WO2007010842A1 - 回転角度検出装置 - Google Patents

回転角度検出装置 Download PDF

Info

Publication number
WO2007010842A1
WO2007010842A1 PCT/JP2006/314034 JP2006314034W WO2007010842A1 WO 2007010842 A1 WO2007010842 A1 WO 2007010842A1 JP 2006314034 W JP2006314034 W JP 2006314034W WO 2007010842 A1 WO2007010842 A1 WO 2007010842A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotating
rotation angle
magnetic
angle detection
Prior art date
Application number
PCT/JP2006/314034
Other languages
English (en)
French (fr)
Inventor
Takeo Kurihara
Original Assignee
Tomen Electronics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomen Electronics Corporation filed Critical Tomen Electronics Corporation
Priority to EP06781108A priority Critical patent/EP1909074A4/en
Priority to CN2006800262192A priority patent/CN101253389B/zh
Priority to US11/988,215 priority patent/US7808234B2/en
Publication of WO2007010842A1 publication Critical patent/WO2007010842A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications

Definitions

  • the present invention relates to a rotation angle detection that detects a rotation angle of an object to be detected using a magnetic sensor in which a plurality of magnetoresistive elements (hereinafter referred to as "MR elements”) are bridge-connected. Concerning equipment.
  • MR elements magnetoresistive elements
  • a non-contact type rotation angle detection device using an MR sensor, which is used for detection of a rotation angle of a detection target such as a rotation shaft, is known from, for example, Patent Document 1 and the like.
  • the rotation angle detection device includes a rotating magnet 102 attached to a rotating shaft 101 as a detection target and rotating together with the rotating shaft 101, and a rotating shaft 101 in the vicinity of the rotating magnet 102.
  • the magnetic sensor 103 is arranged in a non-contact manner.
  • the magnetic sensor 103 includes a pair of sensor units 121 and 122 configured by bridging powerful MR elements 111, respectively.
  • the MR element 111 constituting each of the sensor units 121 and 122 has magnetic anisotropy as a physical attribute, and has different resistances between the magnetic field in the easy axis direction and the magnetic field in the hard axis direction perpendicular thereto. Indicates the value.
  • the four MR elements 111 constituting each sensor unit 121, 122 are arranged with their respective easy magnetization axes shifted by 90 °.
  • the MR element 111 of the sensor unit 121 and the MR element 111 of the sensor unit 122 are arranged with their easy magnetization axes inclined by 45 °.
  • the magnetic sensor 103 is disposed on the substrate 104 in the homogeneous magnetic field portion of the rotating magnet 102.
  • the rotating magnet 102 attached to the rotating shaft 101 when the rotating shaft 101 rotates, the rotating magnet 102 attached to the rotating shaft 101 also rotates, so that a rotating magnetic field is applied to the magnetic sensor 103.
  • a resistance change occurs in each MR element 111, and the current value flowing through the bridge is changed in a sine wave shape, so that a sine wave signal is output from the magnetic sensor 103.
  • the rotation angle of the rotary shaft 101 can be detected from this sine wave signal.
  • the above-mentioned magnetic sensor 103 has an angle detectable range of 180 ° from the + easy magnetization axis to the easy magnetization axis on the basis of its characteristics, and an angle in the range of 0 ° to 360 °. It cannot be uniquely detected.
  • An angle sensor using a permanent magnet is also known as a device for enhancing the magnetic anisotropy of a magnetic sensor (Patent Document 3).
  • Patent Document 1 Japanese Patent Laid-Open No. 7-260414
  • Patent Document 2 JP-A-11 94512
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-4480
  • Patent Document 2 has a problem in that the processing circuit becomes complicated because a Hall element must be provided in addition to the magnetic sensor to process both signals. is there.
  • Patent Document 3 does not disclose any detailed relationship with the rotation angle of the rotating magnet.
  • the present invention has been made in view of the above points, and provides a rotation angle detection device capable of detecting a rotation angle in a range of 0 ° to 360 ° with an attachment having an extremely simple configuration. It aims to.
  • a rotation angle detection device is disposed in a rotating magnetic field that is attached to a detection target and rotates together with the detection target to generate a rotating magnetic field, and the rotating magnetic field generated by the rotating magnet.
  • a magnetic sensor in which a plurality of magnetoresistive elements are bridge-connected and arranged so that their magnetization easy axes are shifted by 45 °, and the magnetic sensor is disposed in the vicinity of the magnetic sensor.
  • a quadrupole auxiliary magnet that generates a combined rotating magnetic field of 0 ° to 180 ° from a rotating magnetic field of 0 ° to 360 ° by the rotating magnet in the region.
  • the magnitude of the magnetic moment of the rotating magnet and the combined magnetic moment of the four-pole auxiliary magnet, which are applied to the magnetic sensor is approximately equal.
  • the quadrupole auxiliary magnet is, for example, a ring-shaped magnet arranged in parallel with the rotating surface of the rotating magnet.
  • the quadrupole auxiliary magnet is arranged coaxially with the rotation axis of the rotating magnet, and the magnetic sensor is arranged in a homogeneous magnetic field portion of the four-pole auxiliary magnet.
  • the quadrupole magnet is arranged at a position shifted from the rotation axis on the same plane as the rotation surface of the rotary magnet, and the magnetic sensor is a homogeneous magnetic field of the quadrupole magnet. It is arranged in the part.
  • the four-pole auxiliary magnet is provided in the vicinity of the magnetic sensor, the combined magnetic moment of the four-pole auxiliary magnet and the magnetic moment of the rotating magnet is determined by the rotating magnet. Converts rotation from 0 ° to 360 ° into rotation from 0 ° to 180 °. As a result, the rotation angle detection value of 0 ° to 180 ° by the magnetic sensor can be obtained as the rotation angle detection value of 0 ° to 360 ° of the detection target.
  • a conventional circuit can be used as it is as a signal processing circuit by simply adding a 4-pole auxiliary magnet.
  • FIG. 1 is a side view showing the configuration of the rotation angle detection device according to the first embodiment of the present invention
  • FIG. 2 is a plan view of the same.
  • This rotation angle detection device includes a rotating magnet 12 mounted on the end of a rotating shaft 11 to be detected, a 4-pole auxiliary magnet 14 mounted on a substrate 13 facing the rotating magnet 12 in a non-contact manner, The magnetic sensor 15 is mounted on the opposite side of the substrate 13.
  • the detection target is, for example, a rotary shaft 11 such as a motor.
  • the rotating magnet 12 also has a rectangular parallelepiped force, and is a two-pole permanent magnet having poles at both ends in the longitudinal direction.
  • the 4-pole auxiliary magnet 14 is a ring arranged coaxially with the rotating shaft 11. In Fig. 2, it is magnetized so that a magnetic moment is formed in the directions of + 45 ° and 45 ° with respect to the horizontal line passing through the center.
  • the magnetic sensor 15 is the same as that shown in FIG. 10 and is mounted at a position where the rotational center force is also shifted so as to be arranged in the homogeneous magnetic field generated by the rotating magnet 12 and the quadrupole auxiliary magnet 14. .
  • FIG. 3 is a diagram showing a signal processing circuit connected to the magnetic sensor 15.
  • the detection signals output from the output terminals D, E, B, and G of the magnetic sensor 15 are AZD converted by the AZD conversion circuits 21 to 24 and input to the CPU 25.
  • the CPU 25 executes predetermined signal processing according to a program stored in the EEPROM 26 and calculates rotation angle detection data. This detection data is converted into an analog signal by the DZA conversion circuit 27 and output as a rotation angle detection signal Vo.
  • FIG. 4 shows that the horizontal direction in Fig. 2 is the X axis and the vertical direction is the Y axis, the magnetic moment of the rotating magnet 12 is Mr, the combined magnetic moment of the 4-pole auxiliary magnet 14 is Mh, Mr and Mh.
  • FIG. 6 is a diagram showing the relationship between the synthetic magnetic moment M and the rotational angles ⁇ and a of the magnetic moments Mr and M, respectively. The following relationship holds between them.
  • Mcos a Mh + Mrcos ⁇ (1)
  • equation (1) is as follows.
  • Mcosa Mr (l + cos ⁇ )
  • equation (2) is as follows.
  • Msina Mr ⁇ (2sin ( ⁇ / 2) * cos (- ⁇ / 2) ⁇ ⁇ ' ⁇ (4)
  • FIGS. 5 (a) to 5 (d) show changes in the combined magnetic moment M exerted on the magnetic sensor 15 when the rotation angle 0 of the rotating magnet 12 is sequentially rotated at 0 °, 90 °, 180 °, and 270 °. Is shown.
  • Step 1 First, the magnetic sensor 15 and the 4-pole auxiliary magnet 14 are arranged so that their reference axes are 0 °. To do so, execute the following steps la and lb.
  • Step la The magnetic sensor 15 and the signal processing circuit are arranged at a position marked on the lower surface of the substrate 13 so that the reference axis of the substrate 13 and the magnetic sensor 15 is 0 °.
  • Step lb While calibrating the offset while monitoring the output signal Vo of the signal processing circuit with an oscilloscope, etc., the output signal Vo becomes a value indicating 0 ° as the reading value of the digital multimeter.
  • a 4-pole auxiliary magnet 14 is arranged at a position marked on the upper surface (rotary magnet 12 side) of the substrate 13.
  • Step 2 Next, the rotating magnet 12 and the 4-pole auxiliary magnet 14 are combined with the magnetic moment Mh of both.
  • Mr are arranged so that they are orthogonal (the relationship shown in Fig. 5 (b)). To do so, perform steps 2a and 2b below.
  • Step 2a Using 0 ° determined in Step 1 as a reference, rotate the signal processing circuit output signal Vo force to a value indicating 0 ° as a reading value of the digital multimeter, as in Step lb. Determine the position of magnet 12. This is the 0 ° reference for the rotating magnet 12.
  • the rotating magnet 12 is 90.00 ° ⁇ 0.01 ° with an accuracy of at least 0.01 °. Determine the angle to be within.
  • FIG. 7 is a side view showing the configuration of the rotation angle detection device according to the second embodiment of the present invention.
  • the shaft end that detects the steering angle of the automobile by the shaft rotation angle of the assisting electric motor cannot be used.
  • a ring-shaped rotating magnet 32 is attached to the rotating shaft 31 to be detected.
  • a ring-shaped four-pole auxiliary magnet 34 is mounted on a substrate 33 arranged on the same plane as the rotating surface of the rotating magnet 32.
  • a magnetic sensor 35 is mounted on the back surface of the substrate 33. The magnetic sensor 35 is the same as that shown in FIG. 10 and is mounted at a position where the central force of the 4-pole auxiliary magnet 34 is shifted so that it is arranged in the homogeneous magnetic field generated by the 4-pole auxiliary magnet 34. .
  • the resultant magnetic moment M is 0 ° to 90 °, It varies within a total range of 180 ° from 90 ° to 0 °. Therefore, by detecting this change with the magnetic sensor 35, it becomes possible to detect a change of 0 ° to 360 ° of the rotating shaft 31.
  • the force quadrupole auxiliary magnet using an annular permanent magnet as the quadrupole auxiliary magnet is not particularly limited to an annular shape.
  • an elliptical magnet can be used. This In this case, it is sufficient to magnetize four poles at an angle symmetric with respect to the short axis or the long axis.
  • FIG. 1 is a side view showing a configuration of a rotation angle detection device according to a first embodiment of the present invention.
  • FIG. 2 is a simplified plan view of the apparatus.
  • FIG. 3 is a block diagram showing a circuit configuration of the apparatus.
  • FIG. 4 is a vector diagram for explaining the rotation angle detection principle of the apparatus.
  • FIG. 5 is a side view and a plan view for explaining the operation of the apparatus.
  • FIG. 6 is a vector diagram for explaining the operation of the apparatus.
  • FIG. 7 is a side view showing a configuration of a rotation angle detection device according to a second embodiment of the present invention.
  • FIG. 8 is a side view and a plan view for explaining the operation of the apparatus.
  • FIG. 9 is a side view showing a configuration of a conventional rotation angle detection device.
  • FIG. 10 is a circuit diagram showing details of the magnetic sensor.

Abstract

 極めて簡単な構成の付加により、0°~360°の範囲の回転角度検出を可能にする。回転軸11の端部に装着された回転磁石12と、この回転磁石12に非接触で対向する基板13上に装着された4極補助磁石14と、基板13の反対側に装着された磁気センサ15とを備える。4極補助磁石14は、磁気センサ15が配置された領域における回転磁石12による0°~360°の回転磁場を0°~180°の回転磁場に変換する。

Description

明 細 書
回転角度検出装置
技術分野
[0001] 本発明は、複数の磁気抵抗効果型素子 (以下、「MR素子」と呼ぶ。)をブリッジ接 続してなる磁気センサを使用して、検出対象の回転角度を検出する回転角度検出装 置に関する。
背景技術
[0002] 回転軸等の検出対象の回転角度の検出等に利用される、 MRセンサを使用した非 接触型の回転角度検出装置は、例えば特許文献 1等により知られている。
[0003] 以下、図 9及び図 10により従来のこの種の回転角度検出装置について説明する。
[0004] 図 9に示すように、回転角度検出装置は、検出対象としての回転軸 101に取り付け られて回転軸 101と共に回転する回転磁石 102と、この回転磁石 102の近傍に回転 軸 101とは非接触に配置された磁気センサ 103とから構成されている。
[0005] 磁気センサ 103は、例えば図 10に示すように、それぞれ力 つの MR素子 111をブ リッジ接続して構成された一対のセンサユニット 121, 122からなる。各センサユニット 121, 122を構成する MR素子 111は物理的属性として磁気異方性を有し、磁ィ匕容 易軸方向の磁場と、これと直交する磁化困難軸方向の磁場とで異なる抵抗値を示す 。各センサユニット 121, 122を構成する 4つの MR素子 111は、互いの磁化容易軸 を 90° ずつずらして配置されている。また、センサユニット 121の MR素子 111と、セ ンサユニット 122の MR素子 111とは、互いの磁化容易軸を 45° 傾けて配置されて いる。この磁気センサ 103は、基板 104上で回転磁石 102の均質磁界部に配置され る。
[0006] このような回転角度検出装置において、回転軸 101が回転すると、回転軸 101に取 付けられている回転磁石 102も回転するので、磁気センサ 103には回転磁界が付与 される。これに伴い、各 MR素子 111に抵抗変化が生じ、ブリッジに流れる電流値を 正弦波状に変化させるので、磁気センサ 103から正弦波状信号が出力される。この 正弦波状信号から回転軸 101の回転角度を検出することができる。 [0007] ところで、上述の磁気センサ 103は、その特性により角度検出可能な範囲が +側の 磁化容易軸から 側の磁化容易軸までの 180° であり、 0° 〜360° の範囲の角度 を一義的に検出することはできない。
[0008] そこで、例えば磁気センサにカ卩えて、磁気センサの近傍にホール素子を配置するこ とにより、 0° 〜360° の範囲の回転角度検出を可能にした技術が知られている(特 許文献 2)。
[0009] また、磁気センサの磁気異方性を増強するデバイスとして、永久磁石を使用した角 度センサも知られて ヽる(特許文献 3)。
特許文献 1:特開平 7— 260414号公報
特許文献 2:特開平 11 94512号公報
特許文献 3 :特開 2003— 4480号公報
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、上記特許文献 2に開示された装置では、磁気センサの他にホール素 子を設け、両者の信号を処理しなければならないため、処理回路が複雑になるという 問題がある。また、特許文献 3は、回転磁石の回転角度との詳細な関係を何ら開示し ていない。
[0011] 本発明は、このような点に鑑みなされたもので、極めて簡単な構成の付カ卩により、 0 ° 〜360° の範囲の回転角度検出が可能になる回転角度検出装置を提供すること を目的とする。
課題を解決するための手段
[0012] 本発明に係る回転角度検出装置は、検出対象に取り付けられて前記検出対象と共 に回転して回転磁場を生成する回転磁石と、この回転磁石で生成される回転磁場内 に配置され、複数の磁気抵抗効果型素子をブリッジ接続してなるセンサユニットを互 いの磁化容易軸を 45° ずらして配置してなる磁気センサと、前記磁気センサの近傍 に配置され前記磁気センサが配置された領域における前記回転磁石による 0° 〜3 60° の回転磁場から 0° 〜180° の合成回転磁場を生成する 4極補助磁石とを備 えてなることを特徴とする。 [0013] 本発明の好ましい実施形態においては、前記磁気センサに付与される、前記回転 磁石の磁気モーメントと前記 4極補助磁石の合成磁気モーメントの大きさがほぼ等し いことを特徴とする。
[0014] 前記 4極補助磁石は、例えば前記回転磁石の回転面と並行に配置されたリング状 磁石である。また、好ましい実施形態においては、前記 4極補助磁石は、前記回転磁 石の回転軸と同軸配置され、前記磁気センサは、前記 4極補助磁石の均質磁界部に 配置されている。更に他の実施形態においては、前記 4極磁石は、前記回転磁石の 回転面と同一面上の前記回転軸に対してずれた位置に配置され、前記磁気センサ は、前記 4極磁石の均質磁界部に配置されている。
発明の効果
[0015] 本発明によれば、磁気センサの近傍に 4極補助磁石を設けて ヽるので、 4極補助磁 石の合成磁気モーメントと回転磁石による磁気モーメントの合成磁気モーメントが、回 転磁石による 0° 〜360° の回転を 0° 〜180° の回転に変換する。これにより、磁 気センサでの 0° 〜180° の回転角度検出値を、検出対象の 0° 〜360° の回転 角度検出値として求めることが可能になる。
[0016] 本発明によれば、単に 4極補助磁石を追加するだけで、信号処理ための回路は、 従来の回路をそのまま利用することが出来る。
発明を実施するための最良の形態
[0017] 以下、添付の図面を参照して、この発明の実施の形態を説明する。
[0018] [第 1の実施形態]
図 1は、本発明の第 1の実施形態に係る回転角度検出装置の構成を示す側面図、 図 2は同じく平面図である。この回転角度検出装置は、検出対象である回転軸 11の 端部に装着された回転磁石 12と、この回転磁石 12に非接触で対向する基板 13上 に装着された 4極補助磁石 14と、基板 13の反対側に装着された磁気センサ 15とを 備えて構成されている。
[0019] 検出対象は、例えばモータ等の回転軸 11であり、この実施形態 1では、軸端が利 用可能な場合を示している。回転磁石 12は直方体力もなり、その長手方向の両端を 極とする 2極の永久磁石である。 4極補助磁石 14は、回転軸 11と同軸配置されたリン グ状磁石であり、図 2において、中心を通る水平線に対して +45° 及び 45° の向 きに磁気モーメントが形成されるように着磁されている。磁気センサ 15は、図 10と同 様のもので、回転磁石 12及び 4極補助磁石 14によって生成される均質磁界部に配 置されるように、回転中心力もずれた位置に装着されて 、る。
[0020] 図 3は、磁気センサ 15に接続される信号処理回路を示す図である。磁気センサ 15 の各出力端子 D, E, B, Gから出力される検出信号は、 AZD変換回路 21〜24でそ れぞれ AZD変換され、 CPU25に入力される。 CPU25は、 EEPROM26に記憶さ れたプログラムに従って、所定の信号処理を実行し、回転角度検出データを算出す る。この検出データが DZA変換回路 27でアナログ信号に変換されて回転角度検出 信号 Voとして出力される。
[0021] 次に、このように構成された第 1の実施形態に係る角度検出装置の検出原理につ いて説明する。
[0022] 図 4は、図 2における水平方向を X軸、垂直方向を Y軸とし、回転磁石 12の磁気モ 一メントを Mr、 4極補助磁石 14の合成磁気モーメントを Mh、 Mrと Mhの合成磁気モ 一メントを M、磁気モーメント Mr, Mの回転角度をそれぞれ θ , aとしたときのこれら の関係を示す図である。これらの間には、次のような関係が成り立つ。
[0023] Mcos a =Mh+ Mrcos θ · · · ( 1 )
Msina =Mrsin θ ·'·(2)
ここで、 Mr=Mhであるとすると、(1)式は、次のようになる。
[0024] Mcosa =Mr(l+cos θ )
= Mr{(2cos( Θ /2)*cos (- Θ /2)} ·'·(3)
同様に、(2)式は、次のようになる。
[0025] Msina = Mr {(2sin( Θ /2)*cos (- Θ /2)} ·'·(4)
次に、(4) Ζ (3)を求めると、
tan a =sin( Θ /2) /cos ( Θ /2)
= tan(0/2) ---(5)
となる。よって、 α = 0 Ζ2となる。すなわち、回転磁石 12の磁気モーメント Mrと 4極 補助磁石 14の合成磁気モーメント Mhとが同じ場合には、回転磁石 12の回転角度 Θに対して合成磁気モーメント Mの回転角度 αは、丁度 1Z2になるので、回転磁石 12の 360° の回転に対して、合成磁気モーメント Μは 180° の範囲で変化する。
[0026] 図 5 (a)〜(d)は、回転磁石 12の回転角度 0が 0° 、 90° 、 180° 、 270° と順次 回転したときの磁気センサ 15に及ぼす合成磁気モーメント Mの変化を示している。
[0027] 4極補助磁石 14の合成磁気モーメント Mhは 0° に固定なので、回転磁石 12の回 転角度 0が 0° , 90° , 270° (— 90° )と変化すると、合成磁気モーメント Mは、 0 ° , 45° , —45° と変化する。但し、 0 = 180° では、 M = 0となる。よって、図 6に 示すように、回転磁石 12の 0° 〜360° の回転に対して、合成磁気モーメント Mは、 0° 〜90° 、 一 90° 〜0° の計 180° の範囲で変化する。従って、この変化を磁気 センサ 15で検出することにより、回転軸 11の 0° 〜360° の変化を検出することが可 會 になる。
[0028] 次に、 Mh=Mrとするための校正手順について説明する。
[0029] [ステップ 1] まず、磁気センサ 15と 4極補助磁石 14とを互いの基準軸が 0° をな すように、配置する。そのためには、下記ステップ la, lbを実行する。
[0030] [ステップ la] 磁気センサ 15と信号処理回路を、基板 13の下面にマークされた 位置に、基板 13と磁気センサ 15の基準軸が 0° となるように配置する。
[0031] [ステップ lb] 信号処理回路の出力信号 Voをオシロスコープ等でモニターしな がら、オフセットを校正した後、その出力信号 Voがディジタルマルチメータの読み取 り値として 0° を示す値になるように、基板 13の上面(回転磁石 12側)にマークされた 位置に 4極補助磁石 14を配置する。
[0032] [ステップ 2] 次に、回転磁石 12と 4極補助磁石 14とを、両者の磁気モーメント Mh
, Mrが直交するように(図 5 (b)のような関係となるように)配置する。そのためには、 下記ステップ 2a, 2bを実行する。
[0033] [ステップ 2a] ステップ 1にて決定した 0° を基準にし、ステップ lbと同様に、信号 処理回路の出力信号 Vo力 ディジタルマルチメータの読み取り値として 0° を示す 値になるように回転磁石 12の位置を確定する。これが回転磁石 12の 0° の基準とな る。
[0034] [ステップ 2b] ステップ 2aで確定した回転磁石 12の 0° を基準にして、回転磁石 12を 90° 回転させるには、例えば、 131,072 ( = 217)パルス/回転(1パル
ス当りの角度 = 0.0027° )の分解能を有するアブソリユートエンコーダ (株式会社ニコ ン製 MAR-M30又はその同等品)を使い、少なくとも 0.01° の精度で回転磁石 12が 90 .00° ±0.01° 以内となるように角度を確定する。
[0035] [ステップ 3] ステップ 2にて確定した回転磁石 12の配置に対し、ステップ 2aと同様 に、信号処理回路の出力信号 Voを、オシロスコープでモニターしながら、ディジタル マルチメータで読み取り、その読取値力 前述の 0° の読取値を差引いた値を補正 角度値( α )に換算する。 CPU25は、磁気センサ 15の出力が α =45° である力、す なわち Mr=Mhであるかどうかを判定し、もし、 Mr=Mhであれば、校正処理を終了 するが、 Mr≠Mh、すなわち a≠45° でない場合には、
Mr=tan a *Mh · ' · (6)
となるので、 Mhを tan a倍すれば、 Mrと同じ値になる。ここで「tan a」を補正係数と呼
[0036] [第 2の実施形態]
図 7は、本発明の第 2の実施形態に係る回転角度検出装置の構成を示す側面図で ある。この実施形態では、自動車のステアリング角度を、アシスト用電動モータの軸回 転角度で検出するような軸端が利用できな 、用途に適した実施形態である。
[0037] 検出対象である回転軸 31には、リング状の回転磁石 32が装着されている。この回 転磁石 32の回転面と同一面に配置された基板 33上に、リング状の 4極補助磁石 34 が装着されている。また、基板 33の裏面に磁気センサ 35が実装されている。磁気セ ンサ 35は、図 10のものと同様で、 4極補助磁石 34よって生成される均質磁界部に配 置されるように、 4極補助磁石 34の中心力もずれた位置に装着されている。
[0038] この実施形態においても、図 8 (a)〜(d)に示すように、回転磁石 32の 0° 〜360° の回転に対して、合成磁気モーメント Mは、 0° 〜90° 、 一 90° 〜0° の計 180° の範囲で変化する。従って、この変化を磁気センサ 35で検出することにより、回転軸 31の 0° 〜360° の変化を検出することが可能になる。
[0039] なお、以上は、 4極補助磁石として円環状の永久磁石を使用した力 4極補助磁石 は、特に円環状に限定されない。例えば楕円状の磁石を使用することもできる。この 場合には、短軸又は長軸に対して対称な角度で 4極着磁すれば良い。 図面の簡単な説明
[0040] [図 1]本発明の第 1の実施形態に係る回転角度検出装置の構成を示す側面図である
[図 2]同装置の簡略的な平面図である。
[図 3]同装置の回路構成を示すブロック図である。
[図 4]同装置の回転角度検出原理を説明するためのベクトル図である。
[図 5]同装置の動作を説明するための側面図及び平面図である。
[図 6]同装置の動作を説明するためのベクトル図である。
[図 7]本発明の第 2の実施形態に係る回転角度検出装置の構成を示す側面図である
[図 8]同装置の動作を説明するための側面図及び平面図である。
[図 9]従来の回転角度検出装置の構成を示す側面図である。
[図 10]磁気センサの詳細を示す回路図である。
符号の説明
[0041] 11, 31, 101· ··回転軸、 12, 32, 102· ··回転磁石、 13, 33, 104· ··基板、 14, 34 •••4極補助磁石、 15, 35, 103…磁気センサ、 111…磁気抵抗 (MR)効果素子、 12 1, 122…センサユニット。

Claims

請求の範囲
[1] 検出対象に取り付けられて前記検出対象と共に回転して回転磁場を生成する回転 磁石と、
この回転磁石で生成される回転磁場内に配置され、複数の磁気抵抗効果型素子 をブリッジ接続してなるセンサユニットを互 、の磁ィ匕容易軸を 45° ずらして配置して なる磁気センサと、
前記磁気センサの近傍に配置され前記磁気センサが配置された領域における前 記回転磁石による 0° 〜360° の回転磁場から 0° 〜180° の合成回転磁場を生成 する 4極補助磁石と
を備えてなることを特徴とする回転角度検出装置。
[2] 前記磁気センサに付与される、前記回転磁石の磁気モーメントと前記 4極補助磁石 の合成磁気モーメントの大きさがほぼ等しいことを特徴とする請求項 1記載の回転角 度検出装置。
[3] 前記 4極補助磁石は、前記回転磁石の回転面と並行に配置されたリング状磁石で ある
ことを特徴とする請求項 1記載の回転角度検出装置。
[4] 前記 4極補助磁石は、前記回転磁石の回転軸と同軸配置され、
前記磁気センサは、前記 4極補助磁石の均質磁界部に配置されて 、る ことを特徴とする請求項 3記載の回転角度検出装置。
[5] 前記 4極磁石は、前記回転磁石の回転面と同一面上の前記回転軸に対してずれ た位置に配置され、
前記磁気センサは、前記 4極磁石の均質磁界部に配置されて 、る
ことを特徴とする請求項 3記載の回転角度検出装置。
PCT/JP2006/314034 2005-07-20 2006-07-14 回転角度検出装置 WO2007010842A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06781108A EP1909074A4 (en) 2005-07-20 2006-07-14 ROTATION ANGLE DETECTION APPARATUS
CN2006800262192A CN101253389B (zh) 2005-07-20 2006-07-14 转动角检测装置
US11/988,215 US7808234B2 (en) 2005-07-20 2006-07-14 Rotational angle detection device with a rotating magnet and a four-pole auxiiliary magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005209396A JP3848670B1 (ja) 2005-07-20 2005-07-20 回転角度検出装置
JP2005-209396 2005-07-20

Publications (1)

Publication Number Publication Date
WO2007010842A1 true WO2007010842A1 (ja) 2007-01-25

Family

ID=37544641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314034 WO2007010842A1 (ja) 2005-07-20 2006-07-14 回転角度検出装置

Country Status (5)

Country Link
US (1) US7808234B2 (ja)
EP (1) EP1909074A4 (ja)
JP (1) JP3848670B1 (ja)
CN (1) CN101253389B (ja)
WO (1) WO2007010842A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244044A (ja) * 2008-03-31 2009-10-22 Tokai Rika Co Ltd 磁気式回転位置検出装置
WO2013183724A1 (ja) * 2012-06-07 2013-12-12 株式会社ミクニ 角度センサ

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830162B1 (en) * 2004-12-14 2015-04-01 NTN Corporation Rotation detecting apparatus and bearing provided with same
JP5053150B2 (ja) * 2008-03-28 2012-10-17 古河電気工業株式会社 回転角度検出方法及び回転角度検出装置
US20120098529A1 (en) * 2009-06-30 2012-04-26 Tomen Electronics Corporation Rotation angle detecting device
WO2011057769A1 (en) * 2009-11-10 2011-05-19 Daimler Ag Composite proton conducting electrolyte with improved additives for fuel cells
ES2721875T3 (es) * 2009-12-04 2019-08-06 Hirschmann Automotive Gmbh Empuñadura giratoria de acelerador manual con sistema de medición de ángulo de giro
FR2953805B1 (fr) * 2009-12-15 2011-12-30 Ratier Figeac Soc Dispositif de pilotage d'un aeronef a elements magneto-sensibles de detection de position angulaire montes hors axe
EP2354769B1 (de) 2010-02-03 2015-04-01 Micronas GmbH Winkelgeber und Verfahren zur Bestimmung eines Winkels zwischen einer Sensoranordnung und einem Magnetfeld
US8779760B2 (en) 2011-06-09 2014-07-15 Infineon Technologies Ag Angle measurement system including magnet with substantially square face for through-shaft applications
CN103925933B (zh) 2013-01-11 2016-12-28 江苏多维科技有限公司 一种多圈绝对磁编码器
JP6205774B2 (ja) 2013-03-22 2017-10-04 セイコーエプソン株式会社 検出回路、半導体集積回路装置、磁界回転角検出装置、及び、電子機器
JP6190157B2 (ja) * 2013-05-16 2017-08-30 アズビル株式会社 回転角度検出器
JP2015052557A (ja) * 2013-09-09 2015-03-19 株式会社東海理化電機製作所 磁気式位置検出装置
DE102014205566A1 (de) * 2014-03-26 2015-10-01 Robert Bosch Gmbh Sensoranordnung zur Wegerfassung an einem bewegten Bauteil
DE102014004625A1 (de) * 2014-03-31 2015-10-01 Micronas Gmbh Sensorvorrichtung
DE102015001553B3 (de) * 2014-04-10 2015-08-27 Micronas Gmbh Sensorvorrichtung
CN104568041B (zh) * 2015-01-14 2018-01-26 江苏多维科技有限公司 一种可消除相邻转轮磁干涉的直读表
CN205066678U (zh) 2015-10-26 2016-03-02 深圳市道通智能航空技术有限公司 角位移检测装置、电机转角控制系统、云台和飞行器
US10006789B2 (en) * 2016-04-27 2018-06-26 Tdk Corporation Correction apparatus for angle sensor, and angle sensor
DE102016118384B4 (de) * 2016-09-28 2023-10-26 Infineon Technologies Ag Magnetische Winkelsensorvorrichtung und Betriebsverfahren
US10606030B2 (en) 2017-01-03 2020-03-31 Tdk Taiwan Corp. Optical mechanism
CN207488597U (zh) * 2017-01-03 2018-06-12 台湾东电化股份有限公司 光学元件驱动机构
FR3082615B1 (fr) 2018-06-15 2020-10-16 Electricfil Automotive Methode de determination d'une position angulaire relative entre deux pieces
FR3087256B1 (fr) 2018-10-15 2020-10-30 Electricfil Automotive Methode et systeme capteur de determination d'une position angulaire relative entre deux pieces, et procede de fabrication d'un corps magnetique

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260414A (ja) 1994-03-10 1995-10-13 Philips Electron Nv 角度センサ
US5627465A (en) 1995-10-25 1997-05-06 Honeywell Inc. Rotational position sensor with mechanical adjustment of offset and gain signals
JPH1194512A (ja) 1997-07-26 1999-04-09 Koninkl Philips Electron Nv 角度センサー、位置センサー及び自動車
JP2003004480A (ja) 2001-04-14 2003-01-08 Koninkl Philips Electronics Nv 角度センサ及び角度センサのセンサ装置の異方性磁界強度を増強する方法
US20040012385A1 (en) * 2002-07-16 2004-01-22 Kirkpatrick Richard A. Apparatus and method for generating an offset voltage for angular position calculations
WO2004113928A2 (en) * 2003-06-25 2004-12-29 Philips Intellectual Property & Standards Gmbh Magnetic-field-dependant angle sensor
JP2005024282A (ja) * 2003-06-30 2005-01-27 Sendai Nikon:Kk 磁気式エンコーダ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326781B1 (en) * 1999-01-11 2001-12-04 Bvr Aero Precision Corp 360 degree shaft angle sensing and remote indicating system using a two-axis magnetoresistive microcircuit
US6448763B1 (en) * 2001-01-10 2002-09-10 Siemens Corporation System for magnetization to produce linear change in field angle
US7208940B2 (en) * 2001-11-15 2007-04-24 Honeywell International Inc. 360-Degree magnetoresistive rotary position sensor
US6791219B1 (en) * 2003-06-18 2004-09-14 Bvr Technologies Company Contactless electro-mechanical actuator with coupled electronic motor commutation and output position sensors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260414A (ja) 1994-03-10 1995-10-13 Philips Electron Nv 角度センサ
US5627465A (en) 1995-10-25 1997-05-06 Honeywell Inc. Rotational position sensor with mechanical adjustment of offset and gain signals
JPH1194512A (ja) 1997-07-26 1999-04-09 Koninkl Philips Electron Nv 角度センサー、位置センサー及び自動車
JP2003004480A (ja) 2001-04-14 2003-01-08 Koninkl Philips Electronics Nv 角度センサ及び角度センサのセンサ装置の異方性磁界強度を増強する方法
US20040012385A1 (en) * 2002-07-16 2004-01-22 Kirkpatrick Richard A. Apparatus and method for generating an offset voltage for angular position calculations
WO2004113928A2 (en) * 2003-06-25 2004-12-29 Philips Intellectual Property & Standards Gmbh Magnetic-field-dependant angle sensor
JP2005024282A (ja) * 2003-06-30 2005-01-27 Sendai Nikon:Kk 磁気式エンコーダ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1909074A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244044A (ja) * 2008-03-31 2009-10-22 Tokai Rika Co Ltd 磁気式回転位置検出装置
WO2013183724A1 (ja) * 2012-06-07 2013-12-12 株式会社ミクニ 角度センサ
JP2013253878A (ja) * 2012-06-07 2013-12-19 Mikuni Corp 角度センサ

Also Published As

Publication number Publication date
JP2007024738A (ja) 2007-02-01
US20090033321A1 (en) 2009-02-05
JP3848670B1 (ja) 2006-11-22
CN101253389A (zh) 2008-08-27
EP1909074A1 (en) 2008-04-09
CN101253389B (zh) 2010-09-29
EP1909074A4 (en) 2010-09-29
US7808234B2 (en) 2010-10-05

Similar Documents

Publication Publication Date Title
WO2007010842A1 (ja) 回転角度検出装置
US10816361B2 (en) Arrangement for detecting the angular position of a rotatable component
US8587295B2 (en) Angle detection apparatus and position detection apparatus
US10309803B2 (en) Detecting sensor error
CN109029239B (zh) 包括星形连接的磁阻元件的角度传感器桥
US6661225B2 (en) Revolution detecting device
JP2006220530A (ja) 絶対回転角度検出装置
JP2006220529A (ja) 絶対回転角度およびトルク検出装置
US11608109B2 (en) Systems and methods for detecting magnetic turn counter errors with redundancy
US6522132B1 (en) Linear angular sensor with magnetoresistors
JP3855801B2 (ja) 回転検出装置
JP4900838B2 (ja) 位置検出装置及び直線駆動装置
CN110749276B (zh) 角度传感器的修正装置及角度传感器
JP6455314B2 (ja) 回転検出装置
CN100504306C (zh) 用于角度测量的amr传感器元件
WO2019171763A1 (ja) リニアポジションセンサ
JP5394289B2 (ja) 磁気検出装置及び磁気エンコーダ
JP5170614B2 (ja) 磁気センサ及び回転角度検出装置
JP5333957B2 (ja) 磁気センサ及び回転角度検出装置
JP4917522B2 (ja) ポジションセンサ
JP2022061879A (ja) 磁気センサ及び磁気センサ装置
JP7071058B2 (ja) 周期磁界検出するセンサ
JPS6329837B2 (ja)
JP2018179558A (ja) 電子装置
JP2008298632A (ja) 回転角検出装置および回転角検出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680026219.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11988215

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006781108

Country of ref document: EP