WO2007007537A1 - ボンドウエーハの再生方法及びボンドウエーハ並びにssoiウエーハの製造方法 - Google Patents

ボンドウエーハの再生方法及びボンドウエーハ並びにssoiウエーハの製造方法 Download PDF

Info

Publication number
WO2007007537A1
WO2007007537A1 PCT/JP2006/312700 JP2006312700W WO2007007537A1 WO 2007007537 A1 WO2007007537 A1 WO 2007007537A1 JP 2006312700 W JP2006312700 W JP 2006312700W WO 2007007537 A1 WO2007007537 A1 WO 2007007537A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silicon layer
wafer
silicon
sige layer
Prior art date
Application number
PCT/JP2006/312700
Other languages
English (en)
French (fr)
Inventor
Hiroji Aga
Nobuhiko Noto
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Publication of WO2007007537A1 publication Critical patent/WO2007007537A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Definitions

  • Bondueha regeneration method bondoeha and SSOI wafer production method
  • the present invention relates to a method for regenerating a bondueha used for manufacturing an SSOI wafer in which a strained silicon layer is formed on an insulator, for example, and a method for manufacturing an SSOI wafer using the bondueha.
  • a Si Ge layer and a silicon layer are sequentially epitaxially grown on a silicon single crystal wafer, and a high-speed MOSFET (Metal-Oxide) that uses this silicon layer as the channel region.
  • MOSFET Metal-Oxide
  • Semiconductor Field Effect Transistor Oxide Metal Semiconductor Field Effect Transistor
  • the SiGe crystal has a larger lattice constant than the silicon crystal, tensile strain is generated in the silicon layer epitaxially grown on the SiGe layer (hereinafter, this strain is generated! /,
  • the silicon layer may be called a strained silicon layer).
  • the strain band changes the energy band structure of the silicon crystal. As a result, the energy band is degenerated and an energy band with high carrier mobility is formed. Therefore, MOSFETs using this strained silicon layer as the channel region exhibit high-speed operating characteristics of about 1.3 to 8 times the normal value.
  • a strained silicon is further formed on a wafer (Balta SiGe substrate) in which a thick graded SiGe layer (Graded SiGe) layer and a relaxed SiGe layer are formed on the surface of the silicon single crystal wafer.
  • a layered substrate is bonded to a base wafer, and a wafer with an SS OI (Strained Silicon On Insulator) structure is fabricated by ion implantation delamination (also called Smart Cut (registered trademark) method).
  • SS OI Silicon On Insulator
  • the graded composition SiGe layer is a layer formed so as to relax the lattice strain in the SiGe layer by performing epitaxial growth while increasing the Ge concentration of the SiGe layer at a constant loose change rate.
  • the relaxed SiGe layer is a layer in which lattice strain is relaxed.
  • the polishing allowance is limited to the thickness of the lattice-relaxed SiGe layer or less when the peeled surface is polished and flattened after peeling. Sufficient machining allowance cannot be obtained, and the peeled surface after peeling cannot be sufficiently flattened, resulting in surface roughness. Therefore, even if a strained silicon layer is subsequently formed on the peeled surface, a high-quality strained silicon layer cannot be obtained, and the surface of the strained silicon layer is also roughened, which causes void defects and blistering at the time of bonding. As a result, the production yield of SSOI wafers is reduced, and there is a problem that the effect of reducing the production cost is low despite the reuse of bond wafers.
  • a terrace portion (convex portion) remains on the outer periphery of the Bond Doha.
  • Such a terrace portion may not be removed by polishing because the polishing allowance after peeling is limited. If bonding is performed with the terrace remaining in this way, voids will cause blistering, and the production yield of SSOI wafers will be further reduced, reducing the manufacturing cost despite the reuse of bond wafers. The problem of low effectiveness arises.
  • An object of the present invention is to provide a method for regenerating a bondueha that makes it possible to produce a high-quality SSOI wafer without voids blisters at a low cost and a high yield, and a method for producing the regenerated bondueha and a method for producing the SSOI wafer.
  • the present invention provides a method for regenerating a bondueha, comprising at least a gradient composition SiGe layer in which the Ge concentration gradually increases on the surface of a silicon single crystal wafer, A bond Doha having a first relaxed SiGe layer, a first silicon layer, a second relaxed SiGe layer, and a second silicon layer formed in order, wherein the strain is relaxed,
  • At least one kind of hydrogen ion or rare gas ion is implanted to form an ion implantation layer inside the second relaxed SiGe layer, and the second silicon layer of the Bondueha After bonding the surface and the base wafer through an insulating layer, peeling off with the ion implantation layer,
  • the second relaxed SiGe layer remaining on the peeled bondueha is removed by etching with a first selective etchant to expose the first silicon layer
  • the peeled bond wafer is regenerated by sequentially forming a third silicon layer, a third relaxed SiGe layer, and a fourth silicon layer on the surface of the exposed first relaxed SiGe layer.
  • a method for regenerating Bondueha is provided.
  • a bonnet in which a graded composition SiGe layer, a first relaxed SiGe layer, a first silicon layer, a second relaxed SiGe layer, and a second silicon layer are sequentially formed on the surface of the silicon single crystal wafer.
  • the second relaxed SiGe layer remaining on the debonded bondauer is removed by etching with the first selective etching solution.
  • the first silicon layer is exposed, and the exposed first silicon layer is etched away with a second selective etchant to expose the first relaxed SiGe layer, and the exposed first relaxed SiGe layer is exposed on the surface of the exposed first relaxed SiGe layer. If the bonded bondhae that has been peeled off by forming the third silicon layer, the third relaxed SiGe layer, and the fourth silicon layer in order is regenerated, a high-quality bonded wafer can be regenerated with a high yield.
  • the present invention is a method for regenerating Bondueha, comprising at least
  • an ion implantation layer is formed inside the second relaxed SiGe layer, After bonding the surface of the second silicon layer of the bondueha and the base wafer through an insulating layer, peeling off with the ion implantation layer,
  • the second relaxed SiGe layer remaining on the peeled bondueha is etched away with a selective etching solution to expose the first silicon layer
  • a method for regenerating a bonded wafer comprising: regenerating the peeled bond wafer by sequentially forming a third relaxed SiGe layer and a third silicon layer on the exposed surface of the first silicon layer.
  • a bonnet in which a graded composition SiGe layer, a first relaxed SiGe layer, a first silicon layer, a second relaxed SiGe layer, and a second silicon layer are sequentially formed on the surface of the silicon single crystal wafer.
  • the second relaxed SiGe layer remaining on the debonded bondauer is removed by etching with a selective etchant to form the first silicon. If the layer is exposed and the bond relaxed by regenerating the third relaxed SiGe layer and the third silicon layer on the surface of the exposed first silicon layer is regenerated, the first silicon layer is regenerated. It can be used and high-quality bond wafers can be reproduced with high yield.
  • the second silicon layer remaining on the outer peripheral portion of the peeled bond wafer is removed, and then the second relaxed SiGe layer is removed by etching.
  • the void defect due to the remaining terrace portion can be reliably ensured.
  • the quality can be reduced to a high yield.
  • the present invention is a method for regenerating Bondueha, comprising at least
  • the first silicon layer remaining on the peeled bondauer is removed by selective etching solution to expose the first relaxed SiGe layer,
  • the peeled bond wafer is regenerated by sequentially forming a third silicon layer, a third relaxed SiGe layer, and a fourth silicon layer on the surface of the exposed first relaxed SiGe layer.
  • a method for regenerating Bondueha is provided.
  • a bonnet in which a graded composition SiGe layer, a first relaxed SiGe layer, a first silicon layer, a second relaxed SiGe layer, and a second silicon layer are sequentially formed on the surface of the silicon single crystal wafer.
  • the first remaining in the debonded bond doha The silicon layer is etched away with a selective etchant to expose the first relaxed SiGe layer, and a third silicon layer, a third relaxed SiGe layer, and a fourth layer are exposed on the surface of the exposed first relaxed SiGe layer.
  • the second silicon layer and the second relaxed SiGe layer remaining on the outer peripheral portion of the peeled bondueha are removed, and then the first silicon layer is removed by etching. Preferred to do.
  • the terrace portion can be obtained. It is possible to reliably reduce void defects due to residual material and to reproduce high quality bond wafers with high yield.
  • the thickness of the first silicon layer is preferably 10 nm or more and lOOnm or less.
  • the thickness of the first silicon layer is set to lOnm or more and lOOnm or less, the lattice distortion is sufficiently maintained in the silicon layer without being relaxed, and sufficient etching allowance is ensured during selective etching. it can.
  • etching solution for etching the SiGe layer
  • HF, HO, and CH 2 CO 3 are used as a selective etching solution for etching the SiGe layer.
  • the SiGe layer can be etched at a high selectivity with respect to the silicon layer, and a silicon layer having no surface roughness can be obtained. Can be exposed.
  • NH OH and NH NO are used as selective etching solutions for etching the silicon layer.
  • the above etching solution is used as a selective etching solution for etching the silicon layer! If either is used, the silicon layer can be etched with a high selectivity with respect to the SiGe layer, and the SiGe layer can be exposed with no surface roughness! /.
  • the present invention also provides a bondueha regenerated by any of the methods described above.
  • the present invention is a method for producing an SSOI wafer, comprising at least:
  • At least one kind of hydrogen ion or rare gas ion is implanted to form an ion implantation layer inside the second relaxed SiGe layer, and the second silicon layer of the Bondueha
  • an SSOI wafer is manufactured by peeling off the ion-implanted layer, and then the second relaxed SiGe layer remaining on the peeled bondueha is first selected. Etching away with an etchant to expose the first silicon layer,
  • a third silicon layer On the surface of the exposed first relaxed SiGe layer, a third silicon layer, a third relaxed SiGe layer, Forming a bondoeha in which a fourth silicon layer is formed sequentially;
  • a bonnet in which a graded composition SiGe layer, a first relaxed SiGe layer, a first silicon layer, a second relaxed SiGe layer, and a second silicon layer are sequentially formed on the surface of the silicon single crystal wafer.
  • a dewax is formed, and an SSOI wafer is produced by delamination inside the second relaxed SiGe layer by ion implantation delamination, and then the second relaxed SiGe layer remaining on the debonded bondauer is removed with the first selective etching solution.
  • the first silicon layer is etched away with a second selective etching solution to expose the first relaxed SiGe layer, and the exposed surface of the first relaxed SiGe layer is exposed to the third silicon layer and the third silicon layer.
  • the present invention is a method for producing an SSOI wafer, comprising at least:
  • At least one kind of hydrogen ion or rare gas ion is implanted to form an ion implantation layer inside the second relaxed SiGe layer, and the second silicon layer of the Bondueha After bonding the surface and the base wafer through an insulating layer, an SSOI wafer is manufactured by peeling off the ion-implanted layer, and then the second relaxed SiGe layer remaining on the peeled bond wafer is selectively etched. Etch away to expose the first silicon layer,
  • a bond Doha having a third relaxed SiGe layer and a third silicon layer sequentially formed is formed.
  • a graded composition SiGe layer, the first relaxed SiGe layer are formed on the surface of the silicon single crystal wafer.
  • the second relaxed SiGe layer remaining on the bonded bond wafer after manufacturing the wafer is removed by etching with a selective etchant to expose the first silicon layer, and the third relaxed surface is exposed on the surface of the first silicon layer.
  • the first silicon layer can be reused by forming a bond wafer in which the SiGe layer and the third silicon layer are sequentially formed, and using the bond wafer to produce another SSOI wafer by an ion implantation process and a stripping process. At the same time, since no void blisters are generated, high-quality SSOI wafers can be manufactured at a low cost with a high production yield.
  • the second silicon layer remaining on the outer peripheral portion of the peeled bond wafer is removed, and then the second relaxed SiGe layer is etched away.
  • the void defect due to the remaining terrace portion can be reliably ensured.
  • the quality of SSOI wafers can be reduced at a low cost and with a high production yield.
  • the present invention is a method for producing an SSOI wafer, comprising at least:
  • an SSOI wafer is manufactured by peeling off the ion-implanted layer, and then the first remaining on the peeled bondouha
  • the first relaxed SiGe layer is exposed by etching away the silicon layer with a selective etching solution
  • a third silicon layer On the surface of the exposed first relaxed SiGe layer, a third silicon layer, a third relaxed SiGe layer, Forming a bondoeha in which a fourth silicon layer is formed sequentially;
  • a bonnet in which a graded composition SiGe layer, a first relaxed SiGe layer, a first silicon layer, a second relaxed SiGe layer, and a second silicon layer are sequentially formed on the surface of the silicon single crystal wafer.
  • a dowa was formed, and an SSOI wafer was manufactured by peeling at the inside of the first silicon layer or at the interface between the first silicon layer and the second relaxed SiGe layer by ion implantation peeling, and then peeled off.
  • the first silicon layer remaining on Bondueha is etched away with a selective etchant to expose the first relaxed SiGe layer, and the third relaxed SiGe layer is exposed on the surface of the exposed first relaxed SiGe layer.
  • the second silicon layer and the second relaxed SiGe layer remaining on the outer peripheral portion of the peeled bond wafer are removed, and then the first silicon layer is removed by etching. Preferred to do.
  • the terrace portion can be obtained. It is possible to reliably reduce void defects due to residual metal and to produce high-quality SSOI wafers at low cost and high production yield.
  • the thickness of the first silicon layer is preferably 10 nm or more and lOOnm or less.
  • the thickness of the first silicon layer is set to lOnm or more and lOOnm or less, the lattice distortion is sufficiently maintained in the silicon layer without being relaxed, and sufficient etching allowance is ensured during selective etching. it can.
  • HF, H 2 O, and CH 2 CO 3 are used as a selective etching solution for etching the SiGe layer.
  • the above-described etching solution is used as a selective etching solution for etching the SiGe layer. If either one is used, the SiGe layer can be etched at a high selectivity with respect to the silicon layer, and the silicon layer without surface roughness can be exposed.
  • NH OH and NH NO are used as selective etching solutions for etching the silicon layer.
  • the above etching solution is used as a selective etching solution for etching the silicon layer! If either is used, the silicon layer can be etched with a high selectivity with respect to the SiGe layer, and the SiGe layer can be exposed with no surface roughness! /.
  • Bondueha regeneration method With the Bondueha regeneration method according to the present invention, high quality Bondueha can be reproduced with high yield, which can prevent void defects due to the rough surface of the peeled surface and the remaining terrace portion.
  • Bondueha if the surface of the peeled surface is rough, the remaining of the terrace portion is prevented, and this can be used to produce a high-quality SSOI wafer at a low cost and high production yield.
  • FIG. 1 is a diagram showing an example of a process for regenerating a bondueha according to the present invention.
  • FIG. 2 is a diagram showing another example of the process for regenerating Bondueha according to the present invention.
  • the conventional method of regenerating the bond wafer after delamination by the ion implantation delamination method and reusing the lattice-relaxed SiGe layer is a void defect due to residual surface roughness after delamination.
  • blistering occurred and the yield of SSOI wafers using the regenerated Bondueha decreased the effect of reducing the manufacturing cost of the SSOI wafer was low despite the reuse of Bondueha. appear.
  • the inventors of the present invention formed a first silicon layer between the first and second relaxed SiGe layers, and formed the first silicon layer and the relaxed SiGe layer between the first and second relaxed SiGe layers in the regeneration process of Bondueha after peeling. I came up with selective etching in between. As a result, it becomes possible to improve the surface roughness after peeling and the step difference of the remaining glass portion while leaving the first relaxed SiGe layer, and prevent the surface roughness of the regenerated bonded surface.
  • the present inventors have found that it is possible to prevent the yield from being lowered in the detachment of SSOI wafers using sapphire.
  • FIGS. 1 (a) to 1 (g) are diagrams showing an example of a process for regenerating a bondueha according to the present invention.
  • a gradient composition SiGe layer 2, a first relaxed SiGe layer 3, and a first silicon layer 4 are formed on the surface of a silicon single crystal wafer 1 by vapor phase epitaxy or the like. Then, the second relaxed SiGe layer 5 and the second silicon layer 6 are sequentially epitaxially grown to form a bondueha 7.
  • the silicon single crystal wafer 1 is not particularly limited as long as it is conventionally used.
  • the graded composition SiGe layer 2 is formed to grow epitaxially so that the Ge concentration gradually increases, for example, from 0% to 20%, thereby relaxing the strain in the layer.
  • the thickness can be, for example, 1-10 / ⁇ ⁇ .
  • the first relaxed SiGe layer 3 having a high concentration (for example, 20% or more) and relaxed lattice strain is epitaxially grown.
  • the thickness can be 1-5 m, for example.
  • the surface of the first relaxed SiGe layer 3 formed in this way is polished and planarized by CMP as necessary, and then the first silicon layer 4 is epitaxially grown thereon.
  • the first silicon layer 4 is epitaxially grown on the relaxed SiGe layer, lattice strain is generated due to the difference in lattice constant.
  • the thickness of the first silicon layer 4 is preferably 10 nm or more and 10 Onm or less. Then, the lattice strain is sufficiently maintained in the silicon layer without being relaxed, and sufficient etching is performed by selective etching in the subsequent etching process. The cost is obtained.
  • the thickness of the first silicon layer 4 is set to the thickness of the first lattice relaxation SiGe layer 3. More preferably, the thickness does not exceed the critical film thickness determined by the Ge concentration of the surface layer. When the Ge concentration of the surface layer is 20%, it is preferable that the thickness of the first silicon layer 4 is 20 nm or less because the thickness does not exceed the critical film thickness.
  • the second lattice relaxation SiGe layer 5 and the second silicon layer 6 are epitaxially grown on the first silicon layer 4.
  • the surfaces of these layers are polished by CMP as necessary and flattened, and then epitaxially grown.
  • the Ge concentration and thickness of the second lattice-relaxed Si Ge layer 5 can be the same as those of the first lattice-relaxed Si Ge layer 3.
  • the second silicon layer 6 is a layer in which the device is fabricated as a strained silicon layer on the lattice-relaxed SiGe layer, the thickness is set according to the device design, for example, 10 to: LOOnm.
  • the vapor phase growth can be performed by a CVD (Chemical Vapor Deposition) method, an MBE (Molecular Beam Epitaxy) method, or the like.
  • CVD Chemical Vapor Deposition
  • MBE Molecular Beam Epitaxy
  • H is used as the carrier gas.
  • growth conditions include
  • the temperature may be 400 to 1,000 ° C and the pressure may be 100 Torr (l. 33 X 10 4 Pa) or less.
  • the surface force of the second silicon layer 6 is implanted by at least one kind of ions of a rare gas such as hydrogen ions, argon or helium.
  • An ion implantation layer 8 is formed inside the relaxed Si Ge layer 5. Since the ion implantation depth depends on the magnitude of the implantation energy, it is necessary to set the implantation energy so that the desired implantation depth is different. The amount of ion implantation can be more than the amount necessary for stripping (about 5 X 10 16 Zcm 2 ).
  • FIG. 1 (c) After bonding the surface of the second silicon layer 6 of the bondueha and the base oxide 9 via the insulating film 10 at room temperature, FIG. As shown in (d), the ion implantation layer 8 is peeled off. Before bonding, it is preferable to clean the surfaces of both wafers with SC-1 cleaning solution.
  • a silicon single crystal wafer having a silicon oxide film formed on the surface as an insulating film 10 can be used as the base wafer 9. Insulating ueno such as lumina and diamond can also be used.
  • the second relaxed SiGe layer 5 and the second silicon layer 6 are transferred to the base wafer side and used for manufacturing the SSOI wafer. Further, the second relaxed SiGe layer 5b remains on the detached bondueha 11. Furthermore, the terrace 12 remains on the outer periphery.
  • the peeled bondueha 11 is regenerated.
  • the second relaxed SiGe layer 5b remaining on the peeled bond bonder 11 is removed by etching with a first selective etching solution to expose the first silicon layer 4.
  • the surface roughness and the terrace portion of the remaining second mild SiGe layer 5b are removed by etching, and the surface of the smooth first silicon layer 4 without the surface roughness and the remaining terrace portion is exposed.
  • the SiGe layer can be etched with a high selectivity with respect to the silicon layer, and if the surface is rough, the smooth first silicon layer 4 having no terrace portion can be exposed.
  • the etching rate of the mixed solution at 21 ° C is 35.7 nmZmin for the SiGe layer (Ge concentration 20%) and 0.61 nmZmin for the silicon layer. I like about 60 times.
  • the second silicon layer 12a remaining on the surface layer covers the second lattice relaxation SiGe layer on the terrace portion. Therefore, the removal of the second lattice relaxation SiGe layer in the terrace portion may be delayed. In that case, it is preferable to remove the second silicon layer 12a remaining on the terrace portion and remove the second relaxed Si Ge layer by etching after the peeling step. In this way, the terrace can be quickly confirmed. It can be removed and prevented from remaining.
  • a force capable of selectively etching the silicon layer such as a second etching solution
  • a force capable of selectively etching the silicon layer can be used. Therefore, the etching time with the first selective etching solution can be extended, or CMP can be employed.
  • SC-1 cleaning solution, alkaline etching solution, mixed acid etching solution and the like can also be used.
  • the exposed first silicon layer 4 is removed by etching with a second selective etching solution to expose the first relaxed SiGe layer 3.
  • a second selective etching solution to expose the first relaxed SiGe layer 3.
  • TMAH tetramethyl ammonium hydroxide
  • the silicon layer can be etched with a high selectivity relative to the SiGe layer, and the smooth first relaxed SiGe layer 3 having no surface roughness can be exposed.
  • the pinching rate is 129.2 nmZmin for the silicon layer, 0.22 nmZmin for the SiGe layer (Ge concentration 20%), and a selectivity ratio of about 580 times can be obtained.
  • a third silicon layer 13 and a third relaxation are formed on the exposed surface of the first relaxed SiGe layer 3 by the vapor phase growth method or the like. Bonded wafers are formed by sequentially epitaxial growth of the SiGe layer 14 and the fourth silicon layer 15, and a recycled bond wafer 16 is obtained.
  • FIGS. 1 (a) to 1 (e) are performed, and the selectivity of the selective etchant is sufficiently high. If the exposed surface of the first silicon layer is sufficiently smooth, a third relaxed SiGe layer and a third silicon layer should be sequentially epitaxially grown on the surface of the exposed first silicon layer. A bondoeha is formed by the above process, and the regenerated bondueha is used. In this way, the first silicon layer can be reused without being removed by etching, and a high-quality bondueha can be regenerated with a high yield in which the peeled surface is prevented from being rough and the terrace portion remains.
  • the bondueha regenerated by any of the above methods becomes a bondueha that can be used to produce a high-quality SSOI wafer free of blisters at low cost and high production yield.
  • the method of manufacturing the SSOI wafer according to the present invention includes at least a graded composition SiGe layer, a first relaxed SiGe layer, a first silicon layer, a second relaxed SiGe layer, and a second on the surface of a silicon single crystal wafer.
  • the layer is formed, the surface of the second silicon layer of the bondueha is bonded to the base wafer through the insulating layer, and then the SSOI wafer is manufactured by peeling off the ion-implanted layer.
  • the remaining second relaxed SiGe layer is etched away with a first selective etchant to expose the first silicon layer, and the exposed first silicon layer is removed with a second selective etch.
  • the first relaxed SiGe layer is exposed by etching away with the etching solution, and a third silicon layer, a third relaxed SiGe layer, and a fourth silicon layer are formed on the surface of the exposed first relaxed SiGe layer.
  • Bonded wafers that are sequentially formed are formed, and another SSOI wafer is manufactured by using the bond wafers by an ion implantation process and a stripping process. In this way, it is possible to prevent void defects due to the rough surface of the peeled surface and the remaining terrace, and to manufacture a high-quality SSOI wafer at a low cost and with a high manufacturing yield.
  • the SSOI wafer manufacturing method includes at least a graded composition SiGe layer in which the Ge concentration gradually increases on the surface of the silicon single crystal wafer, and the first relaxation in which the lattice strain is relaxed.
  • a bond wafer is formed in which a SiGe layer, a first silicon layer, a second relaxed SiGe layer, and a second silicon layer are sequentially formed, and at least hydrogen ions or rare gas ions are formed from the surface of the second silicon layer.
  • an ion implantation layer is formed inside the second relaxed SiGe layer, and a surface and a base of the second silicon layer of the bondueha are formed.
  • the ion-implanted layer is peeled off to produce an SSOI wafer, and the second relaxed SiGe layer remaining on the peeled bondueha is then etched away with a selective etchant. Then, the first silicon layer is exposed, and a bond wafer having a third relaxed SiGe layer and a third silicon layer sequentially formed is formed on the surface of the exposed first silicon layer, and the bond wafer is used.
  • another SSOI wafer is manufactured by the ion implantation process and the peeling process.
  • the first silicon layer can be reused without being removed by etching, and void defects due to rough surfaces on the peeled surface and remaining terraces can be prevented, and high-quality SSOI wafers can be manufactured at low cost. Highly manufacturable.
  • the SSOI wafer is manufactured by the steps shown in FIGS. 1 (a) to (d), and then the steps shown in FIGS. 1 (e) to (g) are performed to form a bondueha.
  • a bond relaxer is formed by sequentially forming a third relaxed SiGe layer and a third silicon layer on the surface of the first silicon layer exposed after the step shown in FIG. 1 (e). This can be carried out by manufacturing another SSOI wafer using the wafer by the ion implantation process and the peeling process shown in FIGS. 1 (b) to 1 (d). By repeating this process, the Bondueha can be used over and over, and the manufacturing cost of the SSOI wafer can be further reduced.
  • FIGS. 2 (a) to 2 (f) are diagrams showing still another example of the regeneration process of the bondueha according to the present invention.
  • a gradient composition SiGe layer 2 As shown in FIG. 2 (a), a gradient composition SiGe layer 2, a first relaxed SiGe layer 3, a first silicon layer are formed on the surface of the silicon single crystal wafer 1 'by vapor phase epitaxy or the like. 4.
  • the second relaxed SiGe layer 5 and the second silicon layer 6 are sequentially epitaxially grown to form a bond hoe 7. This step can be performed in the same manner as in FIG.
  • the first silicon layer 4 by implanting at least one kind of hydrogen ion or rare gas ion from the surface of the second silicon layer 6 ′, the first silicon layer 4, An ion implantation layer 8 ′ is formed inside or at the interface between the first silicon layer 4 ′ and the second relaxed SiGe layer 5 ′. Since the ion implantation depth depends on the magnitude of the implantation energy, the implantation energy may be set so as to obtain a desired implantation depth. The amount of ion implantation is the amount necessary for stripping (5 X 10 16 Zcm 2 ) or more.
  • the ion implantation layer 8 ′ is peeled off.
  • This step can be performed in the same manner as in FIGS. L (c) and (d).
  • a part of the first silicon layer 4, a, a second relaxed SiGe layer 5, and a second silicon layer 6 are transferred to the base wafer side and used for manufacturing the SSOI wafer.
  • the first silicon layer 4'b remains on the detached bondueha 11 '.
  • the glass portion 12 ′ remains on the outer peripheral portion.
  • the peeled Bondueha 11 ' is regenerated.
  • the first silicon layers 4 and b remaining on the peeled bond wafer 11 are removed by etching with a selective etching solution to expose the first relaxed SiGe layer 3 ′.
  • the surface roughness and terrace portion of the remaining first silicon layer 3 ′ are removed by etching, and the surface of the smooth first relaxed SiGe layer 3 ′ having no surface roughness and terrace portion is exposed. .
  • the second silicon layer 12, a and the second lattice relaxation SiGe layer 12, b remaining on the surface layer are not formed on the terrace portion. Since the silicon layer is covered, removal of the first silicon layer in the terrace portion may be delayed. In that case, it is preferable to remove the second silicon layer 12, a remaining on the terrace portion and the second lattice relaxation SiGe layer 12′b and remove the first silicon layer by etching after the peeling step. . In this way, it is possible to reliably remove the terrace portion and prevent the residue.
  • an etching solution capable of selectively etching the silicon layer is used. Since the second silicon layer is thin, the SiGe layer is removed. Longer etching time with selective etching solution to etch, CM
  • SC-1 cleaning solution alkaline etching solution, mixed acid etching solution, etc. can be used.
  • the first relaxed SiGe layer in the terrace portion it can be removed using an etching solution that can selectively etch the SiGe layer, CMP, or the like.
  • the silicon layer can be etched with a high selectivity with respect to the SiGe layer, and the smooth first relaxed SiGe layer 3 ′ having no surface roughness can be exposed.
  • a third silicon layer is formed on the exposed surface of the first relaxed SiGe layer 3 by vapor phase growth or the like as in FIG. 1 (g).
  • the layer 13, the third relaxed SiGe layer 14, and the fourth silicon layer 15 ′ are sequentially epitaxially grown to form a bond hoe, which is a regenerated bond hoe 16 ′.
  • the bondueha regenerated by the above method becomes a bondueha that can be used to produce a high-quality SSOI wafer free of void blisters at a low cost and with a high production yield.
  • the method of manufacturing the SSOI wafer according to the present invention includes at least a gradient composition SiGe layer in which the Ge concentration gradually increases on the surface of the silicon single crystal wafer, a first relaxed SiGe layer in which lattice strain is relaxed, and a first A silicon wafer, a second relaxed SiGe layer, and a bond wafer in which the second silicon layer is sequentially formed, and implanting at least one of hydrogen ions or rare gas ions from the surface of the second silicon layer.
  • An ion implantation layer is formed inside the first silicon layer or at the interface between the first silicon layer and the second relaxed SiGe layer to insulate the surface of the second silicon layer of Bondueha from the base wafer.
  • the SSOI wafer is manufactured by peeling off the ion-implanted layer, and then the first silicon layer remaining on the peeled bond wafer is removed by selective etching.
  • the first relaxed SiGe layer is exposed, and a third silicon layer, a third relaxed SiGe layer, and a fourth silicon layer are sequentially formed on the surface of the exposed first relaxed SiGe layer.
  • an SSOI wafer is manufactured by the steps shown in FIGS. 2 (a) to (d).
  • the process shown in FIGS. 2 (e) to (f) is performed to form a bond wafer, and the bond wafer formed in this way is used to separate the ion implantation process and the peeling process shown in FIGS. 2 (b) to (d).
  • This can be done by manufacturing SSOI wafers.
  • Bondueha can be used many times, and the manufacturing cost of the SSOI wafer can be further reduced.
  • the Bondueha was regenerated according to the steps shown in FIGS. 1 (a) to 1 (g), and the regenerated Bondueha was again subjected to an ion implantation step and a stripping step to produce an SSOI wafer (Example 1).
  • an ion implantation layer is formed inside the first lattice relaxation SiGe layer, and after peeling, the first lattice relaxation SiGe layer is polished.
  • An SSOI wafer was produced in the same manner as in Example 1 except that the surface roughness was removed by caulking. Table 1 shows the main manufacturing conditions.
  • Ueno conductivity type P type, resistivity: 10 ⁇ ⁇ c m
  • Second silicon layer formation Deposition temperature 650 ° C, film thickness: 50 nm, source gas: SiEU
  • Paste Awa liquid composition NH4OH (29 wt%): H2O2 (30 wt%): H 2 0 1: 1: 5 was pre-wash temperature, time 75, 3 minutes
  • Bonding base wafer (diameter: 300 mm, plane orientation: (100), conductivity type:
  • Reclaiming process 2nd silicon remaining on the outer surface of the terrace part 1st lattice relaxation layer is removed with a second selective etchant and the surface removal of the SiGe layer is polished to 0.5 ⁇ m
  • the first selective etching solution is used to
  • Third lattice relaxation Deposition temperature 650 3 ⁇ 4, Film thickness: 0.5 ⁇ m,
  • Liquid composition NH4OH (29 wt%) : ⁇ 2 ⁇ (30 wt%) : 0 1: 1: 5 Pre-cleaning temperature, time 75 ° C, 3 minutes
  • Bonding base wafer (diameter: 300 mm, plane orientation: (100), conductivity type:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Element Separation (AREA)

Abstract

 シリコン単結晶ウエーハ上に傾斜組成SiGe層、第一緩和SiGe層、第一シリコン層、第二緩和SiGe層、第二シリコン層が形成されたボンドウエーハの第二シリコン層表面から水素イオンを注入し第二緩和SiGe層内部にイオン注入層を形成し、第二シリコン層表面とベースウエーハを絶縁層を介し貼合せた後イオン注入層で剥離し、剥離したボンドウエーハに残留した第二緩和SiGe層を第一選択エッチング液で除去し第一シリコン層を露出させ、第一シリコン層を第二選択エッチング液で除去し第一緩和SiGe層を露出させ、第一緩和SiGe層上に第三シリコン層、第三緩和SiGe層、第四シリコン層を形成しボンドウエーハを再生する。これにより、ボイドやブリスタのない良質なSSOIウエーハを低コストで歩留り高く製造することを可能とするボンドウエーハの再生方法及び再生したボンドウエーハ並びにSSOIウエーハの製造方法が提供される。

Description

明 細 書
ボンドゥエーハの再生方法及びボンドゥエーハ並びに SSOIゥエーハの 製造方法
技術分野
[0001] 本発明は、たとえば絶縁体上に歪シリコン層が形成された SSOIゥエーハの製造に 用いるボンドゥエーハの再生方法及びボンドゥエーハ並びにそのボンドゥエーハを 用いた SSOIゥエーハの製造方法に関するものである。 背景技術
[0002] 近年、高速の半導体デバイスの需要に応えるため、シリコン単結晶ゥエーハ上に Si Ge層、シリコン層を順次ェピタキシャル成長させ、このシリコン層をチャネル領域に用 いた高速の MOSFET (Metal— Oxide— Semiconductor Field Effect Trans istor:酸ィ匕物金属半導体電解効果トランジスター)などの半導体デバイスが提案され ている。
[0003] この場合、 SiGe結晶はシリコン結晶に比べて格子定数が大きいため、 SiGe層上に ェピタキシャル成長させたシリコン層には引っ張り歪みが生じている(以下、このように 歪みが生じて!/、るシリコン層を歪シリコン層と呼ぶ場合がある)。その歪み応力により シリコン結晶のエネルギーバンド構造が変化し、その結果エネルギーバンドの縮退が 解けキャリア移動度の高いエネルギーバンドが形成される。従って、この歪シリコン層 をチャネル領域として用いた MOSFETは通常の 1. 3〜8倍程度という高速の動作 特性を示す。
[0004] このような歪シリコン層を形成するために、シリコン単結晶ゥエーハ表面に、厚い傾 斜組成 SiGe層(Graded SiGe)層と緩和 SiGe層を形成したゥエーハ(バルタ SiGe 基板)にさらに歪シリコン層を形成したものをボンドゥエーハとして、ベースウェーハと 貼り合わせ、イオン注入剥離法 (スマートカット (登録商標)法とも呼ばれる)により SS OI (Strained Silicon On Insulator)構造を有するゥエーハを作製する方法が 提案されて 、る(例えば特表 2004— 510350号公報参照)。 なお、ここで傾斜組成 SiGe層とは、 SiGe層の Ge濃度を一定の緩い変化率で増加 させながらェピタキシャル成長を行って、 SiGe層内の格子歪を緩和させるように形成 した層である。そして緩和 SiGe層とは、格子歪が緩和した層である。
[0005] 一方、特開 2001— 217430号公報では、上記イオン注入剥離法で剥離した後の ボンドゥエーハを再生し、格子緩和 SiGe層を再利用することで、 SSOIゥエーハの製 造コストを低減する方法が提案されて 、る。
しかし、この方法の場合、格子緩和 SiGe層を再利用しょうとすると、剥離後に剥離 面を研磨して平坦ィ匕する際に、研磨取り代が格子緩和 SiGe層の厚み以下に制限さ れるため、十分な取り代が得られず、剥離後の剥離面を十分に平坦化できずに面粗 れが残る。従って、その後剥離面に歪シリコン層を形成しても良質な歪シリコン層が 得られず、また歪シリコン層の表面も面粗れするので貼り合わせの際のボイド不良や ブリスターの原因ともなる。これにより SSOIゥエーハの製造歩留まりが低下し、ボンド ゥエーハを再利用したにもかかわらず製造コストの低減の効果が低いという問題が発 生する。
[0006] さらに、イオン注入剥離法でボンドゥエーハを剥離する場合、特開平 11— 307413 号公報に記載されているように、ボンドゥエーハの外周部にテラス部(凸部)が残留す る。このようなテラス部も、剥離後の研磨取り代が制限されることにより研磨で除去でき な!、ことがある。このようにテラス部が残存したままの状態で貼り合わせを行うとボイド 不良ゃブリスターの原因となり、 SSOIゥエーハの製造歩留まりが一層低下し、ボンド ゥエーハを再利用したにもかかわらず製造コストの低減の効果が低いという問題が発 生する。
発明の開示
[0007] 本発明は、ボイドゃブリスターのない良質な SSOIゥエーハを低コストで歩留まり高く 製造することを可能とするボンドゥエーハの再生方法及び再生したボンドゥエーハ並 びに SSOIゥエーハの製造方法を提供することを目的とする。
[0008] 上記目的達成のため、本発明は、ボンドゥエーハの再生方法であって、少なくとも、 シリコン単結晶ゥエーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格 子歪が緩和された第一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第 二のシリコン層が順次形成されたボンドゥエーハを形成し、
前記第二のシリコン層表面力 水素イオンまたは希ガスイオンの少なくとも一種類を 注入することにより、前記第二の緩和 SiGe層の内部にイオン注入層を形成し、 前記ボンドゥエーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介し て貼り合わせた後前記イオン注入層で剥離を行 、、
その後前記剥離したボンドゥエーハに残留した第二の緩和 SiGe層を第一の選択 エッチング液でエッチング除去して前記第一のシリコン層を露出させ、
該露出した第一のシリコン層を第二の選択エッチング液でエッチング除去して前記 第一の緩和 SiGe層を露出させ、
該露出した第一の緩和 SiGe層の表面に、第三のシリコン層、第三の緩和 SiGe層、 第四のシリコン層を順次形成することにより、前記剥離したボンドゥエーハを再生する ことを特徴とするボンドゥエーハの再生方法を提供する。
[0009] このように、シリコン単結晶ゥエーハの表面に傾斜組成 SiGe層、第一の緩和 SiGe 層、第一のシリコン層、第二の緩和 SiGe層、第二のシリコン層が順次形成されたボン ドゥエーハを形成し、イオン注入剥離法により第二の緩和 SiGe層の内部で剥離を行 つた後、剥離したボンドゥエーハに残留した第二の緩和 SiGe層を第一の選択エッチ ング液でエッチング除去して第一のシリコン層を露出させ、該露出した第一のシリコン 層を第二の選択エッチング液でエッチング除去して第一の緩和 SiGe層を露出させ、 露出した第一の緩和 SiGe層の表面に第三のシリコン層、第三の緩和 SiGe層、第四 のシリコン層を順次形成することにより剥離したボンドゥエーハを再生すれば、良質な ボンドゥエーハを歩留まり高く再生できる。
[0010] また、本発明は、ボンドゥエーハの再生方法であって、少なくとも、
シリコン単結晶ゥエーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格 子歪が緩和された第一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第 二のシリコン層が順次形成されたボンドゥエーハを形成し、
前記第二のシリコン層表面力 水素イオンまたは希ガスイオンの少なくとも一種類を 注入することにより、前記第二の緩和 SiGe層の内部にイオン注入層を形成し、 前記ボンドゥエーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介し て貼り合わせた後前記イオン注入層で剥離を行 、、
その後前記剥離したボンドゥエーハに残留した第二の緩和 SiGe層を選択エツチン グ液でエッチング除去して前記第一のシリコン層を露出させ、
該露出した第一のシリコン層の表面に、第三の緩和 SiGe層、第三のシリコン層を順 次形成することにより、前記剥離したボンドゥエーハを再生することを特徴とするボン ドゥエーハの再生方法を提供する。
[0011] このように、シリコン単結晶ゥエーハの表面に傾斜組成 SiGe層、第一の緩和 SiGe 層、第一のシリコン層、第二の緩和 SiGe層、第二のシリコン層が順次形成されたボン ドゥエーハを形成し、イオン注入剥離法により第二の緩和 SiGe層の内部で剥離を行 つた後、剥離したボンドゥエーハに残留した第二の緩和 SiGe層を選択エッチング液 でエッチング除去して第一のシリコン層を露出させ、該露出した第一のシリコン層の 表面に第三の緩和 SiGe層、第三のシリコン層を順次形成することにより剥離したボン ドゥエーハを再生すれば、第一のシリコン層を再利用できるとともに、良質なボンドウ エーハを歩留まり高く再生できる。
[0012] この場合、前記剥離工程の後に、前記剥離したボンドゥエーハの外周部に残留し た第二のシリコン層を除去してから、前記第二の緩和 SiGe層のエッチング除去を行 うことが好ましい。
このように、剥離工程の後に、剥離したボンドゥエーハの外周部に残留した第二の シリコン層を除去して力も第二の緩和 SiGe層のエッチング除去を行えば、テラス部の 残存によるボイド不良を確実に低減して、良質なボンドゥエーハを歩留まり高く再生 できる。
[0013] また、本発明は、ボンドゥエーハの再生方法であって、少なくとも、
シリコン単結晶ゥエーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格 子歪が緩和された第一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第 二のシリコン層が順次形成されたボンドゥエーハを形成し、
前記第二のシリコン層表面力 水素イオンまたは希ガスイオンの少なくとも一種類を 注入することにより、前記第一のシリコン層の内部又は該第一のシリコン層と第二の 緩和 SiGe層との界面にイオン注入層を形成し、
前記ボンドゥエーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介し て貼り合わせた後前記イオン注入層で剥離を行 、、
その後前記剥離したボンドゥエーハに残留した第一のシリコン層を選択エッチング 液でエッチング除去して前記第一の緩和 SiGe層を露出させ、
該露出した第一の緩和 SiGe層の表面に、第三のシリコン層、第三の緩和 SiGe層、 第四のシリコン層を順次形成することにより、前記剥離したボンドゥエーハを再生する ことを特徴とするボンドゥエーハの再生方法を提供する。
[0014] このように、シリコン単結晶ゥエーハの表面に傾斜組成 SiGe層、第一の緩和 SiGe 層、第一のシリコン層、第二の緩和 SiGe層、第二のシリコン層が順次形成されたボン ドゥエーハを形成し、イオン注入剥離法により第一のシリコン層の内部又は該第一の シリコン層と第二の緩和 SiGe層との界面で剥離を行った後、剥離したボンドゥエーハ に残留した第一のシリコン層を選択エッチング液でエッチング除去して前記第一の緩 和 SiGe層を露出させ、露出した第一の緩和 SiGe層の表面に第三のシリコン層、第 三の緩和 SiGe層、第四のシリコン層を順次形成することにより、剥離したボンドゥエ ーハを再生しても、良質なボンドゥエーハを歩留まり高く再生できる。
[0015] この場合、前記剥離工程の後に、前記剥離したボンドゥエーハの外周部に残留し た第二のシリコン層及び第二の緩和 SiGe層を除去してから、前記第一のシリコン層 のエッチング除去を行うことが好まし 、。
このように、剥離工程の後に、剥離したボンドゥエーハの外周部に残留した第二の シリコン層及び第二の緩和 SiGe層を除去して力 第一のシリコン層のエッチング除 去を行えば、テラス部の残存によるボイド不良を確実に低減して、良質なボンドゥエ ーハを歩留まり高く再生できる。
[0016] また、前記第一のシリコン層の厚さを 10nm以上 lOOnm以下とすることが好ましい。
このように、第一のシリコン層の厚さを lOnm以上 lOOnm以下とすれば、シリコン層 内で格子歪が緩和されずに十分に維持され、また選択エッチングの際に十分なエツ チング代を確保できる。
[0017] また、前記 SiGe層をエッチングする選択エッチング液として、 HFと H Oと CH CO OHの水溶液、 HFと H Oの水溶液、 HFと HNOの水溶液、 NaOHと H Oの水溶
2 2 3 2 2 液の 、ずれかを用いることが好まし 、。
このように、 SiGe層をエッチングする選択エッチング液として上記のエッチング液の V、ずれかを用いれば、シリコン層に対して高 、選択比で SiGe層をエッチングでき、 面粗れのないシリコン層を露出できる。
[0018] また、前記シリコン層をエッチングする選択エッチング液として、 NH OHと NH NO
4 4 の水溶液、 NH OH水溶液、 TMAH水溶液のいずれかを用いることが好ましい。
3 4
このように、シリコン層をエッチングする選択エッチング液として上記のエッチング液 の!、ずれかを用いれば、 SiGe層に対して高!、選択比でシリコン層をエッチングでき、 面粗れのな!/、SiGe層を露出できる。
[0019] また、本発明は、前記のいずれかの方法により再生されたボンドゥエーハを提供す る。
[0020] このように、前記の!/、ずれかの方法により再生されたボンドゥエーハであれば、これ を用いて良質な SSOIゥエーハを低コストで製造歩留まり高く製造できるボンドゥエ一 ハとなる。
[0021] また、本発明は、 SSOIゥエーハの製造方法であって、少なくとも、
シリコン単結晶ゥエーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格 子歪が緩和された第一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第 二のシリコン層が順次形成されたボンドゥエーハを形成し、
前記第二のシリコン層表面力 水素イオンまたは希ガスイオンの少なくとも一種類を 注入することにより、前記第二の緩和 SiGe層の内部にイオン注入層を形成し、 前記ボンドゥエーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介し て貼り合わせた後前記イオン注入層で剥離を行うことにより SSOIゥエーハを製造し、 その後前記剥離したボンドゥエーハに残留した第二の緩和 SiGe層を第一の選択 エッチング液でエッチング除去して前記第一のシリコン層を露出させ、
該露出した第一のシリコン層を第二の選択エッチング液でエッチング除去して前記 第一の緩和 SiGe層を露出させ、
該露出した第一の緩和 SiGe層の表面に、第三のシリコン層、第三の緩和 SiGe層、 第四のシリコン層が順次形成されたボンドゥエーハを形成し、
該ボンドゥエーハを用いて、前記イオン注入工程及び前記剥離工程により別の SS OIゥエーハを製造することを特徴とする SSOIゥエーハの製造方法を提供する。
[0022] このように、シリコン単結晶ゥエーハの表面に傾斜組成 SiGe層、第一の緩和 SiGe 層、第一のシリコン層、第二の緩和 SiGe層、第二のシリコン層が順次形成されたボン ドゥエーハを形成し、イオン注入剥離法により第二の緩和 SiGe層の内部で剥離を行 つて SSOIゥエーハを製造し、その後剥離したボンドゥエーハに残留した第二の緩和 SiGe層を第一の選択エッチング液で、第一のシリコン層を第二の選択エッチング液 でそれぞれエッチング除去して第一の緩和 SiGe層を露出させ、露出した第一の緩 和 SiGe層の表面に第三のシリコン層、第三の緩和 SiGe層、第四のシリコン層が順 次形成されたボンドゥエーハを形成し、該ボンドゥエーハを用いてイオン注入工程及 び剥離工程により別の SSOIゥエーハを製造すれば、ボイドゃブリスターが発生しな V、ので、良質な SSOIゥエーハを低コストで製造歩留まり高く製造できる。
[0023] また、本発明は、 SSOIゥエーハの製造方法であって、少なくとも、
シリコン単結晶ゥエーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格 子歪が緩和された第一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第 二のシリコン層が順次形成されたボンドゥエーハを形成し、
前記第二のシリコン層表面力 水素イオンまたは希ガスイオンの少なくとも一種類を 注入することにより、前記第二の緩和 SiGe層の内部にイオン注入層を形成し、 前記ボンドゥエーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介し て貼り合わせた後前記イオン注入層で剥離を行うことにより SSOIゥエーハを製造し、 その後前記剥離したボンドゥエーハに残留した第二の緩和 SiGe層を選択エツチン グ液でエッチング除去して前記第一のシリコン層を露出させ、
該露出した第一のシリコン層の表面に、第三の緩和 SiGe層、第三のシリコン層が 順次形成されたボンドゥエーハを形成し、
該ボンドゥエーハを用いて、前記イオン注入工程及び前記剥離工程により別の SS OIゥエーハを製造することを特徴とする SSOIゥエーハの製造方法を提供する。
[0024] このように、シリコン単結晶ゥエーハの表面に傾斜組成 SiGe層、第一の緩和 SiGe 層、第一のシリコン層、第二の緩和 SiGe層、第二のシリコン層が順次形成されたボン ドゥエーハを形成し、イオン注入剥離法により第二の緩和 SiGe層の内部で剥離を行 つて SSOIゥエーハを製造し、その後剥離したボンドゥエーハに残留した第二の緩和 SiGe層を選択エッチング液でエッチング除去して第一のシリコン層を露出させ、露出 した第一のシリコン層の表面に第三の緩和 SiGe層、第三のシリコン層が順次形成さ れたボンドゥエーハを形成し、該ボンドゥエーハを用いてイオン注入工程及び剥離ェ 程により別の SSOIゥエーハを製造すれば、第一のシリコン層を再利用できるとともに 、ボイドゃブリスターが発生しないので、良質な SSOIゥエーハを低コストで製造歩留 まり高く製造できる。
[0025] この場合、前記剥離工程の後に、前記剥離したボンドゥエーハの外周部に残留し た第二のシリコン層を除去してから、前記第二の緩和 SiGe層のエッチング除去を行 うことが好ましい。
このように、剥離工程の後に、剥離したボンドゥエーハの外周部に残留した第二の シリコン層を除去して力も第二の緩和 SiGe層のエッチング除去を行えば、テラス部の 残存によるボイド不良を確実に低減して、良質な SSOIゥエーハを低コストで製造歩 留まり高く製造できる。
[0026] また、本発明は、 SSOIゥエーハの製造方法であって、少なくとも、
シリコン単結晶ゥエーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格 子歪が緩和された第一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第 二のシリコン層が順次形成されたボンドゥエーハを形成し、
前記第二のシリコン層表面力 水素イオンまたは希ガスイオンの少なくとも一種類を 注入することにより、前記第一のシリコン層の内部又は該第一のシリコン層と第二の 緩和 SiGe層との界面にイオン注入層を形成し、
前記ボンドゥエーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介し て貼り合わせた後前記イオン注入層で剥離を行うことにより SSOIゥエーハを製造し、 その後前記剥離したボンドゥエーハに残留した第一のシリコン層を選択エッチング 液でエッチング除去して前記第一の緩和 SiGe層を露出させ、
該露出した第一の緩和 SiGe層の表面に、第三のシリコン層、第三の緩和 SiGe層、 第四のシリコン層が順次形成されたボンドゥエーハを形成し、
該ボンドゥエーハを用いて、前記イオン注入工程及び前記剥離工程により別の SS OIゥエーハを製造することを特徴とする SSOIゥエーハの製造方法を提供する。
[0027] このように、シリコン単結晶ゥエーハの表面に傾斜組成 SiGe層、第一の緩和 SiGe 層、第一のシリコン層、第二の緩和 SiGe層、第二のシリコン層が順次形成されたボン ドゥエーハを形成し、イオン注入剥離法により第一のシリコン層の内部又は該第一の シリコン層と第二の緩和 SiGe層との界面で剥離を行って SSOIゥエーハを製造し、そ の後剥離したボンドゥエーハに残留した第一のシリコン層を選択エッチング液でエツ チング除去して第一の緩和 SiGe層を露出させ、露出した第一の緩和 SiGe層の表面 に第三のシリコン層、第三の緩和 SiGe層、第四のシリコン層が順次形成されたボンド ゥエーハを形成し、該ボンドゥエーハを用いてイオン注入工程及び剥離工程により別 の SSOIゥエーハを製造しても、ボイドゃブリスターが発生しないので、良質な SSOI ゥエーハを低コストで製造歩留まり高く製造できる。
[0028] この場合、前記剥離工程の後に、前記剥離したボンドゥエーハの外周部に残留し た第二のシリコン層及び第二の緩和 SiGe層を除去してから、前記第一のシリコン層 のエッチング除去を行うことが好まし 、。
このように、剥離工程の後に、剥離したボンドゥエーハの外周部に残留した第二の シリコン層及び第二の緩和 SiGe層を除去して力 第一のシリコン層のエッチング除 去を行えば、テラス部の残存によるボイド不良を確実に低減して、良質な SSOIゥェ 一ハを低コストで製造歩留まり高く製造できる。
[0029] また、前記第一のシリコン層の厚さを 10nm以上 lOOnm以下とすることが好ましい。
このように、第一のシリコン層の厚さを lOnm以上 lOOnm以下とすれば、シリコン層 内で格子歪が緩和されずに十分に維持され、また選択エッチングの際に十分なエツ チング代を確保できる。
[0030] また、前記 SiGe層をエッチングする選択エッチング液として、 HFと H Oと CH CO
2 2 3
OHの水溶液、 HFと H Oの水溶液、 HFと HNOの水溶液、 NaOHと H Oの水溶
2 2 3 2 2 液の 、ずれかを用いることが好まし 、。
このように、 SiGe層をエッチングする選択エッチング液として上記のエッチング液の 、ずれかを用いれば、シリコン層に対して高 、選択比で SiGe層をエッチングでき、 面粗れのないシリコン層を露出できる。
[0031] また、前記シリコン層をエッチングする選択エッチング液として、 NH OHと NH NO
4 4 の水溶液、 NH OH水溶液、 TMAH水溶液のいずれかを用いることが好ましい。
3 4
このように、シリコン層をエッチングする選択エッチング液として上記のエッチング液 の!、ずれかを用いれば、 SiGe層に対して高!、選択比でシリコン層をエッチングでき、 面粗れのな!/、SiGe層を露出できる。
[0032] 本発明に従うボンドゥエーハの再生方法であれば、剥離面の面粗れやテラス部の 残存によるボイド不良を防止できる、良質なボンドゥエーハを歩留まり高く再生できる また、本発明に従う方法により再生されたボンドゥエーハであれば、剥離面の面粗 れゃテラス部の残存が防止されており、これを用いて良質な SSOIゥエーハを低コス トで製造歩留まり高く製造できるボンドゥエーハとなる。
さらに本発明に従う SSOIゥエーハの製造方法であれば、剥離面の面粗れやテラス 部の残存によるボイド不良を防止し、良質な SSOIゥエーハを低コストで製造歩留まり 高く製造できる。 図面の簡単な説明
[0033] [図 1]本発明に従ったボンドゥエーハの再生工程の一例を示す図である。
[図 2]本発明に従ったボンドゥエーハの再生工程の別の一例を示す図である。
発明を実施するための最良の形態
[0034] 以下、本発明につ 、て詳述する。
前述のように、イオン注入剥離法で剥離した後のボンドゥエーハを再生し、格子緩 和 SiGe層を再利用する従来の方法は、剥離後の剥離面の面粗れの残留に起因す るボイド不良ゃブリスターが発生し、再生したボンドゥエーハを用いた SSOIゥエーハ の剥離歩留まりが低下するので、ボンドゥエ一ハを再利用したにもかかわらず SSOI ゥエーハの製造コストの低減の効果が低 、と 、う問題が発生する。
また、テラス部が残留してしまい、一層剥離歩留まりが低下するという問題もあった。 [0035] 本発明者らは、第一と第二の緩和 SiGe層の間に第一のシリコン層を形成し、剥離 後のボンドゥエーハの再生処理においてこの第一のシリコン層と緩和 SiGe層との間 で選択エッチングをすることに想到した。これにより、剥離後の面粗れや残存するテラ ス部の段差を第一の緩和 SiGe層を残したままで改善できるようになり、再生したボン ドゥエ一ハの面粗れを防止して、これを用いた SSOIゥエーハの剥離における歩留ま りの低下を防げることができることを見出し、本発明を完成させた。
[0036] 以下では、本発明の実施の形態について図を用いて説明するが、本発明はこれに 限定されるものではない。
図 1 (a)〜 (g)は、本発明に従ったボンドゥエーハの再生工程の一例を示す図であ る。
[0037] まず、図 1 (a)に示すように、気相成長法等により、シリコン単結晶ゥエーハ 1の表面 に傾斜組成 SiGe層 2、第一の緩和 SiGe層 3、第一のシリコン層 4、第二の緩和 SiGe 層 5、第二のシリコン層 6を順次ェピタキシャル成長させ、ボンドゥエーハ 7を形成する
[0038] シリコン単結晶ゥエーハ 1は、従来用いられているものであれば特に限定されない。
傾斜組成 SiGe層 2は、 Ge濃度が例えば 0%から 20%に徐々に増加するようにェピタ キシャル成長させ、これにより層中の歪を緩和するように形成されている。厚さは例え ば 1〜10 /ζ πιとできる。
[0039] このように形成された傾斜組成 SiGe層 2の表面を必要に応じて CMP (Chemical Mechanical Polishing :化学機械研磨)により研磨して平坦ィ匕した後、その上に G e濃度が一定の高濃度 (例えば 20%以上)であり、格子歪が緩和された第一の緩和 S iGe層 3をェピタキシャル成長させる。厚さは例えば 1〜5 mとできる。
[0040] さらに、このように形成された第一の緩和 SiGe層 3の表面を必要に応じて CMPに より研磨して平坦ィ匕した後、その上に第一のシリコン層 4をェピタキシャル成長させる 。第一のシリコン層 4は緩和 SiGe層の上にェピタキシャル成長させるので、格子定数 の違いにより格子歪が生じている。このとき第一のシリコン層 4の厚さを 10nm以上 10 Onm以下とすることが好ましい。そうすれば、シリコン層内で格子歪が緩和されずに 十分に維持され、また後のエッチング工程にぉ 、て選択エッチングで十分なエツチン グ代が得られる。また、第一の格子緩和 SiGe層 3に基づく第一のシリコン層 4の格子 歪を確実に維持するためには、第一のシリコン層 4の厚さを、第一の格子緩和 SiGe 層 3の表層の Ge濃度により定まる臨界膜厚を超えない厚さとするのがより好ましい。 表層の Ge濃度が 20%の場合は、第一のシリコン層 4の厚さが 20nm以下であれば、 臨界膜厚を超えな 、厚さなのでより好ま 、。
[0041] そして、第一のシリコン層 4の上に第二の格子緩和 SiGe層 5、第二のシリコン層 6を ェピタキシャル成長させる。前記の場合と同様に、これらの層の表面を必要に応じて CMPにより研磨して平坦ィ匕した後にェピタキシャル成長させる。第二の格子緩和 Si Ge層 5の Ge濃度及び厚さは第一の格子緩和 SiGe層 3のものと同程度とすることが できる。また、第二のシリコン層 6は格子緩和された SiGe層上の歪シリコン層としてデ バイスが作製される層となるので、デバイスの設計に応じた厚さ、例えば 10〜: LOOn mとする。
[0042] なお、上記気相成長は、 CVD (Chemical Vapor Deposition:化学蒸着)法や MBE (Molecular Beam Epitaxy:分子線エピタキシー)法などにより行うことがで きる。 CVD法の場合は、例えば、原料ガスとして SiH又は SiHと GeHとの混合ガス
4 4 4
を用いることができる。キャリアガスとしては Hが用いられる。成長条件としては、例え
2
ば温度 400〜1, 000°C、圧力 100Torr(l . 33 X 104Pa)以下とすればよい。
[0043] 次に、図 1 (b)に示すように、第二のシリコン層 6の表面力 水素イオン、アルゴンや ヘリゥム等の希ガスのイオンの少なくとも一種類を注入することにより、第二の緩和 Si Ge層 5の内部にイオン注入層 8を形成する。イオン注入深さは注入エネルギーの大 きさに依存するので、所望の注入深さ〖こなるように注入エネルギーを設定すればょ ヽ 。イオン注入量は剥離に必要な注入量(5 X 1016Zcm2程度)以上とできる。
[0044] 次に、図 1 (c)〖こ示すように、ボンドゥエーハの第二のシリコン層 6の表面とベースゥ エーノ、 9とを室温にて絶縁膜 10を介して貼り合わせた後、図 1 (d)に示すように、ィォ ン注入層 8で剥離を行う。貼り合わせ前には SC— 1洗浄液等で両ゥエーハの表面を 洗浄することが好ましい。
ベースウェーハ 9としては、シリコン酸ィ匕膜を絶縁膜 10として表面に形成したシリコ ン単結晶ゥエーハを用いることができる力 使用用途等に応じて石英、炭化珪素、ァ ルミナ、ダイヤモンド等の絶縁性ゥエーノ、も用いることができる。
[0045] 図 1 (c)、 (d)に示す剥離工程にお!、ては、ボンドゥエーハ 7とべ一スウェーハ 9とを 室温にて絶縁膜 10を介して貼り合わせた後、例えば窒素雰囲気下で温度 400〜60 0°C程度の熱処理 (剥離熱処理)を 30分程度行うことによりイオン注入層 8を劈開面と して剥離することができる。また、貼り合わせ前の一方又は両方のゥエーハの表面を プラズマ処理することにより、剥離熱処理を行なわずにイオン注入層に機械的な応力 をカロえて剥離してもよい。これにより、第二の緩和 SiGe層の一部 5a、第二のシリコン 層 6がべ一スウェーハ側に移設され、 SSOIゥエーハの製造に用いられる。また、剥 離したボンドゥエーハ 11には、第二の緩和 SiGe層 5bが残留する。さらに、外周部に テラス部 12が残留する。
[0046] 次に、剥離したボンドゥエーハ 11を再生する。まず、図 1 (e)に示すように、剥離し たボンドゥエーハ 11に残留した第二の緩和 SiGe層 5bを第一の選択エッチング液で エッチング除去して第一のシリコン層 4を露出させる。これにより、残留した第二の緩 和 SiGe層 5bの面粗れやテラス部がエッチングにより除去され、面粗れやテラス部の 残存のない平滑な第一のシリコン層 4の表面が露出する。
[0047] SiGe層をエッチングする選択エッチング液として、 HFと H Oと CH COOHの水
2 2 3
溶液、 HFと H Oの水溶液、 HFと HNOの水溶液、 NaOHと H Oの水溶液のいず
2 2 3 2 2
れかを用いれば、シリコン層に対して高い選択比で SiGe層をエッチングでき、面粗 れゃテラス部のない平滑な第一のシリコン層 4を露出できる。
[0048] 例えば、 HF (50wt%): H O (30wt%): CH COOH (99wt%) = 1 : 2 : 3 (容量
2 2 3
比)の混合液の液温 21°Cでのエッチングレートは、 SiGe層(Ge濃度 20%)に対して は 35. 7nmZminである力 シリコン層に対しては 0. 61nmZminであり、選択比で 60倍程度が得られるので好ま 、。
[0049] なお、第一の選択エッチング液でエッチングを行う際に、テラス部にぉ 、ては、表層 に残留する第二のシリコン層 12aが第二の格子緩和 SiGe層をカバーして 、るために 、テラス部の第二の格子緩和 SiGe層の除去が遅延する場合がある。その場合、剥離 工程の後に、テラス部に残留する第二のシリコン層 12aを除去して力 第二の緩和 Si Ge層のエッチング除去を行うことが好ましい。このようにすれば、素早くテラス部を確 実に除去して残存を防止できる。
[0050] テラス部に残留する第二のシリコン層を除去する方法としては、第二のエッチング 液のようなシリコン層を選択的にエッチングできる溶液を用いることができる力 第二 のシリコン層は厚さが薄いので、第一の選択エッチング液によるエッチング時間を長 くしたり、 CMPなどを採用することもできる。また、 SC- 1洗浄液、アルカリエッチング 液、混酸エッチング液等も用いることができる。
[0051] 次に、図 1 (f)に示すように、露出した第一のシリコン層 4を第二の選択エッチング液 でエッチング除去して第一の緩和 SiGe層 3を露出させる。これにより、面粗れのない 平滑な第一の緩和 SiGe層 3の表面が露出する。
[0052] シリコン層をエッチングする選択エッチング液として、 NH OHと NH NOの水溶液
4 4 3
、 NH OH水溶液、 TMAH (水酸化テトラメチルアンモ-ゥム)水溶液のいずれかを
4
用いれば、 SiGe層に対して高い選択比でシリコン層をエッチングでき、面粗れのな い平滑な第一の緩和 SiGe層 3を露出できる。
[0053] 例えば、 NH OH (10wt%): NH NO = 200ml: lgの水溶液の液温 21°Cでのェ
4 4 3
ツチングレートは、シリコン層に対しては 129. 2nmZminである力 SiGe層(Ge濃 度 20%)に対しては 0. 22nmZminであり、選択比で 580倍程度が得られるので好 ましい。
[0054] 次に、図 1 (g)に示すように、前記の気相成長法等により、露出した第一の緩和 SiG e層 3の表面に、第三のシリコン層 13、第三の緩和 SiGe層 14、第四のシリコン層 15 を順次ェピタキシャル成長させることによりボンドゥエーハを形成し、再生したボンドウ エーハ 16とする。
このようにして、剥離面の面粗れやテラス部の残存が防止された、良質のボンドゥエ ーハを歩留まり高く再生できる。
[0055] また、本発明に従ったボンドゥエーハの再生工程の別の一例としては、図 1 (a)〜( e)に示す工程を行い、選択エッチング液の選択比が十分に高い等の理由により露 出した第一のシリコン層の表面が十分に平滑であれば、該露出した第一のシリコン層 の表面に、第三の緩和 SiGe層、第三のシリコン層を順次ェピタキシャル成長させるこ とによりボンドゥエーハを形成し、再生したボンドゥエーハとする。 このようにすれば、第一のシリコン層をエッチング除去せずに再利用できるとともに 、剥離面の面粗れやテラス部の残存が防止された、良質のボンドゥエーハを歩留まり 高く再生できる。
[0056] また、上記のいずれかの方法により再生されたボンドゥエーハは、これを用いてボイ ドゃブリスターのない良質な SSOIゥエーハを低コストで製造歩留まり高く製造できる ボンドゥエーハとなる。
[0057] 次に、上記のようなボンドゥエーハの再生方法を用いた本発明に係る SSOIゥエー ハの製造方法について説明する。本発明に係る SSOIゥエーハの製造方法は、少な くとも、シリコン単結晶ゥエーハの表面に傾斜組成 SiGe層、第一の緩和 SiGe層、第 一のシリコン層、第二の緩和 SiGe層、第二のシリコン層が順次形成されたボンドゥエ ーハを形成し、第二のシリコン層表面カゝら水素イオンまたは希ガスイオンの少なくとも 一種類を注入することにより、第二の緩和 SiGe層の内部にイオン注入層を形成し、 ボンドゥエーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介して貼り 合わせた後イオン注入層で剥離を行うことにより SSOIゥエーハを製造し、その後、剥 離したボンドゥエーハに残留した第二の緩和 SiGe層を第一の選択エッチング液でェ ツチング除去して前記第一のシリコン層を露出させ、該露出した第一のシリコン層を 第二の選択エッチング液でエッチング除去して第一の緩和 SiGe層を露出させ、該露 出した第一の緩和 SiGe層の表面に、第三のシリコン層、第三の緩和 SiGe層、第四 のシリコン層が順次形成されたボンドゥエーハを形成し、該ボンドゥエーハを用いて、 イオン注入工程及び剥離工程により別の SSOIゥエーハを製造することを特徴とする ものである。このようにすれば、剥離面の面粗れやテラス部の残存によるボイド不良を 防止し、良質な SSOIゥエーハを低コストで製造歩留まり高く製造できる。
[0058] また、本発明に係る SSOIゥエーハの製造方法は、少なくとも、シリコン単結晶ゥェ ーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格子歪が緩和された第 一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第二のシリコン層が順次 形成されたボンドゥエーハを形成し、前記第二のシリコン層表面カゝら水素イオンまた は希ガスイオンの少なくとも一種類を注入することにより、前記第二の緩和 SiGe層の 内部にイオン注入層を形成し、前記ボンドゥエーハの第二のシリコン層の表面とベー スウェーハとを絶縁層を介して貼り合わせた後前記イオン注入層で剥離を行うことに より SSOIゥエーハを製造し、その後前記剥離したボンドゥエーハに残留した第二の 緩和 SiGe層を選択エッチング液でエッチング除去して前記第一のシリコン層を露出 させ、該露出した第一のシリコン層の表面に、第三の緩和 SiGe層、第三のシリコン層 が順次形成されたボンドゥエーハを形成し、該ボンドゥエーハを用いて、前記イオン 注入工程及び前記剥離工程により別の SSOIゥエーハを製造することを特徴とするも のである。このようにすれば、第一のシリコン層をエッチング除去せずに再利用できる とともに、剥離面の面粗れやテラス部の残存によるボイド不良を防止し、良質な SSOI ゥエーハを低コストで製造歩留まり高く製造できる。
[0059] この製造方法は、例えば図 1 (a)〜(d)に示す工程により SSOIゥエーハを製造し、 次に図 l (e)〜(g)に示す工程を行ってボンドゥエーハを形成する力、あるいは、図 1 (e)に示す工程の後に露出した第一のシリコン層の表面に第三の緩和 SiGe層と第 三のシリコン層とを順次形成してボンドゥエーハを形成し、こうして形成したボンドゥエ ーハを用いて、図 1 (b)〜(d)に示すイオン注入工程及び剥離工程により別の SSOI ゥエーハを製造することで実施することができる。そして、これを繰り返すことにより、 ボンドゥエーハを何度も使用することができ、 SSOIゥエーハの製造コストを一層低下 させることがでさる。
[0060] 図 2 (a)〜(f)は、本発明に従ったボンドゥエーハの再生工程のさらに別の一例を示 す図である。
まず、図 2 (a)に示すように、気相成長法等により、シリコン単結晶ゥエーハ 1 'の表 面に傾斜組成 SiGe層 2,、第一の緩和 SiGe層 3,、第一のシリコン層 4,、第二の緩和 SiGe層 5,、第二のシリコン層 6,を順次ェピタキシャル成長させ、ボンドゥエーハ 7,を 形成する。この工程は、図 1 (a)と同様に行うことができる。
[0061] 次に、図 2 (b)に示すように、第二のシリコン層 6'の表面から水素イオンまたは希ガ スイオンの少なくとも一種類を注入することにより、第一のシリコン層 4,の内部又は第 一のシリコン層 4'と第二の緩和 SiGe層 5'との界面にイオン注入層 8'を形成する。ィ オン注入深さは注入エネルギーの大きさに依存するので、所望の注入深さになるよう に注入エネルギーを設定すればよい。イオン注入量は剥離に必要な注入量(5 X 10 16Zcm2程度)以上とできる。
[0062] 次に、図 2 (c)〖こ示すように、ボンドゥエーハの第二のシリコン層 6,の表面とベース ゥエーハ 9'とを室温にて絶縁膜 10'を介して貼り合わせた後、図 2 (d)に示すように、 イオン注入層 8'で剥離を行う。この工程は、図 l (c)、 (d)と同様に行うことができる。 これにより、第一のシリコン層の一部 4, a、第二の緩和 SiGe層 5,、第二のシリコン層 6 ,がべ一スウェーハ側に移設され、 SSOIゥエーハの製造に用いられる。また、剥離し たボンドゥエーハ 11 'には、第一のシリコン層 4' bが残留する。さらに、外周部にテラ ス部 12'が残留する。
[0063] 次に、剥離したボンドゥエーハ 11 'を再生する。まず、図 2 (e)に示すように、剥離し たボンドゥエーハ 11,に残留した第一のシリコン層 4, bを選択エッチング液でエッチ ング除去して第一の緩和 SiGe層 3'を露出させる。これにより、残留した第一のシリコ ン層 3'の面粗れやテラス部がエッチングにより除去され、面粗れやテラス部のない平 滑な第一の緩和 SiGe層 3'の表面が露出する。
[0064] なお、選択エッチング液でエッチングを行う際に、テラス部にぉ 、ては、表層に残留 する第二のシリコン層 12, a及び第二の格子緩和 SiGe層 12, bが第一のシリコン層を カバーしているために、テラス部の第一のシリコン層の除去が遅延する場合がある。 その場合、剥離工程の後に、テラス部に残留する第二のシリコン層 12,a及び第二の 格子緩和 SiGe層 12' bを除去して力も第一のシリコン層のエッチング除去を行うこと が好ましい。このようにすれば、テラス部を確実に除去して残存を防止できる。
[0065] テラス部の第二のシリコン層を除去する方法としては、シリコン層を選択的にエッチ ングできるエッチング液を用いることができる力 第二のシリコン層は厚さが薄いので 、 SiGe層をエッチングする選択エッチング液によるエッチング時間を長くしたり、 CM
Pなどを採用することもできる。また、 SC— 1洗浄液、アルカリエッチング液、混酸エツ チング液等も用いることができる。
一方、テラス部の第一の緩和 SiGe層を除去する方法としては、 SiGe層を選択的に エッチングできるエッチング液や、 CMP等を用いて除去できる。
[0066] シリコン層をエッチングする選択エッチング液として、 NH OHと NH NOの水溶液
4 4 3
、 NH OH水溶液、 TMAH (水酸化テトラメチルアンモ-ゥム)水溶液のいずれかを 用いれば、 SiGe層に対して高い選択比でシリコン層をエッチングでき、面粗れのな い平滑な第一の緩和 SiGe層 3'を露出できる。
[0067] 次に、図 2 (f)に示すように、前記図 1 (g)と同様に気相成長法等により、露出した第 一の緩和 SiGe層 3,の表面に、第三のシリコン層 13,、第三の緩和 SiGe層 14,、第 四のシリコン層 15'を順次ェピタキシャル成長させることによりボンドゥエーハを形成 し、再生したボンドゥエーハ 16 'とする。
このようにして、剥離面の面粗れやテラス部の残存が防止された、良質のボンドゥエ ーハを歩留まり高く再生できる。
[0068] また、上記の方法により再生されたボンドゥエーハは、これを用いてボイドゃブリスタ 一のない良質な SSOIゥエーハを低コストで製造歩留まり高く製造できるボンドゥエ一 ハとなる。
[0069] 次に、この再生方法を用いた本発明に係る SSOIゥエーハの製造方法について説 明する。本発明に係る SSOIゥエーハの製造方法は、少なくとも、シリコン単結晶ゥェ ーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格子歪が緩和された第 一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第二のシリコン層が順次 形成されたボンドゥエーハを形成し、第二のシリコン層表面カゝら水素イオンまたは希 ガスイオンの少なくとも一種類を注入することにより、第一のシリコン層の内部又は該 第一のシリコン層と第二の緩和 SiGe層との界面にイオン注入層を形成し、ボンドゥエ ーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介して貼り合わせた後 イオン注入層で剥離を行うことにより SSOIゥエーハを製造し、その後剥離したボンド ゥエーハに残留した第一のシリコン層を選択エッチング液でエッチング除去して第一 の緩和 SiGe層を露出させ、該露出した第一の緩和 SiGe層の表面に、第三のシリコ ン層、第三の緩和 SiGe層、第四のシリコン層が順次形成されたボンドゥエ一ハを形 成し、該ボンドゥエーハを用いて、イオン注入工程及び剥離工程により別の SSOIゥ エーハを製造することを特徴とする。このようにすれば、剥離面の面粗れやテラス部 の残存によるボイド不良を防止し、良質な SSOIゥエーハを低コストで製造歩留まり高 く製造できる。
[0070] この製造方法は、例えば図 2 (a)〜(d)に示す工程により SSOIゥエーハを製造し、 次に図 2 (e)〜(f)に示す工程を行ってボンドゥエーハを形成し、こうして形成したボ ンドゥエーハを用いて、図 2 (b)〜(d)に示すイオン注入工程及び剥離工程により別 の SSOIゥエーハを製造することで実施することができる。そして、これを繰り返すこと により、ボンドゥエーハを何度も使用することができ、 SSOIゥエーハの製造コストを一 層低下させることができる。
[0071] 以下、本発明の実施例及び比較例により本発明を具体的に説明するが、本発明は これらに限定されるものではない。
(実施例 比較例 1)
図 1 (a)〜(g)に示す工程に従ってボンドゥエーハを再生し、再生したボンドゥエ一 ハに再びイオン注入工程及び剥離工程を行な 、、 SSOIゥエーハを製造した(実施 例 1)。一方、第一のシリコン層及び第二の格子緩和 SiGe層を形成せず、第一の格 子緩和 SiGe層の内部にイオン注入層を形成し、剥離後は第一の格子緩和 SiGe層 を研磨カ卩ェして面粗れを除去する以外は、実施例 1と同様にして SSOIゥエーハを製 造した。主な作製条件を表 1に示す。
[0072] [表 1]
実施例 1 比較例 1
シリ コン単結晶 直径 : 300 mm、 面方位 : (1 00)、
ゥエーノヽ 導電型 : P型、 抵抗率 : 10 Ω · c m
傾斜組成 堆積温度 : 650で、 膜厚 : 2 m、
S i G e層形成 G e濃度: 0 %〜 20 %、 原料ガス : SiH4+GeB
第一の格子緩和 堆積温度: 65 膜厚 : 2 μ m、
S i G e層形成 G e濃度: 20 %、 原料ガス : SiH4 + GeH4
第一のシリコン層形成 堆積温度 : 6 50で なし
膜厚: 20 n m、 原料ガス : SiE
第二の格子緩和 堆積温度 : 650=0、 膜厚: 1 m、
S i G e層形成 G e濃度: 20%、 原料ガス : SiH4 + GeH4
第二のシリ コン層形成 堆積温度: 650°C、 膜厚 : 50 nm、 原料ガス : SiEU
イオン注入 注入イオン : H+イオン、 注入量: 5. 5 X 1016/ c m2,
注入エネルギー : 30 k e V
貼り合わ 液組成 NH4OH (29 wt%) : H2O2 (30 wt%) : H20= 1 : 1 : 5 せ前洗浄 温度,時間 75 、 3分
貼り合わせ ベースウェーハ (直径: 300 mm, 面方位: (100)、 導電型 :
P型、 抵抗率 : 10 Q ' cm、 厚さ 400 nmの酸化膜付き) と 室温にて密着
剥離熱処理 雰囲気: 窒素、 温度: 500 、 処理時間 : 30分
再生処理 外周のテラス部表面に残存する第二のシリ 第一の格子緩和 コン層を第二の選択エッチング液により除 S i G e層の表面 去 を 0. 5 μ m研磨
NH4OH (10wt%): NH NOs = 200ml: lg
液温: 21
エッチング時間 : 1分
第一の選択エッチング液により第二の緩和
S i G e層を除去
HF (50wt%): H2O2 (30wt ): CHsCOOH
(99wt%)= 1 : 2 : 3
液温: 21で
エッチング時間 : 30分
第二の選択エッチング液により第一のシリ
コン層を除去
NH4OH (10wt%): NH4N03 = 200ml: lg
液温: 21 ¾
エッチング時間 : 2分
第三のシリ コン層形成 堆積温度': 650 なし
膜厚 : 20 nm、 原料ガス : SiH4
第三の格子緩和 堆積温度: 650 ¾、 膜厚: 0. 5 μ m、
S i G e層形成 G e濃度: 20 %、 原料ガス : SiH4 + GeH4
第四のシリ コン層形成 堆積温度 : 650¾膜厚: 50 nm、 原料ガス : SiH
イオン注入 注入イオン : H+イオン、 注入量: 5. 5 X 1016/cm2
注入エネルギー : 30 k e V
貼り合わ 液組成 NH4OH (29 wt%) : Η2Οζ (30 wt%) : 0= 1 : 1 : 5 せ前洗浄 温度,時間 75°C、 3分
貼り合わせ ベースウェーハ (直径: 300 mm、 面方位: (100)、 導電型:
P型、 抵抗率: 10 Ω · c m、 厚さ 400 nmの酸化膜付き) と 室温にて密着
剥離熱処理 雰囲気 :窒素、 温度 : 50 Οΐ;、 処理時間 : 30分 その結果、比較例 1では SSOIゥエーハにボイド、ブリスターが多発し、特に外周部 において多発した。一方、実施例 1では SSOIゥエーハにボイド、ブリスターの発生は なかった。 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単な る例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一 な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技 術的範囲に包含される。

Claims

請求の範囲
[1] ボンドゥエーハの再生方法であって、少なくとも、
シリコン単結晶ゥエーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格 子歪が緩和された第一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第 二のシリコン層が順次形成されたボンドゥエーハを形成し、
前記第二のシリコン層表面力 水素イオンまたは希ガスイオンの少なくとも一種類を 注入することにより、前記第二の緩和 SiGe層の内部にイオン注入層を形成し、 前記ボンドゥエーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介し て貼り合わせた後前記イオン注入層で剥離を行 、、
その後前記剥離したボンドゥエーハに残留した第二の緩和 SiGe層を第一の選択 エッチング液でエッチング除去して前記第一のシリコン層を露出させ、
該露出した第一のシリコン層を第二の選択エッチング液でエッチング除去して前記 第一の緩和 SiGe層を露出させ、
該露出した第一の緩和 SiGe層の表面に、第三のシリコン層、第三の緩和 SiGe層、 第四のシリコン層を順次形成することにより、前記剥離したボンドゥエーハを再生する ことを特徴とするボンドゥエーハの再生方法。
[2] ボンドゥエーハの再生方法であって、少なくとも、
シリコン単結晶ゥエーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格 子歪が緩和された第一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第 二のシリコン層が順次形成されたボンドゥエーハを形成し、
前記第二のシリコン層表面力 水素イオンまたは希ガスイオンの少なくとも一種類を 注入することにより、前記第二の緩和 SiGe層の内部にイオン注入層を形成し、 前記ボンドゥエーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介し て貼り合わせた後前記イオン注入層で剥離を行 、、
その後前記剥離したボンドゥエーハに残留した第二の緩和 SiGe層を選択エツチン グ液でエッチング除去して前記第一のシリコン層を露出させ、
該露出した第一のシリコン層の表面に、第三の緩和 SiGe層、第三のシリコン層を順 次形成することにより、前記剥離したボンドゥエーハを再生することを特徴とするボン ドゥエーハの再生方法。
[3] 請求項 1又は請求項 2に記載のボンドゥエーハの再生方法において、前記剥離ェ 程の後に、前記剥離したボンドゥエーハの外周部に残留した第二のシリコン層を除 去してから、前記第二の緩和 SiGe層のエッチング除去を行うことを特徴とするボンド ゥエーハの再生方法。
[4] ボンドゥエーハの再生方法であって、少なくとも、
シリコン単結晶ゥエーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格 子歪が緩和された第一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第 二のシリコン層が順次形成されたボンドゥエーハを形成し、
前記第二のシリコン層表面力 水素イオンまたは希ガスイオンの少なくとも一種類を 注入することにより、前記第一のシリコン層の内部又は該第一のシリコン層と第二の 緩和 SiGe層との界面にイオン注入層を形成し、
前記ボンドゥエーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介し て貼り合わせた後前記イオン注入層で剥離を行 、、
その後前記剥離したボンドゥエーハに残留した第一のシリコン層を選択エッチング 液でエッチング除去して前記第一の緩和 SiGe層を露出させ、
該露出した第一の緩和 SiGe層の表面に、第三のシリコン層、第三の緩和 SiGe層、 第四のシリコン層を順次形成することにより、前記剥離したボンドゥエーハを再生する ことを特徴とするボンドゥエーハの再生方法。
[5] 請求項 4に記載のボンドゥエーハの再生方法において、前記剥離工程の後に、前 記剥離したボンドゥエーハの外周部に残留した第二のシリコン層及び第二の緩和 Si Ge層を除去してから、前記第一のシリコン層のエッチング除去を行うことを特徴とす るボンドゥエーハの再生方法。
[6] 請求項 1乃至請求項 5のいずれか一項に記載のボンドゥエーハの再生方法におい て、前記第一のシリコン層の厚さを 10nm以上 lOOnm以下とすることを特徴とするボ ンドゥエーハの再生方法。
[7] 請求項 1乃至請求項 6のいずれか一項に記載のボンドゥエーハの再生方法におい て、前記 SiGe層をエッチングする選択エッチング液として、 HFと H Oと CH COO
2 2 3
Hの水溶液、 HFと H Oの水溶液、 HFと HNOの水溶液、 NaOHと H Oの水溶液
2 2 3 2 2 の!、ずれかを用いることを特徴とするボンドゥエーハの再生方法。
[8] 請求項 1乃至請求項 7のいずれか一項に記載のボンドゥエーハの再生方法におい て、前記シリコン層をエッチングする選択エッチング液として、 NH OHと NH NOの
4 4 3 水溶液、 NH OH水溶液、 TMAH水溶液のいずれかを用いることを特徴とするボン
4
ドゥエーハの再生方法。
[9] 請求項 1乃至請求項 8のいずれか一項に記載の方法により再生されたボンドゥエ一
[10] SSOIゥエーハの製造方法であって、少なくとも、
シリコン単結晶ゥエーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格 子歪が緩和された第一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第 二のシリコン層が順次形成されたボンドゥエーハを形成し、
前記第二のシリコン層表面力 水素イオンまたは希ガスイオンの少なくとも一種類を 注入することにより、前記第二の緩和 SiGe層の内部にイオン注入層を形成し、 前記ボンドゥエーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介し て貼り合わせた後前記イオン注入層で剥離を行うことにより SSOIゥエーハを製造し、 その後前記剥離したボンドゥエーハに残留した第二の緩和 SiGe層を第一の選択 エッチング液でエッチング除去して前記第一のシリコン層を露出させ、
該露出した第一のシリコン層を第二の選択エッチング液でエッチング除去して前記 第一の緩和 SiGe層を露出させ、
該露出した第一の緩和 SiGe層の表面に、第三のシリコン層、第三の緩和 SiGe層、 第四のシリコン層が順次形成されたボンドゥエーハを形成し、
該ボンドゥエーハを用いて、前記イオン注入工程及び前記剥離工程により別の SS OIゥエーハを製造することを特徴とする SSOIゥエーハの製造方法。
[11] SSOIゥエーハの製造方法であって、少なくとも、
シリコン単結晶ゥエーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格 子歪が緩和された第一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第 二のシリコン層が順次形成されたボンドゥエーハを形成し、
前記第二のシリコン層表面力 水素イオンまたは希ガスイオンの少なくとも一種類を 注入することにより、前記第二の緩和 SiGe層の内部にイオン注入層を形成し、 前記ボンドゥエーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介し て貼り合わせた後前記イオン注入層で剥離を行うことにより SSOIゥエーハを製造し、 その後前記剥離したボンドゥエーハに残留した第二の緩和 SiGe層を選択エツチン グ液でエッチング除去して前記第一のシリコン層を露出させ、
該露出した第一のシリコン層の表面に、第三の緩和 SiGe層、第三のシリコン層が 順次形成されたボンドゥエーハを形成し、
該ボンドゥエーハを用いて、前記イオン注入工程及び前記剥離工程により別の SS OIゥエーハを製造することを特徴とする SSOIゥエーハの製造方法。
[12] 請求項 10又は請求項 11に記載の SSOIゥエーハの製造方法にぉ 、て、前記剥離 工程の後に、前記剥離したボンドゥエーハの外周部に残留した第二のシリコン層を 除去してから、前記第二の緩和 SiGe層のエッチング除去を行うことを特徴とする SS OIゥエーハの製造方法。
[13] SSOIゥエーハの製造方法であって、少なくとも、
シリコン単結晶ゥエーハの表面に Ge濃度が徐々に増加する傾斜組成 SiGe層、格 子歪が緩和された第一の緩和 SiGe層、第一のシリコン層、第二の緩和 SiGe層、第 二のシリコン層が順次形成されたボンドゥエーハを形成し、
前記第二のシリコン層表面力 水素イオンまたは希ガスイオンの少なくとも一種類を 注入することにより、前記第一のシリコン層の内部又は該第一のシリコン層と第二の 緩和 SiGe層との界面にイオン注入層を形成し、
前記ボンドゥエーハの第二のシリコン層の表面とベースウェーハとを絶縁層を介し て貼り合わせた後前記イオン注入層で剥離を行うことにより SSOIゥエーハを製造し、 その後前記剥離したボンドゥエーハに残留した第一のシリコン層を選択エッチング 液でエッチング除去して前記第一の緩和 SiGe層を露出させ、
該露出した第一の緩和 SiGe層の表面に、第三のシリコン層、第三の緩和 SiGe層、 第四のシリコン層が順次形成されたボンドゥエーハを形成し、
該ボンドゥエーハを用いて、前記イオン注入工程及び前記剥離工程により別の SS OIゥエーハを製造することを特徴とする SSOIゥエーハの製造方法。
[14] 請求項 13に記載の SSOIゥエーハの製造方法において、前記剥離工程の後に、 前記剥離したボンドゥエーハの外周部に残留した第二のシリコン層及び第二の緩和 SiGe層を除去してから、前記第一のシリコン層のエッチング除去を行うことを特徴と する SSOIゥエーハの製造方法。
[15] 請求項 10乃至請求項 14の 、ずれか一項に記載の SSOIゥエーハの製造方法に おいて、前記第一のシリコン層の厚さを lOnm以上 lOOnm以下とすることを特徴とす る SSOIゥエーハの製造方法。
[16] 請求項 10乃至請求項 15のいずれか一項に記載の SSOIゥエーハの製造方法に おいて、前記 SiGe層をエッチングする選択エッチング液として、 HFと H Oと CH C
2 2 3
OOHの水溶液、 HFと H Oの水溶液、 HFと HNOの水溶液、 NaOHと H Oの水
2 2 3 2 2 溶液の 、ずれかを用いることを特徴とする SSOIゥエーハの製造方法。 請求項 10乃至請求項 16のいずれか一項に記載の SSOIゥエーハの製造方法に おいて、前記シリコン層をエッチングする選択エッチング液として、 NH OHと NH N
4 4
Oの水溶液、 NH OH水溶液、 TMAH水溶液のいずれかを用いることを特徴とする
3 4
SSOIゥエーハの製造方法。
PCT/JP2006/312700 2005-07-08 2006-06-26 ボンドウエーハの再生方法及びボンドウエーハ並びにssoiウエーハの製造方法 WO2007007537A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-200436 2005-07-08
JP2005200436A JP2007019323A (ja) 2005-07-08 2005-07-08 ボンドウエーハの再生方法及びボンドウエーハ並びにssoiウエーハの製造方法

Publications (1)

Publication Number Publication Date
WO2007007537A1 true WO2007007537A1 (ja) 2007-01-18

Family

ID=37636934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312700 WO2007007537A1 (ja) 2005-07-08 2006-06-26 ボンドウエーハの再生方法及びボンドウエーハ並びにssoiウエーハの製造方法

Country Status (2)

Country Link
JP (1) JP2007019323A (ja)
WO (1) WO2007007537A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749908B2 (en) 2004-11-26 2010-07-06 S.O.I.Tec Silicon On Insulator Technologies Edge removal of silicon-on-insulator transfer wafer
US11652000B2 (en) 2020-08-19 2023-05-16 Kioxia Corporation Semiconductor device, method of manufacturing semiconductor device, and method of recycling substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017007893A1 (en) 2015-07-09 2017-01-12 Entegris, Inc. Formulations to selectively etch silicon germanium relative to germanium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004019404A2 (en) * 2002-08-26 2004-03-04 S.O.I.Tec Silicon On Insulator Technologies Recycling a wafer comprising a buffer layer, after having taken off a thin layer therefrom

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004019404A2 (en) * 2002-08-26 2004-03-04 S.O.I.Tec Silicon On Insulator Technologies Recycling a wafer comprising a buffer layer, after having taken off a thin layer therefrom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749908B2 (en) 2004-11-26 2010-07-06 S.O.I.Tec Silicon On Insulator Technologies Edge removal of silicon-on-insulator transfer wafer
US7951718B2 (en) 2004-11-26 2011-05-31 Applied Materials, Inc. Edge removal of silicon-on-insulator transfer wafer
US11652000B2 (en) 2020-08-19 2023-05-16 Kioxia Corporation Semiconductor device, method of manufacturing semiconductor device, and method of recycling substrate

Also Published As

Publication number Publication date
JP2007019323A (ja) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4602475B2 (ja) 歪み半導体材料から成る層の転移方法
US6927147B2 (en) Coplanar integration of lattice-mismatched semiconductor with silicon via wafer bonding virtual substrates
JP5107911B2 (ja) 転位の無い歪んだ結晶を作成するための方法
JP4617820B2 (ja) 半導体ウェーハの製造方法
JP2006148066A (ja) ゲルマニウム・オン・インシュレータ(GeOI)型ウェーハの製造方法
KR20160145600A (ko) 접합 soi 웨이퍼의 제조방법
KR20080036209A (ko) 스트레인드 실리콘-온-인슐레이터 구조의 제조 방법
JP4577382B2 (ja) 貼り合わせウェーハの製造方法
WO2006051730A1 (ja) 半導体ウェーハの製造方法
KR101722401B1 (ko) 접합 웨이퍼의 제조 방법
JP4654710B2 (ja) 半導体ウェーハの製造方法
KR101142138B1 (ko) 적층기판의 세척방법, 기판의 접합방법 및 접합 웨이퍼의제조방법
WO2007007537A1 (ja) ボンドウエーハの再生方法及びボンドウエーハ並びにssoiウエーハの製造方法
JP5541136B2 (ja) 貼り合わせsoiウエーハの製造方法
US20070000435A1 (en) Method of manufacturing a wafer
JP4613656B2 (ja) 半導体ウエーハの製造方法
JP2008205062A (ja) 半導体基板の製造方法および半導体基板
JP4649918B2 (ja) 貼り合せウェーハの製造方法
JP6473970B2 (ja) 貼り合わせsoiウェーハの製造方法
JP4626133B2 (ja) 貼り合せウェーハの製造方法
JP7251419B2 (ja) 貼り合わせsoiウェーハの製造方法
CN117393422A (zh) 一种制造碳化硅复合衬底的方法
JP2008130726A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767317

Country of ref document: EP

Kind code of ref document: A1