JP6190157B2 - 回転角度検出器 - Google Patents

回転角度検出器 Download PDF

Info

Publication number
JP6190157B2
JP6190157B2 JP2013103755A JP2013103755A JP6190157B2 JP 6190157 B2 JP6190157 B2 JP 6190157B2 JP 2013103755 A JP2013103755 A JP 2013103755A JP 2013103755 A JP2013103755 A JP 2013103755A JP 6190157 B2 JP6190157 B2 JP 6190157B2
Authority
JP
Japan
Prior art keywords
magnet
magnetic
rotation angle
magnetic body
angle detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013103755A
Other languages
English (en)
Other versions
JP2014224737A (ja
Inventor
智文 大橋
智文 大橋
卓司 阿部
卓司 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2013103755A priority Critical patent/JP6190157B2/ja
Priority to KR1020140055480A priority patent/KR101537903B1/ko
Priority to CN201410206367.9A priority patent/CN104165579B/zh
Publication of JP2014224737A publication Critical patent/JP2014224737A/ja
Application granted granted Critical
Publication of JP6190157B2 publication Critical patent/JP6190157B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Description

この発明は、磁気センサが検出する磁束密度の変化から検出対象の回転角度を検出する回転角度検出器に関するものである。
従来より、この種の回転角度検出器として、N極とS極の磁石を有する回転体と、磁束密度の変化を検出する磁気センサとを組み合わせ、回転体を磁気センサに対して回転させることにより、磁気センサが検出する磁束密度の変化から検出対象の回転角度を検出するという構成のものが数多く提案されている。
図15に従来の回転角度検出器の一例を示す。同図において、1は回転軸、2はこの回転軸1の先端に取り付けられた磁石である。磁石2は、その平面形状が円形とされ、径方向に着磁されている。回転軸1にはギア3が嵌合固定されており、検出対象の回転に伴ってギア3が回転し、このギア3と一体となって回転軸1が回転する。すなわち、検出対象の回転に伴って回転軸1が軸心O1を中心として回転し、この回転軸1と一体となって磁石2が回転する。磁石2は、その回転中心が回転軸1の軸心O1と一致するように、回転軸1の先端に取り付けられている。
4は磁束密度の変化を検出する磁気センサである。磁気センサ4は、磁石2の径方向に対して直交する方向を磁石2の厚み方向とし、この磁石2の厚み方向の一方の面(上面)2aにその感磁面4aを平行に対向させて、かつその感磁面4aの中心(磁気センサ4の中心)を磁石2の回転中心と一致させるようにして、プリント基板5上に配置されている。6は磁気センサ4を基点として磁石2と反対側に配置された円板状の磁性体である。
プリント基板5および磁性体6は金属製のホルダ7に保持されている。ホルダ7はケース本体8に取り付けられている。回転軸1の先端はその外周面がすり鉢状とされており、このすり鉢状とされた回転軸1の外周面とホルダ7との間には、軸受9が設けられている。この軸受9は、回転軸1の先端のすり鉢状の外周面に合わせ、このすり鉢状の外周面を軸支すべく、変形ベアリングとされている。なお、変形ベアリングを用いた回転角度検出器については、特許文献1にも示されている。
この回転角度検出器200では、検出対象の回転に伴ってギア3が回転し、このギア3と一体となって回転軸1が回転し、この回転軸1の軸心O1を中心として磁石2が回転する。すなわち、磁石2のN極からS極に戻る磁束の方向が回転する。これにより、磁気センサ4の感磁面4aに作用する磁束密度が変化し、この磁気センサ4が検出する磁束密度の変化から検出対象の回転角度が検出される。
なお、図15において、磁気センサ4としては、ホール素子を用いた磁気センサ、MR素子(磁気抵抗効果素子)を用いた磁気センサなどが用いられる。ホール素子を用いた磁気センサ4では、その磁気センサ4の感磁面4aに作用するX方向およびY方向(図16参照)への磁束密度の変化を検出する。
この回転角度検出器200では、磁気センサ4を基点として磁石2と反対側に円板状の磁性体6を設けていることにより、次のような2つの効果が得られる。
(1)磁性体6と磁石2との間の吸引力により、回転軸1が磁石2とともに磁性体6に引きつけられ、回転軸1の先端のすり鉢状の外周面が軸受9(変形ベアリング)の内周面に押し付けられる。これにより、回転軸1の軸心O1と磁石2の回転中心とが一致し、回転軸1の横方向(X,Y方向)への軸ずれが生じにくくなり、回転角度の検出精度が高められる。
(2)磁気センサ4を磁石2と磁性体6とで挟むことにより、磁気収束効果により磁気センサ4の周辺部の磁束密度が高められ、その結果、磁気センサ4の出力のS/N比が向上し、回転角度の検出精度が高められる。
特開2003−214896号公報
しかしながら、上述した従来の回転角度検出器200では、回転軸1の横方向への軸ずれを生じにくくさせるために軸受9として変形ベアリングを用いており、回転軸1の先端もすり鉢状としなけらばならず、その構成が複雑化し、高価となる。また、吸引力で回転軸1の先端のすり鉢状の外周面を軸受9(変形ベアリング)に押し付けるので、軸受の摩耗が激しい。また、組み付け時の誤差などによって磁気センサ4の感磁面4aの中心と磁石2の回転中心との間に軸ずれが発生すると(以下、磁気センサ4と磁石2との間の横方向の軸ずれという)、磁気センサ4を通過する磁束密度が変化してしまい、所定の磁束密度が得られず、回転角度の検出精度が悪化するなどの問題がある。
本発明は、このような課題を解決するためになされたもので、その目的とするところは、磁気センサと磁石との間の横方向への軸ずれの許容範囲を広くし、簡単な構成で、安価に、回転角度の検出精度を高めることができる、回転角度検出器を提供することにある。
このような目的を達成するために本発明は、回転軸と、この回転軸の軸心を中心として回転する径方向に着磁された磁石と、この磁石の径方向に対して直交する方向をその磁石の厚み方向とし,この磁石の厚み方向の一方の面にその感磁面を平行に対向させて,かつその感磁面の中心を磁石の回転中心と一致させるようにして配置され,感磁面に作用する磁束密度の変化を検出する磁気センサとを備え、磁気センサが検出する磁束密度の変化から検出対象の回転角度を検出する回転角度検出器において、磁気センサを基点として磁石と反対側に配置され、磁気センサを挟んで磁石の一方の面に対向する面の中央部に、磁石側に突出した凸部を有する磁性体を備え、磁石は、その平面形状が円形とされ、凸部は、その頂部が磁石の一方の面と平行な円形の平面とされ、磁石および凸部の頂部は、その平面形状の円形の径が等しくされていることを特徴とする。
この発明によれば、磁気センサを基点として磁石と反対側に磁性体を配置し、この磁性体の磁気センサを挟んで磁石の一方の面に対向する面の中央部に磁石側に突出した凸部を設けることにより、磁気センサの感磁面に作用する磁石からの磁束の流れが比較的水平とされ、磁気センサと磁石との間の横方向への軸ずれによる磁束密度の変動が小さくなり、回転角度の検出精度の悪化が抑えられる。
本発明において、磁石はその平面形状が円形とされ、磁性体の凸部はその頂部が磁石の一方の面と平行な円形の平面とされている。これにより、その頂部を丸い山状としたり、鋭い山状としたりする場合よりも、磁束密度の変動をより小さくすることが可能となり、回転角度の検出精度の悪化をより小さく抑えることが可能となる。また、本発明において、磁石および凸部の頂部は、その平面形状の円形の径が等しくされている。これにより、磁束密度の変動を最も小さくすることが可能となり、回転角度の検出精度の悪化を最小限に抑えることが可能となる。本発明において、磁性体は、凸部が一体的に形成された磁性体としてもよく、凸部が別体として接合された磁性体としてもよい。
本発明によれば、磁気センサを基点として磁石と反対側に磁性体を配置し、この磁性体の磁気センサを挟んで磁石の一方の面に平行に対向する面の中央部に磁石側に突出した凸部を設け、磁石の平面形状を円形とし、凸部の頂部を磁石の一方の面と平行な円形の平面とし、磁石および凸部の頂部の平面形状の円形の径を等しくしたので、磁気センサの感磁面に作用する磁石からの磁束の流れが比較的水平とされ、磁気センサと磁石との間の横方向への軸ずれによる磁束密度の変動が小さくなり、回転角度の検出精度の悪化が抑えられるものとなる、これにより、磁気センサと磁石との間の横方向への軸ずれの許容範囲が広くなり、変形ベアリングに代えて通常の軸受を使用することが可能となり、簡単な構成で、安価に、回転角度の検出精度を高めることができるようになる。また、軸受の摩耗も少なく、振動にも強くなる。
本発明に係る回転角度検出器の一実施の形態の要部を示す側断面図である。 この回転角度検出器における磁石と磁気センサとの配置関係を示す平面図および側面図である。 凸部を有する磁性体と凸部を有さない磁性体を用いた場合の磁束の流れを比較して示す図である。 磁性体の凸部の頂部を磁石の対向する面と平行な円形の平面とした場合のX方向への軸ずれ時の磁気センサの中心の磁束密度変化(φL=3mmの場合、φL=9mmの場合、φL=11mmの場合、φL:凸部の径)を示す図である。 磁性体の凸部の頂部を丸い山状とした場合のX方向への軸ずれ時の磁気センサの中心の磁束密度変化(φL=3mmの場合、φL=9mmの場合、φL=11mmの場合、φL:凸部の径)を示す図である。 磁性体の凸部の頂部を鋭い山状とした場合のX方向への軸ずれ時の磁気センサの中心の磁束密度変化(φL=3mmの場合、φL=9mmの場合、φL=11mmの場合、φL:凸部の径)を示す図である。 従来の凸部のない磁性体を用いた場合のX方向への軸ずれ時の磁気センサの中心の磁束密度変化を示す図である。 磁性体の凸部の頂部を磁石の対向する面と平行な円形の平面とした場合のY方向への軸ずれ時の磁気センサの中心の磁束密度変化(φL=3mmの場合、φL=9mmの場合、φL=11mmの場合、φL:凸部の径)を示す図である。 磁性体の凸部の頂部を丸い山状とした場合のY方向への軸ずれ時の磁気センサの中心の磁束密度変化(φL=3mmの場合、φL=9mmの場合、φL=11mmの場合、φL:凸部の径)を示す図である。 磁性体の凸部の頂部を鋭い山状とした場合のY方向への軸ずれ時の磁気センサの中心の磁束密度変化(φL=3mmの場合、φL=9mmの場合、φL=11mmの場合、φL:凸部の径)を示す図である。 従来の凸部のない磁性体を用いた場合のY方向への軸ずれ時の磁気センサの中心の磁束密度変化を示す図である。 磁性体の凸部の高さを変えた場合のX方向への軸ずれ時の磁気センサの中心の磁束密度変化(t=0.5mmの場合、t=1mmの場合、t=1.5mmの場合、t=2mmの場合、t:凸部の高さ)を示す図である。 磁性体の凸部の高さを変えた場合のY方向への軸ずれ時の磁気センサの中心の磁束密度変化(t=0.5mmの場合、t=1mmの場合、t=1.5mmの場合、t=2mmの場合、t:凸部の高さ)を示す図である。 円板状の磁性体に代えて円筒状の磁性体を取り付けた回転角度検出器を示す側断面図である。 従来の回転角度検出器の一例を示す側断面図である。 従来の回転角度検出器における磁石と磁気センサとの配置関係を示す平面図および側面図である。
以下、本発明を図面に基づいて詳細に説明する。図1は本発明に係る回転角度検出器の一実施の形態の要部を示す側断面図である。同図において、図15と同一符号は図15を参照して説明した構成要素と同一或いは同等の構成要素を示し、その説明は省略する。
この回転角度検出器100の従来の回転角度検出器200と最も異なる点は、磁性体6の磁気センサ4を挟んで磁石2の一方の面2aに平行に対向する面の中央部に、磁石2側に突出した凸部6aを設けたことにある。以下、従来の回転角度検出器200における磁性体6と区別するために、本実施の形態の回転角度検出器100における磁性体6を6Aとし、従来の回転角度検出器200における磁性体6を6Bとする。
なお、図1では、磁性体6Aを平板状の磁性体とし、この平板状の磁性体を加工して、その中央部に磁石2側に突出した凸部6aを形成し、その凸部6aの頂部を丸い山状としているが、その形状や寸法などは後述するように種々考えられる。
また、本実施の形態の回転角度検出器100では、回転軸1の先端の外周面はすり鉢状とされておらず、同径の平坦面とされている。以下、従来の回転角度検出器200における回転軸1と区別するために、本実施の形態の回転角度検出器100における回転軸1を1Aとし、従来の回転角度検出器200における回転軸1を1Bとする。
また、本実施の形態の回転角度検出器100では、軸受9として変形ベアリングではなく、通常の軸受を用いている。以下、従来の回転角度検出器200における軸受9と区別するために、本実施の形態の回転角度検出器100における軸受9(通常の軸受)を9Aとし、従来の回転角度検出器200における軸受9(変形ベアリング)を9Bとする。
なお、本実施の形態において、磁石2としてはネオジウム磁石、サマコバ磁石、アルニコ磁石などが用いられており、磁性体6Aとしては炭素鋼(S45C)、圧延鋼板(SPCC)、一般構造用圧延鋼材(SS400)などが用いられている。
この回転角度検出器100では、磁性体6Aの磁気センサ4を挟んで磁石2の一方の面2aに平行に対向する面の中央部に磁石2側に突出した凸部6aを設けているので、磁気センサ4の感磁面4aに作用する磁石2からの磁束の流れが比較的水平とされる。
図3に凸部6aを有する磁性体6Aと凸部6aを有さない磁性体6Bを用いた場合の磁束の流れを比較して示す。図3(a)は凸部6aを有する磁性体6Aを用いた場合の磁束の流れを示し、図3(b)は凸部6aを有さない磁性体6Bを用いた場合の磁束の流れを示す。凸部6aを有さない磁性体6Bでは、磁石2と磁性体6Bとの間の磁束の流れは水平にならないが(近づけても同じ)、凸部6aを有する磁性体6Aでは、磁石2と磁性体6Bとの間の磁束の流れは比較的水平となる。
このように、本実施の形態の回転角度検出器100では、磁気センサ4の感磁面4aに作用する磁石2からの磁束の流れが磁性体6Aの凸部6aによって比較的水平とされるので、磁気センサ4の感磁面4aに作用するX方向およびY方向(図2参照)の磁束密度が均一となり、磁気センサ4と磁石2との間の横方向への軸ずれによる磁束密度の変動が小さくなり、回転角度の検出精度の悪化が抑えられる。
また、この回転角度検出器100では、磁気センサ4と磁石2との間の横方向への軸ずれの許容範囲が広がるので、軸受9として変形ベアリングに代えて通常の軸受を使用することができている。これにより、簡単な構成で、安価に、回転角度の検出精度が高められる。また、軸受の摩耗も少なく、振動にも強くなる。
〔凸部6aの形状、寸法など〕
図1に示した回転角度検出器100では、磁性体6Aを平板状の磁性体とし、この平板状の磁性体を加工して、その中央部に磁石2側に突出した凸部6aを形成し、その凸部6aの頂部を丸い山状としている。
本願の発明者は、凸部6aの頂部を丸い山状としたり、鋭い山状としたりする場合よりも、磁石2の対向する面2aと平行な円形の平面とした方が、磁束密度の変動をより小さくすることができることを実験によって確認した。また、磁石2および磁性体6Aの凸部6aの円形の径を等しくすると、磁束密度の変動を最も小さくすることができることを実験によって確認した。また、磁性体6Aの凸部6aの高さを調整することによって、磁束密度の変動を小さくすることができることを実験によって確認した。
〔X方向への軸ずれ時の磁束密度変化〕
図4に磁性体6Aの凸部6aの頂部を磁石2の対向する面2aと平行な円形の平面とした場合のX方向への軸ずれ時の磁気センサ4の中心の磁束密度変化を示す。図5に磁性体6の凸部6aの頂部を丸い山状とした場合のX方向への軸ずれ時の磁気センサ4の中心の磁束密度変化を示す。図6に磁性体6の凸部6aの頂部を鋭い山状とした場合のX方向への軸ずれ時の磁気センサ4の中心の磁束密度変化を示す。
図4,図5,図6において、(a)は凸部6aの径φLを3mm(磁石2の外径より小さい)とした場合、(b)は凸部6aの径φLを9mm(磁石2の外径と同じ)とした場合、(c)は凸部6aの径φLを11mm(磁石2の外径よりやや大きい)とした場合の磁気センサ4の中心のX方向軸ずれ量〔mm〕と磁束密度〔mT〕との関係を示している。
なお、図4,図5,図6において、磁石2は外径9mm、厚さ3mmのネオジウム磁石(グレードS36SH)を使用し、磁性体6Aは圧延鋼板(SPCC)を使用している。また、磁性体6Aの厚さは1mm、凸部6aの高さは1mm、磁石2の面2aから凸部6aまでの距離は5mm、磁石2の面2aから磁気センサ4までの距離は1.2mm固定としている。参考として、図7に、凸部6aがない場合、すなわち従来の磁性体6Bを用いた場合の、X方向への軸ずれ時の磁気センサ4の中心の磁束密度変化を示す。
〔Y方向への軸ずれ時の磁束密度変化〕
図8に磁性体6Aの凸部6aの頂部を磁石2の対向する面2aと平行な円形の平面とした場合のY方向への軸ずれ時の磁気センサ4の中心の磁束密度変化を示す。図9に磁性体6の凸部6aの頂部を丸い山状とした場合のY方向への軸ずれ時の磁気センサ4の中心の磁束密度変化を示す。図10に磁性体6の凸部6aの頂部を鋭い山状とした場合のY方向への軸ずれ時の磁気センサ4の中心の磁束密度変化を示す。
図8,図9,図10において、(a)は凸部6aの径φLを3mm(磁石2の外径より小さい)とした場合、(b)は凸部6aの径φLを9mm(磁石2の外径と同じ)とした場合、(c)は凸部6aの径φLを11mm(磁石2の外径よりやや大きい)とした場合の磁気センサ4の中心のY方向軸ずれ量〔mm〕と磁束密度〔mT〕との関係を示している。
なお、図8,図9,図10において、磁石2は外径9mm、厚さ3mmのネオジウム磁石(グレードS36SH)を使用し、磁性体6Aは圧延鋼板(SPCC)を使用している。また、磁性体6Aの厚さは1mm、凸部6aの高さは1mm、磁石2の面2aから凸部6aまでの距離は5mm、磁石2の面2aから磁気センサ4までの距離は1.2mm固定としている。参考として、図11に、凸部6aがない場合、すなわち従来の磁性体6Bを用いた場合の、Y方向への軸ずれ時の磁気センサ4の中心の磁束密度変化を示す。
〔凸部の高さによる磁束密度の変化(X方向、Y方向)〕
図12に磁性体6Aの凸部6aの高さを変えた場合のX方向への軸ずれ時の磁気センサ4の中心の磁束密度変化を示す。図13に磁性体6Aの凸部6aの高さを変えた場合のY方向への軸ずれ時の磁気センサ4の中心の磁束密度変化を示す。なお、図12,図13において、磁性体6Aは、その凸部6aの頂部を磁石2の対向する面2aと平行な円形の平面としたものとしている。
図12,図13において、(a)は凸部6aの高さtを0.5mmとした場合、(b)は凸部6aの高さtを1mmとした場合、(c)は凸部6aの高さtを1.5mmとした場合、(d)は凸部6aの高さtを2mmとした場合を示している。また、図12,図13において、磁石2は外径9mm、厚さ3mmのネオジウム磁石(グレードS36SH)を使用し、磁性体6Aは圧延鋼板(SPCC)を使用している。また、磁性体6Aの厚さは1mm、凸部6aの径φLは9mm、磁石2の面2aから磁性体6Aの面6bまでの距離は6mm、磁石2の面2aから磁気センサ4までの距離は1.2mm固定としている。
図4〜図6に示されたX方向への軸ずれ時の磁束密度変化から、凸部6aの径φLが磁石2の外径と同じ時が最も効果があり、それよりも大きくなったり、小さくなると、効果が低減することが分かる。また、磁性体6Aの凸部6aの頂部を磁石2の対向する面2aと平行な円形の平面とした場合が最も効果があり、磁性体6の凸部6aの頂部が丸い山状となると(角がとれて曲線になると)効果が低減し、凸部6aの頂部が鋭い山状となると(角がさらにとれて直線となると)さらに効果が低減することが分かる。
図8〜10に示されたY方向への軸ずれ時の磁束密度変化では、Y方向への軸ずれ時の磁束密度変化のような顕著な差は現れていないが、X方向への軸ずれ時の磁束密度変化の場合と同様、磁性体6Aの凸部6aの頂部を磁石2の対向する面2aと平行な円形の平面とし、凸部6aの径φLを磁石2の外径と同じとした時が最も効果があることが分かる。
図12および図13に示された凸部の高さによる磁束密度の変化から、磁性体6Aの凸部6aの高さがt=1mm程度が最も効果が大きく、それよりも大きくなったり、小さくなると、効果が低減することが分かる。
また、本実施の形態の回転角度検出器100では、磁性体6Aに設ける凸部6aの形状、寸法などを変更することで、磁石2と磁性体6Aとの間の任意の位置(Z方向(軸方向)))での磁束密度の均一化をコントロールすることができるものとなる。これは、Z方向への位置ずれに対しても強く、磁気センサ6の配置に関して、設計の自由度が高まることを意味している。
なお、この回転角度検出器100では、磁性体6Aを凸部6aが一体的に形成された磁性体としたが、凸部6aが別体として接合された磁性体としてもよい。例えば、磁性体6Aの凸部6aの頂部を磁石2の対向する面2aと平行な円形の平面とする場合、磁性体6Aの中央部に、この磁性体6Aよりも小径の円形の磁性体を重ね、接合するようにする。
また、この回転角度検出器100では、磁性体6を円板状の磁性体6Aとしているが、図14に示す回転角度検出器101のように、磁性体6を円筒状の磁性体6A’とし、この円筒状の磁性体6A’をホルダ7に被せるようにして取り付けるようにしてもよい。これにより、磁石2や磁気センサ4が磁性体6A’で覆われ、耐ノイズ性が向上する。
〔実施の形態の拡張〕
以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
バルブ・アクチュエータの開発において新規技術開発すべき内容に、アクチュエータの回転角度の検出の高精度化(経年変化低減を含む)が挙げられる。アクチュエータの回転角度の検出精度を上げることで、制御するバルブの流量精度を向上させることができ、今後拡大して行くことが予想されるエネルギー管理や省エネルギー要求を満たすことができる。また、非接触の磁気センシング方式により、エネルギー管理を実施する上で長期信頼性を確保することができる。本発明の回転角度検出器は、アクチュエータに限らず、ポジショナへの展開も可能である。
1A…回転軸、2…磁石、2a…磁石の一方の面、3…ギア、4…磁気センサ、4a…感磁面、5…プリント基板、6A,6A’…磁性体、6a…凸部、7…ホルダ、8…ケース本体、9A…軸受、100,101…回転角度検出器。

Claims (3)

  1. 回転軸と、この回転軸の軸心を中心として回転する径方向に着磁された磁石と、この磁石の径方向に対して直交する方向をその磁石の厚み方向とし,この磁石の厚み方向の一方の面にその感磁面を平行に対向させて,かつその感磁面の中心を前記磁石の回転中心と一致させるようにして配置され,前記感磁面に作用する磁束密度の変化を検出する磁気センサとを備え、前記磁気センサが検出する磁束密度の変化から検出対象の回転角度を検出する回転角度検出器において、
    前記磁気センサを基点として前記磁石と反対側に配置され、前記磁気センサを挟んで前記磁石の一方の面に対向する面の中央部に、前記磁石側に突出した凸部を有する磁性体を備え、
    前記磁石は、その平面形状が円形とされ、
    前記凸部は、その頂部が前記磁石の一方の面と平行な円形の平面とされ、
    前記磁石および前記凸部の頂部は、その平面形状の円形の径が等しくされている
    ことを特徴とする回転角度検出器。
  2. 請求項1に記載された回転角度検出器において、
    前記磁性体は、前記凸部が一体的に形成された磁性体である
    ことを特徴とする回転角度検出器。
  3. 請求項1に記載された回転角度検出器において、
    前記磁性体は、前記凸部が別体として接合された磁性体である
    ことを特徴とする回転角度検出器。
JP2013103755A 2013-05-16 2013-05-16 回転角度検出器 Expired - Fee Related JP6190157B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013103755A JP6190157B2 (ja) 2013-05-16 2013-05-16 回転角度検出器
KR1020140055480A KR101537903B1 (ko) 2013-05-16 2014-05-09 회전 각도 검출기
CN201410206367.9A CN104165579B (zh) 2013-05-16 2014-05-15 旋转角度检测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013103755A JP6190157B2 (ja) 2013-05-16 2013-05-16 回転角度検出器

Publications (2)

Publication Number Publication Date
JP2014224737A JP2014224737A (ja) 2014-12-04
JP6190157B2 true JP6190157B2 (ja) 2017-08-30

Family

ID=51909506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013103755A Expired - Fee Related JP6190157B2 (ja) 2013-05-16 2013-05-16 回転角度検出器

Country Status (3)

Country Link
JP (1) JP6190157B2 (ja)
KR (1) KR101537903B1 (ja)
CN (1) CN104165579B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017000850A1 (de) * 2017-01-31 2018-08-02 Thyssenkrupp Ag Sensoreinrichtung zur Erfassung der Drehlage einer sich drehenden Welle mit ultraschallverschweißtem Gebermagneten
JP6827111B2 (ja) * 2017-06-15 2021-02-10 アルプスアルパイン株式会社 回転検知装置
JP7192317B2 (ja) * 2018-09-03 2022-12-20 富士電機株式会社 エンコーダ
CN110132472B (zh) * 2019-05-16 2020-09-18 大同煤矿集团有限责任公司 冲击地压监控传感器以及冲击地压用监控装置
JP7272289B2 (ja) * 2020-01-23 2023-05-12 株式会社デンソー 磁石ホルダ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112915U (ja) * 1982-01-27 1983-08-02 日本電気ホームエレクトロニクス株式会社 回転角検出装置
JPH02298814A (ja) * 1989-05-13 1990-12-11 Aisan Ind Co Ltd 回転角度センサ
JPH02298815A (ja) * 1989-05-13 1990-12-11 Aisan Ind Co Ltd 回転角度センサ
JP3086563B2 (ja) * 1993-02-27 2000-09-11 愛三工業株式会社 回転角度センサ
JPH08193802A (ja) * 1995-01-13 1996-07-30 Murata Mfg Co Ltd 無接触型ポテンショメータ
JP2001066106A (ja) * 1999-08-26 2001-03-16 Asmo Co Ltd 回転センサ
JP2004257894A (ja) * 2003-02-26 2004-09-16 Hitachi Unisia Automotive Ltd 回動角検出装置
JP4385911B2 (ja) * 2004-09-28 2009-12-16 株式会社デンソー 回転角度検出装置
JP3848670B1 (ja) * 2005-07-20 2006-11-22 株式会社トーメンエレクトロニクス 回転角度検出装置
JP4729358B2 (ja) * 2005-08-03 2011-07-20 旭化成エレクトロニクス株式会社 回転角度センサ
JP2007085889A (ja) * 2005-09-22 2007-04-05 Ntn Corp 回転検出装置付き軸受
JP5301864B2 (ja) * 2008-03-31 2013-09-25 株式会社ミクニ 回転位置センサ
KR20100050670A (ko) * 2008-11-06 2010-05-14 한국오므론전장주식회사 자성체를 구비하는 회전 각도 센서
JP5069210B2 (ja) * 2008-12-15 2012-11-07 東京コスモス電機株式会社 回転角度センサ
CN102564293A (zh) * 2010-12-31 2012-07-11 上海派芬自动控制技术有限公司 非接触式角度传感器

Also Published As

Publication number Publication date
KR20140135624A (ko) 2014-11-26
KR101537903B1 (ko) 2015-07-17
JP2014224737A (ja) 2014-12-04
CN104165579B (zh) 2017-01-11
CN104165579A (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
JP6190157B2 (ja) 回転角度検出器
JP2006047227A (ja) 回転角度検出装置
JP5128120B2 (ja) 回転センサ
JP5131537B2 (ja) 角度検出装置
JP4960209B2 (ja) 非接触式回転角度検出センサ
JP2004245823A (ja) 角度センサ
JP2010160037A (ja) 回転角検出器
JP2014077758A (ja) 回転角度検出装置
JP7122182B2 (ja) 磁気位置検知システム、磁気位置検知システムの作製方法、および回転体の位置の推定方法
JPWO2008050581A1 (ja) 回転角度検出装置
JP4543932B2 (ja) 回転角度検出装置
JP2014224736A (ja) 回転角度検出器
JP4960174B2 (ja) 非接触式回転角度検出センサ
JP2010160036A (ja) 回転角検出器
JP2006242915A (ja) ポテンショメータ
JP6306827B2 (ja) 回転角度検出器
WO2018131693A1 (ja) センサマグネットアセンブリ、およびモータ
JP4233920B2 (ja) 回転角度検出装置
JP2010008359A (ja) 回転角検出装置
JP4941378B2 (ja) 回転角検出装置
JP4383231B2 (ja) 非接触型位置センサ
JP4476614B2 (ja) 磁気式ロータリポジションセンサ
JP2020060450A (ja) トルクセンサ
JP2005091013A (ja) 磁気式ロータリポジションセンサ
JP6494097B2 (ja) 回転角度検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170804

R150 Certificate of patent or registration of utility model

Ref document number: 6190157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees