための酵素を別途調製'添加する必要がなぐ光学活性 3—ヒドロキシ酪 酸エステル類の製造をより効率良く行なうことができる。
[0049] なお、本発明のポリペプチドをコードする DNAを含む形質転換体、若しくは、本発 明のポリペプチドをコードする DNAおよび補酵素再生能を有するポリペプチドをコー ドする DNAの両者を含む形質転換体は、培養菌体は言うまでもなぐその処理物と しても光学活性 3—ヒドロキシ酪酸エステル類の製造に使用することができる。ここで 言う形質転換体の処理物の意味は、前記と同様である。
[0050] 本発明の還元酵素をコードする DNA、および、補酵素再生能を有するポリべプチ ドをコードする DNAの両者を含む形質転換体は、本発明の還元酵素をコードする D NA、および、補酵素再生能を有するポリペプチドをコードする DNAの両者を、同一 のベクターに組み込み、これを宿主細胞に導入することにより得られるほ力、これら 2 種の DNAを不和合性グループの異なる 2種のベクターにそれぞれ組み込み、それら 2種のベクターを同一の宿主細胞に導入することによつても得られる。
[0051] 本発明の還元酵素をコードする DNA、及び、補酵素再生能を有するポリペプチド をコードする DNAの両者が組込まれたベクターの例としては、国際公開第 WO200 4/027055号公報に記載の発現ベクター pNTDRにバシラス'メガテリゥム由来のグ ルコース脱水素酵素遺伝子を導入した、 pNTDRGlが挙げられる。また、本発明の 還元酵素をコードする DNA、及び、補酵素再生能を有するポリペプチドをコードする DNAの両者を含む形質転換体の例としては、当該ベクターで E. coli HB101を 形質転換して得られる、 E. coli HBlOl (pNTDRGl)が挙げられる。
[0052] 本発明の還元酵素をコードする DNAを含む形質転換体の培養、及び、本発明の 還元酵素をコードする DNAと補酵素再生能を有するポリペプチドをコードする DNA とを含む形質転換体の培養は、それらが増殖する限り、通常の、炭素源、窒素源、無 機塩類、有機栄養素などを含む液体栄養培地を用いて実施できる。
[0053] また更に、トリトンけ力ライテスタ株式会社製)、スパン (関東ィ匕学株式会社製)、ッ ィーンけ力ライテスタ株式会社製)などの界面活性剤を反応液に添加することも効 果的である。更に、基質及び Zまたは還元反応の生成物である 3—ヒドロキシ酪酸ェ ステル類による反応の阻害を回避する目的で、酢酸ェチル、酢酸ブチル、イソプロピ ルエーテル、トルエン、へキサンなどの水に不溶な有機溶媒を反応液に添カ卩してもよ い。更に、基質の溶解度を高める目的で、メタノール、エタノール、アセトン、テトラヒド 口フラン、ジメチルスルホキシドなどの水に可溶な有機溶媒を添加することもできる。
[0054] 7.生成物の取得
還元反応により生成した光学活性 2—(N—置換アミノメチル)ー3—ヒドロキシ酪酸 エステル類の採取は、特に限定されないが、反応液から直接、あるいは菌体等を分 離後、酢酸ェチル、トルエン、 t—ブチルメチルエーテル、へキサン等の溶剤で抽出 し、脱水後、蒸留あるいはシリカゲルカラムクロマトグラフィー等により精製すれば高 純度の光学活性 2—(N—置換アミノメチル) 3 ヒドロキシ酪酸エステル類を容易 に得ることができる。
実施例
[0055] 以下、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例によ り何ら限定されるものではない。なお、以下の記載において、「%」は特に断らない限 り「重量%」を意味する。
[0056] 以下の各実施例では、還元反応の基質としての 2—(N 置換アミノメチル) 3— ォキソ酪酸エステル類に属する化合物の例示として、それぞれ、 2—べンズアミドメチ ルー 3 ォキソ酪酸メチル(実施例 1 13)、 2 ベンズアミドメチル 3 ォキソ酪酸 tert -ブチル(実施例 14— 16) , 2-ァセトアミドメチル 3 ォキソ酪酸メチル(実 施例 17、 18)、 2 フタロイルアミドメチルー 3 ォキソ酪酸メチル(実施例 19、 20)を 用いた。形質転換体による反応は、実施例 21に示した。
[0057] 各実施例においては、所定の微生物、酵素、または酵素及び補酵素再生系酵素 等を用いて、還元反応の反応収率及び生成物の光学純度等を測定した。測定結果 によれば、いずれの実施例においても、 (2S, 3R)の立体配置を有する 3 ヒドロキ シ酪酸エステル類が効率良く製造されることがわ力つた。
[0058] (実窗列 1)表 1に示す微牛.物を用いた反
グルコース 40g、酵母エキス 3g、リン酸水素二アンモ-ゥム 6. 5g、リン酸二水素カリ ゥム lg、硫酸マグネシウム 7水和物 0. 8g、硫酸亜鉛 7水和物 60mg、硫酸鉄 7水和 物 90mg、硫酸銅 5水和物 5mg、硫酸マンガン 4水和物 10mg、塩化ナトリウム 100m g (V、ずれも 1L当たり)の組成力もなる液体培地 (pH7) 5mlを大型試験管に分注し、 120°Cで 20分間蒸気殺菌を行った。これらの液体培地に以下の表 1に示す微生物 を無菌的に一白金耳接種して、 30°Cで 72時間振とう培養した。培養後、各培養液を 遠心分離にかけて菌体を集め、菌体をグルコース 1%を含んだ lOOmMリン酸緩衝 液 0. 5ml (pH6. 5)に懸濁した。
[0059] この菌体懸濁液を、あらかじめ 2 べンズアミドメチルー 3 ォキソ酪酸メチル 2. 5 mgをいれた試験管に加えて、 30°Cで 24時間反応させた。反応後、各反応液に lml の酢酸ェチルを加えて良く混合した。有機層の一部をダイセルィ匕学工業株式会社製 Chiralpak AD— H (250mm X 4. 6mm)を装着した HPLCによって分析し、反応 の収率と生成物の光学純度を求めた。結果を表 1にまとめた。
[表 1] 微生物 収率 光学純度 ジァステレオ 立体配置
( ) (%ee) 選択性 «de)
Candida kefyr NBRC 0706 40 36. 3 29. 6 (2S, 3R)
Candida oleophila CBS 2220 4 48. 6 100 (2S, 3R)
Geotrichum eriense NBRC 10584 17 43. 8 55. 7 (2S, 3R)
Galac tomyces reessii NBRC 10823 23 17. 2 28. 6 (2S, 3R)
Saccharomycopsis malanga NBRC 1710 4 96. 2 92. 2 (2S, 3R)
[0061] 施例 2) 2に す微 ) 用いた ]^
肉エキス 10g、ペプトン 10g、酵母エキス 5g、塩化ナトリウム 3g (いずれも 1L当たり) の組成力もなる液体培地 (pH7) 7mlを大型試験管に分注し、 120°Cで 20分間蒸気 殺菌を行った。これらの液体培地に以下の表 2に示す微生物を無菌的に一白金耳 接種して、 30°Cで 72時間振とう培養した。培養後、各培養液を遠心分離にかけて菌 体を集め、菌体をグルコース 1%を含んだ lOOmMリン酸緩衝液 0. 5ml (pH6. 5)に 懸濁した。
[0062] この菌体懸濁液を、あらかじめ 2—べンズアミドメチルー 3—ォキソ酪酸メチル 2. 5 mgをいれた試験管に加えて、 30°Cで 24時間反応させた。反応後、各反応液に lml の酢酸ェチルを加えて良く混合し、有機層の一部を実施例 1に記載する分析条件で 分析して、反応の収率と生成物の光学純度を求めた。結果を表 2にまとめた。
[0063] [表 2] 微生物 収率 光学純度 ジァステレオ 酉己
(%) (%e e) 選択性(¾de)
Achromobac ter xylosoxidans NBRC 13495 3 75. 6 74. 8 (2S, 3R)
Arthrobacter paraffineus ATCC 21218 65 58. 5 74. 9 (2S, 3R)
Arthrobac ter nicotianae NBRC 14234 2 36. 4 100 (2S, 3K)
Bacillus amylolyticus NBRC 15957 100 33. 0 82. 8 (2S, 3R)
Bacillus circulans ATCC 9966 19 22. 4 13. 0 (2S, 3R)
Bacillus cereus NBRC 3466 100 20. 8 100 (2S, 3R)
Bacillus badius ATCC 14574 92 15. 6 97. 3 (2S, 3R)
Bacillus sphaericus瞧 C 3525 39 14. 2 100 (2S, 3R)
Brev ndimonas di mi nut a NBRC 3140 22 11. 1 49. 6 (2S, 3R)
Xanthomonas sp. NBRC 3084 94 90. 4 57. 4 (2S, 3R)
\anthomonas sp. NBRC 3085 100 99. 6 96. 9 (2S, 3R) [0064] (実窗列 3)表 3に示す微牛.物を用いた反
グルコース 10g、ペプトン 10g、肉エキス 10g、酵母エキス 5g、塩化ナトリウム lg、硫 酸マグネシウム 7水和物 0. 5g (いずれも 1L当たり)の組成力もなる液体培地 (pH7) 5 mlを大型試験管に分注し、 120°Cで 20分間蒸気殺菌を行った。これらの液体培地 に以下の表 3に示す微生物を無菌的に一白金耳接種して、 28°Cで 72時間振とう培 養した。培養後、各培養液を遠心分離にかけて菌体を集め、菌体をグルコース 1%を 含んだ lOOmMリン酸緩衝液 lml(pH6. 5)に懸濁した。
[0065] この菌体懸濁液を、あらかじめ 2 べンズアミドメチルー 3 ォキソ酪酸メチル lmg をいれた試験管に加えて、 30°Cで 24時間反応させた。反応後、各反応液に 2mlの 酢酸ェチルを加えて良く混合し、有機層の一部を実施例 1に記載する分析条件で分 祈して、反応の収率と生成物の光学純度を求めた。結果を表 3にまとめた。
[0066] [表 3] 微生物 収率 光学純度 ジァステレオ 立体配置
(%) (%ee) 選択性 «de)
Microsporum cookei NBRC 7862 1 20. 2 27. 3 (2S, 3R)
Moniliella acetoaba tens NBRC 9481 11 30. 3 9. 1 (2S, 3R)
[0067] (実施例 4) 2 ベンズアミドメチル 3 ォキソ酪酸メチルの還元反応
MSR培地(Difco社製) 55g (1L当たり)よりなる液体培地(pH6.5) 15mlを大型試 験管に分注し、 120°Cで 20分間蒸気殺菌を行った。これらの液体培地に以下の表 4 に示す微生物を無菌的に一白金耳接種して、 30°Cで 72時間静置培養した。培養後 、各培養液を遠心分離にかけて菌体を集め、菌体をグルコース 1%を含んだ 100m Mリン酸緩衝液 lml (pH6. 5)に懸濁した。
[0068] この菌体懸濁液を、あらかじめ 2 べンズアミドメチルー 3 ォキソ酪酸メチル lmg をいれた試験管に加えて、 30°Cで 24時間反応させた。反応後、各反応液に 2mlの 酢酸ェチルを加えて良く混合し、有機層の一部を実施例 1に記載する分析条件で分 祈して、反応の収率と生成物の光学純度を求めた。結果を表 4まとめた。
[0069] [表 4] 微生物 収率 光学純度 ジァステレオ 立体配置
(%) (%ee) 選択性 (%de)
Lac tobacillus brevis JCM 1059 67 71. 7 92. 2 (2S, 3R)
Lac tobacillus hel ve ticus JCM 1120 7 20. 3 51. 2 (2S, 3R)
Leuconostoc pseudomesen teroides
14 82. 5 73. 1 (2S, 3R)
JCM 9696
[0070] 施例 5)ァセ卜ン^:藝谢木 用いた ]^
lmlの lOOmMリン酸緩衝液(pH6. 5)に、キャンディダ'ケフィァ(Candida kefyr) NBRC 0706のアセトン乾燥菌体 10mg、グルコース 10mg、グルコース脱水素酵 素「GLUCDH"Amano2,,」(天野ェンザィム株式会社製) lmgゝ NAD0.25mgゝ N ADP0.25mg、 2—ベンズアミドメチル— 3—ォキソ酪酸メチル 2.5mgを加えて、 30 °Cで 24時間反応させた。反応後、各反応液に 2mlの酢酸ェチルを加えて良く混合し 、有機層の一部を実施例 1に記載する分析条件で分析したところ、収率は 40%であ つた。その有機層の一部の光学純度は 46.8%、ジァステレオ選択性は 31.8%であ つた o
[0071] (実施例 6)アルコール脱水素酵素を用いた反
lmlの lOOmMリン酸緩衝液(pH6. 5)に、ラクトバチルス'ブレビス(Lactobacillus brevis)由来のアルコール脱水素酵素(Julich Fine Chemicals製) 10kU、 NADPH2 当量、 2—べンズアミドメチルー 3—ォキソ酪酸メチル lmgをカ卩えて、 30°Cで 24時間 反応させた。反応後、各反応液に 2mlの酢酸ェチルにより抽出し、 91%の収率で(2 S, 3R)— 2—ベンズアミドメチル— 3—ヒドロキシブタン酸メチルを得た。このものの光 学純度は 99. 9%ee以上、ジァステレオ選択性は 92%deであった。
[0072] (実施例 7)カルボニル還元酵素を用いた反応
30mlの lOOmMリン酸緩衝液(pH6. 5)に、グルコース 3g、デボシァ'リボフラビナ (Devosia riboflavina)由来のカルボ-ル還元酵素 RDR (国際公開第 WO2004Z02 7055号公報参照) 10kU、グルコース脱水素酵素「GLUCDH"Amano2"」(天野 ェンザィム株式会社製) 500mg、 NAD50mg、 2—ベンズアミドメチル— 3—ォキソ 酪酸メチル 4.5gをカ卩えて、 30°Cで攪拌した。その間、反応液の pHは 6N— NaOHに よって 6. 5に維持した。 24時間の反応ののち、反応液を 45mlの酢酸ェチルで 3回 抽出し、得られた有機層をあわせて、無水硫酸ナトリウムで乾燥した。ろ過によって硫 酸ナトリウムを除去し、減圧下有機溶媒を留去したのち、シリカゲルカラムクロマトダラ フィ一によつて、 4.4gの(2S, 3R)—2—ベンズアミドメチル一 3—ヒドロキシブタン酸 メチルを得た。このものの光学純度は 99%ee以上、ジァステレオ選択性は 89.8%d
Θでめ た Q
[α]25 +22.88° (C = 0.9,酢酸ェチル)
D
iH—NMR (400MHz, CDC1 , 6ppm) :7.8— 7.7(m, 2H)、7.6— 7.5(m、 1
3
H), 7.5-7.4(m、 2H), 6.9(br, s, 1H), 4.2—4.0(m, 1H), 4.0— 3.9( m, 1H)、 3.7(s, 3H), 3.6— 3.5(m, 1H), 2.8(m, 1H), 1.2(d, 3H)
[0073] (実施例 8)カルボニル還元酵素を用いた反応
lmlの lOOmMリン酸緩衝液(pH6.5)に、グルコース 50mg、キャンディダ 'マリス( Candida maris)由来のカルボ-ル還元酵素 FPDH (国際公開第 WO01Z05996公 報参照) 10kU、グルコース脱水素酵素「GLUCDH"Amano2"」(天野ェンザィム 株式会社製) lmg、 NADO.25mg、 2—ベンズアミドメチル— 3—ォキソ酪酸メチル 5 mgを加えて、 24時間、 30°Cで振とうした。反応終了後、反応液を 2mlの酢酸ェチル で抽出し、収率 99%で(2S, 3R)— 2—ベンズアミドメチル— 3—ヒドロキシブタン酸メ チルを得た。このものの光学純度は 94%ee、ジァステレオ選択性は 89.3%deであ つた o
ipi—NMR (400MHz, CDC1 , 6ppm) :7.8— 7.7(m, 2H), 7.6— 7.5(m、 1
3
H)、 7.5— 7.4(m、 2H)、 6.9(br, s, 1H), 4.2—4.0(m, 1H), 4.0— 3.9( m, 1H), 3.7(s, 3H), 3.6— 3.5(m, 1H), 2.8(m, 1H), 1.2(d, 3H)
[0074] (実施例 9)ァセトァセチル CoA還元酵素を用いた反応
lmlの lOOmMリン酸緩衝液(pH6.5)に、グルコース 50mg、ラルストニア'ユート ロファ(Ralstonia eutropha)由来のァセトァセチル CoA還元酵素 RRE (国際公開第 WO2005Z044973公報参照) 10kU、グルコース脱水素酵素「GLUCDH"Aman o2,,」(天野ェンザィム株式会社製) lmg、 NADO.25mg、 2—ベンズアミドメチル— 3—ォキソ酪酸メチル 5mgをカ卩えて、 30°Cで振とうした。 24時間の反応ののち、反応 液を 2mlの酢酸ェチルで抽出し、収率 54%で(2S, 3R)— 2—べンズアミドメチルー 3—ヒドロキシブタン酸メチルを得た。このものの光学純度は 84.8%ee、ジァステレ ォ選択性は 60%deであった。
[0075] (実施例 10)ァセトァセチル CoA還元酵素を用いた反応
lmlの lOOmMリン酸緩衝液(pH6. 5)に、グルコース 50mg、ァクロモパクタ^ ~ ·デ -トリフイカンス (Achromobacter denitrificans)由来のァセトァセチル CoA還元酵素 R AX (国際公開第 WO2005Z044973公報参照) 10kU、グルコース脱水素酵素「G LUCDH"Amano2"j (天野ェンザィム株式会社製) lmgゝ NADO. 25mg、 2—ベ ンズアミドメチル一 3—ォキソ酪酸メチル 5mgをカ卩えて、 30°Cで振とうした。 24時間の 反応ののち、反応液を 2mlの酢酸ェチルで抽出し、収率 57%で(2S, 3R)— 2—べ ンズアミドメチルー 3—ヒドロキシブタン酸メチルを得た。このものの光学純度は 59. 7 %ee、ジァステレオ選択性は 49. 5%deであった。
[0076] 施例 ί ί) 2—べンズアミドメチルー 3—ォキソ 酸メチルの還
肉エキス 10g、ペプトン 10g、酵母エキス 5g、塩化ナトリウム 3g (いずれも 1L当たり) の組成力もなる液体培地 (pH7) 7mlを大型試験管に分注し、 120°Cで 20分間蒸気 殺菌を行った。これらの液体培地に以下の表 5に示す微生物を無菌的に一白金耳 接種して、 30°Cで 72時間振とう培養した。培養後、各培養液を遠心分離にかけて菌 体を集め、菌体をグルコース 1%を含んだ lOOmMリン酸緩衝液 0. 5ml (pH6. 5)に 懸濁した。
[0077] この菌体懸濁液を、あらかじめ 2—べンズアミドメチルー 3—ォキソ酪酸ェチル 0.5m gいれた試験管に加えて、 30°Cで 24時間反応させた。反応後、各反応液に lmlの酢 酸ェチルを加えて良く混合し、有機層の一部をダイセルィ匕学工業株式会社製 Chiral pak AD-H (250mm X 4. 6mm)を装着した HPLCによって分析し、反応の収率 と生成物の光学純度を求めた。表 5に結果をまとめた。
[0078] [表 5] 微生物 収率 光学純度 ジァステレオ ϋ体酉己置
(¾) (%ee) 選択性(de)
Achromobac ter xylosoxidans NBRC 13495 10 36. 3 20. 6 (2S, 3R)
Arthrobac ter paraffineus ATCC 21218 63 100. 0 95. 3 (2S, 3R)
Bacillus amylolyticus NBRC 15957 100 45. 5 100 (2S, 3R)
Bacillus circulans ATCC 9966 2 17. 0 8. 1 (2S, 3R)
Bacillus cere us NBRC 3466 39 13. 9 10O (2S, 3R)
Bacillus bad i us ATCC 14574 2 0. 3 18. 9 (2S, 3R)
Brevundimonas di mi nut a NBRC 3140 1 100. 0 13. 0 (2S, 3R)
Xan thomonas sp. NBRC 3084 1 100. 0 100 (2S, 3R)
Jan tho onas sp. NBRC 3085 1 100. 0 42. 5 (2S, 3R)
[0079] (実施例 12)カルボニル還元酵素を用 、た反応
lmlの lOOmMリン酸緩衝液(pH6. 5)に、グルコース 50mg、デボシァ'リボフラビ ナ(Devosia riboflavina)由来のカルボ-ル還元酵素 RDR (国際公開第 WO2004Z 027055公報参照) 10kU、グルコース脱水素酵素「GLUCDH"Amano2"」(天野 ェンザィム株式会社製) lmg、 NADO. 25mg、 2—ベンズアミドメチル— 3—ォキソ 酪酸ェチル 5mgを加えて、 30°Cで振とうした。 24時間の反応ののち、反応液を 2ml の酢酸ェチルで抽出し、収率 100%で(2S, 3R)—2—ベンズアミドメチル— 3—ヒド ロキシブタン酸ェチルを得た。このものの光学純度は 96%ee、ジァステレオ選択性 は 91 %deであった。
iH—NMR (400MHz, CDC1 , 6 ppm) : 7. 8— 7. 3 (m, 5H) , 6. 9 (br, s, 1H)
3
、 4. 2 -4. 0 (m, 3H) , 4. 0— 3. 9 (m, 2H, 2. 4 (s, 3H) , 1. 2 (t, 3H)
[0080] ( m 3)カルボュル ま 用いた ]^
lmlの lOOmMリン酸緩衝液(pH6. 5)に、グルコース 50mg、キャンディダ 'マリス( Candida maris)由来のカルボ-ル還元酵素 FPDH (国際公開第 WO01Z05996公 報参照) 10kU、グルコース脱水素酵素「GLUCDH"Amano2"」(天野ェンザィム 株式会社製) lmg、 NADO. 25mg、 2—べンズアミドメチルー 3—ォキソ酪酸ェチル 5mgをカ卩えて、 30°Cで振とうした。 24時間の反応ののち、反応液を 2mlの酢酸ェチ ルで抽出し、収率 61 %で(2S, 3R)— 2—ベンズアミドメチル— 3—ヒドロキシブタン 酸ェチルを得た。このものの光学純度は 71. 8%ee、ジァステレオ選択性は 71. 4% deであつ 7こ。
[0081] (実窗列 14)表 6に示す微牛.物を用いた反 肉エキス 10g、ペプトン 10g、酵母エキス 5g、塩化ナトリウム 3g (いずれも 1L当たり) の組成力もなる液体培地 (pH7) 7mlを大型試験管に分注し、 120°Cで 20分間蒸気 殺菌を行った。これらの液体培地に以下の表 6に示す微生物を無菌的に一白金耳 接種して、 30°Cで 72時間振とう培養した。培養後、各培養液を遠心分離にかけて菌 体を集め、菌体をグルコース 1%を含んだ lOOmMリン酸緩衝液 0. 5ml (pH6. 5)に 懸濁した。この菌体懸濁液を、あらかじめ 2—べンズアミドメチルー 3—ォキソ酪酸 ter t—ブチル 0.5mgいれた試験管に加えて、 30°Cで 24時間反応させた。反応後、各反 応液に lmlの酢酸ェチルを加えて良く混合し、有機層の一部をダイセルィ匕学工業株 式会社製 Chiralpak AD— H (250mm X 4. 6mm)を装着した HPLCによって分 祈し、反応の収率と生成物の光学純度を求めた。表 6に結果をまとめた。
[0082] [表 6] 微生物 収率 光学純度 ジァステレオ 立体配置
(¾) ( ee) 選択性 «de)
Xan tnomonas sp. NBRC 3084 1 21. 5 88. 9 (2S, 3R)
Xan tno onas sp. 匪 C 3085 1 16. 9 100 (2S, 3R)
[0083] (実施例 15)カルボニル還元酵素を用 、た反応
lmlの lOOmMリン酸緩衝液(pH6. 5)に、グルコース 50mg、デボシァ'リボフラビ ナ(Devosia riboflavina)由来のカルボ-ル還元酵素 RDR (国際公開第 WO2004Z 027055公報参照) 10kU、グルコース脱水素酵素「GLUCDH"Amano2"」(天野 ェンザィム株式会社製) lmg、 NADO. 25mg、 2—ベンズアミドメチル— 3—ォキソ 酪酸 tert—ブチル 5mgをカ卩えて、 30°Cで振とうした。 24時間の反応ののち、反応液 を 2mlの酢酸ェチルで抽出し、収率 88%で(2S, 3R)—2—ベンズアミドメチル— 3 ーヒドロキシブタン酸 tert—ブチルを得た。このものの光学純度は、 99. 9%ee以上、 ジァステレオ選択性は 95. 3%deであった。
iH—NMR (400MHz, CDC1 6 ppm) : 7. 8— 7. 3 (m, 5H)、6. 9 (br, s, 1H) ,
3,
4. 0— 3. 9 (m, 4H) , 2. 4 (s, 3H) , 1. 2 (s, 9H)
[0084] mie)カルボュル ま 用いた ]^
lmlの lOOmMリン酸緩衝液(pH6. 5)に、グルコース 50mg、キャンディダ 'マリス( Candida maris)由来のカルボ-ル還元酵素 FPDH (国際公開第 WO01Z05996公 報参照) 10kU、グルコース脱水素酵素「GLUCDH"Amano2"」(天野ェンザィム 株式会社製) lmg、 NADO. 25mg、 2—べンズアミドメチルー 3—ォキソ酪酸 tert— ブチル 5mgを加えて、 30°Cで振とうした。 24時間の反応ののち、反応液を 2mlの酢 酸ェチルで抽出し、収率 15%で(2S, 3R)—2—ベンズアミドメチル一 3—ヒドロキシ ブタン酸 tert—ブチルを得た。このものの光学純度は、 91. 4%ee、ジァステレオ選 択性は 77. 7%deであった。
[0085] (実施例 17)カルボニル還元酵素を用 、た反応
lmlの lOOmMリン酸緩衝液(pH6. 5)に、グルコース 50mg、デボシァ'リボフラビ ナ(Devosia riboflavina)由来のカルボ-ル還元酵素 RDR (国際公開第 WO2004Z 027055公報参照) 10kU、グルコース脱水素酵素「GLUCDH"Amano2"」(天野 ェンザィム株式会社製) lmg、 NADO. 25mg、 2—ァセトアミドメチル— 3—ォキソ酪 酸メチル 5mgをカ卩えて、 30°Cで振とうした。 24時間の反応ののち、反応液を 2mlの 酢酸ェチルで抽出し、収率 59%で(2S, 3R)—2—ァセトアミドメチル— 3—ヒドロキ シブタン酸メチルを得た。このものの光学純度を、ダイセルィ匕学工業株式会社製 Chi ralpak AD— H (250mm X 4. 6mm)を装着した HPLCによって分析したところ、 9 7%eeであり、ジァステレオ選択性は 82. 3%deであった。
iH—NMR (400MHz, CDC1 , δ ppm): 6. 2 (br, s, 1H) , 4. 0— 3. 7 (m, 2H
3
) , 3. 6 (s, 1H) , 3. 4— 3. 3 (m, 1H) , 2. 7— 2. 5 (m, 1H) , 2. 2 (s, 3H)、 1. 2 ( d, 3H)
[0086] (実施例 18)カルボニル還元酵素を用 、た反応
lmlの lOOmMリン酸緩衝液(pH6. 5)に、グルコース 50mg、キャンディダ 'マリス( Candida maris)由来のカルボ-ル還元酵素 FPDH (国際公開第 WO01Z05996公 報参照) 10kU、グルコース脱水素酵素「GLUCDH"Amano2"」(天野ェンザィム 株式会社製) lmg、 NADO. 25mg、 2—ァセトアミドメチル— 3—ォキソ酪酸メチル 5 mgを加えて、 30°Cで振とうした。 24時間の反応ののち、反応液を 2mlの酢酸ェチル で抽出し、収率 8%で(2S, 3R)— 2—ァセトアミドメチル— 3—ヒドロキシブタン酸メチ ルを得た。このものの光学純度は、 96. 2%ee、ジァステレオ選択性は 80. 3%deで めつに。 [0087] (実施例 19)カルボニル還元酵素を用 、た反応
lmlの lOOmMリン酸緩衝液(pH6. 5)に、グルコース 50mg、デボシァ'リボフラビ ナ(Devosia riboflavina)由来のカルボ-ル還元酵素 RDR (国際公開第 WO2004Z 027055公報参照) 10kU、グルコース脱水素酵素「GLUCDH"Amano2"」(天野 ェンザィム株式会社製) lmg、 NADO. 25mg、 2—フタロイルアミドメチル— 3—ォキ ソ酪酸メチル 5mgを加えて、 30°Cで振とうした。 24時間の反応ののち、反応液を 2ml の酢酸ェチルで抽出し、収率 98%で(2S, 3R)—2—フタロイルアミドメチル— 3—ヒ ドロキシブタン酸メチルを得た。このものの光学純度をダイセルィ匕学工業株式会社製 Chiralpak AD— H (250mm X 4. 6mm)を装着した HPLCによって分析したこと ろ、 99. 9%ee以上であり、ジァステレオ選択性は 62. 2%deであった。
iH—NMR (400MHz, CDC1 , 6 ppm) : 7. 9— 7. 7 (m, 4H) , 4. 2— 3. 9 (m, 3
3
H) , 3. 7 (s, 3H)、 2. 7- 2. 6 (m, 1H) , 1. 2 (d, 3H)
[0088] 列 20)カルボュル還 酵素 用いた ]^
lmlの lOOmMリン酸緩衝液(pH6. 5)に、グルコース 50mg、キャンディダ 'マリス( Candida maris)由来のカルボ-ル還元酵素 FPDH (国際公開第 WO01Z05996公 報参照) 10kU、グルコース脱水素酵素「GLUCDH"Amano2"」(天野ェンザィム 株式会社製) lmg、 NADO. 25mg、 2—フタロイルアミドメチル— 3—ォキソ酪酸メチ ル 5mgを加えて、 30°Cで振とうした。 24時間の反応ののち、反応液を 2mlの酢酸ェ チルで抽出し、収率 21%で(2S, 3R)—2—フタロイルアミドメチル— 3—ヒドロキシブ タン酸メチルを得た。このものの光学純度は 99. 9%ee以上、ジァステレオ選択性は 72. 4%deであった。
[0089] (実施例 21)形皙転椽体を用いた反
E. coli HB101 (pNTDRGl) (FERM BP— 08458:国際公開第 WO2004Z 027055号公報参照)を 120 μ g/mlアンピシリンを含む 2 X ΥΤ培地で培養し、得ら れた培養液 30mlに、グルコース 2g、 NAD50mg、 2—ベンズアミドメチル— 3—ォキ ソ酪酸メチル 3gをカ卩えて、 30°Cで攪拌した。その間、反応液の pHは 6NNaOHによ つて 6. 5に維持した。 24時間の反応ののち、反応液を 30mlの酢酸ェチルで 3回抽 出し、得られた有機層をあわせて、無水硫酸ナトリウムで乾燥した。ろ過によって硫酸 ナトリウムを除去し、減圧下有機溶媒を留去したのち、シリカゲルカラムクロマトグラフ ィ一によつて、 2. 8gの(2S, 3R)— 2—ベンズアミドメチル一 3—ヒドロキシブタン酸メ チルを得た。このものの光学純度は 99%ee以上、ジァステレオ選択性は 89. 8%de であった。

Claims

請求の範囲 [1] 一般式 (5)
[化 1]
Figure imgf000025_0001
(式中、 R1は置換されていてもよい低級アルキル基、ァリル基、置換されていてもよい ァリール基、または置換されていてもよいァラルキル基を表し、 R2および R3は、
1) R3が水素原子で、 R2が置換されていてもよい低級アルキル基、置換されていても よいアルコキシ基、置換されていてもよいァリール基、または置換されていてもよいァ ラルキルォキシ基を表すか、
2) R3と— COR2がー体となってフタロイル基を表す。)で示される光学活性 2— (N— 置換アミノメチル) 3—ヒドロキシ酪酸エステル類の製造方法であって、一般式 (6): [化 2]
Figure imgf000025_0002
(式中、 R1 R2、及び R3は前記と同じ。)で示される 2— (N 置換アミノメチル) - 3- ォキソ酪酸エステルに、該化合物を(2S, 3R)の立体配置を有する光学活性 3 ヒド ロキシ酪酸エステル類に立体選択的に還元する活性を有する酵素源を作用させるこ とを特徴とする製造方法。 前記式(6)で表される 2—(N—置換アミノメチル) 3 ォキソ酪酸エステルとして、 一般式 (2) :
[化 3]
Figure imgf000026_0001
(式中、 R1は前記と同じ、 R2は置換されていてもよい低級アルキル基、置換されてい てもよい低級アルコキシ基、置換されていてもよいァリール基、または置換されていて もよぃァラルキルォキシ基を表す。)で示される化合物を用い、前記式(5)で表される 光学活性 2—(N—置換アミノメチル) 3 ヒドロキシ酪酸エステルとして、一般式(1 ):
[化 4]
Figure imgf000026_0002
H
(式中、
Figure imgf000026_0003
R2は前記と同じ)で示される化合物を製造する、請求項 1記載の製造方 法。
前記式(6)で表される 2—(N—置換アミノメチル) 3 ォキソ酪酸エステルとして、 一般式 (4) :
[化 5]
Figure imgf000027_0001
(式中、 R1は前記と同じ)で示される化合物を用い、前記式(5)で表される光学活性 2 - (N—置換アミノメチル)—3—ヒドロキシ酪酸エステルとして、一般式(3):
[化 6]
Figure imgf000027_0002
(式中、 R1は前記と同じ)で示される化合物を製造する、請求項 1記載の製造方法。
[4] 前記酵素源が、キャンディダ (Candida)属、ゲォトリカム(Geotrichum)属、ガラタトマイ セス (Galactomyces)属、サッカロマイコプシス (Saccharomycopsis)属、ァクロモバクタ 一 (Achromobacter)属、アースロノくクタ一 (Arthrobacter)属、ノ チノレス (Bacillus)属、 ブレフンディモナス(Brevundimonas)属、キナントモナス(Xanthomonas)属、デボシァ (Devosia)属、ラルストニア(Ralstonia)属、ラクトバチルス(Lactobacillus)属、ロイコノ ストック (Leuconostoc)属、ミクロスポノレム (Microsporum)属、モニリエラ (Moniliella)属 力もなる群より選ばれた微生物由来の酵素である、請求項 1〜3のいずれかに記載の 製造方法。
[5] 前記酵素源が、キャンディダ'ケフリ(Candida kefyr)、キャンディダ 'ォェオフイラ(Can dida oleophila)、キャンディダ 'マリス(Candida maris)、ゲォトリカム'エリエンス(Geotri chum eriense)、カフクトマイセス 'リエッシ (Galactomyces reessii)、サッカロマイコプシ ス 'マランガ (Saccharomycopsis malanga)、ァクロモノくクタ一'キシロソキシダンス (Ach romobacter xylosoxidans 、 クロモノ クタ1 ~~ 'ァ-トリフィカンス、 chromobacter aeni trificans)ゝアースロバクタ一 'パラフイネウス(Arthrobacter paraffineus)ゝアースロバク ター 'ニコチアナェ(Arthrobacter nicotianae)、ノ チノレス'アミロリティカス(Bacillus am ylolyticus)、バチルス'サーキュランス(Bacillus circulans)、バチルス'セレウス(Bacill us cereus)、バチルス 'バディウス(Bacillus badius)、バチルス 'スファエリカス(Bacillus sphaencus)、ブレフンァィモナス 'ァイミヌ ~~タ (Brevundimonas diminuta)、 = サント モナス.エスピー(Xanthomonas sp.)、デボシァ 'リボフラビナ(Devosia riboflavina)、ラ ノレスト-ァ ·ユートロファ(Ralstonia eutropha)、ラクトバチルス ·ブレビス(Lactobacillus brevis)、ラクトノくチノレス'へノレべテイクス (Lactobacillus helveticus)、ロイコノストック' 、ノュ. ~~トモセンァロづァス (Leuconostoc pseudomesenteroiaes)、ミクロスホノレム 'コ1 ~~ ケィ(Microsporum cookei)、モ-リエラ ·ァセトァノ テンス (Moniliella acetoabatens)力 らなる群より選ばれた微生物由来の酵素である、請求項 1〜3のいずれかに記載の 製造方法。
[6] 前記 R1がメチル基、ェチル基、プロピル基、または n—ブチル基である請求項 1〜3 の!、ずれかに記載の製造方法。
[7] 前記 R1がメチル基である請求項 1〜3の 、ずれかに記載の製造方法。
[8] R2がフエ-ル基、 p— -トロフエ-ル基、または p—クロ口フエ-ル基である請求項 1ま たは 2記載の製造方法。
[9] R2がフエ-ル基である請求項 1または 2記載の製造方法。
[10] R1がメチル基、 R2がフエニル基である請求項 1または 2記載の製造方法。
[11] 酸化型ニコチンアミド 'アデ-ンジヌクレオチド (NAD+)、酸化型ニコチンアミド 'アデ ニンジヌクレオチドリン酸 (NADP+)の!、ずれかまたは両方を、それぞれの還元型へ 還元する酵素と、還元するための基質とを、共存させることを特徴とする請求項 1〜1
0の 、ずれかに記載の製造方法。
PCT/JP2006/314285 2005-07-20 2006-07-19 光学活性2-(n-置換アミノメチル)-3-ヒドロキシ酪酸エステル類の製造方法 WO2007010944A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/996,271 US20090104671A1 (en) 2005-07-20 2006-07-19 Method for producing optically active 2-(n-substituted aminomethyl)-3-hydroxybutyric acid ester
EP06768311A EP1908845A4 (en) 2005-07-20 2006-07-19 PROCESS FOR THE PRODUCTION OF 2- (AMINOMETHYL-N-SUBSTITUTED) 3-HYDROXYBUTYRIC ACID L ESTER WITH OPTICAL ACTIVITY
JP2007526034A JP5090910B2 (ja) 2005-07-20 2006-07-19 光学活性2−(n−置換アミノメチル)−3−ヒドロキシ酪酸エステル類の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005210371 2005-07-20
JP2005-210371 2005-07-20

Publications (1)

Publication Number Publication Date
WO2007010944A1 true WO2007010944A1 (ja) 2007-01-25

Family

ID=37668820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314285 WO2007010944A1 (ja) 2005-07-20 2006-07-19 光学活性2-(n-置換アミノメチル)-3-ヒドロキシ酪酸エステル類の製造方法

Country Status (5)

Country Link
US (1) US20090104671A1 (ja)
EP (2) EP2357248A1 (ja)
JP (1) JP5090910B2 (ja)
KR (1) KR20080036098A (ja)
WO (1) WO2007010944A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009046153A1 (en) * 2007-10-01 2009-04-09 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
WO2009093745A1 (ja) * 2008-01-22 2009-07-30 Sumitomo Chemical Company, Limited 光学活性なオルト置換マンデル酸化合物の製造方法
US7977078B2 (en) 2007-08-24 2011-07-12 Codexis, Inc. Ketoreductase polypeptides for the production of (R)-3-hydroxythiolane
US8273554B2 (en) 2008-08-29 2012-09-25 Codexis, Inc. Ketoreductase polypeptides for the stereoselective production of (4S)-3-[(5S)-5-(4-fluorophenyl)-5-hydroxypentanoyl]-4-phenyl-1,3-oxazolidin-2-one
US8288141B2 (en) 2008-08-27 2012-10-16 Codexis, Inc. Ketoreductase polypeptides for the production of 3-aryl-3-hydroxypropanamine from a 3-aryl-3-ketopropanamine
US8426178B2 (en) 2008-08-27 2013-04-23 Codexis, Inc. Ketoreductase polypeptides for the production of a 3-aryl-3-hydroxypropanamine from a 3-aryl-3-ketopropanamine
US9040262B2 (en) 2010-05-04 2015-05-26 Codexis, Inc. Biocatalysts for ezetimibe synthesis
US9102959B2 (en) 2009-08-19 2015-08-11 Codexis, Inc. Ketoreductase polypeptides for the preparation of phenylephrine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080192B2 (en) 2010-02-10 2015-07-14 Codexis, Inc. Processes using amino acid dehydrogenases and ketoreductase-based cofactor regenerating system
CN103373934A (zh) * 2013-06-14 2013-10-30 苏州汇和药业有限公司 碳青霉烯和青霉烯类药物的手性中间体的催化合成方法
CN115057796A (zh) * 2015-12-01 2022-09-16 焦作健康元生物制品有限公司 光学活性的β-羟基酯类化合物的中间体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297360A (ja) 1987-05-04 1988-12-05 チバ・ガイギー・アクチェンゲゼルシヤフト 4−アシルオキシ−3−ヒドロキシエチル−アゼチジノンの新規な製造方法
JPH02134349A (ja) 1988-11-15 1990-05-23 Takasago Internatl Corp 光学活性3−ヒドロキシブタン酸類の製造方法
JP2000175693A (ja) * 1998-12-18 2000-06-27 Kanegafuchi Chem Ind Co Ltd (r)−2−ヒドロキシ−1−フェノキシプロパン誘導体の製造方法
WO2001005996A1 (fr) 1999-07-21 2001-01-25 Kaneka Corporation Procede d'obtention de derives optiquement actifs du pyridineethanol
US20030139464A1 (en) 2001-12-28 2003-07-24 Korea Institute Of Science And Technology Reduction of carbonyl compounds using the carbonyl reductase of kluyveromyces marxianus
WO2003066863A1 (en) * 2002-02-06 2003-08-14 Showa Denko K.K. α-SUBSTITUTED-α,β-UNSATURATED CARBONYL COMPOUND REDUCTASE GENE
WO2004027055A1 (ja) 2002-09-19 2004-04-01 Kaneka Corporation 新規カルボニル還元酵素、その遺伝子、およびその利用法
WO2005044973A2 (ja) 2003-11-11 2005-05-19 Kaneka Corp 新規アセトアセチルCoA還元酵素および光学活性アルコールの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA03011813A (es) * 2001-07-02 2004-07-01 Kaneka Corp Metodo para la modificacion de enzimas y variantes de oxido reductasa.
WO2005017135A1 (en) * 2003-08-11 2005-02-24 Codexis, Inc. Improved ketoreductase polypeptides and related polynucleotides

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297360A (ja) 1987-05-04 1988-12-05 チバ・ガイギー・アクチェンゲゼルシヤフト 4−アシルオキシ−3−ヒドロキシエチル−アゼチジノンの新規な製造方法
JPH02134349A (ja) 1988-11-15 1990-05-23 Takasago Internatl Corp 光学活性3−ヒドロキシブタン酸類の製造方法
JP2000175693A (ja) * 1998-12-18 2000-06-27 Kanegafuchi Chem Ind Co Ltd (r)−2−ヒドロキシ−1−フェノキシプロパン誘導体の製造方法
WO2001005996A1 (fr) 1999-07-21 2001-01-25 Kaneka Corporation Procede d'obtention de derives optiquement actifs du pyridineethanol
US20030139464A1 (en) 2001-12-28 2003-07-24 Korea Institute Of Science And Technology Reduction of carbonyl compounds using the carbonyl reductase of kluyveromyces marxianus
WO2003066863A1 (en) * 2002-02-06 2003-08-14 Showa Denko K.K. α-SUBSTITUTED-α,β-UNSATURATED CARBONYL COMPOUND REDUCTASE GENE
WO2004027055A1 (ja) 2002-09-19 2004-04-01 Kaneka Corporation 新規カルボニル還元酵素、その遺伝子、およびその利用法
WO2005044973A2 (ja) 2003-11-11 2005-05-19 Kaneka Corp 新規アセトアセチルCoA還元酵素および光学活性アルコールの製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHA J.H. ET AL.: "Stereochemical control in diastereoselective reduction of alpha-substituted-beta-ketoesters using a reductase purified from Kluyveromyces marxianus", BIOTECHNOLOGY LETTERS, vol. 24, no. 20, 2002, pages 1695 - 1698, XP003003034 *
CLAUDIO FUGANTI ET AL.: "Microbial Generation of (2R,3S)- and (2S,3S)-Ethyl 2-Benzamidomethyl-3-hydroxybutyrate, a key intermediate in the synthesis of (3S,1'R)-3-(1'-hydroxyethyl)azetidin-2-one", J. CHEM, SOC. PERKIN TRANS., vol. 1, 1993, pages 2247
JOO HWAN CHA ET AL.: "Stereochemical control in diastereoselective reduction of a-substituted-p-ketoesters using a reductase purified from Kluyveromyces marxianus", BIOTECHNOL. LETT., vol. 24, 2002, pages 1695
R. NOYORI ET AL.: "Stereoselective hydrogenation via dynamic kinetic resolution", J. AM. CHEM. SOC., vol. 111, 1989, pages 9134
See also references of EP1908845A4

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385371B2 (en) 2007-08-24 2019-08-20 Codexis, Inc. Ketoreductase polypeptides for the production of (R)-3-hydroxythiolane
US11965194B2 (en) 2007-08-24 2024-04-23 Codexis, Inc. Ketoreductase polypeptides for the production of (R)-3-hydroxythiolane
US9932615B2 (en) 2007-08-24 2018-04-03 Codexis, Inc. Ketoreductase polypeptides for the production of (R)-3-hydroxythiolane
US9394552B2 (en) 2007-08-24 2016-07-19 Codexis, Inc. Ketoreductase polypeptides for the production of (R)-3-hydroxythiolane
US10851397B2 (en) 2007-08-24 2020-12-01 Codexis, Inc. Ketoreductase polypeptides for the production of (R)-3-hydroxythiolane
US11427841B2 (en) 2007-08-24 2022-08-30 Codexis, Inc. Ketoreductase polypeptides for the production of (R)-3-hydroxythiolane
US7977078B2 (en) 2007-08-24 2011-07-12 Codexis, Inc. Ketoreductase polypeptides for the production of (R)-3-hydroxythiolane
US8227229B2 (en) 2007-08-24 2012-07-24 Codexis, Inc. Ketoreductase polypeptides for the production of (R)-3-hydroxythiolane
US8962285B2 (en) 2007-08-24 2015-02-24 Codexis, Inc. Ketoreductase polypeptides for the production of (R)-3-hydroxythiolane
US7883879B2 (en) 2007-10-01 2011-02-08 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
US9382519B2 (en) 2007-10-01 2016-07-05 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
US8257952B2 (en) 2007-10-01 2012-09-04 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
US9580694B2 (en) 2007-10-01 2017-02-28 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
US8470572B2 (en) 2007-10-01 2013-06-25 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
US9476034B2 (en) 2007-10-01 2016-10-25 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
WO2009046153A1 (en) * 2007-10-01 2009-04-09 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
CN101883846A (zh) * 2007-10-01 2010-11-10 科德克希思公司 用于生成氮杂环丁酮的还原酶多肽
US8980606B2 (en) 2007-10-01 2015-03-17 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
US11078466B2 (en) 2007-10-01 2021-08-03 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
US10597641B2 (en) 2007-10-01 2020-03-24 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
US9133442B2 (en) 2007-10-01 2015-09-15 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
US9719071B2 (en) 2007-10-01 2017-08-01 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
US10329540B2 (en) 2007-10-01 2019-06-25 Codexis, Inc. Ketoreductase polypeptides for the production of azetidinone
CN101983243A (zh) * 2008-01-22 2011-03-02 住友化学株式会社 光学活性邻位取代扁桃酸化合物的制造方法
WO2009093745A1 (ja) * 2008-01-22 2009-07-30 Sumitomo Chemical Company, Limited 光学活性なオルト置換マンデル酸化合物の製造方法
JP2009171864A (ja) * 2008-01-22 2009-08-06 Sumitomo Chemical Co Ltd 光学活性なオルト置換マンデル酸化合物の製造方法
US8288141B2 (en) 2008-08-27 2012-10-16 Codexis, Inc. Ketoreductase polypeptides for the production of 3-aryl-3-hydroxypropanamine from a 3-aryl-3-ketopropanamine
US8426178B2 (en) 2008-08-27 2013-04-23 Codexis, Inc. Ketoreductase polypeptides for the production of a 3-aryl-3-hydroxypropanamine from a 3-aryl-3-ketopropanamine
US8673607B2 (en) 2008-08-27 2014-03-18 Codexis, Inc. Ketoreductase polypeptides for the production of a 3-aryl-3-hydroxypropanamine from a 3-aryl-3-ketopropanamine
US9422530B2 (en) 2008-08-29 2016-08-23 Codexis, Inc. Ketoreductase polypeptides
US10544401B2 (en) 2008-08-29 2020-01-28 Codexis, Inc. Ketoreductase polypeptides
US8273554B2 (en) 2008-08-29 2012-09-25 Codexis, Inc. Ketoreductase polypeptides for the stereoselective production of (4S)-3-[(5S)-5-(4-fluorophenyl)-5-hydroxypentanoyl]-4-phenyl-1,3-oxazolidin-2-one
US8415126B2 (en) 2008-08-29 2013-04-09 Codexis, Inc. Polynucleotides encoding recombinant ketoreductase polypeptides
US10047348B2 (en) 2008-08-29 2018-08-14 Codexis, Inc. Ketoreductase polypeptides
US8956840B2 (en) 2008-08-29 2015-02-17 Codexis, Inc. Engineered ketoreductase polypeptides
US10246687B2 (en) 2008-08-29 2019-04-02 Codexis, Inc. Ketoreductase polypeptides
US10988739B2 (en) 2008-08-29 2021-04-27 Codexis, Inc. Ketoreductase polypeptides
US9796964B2 (en) 2008-08-29 2017-10-24 Codexis, Inc. Ketoreductase polypeptides
US9139820B2 (en) 2008-08-29 2015-09-22 Codexis, Inc. Ketoreductase polypeptides
US10358631B2 (en) 2009-08-19 2019-07-23 Codexis, Inc. Ketoreductase polypeptides for the preparation of phenylephrine
US10590396B2 (en) 2009-08-19 2020-03-17 Codexis, Inc. Ketoreductase polypeptides for the preparation of phenylephrine
US9102959B2 (en) 2009-08-19 2015-08-11 Codexis, Inc. Ketoreductase polypeptides for the preparation of phenylephrine
US10870835B2 (en) 2009-08-19 2020-12-22 Codexis, Inc. Ketoreductase polypeptides for the preparation of phenylephrine
US11345898B2 (en) 2009-08-19 2022-05-31 Codexis, Inc. Ketoreductase polypeptides for the preparation of phenylephrine
US9834758B2 (en) 2009-08-19 2017-12-05 Codexis, Inc. Ketoreductase polypeptides for the preparation of phenylephrine
US10544400B2 (en) 2010-05-04 2020-01-28 Codexis, Inc. Biocatalysts for ezetimibe synthesis
US9040262B2 (en) 2010-05-04 2015-05-26 Codexis, Inc. Biocatalysts for ezetimibe synthesis
US9388391B2 (en) 2010-05-04 2016-07-12 Codexis, Inc. Biocatalysts for Ezetimibe synthesis
US10995320B2 (en) 2010-05-04 2021-05-04 Codexis, Inc. Biocatalysts for Ezetimibe synthesis
US10053673B2 (en) 2010-05-04 2018-08-21 Codexis, Inc. Biocatalysts for Ezetimibe synthesis
US9644189B2 (en) 2010-05-04 2017-05-09 Codexis, Inc. Biocatalysts for ezetimibe synthesis

Also Published As

Publication number Publication date
EP1908845A1 (en) 2008-04-09
JPWO2007010944A1 (ja) 2009-01-29
JP5090910B2 (ja) 2012-12-05
EP2357248A1 (en) 2011-08-17
EP1908845A4 (en) 2010-10-06
KR20080036098A (ko) 2008-04-24
US20090104671A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
WO2007010944A1 (ja) 光学活性2-(n-置換アミノメチル)-3-ヒドロキシ酪酸エステル類の製造方法
WO2022127310A1 (zh) 一种制备(s)-2-(3-吡啶)-吡咯烷的方法
EP2171077A2 (en) Enantioselective reduction
TWI287579B (en) Stereoselective reduction of substituted oxo-butanes
EP2154253B1 (en) Process for producing optically active 2-alkyl-1,1,3-trialkoxycarbonylpropane
JP3919918B2 (ja) 光学活性2−ハロ−1−(置換フェニル)エタノールの製造法
JP2010532992A (ja) 3,4−エポキシ酪酸エチルの微生物速度論的分割
WO2007026860A1 (ja) 光学活性α-ヒドロキシカルボン酸の製造方法
Mangone et al. Chemo-and stereoselective reduction of β-keto esters by spores and various morphological forms of Mucor rouxii
Singh et al. Enantioselective transesterification of (RS)-1-chloro-3-(3, 4-difluorophenoxy)-2-propanol using Pseudomonas aeruginosa lipases
Goswami et al. Microbial reduction of α-chloroketone to α-chlorohydrin
WO2007097336A1 (ja) (2r,3r)および(2s,3s)-3-フェニルイソセリン誘導体の製造法
CN101016526A (zh) 氧化微杆菌以及利用该氧化微杆菌制备光学纯手性芳基仲醇的方法
JPWO2006109632A1 (ja) 新規α−ケト酸還元酵素、その遺伝子、およびその利用法
CN110016444A (zh) 不动杆菌zjph1806及其制备咪康唑手性中间体的应用
JP5474280B2 (ja) 光学活性なtrans体含窒素環状β−ヒドロキシエステルの製造方法
WO2000037666A1 (fr) Procede de production de derive (r)-2-hydroxy-1-phenoxypropane
JP2005117905A (ja) 光学活性1−ベンジル−3−ピロリジノールの製造方法
US20050014818A1 (en) Process for producing optically active chroman derivative and intermediate
JP4898129B2 (ja) 光学活性ビニルアルコール類の製造方法
JP4000263B2 (ja) (3r,5s)−(e)−7−[2−シクロプロピル−4−(4−フルオロフェニル)−キノリン−3−イル]−3,5−ジヒドロキシヘプト−6−エン酸エステル類の製造方法
JP2003299495A (ja) 光学活性3−メチルグルタル酸モノエステルの製造方法
JP3843692B2 (ja) 光学活性endo−ノルボルネオールの製造法
JP4536484B2 (ja) 光学活性2−ヒドロキシ−5−(4−メトキシフェニル)−ペンタン酸エステルの製造方法
JP5292824B2 (ja) 光学活性なオルト置換マンデル酸化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526034

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 230/KOLNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006768311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087003960

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11996271

Country of ref document: US